1
|
Jarvis M, Hamzah KA, Nichols D, Ney LJ. Hair and Saliva Endocannabinoid and Steroid Hormone Analysis by Liquid Chromatography Paired with Tandem Mass Spectrometry. Methods Mol Biol 2025; 2868:135-147. [PMID: 39546229 DOI: 10.1007/978-1-0716-4200-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Endocannabinoids are lipid neurotransmitters that play an important part in human health. Recent methods have found that quantification of endocannabinoids in hair and saliva samples is possible using liquid chromatography paired with tandem mass spectrometry (LC-MS/MS). This chapter describes two simple sample preparation methods that can be used to prepare hair and saliva samples for analysis using LC-MS/MS. Our LC-MS/MS method can be applied to both hair and saliva samples and is sufficiently sensitive for endocannabinoid, as well as steroid hormone, quantification in both of these sample matrices. This chapter provides a comprehensive description of how this can be achieved and provides tips and tricks for troubleshooting problems users may experience.
Collapse
Affiliation(s)
- Madeline Jarvis
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Khalisa Amir Hamzah
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - David Nichols
- Central Science Laboratory, University of Tasmania, Hobart, TAS, Australia
| | - Luke J Ney
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Weidenauer A, Garani R, Lalang N, Watts J, Lepage M, Rusjan PM, Mizrahi R. The Role of Fatty Acid Amide Hydrolase, a Key Regulatory Endocannabinoid Enzyme, in Domain-Specific Cognitive Performance in Psychosis. Schizophr Bull 2024:sbae212. [PMID: 39729518 DOI: 10.1093/schbul/sbae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
BACKGROUND AND HYPOTHESIS Cognitive impairments are particularly disabling for patients with a psychotic disorder and often persist despite optimization of antipsychotic treatment. Thus, motivating an extension of the research focus on the endocannabinoid system. The aim of this study was to evaluate group differences in brain fatty acid amid hydrolase (FAAH), an endocannabinoid enzyme between first-episode psychosis (FEP), individuals with clinical high risk (CHR) for psychosis and healthy controls (HCs). Furthermore, to test the hypothesis that FAAH is linked with cognition using positron emission tomography (PET). STUDY DESIGN We analyzed 80 PET scans with the highly selective FAAH radioligand [11C]CURB, including 30 patients with FEP (6 female), 15 CHR (5 female), and 35 HC (19 female). The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the Berg Card Sorting Test (BCST) were applied to test cognitive performance. STUDY RESULTS There was no difference in FAAH activity between groups (F2, 75 = 0.75, P = .48; Cohen's f = 0.141; small effect). Overall, there was a difference in the association between groups regarding FAAH activity and the domain visuospatial construction (F2, 72 = 4.67, P = .01; Cohen's f = .36; medium effect). Furthermore, across the sample, lower FAAH activity was associated with a higher percentage of perseverative responses (F1, 66 = 5.06, P = .03; Cohen's f = 0.28, medium effect). CONCLUSIONS We report evidence for associations between endocannabinoid alterations in FEP and CHR with specific domains of cognition (visuospatial construction and perseverative response), not overall cognition.
Collapse
Affiliation(s)
- Ana Weidenauer
- Division of General Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna 1090, Austria
| | - Ranjini Garani
- Clinical and Translational Sciences Lab, Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Nittha Lalang
- Vertex Pharmaceuticals, Boston, MA 02210, United States
| | - Jeremy Watts
- Research Centre, CHU Sainte-Justine, Montreal, Quebec H3T 1C5, Canada
- Department of Psychiatry, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Martin Lepage
- Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Pablo M Rusjan
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
- Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Romina Mizrahi
- Clinical and Translational Sciences Lab, Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
- Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| |
Collapse
|
3
|
Weidenauer A, Garani R, Campos Oller P, Belén Blasco M, Rusjan PM, Mizrahi R. Impact of Stress on the Endocannabinoid System: A [ 11C]-CURB Positron Emission Tomography Study in Early Psychosis: Les effets du stress sur le système endocannabinoïde : étude par tomographie par émission de positons avec l'indicateur radioactif [11C-CURB] dans la psychose précoce. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2024:7067437241300958. [PMID: 39632555 PMCID: PMC11622212 DOI: 10.1177/07067437241300958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BACKGROUND Stress and traumatic experiences are well-established risk factors for psychiatric disorders. Stressful events can induce symptoms of anxiety and depression and may lead to overt psychosis, especially when there is an innate biological vulnerability. This study explores the role of the stress-regulating endocannabinoid system, specifically the activity of the enzyme fatty acid amid hydrolase (FAAH), a key regulatory enzyme for endocannabinoids, in association with stress by analysing data from healthy individuals and patients with psychosis. METHODS We performed a post-hoc exploratory analysis on 65 positron emission tomography scans using the selective FAAH radioligand [11C]CURB, encompassing 30 patients with psychosis (6 female) and 35 healthy controls (19 female). The study aimed to examine the association between FAAH activity and stressful life events, assessed through the Recent Life Events, Survey of Life Experiences, and Hassles and Uplifts Scale. RESULTS There was a significant difference regarding the number of recent stressors with higher levels in patients compared to healthy subjects (Survey of Life Experiences: t = 4.88, p < 0.001, hassles: t = 3.14, p = 0.003), however there was no significant relationship of brain FAAH activity and stressful life events in any of the applied scales across groups (Recent Life Events: F1,57 = 0.07, p = 0.80; Survey of Life Experiences: F1,57 = 1.75, p = 0.19; hassles: F1,56 = 1.06, p = 0.31). Linear mixed models performed separately for each group revealed that there was a positive association between FAAH activity and Recent Life Events in patients with psychosis only (F1,25 = 8.07, p = 0.009). CONCLUSIONS Our data reveal a significant disparity in recent stressors between the two groups, and a correlation between brain FAAH activity and stressful life events in patients with psychosis only. This suggests a complex interplay between stress and the endocannabinoid system.
Collapse
Affiliation(s)
- Ana Weidenauer
- Division of General Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Ranjini Garani
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Paula Campos Oller
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Maira Belén Blasco
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Pablo M. Rusjan
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Romina Mizrahi
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Yadav-Samudrala BJ, Ravula HP, Barmada KM, Dodson H, Poklis JL, Ignatowska-Jankowska BM, Lichtman AH, Reissner KJ, Fitting S. Acute Effects of Monoacylglycerol Lipase Inhibitor ABX1431 on Neuronal Hyperexcitability, Nociception, Locomotion, and the Endocannabinoid System in HIV-1 Tat Male Mice. Cannabis Cannabinoid Res 2024; 9:1500-1513. [PMID: 38394322 PMCID: PMC11685295 DOI: 10.1089/can.2023.0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Background: Evidence suggests that monoacylglycerol lipase (MAGL) inhibitors can potentially treat HIV symptoms by increasing the concentration of 2-arachidonoylglycerol (2-AG). We examined a selective MAGL inhibitor ABX1431 in the context of neuroHIV. Methods: To assess the effects of ABX1431, we conducted in vitro and in vivo studies. In vitro calcium imaging on frontal cortex neuronal cultures was performed to evaluate the role of ABX1431 (10, 30, 100 nM) on transactivator of transcription (Tat)-induced neuronal hyperexcitability. Following in vitro experiments, in vivo experiments were performed using Tat transgenic male mice. Mice were treated with 4 mg/kg ABX1431 and assessed for antinociception using tail-flick and hot plate assays followed by locomotor activity. After the behavioral experiments, their brains were harvested to quantify endocannabinoids (eCB) and related lipids through mass spectrometry, and cannabinoid type-1 and -2 receptors (CB1R and CB2R) were quantified through western blot. Results: In vitro studies revealed that adding Tat directly to the neuronal cultures significantly increased intracellular calcium concentration, which ABX1431 completely reversed at all concentrations. Preincubating the cultures with CB1R and CB2R antagonists showed that ABX1431 exhibited its effects partially through CB1R. In vivo studies demonstrated that acute ABX1431 increased overall total distance traveled and speed of mice regardless of their genotype. Mass spectrometry and western blot analyses revealed differential effects on the eCB system based on Tat expression. The 2-AG levels were significantly upregulated following ABX1431 treatment in the striatum and spinal cord. Arachidonic acid (AA) was also upregulated in the striatum of vehicle-treated Tat(+) mice. No changes were noted in CB1R expression levels; however, CB2R levels were increased in ABX1431-treated Tat(-) mice only. Conclusion: Findings indicate that ABX1431 has potential neuroprotective effects in vitro partially mediated through CB1R. Acute treatment of ABX1431 in vivo shows antinociceptive effects, and seems to alter locomotor activity, with upregulating 2-AG levels in the striatum and spinal cord.
Collapse
Affiliation(s)
- Barkha J. Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Havilah P. Ravula
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Karenna M. Barmada
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hailey Dodson
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kathryn J. Reissner
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Martínez-Rivera A, Fetcho RN, Birmingham L, Xu J, Yang R, Foord C, Scala-Chávez D, Mekawy N, Pleil K, Pickel VM, Liston C, Castorena CM, Levitz J, Pan YX, Briand LA, Rajadhyaksha AM, Lee FS. Elevating levels of the endocannabinoid 2-arachidonoylglycerol blunts opioid reward but not analgesia. SCIENCE ADVANCES 2024; 10:eadq4779. [PMID: 39612328 PMCID: PMC11606496 DOI: 10.1126/sciadv.adq4779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Converging findings have established that the endocannabinoid (eCB) system serves as a possible target for the development of new treatments as a complement to opioid-based treatments. Here, we show in male and female mice that enhancing levels of the eCB, 2-arachidonoylglycerol (2-AG), through pharmacological inhibition of its catabolic enzyme, monoacylglycerol lipase (MAGL), either systemically or in the ventral tegmental area (VTA) with JZL184, leads to a substantial attenuation of the rewarding effects of opioids in mice using conditioned place preference and self-administration paradigms, without altering their analgesic properties. These effects are driven by cannabinoid receptor 1 (CB1R) within the VTA, as VTA CB1R conditional knockout counteracts JZL184's effects. Using fiber photometry with fluorescent sensors for calcium and dopamine (DA), we find that enhancing 2-AG levels diminishes opioid reward-related nucleus accumbens (NAc) activity and DA neurotransmission. Together, these findings reveal that 2-AG diminishes the rewarding properties of opioids and provides a potential adjunctive therapeutic strategy for opioid-related analgesic treatments.
Collapse
Affiliation(s)
- Arlene Martínez-Rivera
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Robert N. Fetcho
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lizzie Birmingham
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Jin Xu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Ruirong Yang
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Careen Foord
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Diego Scala-Chávez
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Narmin Mekawy
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kristen Pleil
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Virginia M. Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Conor Liston
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carlos M. Castorena
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ying-Xian Pan
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Lisa A. Briand
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Anjali M. Rajadhyaksha
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Francis S. Lee
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
6
|
Kim L, Nan G, Kim HY, Cha M, Lee BH. Modulation of chemotherapy-induced peripheral neuropathy by JZL195 through glia and the endocannabinoid system. Biomed Pharmacother 2024; 180:117515. [PMID: 39362070 DOI: 10.1016/j.biopha.2024.117515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) used to treat cancer, is a significant side effect with a complex pathophysiology, and its mechanisms remain unclear. Recent research highlights neuroinflammation, which is modulated by the endocannabinoid system (ECS) and associated with glial activation, and the role of toll-like receptor 4 (TLR4) in CIPN. This study aimed to investigate the effects of JZL195, an inhibitor of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), and explore the connection between cannabinoid receptors and TLR4 in glial cells. A CIPN animal model was developed using cisplatin-injected male C57BL/6 mice. Mechanical and cold allodynia were assessed through von Frey and acetone tests. Western blot analysis was used to examine the expression of catabolic enzymes, cannabinoid receptors, glial cells, and neuroinflammatory factors in the dorsal root ganglia (DRGs) and spinal cord. Immunohistochemistry was used to investigate the colocalization of cannabinoid receptors and TLR4 in glial cells. JZL195 alleviated pain by inhibiting FAAH/MAGL, modulating the ECS and neuroinflammatory factors, and suppressing glial cell activity. Additionally, cannabinoid receptors and TLR4 colocalized with astrocytes and microglia in the spinal cord. This study highlights the therapeutic potential of JZL195 in modulating the ECS and suggests a correlation between cannabinoid receptors and TLR4 in spinal glial cells, providing insight into alleviating pain and neuroinflammation in CIPN.
