1
|
Zamorano-Cataldo M, Vega-Vásquez I, García-Navarrete C, Toledo J, Bustamante D, Ezquer F, Urra FA, Farfán-Troncoso N, Herrera-Marschitz M, Morales P. Mitochondrial dynamics and sex-specific responses in the developing rat hippocampus: Effect of perinatal asphyxia and mesenchymal stem cell Secretome treatment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119851. [PMID: 39332539 DOI: 10.1016/j.bbamcr.2024.119851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024]
Abstract
AIMS Perinatal asphyxia is one of the major causes of neonatal death at birth. Survivors can progress but often suffer from long-term sequelae. We aim to determine the effects of perinatal asphyxia on mitochondrial dynamics and whether mesenchymal stem cell secretome (MSC-S) treatment can alleviate the deleterious effects. MATERIALS AND METHODS Animals were subjected to 21 min of asphyxia at the time of delivery. MSC-S or vehicle was intranasally administered 2 h post-delivery. Mitochondrial mass (D-loop, qPCR), mitochondrial dynamics proteins (Drp1, Fis1 and OPA1, Western blot), mitochondrial dynamics (TOMM20, Immunofluorescence), as well as mitochondrial membrane potential (ΔΨm) (Safranin O) were evaluated at P1 and P7 in the hippocampus. KEY FINDINGS Perinatal asphyxia increased levels of mitochondrial dynamics proteins Drp1 and S-OPA1 at P1 and Fis1 at P7. Mitochondrial density and mass were decreased at P1. Perinatal asphyxia induced sex-specific differences, with increased L-OPA1 in females at P7 and increased mitochondria circularity. In males, asphyxia-exposed animals exhibited a reduced ΔΨm at P7. MSC-S treatment normalised levels of mitochondrial dynamics proteins involved in fission. SIGNIFICANCE This study provides novel insights into the effects of perinatal asphyxia on mitochondrial dynamics in the developing brain and on the therapeutic opportunities provided by mesenchymal stem cell secretome treatment. It also highlights on the relevance of considering sex as a biological variable in perinatal brain injury and therapy development. These findings contribute to the development of targeted, personalised therapies for infants affected by perinatal asphyxia.
Collapse
Affiliation(s)
- M Zamorano-Cataldo
- Molecular & Clinical Pharmacology Program, ICBM, Medical Faculty, Universidad de Chile, Chile
| | - I Vega-Vásquez
- Advanced Scientific Equipment Network (REDECA), Medical Faculty, Universidad de Chile, Chile
| | - C García-Navarrete
- Advanced Scientific Equipment Network (REDECA), Medical Faculty, Universidad de Chile, Chile
| | - J Toledo
- Advanced Scientific Equipment Network (REDECA), Medical Faculty, Universidad de Chile, Chile
| | - D Bustamante
- Molecular & Clinical Pharmacology Program, ICBM, Medical Faculty, Universidad de Chile, Chile
| | - F Ezquer
- Center for Regenerative Medicine, Medical Faculty, Clínica Alemana, Universidad del Desarrollo, Chile
| | - F A Urra
- Molecular & Clinical Pharmacology Program, ICBM, Medical Faculty, Universidad de Chile, Chile; Laboratory of Metabolic Plasticity and Bioenergetics, Molecular & Clinical Pharmacology Program, Medical Faculty, Universidad de Chile, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Medical Faculty, Universidad de Chile, Chile
| | - N Farfán-Troncoso
- Molecular & Clinical Pharmacology Program, ICBM, Medical Faculty, Universidad de Chile, Chile.
| | - M Herrera-Marschitz
- Molecular & Clinical Pharmacology Program, ICBM, Medical Faculty, Universidad de Chile, Chile.
| | - P Morales
- Molecular & Clinical Pharmacology Program, ICBM, Medical Faculty, Universidad de Chile, Chile; Department of Neuroscience, Medical Faculty, Universidad de Chile, Chile.
| |
Collapse
|
2
|
Tábara LC, Segawa M, Prudent J. Molecular mechanisms of mitochondrial dynamics. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00785-1. [PMID: 39420231 DOI: 10.1038/s41580-024-00785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Mitochondria not only synthesize energy required for cellular functions but are also involved in numerous cellular pathways including apoptosis, calcium homoeostasis, inflammation and immunity. Mitochondria are dynamic organelles that undergo cycles of fission and fusion, and these transitions between fragmented and hyperfused networks ensure mitochondrial function, enabling adaptations to metabolic changes or cellular stress. Defects in mitochondrial morphology have been associated with numerous diseases, highlighting the importance of elucidating the molecular mechanisms regulating mitochondrial morphology. Here, we discuss recent structural insights into the assembly and mechanism of action of the core mitochondrial dynamics proteins, such as the dynamin-related protein 1 (DRP1) that controls division, and the mitofusins (MFN1 and MFN2) and optic atrophy 1 (OPA1) driving membrane fusion. Furthermore, we provide an updated view of the complex interplay between different proteins, lipids and organelles during the processes of mitochondrial membrane fusion and fission. Overall, we aim to present a valuable framework reflecting current perspectives on how mitochondrial membrane remodelling is regulated.
Collapse
Affiliation(s)
- Luis-Carlos Tábara
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Mayuko Segawa
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Xiong H, Qiu H, Wang C, Qiu Y, Tan S, Chen K, Zhao F, Song J. Melatonin-loaded bioactive microspheres accelerate aged bone regeneration by formation of tunneling nanotubes to enhance mitochondrial transfer. Mater Today Bio 2024; 28:101175. [PMID: 39171100 PMCID: PMC11334827 DOI: 10.1016/j.mtbio.2024.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/03/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
The repair of bone defects in the elderly individuals is significantly delayed due to cellular senescence and dysfunction, which presents a challenge in clinical settings. Furthermore, there are limited effective methods available to promote bone repair in older individuals. Herein, melatonin-loaded mesoporous bioactive glasses microspheres (MTBG) were successfully prepared based on their mesoporous properties. The repair of bone defects in aged rats was significantly accelerated by enhancing mitochondrial function through the sustained release of melatonin and bioactive ions. MTBG effectively rejuvenated senescent bone marrow mesenchymal stem cells (BMSCs) by scavenging excessive reactive oxygen species (ROS), stabilizing the mitochondrial membrane potential (ΔΨm), and increasing ATP synthesis. Analysis of the underlying mechanism revealed that the formation of tunneling nanotubes (TNTs) facilitated the intercellular transfer of mitochondria, thereby resulting in the recovery of mitochondrial function. This study provides critical insights into the design of new biomaterials for the elderly individuals and the biological mechanism involved in aged bone regeneration.
Collapse
Affiliation(s)
- Huacui Xiong
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Huanhuan Qiu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Chunhui Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yonghao Qiu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Shuyi Tan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Ke Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Fujian Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| |
Collapse
|
4
|
Zheng J, Zhao L, Liu Y, Chen M, Guo X, Wang J. N-acetylcysteine, a small molecule scavenger of reactive oxygen species, alleviates cardiomyocyte damage by regulating OPA1-mediated mitochondrial quality control and apoptosis in response to oxidative stress. J Thorac Dis 2024; 16:5323-5336. [PMID: 39268103 PMCID: PMC11388216 DOI: 10.21037/jtd-24-927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/19/2024] [Indexed: 09/15/2024]
Abstract
Background Oxidative stress-induced mitochondrial damage is the major cause of cardiomyocyte dysfunction. Therefore, the maintenance of mitochondrial function, which is regulated by mitochondrial quality control (MQC), is necessary for cardiomyocyte homeostasis. This study aimed to explore the underlying mechanisms of N-acetylcysteine (NAC) function and its relationship with MQC. Methods A hydrogen peroxide-induced oxidative stress model was established using H9c2 cardiomyocytes treated with or without NAC prior to oxidative stress stimulation. Autophagy with light chain 3 (LC3)-green fluorescent protein (GFP) assay, reactive oxygen species (ROS) with the 2',7'-dichlorodi hydrofluorescein diacetate (DCFH-DA) fluorescent, lactate dehydrogenase (LDH) release assay, adenosine triphosphate (ATP) content assay, and a mitochondrial membrane potential detection were used to evaluate mitochondrial dynamics in H2O2-treated H9c2 cardiomyocytes, with a focus on the involvement of MQC regulated by NAC. Cell apoptosis was analyzed using caspase-3 activity assay and Annexin V-fluorescein isothiocyanate (V-FITC)/propidium iodide (PI) double staining. Results We observed that NAC improved cell viability, reduced ROS levels, and partially restored optic atrophy 1 (OPA1) protein expression under oxidative stress. Following transfection with a specific OPA1-small interfering RNA, the mitophagy, mitochondrial dynamics, mitochondrial functions, and cardiomyocyte apoptosis were evaluated to further explore the mechanisms of NAC. Our results demonstrated that NAC attenuated cardiomyocyte apoptosis via the ROS/OPA1 axis and protected against oxidative stress-induced mitochondrial damage via the regulation of OPA1-mediated MQC. Conclusions NAC ameliorated the injury to H9c2 cardiomyocytes caused by H2O2 by promoting the expression of OPA1, consequently improving mitochondrial function and decreasing apoptosis.