Collapse
Affiliation(s)
- Leejeong Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Guanghai Nan
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
7
|
Demaili A, Portugalov A, Maroun M, Akirav I, Braun K, Bock J. Early life stress induces decreased expression of CB1R and FAAH and epigenetic changes in the medial prefrontal cortex of male rats. Front Cell Neurosci 2024; 18:1474992. [PMID: 39503008 PMCID: PMC11534599 DOI: 10.3389/fncel.2024.1474992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Several studies in both animal models and in humans have provided substantial evidence that early life stress (ELS) induces long-term changes in behavior and brain function, making it a significant risk factor in the aetiology of various mental disorders, including anxiety and depression. In this study, we tested the hypothesis that ELS in male rats (i) leads to increased anxiety and depressive-like symptoms; and (ii) that these behavioral changes are associated with functional alterations in the endocannabinoid system of the medial prefrontal cortex (mPFC). We further assessed whether the predicted changes in the gene expression of two key components of the endocannabinoid system, cannabinoid receptor 1 (CB1R) and the fatty acid amide hydrolase (FAAH), are regulated by epigenetic mechanisms. Behavioral profiling revealed that the proportion of behaviorally affected animals was increased in ELS exposed male rats compared to control animals, specifically showing symptoms of anhedonia and impaired social behavior. On the molecular level we observed a decrease in CB1R and FAAH mRNA expression in the mPFC of adult ELS exposed animals. These gene expression changes were accompanied by reduced global histone 3 acetylation in the mPFC, while no significant changes in DNA methylation and no significant changes of histone-acetylation at the promoter regions of the analyzed genes were detected. Taken together, our data provide evidence that ELS induces a long-term reduction of CB1R and FAAH expression in the mPFC of adult male rats, which may partially contribute to the ELS-induced changes in adult socio-emotional behavior.
Collapse
Affiliation(s)
- Arijana Demaili
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Anna Portugalov
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Mouna Maroun
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Jörg Bock
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- PG Epigenetics and Structural Plasticity, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
8
|
Yan C, Liu Z. The role of periaqueductal gray astrocytes in anxiety-like behavior induced by acute stress. Biochem Biophys Res Commun 2024; 720:150073. [PMID: 38754161 DOI: 10.1016/j.bbrc.2024.150073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Astrocytes in the central nervous system play a vital role in modulating synaptic transmission and neuronal activation by releasing gliotransmitters. The 5-HTergic neurons in the ventrolateral periaqueductal gray (vlPAG) are important in anxiety processing. However, it remains uncertain whether the regulation of astrocytic activity on vlPAG 5-HTergic neurons is involved in anxiety processing. Here, through chemogenetic manipulation, we explored the impact of astrocytic activity in the PAG on the regulation of anxiety. To determine the role of astrocytes in the control of anxiety, we induced anxiety-like behaviors in mice through foot shock and investigated their effects on synaptic transmission and neuronal excitability in vlPAG 5-HTergic neurons. Foot shock caused anxiety-like behaviors, which were accompanied with the increase of the amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs), the area of slow inward currents (SICs), and the spike frequency of action potentials (AP) in vlPAG 5-HTergic neurons. The chemogenetic inhibition of vlPAG astrocytes was found to attenuate stress-induced anxiety-like behaviors and decrease the heightened synaptic transmission and neuronal excitability of vlPAG 5-HTergic neurons. Conversely, chemogenetic activation of vlPAG astrocytes triggered anxiety-like behaviors, enhanced synaptic transmission, and increased the excitability of vlPAG 5-HTergic neurons in unstressed mice. In summary, this study has provided initial insights into the pathway by which astrocytes influence behavior through the rapid regulation of associated neurons. This offers a new perspective for the investigation of the biological mechanisms underlying anxiety.
Collapse
Affiliation(s)
- Chuanting Yan
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, 199 Chang'an South Road, Xi'an, 710062, China; Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 555 Qiangye Road, Shanghai, 201210, China
| | - Zhiqiang Liu
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, 199 Chang'an South Road, Xi'an, 710062, China.
| |
Collapse
|
9
|
Maehashi S, Arora K, Fisher AL, Schweitzer DR, Akefe IO. Neurolipidomic insights into anxiety disorders: Uncovering lipid dynamics for potential therapeutic advances. Neurosci Biobehav Rev 2024; 163:105741. [PMID: 38838875 DOI: 10.1016/j.neubiorev.2024.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Anxiety disorders constitute a spectrum of psychological conditions affecting millions of individuals worldwide, imposing a significant health burden. Historically, the development of anxiolytic medications has been largely focused on neurotransmitter function and modulation. However, in recent years, neurolipids emerged as a prime target for understanding psychiatric pathogenesis and developing novel medications. Neurolipids influence various neural activities such as neurotransmission and cellular functioning, as well as maintaining cell membrane integrity. Therefore, this review aims to elucidate the alterations in neurolipids associated with an anxious mental state and explore their potential as targets of novel anxiolytic medications. Existing evidence tentatively associates dysregulated neurolipid levels with the etiopathology of anxiety disorders. Notably, preclinical investigations suggest that several neurolipids, including endocannabinoids and polyunsaturated fatty acids, may hold promise as potential pharmacological targets. Overall, the current literature tentatively suggests the involvement of lipids in the pathogenesis of anxiety disorders, hinting at potential prospects for future pharmacological interventions.
Collapse
Affiliation(s)
- Saki Maehashi
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Kabir Arora
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Andre Lara Fisher
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Isaac Oluwatobi Akefe
- Academy for Medical Education, The University of Queensland, Herston, QLD 4006, Australia.
| |
Collapse
|
10
|
Salemme BW, Raymundi AM, Sohn JMB, Stern CA. The Estrous Cycle Influences the Effects of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase Inhibition in the Anxiety-Like Behavior in Rats. Cannabis Cannabinoid Res 2024; 9:e1063-e1074. [PMID: 37010373 DOI: 10.1089/can.2022.0329] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Background: Sex differences in the response to the anxiety-related effects of cannabinoid drugs have been reported, with females being more sensitive than males. Evidence suggests that, according to sex and estrous cycle phase (ECP), the content of the endocannabinoids (eCBs) N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) varies in brain areas involved in the anxiety-like behavior. Methods: Considering the lack of studies evaluating sex and ECP differences in the eCB system in anxiety, using URB597, a fatty acid amide hydrolase inhibitor, or MJN110, a monoacylglycerol lipase inhibitor, we explored the effects of increasing AEA or 2-AG levels, respectively, in cycling and ovariectomized (OVX) female adult Wistar rats, as well as males, subjected to the elevated plus maze. Results: The administration of URB597 (0.1 or 0.3mg/kg; intraperitoneally) either increased or reduced the percentage of open arms time (%OAT) and open arms entries (%OAE), being anxiolytic in diestrus and anxiogenic in estrus. No effects were observed in proestrus or when all ECPs were analyzed together. Both doses produced anxiolytic-like effects in males. In OVX females, the anxiolytic-like effect of URB597 0.1 was associated with low levels of estradiol, whereas the anxiogenic-like effect of URB597 0.3 was spared by estradiol pretreatment. The systemic administration of MJN110 3.0 mg/kg reduced the risk assessment behavior (RAB), suggesting an anxiolytic-like effect independent of the ECP. When considering the ECP, MJN110 3.0 increased the %OAT and reduced the RAB, being anxiolytic in estrus and diestrus. No effects were observed in proestrus. Both doses of MJN110 were anxiogenic in males. In OVX females, the anxiolytic-like effect of MJN110 was dependent on low estradiol levels. Conclusion: Together, our findings support the evidence that females react differently to the effects of cannabinoids in the anxiety-like behavior; in addition, AEA and 2-AG modulation elicits anxiety-like responses that are closely influenced by hormone levels, mainly estradiol.
Collapse
Affiliation(s)
| | - Ana Maria Raymundi
- Department of Pharmacology, Federal University of Parana, Curitiba, Brazil
| | | | | |
Collapse
|
11
|
Zhao H, Liu Y, Cai N, Liao X, Tang L, Wang Y. Endocannabinoid Hydrolase Inhibitors: Potential Novel Anxiolytic Drugs. Drug Des Devel Ther 2024; 18:2143-2167. [PMID: 38882045 PMCID: PMC11179644 DOI: 10.2147/dddt.s462785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Over the past decade, the idea of targeting the endocannabinoid system to treat anxiety disorders has received increasing attention. Previous studies focused more on developing cannabinoid receptor agonists or supplementing exogenous cannabinoids, which are prone to various adverse effects due to their strong pharmacological activity and poor receptor selectivity, limiting their application in clinical research. Endocannabinoid hydrolase inhibitors are considered to be the most promising development strategies for the treatment of anxiety disorders. More recent efforts have emphasized that inhibition of two major endogenous cannabinoid hydrolases, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), indirectly activates cannabinoid receptors by increasing endogenous cannabinoid levels in the synaptic gap, circumventing receptor desensitization resulting from direct enhancement of endogenous cannabinoid signaling. In this review, we comprehensively summarize the anxiolytic effects of MAGL and FAAH inhibitors and their potential pharmacological mechanisms, highlight reported novel inhibitors or natural products, and provide an outlook on future directions in this field.
Collapse
Affiliation(s)
- Hongqing Zhao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Yang Liu
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Na Cai
- Outpatient Department, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Xiaolin Liao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Lin Tang
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
- Department of Pharmacy, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Yuhong Wang
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
12
|
Martínez-Rivera A, Fetcho RN, Birmingham L, Jiu JX, Yang R, Foord C, Scala-Chávez D, Mekawy N, Pleil K, Pickel VM, Liston C, Castorena CM, Levitz J, Pan YX, Briand LA, Rajadhyaksha AM, Lee FS. Elevating levels of the endocannabinoid 2-arachidonoylglycerol blunts opioid reward but not analgesia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.585967. [PMID: 38766079 PMCID: PMC11101127 DOI: 10.1101/2024.04.02.585967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Converging findings have established that the endocannabinoid (eCB) system serves as a possible target for the development of new treatments for pain as a complement to opioid-based treatments. Here we show in male and female mice that enhancing levels of the eCB, 2-arachidonoylglycerol (2-AG), through pharmacological inhibition of its catabolic enzyme, monoacylglycerol lipase (MAGL), either systemically or in the ventral tegmental area (VTA) with JZL184, leads to a substantial attenuation of the rewarding effects of opioids in male and female mice using conditioned place preference and self-administration paradigms, without altering their analgesic properties. These effects are driven by CB1 receptors (CB1Rs) within the VTA as VTA CB1R conditional knockout, counteracts JZL184's effects. Conversely, pharmacologically enhancing the levels of the other eCB, anandamide (AEA), by inhibition of fatty acid amide hydrolase (FAAH) has no effect on opioid reward or analgesia. Using fiber photometry with fluorescent sensors for calcium and dopamine (DA), we find that enhancing 2-AG levels diminishes opioid reward-related nucleus accumbens (NAc) activity and DA neurotransmission. Together these findings reveal that 2-AG counteracts the rewarding properties of opioids and provides a potential adjunctive therapeutic strategy for opioid-related analgesic treatments.
Collapse
Affiliation(s)
- Arlene Martínez-Rivera
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Robert N. Fetcho
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lizzie Birmingham
- Department of Psychology, Temple University; Neuroscience Program, Temple University, 19122, USA
| | - Jin X Jiu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Ruirong Yang
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Careen Foord
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Diego Scala-Chávez
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Narmin Mekawy
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kristen Pleil
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Virginia M. Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Conor Liston
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carlos M. Castorena
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ying-Xian Pan
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Lisa A. Briand
- Department of Psychology, Temple University; Neuroscience Program, Temple University, 19122, USA
| | - Anjali M. Rajadhyaksha
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Francis S. Lee
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
13
|
Camberos-Barraza J, Camacho-Zamora A, Bátiz-Beltrán JC, Osuna-Ramos JF, Rábago-Monzón ÁR, Valdez-Flores MA, Angulo-Rojo CE, Guadrón-Llanos AM, Picos-Cárdenas VJ, Calderón-Zamora L, Norzagaray-Valenzuela CD, Cárdenas-Torres FI, De la Herrán-Arita AK. Sleep, Glial Function, and the Endocannabinoid System: Implications for Neuroinflammation and Sleep Disorders. Int J Mol Sci 2024; 25:3160. [PMID: 38542134 PMCID: PMC10970053 DOI: 10.3390/ijms25063160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 11/11/2024] Open
Abstract
The relationship between sleep, glial cells, and the endocannabinoid system represents a multifaceted regulatory network with profound implications for neuroinflammation and cognitive function. The molecular underpinnings of sleep modulation by the endocannabinoid system and its influence on glial cell activity are discussed, shedding light on the reciprocal relationships that govern these processes. Emphasis is placed on understanding the role of glial cells in mediating neuroinflammatory responses and their modulation by sleep patterns. Additionally, this review examines how the endocannabinoid system interfaces with glia-immune signaling to regulate inflammatory cascades within the central nervous system. Notably, the cognitive consequences of disrupted sleep, neuroinflammation, and glial dysfunction are addressed, encompassing implications for neurodegenerative disorders, mood disturbances, and cognitive decline. Insights into the bidirectional modulation of cognitive function by the endocannabinoid system in the context of sleep and glial activity are explored, providing a comprehensive perspective on the potential mechanisms underlying cognitive impairments associated with sleep disturbances. Furthermore, this review examines potential therapeutic avenues targeting the endocannabinoid system to mitigate neuroinflammation, restore glial homeostasis, and normalize sleep patterns. The identification of novel therapeutic targets within this intricate regulatory network holds promise for addressing conditions characterized by disrupted sleep, neuroinflammation, and cognitive dysfunction. This work aims to examine the complexities of neural regulation and identify potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | - Juan F. Osuna-Ramos
- Faculty of Medicine, Autonomous University of Sinaloa, Culiacán 80019, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhang J, Zhang J, Yuan R, Han W, Chang Y, Kong L, Wei C, Zheng Q, Zhu X, Liu Z, Ren W, Han J. Inhibition of cannabinoid degradation enhances hippocampal contextual fear memory and exhibits anxiolytic effects. iScience 2024; 27:108919. [PMID: 38318362 PMCID: PMC10839683 DOI: 10.1016/j.isci.2024.108919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/28/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Recent studies have demonstrated the pivotal involvement of endocannabinoids in regulating learning and memory, but the conclusions obtained from different paradigms or contexts are somewhat controversial, and the underlying mechanisms remain largely elusive. Here, we show that JZL195, a dual inhibitor of fatty acid amide hydrolase and monoacylglycerol lipase, can enhance the performance of mice in a contextual fear conditioning task and increase the time spent in open arms in the elevated zero maze (EZM). Although the effect of JZL195 on fear memory could not be inhibited by antagonists of cannabinoid receptors, the effect on the EZM seems to be mediated by CB1R. Simultaneously, hippocampal neurons are hyperactive, and theta oscillation power is significantly increased during the critical period of memory consolidation upon treatment with JZL195. These results suggest the feasibility of targeting the endocannabinoid system for the treatment of various mental disorders.