Collapse
Affiliation(s)
- Junyi Zheng
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| | - Lili Zhao
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| | - Yuanyuan Liu
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| | - Mengying Chen
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| | - Xukun Guo
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| | - Jixiang Wang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
5
|
Dumbali SP, Horton PD, Moore TI, Wenzel PL. Mitochondrial permeability transition dictates mitochondrial maturation upon switch in cellular identity of hematopoietic precursors. Commun Biol 2024; 7:967. [PMID: 39122870 PMCID: PMC11316084 DOI: 10.1038/s42003-024-06671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The mitochondrial permeability transition pore (mPTP) is a supramolecular channel that regulates exchange of solutes across cristae membranes, with executive roles in mitochondrial function and cell death. The contribution of the mPTP to normal physiology remains debated, although evidence implicates the mPTP in mitochondrial inner membrane remodeling in differentiating progenitor cells. Here, we demonstrate that strict control over mPTP conductance shapes metabolic machinery as cells transit toward hematopoietic identity. Cells undergoing the endothelial-to-hematopoietic transition (EHT) tightly control chief regulatory elements of the mPTP. During EHT, maturing arterial endothelium restricts mPTP activity just prior to hematopoietic commitment. After transition in cellular identity, mPTP conductance is restored. In utero treatment with NIM811, a molecule that blocks sensitization of the mPTP to opening by Cyclophilin D (CypD), amplifies oxidative phosphorylation (OXPHOS) in hematopoietic precursors and increases hematopoiesis in the embryo. Additionally, differentiating pluripotent stem cells (PSCs) acquire greater organization of mitochondrial cristae and hematopoietic activity following knockdown of the CypD gene, Ppif. Conversely, knockdown of Opa1, a GTPase critical for proper cristae architecture, induces cristae irregularity and impairs hematopoiesis. These data elucidate a mechanism that regulates mitochondrial maturation in hematopoietic precursors and underscore a role for the mPTP in the acquisition of hematopoietic fate.
Collapse
Affiliation(s)
- Sandeep P Dumbali
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paulina D Horton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Travis I Moore
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Molecular & Translational Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Pamela L Wenzel
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Molecular & Translational Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
6
|
Shao B, Killion M, Oliver A, Vang C, Zeleke F, Neikirk K, Vue Z, Garza-Lopez E, Shao JQ, Mungai M, Lam J, Williams Q, Altamura CT, Whiteside A, Kabugi K, McKenzie J, Ezedimma M, Le H, Koh A, Scudese E, Vang L, Marshall AG, Crabtree A, Tanghal JI, Stephens D, Koh HJ, Jenkins BC, Murray SA, Cooper AT, Williams C, Damo SM, McReynolds MR, Gaddy JA, Wanjalla CN, Beasley HK, Hinton A. Ablation of Sam50 is associated with fragmentation and alterations in metabolism in murine and human myotubes. J Cell Physiol 2024; 239:e31293. [PMID: 38770789 PMCID: PMC11324413 DOI: 10.1002/jcp.31293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
The sorting and assembly machinery (SAM) Complex is responsible for assembling β-barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block-face-scanning electron microscopy and computer-assisted 3D renderings were employed to compare mitochondrial structure and networking in Sam50-deficient myotubes from mice and humans with wild-type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography-Mass Spectrometry-based metabolomics to explore differential changes in WT and Sam50-deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation in Sam50-deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß-Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism in Sam50-deficient myotubes. Furthermore, impairment of oxidative capacity was observed upon Sam50 ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact of Sam50-deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle.
Collapse
Affiliation(s)
- Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Mason Killion
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Chia Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Faben Zeleke
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jian-Qiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, Iowa, USA
| | - Margaret Mungai
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jacob Lam
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Qiana Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Christopher T Altamura
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jessica McKenzie
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Maria Ezedimma
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Brenita C Jenkins
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthonya T Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Clintoria Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- US Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee, USA
| | - Celestine N Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Neikirk K, Kabugi K, Mungai M, Kula B, Smith N, Hinton AO. Ethnicity-related differences in mitochondrial regulation by insulin stimulation in diabetes. J Cell Physiol 2024; 239:e31317. [PMID: 38775168 PMCID: PMC11324399 DOI: 10.1002/jcp.31317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 08/15/2024]
Abstract
Mitochondrial dysfunction has long been implicated in the development of insulin resistance, which is a hallmark of type 2 diabetes. However, recent studies reveal ethnicity-related differences in mitochondrial processes, underscoring the need for nuance in studying mitochondrial dysfunction and insulin sensitivity. Furthermore, the higher prevalence of type 2 diabetes among African Americans and individuals of African descent has brought attention to the role of ethnicity in disease susceptibility. In this review, which covers existing literature, genetic studies, and clinical data, we aim to elucidate the complex relationship between mitochondrial alterations and insulin stimulation by considering how mitochondrial dynamics, contact sites, pathways, and metabolomics may be differentially regulated across ethnicities, through mechanisms such as single nucleotide polymorphisms (SNPs). In addition to achieving a better understanding of insulin stimulation, future studies identifying novel regulators of mitochondrial structure and function could provide valuable insights into ethnicity-dependent insulin signaling and personalized care.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Margaret Mungai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bartosz Kula
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA 14642
| | - Nathan Smith
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA 14642
| | - Antentor O. Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
8
|
Benaroya H. Mitochondria and MICOS - function and modeling. Rev Neurosci 2024; 35:503-531. [PMID: 38369708 DOI: 10.1515/revneuro-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/20/2024]
Abstract
An extensive review is presented on mitochondrial structure and function, mitochondrial proteins, the outer and inner membranes, cristae, the role of F1FO-ATP synthase, the mitochondrial contact site and cristae organizing system (MICOS), the sorting and assembly machinery morphology and function, and phospholipids, in particular cardiolipin. Aspects of mitochondrial regulation under physiological and pathological conditions are outlined, in particular the role of dysregulated MICOS protein subunit Mic60 in Parkinson's disease, the relations between mitochondrial quality control and proteins, and mitochondria as signaling organelles. A mathematical modeling approach of cristae and MICOS using mechanical beam theory is introduced and outlined. The proposed modeling is based on the premise that an optimization framework can be used for a better understanding of critical mitochondrial function and also to better map certain experiments and clinical interventions.
Collapse
Affiliation(s)
- Haym Benaroya
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| |
Collapse
|
9
|
Liang C, Li X, Song G, Schmidt SF, Sun L, Chen J, Pan X, Zhao H, Yan Y. Adipose Kiss1 controls aerobic exercise-related adaptive responses in adipose tissue energy homeostasis. FASEB J 2024; 38:e23743. [PMID: 38877852 DOI: 10.1096/fj.202302598rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
Kisspeptin signaling regulates energy homeostasis. Adiposity is the principal source and receiver of peripheral Kisspeptin, and adipose Kiss1 metastasis suppressor (Kiss1) gene expression is stimulated by exercise. However, whether the adipose Kiss1 gene regulates energy homeostasis and plays a role in adaptive alterations during prolonged exercise remains unknown. Here, we investigated the role of Kiss1 role in mice and adipose tissues and the adaptive changes it induces after exercise, using adipose-specific Kiss1 knockout (Kiss1adipoq-/-) and adeno-associated virus-induced adipose tissue Kiss1-overexpressing (Kiss1adipoq over) mice. We found that adipose-derived kisspeptin signal regulates lipid and glucose homeostasis to maintain systemic energy homeostasis, but in a sex-dependent manner, with more pronounced metabolic changes in female mice. Kiss1 regulated adaptive alterations of genes and proteins in tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OxPhos) pathways in female gWAT following prolonged aerobic exercise. We could further show that adipose Kiss1 deficiency leads to reduced peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α) protein content of soleus muscle and maximum oxygen uptake (VO2 max) of female mice after prolonged exercise. Therefore, adipose Kisspeptin may be a novel adipokine that increases organ sensitivity to glucose, lipids, and oxygen following exercise.
Collapse
Affiliation(s)
- Chunyu Liang
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
- Department of Biochemistry and Molecular Biology, Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark (SDU), Odense, Denmark
- School of Physical Education, Guangxi University (GXU), Nanning, China
| | - Xuehan Li
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Ge Song
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Søren Fisker Schmidt
- Department of Biochemistry and Molecular Biology, Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark (SDU), Odense, Denmark
| | - Lingyu Sun
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Jianhao Chen
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Xinliang Pan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Haotian Zhao
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Yi Yan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| |
Collapse
|
10
|
Romero-Carramiñana I, Dominguez-Zorita S, Esparza-Moltó PB, Cuezva JM. Ablation of Atp5if1 impairs metabolic reprogramming and proliferation of T lymphocytes and compromises mouse survival. iScience 2024; 27:109863. [PMID: 38799559 PMCID: PMC11126974 DOI: 10.1016/j.isci.2024.109863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024] Open
Abstract
T cells experience metabolic reprogramming to an enhanced glycolysis upon activation. Herein, we have investigated whether ATPase Inhibitory Factor 1 (IF1), the physiological inhibitor of mitochondrial ATP synthase, participates in rewiring T cells to a particular metabolic phenotype. We show that the activation of naive CD4+ T lymphocytes both in vitro and in vivo is accompanied by a sharp upregulation of IF1, which is expressed only in Th1 effector cells. T lymphocytes of conditional CD4+-IF1-knockout mice display impaired glucose uptake and flux through glycolysis, reducing the biogenesis of mitochondria and cellular proliferation after activation. Consequently, mice devoid of IF1 in T lymphocytes cannot mount an effective Th1 response against bacterial infection compromising their survival. Overall, we show that the inhibition of a fraction of ATP synthase by IF1 regulates metabolic reprogramming and functionality of T cells, highlighting the essential role of IF1 in adaptive immune responses.
Collapse
Affiliation(s)
- Inés Romero-Carramiñana
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sonia Dominguez-Zorita
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pau B. Esparza-Moltó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M. Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Teixeira P, Galland R, Chevrollier A. Super-resolution microscopies, technological breakthrough to decipher mitochondrial structure and dynamic. Semin Cell Dev Biol 2024; 159-160:38-51. [PMID: 38310707 DOI: 10.1016/j.semcdb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
Mitochondria are complex organelles with an outer membrane enveloping a second inner membrane that creates a vast matrix space partitioned by pockets or cristae that join the peripheral inner membrane with several thin junctions. Several micrometres long, mitochondria are generally close to 300 nm in diameter, with membrane layers separated by a few tens of nanometres. Ultrastructural data from electron microscopy revealed the structure of these mitochondria, while conventional optical microscopy revealed their extraordinary dynamics through fusion, fission, and migration processes but its limited resolution power restricted the possibility to go further. By overcoming the limits of light diffraction, Super-Resolution Microscopy (SRM) now offers the potential to establish the links between the ultrastructure and remodelling of mitochondrial membranes, leading to major advances in our understanding of mitochondria's structure-function. Here we review the contributions of SRM imaging to our understanding of the relationship between mitochondrial structure and function. What are the hopes for these new imaging approaches which are particularly important for mitochondrial pathologies?
Collapse
Affiliation(s)
- Pauline Teixeira
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe MITOLAB, SFR ICAT, F-49000 Angers, France
| | - Rémi Galland
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Arnaud Chevrollier
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe MITOLAB, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
12
|
Stein CS, Zhang X, Witmer NH, Pennington ER, Shaikh SR, Boudreau RL. Mitoregulin supports mitochondrial membrane integrity and protects against cardiac ischemia-reperfusion injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596875. [PMID: 38853979 PMCID: PMC11160723 DOI: 10.1101/2024.05.31.596875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
We and others discovered a highly-conserved mitochondrial transmembrane microprotein, named Mitoregulin (Mtln), that supports lipid metabolism. We reported that Mtln strongly binds cardiolipin (CL), increases mitochondrial respiration and Ca 2+ retention capacities, and reduces reactive oxygen species (ROS). Here we extend our observation of Mtln-CL binding and examine Mtln influence on cristae structure and mitochondrial membrane integrity during stress. We demonstrate that mitochondria from constitutive- and inducible Mtln-knockout (KO) mice are susceptible to membrane freeze-damage and that this can be rescued by acute Mtln re-expression. In mitochondrial-simulated lipid monolayers, we show that synthetic Mtln decreases lipid packing and monolayer elasticity. Lipidomics revealed that Mtln-KO heart tissues show broad decreases in 22:6-containing lipids and increased cardiolipin damage/remodeling. Lastly, we demonstrate that Mtln-KO mice suffer worse myocardial ischemia-reperfusion injury, hinting at a translationally-relevant role for Mtln in cardioprotection. Our work supports a model in which Mtln binds cardiolipin and stabilizes mitochondrial membranes to broadly influence diverse mitochondrial functions, including lipid metabolism, while also protecting against stress.
Collapse
|
13
|
Castellaneta A, Losito I, Porcelli V, Barile S, Maresca A, Del Dotto V, Losacco V, Guadalupi LS, Calvano CD, Chan DC, Carelli V, Palmieri L, Cataldi TRI. Lipidomics reveals the reshaping of the mitochondrial phospholipid profile in cells lacking OPA1 and mitofusins. J Lipid Res 2024; 65:100563. [PMID: 38763493 PMCID: PMC11225846 DOI: 10.1016/j.jlr.2024.100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
Depletion or mutations of key proteins for mitochondrial fusion, like optic atrophy 1 (OPA1) and mitofusins 1 and 2 (Mfn 1 and 2), are known to significantly impact the mitochondrial ultrastructure, suggesting alterations of their membranes' lipid profiles. In order to make an insight into this issue, we used hydrophilic interaction liquid chromatography coupled with electrospray ionization-high resolution MS to investigate the mitochondrial phospholipid (PL) profile of mouse embryonic fibroblasts knocked out for OPA1 and Mfn1/2 genes. One hundred sixty-seven different sum compositions were recognized for the four major PL classes of mitochondria, namely phosphatidylcholines (PCs, 63), phosphatidylethanolamines (55), phosphatidylinositols (21), and cardiolipins (28). A slight decrease in the cardiolipin/PC ratio was found for Mfn1/2-knockout mitochondria. Principal component analysis and hierarchical cluster analysis were subsequently used to further process hydrophilic interaction liquid chromatography-ESI-MS data. A progressive decrease in the incidence of alk(en)yl/acyl species in PC and phosphatidylethanolamine classes and a general increase in the incidence of unsaturated acyl chains across all the investigated PL classes was inferred in OPA1 and Mfn1/2 knockouts compared to WT mouse embryonic fibroblasts. These findings suggest a reshaping of the PL profile consistent with the changes observed in the mitochondrial ultrastructure when fusion proteins are absent. Based on the existing knowledge on the metabolism of mitochondrial phospholipids, we propose that fusion proteins, especially Mfns, might influence the PL transfer between the mitochondria and the endoplasmic reticulum, likely in the context of mitochondria-associated membranes.