Collapse
Affiliation(s)
- Jinming Zhang
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Junmin Zhang
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Ruiqi Yuan
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Wenxin Han
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Yuan Chang
- Department of Histology and Embryology, School of Basic Medical Science, Xi’an Medical University, Xi’an 710000, China
| | - Lingyang Kong
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Chunling Wei
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Qiaohua Zheng
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Xingchao Zhu
- Heze Hospital of Traditional Chinese Medicine, Heze 274000, China
| | - Zhiqiang Liu
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Wei Ren
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
- Faculty of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Jing Han
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| |
Collapse
|
15
|
Spohrs J, Kühnle V, Mikusky D, Sanhüter N, Macchia A, Nickel S, Abler B. Plasma Endocannabinoid Levels in Patients with Borderline Personality Disorder and Healthy Controls. Int J Mol Sci 2023; 24:17452. [PMID: 38139281 PMCID: PMC10743563 DOI: 10.3390/ijms242417452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Borderline personality disorder (BPD) is a highly prevalent psychiatric disorder and presents a complex therapeutic challenge due to limited treatment modalities. Recent focus has converged on the endocannabinoid system (ECS) as a prospective modulator of psychopathological processes in BPD. To address this hypothesis, we analysed plasma endocannabinoid concentrations, specifically anandamide (AEA) and 2-arachidonoylglycerol (2-AG), in a cohort of 49 female BPD patients and 32 matched healthy controls (HC). Additionally, we examined the effect of the FAAH polymorphism rs324420 and correlates with psychopathology. The results indicate heightened AEA levels and, by trend, augmented 2-AG levels within the patient group, as compared to the HC group. Significant between group differences in AEA levels were evident in the CC genotype (FAAH_rs324420) but not in A-allele carriers while the commonly observed difference in AEA levels between A-allele carriers as compared to the CC genotype was not evident in patients. An effect of genotype was found with higher ratings of depression (Beck's depression inventory, BDI-II) in the CC genotype compared to A-allele carriers (FAAH_rs32442), particularly in the patients. Significant alterations in AEA (and by trend in 2-AG) in patients with BPD may relate to compensatory ECS activity. The finding that the effect is most pronounced in CC homozygotes, might point towards a countermeasure to balance physiologically lower baseline AEA levels. The findings warrant further research to develop potentially beneficial psychopharmacological therapies.
Collapse
Affiliation(s)
- Jennifer Spohrs
- Department for Child and Adolescent Psychiatry and Psychotherapy, Ulm University Medical Centre, 89075 Ulm, Germany;
- Department of Psychiatry, Psychotherapy and Psychotraumatology, Military Medical Centre, 89081 Ulm, Germany
| | - Valentin Kühnle
- Department of Psychiatry and Psychotherapy III, Ulm University Medical Centre, 89075 Ulm, Germany; (V.K.); (D.M.); (N.S.); (A.M.); (S.N.)
| | - David Mikusky
- Department of Psychiatry and Psychotherapy III, Ulm University Medical Centre, 89075 Ulm, Germany; (V.K.); (D.M.); (N.S.); (A.M.); (S.N.)
| | - Niklas Sanhüter
- Department of Psychiatry and Psychotherapy III, Ulm University Medical Centre, 89075 Ulm, Germany; (V.K.); (D.M.); (N.S.); (A.M.); (S.N.)
| | - Ana Macchia
- Department of Psychiatry and Psychotherapy III, Ulm University Medical Centre, 89075 Ulm, Germany; (V.K.); (D.M.); (N.S.); (A.M.); (S.N.)
| | - Sandra Nickel
- Department of Psychiatry and Psychotherapy III, Ulm University Medical Centre, 89075 Ulm, Germany; (V.K.); (D.M.); (N.S.); (A.M.); (S.N.)
| | - Birgit Abler
- Department of Psychiatry and Psychotherapy III, Ulm University Medical Centre, 89075 Ulm, Germany; (V.K.); (D.M.); (N.S.); (A.M.); (S.N.)
| |
Collapse
|
16
|
Jacotte-Simancas A, Molina PE, Gilpin NW. Repeated Mild Traumatic Brain Injury and JZL184 Produce Sex-Specific Increases in Anxiety-Like Behavior and Alcohol Consumption in Wistar Rats. J Neurotrauma 2023; 40:2427-2441. [PMID: 37503666 PMCID: PMC10649186 DOI: 10.1089/neu.2023.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Alcohol use disorder (AUD) is highly comorbid with traumatic brain injury (TBI). Previously, using a lateral fluid percussion model (LFP) (an open-head injury model) to generate a single mild to moderate traumatic brain injury (TBI) we showed that TBI produces escalation in alcohol drinking, that alcohol exposure negatively impacts TBI outcomes, and that the endocannabinoid degradation inhibitor (JZL184) confers significant protection from behavioral and neuropathological outcomes in male rodents. In the present study, we used a weight drop model (a closed-head injury model) to produce repeated mild TBI (rmTBI; three TBIs separated by 24 hours) in male and female rats to examine the sex-specific effects on anxiety-like behavior and alcohol consumption, and whether systemic treatment with JZL184 would reverse TBI effects on those behaviors. In two separate studies, adult male and female Wistar rats were subjected to rmTBI or sham procedure using the weight drop model. Physiological measures of injury severity were collected from all animals. Animals in both studies were allowed to consume alcohol using an intermittent 2-bottle choice procedure (12 pre-TBI sessions and 12 post-TBI sessions). Neurological severity and neurobehavioral scores (NSS and NBS, respectively) were tested 24 hours after the final injury. Anxiety-like behavior was tested at 37-38 days post-injury in Study 1-, and 6-8-days post-injury in Study 2. Our results show that females exhibited reduced respiratory rates relative to males with no significant differences between Sham and rmTBI, no effect of rmTBI or sex on righting reflex, and increased neurological deficits in rmTBI groups in both studies. In Study 1, rmTBI increased alcohol consumption in female but not male rats. Male rats consistently exhibited higher levels of anxiety-like behavior than females. The rmTBI did not affect anxiety-like behavior 37-38 days post-injury. In Study 2, rmTBI once again increased alcohol consumption in female but not male rats, and repeated systemic treatment with JZL184 did not affect alcohol consumption. Also in Study 2, rmTBI increased anxiety-like behavior in males but not females and repeated systemic treatment with JZL184 produced an unexpected increase in anxiety-like behavior 6-8 days post-injury. In summary, rmTBI increased alcohol consumption in female rats, systemic JZL184 treatment did not alter alcohol consumption, and both rmTBI and systemic JZL184 treatment increased anxiety-like behavior 6-8 days post-injury in males but not females, highlighting robust sex differences in rmTBI effects.
Collapse
Affiliation(s)
- Alejandra Jacotte-Simancas
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Nicholas W. Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Southeast Louisiana VA Healthcare System, New Orleans, Louisiana, USA
| |
Collapse
|
17
|
Haller J. Anxiety Modulation by Cannabinoids-The Role of Stress Responses and Coping. Int J Mol Sci 2023; 24:15777. [PMID: 37958761 PMCID: PMC10650718 DOI: 10.3390/ijms242115777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Endocannabinoids were implicated in a variety of pathological conditions including anxiety and are considered promising new targets for anxiolytic drug development. The optimism concerning the potentials of this system for anxiolysis is probably justified. However, the complexity of the mechanisms affected by endocannabinoids, and discrepant findings obtained with various experimental approaches makes the interpretation of research results difficult. Here, we review the anxiety-related effects of the three main interventions used to study the endocannabinoid system: pharmacological agents active at endocannabinoid-binding sites present on both the cell membrane and in the cytoplasm, genetic manipulations targeting cannabinoid receptors, and function-enhancers represented by inhibitors of endocannabinoid degradation and transport. Binding-site ligands provide inconsistent findings probably because they activate a multitude of mechanisms concomitantly. More robust findings were obtained with genetic manipulations and particularly with function enhancers, which heighten ongoing endocannabinoid activation rather than affecting all mechanisms indiscriminately. The enhancement of ongoing activity appears to ameliorate stress-induced anxiety without consistent effects on anxiety in general. Limited evidence suggests that this effect is achieved by promoting active coping styles in critical situations. These findings suggest that the functional enhancement of endocannabinoid signaling is a promising drug development target for stress-related anxiety disorders.
Collapse
Affiliation(s)
- József Haller
- Drug Research Institute, 1137 Budapest, Hungary;
- Department of Criminal Psychology, University of Public Service, 1082 Budapest, Hungary
| |
Collapse
|
18
|
Kondev V, Najeed M, Yasmin F, Morgan A, Loomba N, Johnson K, Adank DN, Dong A, Delpire E, Li Y, Winder D, Grueter BA, Patel S. Endocannabinoid release at ventral hippocampal-amygdala synapses regulates stress-induced behavioral adaptation. Cell Rep 2023; 42:113027. [PMID: 37703881 PMCID: PMC10846613 DOI: 10.1016/j.celrep.2023.113027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 09/15/2023] Open
Abstract
The endocannabinoid (eCB) system is a key modulator of glutamate release within limbic neurocircuitry and thus heavily modulates stress responsivity and adaptation. The ventral hippocampus (vHPC)-basolateral amygdala (BLA) circuit has been implicated in the expression of negative affective states following stress exposure and is modulated by retrograde eCB signaling. However, the mechanisms governing eCB release and the causal relationship between vHPC-BLA eCB signaling and stress-induced behavioral adaptations are not known. Here, we utilized in vivo optogenetic- and biosensor-based approaches to determine the temporal dynamics of activity-dependent and stress-induced eCB release at vHPC-BLA synapses. Furthermore, we demonstrate that genetic deletion of cannabinoid type-1 receptors selectively at vHPC-BLA synapses decreases active stress coping and exacerbates stress-induced avoidance and anhedonia phenotypes. These data establish the in vivo determinants of eCB release at limbic synapses and demonstrate that eCB signaling within vHPC-BLA circuitry serves to counteract adverse behavioral consequences of stress.
Collapse
Affiliation(s)
- Veronika Kondev
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Mustafa Najeed
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Farhana Yasmin
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Amanda Morgan
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Niharika Loomba
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Keenan Johnson
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Danielle N Adank
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ao Dong
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China; PKU-IDG/McGoverrn Institute for Brain Research, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China; PKU-IDG/McGoverrn Institute for Brain Research, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Danny Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Brad A Grueter
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
19
|
Kwee CMB, Leen NA, Van der Kamp RC, Van Lissa CJ, Cath DC, Groenink L, Baas JMP. Anxiolytic effects of endocannabinoid enhancing compounds: A systematic review and meta-analysis. Eur Neuropsychopharmacol 2023; 72:79-94. [PMID: 37094409 DOI: 10.1016/j.euroneuro.2023.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/26/2023]
Abstract
The endocannabinoid system is a promising candidate for anxiolytic therapy, but translation to the clinic has been lagging. We meta-analyzed the evidence for anxiety-reduction by compounds that facilitate endocannabinoid signaling in humans and animals. To identify areas of specific potential, effects of moderators were assessed. Literature was searched in Pubmed and Embase up to May 2021. A placebo/vehicle-control group was required and in human studies, randomization. We excluded studies that co-administered other substances. Risk of bias was assessed with SYRCLE's RoB tool and Cochrane RoB 2.0. We conducted three-level random effects meta-analyses and explored sources of heterogeneity using Bayesian regularized meta-regression (BRMA). The systematic review yielded 134 studies. We analyzed 120 studies (114 animal, 6 human) that investigated cannabidiol (CBD, 61), URB597 (39), PF-3845 (6) and AM404 (14). Pooled effects on conditioned and unconditioned anxiety in animals (with the exception of URB597 on unconditioned anxiety) and on experimentally induced anxiety in humans favored the investigational drugs over placebo/vehicle. Publication year was negatively associated with effects of CBD on unconditioned anxiety. Compared to approach avoidance tests, tests of repetitive-compulsive behavior were associated with larger effects of CBD and URB597, and the social interaction test with smaller effects of URB597. Larger effects of CBD on unconditioned anxiety were observed when anxiety pre-existed. Studies reported few side effects at therapeutic doses. The evidence quality was low with indications of publication bias. More clinical trials are needed to translate the overall positive results to clinical applications.