Collapse
Affiliation(s)
- Andrea Castellaneta
- Dipartimento di Chimica- Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Ilario Losito
- Dipartimento di Chimica- Università degli Studi di Bari Aldo Moro, Bari, Italy; Centro Interdipartimentale SMART- Università degli Studi di Bari Aldo Moro, Bari, Italy.
| | - Vito Porcelli
- Dipartimento di Bioscienze, Biotecnologie e Ambiente - Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Serena Barile
- Dipartimento di Bioscienze, Biotecnologie e Ambiente - Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Valentina Del Dotto
- Dipartimento di Scienze Biomediche e Neuromotorie, Università degli Studi di Bologna, Bologna, Italy
| | - Valentina Losacco
- Dipartimento di Chimica- Università degli Studi di Bari Aldo Moro, Bari, Italy
| | | | - Cosima Damiana Calvano
- Dipartimento di Chimica- Università degli Studi di Bari Aldo Moro, Bari, Italy; Centro Interdipartimentale SMART- Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università degli Studi di Bologna, Bologna, Italy
| | - Luigi Palmieri
- Dipartimento di Bioscienze, Biotecnologie e Ambiente - Università degli Studi di Bari Aldo Moro, Bari, Italy; CNR-Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica- Università degli Studi di Bari Aldo Moro, Bari, Italy; Centro Interdipartimentale SMART- Università degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
14
|
Liu YF, Luo XY, Zhao ZC, Zheng W, Lv HY, Luo WM. Association between optic atrophy 1 polymorphisms and primary open angle glaucoma risk: Based on a meta-analysis. Eur J Ophthalmol 2024; 34:708-718. [PMID: 37872653 DOI: 10.1177/11206721231208244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
BACKGROUND Emerging evidence suggested a significant association between optic atrophy 1 (OPA1) polymorphisms and primary open angle glaucoma (POAG) risk. However, the current data are inconsistent or even contradictory. Given these, we conducted a meta-analysis to examine the precise association between OPA1 polymorphisms and POAG risk. MATERIALS AND METHODS Online databases were retrieved, and the related studies were reviewed from inception to December 1, 2022. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated to examine the statistical power of each genetic model. In addition, heterogeneity, sensitivity, cumulative analysis, and publication bias were analyzed to guarantee statistical power. RESULT Overall, 14 studies within 11 publications (involving 2,413 POAG patients and 1,904 controls) were included and some significant association between OPA1 rs166850 C/T (T vs. C: OR = 1.24, 95%CI = 1.06-1.45, P = 0.01, I2 = 39.0%; CT vs. CC: OR = 1.37, 95%CI = 1.05-1.79, P = 0.02, I2 = 41.6%; CT + TT vs. CC: 1.37, 95%CI = 1.06-1.77, P = 0.02, I2 = 41.6%), rs10451941T/C (TC + CC vs. TT: OR = 1.79, 95%CI = 1.41-2.28, P < 0.01, I2 = 71.9%) polymorphisms and POAG susceptibility. In addition, further significant associations were also observed in the stratified analysis, especially in normal tension glaucoma groups and Caucasian descendants. CONCLUSION The observed evidences suggest that OPA1 polymorphisms may be associate with POAG susceptibility significantly.
Collapse
Affiliation(s)
- Yue-Feng Liu
- Department of Ophthalmology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiang-Yu Luo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhi-Cai Zhao
- Department of Pulmonary and Critical Care Medicine, Wudang Mountain Campus of Taihe Hospital Shiyan, Shiyan, Hubei, China
| | - Wu Zheng
- Department of Ophthalmology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hai-Yang Lv
- Department of Ophthalmology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wei-Min Luo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
15
|
Jenkins BC, Neikirk K, Katti P, Claypool SM, Kirabo A, McReynolds MR, Hinton A. Mitochondria in disease: changes in shapes and dynamics. Trends Biochem Sci 2024; 49:346-360. [PMID: 38402097 PMCID: PMC10997448 DOI: 10.1016/j.tibs.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/26/2024]
Abstract
Mitochondrial structure often determines the function of these highly dynamic, multifunctional, eukaryotic organelles, which are essential for maintaining cellular health. The dynamic nature of mitochondria is apparent in descriptions of different mitochondrial shapes [e.g., donuts, megamitochondria (MGs), and nanotunnels] and crista dynamics. This review explores the significance of dynamic alterations in mitochondrial morphology and regulators of mitochondrial and cristae shape. We focus on studies across tissue types and also describe new microscopy techniques for detecting mitochondrial morphologies both in vivo and in vitro that can improve understanding of mitochondrial structure. We highlight the potential therapeutic benefits of regulating mitochondrial morphology and discuss prospective avenues to restore mitochondrial bioenergetics to manage diseases related to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Brenita C Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Steven M Claypool
- Department of Physiology, Mitochondrial Phospholipid Research Center, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801, USA.
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
16
|
Leclerc S, Gupta A, Ruokolainen V, Chen JH, Kunnas K, Ekman AA, Niskanen H, Belevich I, Vihinen H, Turkki P, Perez-Berna AJ, Kapishnikov S, Mäntylä E, Harkiolaki M, Dufour E, Hytönen V, Pereiro E, McEnroe T, Fahy K, Kaikkonen MU, Jokitalo E, Larabell CA, Weinhardt V, Mattola S, Aho V, Vihinen-Ranta M. Progression of herpesvirus infection remodels mitochondrial organization and metabolism. PLoS Pathog 2024; 20:e1011829. [PMID: 38620036 PMCID: PMC11045090 DOI: 10.1371/journal.ppat.1011829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/25/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024] Open
Abstract
Viruses target mitochondria to promote their replication, and infection-induced stress during the progression of infection leads to the regulation of antiviral defenses and mitochondrial metabolism which are opposed by counteracting viral factors. The precise structural and functional changes that underlie how mitochondria react to the infection remain largely unclear. Here we show extensive transcriptional remodeling of protein-encoding host genes involved in the respiratory chain, apoptosis, and structural organization of mitochondria as herpes simplex virus type 1 lytic infection proceeds from early to late stages of infection. High-resolution microscopy and interaction analyses unveiled infection-induced emergence of rough, thin, and elongated mitochondria relocalized to the perinuclear area, a significant increase in the number and clustering of endoplasmic reticulum-mitochondria contact sites, and thickening and shortening of mitochondrial cristae. Finally, metabolic analyses demonstrated that reactivation of ATP production is accompanied by increased mitochondrial Ca2+ content and proton leakage as the infection proceeds. Overall, the significant structural and functional changes in the mitochondria triggered by the viral invasion are tightly connected to the progression of the virus infection.
Collapse
Affiliation(s)
- Simon Leclerc
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Alka Gupta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Visa Ruokolainen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kari Kunnas
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Axel A. Ekman
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Henri Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilya Belevich
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Paula Turkki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ana J. Perez-Berna
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, Spain
| | | | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maria Harkiolaki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK; Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, United Kingdom
| | - Eric Dufour
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa Hytönen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab laboratories, Tampere, Finland
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, Spain
| | | | | | - Minna U. Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Carolyn A. Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Venera Weinhardt
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
17
|
Wang C, Østergaard L, Hasselholt S, Sporring J. A semi-automatic method for extracting mitochondrial cristae characteristics from 3D focused ion beam scanning electron microscopy data. Commun Biol 2024; 7:377. [PMID: 38548849 PMCID: PMC10978844 DOI: 10.1038/s42003-024-06045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/11/2024] [Indexed: 04/01/2024] Open
Abstract
Mitochondria are the main suppliers of energy for cells and their bioenergetic function is regulated by mitochondrial dynamics: the constant changes in mitochondria size, shape, and cristae morphology to secure cell homeostasis. Although changes in mitochondrial function are implicated in a wide range of diseases, our understanding is challenged by a lack of reliable ways to extract spatial features from the cristae, the detailed visualization of which requires electron microscopy (EM). Here, we present a semi-automatic method for the segmentation, 3D reconstruction, and shape analysis of mitochondria, cristae, and intracristal spaces based on 2D EM images of the murine hippocampus. We show that our method provides a more accurate characterization of mitochondrial ultrastructure in 3D than common 2D approaches and propose an operational index of mitochondria's internal organization. With an improved consistency of 3D shape analysis and a decrease in the workload needed for large-scale analysis, we speculate that this tool will help increase our understanding of mitochondrial dynamics in health and disease.