Collapse
Affiliation(s)
- Caroline M B Kwee
- Department of Experimental Psychology and Helmholtz Institute, Utrecht University, Utrecht, the Netherlands; Altrecht Academic Anxiety Center, Utrecht, the Netherlands.
| | - Nadia A Leen
- Department of Experimental Psychology and Helmholtz Institute, Utrecht University, Utrecht, the Netherlands; Brain Research & Innovation Center, Ministry of Defence, Utrecht, the Netherlands; Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rian C Van der Kamp
- Vrije Universiteit Amsterdam, VUmc medical faculty, Amsterdam, the Netherlands
| | - Caspar J Van Lissa
- Department of Methodology and Statistics, Tilburg University, Tilburg, the Netherlands
| | - Danielle C Cath
- University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands; GGZ Drenthe, Department of specialist trainings, Assen, the Netherlands
| | - Lucianne Groenink
- Department of Pharmaceutical Sciences, Division of Pharmacology, UIPS, Utrecht University, Utrecht, the Netherlands
| | - Johanna M P Baas
- Department of Experimental Psychology and Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
20
|
Jacotte-Simancas A, Molina P, Gilpin N. JZL184 increases anxiety-like behavior and does not reduce alcohol consumption in female rats after repeated mild traumatic brain injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542943. [PMID: 37398130 PMCID: PMC10312513 DOI: 10.1101/2023.05.30.542943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Alcohol use disorder (AUD) is highly comorbid with traumatic brain injury (TBI). Previously, using a lateral fluid percussion model (LFP) (an open model of head injury) to generate a single mild to moderate traumatic brain injury (TBI), we showed that TBI produces escalation in alcohol drinking, that alcohol exposure negatively impacts TBI outcomes, and that the endocannabinoid degradation inhibitor (JZL184) confers significant protection from behavioral and neuropathological outcomes in male rodents. In the present study, we used a weight drop model (a closed model of head injury) to produce a repeated mild TBI (rmTBI, 3 TBIs, spaced by 24 hours) to examine the sex-specific effects on alcohol consumption and anxiety-like behavior in rats, and whether systemic treatment with JZL184 would reverse TBI effects on those behaviors in both sexes. In two separate studies, adult male and female Wistar rats were subjected to rmTBI or sham using the weight drop model. Physiological measures of injury severity were collected from all animals. Animals in both studies were allowed to consume alcohol using an intermittent 2-bottle choice procedure (12 pre-TBI sessions and 12 post-TBI sessions). Neurological severity and neurobehavioral scores (NSS and NBS, respectively) were tested 24 hours after the final injury. Anxiety-like behavior was tested at 37-38 days post-injury in Study 1, and 6-8 days post-injury in Study 2. Our results show that females exhibited reduced respiratory rates relative to males with no significant differences between Sham and rmTBI, no effect of rmTBI or sex on righting reflex, and increased neurological deficits in rmTBI groups in both studies. In Study 1, rmTBI increased alcohol consumption in female but not male rats. Male rats consistently exhibited higher levels of anxiety-like behavior than females. rmTBI did not affect anxiety-like behavior 37-38 days post-injury. In Study 2, rmTBI once again increased alcohol consumption in female but not male rats, and repeated systemic treatment with JZL184 did not affect alcohol consumption. Also in Study 2, rmTBI increased anxiety-like behavior in males but not females and repeated systemic treatment with JZL184 produced an unexpected increase in anxiety-like behavior 6-8 days post-injury. In summary, rmTBI increased alcohol consumption in female rats, systemic JZL184 treatment did not alter alcohol consumption, and both rmTBI and sub-chronic systemic JZL184 treatment increased anxiety-like behavior 6-8 days post-injury in males but not females, highlighting robust sex differences in rmTBI effects.
Collapse
Affiliation(s)
- Alejandra Jacotte-Simancas
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA
- Alcohol and Drug of Abuse Center of Excellence, LSUHSC, New Orleans, LA
| | - Patricia Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA
- Alcohol and Drug of Abuse Center of Excellence, LSUHSC, New Orleans, LA
| | - Nicholas Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA
- Alcohol and Drug of Abuse Center of Excellence, LSUHSC, New Orleans, LA
- Southeast Louisiana VA Healthcare System, New Orleans, LA
| |
Collapse
|
21
|
de Ceglia M, Micioni Di Bonaventura MV, Romano A, Friuli M, Micioni Di Bonaventura E, Gavito AL, Botticelli L, Gaetani S, de Fonseca FR, Cifani C. Anxiety associated with palatable food withdrawal is reversed by the selective FAAH inhibitor PF-3845: A regional analysis of the contribution of endocannabinoid signaling machinery. Int J Eat Disord 2023. [PMID: 36840536 DOI: 10.1002/eat.23917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/26/2023]
Abstract
OBJECTIVE Consumption of energy-dense palatable "comfort" food can alleviate stress and negative emotions, while abrupt withdrawal from a palatable diet can worsen these symptoms, causing difficulties with adherence to weight-loss diets. Currently, no pharmacological treatment is effective for obesity-related anxiety, so we investigated the endocannabinoid system (ECS), and specifically the fatty acid amide hydrolase (FAAH), as an interesting emerging target in this context because of its key role in the regulation of both energy homeostasis and emotional behavior. METHODS Rats were subjected to exposure and subsequent abstinence from a palatable cafeteria diet. During abstinence period, rats were treated with the selective FAAH inhibitor PF-3845 (10 mg/kg; intraperitoneal administration every other day). RESULTS Abstinent rats displayed an anxiogenic-like behavior and changes in the proteins of ECS signaling machinery in brain areas involved both in anxiety and food intake regulation. In particular, withdrawal caused a reduction of the expression of cannabinoid receptors in the nucleus accumbens and of enzymes diacylglycerol lipase alpha and monoacylglycerol lipase (MAGL) in the amygdala. Pharmacological inhibition of FAAH exerted an anxiolytic-like effect in abstinent animals and increased both MAGL expression in amygdala and CB2 expression in prefrontal cortex. DISCUSSION Overall, our results suggest that emotional disturbances associated with dieting are coupled with region-specific alterations in the cerebral expression of the ECS and that the enhancement of the endocannabinoid signaling by FAAH inhibition might represent a novel pharmacological strategy for the treatment of anxiety related to abstinence from palatable food. PUBLIC SIGNIFICANCE The present study focused on evaluating the role of the endocannabinoid system in modulating withdrawal from naturally rewarding activities that have an impact on mood, such as feeding. The variations observed in the emotional behavior of abstinent rats was linked to neuroadaptations of the ECS in specific brain areas.
Collapse
Affiliation(s)
- Marialuisa de Ceglia
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, Málaga, Spain.,Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Marzia Friuli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Ana L Gavito
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, Málaga, Spain
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, Málaga, Spain
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
22
|
Ciaramellano F, Fanti F, Scipioni L, Maccarrone M, Oddi S. Endocannabinoid Metabolism and Transport as Drug Targets. Methods Mol Biol 2023; 2576:201-211. [PMID: 36152188 DOI: 10.1007/978-1-0716-2728-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The wide distribution of the endocannabinoid system (ECS) throughout the body and its pivotal pathophysiological role offer promising opportunities for the development of novel therapeutic drugs for treating several diseases. However, the need for strategies to circumvent the unwanted psychotropic and immunosuppressive effects associated with cannabinoid receptor agonism/antagonism has led to considerable research in the field of molecular alternatives, other than type-1 and type-2 (CB1/2) receptors, as therapeutic targets to indirectly manipulate this pro-homeostatic system. In this context, the use of selective inhibitors of proteins involved in endocannabinoid (eCB) transport and metabolism allows for an increase or decrease of the levels of N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) in the sites where these major eCBs are indeed needed. This chapter will briefly review some preclinical and clinical evidence for the therapeutic potential of ECS pharmacological manipulation.
Collapse
Affiliation(s)
- Francesca Ciaramellano
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
| | - Federico Fanti
- Faculty of Bioscience and Technologies for Food, Environmental and Agriculture, University of Teramo, Teramo, Italy
| | - Lucia Scipioni
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Sergio Oddi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy.
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy.
| |
Collapse
|
23
|
Banaei-Boroujeni G, Rezayof A, Alijanpour S, Nazari-Serenjeh F. Targeting mediodorsal thalamic CB1 receptors to inhibit dextromethorphan-induced anxiety/exploratory-related behaviors in rats: The post-weaning effect of exercise and enriched environment on adulthood anxiety. J Psychiatr Res 2023; 157:212-222. [PMID: 36495603 DOI: 10.1016/j.jpsychires.2022.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Dextromethorphan (DXM) is an effective over-the-counter antitussive with an alarming increase as an abused drug for recreational purposes. Although reports of the association between DXM administration and anxiety, there are few investigations into the underlying DMX mechanisms of anxiogenic action. Thus, the present study aimed to investigate the role of the mediodorsal thalamus (MD) cannabinoid CB1 receptors (CB1Rs) in DXM-induced anxiety/exploratory-related behaviors in adult male Wistar rats. Animals were bilaterally cannulated in the MD regions. After one week, anxiety and exploratory behaviors were measured using an elevated plus-maze task (EPM) and a hole-board apparatus. Results showed that DXM (3-7 mg/kg, i. p.) dose-dependently increased anxiety-like behaviors. Intra-MD administration of ACPA (2.5-10 ng/rat), a selective CB1 receptor agonist, decreased anxiety-like effects of DXM. The blockade of MD CB1 receptors by AM-251 (40-120 ng/rat) did not affect the EPM task. However, it potentiated the anxiogenic response of an ineffective dose of DXM (3 mg/kg) in the animals. Moreover, the effect of post-weaning treadmill exercise (TEX) and enriched environment (EE) were examined in adulthood anxiety under the drug treatments. Juvenile rats were divided into TEX/EE and control groups. The TEX/EE-juvenile rats were placed on a treadmill and then exposed to EE for five weeks. Interestingly, compared to untreated animals, post-weaning TEX/EE inhibited the anxiety induced by DXM or AM-251/DXM. It can be concluded that the MD endocannabinoid system plays an essential role in the anxiogenic effect of dextromethorphan. Moreover, post-weaning exercise alongside an enriched environment may have an inhibitory effect on adulthood anxiety-like behaviors.
Collapse
Affiliation(s)
- Golnoush Banaei-Boroujeni
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | | |
Collapse
|
24
|
Kondev V, Bluett R, Najeed M, Rosas-Vidal LE, Grueter BA, Patel S. Ventral hippocampal diacylglycerol lipase-alpha deletion decreases avoidance behaviors and alters excitation-inhibition balance. Neurobiol Stress 2022; 22:100510. [PMID: 36594052 PMCID: PMC9803955 DOI: 10.1016/j.ynstr.2022.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/01/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The endogenous cannabinoid, 2-arachidonoylglycerol (2-AG), plays a key role in the regulation of anxiety- and stress-related behavioral phenotypes and may represent a novel target for the treatment of anxiety disorders. However, recent studies have suggested a more complex role for 2-AG signaling in the regulation of stress responsivity, including increases in acute fear responses after 2-AG augmentation under some conditions. Thus, 2-AG signaling within distinct brain regions and circuits could regulate anxiety-like behavior and stress responsivity in opposing manners. The ventral hippocampus (vHPC) is a critical region for emotional processing, anxiety-like behaviors, and stress responding. Here, we use a conditional knock-out of the 2-AG synthesis enzyme, diacylglycerol lipase α (DAGLα), to study the role of vHPC 2-AG signaling in the regulation of affective behavior. We show that vHPC DAGLα deletion decreases avoidance behaviors both basally and following an acute stress exposure. Genetic deletion of vHPC DAGLα also promotes stress resiliency, with no effect on fear acquisition, expression, or contextual fear generalization. Using slice electrophysiology, we demonstrate that vHPC DAGLα deletion shifts vHPC activity towards enhanced inhibition. Together, these data indicate endogenous 2-AG signaling in the vHPC promotes avoidance and increases stress reactivity, confirming the notion that 2-AG signaling within distinct brain regions may exert divergent effects on anxiety states and stress adaptability.
Collapse
Affiliation(s)
- Veronika Kondev
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Rebecca Bluett
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Mustafa Najeed
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Luis E. Rosas-Vidal
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Brad A. Grueter
- Department of Anesthesiology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA,Corresponding author. Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, USA.
| |
Collapse
|
25
|
Yang Y, Wang Y, Bian H, Yu S, Jin Y, Ye X, Li T, Huang L. Effect of evaluation timing and duration of anxiety-like behaviors induced by conditioned fear in rats: Assessment using the triple test. Physiol Behav 2022; 257:113974. [DOI: 10.1016/j.physbeh.2022.113974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/04/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
|
26
|
Kondev V, Morgan A, Najeed M, Winters ND, Kingsley PJ, Marnett L, Patel S. The Endocannabinoid 2-Arachidonoylglycerol Bidirectionally Modulates Acute and Protracted Effects of Predator Odor Exposure. Biol Psychiatry 2022; 92:739-749. [PMID: 35961791 PMCID: PMC9827751 DOI: 10.1016/j.biopsych.2022.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/21/2022] [Accepted: 05/08/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Stress-related disorders are among the most prevalent psychiatric disorders, characterized by excess fear and enhanced avoidance of trauma triggers. Elucidating the mechanisms regulating temporally distinct aspects of innate and conditioned fear responses could facilitate novel therapeutic development for stress-related disorders. One potential target that has recently emerged is the endocannabinoid system, which has been reported to mediate the physiological response to stress and represents an important substrate underlying individual differences in stress susceptibility. METHODS Here, we exposed male and female CD-1 mice to an innate predator stressor, 2MT (2-methyl-2-thiazoline), to investigate the ability of endocannabinoid signaling to modulate temporally distinct innate and conditioned fear behaviors. RESULTS We found that 2MT exposure increased amygdala 2-AG (2-arachidonoylglycerol) content and selectively increased excitability in central, but not basolateral, amygdala neurons. We also found that pharmacological 2-AG augmentation during stress exposure exacerbated both acute freezing responses and central amygdala hyperexcitability via cannabinoid receptor type 1- and type 2-dependent mechanisms. Finally, 2-AG augmentation during stress exposure reduced long-term contextual conditioned freezing, and 2-AG augmentation 24 hours after stress exposure reduced conditioned avoidance behavior. CONCLUSIONS Our findings demonstrate a bidirectional effect of 2-AG augmentation on innate and conditioned fear behavior, with enhancement of 2-AG levels during stress promoting innate fear responses but ultimately resulting in long-term conditioned fear reduction. These data could reconcile contradictory data on the role of 2-AG in the regulation of innate and conditioned fear-related behavioral responses.
Collapse
Affiliation(s)
- Veronika Kondev
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee
| | - Amanda Morgan
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Mustafa Najeed
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee
| | - Nathan D Winters
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Philip J Kingsley
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Lawrence Marnett
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
27
|
Molecular Alterations of the Endocannabinoid System in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094764. [PMID: 35563156 PMCID: PMC9104141 DOI: 10.3390/ijms23094764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
The therapeutic benefits of the current medications for patients with psychiatric disorders contrast with a great variety of adverse effects. The endocannabinoid system (ECS) components have gained high interest as potential new targets for treating psychiatry diseases because of their neuromodulator role, which is essential to understanding the regulation of many brain functions. This article reviewed the molecular alterations in ECS occurring in different psychiatric conditions. The methods used to identify alterations in the ECS were also described. We used a translational approach. The animal models reproducing some behavioral and/or neurochemical aspects of psychiatric disorders and the molecular alterations in clinical studies in post-mortem brain tissue or peripheral tissues were analyzed. This article reviewed the most relevant ECS changes in prevalent psychiatric diseases such as mood disorders, schizophrenia, autism, attentional deficit, eating disorders (ED), and addiction. The review concludes that clinical research studies are urgently needed for two different purposes: (1) To identify alterations of the ECS components potentially useful as new biomarkers relating to a specific disease or condition, and (2) to design new therapeutic targets based on the specific alterations found to improve the pharmacological treatment in psychiatry.
Collapse
|
28
|
Bajaj S, Zameer S, Jain S, Yadav V, Vohora D. Effect of the MAGL/FAAH Dual Inhibitor JZL-195 on Streptozotocin-Induced Alzheimer's Disease-like Sporadic Dementia in Mice with an Emphasis on Aβ, HSP-70, Neuroinflammation, and Oxidative Stress. ACS Chem Neurosci 2022; 13:920-932. [PMID: 35316021 DOI: 10.1021/acschemneuro.1c00699] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease is identified by pathological hallmarks such as intracellular neurofibrillary tangles (NFTs) and extracellular amyloid β plaques. Several hypotheses exist to define the neurodegeneration including microglial activation associated with neuroinflammatory processes. Recently, pharmacological inhibition of endocannabinoid (eCB)-degrading enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), is being investigated to modulate the pathology of Alzheimer's disease. While MAGL inhibitors upregulate 2-acyl glycerol (2-AG) levels and reduce neuroinflammation, FAAH inhibitors elevate anandamide (AEA) levels and prevent the degradation of HSP-70, thereby preventing the phosphorylation of tau protein and formation of NFTs in neural cells. We investigated the possible neuroprotective potential of the dual MAGL/FAAH inhibitor JZL-195 (20 mg/kg) against ICV-STZ-induced sporadic Alzheimer's disease (SAD) in Swiss albino mice using donepezil (5 mg/kg) as the standard. The protective effects of JZL-195 were observed by the reversal of altered levels of Aβ1-42, HSP-70, neuroinflammatory cytokines, and oxidative stress markers. However, JZL-195 expressed no cognitive improvement when assessed by spontaneous alternation behavior and Morris water maze tests and no effects on the AChE enzyme level in the hippocampal tissues of mice. Therefore, the findings of the present study indicate that although JZL-195 exhibited no improvement in cognitive deficits associated with sporadic Alzheimer's disease, it displayed significant reversal of the biochemical anomalies, thereby suggesting its therapeutic potential against the sporadic Alzheimer's disease model.
Collapse
Affiliation(s)
- Shivanshu Bajaj
- Neurobehavioral Pharmacological Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Saima Zameer
- Neurobehavioral Pharmacological Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shreshta Jain
- Neurobehavioral Pharmacological Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Vaishali Yadav
- Neurobehavioral Pharmacological Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Divya Vohora
- Neurobehavioral Pharmacological Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
29
|
Xu C, Yadav-Samudrala BJ, Xu C, Nath B, Mistry T, Jiang W, Niphakis MJ, Cravatt BF, Mukhopadhyay S, Lichtman AH, Ignatowska-Jankowska BM, Fitting S. Inhibitory Neurotransmission Is Sex-Dependently Affected by Tat Expression in Transgenic Mice and Suppressed by the Fatty Acid Amide Hydrolase Enzyme Inhibitor PF3845 via Cannabinoid Type-1 Receptor Mechanisms. Cells 2022; 11:857. [PMID: 35269478 PMCID: PMC8909692 DOI: 10.3390/cells11050857] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
(1) Background. The endocannabinoid (eCB) system, which regulates physiological and cognitive processes, presents a promising therapeutic target for treating HIV-associated neurocognitive disorders (HAND). Here we examine whether upregulating eCB tone has potential protective effects against HIV-1 Tat (a key HIV transactivator of transcription) protein-induced alterations in synaptic activity. (2) Methods. Whole-cell patch-clamp recordings were performed to assess inhibitory GABAergic neurotransmission in prefrontal cortex slices of Tat transgenic male and female mice, in the presence and absence of the fatty acid amide hydrolase (FAAH) enzyme inhibitor PF3845. Western blot and mass spectrometry analyses assessed alterations of cannabinoid receptor and enzyme protein expression as well as endogenous ligands, respectively, to determine the impact of Tat exposure on the eCB system. (3) Results. GABAergic activity was significantly altered upon Tat exposure based on sex, whereas the effectiveness of PF3845 to suppress GABAergic activity in Tat transgenic mice was not altered by Tat or sex and involved CB1R-related mechanisms that depended on calcium signaling. Additionally, our data indicated sex-dependent changes for AEA and related non-eCB lipids based on Tat induction. (4) Conclusion. Results highlight sex- and/or Tat-dependent alterations of GABAergic activity and eCB signaling in the prefrontal cortex of Tat transgenic mice and further increase our understanding about the role of FAAH inhibition in neuroHIV.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.X.); (B.J.Y.-S.); (C.X.)
| | - Barkha J. Yadav-Samudrala
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.X.); (B.J.Y.-S.); (C.X.)
| | - Callie Xu
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.X.); (B.J.Y.-S.); (C.X.)
| | - Bhupendra Nath
- Department of Chemistry & Biochemistry, North Carolina Central University, Durham, NC 27707, USA; (B.N.); (T.M.); (S.M.)
| | - Twisha Mistry
- Department of Chemistry & Biochemistry, North Carolina Central University, Durham, NC 27707, USA; (B.N.); (T.M.); (S.M.)
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA;
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Micah J. Niphakis
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037, USA; (M.J.N.); (B.F.C.)
| | - Benjamin F. Cravatt
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037, USA; (M.J.N.); (B.F.C.)
| | - Somnath Mukhopadhyay
- Department of Chemistry & Biochemistry, North Carolina Central University, Durham, NC 27707, USA; (B.N.); (T.M.); (S.M.)
| | - Aron H. Lichtman
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | | | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.X.); (B.J.Y.-S.); (C.X.)
| |
Collapse
|
30
|
Mayo LM, Rabinak CA, Hill MN, Heilig M. Targeting the Endocannabinoid System in the Treatment of Posttraumatic Stress Disorder: A Promising Case of Preclinical-Clinical Translation? Biol Psychiatry 2022; 91:262-272. [PMID: 34598785 PMCID: PMC11097652 DOI: 10.1016/j.biopsych.2021.07.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 01/03/2023]
Abstract
The endocannabinoid (eCB) system is one the most ubiquitous signaling systems of the brain and offers a rich pharmacology including multiple druggable targets. Preclinical research shows that eCB activity influences functional connectivity between the prefrontal cortex and amygdala and thereby influences an organism's ability to cope with threats and stressful experiences. Animal studies show that CB1 receptor activation within the amygdala is essential for extinction of fear memories. Failure to extinguish traumatic memories is a core symptom of posttraumatic stress disorder, suggesting that potentiating eCB signaling may have a therapeutic potential in this condition. However, it has been unknown whether animal findings in this domain translate to humans. Data to inform this critical question are now emerging and are the focus of this review. We first briefly summarize the biology of the eCB system and the animal studies that support its role in fear extinction and stress responding. We then discuss the pharmacological eCB-targeting strategies that may be exploited for therapeutic purposes: direct CB1 receptor activation, using Δ9-tetrahydrocannabinol or its synthetic analogs; or indirect potentiation, through inhibition of eCB-degrading enzymes, the anandamide-degrading enzyme fatty acid amide hydrolase; or the 2-AG (2-arachidonoyl glycerol)-degrading enzyme monoacylglycerol lipase. We then review recent human data on direct CB1 receptor activation via Δ9-tetrahydrocannabinol and anandamide potentiation through fatty acid amide hydrolase blockade. The available human data consistently support a translation of animal findings on fear memories and stress reactivity and suggest a potential therapeutic utility in humans.
Collapse
Affiliation(s)
- Leah M Mayo
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Science, Linköping University, Linköping, Sweden.
| | - Christine A Rabinak
- Department of Pharmacy Practice, Translational Neuroscience Program, Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Matthew N Hill
- Departments of Cell Biology and Anatomy & Psychiatry, Hotchkiss Brain Institute and the Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Science, Linköping University, Linköping, Sweden
| |
Collapse
|
31
|
Papa A, Pasquini S, Contri C, Gemma S, Campiani G, Butini S, Varani K, Vincenzi F. Polypharmacological Approaches for CNS Diseases: Focus on Endocannabinoid Degradation Inhibition. Cells 2022; 11:cells11030471. [PMID: 35159280 PMCID: PMC8834510 DOI: 10.3390/cells11030471] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Polypharmacology breaks up the classical paradigm of “one-drug, one target, one disease” electing multitarget compounds as potential therapeutic tools suitable for the treatment of complex diseases, such as metabolic syndrome, psychiatric or degenerative central nervous system (CNS) disorders, and cancer. These diseases often require a combination therapy which may result in positive but also negative synergistic effects. The endocannabinoid system (ECS) is emerging as a particularly attractive therapeutic target in CNS disorders and neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), stroke, traumatic brain injury (TBI), pain, and epilepsy. ECS is an organized neuromodulatory network, composed by endogenous cannabinoids, cannabinoid receptors type 1 and type 2 (CB1 and CB2), and the main catabolic enzymes involved in the endocannabinoid inactivation such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). The multiple connections of the ECS with other signaling pathways in the CNS allows the consideration of the ECS as an optimal source of inspiration in the development of innovative polypharmacological compounds. In this review, we focused our attention on the reported polypharmacological examples in which FAAH and MAGL inhibitors are involved.
Collapse
Affiliation(s)
- Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Silvia Pasquini
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
- Correspondence: ; Tel.: +39-0577-234161
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| |
Collapse
|
32
|
Jaiswal S, Ayyannan SR. Discovery of Isatin-Based Carbohydrazones as Potential Dual Inhibitors of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase. ChemMedChem 2021; 17:e202100559. [PMID: 34637598 DOI: 10.1002/cmdc.202100559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/10/2021] [Indexed: 01/02/2023]
Abstract
Using ligand-based design strategy, a set of isatin-3-carbohydrazones was designed, synthesized and evaluated for dual fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) inhibition properties. Compound 5-chloro-N'-(5-chloro-2-oxoindolin-3-ylidene)-2-hydroxybenzohydrazide (13 b) emerged as a potent MAGL inhibitor with nanomolar activity (IC50 =3.33 nM), while compound 5-chloro-N'-(1-(4-fluorobenzyl)-2-oxoindolin-3-ylidene)-2-hydroxybenzohydrazide (13 j) was the most potent selective FAAH inhibitor (IC50 =37 nM). Compound 5-chloro-N'-(6-chloro-2-oxoindolin-3-ylidene)-2-hydroxybenzohydrazide (13 c) showed dual FAAH-MAGL inhibitory activity with an IC50 of 31 and 29 nM respectively. Enzyme kinetics studies revealed that the isatin-based carbohydrazones are reversible inhibitors for both FAAH and MAGL. Further, blood-brain permeability assay confirmed that the lead compounds (13 b, 13 c, 13 g, 13 m and 13 q) are suitable as CNS candidates. Molecular dynamics simulation studies revealed the putative binding modes and key interactions of lead inhibitors within the enzyme active sites. The lead dual FAAH-MAGL inhibitor 13 c showed significant antioxidant activity and neuroprotection in the cell-based cytotoxicity assay. In summary, the study yielded three potent FAAH/MAGL inhibitor compounds (13 b, 13 c and 13 j) with acceptable pharmacokinetic profile and thus can be considered as promising candidates for treating neurological and mood disorders.