Collapse
Affiliation(s)
- Chenhao Wang
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark.
- Center for Quantification of Imaging Data from MAX IV, Copenhagen, Denmark.
| | - Leif Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Center of Functionally Integrative Neuroscience, Aarhus, Denmark
| | - Stine Hasselholt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Center of Functionally Integrative Neuroscience, Aarhus, Denmark
| | - Jon Sporring
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark.
- Center for Quantification of Imaging Data from MAX IV, Copenhagen, Denmark.
| |
Collapse
|
18
|
Chen Z, Pan Z, Huang C, Zhu X, Li N, Huynh H, Xu J, Huang L, Vaz FM, Liu J, Han Z, Ouyang K. Cardiac lipidomic profiles in mice undergo changes from fetus to adult. Life Sci 2024; 341:122484. [PMID: 38311219 DOI: 10.1016/j.lfs.2024.122484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
AIMS Lipids are essential cellular components with many important biological functions. Disturbed lipid biosynthesis and metabolism has been shown to cause cardiac developmental abnormality and cardiovascular diseases. In this study, we aimed to investigate the composition and the molecular profiles of lipids in mammalian hearts between embryonic and adult stages and uncover the underlying links between lipid and cardiac development and maturation. MATERIALS AND METHODS We collected mouse hearts at the embryonic day 11.5 (E11.5), E15.5, and the age of 2 months, 4 months and 10 months, and performed lipidomic analysis to determine the changes of the composition, molecular species, and relative abundance of cardiac lipids between embryonic and adult stages. Additionally, we also performed the electronic microscopy and RNA sequencing in both embryonic and adult mouse hearts. KEY FINDINGS The relative abundances of certain phospholipids and sphingolipids including cardiolipin, phosphatidylglycerol, phosphatidylethanolamine, and ceramide, are different between embryonic and adult hearts. Such lipidomic changes are accompanied with increased densities of mitochondrial membranes and elevated expression of genes related to mitochondrial formation in adult mouse hearts. We also analyzed individual molecular species of phospholipids and sphingolipids, and revealed that the composition and distribution of lipid molecular species in hearts also change with development. SIGNIFICANCE Our study provides not only a lipidomic view of mammalian hearts when developing from the embryonic to the adult stage, but also a potential pool of lipid indicators for cardiac cell development and maturation.
Collapse
Affiliation(s)
- Ze'e Chen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Zhixiang Pan
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Can Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Xiangbin Zhu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Na Li
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Helen Huynh
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Junjie Xu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, the Netherlands
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China.
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China.
| |
Collapse
|
19
|
Lin HP, Petersen JD, Gilsrud AJ, Madruga A, D’Silva TM, Huang X, Shammas MK, Randolph NP, Li Y, Jones DR, Pacold ME, Narendra DP. DELE1 promotes translation-associated homeostasis, growth, and survival in mitochondrial myopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582673. [PMID: 38529505 PMCID: PMC10962736 DOI: 10.1101/2024.02.29.582673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Mitochondrial dysfunction causes devastating disorders, including mitochondrial myopathy. Here, we identified that diverse mitochondrial myopathy models elicit a protective mitochondrial integrated stress response (mt-ISR), mediated by OMA1-DELE1 signaling. The response was similar following disruptions in mtDNA maintenance, from knockout of Tfam, and mitochondrial protein unfolding, from disease-causing mutations in CHCHD10 (G58R and S59L). The preponderance of the response was directed at upregulating pathways for aminoacyl-tRNA biosynthesis, the intermediates for protein synthesis, and was similar in heart and skeletal muscle but more limited in brown adipose challenged with cold stress. Strikingly, models with early DELE1 mt-ISR activation failed to grow and survive to adulthood in the absence of Dele1, accounting for some but not all of OMA1's protection. Notably, the DELE1 mt-ISR did not slow net protein synthesis in stressed striated muscle, but instead prevented loss of translation-associated proteostasis in muscle fibers. Together our findings identify that the DELE1 mt-ISR mediates a stereotyped response to diverse forms of mitochondrial stress and is particularly critical for maintaining growth and survival in early-onset mitochondrial myopathy.
Collapse
Affiliation(s)
- Hsin-Pin Lin
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer D. Petersen
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra J. Gilsrud
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angelo Madruga
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Theresa M. D’Silva
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoping Huang
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mario K. Shammas
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas P. Randolph
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Drew R. Jones
- Department of Radiation Oncology, NYU Langone Health, New York, United States
| | - Michael E. Pacold
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, United States
- Perlmutter Cancer Center, NYU Langone Health, New York, United States
| | - Derek P. Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Lee A, Sung G, Shin S, Lee SY, Sim J, Nhung TTM, Nghi TD, Park SK, Sathieshkumar PP, Kang I, Mun JY, Kim JS, Rhee HW, Park KM, Kim K. OrthoID: profiling dynamic proteomes through time and space using mutually orthogonal chemical tools. Nat Commun 2024; 15:1851. [PMID: 38424052 PMCID: PMC10904832 DOI: 10.1038/s41467-024-46034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Identifying proteins at organelle contact sites, such as mitochondria-associated endoplasmic reticulum membranes (MAM), is essential for understanding vital cellular processes, yet challenging due to their dynamic nature. Here we report "OrthoID", a proteomic method utilizing engineered enzymes, TurboID and APEX2, for the biotinylation (Bt) and adamantylation (Ad) of proteins close to the mitochondria and endoplasmic reticulum (ER), respectively, in conjunction with high-affinity binding pairs, streptavidin-biotin (SA-Bt) and cucurbit[7]uril-adamantane (CB[7]-Ad), for selective orthogonal enrichment of Bt- and Ad-labeled proteins. This approach effectively identifies protein candidates associated with the ER-mitochondria contact, including LRC59, whose roles at the contact site were-to the best of our knowledge-previously unknown, and tracks multiple protein sets undergoing structural and locational changes at MAM during mitophagy. These findings demonstrate that OrthoID could be a powerful proteomics tool for the identification and analysis of spatiotemporal proteins at organelle contact sites and revealing their dynamic behaviors in vital cellular processes.
Collapse
Affiliation(s)
- Ara Lee
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, Republic of Korea
- Division of Advanced Materials Science (AMS), Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Gihyun Sung
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, Republic of Korea
- Division of Advanced Materials Science (AMS), Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Sanghee Shin
- Center for RNA Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Song-Yi Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jaehwan Sim
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Tran Diem Nghi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | | | - Imkyeung Kang
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Microbiology, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea.
| | - Kyeng Min Park
- Department of Biochemistry, Daegu Catholic University School of Medicine, Daegu, Republic of Korea.
| | - Kimoon Kim
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, Republic of Korea.
- Division of Advanced Materials Science (AMS), Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| |
Collapse
|
21
|
Golombek M, Tsigaras T, Schaumkessel Y, Hänsch S, Weidtkamp-Peters S, Anand R, Reichert AS, Kondadi AK. Cristae dynamics is modulated in bioenergetically compromised mitochondria. Life Sci Alliance 2024; 7:e202302386. [PMID: 37957016 PMCID: PMC10643176 DOI: 10.26508/lsa.202302386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023] Open
Abstract
Cristae membranes have been recently shown to undergo intramitochondrial merging and splitting events. Yet, the metabolic and bioenergetic factors regulating them are unclear. Here, we investigated whether and how cristae morphology and dynamics are dependent on oxidative phosphorylation (OXPHOS) complexes, the mitochondrial membrane potential (ΔΨm), and the ADP/ATP nucleotide translocator. Advanced live-cell STED nanoscopy combined with in-depth quantification were employed to analyse cristae morphology and dynamics after treatment of mammalian cells with rotenone, antimycin A, oligomycin A, and CCCP. This led to formation of enlarged mitochondria along with reduced cristae density but did not impair cristae dynamics. CCCP treatment leading to ΔΨm abrogation even enhanced cristae dynamics showing its ΔΨm-independent nature. Inhibition of OXPHOS complexes was accompanied by reduced ATP levels but did not affect cristae dynamics. However, inhibition of ADP/ATP exchange led to aberrant cristae morphology and impaired cristae dynamics in a mitochondrial subset. In sum, we provide quantitative data of cristae membrane remodelling under different conditions supporting an important interplay between OXPHOS, metabolite exchange, and cristae membrane dynamics.
Collapse
Affiliation(s)
- Mathias Golombek
- https://ror.org/024z2rq82 Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Thanos Tsigaras
- https://ror.org/024z2rq82 Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Yulia Schaumkessel
- https://ror.org/024z2rq82 Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Hänsch
- https://ror.org/024z2rq82 Center for Advanced Imaging, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Weidtkamp-Peters
- https://ror.org/024z2rq82 Center for Advanced Imaging, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ruchika Anand
- https://ror.org/024z2rq82 Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- https://ror.org/024z2rq82 Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Arun Kumar Kondadi
- https://ror.org/024z2rq82 Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
22
|
Venkatraman K, Lee CT, Garcia GC, Mahapatra A, Milshteyn D, Perkins G, Kim K, Pasolli HA, Phan S, Lippincott‐Schwartz J, Ellisman MH, Rangamani P, Budin I. Cristae formation is a mechanical buckling event controlled by the inner mitochondrial membrane lipidome. EMBO J 2023; 42:e114054. [PMID: 37933600 PMCID: PMC10711667 DOI: 10.15252/embj.2023114054] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
Cristae are high-curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous lipid-based mechanisms have yet to be elucidated. Here, we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the inner mitochondrial membrane against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. This model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that cardiolipin is essential in low-oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of cardiolipin is dependent on the surrounding lipid and protein components of the IMM.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| | - Christopher T Lee
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Guadalupe C Garcia
- Computational Neurobiology LaboratorySalk Institute for Biological StudiesLa JollaCAUSA
| | - Arijit Mahapatra
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
- Present address:
Applied Physical SciencesUniversity of North Carolina Chapel HillChapel HillNCUSA
| | - Daniel Milshteyn
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - Keun‐Young Kim
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - H Amalia Pasolli
- Howard Hughes Medical InstituteAshburnVAUSA
- Present address:
Electron Microscopy Resource CenterThe Rockefeller UniversityNew YorkNYUSA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | | | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Itay Budin
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
23
|
Noone J, Damiot A, Kenny H, Chery I, Zahariev A, Normand S, Crampes F, de Glisezinski I, Rochfort KD, Laurens C, Bareille MP, Simon C, Bergouignan A, Blanc S, O'Gorman DJ. The impact of 60 days of -6° head down tilt bed rest on mitochondrial content, respiration and regulators of mitochondrial dynamics. J Physiol 2023. [PMID: 38050414 DOI: 10.1113/jp284734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/01/2023] [Indexed: 12/06/2023] Open
Abstract
It is unclear how skeletal muscle metabolism and mitochondrial function adapt to long duration bed rest and whether changes can be prevented by nutritional intervention. The present study aimed (1) to assess the effect of prolonged bed rest on skeletal muscle mitochondrial function and dynamics and (2) to determine whether micronutrient supplementation would mitigate the adverse metabolic effect of bed rest. Participants were maintained in energy balance throughout 60 days of bed rest with micronutrient supplementation (INT) (body mass index: 23.747 ± 1.877 kg m-2 ; 34.80 ± 7.451 years; n = 10) or without (control) (body mass index: 24.087 ± 2.088 kg m-2 ; 33.50 ± 8.541 years; n = 10). Indirect calorimetry and dual-energy x-ray absorptiometry were used for measures of energy expenditure, exercise capacity and body composition. Mitochondrial respiration was determined by high-resolution respirometry in permeabilized muscle fibre bundles from vastus lateralis biopsies. Protein and mRNA analysis further examined the metabolic changes relating to regulators of mitochondrial dynamics induced by bed rest. INT was not sufficient in preserving whole body metabolic changes conducive of a decrease in body mass, fat-free mass and exercise capacity within both groups. Mitochondrial respiration, OPA1 and Drp1 protein expression decreased with bed rest, with an increase pDrp1s616 . This reduction in mitochondrial respiration was explained through an observed decrease in mitochondrial content (mtDNA:nDNA). Changes in regulators of mitochondrial dynamics indicate an increase in mitochondrial fission driven by a decrease in inner mitochondrial membrane fusion (OPA1) and increased pDrp1s616 . KEY POINTS: Sixty days of -6° head down tilt bed rest leads to significant changes in body composition, exercise capacity and whole-body substrate metabolism. Micronutrient supplementation throughout bed rest did not preserve whole body metabolic changes. Bed rest results in a decrease in skeletal muscle mitochondrial respiratory capacity, mainly as a result of an observed decrease in mitochondrial content. Prolonged bed rest ensues changes in key regulators of mitochondrial dynamics. OPA1 and Drp1 are significantly reduced, with an increase in pDrp1s616 following bed rest indicative of an increase in mitochondrial fission. Given the reduction in mitochondrial content following 60 days of bed rest, the maintenance of regulators of mitophagy in line with the increase in regulators of mitochondrial fission may act to maintain mitochondrial respiration to meet energy demands.
Collapse
Affiliation(s)
- John Noone
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
- National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Anthony Damiot
- CNRS UMR7178, Institut Pluridisciplinaire Hubert Curien, Strasbourg University, Strasbourg, France
| | - Helena Kenny
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
- National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland
| | - Isabelle Chery
- CNRS UMR7178, Institut Pluridisciplinaire Hubert Curien, Strasbourg University, Strasbourg, France
| | - Alexandre Zahariev
- CNRS UMR7178, Institut Pluridisciplinaire Hubert Curien, Strasbourg University, Strasbourg, France
| | - Sylvie Normand
- CarMen Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, Human Nutrition Research Center Rhône-Alpes, Oullins, France
| | - François Crampes
- Departments of Clinical Biochemistry and Sports Medicine, Institut National de la Santé et de la Recherche Médicale, UMR 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases and University of Toulouse, Paul Sabatier University and Toulouse University Hospitals, Toulouse, France
| | - Isabelle de Glisezinski
- Departments of Clinical Biochemistry and Sports Medicine, Institut National de la Santé et de la Recherche Médicale, UMR 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases and University of Toulouse, Paul Sabatier University and Toulouse University Hospitals, Toulouse, France
| | - Keith D Rochfort
- National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland
- School of Nursing, Psychotherapy and Community Health, Dublin City University, Dublin, Ireland
| | - Claire Laurens
- Departments of Clinical Biochemistry and Sports Medicine, Institut National de la Santé et de la Recherche Médicale, UMR 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases and University of Toulouse, Paul Sabatier University and Toulouse University Hospitals, Toulouse, France
- Institut National de la Santé et de la Recherche Médicale, UMR 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | | | - Chantal Simon
- CarMen Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, Human Nutrition Research Center Rhône-Alpes, Oullins, France
| | - Audrey Bergouignan
- CNRS UMR7178, Institut Pluridisciplinaire Hubert Curien, Strasbourg University, Strasbourg, France
- Anschutz Health and Wellness Center, Aurora, CO, USA
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Aurora, CO, USA
| | - Stéphane Blanc
- CNRS UMR7178, Institut Pluridisciplinaire Hubert Curien, Strasbourg University, Strasbourg, France
| | - Donal J O'Gorman
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
- National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
24
|
Sun H, Zhang J, Ye Q, Jiang T, Liu X, Zhang X, Zeng F, Li J, Zheng Y, Han X, Su C, Shi Y. LPGAT1 controls MEGDEL syndrome by coupling phosphatidylglycerol remodeling with mitochondrial transport. Cell Rep 2023; 42:113214. [PMID: 37917582 PMCID: PMC10729602 DOI: 10.1016/j.celrep.2023.113214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023] Open
Abstract
Phosphatidylglycerol (PG) is a mitochondrial phospholipid required for mitochondrial cristae structure and cardiolipin synthesis. PG must be remodeled to its mature form at the endoplasmic reticulum (ER) after mitochondrial biosynthesis to achieve its biological functions. Defective PG remodeling causes MEGDEL (non-alcohol fatty liver disease and 3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like) syndrome through poorly defined mechanisms. Here, we identify LPGAT1, an acyltransferase that catalyzes PG remodeling, as a candidate gene for MEGDEL syndrome. We show that PG remodeling by LPGAT1 at the ER is closely coordinated with mitochondrial transport through interaction with the prohibitin/TIMM14 mitochondrial import motor. Accordingly, ablation of LPGAT1 or TIMM14 not only causes aberrant fatty acyl compositions but also ER retention of newly remodeled PG, leading to profound loss in mitochondrial crista structure and respiration. Consequently, genetic deletion of the LPGAT1 in mice leads to cardinal features of MEGDEL syndrome, including 3-methylglutaconic aciduria, deafness, dilated cardiomyopathy, and premature death, which are highly reminiscent of those caused by TIMM14 mutations in humans.