Collapse
Affiliation(s)
- Shivani Jaiswal
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
33
|
Glodosky NC, Cuttler C, McLaughlin RJ. A review of the effects of acute and chronic cannabinoid exposure on the stress response. Front Neuroendocrinol 2021; 63:100945. [PMID: 34461155 PMCID: PMC8605997 DOI: 10.1016/j.yfrne.2021.100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/28/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
While cannabis has been used for centuries for its stress-alleviating properties, the effects of acute and chronic cannabinoid exposure on responses to stress remain poorly understood. This review provides an overview of studies that measured stress-related endpoints following acute or chronic cannabinoid exposure in humans and animals. Acute cannabinoid exposure increases basal concentrations of stress hormones in rodents and humans and has dose-dependent effects on stress reactivity in humans and anxiety-like behavior in rodents. Chronic cannabis exposure is associated with dampened stress reactivity, a blunted cortisol awakening response (CAR), and flattened diurnal cortisol slope in humans. Sex differences in these effects remain underexamined, with limited evidence for sex differences in effects of cannabinoids on stress reactivity in rodents. Future research is needed to better understand sex differences in the effects of cannabis on the stress response, as well as downstream impacts on mental health and stress-related disorders.
Collapse
Affiliation(s)
| | - Carrie Cuttler
- Department of Psychology, Washington State University, Pullman, WA, USA.
| | - Ryan J McLaughlin
- Department of Psychology, Washington State University, Pullman, WA, USA; Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| |
Collapse
|
34
|
Zanfirescu A, Ungurianu A, Mihai DP, Radulescu D, Nitulescu GM. Targeting Monoacylglycerol Lipase in Pursuit of Therapies for Neurological and Neurodegenerative Diseases. Molecules 2021; 26:5668. [PMID: 34577139 PMCID: PMC8468992 DOI: 10.3390/molecules26185668] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Neurological and neurodegenerative diseases are debilitating conditions, and frequently lack an effective treatment. Monoacylglycerol lipase (MAGL) is a key enzyme involved in the metabolism of 2-AG (2-arachidonoylglycerol), a neuroprotective endocannabinoid intimately linked to the generation of pro- and anti-inflammatory molecules. Consequently, synthesizing selective MAGL inhibitors has become a focus point in drug design and development. The purpose of this review was to summarize the diverse synthetic scaffolds of MAGL inhibitors concerning their potency, mechanisms of action and potential therapeutic applications, focusing on the results of studies published in the past five years. The main irreversible inhibitors identified were derivatives of hexafluoroisopropyl alcohol carbamates, glycol carbamates, azetidone triazole ureas and benzisothiazolinone, whereas the most promising reversible inhibitors were derivatives of salicylketoxime, piperidine, pyrrolidone and azetidinyl amides. We reviewed the results of in-depth chemical, mechanistic and computational studies on MAGL inhibitors, in addition to the results of in vitro findings concerning selectivity and potency of inhibitors, using the half maximal inhibitory concentration (IC50) as an indicator of their effect on MAGL. Further, for highlighting the potential usefulness of highly selective and effective inhibitors, we examined the preclinical in vivo reports regarding the promising therapeutic applications of MAGL pharmacological inhibition.
Collapse
Affiliation(s)
| | - Anca Ungurianu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (A.Z.); (D.P.M.); (D.R.); (G.M.N.)
| | | | | | | |
Collapse
|
35
|
Tung MC, Fung KM, Hsu HM, Tseng TS. Discovery of 8-prenylnaringenin from hop ( Humulus lupulus L.) as a potent monoacylglycerol lipase inhibitor for treatments of neuroinflammation and Alzheimer's disease. RSC Adv 2021; 11:31062-31072. [PMID: 35498911 PMCID: PMC9041313 DOI: 10.1039/d1ra05311f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
Monoacylglycerol lipase (MAGL), a serine hydrolase, converts endocannabinoid 2-arachidonoylglycerol (2-AG) to arachidonic acid (AA) and glycerol in the brain and plays a bidirectional role in controlling nueroinflammation. MAGL, involved in Alzheimer's and Parkinson's diseases, is a promising target for treatment of neurodegenerative disorders. However, the irreversible inhibitors of MAGL lead to the desensitization of CB1 receptors further impairing the benefits associated with the indirect CB1 stimulation. Therefore, development of potent reversible inhibitors from natural products (NPs) and traditional chinese medicines (TCMs) are safer and free from adverse side effects and feasible to avoid drawbacks which irreversible inhibitors cause. Here, we employed pharmacophore-based screening of drug candidates coupled with molecular docking, biochemical assay and Ligplot analyses to identify and characterize inhibitors targeting human MAGL (hMAGL). The built pharmacophore model, Phar-MAGL successfully identified inhibitors NP-2 (IC50 = 9.5 ± 1.2 μM), NP-5 (IC50 = 14.5 ± 1.3 μM), and NP-3 (IC50 = 15.2 ± 1.4 μM), which apparently attenuated the activities of hMAGL in vitro. The evident activities of the identified inhibitors against hMAGL showed that the pharmacophore model, Phar-MAGL is reliable and efficient in screening inhibitors against hMAGL. Our study successfully identified a natrual product inhibitor, NP-2 (8-PN), from the plant Humulus lupulus L. (hops) and its positive effects in neurogenesis and neurodifferentiation along with the evident inhibitory potency against hMAGL revealed the potential for further optimizing and developing into drugs to treat neuroinflammation, Alzheimer's and Parkinson's diseases. Discovery of natural product inhibitors against human monoacylglycerol lipase by pharmacophore-based drug screening, LibDock molecular docking and in vitro biochemical examinations.![]()
Collapse
Affiliation(s)
- Min-Che Tung
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital Taichung 435 Taiwan
| | - Kit-Man Fung
- Institute of Biological Chemistry, Academia Sinica Taipei 115 Taiwan
| | - Hsin-Mie Hsu
- Institute of Molecular Biology, National Chung Hsing University Taichung Taiwan
| | - Tien-Sheng Tseng
- Institute of Molecular Biology, National Chung Hsing University Taichung Taiwan
| |
Collapse
|
36
|
Ahmed M, Boileau I, Le Foll B, Carvalho AF, Kloiber S. The endocannabinoid system in social anxiety disorder: from pathophysiology to novel therapeutics. ACTA ACUST UNITED AC 2021; 44:81-93. [PMID: 34468550 PMCID: PMC8827369 DOI: 10.1590/1516-4446-2021-1926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Social anxiety disorder (SAD) is a highly prevalent psychiatric disorder that presents with an early age of onset, chronic disease course, and increased risk of psychiatric comorbidity. Current treatment options for SAD are associated with low response rates, suboptimal efficacy, and possible risk of adverse effects. Investigation of new neurobiological mechanisms may aid in the identification of more specific therapeutic targets for the treatment of this disorder. Emerging evidence suggests that the endogenous cannabinoid system, also referred to as the endocannabinoid system (ECS), could play a potential role in the pathophysiology of SAD. This review discusses the known pathophysiological mechanisms of SAD, the potential role of the ECS in this disorder, current drugs targeting the ECS, and the potential of these novel compounds to enhance the therapeutic armamentarium for SAD. Further investigational efforts, specifically in human populations, are warranted to improve our knowledge of the ECS in SAD.
Collapse
Affiliation(s)
- Mashal Ahmed
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Isabelle Boileau
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Bernard Le Foll
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Andre F Carvalho
- Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Innovation in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Deakin University, Geelong, VIC, Australia, 3216
| | - Stefan Kloiber
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
Vickstrom CR, Liu X, Liu S, Hu MM, Mu L, Hu Y, Yu H, Love SL, Hillard CJ, Liu QS. Role of endocannabinoid signaling in a septohabenular pathway in the regulation of anxiety- and depressive-like behavior. Mol Psychiatry 2021; 26:3178-3191. [PMID: 33093652 PMCID: PMC8060365 DOI: 10.1038/s41380-020-00905-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
Enhancing endocannabinoid signaling produces anxiolytic- and antidepressant-like effects, but the neural circuits involved remain poorly understood. The medial habenula (MHb) is a phylogenetically-conserved epithalamic structure that is a powerful modulator of anxiety- and depressive-like behavior. Here, we show that a robust endocannabinoid signaling system modulates synaptic transmission between the MHb and its sole identified GABA input, the medial septum and nucleus of the diagonal band (MSDB). With RNAscope in situ hybridization, we demonstrate that key enzymes that synthesize or degrade the endocannabinoids 2-arachidonylglycerol (2-AG) or anandamide are expressed in the MHb and MSDB, and that cannabinoid receptor 1 (CB1) is expressed in the MSDB. Electrophysiological recordings in MHb neurons revealed that endogenously-released 2-AG retrogradely depresses GABA input from the MSDB. This endocannabinoid-mediated depolarization-induced suppression of inhibition (DSI) was limited by monoacylglycerol lipase (MAGL) but not by fatty acid amide hydrolase. Anatomic and optogenetic circuit mapping indicated that MSDB GABA neurons monosynaptically project to cholinergic neurons of the ventral MHb. To test the behavioral significance of this MSDB-MHb endocannabinoid signaling, we induced MSDB-specific knockout of CB1 or MAGL via injection of virally-delivered Cre recombinase into the MSDB of Cnr1loxP/loxP or MgllloxP/loxP mice. Relative to control mice, MSDB-specific knockout of CB1 or MAGL bidirectionally modulated 2-AG signaling in the ventral MHb and led to opposing effects on anxiety- and depressive-like behavior. Thus, depression of synaptic GABA release in the MSDB-ventral MHb pathway may represent a potential mechanism whereby endocannabinoids exert anxiolytic and antidepressant-like effects.
Collapse
Affiliation(s)
- Casey R Vickstrom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Shuai Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Meng-Ming Hu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Lianwei Mu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ying Hu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hao Yu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Santidra L Love
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
38
|
Bajaj S, Jain S, Vyas P, Bawa S, Vohora D. The role of endocannabinoid pathway in the neuropathology of Alzheimer's disease: Can the inhibitors of MAGL and FAAH prove to be potential therapeutic targets against the cognitive impairment associated with Alzheimer's disease? Brain Res Bull 2021; 174:305-322. [PMID: 34217798 DOI: 10.1016/j.brainresbull.2021.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease is a neurodegenerative disease characterized by progressive decline of cognitive function in combination with neuronal death. Current approved treatment target single dysregulated pathway instead of multiple mechanism, resulting in lack of efficacy in slowing down disease progression. The proclivity of endocannabinoid system to exert neuroprotective action and mitigate symptoms of neurodegeneration condition has received substantial interest. Growing evidence suggest the endocannabinoids (eCB) system, viz. anadamide (AEA) and arachidonoyl glycerol (2-AG), as potential therapeutic targets with the ability to modify Alzheimer's pathology by targeting the inflammatory, neurodegenerative and cognitive aspects of the disease. In order to modulate endocannabinoid system, number of agents have been reported amongst which are inhibitors of the monoacylglycerol (MAGL) and fatty acid amide hydrolase (FAAH), the enzymes that hydrolyses 2-AG and AEA respectively. However, little is known regarding the exact mechanistic signalling and their effects on pathophysiology and cognitive decline associated with Alzheimer's disease. Both MAGL and FAAH inhibitors possess fascinating properties that may offer a multi-faceted approach for the treatment of Alzheimer's disease such as potential to protect neurons from deleterious effect of amyloid-β, reducing phosphorylation of tau, reducing amyloid-β induced oxidative stress, stimulating neurotrophin to support brain intrinsic repair mechanism etc. Based on empirical evidence, MAGL and FAAH inhibitors might have potential for therapeutic efficacy against cognitive impairment associated with Alzheimer's disease. The aim of this review is to summarize the experimental studies demonstrating the polyvalent properties of MAGL or FAAH inhibitor compounds for the treatment of Alzheimer's disease, and also effect of these on learning and types of memories, which together encourage to study these compounds over other therapeutics targets. Further research in this direction would enhance the molecular mechanisms and development of applicable interventions for the treatment of Alzheimer's disease, which nevertheless stay as the primary unmet need.