Collapse
Affiliation(s)
- Haoran Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Jun Zhang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Qianqian Ye
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China; Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Ting Jiang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xueling Liu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xiaoyang Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Fanyu Zeng
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China; Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Jie Li
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Yue Zheng
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Chuan Su
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Yuguang Shi
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
25
|
Vue Z, Neikirk K, Vang L, Garza-Lopez E, Christensen TA, Shao J, Lam J, Beasley HK, Marshall AG, Crabtree A, Anudokem J, Rodriguez B, Kirk B, Bacevac S, Barongan T, Shao B, Stephens DC, Kabugi K, Koh HJ, Koh A, Evans CS, Taylor B, Reddy AK, Miller-Fleming T, Actkins KV, Zaganjor E, Daneshgar N, Murray SA, Mobley BC, Damo SM, Gaddy JA, Riggs B, Wanjalla C, Kirabo A, McReynolds M, Gomez JA, Phillips MA, Exil V, Dai DF, Hinton A. Three-dimensional mitochondria reconstructions of murine cardiac muscle changes in size across aging. Am J Physiol Heart Circ Physiol 2023; 325:H965-H982. [PMID: 37624101 PMCID: PMC10977873 DOI: 10.1152/ajpheart.00202.2023] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/26/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
With sparse treatment options, cardiac disease remains a significant cause of death among humans. As a person ages, mitochondria breakdown and the heart becomes less efficient. Heart failure is linked to many mitochondria-associated processes, including endoplasmic reticulum stress, mitochondrial bioenergetics, insulin signaling, autophagy, and oxidative stress. The roles of key mitochondrial complexes that dictate the ultrastructure, such as the mitochondrial contact site and cristae organizing system (MICOS), in aging cardiac muscle are poorly understood. To better understand the cause of age-related alteration in mitochondrial structure in cardiac muscle, we used transmission electron microscopy (TEM) and serial block facing-scanning electron microscopy (SBF-SEM) to quantitatively analyze the three-dimensional (3-D) networks in cardiac muscle samples of male mice at aging intervals of 3 mo, 1 yr, and 2 yr. Here, we present the loss of cristae morphology, the inner folds of the mitochondria, across age. In conjunction with this, the three-dimensional (3-D) volume of mitochondria decreased. These findings mimicked observed phenotypes in murine cardiac fibroblasts with CRISPR/Cas9 knockout of Mitofilin, Chchd3, Chchd6 (some members of the MICOS complex), and Opa1, which showed poorer oxidative consumption rate and mitochondria with decreased mitochondrial length and volume. In combination, these data show the need to explore if loss of the MICOS complex in the heart may be involved in age-associated mitochondrial and cristae structural changes.NEW & NOTEWORTHY This article shows how mitochondria in murine cardiac changes, importantly elucidating age-related changes. It also is the first to show that the MICOS complex may play a role in outer membrane mitochondrial structure.
Collapse
Affiliation(s)
- Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Trace A Christensen
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, Rochester, Minnesota, United States
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, Iowa, United States
| | - Jacob Lam
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Josephs Anudokem
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Benjamin Rodriguez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Benjamin Kirk
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Serif Bacevac
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Taylor Barongan
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Dominique C Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
- Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee, United States
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, United States
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Chantell S Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Brittany Taylor
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States
| | - Anilkumar K Reddy
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Tyne Miller-Fleming
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Ky'Era V Actkins
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Nastaran Daneshgar
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Bret C Mobley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee, United States
| | - Jennifer A Gaddy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Tennessee Valley Healthcare Systems, United States Department of Veterans Affairs, Nashville, Tennessee, United States
| | - Blake Riggs
- Department of Biology at San Francisco State University, San Francisco, California, United States
| | - Celestine Wanjalla
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Melanie McReynolds
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, Pennsylvania, United States
| | - Jose A Gomez
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Mark A Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States
| | - Vernat Exil
- Division of Cardiology, Department of Pediatrics, St. Louis University School of Medicine, St. Louis, Missouri, United States
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Dao-Fu Dai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
26
|
Shao B, Killion M, Oliver A, Vang C, Zeleke F, Neikirk K, Vue Z, Garza-Lopez E, Shao JQ, Mungai M, Lam J, Williams Q, Altamura CT, Whiteside A, Kabugi K, McKenzie J, Koh A, Scudese E, Vang L, Marshall AG, Crabtree A, Tanghal JI, Stephens D, Koh HJ, Jenkins BC, Murray SA, Cooper AT, Williams C, Damo SM, McReynolds MR, Gaddy JA, Wanjalla CN, Beasley HK, Hinton A. Ablation of Sam50 is associated with fragmentation and alterations in metabolism in murine and human myotubes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.20.541602. [PMID: 37292887 PMCID: PMC10245823 DOI: 10.1101/2023.05.20.541602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The Sorting and Assembly Machinery (SAM) Complex is responsible for assembling β-barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system (MICOS) complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block-face-scanning electron microscopy (SBF-SEM) and computer-assisted 3D renderings were employed to compare mitochondrial structure and networking in Sam50-deficient myotubes from mice and humans with wild-type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography-Mass Spectrometry-based metabolomics to explore differential changes in WT and Sam50-deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation in Sam50-deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß-Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism in Sam50-deficient myotubes. Furthermore, impairment of oxidative capacity was observed upon Sam50 ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact of Sam50-deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle.
Collapse
Affiliation(s)
- Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Mason Killion
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chia Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Faben Zeleke
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jian-Qiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Margaret Mungai
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jacob Lam
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Qiana Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Christopher T Altamura
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jessica McKenzie
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209
| | - Brenita C Jenkins
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Anthonya T Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Clintoria Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37208, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Tennessee Valley Healthcare Systems, U.S. Department of Veterans Affairs, Nashville, TN, 37212, USA
| | - Celestine N Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
27
|
Qiu J, Yue F, Zhu P, Chen J, Xu F, Zhang L, Kim KH, Snyder MM, Luo N, Xu HW, Huang F, Tao WA, Kuang S. FAM210A is essential for cold-induced mitochondrial remodeling in brown adipocytes. Nat Commun 2023; 14:6344. [PMID: 37816711 PMCID: PMC10564795 DOI: 10.1038/s41467-023-41988-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
Cold stimulation dynamically remodels mitochondria in brown adipose tissue (BAT) to facilitate non-shivering thermogenesis in mammals, but what regulates mitochondrial plasticity is poorly understood. Comparing mitochondrial proteomes in response to cold revealed FAM210A as a cold-inducible mitochondrial inner membrane protein. An adipocyte-specific constitutive knockout of Fam210a (Fam210aAKO) disrupts mitochondrial cristae structure and diminishes the thermogenic activity of BAT, rendering the Fam210aAKO mice vulnerable to lethal hypothermia under acute cold exposure. Induced knockout of Fam210a in adult adipocytes (Fam210aiAKO) does not affect steady-state mitochondrial structure under thermoneutrality, but impairs cold-induced mitochondrial remodeling, leading to progressive loss of cristae and reduction of mitochondrial density. Proteomics reveals an association between FAM210A and OPA1, whose cleavage governs cristae dynamics and mitochondrial remodeling. Mechanistically, FAM210A interacts with mitochondrial protease YME1L and modulates its activity toward OMA1 and OPA1 cleavage. These data establish FAM210A as a key regulator of mitochondrial cristae remodeling in BAT and shed light on the mechanism underlying mitochondrial plasticity in response to cold.