Collapse
Affiliation(s)
- Shivanshu Bajaj
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shreshta Jain
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Preeti Vyas
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sandhya Bawa
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
39
|
Thornton AM, Humphrey RM, Kerr DM, Finn DP, Roche M. Increasing Endocannabinoid Tone Alters Anxiety-Like and Stress Coping Behaviour in Female Rats Prenatally Exposed to Valproic Acid. Molecules 2021; 26:molecules26123720. [PMID: 34207178 PMCID: PMC8233839 DOI: 10.3390/molecules26123720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Given the sex differences evident in the prevalence of autism, there is an increased awareness of the importance of including females in autism research to determine sexual dimorphism and sex-specific treatments. Cannabinoids and endocannabinoid modulators have been proposed as potential novel treatments for autism-related symptoms; however, few studies to date have examined if these pharmacological agents elicit sex-specific effects. The aim of the present study was to use the valproic acid (VPA) model of autism to compare the behavioural responses of male and female rats and examine the effects of increasing endocannabinoid tone on the behavioural responses of VPA-exposed female rats. These data revealed that VPA-exposed male, but not female, rats exhibit reduced social responding in the three-chamber and olfactory habituation/dishabituation (OHD) test during adolescence. In comparison, VPA-exposed female, but not male, adolescent rats exhibited anxiety-like behaviour in the elevated plus maze (EPM) and open field test (OFT). In VPA-exposed female rats, increasing 2-AG levels augmented anxiety-like behaviour in the EPM and OFT, while increasing AEA levels reduced stress coping behaviour in the swim stress test. These data highlight sexual dimorphic behaviours in the VPA model and indicate that enhancing endocannabinoid levels may exacerbate negative affective behaviour in VPA-exposed females. Thus, considerations should be paid to the possible sex-specific effects of cannabinoids for the treatment of symptoms associated with autism.
Collapse
Affiliation(s)
- Aoife M. Thornton
- Physiology, School of Medicine, National University of Ireland Galway, H91 W5P7 Galway, Ireland; (A.M.T.); (R.M.H.)
- Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland;
| | - Rachel M. Humphrey
- Physiology, School of Medicine, National University of Ireland Galway, H91 W5P7 Galway, Ireland; (A.M.T.); (R.M.H.)
- Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland;
- Centre for Pain Research, National University of Ireland Galway, H91 W5P7 Galway, Ireland
| | - Daniel M. Kerr
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, H91 W5P7 Galway, Ireland;
| | - David P. Finn
- Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland;
- Centre for Pain Research, National University of Ireland Galway, H91 W5P7 Galway, Ireland
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, H91 W5P7 Galway, Ireland;
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland Galway, H91 W5P7 Galway, Ireland; (A.M.T.); (R.M.H.)
- Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland;
- Centre for Pain Research, National University of Ireland Galway, H91 W5P7 Galway, Ireland
- Correspondence:
| |
Collapse
|
40
|
Petrie GN, Nastase AS, Aukema RJ, Hill MN. Endocannabinoids, cannabinoids and the regulation of anxiety. Neuropharmacology 2021; 195:108626. [PMID: 34116110 DOI: 10.1016/j.neuropharm.2021.108626] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Cannabis has been used for hundreds of years, with its ability to dampen feelings of anxiety often reported as a primary reason for use. Only recently has the specific role cannabinoids play in anxiety been thoroughly investigated. Here we discuss the body of evidence describing how endocannabinoids and exogenous cannabinoids are capable of regulating the generation and termination of anxiety states. Disruption of the endogenous cannabinoid (eCB) system following genetic manipulation, pharmacological intervention or stress exposure reliably leads to the generation of an anxiety state. On the other hand, upregulation of eCB signaling is capable of alleviating anxiety-like behaviors in multiple paradigms. When considering exogenous cannabinoid administration, cannabinoid receptor 1 (CB1) agonists have a biphasic, dose-dependent effect on anxiety such that low doses are anxiolytic while high doses are anxiogenic, a phenomenon that is evident in both rodent models and humans. Translational studies investigating a loss of function mutation in the gene for fatty acid amide hydrolase, the enzyme responsible for metabolizing AEA, have also shown that AEA signaling regulates anxiety in humans. Taken together, evidence reviewed here has outlined a convincing argument for cannabinoids being powerful regulators of both the manifestation and amelioration of anxiety symptoms, and highlights the therapeutic potential of targeting the eCB system for the development of novel classes of anxiolytics. This article is part of the special issue on 'Cannabinoids'.
Collapse
Affiliation(s)
- Gavin N Petrie
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Andrei S Nastase
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Robert J Aukema
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
41
|
Diester CM, Lichtman AH, Negus SS. Behavioral Battery for Testing Candidate Analgesics in Mice. II. Effects of Endocannabinoid Catabolic Enzyme Inhibitors and ∆9-Tetrahydrocannabinol. J Pharmacol Exp Ther 2021; 377:242-253. [PMID: 33622769 PMCID: PMC8058502 DOI: 10.1124/jpet.121.000497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
Enhanced signaling of the endocannabinoid (eCB) system through inhibition of the catabolic enzymes monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) has received increasing interest for development of candidate analgesics. This study compared effects of MAGL and FAAH inhibitors with effects of ∆9-tetrahydrocannabinol (THC) using a battery of pain-stimulated, pain-depressed, and pain-independent behaviors in male and female mice. Intraperitoneal injection of dilute lactic acid (IP acid) served as an acute visceral noxious stimulus to stimulate two behaviors (stretching, facial grimace) and depress two behaviors (rearing, nesting). Nesting and locomotion were also assessed in the absence of IP acid as pain-independent behaviors. THC and a spectrum of six eCB catabolic enzyme inhibitors ranging from MAGL- to FAAH-selective were assessed for effectiveness to alleviate pain-related behaviors at doses that did not alter pain-independent behaviors. The MAGL-selective inhibitor MJN110 produced the most effective antinociceptive profile, with 1.0 mg/kg alleviating IP acid effects on stretching, grimace, and nesting without altering pain-independent behaviors. MJN110 effects on IP acid-depressed nesting had a slow onset and long duration (40 minutes to 6 hours), were blocked by rimonabant, and tended to be greater in females. As inhibitors increased in FAAH selectivity, antinociceptive effectiveness decreased. PF3845, the most FAAH-selective inhibitor, produced no antinociception up to doses that disrupted locomotion. THC decreased IP acid-stimulated stretching and grimace at doses that did not alter pain-independent behaviors; however, it did not alleviate IP acid-induced depression of rearing or nesting. These results support further consideration of MAGL-selective inhibitors as candidate analgesics for acute inflammatory pain. SIGNIFICANCE STATEMENT: This study characterized a spectrum of endocannabinoid catabolic enzyme inhibitors ranging in selectivity from monoacylglycerol lipase-selective to fatty acid amide hydrolase-selective in a battery of pain-stimulated, pain-depressed, and pain-independent behaviors previously pharmacologically characterized in a companion paper. This battery provides a method for prioritizing candidate analgesics by effectiveness to alleviate pain-related behaviors at doses that do not alter pain-independent behaviors, with inclusion of pain-depressed behaviors increasing translational validity and decreasing susceptibility to motor-depressant false positives.
Collapse
Affiliation(s)
- C M Diester
- Department of Pharmacology and Toxicology (C.M.D., A.H.L., S.S.N.), School of Pharmacy (A.H.L.), Virginia Commonwealth University, Richmond, Virginia
| | - A H Lichtman
- Department of Pharmacology and Toxicology (C.M.D., A.H.L., S.S.N.), School of Pharmacy (A.H.L.), Virginia Commonwealth University, Richmond, Virginia
| | - S S Negus
- Department of Pharmacology and Toxicology (C.M.D., A.H.L., S.S.N.), School of Pharmacy (A.H.L.), Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
42
|
Wilkerson JL, Bilbrey JA, Felix JS, Makriyannis A, McMahon LR. Untapped endocannabinoid pharmacological targets: Pipe dream or pipeline? Pharmacol Biochem Behav 2021; 206:173192. [PMID: 33932409 DOI: 10.1016/j.pbb.2021.173192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
It has been established that the endogenous cannabinoid (endocannabinoid) system plays key modulatory roles in a wide variety of pathological conditions. The endocannabinoid system comprises both cannabinoid receptors, their endogenous ligands including 2-arachidonoylglycerol (2-AG), N-arachidonylethanolamine (anandamide, AEA), and enzymes that regulate the synthesis and degradation of endogenous ligands which include diacylglycerol lipase alpha (DAGL-α), diacylglycerol lipase beta (DAGL-β), fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), α/β hydrolase domain 6 (ABHD6). As the endocannabinoid system exerts considerable involvement in the regulation of homeostasis and disease, much effort has been made towards understanding endocannabinoid-related mechanisms of action at cellular, physiological, and pathological levels as well as harnessing the various components of the endocannabinoid system to produce novel therapeutics. However, drug discovery efforts within the cannabinoid field have been slower than anticipated to reach satisfactory clinical endpoints and raises an important question into the validity of developing novel ligands that therapeutically target the endocannabinoid system. To answer this, we will first examine evidence that supports the existence of an endocannabinoid system role within inflammatory diseases, neurodegeneration, pain, substance use disorders, mood disorders, as well as metabolic diseases. Next, this review will discuss recent clinical studies, within the last 5 years, of cannabinoid compounds in context to these diseases. We will also address some of the challenges and considerations within the cannabinoid field that may be important in the advancement of therapeutics into the clinic.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Joshua A Bilbrey
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jasmine S Felix
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Departments of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
43
|
Vecchiarelli HA, Morena M, Keenan CM, Chiang V, Tan K, Qiao M, Leitl K, Santori A, Pittman QJ, Sharkey KA, Hill MN. Comorbid anxiety-like behavior in a rat model of colitis is mediated by an upregulation of corticolimbic fatty acid amide hydrolase. Neuropsychopharmacology 2021; 46:992-1003. [PMID: 33452437 PMCID: PMC8115350 DOI: 10.1038/s41386-020-00939-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/11/2020] [Accepted: 12/06/2020] [Indexed: 01/29/2023]
Abstract
Peripheral inflammatory conditions, including those localized to the gastrointestinal tract, are highly comorbid with psychiatric disorders such as anxiety and depression. These behavioral symptoms are poorly managed by conventional treatments for inflammatory diseases and contribute to quality of life impairments. Peripheral inflammation is associated with sustained elevations in circulating glucocorticoid hormones, which can modulate central processes, including those involved in the regulation of emotional behavior. The endocannabinoid (eCB) system is exquisitely sensitive to these hormonal changes and is a significant regulator of emotional behavior. The impact of peripheral inflammation on central eCB function, and whether this is related to the development of these behavioral comorbidities remains to be determined. To examine this, we employed the trinitrobenzene sulfonic acid-induced model of colonic inflammation (colitis) in adult, male, Sprague Dawley rats to produce sustained peripheral inflammation. Colitis produced increases in behavioral measures of anxiety and elevations in circulating corticosterone. These alterations were accompanied by elevated hydrolytic activity of the enzyme fatty acid amide hydrolase (FAAH), which hydrolyzes the eCB anandamide (AEA), throughout multiple corticolimbic brain regions. This elevation of FAAH activity was associated with broad reductions in the content of AEA, whose decline was driven by central corticotropin releasing factor type 1 receptor signaling. Colitis-induced anxiety was reversed following acute central inhibition of FAAH, suggesting that the reductions in AEA produced by colitis contributed to the generation of anxiety. These data provide a novel perspective for the pharmacological management of psychiatric comorbidities of chronic inflammatory conditions through modulation of eCB signaling.
Collapse
Affiliation(s)
- Haley A. Vecchiarelli
- grid.22072.350000 0004 1936 7697Neuroscience Graduate Program, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Maria Morena
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Catherine M. Keenan
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Vincent Chiang
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Kaitlyn Tan
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Min Qiao
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Kira Leitl
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Alessia Santori
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Quentin J. Pittman
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Keith A. Sharkey
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Matthew N. Hill
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| |
Collapse
|
44
|
Ihn HJ, Kim YS, Lim S, Bae JS, Jung JC, Kim YH, Park JW, Wang Z, Koh JT, Bae YC, Baek MC, Park EK. PF-3845, a Fatty Acid Amide Hydrolase Inhibitor, Directly Suppresses Osteoclastogenesis through ERK and NF-κB Pathways In Vitro and Alveolar Bone Loss In Vivo. Int J Mol Sci 2021; 22:ijms22041915. [PMID: 33671948 PMCID: PMC7919013 DOI: 10.3390/ijms22041915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Alveolar bone loss, the major feature of periodontitis, results from the activation of osteoclasts, which can consequently cause teeth to become loose and fall out; the development of drugs capable of suppressing excessive osteoclast differentiation and function is beneficial for periodontal disease patients. Given the difficulties associated with drug discovery, drug repurposing is an efficient approach for identifying alternative uses of commercially available compounds. Here, we examined the effects of PF-3845, a selective fatty acid amide hydrolase (FAAH) inhibitor, on receptor activator of nuclear factor kappa B ligand (RANKL)-mediated osteoclastogenesis, its function, and the therapeutic potential for the treatment of alveolar bone destruction in experimental periodontitis. PF-3845 significantly suppressed osteoclast differentiation and decreased the induction of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) and the expression of osteoclast-specific markers. Actin ring formation and osteoclastic bone resorption were also reduced by PF-3845, and the anti-osteoclastogenic and anti-resorptive activities were mediated by the suppression of phosphorylation of rapidly accelerated fibrosarcoma (RAF), mitogen-activated protein kinase (MEK), extracellular signal-regulated kinase, (ERK) and nuclear factor κB (NF-κB) inhibitor (IκBα). Furthermore, the administration of PF-3845 decreased the number of osteoclasts and the amount of alveolar bone destruction caused by ligature placement in experimental periodontitis in vivo. The present study provides evidence that PF-3845 is able to suppress osteoclastogenesis and prevent alveolar bone loss, and may give new insights into its role as a treatment for osteoclast-related diseases.
Collapse
Affiliation(s)
- Hye-Jung Ihn
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea;
| | - Yi-Seul Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu 41940, Korea; (Y.-S.K.); (S.L.)
| | - Soomin Lim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu 41940, Korea; (Y.-S.K.); (S.L.)
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Jae-Chang Jung
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Yeo-Hyang Kim
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea;
| | - Zhao Wang
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea; (Z.W.); (J.-T.K.)
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea; (Z.W.); (J.-T.K.)
| | - Yong-Chul Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea;
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (M.-C.B.); (E.-K.P.); Tel.: +82-53-420-4948 (M.-C.B.); +82-53-420-4995 (E.-K.P.)
| | - Eui-Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu 41940, Korea; (Y.-S.K.); (S.L.)
- Correspondence: (M.-C.B.); (E.-K.P.); Tel.: +82-53-420-4948 (M.-C.B.); +82-53-420-4995 (E.-K.P.)
| |
Collapse
|
45
|
Cannabis use and posttraumatic stress disorder comorbidity: Epidemiology, biology and the potential for novel treatment approaches. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 157:143-193. [PMID: 33648669 DOI: 10.1016/bs.irn.2020.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cannabis use is increasing among some demographics in the United States and is tightly linked to anxiety, trauma, and stress reactivity at the epidemiological and biological level. Stress-coping motives are highly cited reasons for cannabis use. However, with increased cannabis use comes the increased susceptibility for cannabis use disorder (CUD). Indeed, CUD is highly comorbid with posttraumatic stress disorder (PTSD). Importantly, endogenous cannabinoid signaling systems play a key role in the regulation of stress reactivity and anxiety regulation, and preclinical data suggest deficiencies in this signaling system could contribute to the development of stress-related psychopathology. Furthermore, endocannabinoid deficiency states, either pre-existing or induced by trauma exposure, could provide explanatory insights into the high rates of comorbid cannabis use in patients with PTSD. Here we review clinical and preclinical literature related to the cannabis use-PTSD comorbidity, the role of endocannabinoids in the regulation of stress reactivity, and potential therapeutic implications of recent work in this area.
Collapse
|
46
|
Portugalov A, Akirav I. Do Adolescent Exposure to Cannabinoids and Early Adverse Experience Interact to Increase the Risk of Psychiatric Disorders: Evidence from Rodent Models. Int J Mol Sci 2021; 22:ijms22020730. [PMID: 33450928 PMCID: PMC7828431 DOI: 10.3390/ijms22020730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/30/2022] Open
Abstract
There have been growing concerns about the protracted effects of cannabis use in adolescents on emotion and cognition outcomes, motivated by evidence of growing cannabis use in adolescents, evidence linking cannabis use to various psychiatric disorders, and the increasingly perceived notion that cannabis is harmless. At the same time, studies suggest that cannabinoids may have therapeutic potential against the impacts of stress on the brain and behavior, and that young people sometimes use cannabinoids to alleviate feelings of depression and anxiety (i.e., “self-medication”). Exposure to early adverse life events may predispose individuals to developing psychopathology in adulthood, leading researchers to study the causality between early life factors and cognitive and emotional outcomes in rodent models and to probe the underlying mechanisms. In this review, we aim to better understand the long-term effects of cannabinoids administered in sensitive developmental periods (mainly adolescence) in rodent models of early life stress. We suggest that the effects of cannabinoids on emotional and cognitive function may vary between different sensitive developmental periods. This could potentially affect decisions regarding the use of cannabinoids in clinical settings during the early stages of development and could raise questions regarding educating the public as to potential risks associated with cannabis use.
Collapse
Affiliation(s)
- Anna Portugalov
- Department of Psychology, School of Psychological Sciences, University of Haifa, 3498838 Haifa, Israel;
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, 3498838 Haifa, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, 3498838 Haifa, Israel;
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, 3498838 Haifa, Israel
- Correspondence:
| |
Collapse
|
47
|
Pavón FJ, Polis IY, Stouffer DG, Cravatt BF, Roberto M, Martin-Fardon R, Rodríguez de Fonseca F, Parsons LH, Serrano A. Selective inhibition of monoacylglycerol lipase is associated with passive coping behavior and attenuation of stress-induced dopamine release in the medial prefrontal cortex. Neurobiol Stress 2021; 14:100293. [PMID: 33490317 PMCID: PMC7809503 DOI: 10.1016/j.ynstr.2021.100293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/03/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
The endocannabinoid system is involved in the regulation of the stress response, but the relative contribution of N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) and their mechanisms have to be elucidated. In this study, we compared the effects of the pharmacological inhibition of the two major endocannabinoid-degrading enzymes [fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) for AEA and 2-AG, respectively] on stress-coping [forced swim test (FST) and tail suspension test (TST)] and anxiety-like [elevated-plus maze (EPM) and light-dark test (LDT)] behaviors in wild-type and FAAH knockout mice. In vivo microdialysis estimated the effects of FAAH and MAGL inhibition on dopamine (DA) and serotonin (5-HT) levels in the medial prefrontal cortex (mPFC) during an FST. Mice were treated with PF-3845 (FAAH inhibitor), JZL184 (MAGL inhibitor), JZL195 (dual FAAH/MAGL inhibitor) or vehicle. Our data showed that PF-3845 increased latency to immobility and decreased total immobility time in FST, but no effects were observed in TST compared with vehicle-treated wild-type mice. By contrast, JZL184 decreased latency and increased immobility in TST and FST. JZL195 in wild-type mice and JZL184 in FAAH knockout mice reproduced the same passive coping behaviors as JZL184 in wild-type mice in TST and FST. In the microdialysis experiment, FST was associated with increased DA and 5-HT levels in the mPFC. However, JZL184-treated wild-type mice displayed a significant attenuation of forced swim stress-induced DA release compared with vehicle-treated wild-type mice and PF-3845-treated wild-type mice. Finally, FAAH and/or MAGL inhibitors induced robust and consistent anxiolytic-like effects in EPM and LDT. These results suggested differences between FAAH and MAGL inhibition in stress-coping behaviors. Notably, MAGL inhibition induced a consistent avoidant coping behavior and attenuated the stress-induced mPFC DA response in FST. However, more investigation is needed to elucidate the functional association between DA and 2-AG signaling pathways, and the molecular mechanism in the regulation of passive coping strategies during inescapable stress. FAAH and/or MAGL inhibition induce opposite changes in stress-coping behaviors. MAGL inhibition increases passive stress-coping behaviors in mice. Passive stress-coping behaviors are regulated by 2-AG rather than AEA signaling. MAGL inhibition attenuates mPFC dopamine increase in the forced swim test. FAAH and/or MAGL inhibitors are associated with anxiolytic-like effects.
Collapse
Affiliation(s)
- Francisco Javier Pavón
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA.,Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.,CIBERCV-Instituto de Salud Carlos III and Unidad de Gestión Clínica del Corazón, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Ilham Y Polis
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - David G Stouffer
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Marisa Roberto
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Rémi Martin-Fardon
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Loren H Parsons
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Antonia Serrano
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA.,Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| |
Collapse
|
48
|
Ribeiro FT, de Serro-Azul MIS, Lorena FB, do Nascimento BPP, Arnold AJT, Barbosa GHL, Ribeiro MO, Cysneiros RM. Increased Endocannabinoid Signaling Reduces Social Motivation in Intact Rats and Does Not Affect Animals Submitted to Early-Life Seizures. Front Behav Neurosci 2020; 14:560423. [PMID: 33362484 PMCID: PMC7756094 DOI: 10.3389/fnbeh.2020.560423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/12/2020] [Indexed: 11/24/2022] Open
Abstract
The early life status epilepticus (SE) causes high anxiety and chronic socialization abnormalities, revealed by a low preference for social novelty and deficit in social discrimination. This study investigated the involvement of the endocannabinoid system on the sociability in this model, due to its role in social motivation regulation. Male Wistar rats at postnatal day 9 were subjected to pilocarpine-induced neonatal SE and controls received saline. From P60 the groups received vehicle or JZL195 2 h before each behavioral test to increase endocannabinoids availability. In the sociability test, animals subjected to neonatal SE exhibited impaired sociability, characterized by social discrimination deficit, which was unaffected by the JZL195 treatment. In contrast, JZL195-treated control rats showed low sociability and impaired social discrimination. The negative impact of JZL195 over the sociability in control rats and the lack of effect in animals subjected to neonatal SE was confirmed in the social memory paradigm. In this paradigm, as expected for vehicle-treated control rats, the investigation toward the same social stimulus decreased with the sequential exposition and increased toward a novel stimulus. In animals subjected to neonatal SE, regardless of the treatment, as well as in JZL195-treated control rats, the investigation toward the same social stimulus was significantly reduced with no improvement toward a novel stimulus. Concerning the locomotion, the JZL195 increased it only in control rats. After behavioral tests, brain tissues of untreated animals were used for CB1 receptor quantification by Elisa and for gene expression by RT-PCR: no difference between control and experimental animals was noticed. The results reinforce the evidence that the early SE causes chronic socialization abnormalities, revealed by the low social interest for novelty and impaired social discrimination. The dual FAAH/MAGL inhibitor (JZL195) administration before the social encounter impaired the social interaction in intact rats with no effect in animals subjected to early-life seizures.
Collapse
Affiliation(s)
- Fernanda Teixeira Ribeiro
- Developmental Disabilities Postgraduate Program, Laboratory of Neurobiology and Metabolism, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Marcia Ivany Silva de Serro-Azul
- Developmental Disabilities Postgraduate Program, Laboratory of Neurobiology and Metabolism, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Fernanda Beraldo Lorena
- Postgraduate Program in Translational Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | - Alexandre José Tavolari Arnold
- Developmental Disabilities Postgraduate Program, Laboratory of Neurobiology and Metabolism, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Geraldo Henrique Lemos Barbosa
- Developmental Disabilities Postgraduate Program, Laboratory of Neurobiology and Metabolism, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Miriam Oliveira Ribeiro
- Developmental Disabilities Postgraduate Program, Laboratory of Neurobiology and Metabolism, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Roberta Monterazzo Cysneiros
- Developmental Disabilities Postgraduate Program, Laboratory of Neurobiology and Metabolism, Mackenzie Presbyterian University, São Paulo, Brazil
| |
Collapse
|
49
|
Druggable Targets in Endocannabinoid Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:177-201. [PMID: 32894511 DOI: 10.1007/978-3-030-50621-6_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cannabis and cannabinoid-based extracts have long been utilized for their perceived therapeutic value, and support for the legalization of cannabis for medicinal purposes continues to increase worldwide. Since the discovery of Δ9-tetrahydrocannabinol (THC) as the primary psychoactive component of cannabis over 50 years ago, substantial effort has been directed toward detection of endogenous mediators of cannabinoid activity. The discovery of anandamide and 2-arachidonoylglycerol as two endogenous lipid mediators of cannabinoid-like effects (endocannabinoids) has inspired exponential growth in our understanding of this essential pathway, as well as the pathological conditions that result from dysregulated endocannabinoid signaling. This review examines current knowledge of the endocannabinoid system including metabolic enzymes involved in biosynthesis and degradation and their receptors, and evaluates potential druggable targets for therapeutic intervention.
Collapse
|
50
|
Bedse G, Hill MN, Patel S. 2-Arachidonoylglycerol Modulation of Anxiety and Stress Adaptation: From Grass Roots to Novel Therapeutics. Biol Psychiatry 2020; 88:520-530. [PMID: 32197779 PMCID: PMC7486996 DOI: 10.1016/j.biopsych.2020.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/31/2019] [Accepted: 01/18/2020] [Indexed: 01/13/2023]
Abstract
Over the past decade there has been a surge of interest in the development of endocannabinoid-based therapeutic approaches for the treatment of diverse neuropsychiatric conditions. Although initial preclinical and clinical development efforts focused on pharmacological inhibition of fatty acid amide hydrolase to elevate levels of the endocannabinoid anandamide, more recent efforts have focused on inhibition of monoacylglycerol lipase (MAGL) to enhance signaling of the most abundant and efficacious endocannabinoid ligand, 2-arachidonoylglycerol (2-AG). We review the biochemistry and physiology of 2-AG signaling and preclinical evidence supporting a role for this system in the regulation of anxiety-related outcomes and stress adaptation. We review preclinical evidence supporting MAGL inhibition for the treatment of affective, trauma-related, and stress-related disorders; describe the current state of MAGL inhibitor drug development; and discuss biological factors that could affect MAGL inhibitor efficacy. Issues related to the clinical advancement of MAGL inhibitors are also discussed. We are cautiously optimistic, as the field of MAGL inhibitor development transitions from preclinical to clinical and theoretical to practical, that pharmacological 2-AG augmentation could represent a mechanistically novel therapeutic approach for the treatment of affective and stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gaurav Bedse
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Vanderbilt Center for Addiction Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mathew N Hill
- Department of Cell Biology, Hotchkiss Brain Institute and Mathison Center for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Anatomy and Psychiatry, Hotchkiss Brain Institute and Mathison Center for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Vanderbilt Center for Addiction Research, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|