Collapse
Affiliation(s)
- Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA.
| | - Peipei Zhu
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Fan Xu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Lijia Zhang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Kun Ho Kim
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Madigan M Snyder
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Nanjian Luo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Hao-Wei Xu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Fang Huang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA.
| |
Collapse
|
28
|
Chen J, Shao J, Wang Y, Wu K, Huang M. OPA1, a molecular regulator of dilated cardiomyopathy. J Cell Mol Med 2023; 27:3017-3025. [PMID: 37603376 PMCID: PMC10568666 DOI: 10.1111/jcmm.17918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a disease with no specific treatment, poor prognosis and high mortality. During DCM development, there is apoptosis, mitochondrial dynamics imbalance and changes in cristae structure. Optic atrophy 1 (OPA1) appears at high frequency in these three aspects. DCM LMNA (LaminA/C) gene mutation can activate TP53, and the study of P53 shows that P53 affects OPA1 through Bak/Bax and OMA1 (a metalloprotease). OPA1 can be considered the missing link between DCMp53 and DCM apoptosis, mitochondrial dynamics imbalance and changes in cristae structure. OPA1 regulates apoptosis by regulating the release of cytochrome c from the mitochondrial matrix through CJs (crisp linkages, located in the inner mitochondrial membrane) and unbalances mitochondrial fusion and fission by affecting mitochondrial inner membrane (IM) fusion. OPA1 is also associated with the formation and maintenance of mitochondrial cristae. OPA1 is not the root cause of DCM, but it is an essential mediator in P53 mediating the occurrence and development of DCM, so OPA1 also becomes a molecular regulator of DCM. This review discusses the implication of OPA1 for DCM from three aspects: apoptosis, mitochondrial dynamics and ridge structure.
Collapse
Affiliation(s)
- Jiaqi Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jianan Shao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yaoyao Wang
- Fuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular DiseasesBeijingChina
| | - Kangxiang Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Mingyuan Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
29
|
Venkatraman K, Lee CT, Garcia GC, Mahapatra A, Milshteyn D, Perkins G, Kim KY, Pasolli HA, Phan S, Lippincott-Schwartz J, Ellisman MH, Rangamani P, Budin I. Cristae formation is a mechanical buckling event controlled by the inner membrane lipidome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532310. [PMID: 36993370 PMCID: PMC10054968 DOI: 10.1101/2023.03.13.532310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cristae are high curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous mechanisms for lipids have yet to be elucidated. Here we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the IMM against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. The model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that CL is essential in low oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of CL is dependent on the surrounding lipid and protein components of the IMM.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Guadalupe C Garcia
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla CA 92097
| | - Arijit Mahapatra
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Daniel Milshteyn
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - H Amalia Pasolli
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn VA 20147
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | | | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
- Lead contact
| |
Collapse
|
30
|
Chen L, Zhou M, Li H, Liu D, Liao P, Zong Y, Zhang C, Zou W, Gao J. Mitochondrial heterogeneity in diseases. Signal Transduct Target Ther 2023; 8:311. [PMID: 37607925 PMCID: PMC10444818 DOI: 10.1038/s41392-023-01546-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023] Open
Abstract
As key organelles involved in cellular metabolism, mitochondria frequently undergo adaptive changes in morphology, components and functions in response to various environmental stresses and cellular demands. Previous studies of mitochondria research have gradually evolved, from focusing on morphological change analysis to systematic multiomics, thereby revealing the mitochondrial variation between cells or within the mitochondrial population within a single cell. The phenomenon of mitochondrial variation features is defined as mitochondrial heterogeneity. Moreover, mitochondrial heterogeneity has been reported to influence a variety of physiological processes, including tissue homeostasis, tissue repair, immunoregulation, and tumor progression. Here, we comprehensively review the mitochondrial heterogeneity in different tissues under pathological states, involving variant features of mitochondrial DNA, RNA, protein and lipid components. Then, the mechanisms that contribute to mitochondrial heterogeneity are also summarized, such as the mutation of the mitochondrial genome and the import of mitochondrial proteins that result in the heterogeneity of mitochondrial DNA and protein components. Additionally, multiple perspectives are investigated to better comprehend the mysteries of mitochondrial heterogeneity between cells. Finally, we summarize the prospective mitochondrial heterogeneity-targeting therapies in terms of alleviating mitochondrial oxidative damage, reducing mitochondrial carbon stress and enhancing mitochondrial biogenesis to relieve various pathological conditions. The possibility of recent technological advances in targeted mitochondrial gene editing is also discussed.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengnan Zhou
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China.
| |
Collapse
|
31
|
Zhang Y, Hu Y, Wang Z, Lin X, Li Z, Ren Y, Zhao J. The translocase of the inner mitochondrial membrane 22-2 is required for mitochondrial membrane function during Arabidopsis seed development. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4427-4448. [PMID: 37105529 DOI: 10.1093/jxb/erad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/27/2023] [Indexed: 06/19/2023]
Abstract
The carrier translocase (also known as translocase of the inner membrane 22; TIM22 complex) is an important component of the mitochondrial protein import apparatus. However, the biological functions of AtTIM22-2 in Arabidopsis remain poorly defined. Here, we report studies on two tim22-2 mutants that exhibit defects in embryo and endosperm development, leading to seed abortion. AtTIM22-2, which was localized in mitochondria, was widely expressed in embryos and in various seedling organs. Loss of AtTIM22-2 function resulted in irregular mitochondrial cristae, decreased respiratory activity, and a lower membrane potential, together with changes in gene expression and enzyme activity related to reactive oxygen species (ROS) metabolism, leading to increased accumulation of ROS in the embryo. The levels of transcripts encoding mitochondrial protein import components were also altered in the tim22-2 mutants. Furthermore, mass spectrometry, bimolecular fluorescence complementation and co-immunoprecipitation assays revealed that AtTIM22-2 interacted with AtTIM23-2, AtB14.7 (a member of Arabidopsis OEP16 family encoded by At2G42210), and AT5G27395 (mitochondrial inner membrane translocase complex, subunit TIM44-related protein). Taken together, these results demonstrate that AtTIM22-2 is essential for maintaining mitochondrial membrane functions during seed development. These findings lay the foundations for a new model of the composition and functions of the TIM22 complex in higher plants.
Collapse
Affiliation(s)
- Yuqin Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuanyuan Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhiqin Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaodi Lin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zihui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yafang Ren
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
32
|
Chapa-Dubocq XR, Rodríguez-Graciani KM, García-Báez J, Vadovsky A, Bazil JN, Javadov S. The Role of Swelling in the Regulation of OPA1-Mediated Mitochondrial Function in the Heart In Vitro. Cells 2023; 12:2017. [PMID: 37626827 PMCID: PMC10453793 DOI: 10.3390/cells12162017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Optic atrophy-1 (OPA1) plays a crucial role in the regulation of mitochondria fusion and participates in maintaining the structural integrity of mitochondrial cristae. Here we elucidate the role of OPA1 cleavage induced by calcium swelling in the presence of Myls22 (an OPA1 GTPase activity inhibitor) and TPEN (an OMA1 inhibitor). The rate of ADP-stimulated respiration was found diminished by both inhibitors, and they did not prevent Ca2+-induced mitochondrial respiratory dysfunction, membrane depolarization, or swelling. L-OPA1 cleavage was stimulated at state 3 respiration; therefore, our data suggest that L-OPA1 cleavage produces S-OPA1 to maintain mitochondrial bioenergetics in response to stress.
Collapse
Affiliation(s)
- Xavier R. Chapa-Dubocq
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936-5067, USA; (X.R.C.-D.); (K.M.R.-G.); (J.G.-B.)
| | - Keishla M. Rodríguez-Graciani
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936-5067, USA; (X.R.C.-D.); (K.M.R.-G.); (J.G.-B.)
| | - Jorge García-Báez
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936-5067, USA; (X.R.C.-D.); (K.M.R.-G.); (J.G.-B.)
| | - Alyssa Vadovsky
- Department of Physiology, Michigan State University, East Lansing, MI 48824-1046, USA; (A.V.); (J.N.B.)
| | - Jason N. Bazil
- Department of Physiology, Michigan State University, East Lansing, MI 48824-1046, USA; (A.V.); (J.N.B.)
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936-5067, USA; (X.R.C.-D.); (K.M.R.-G.); (J.G.-B.)
| |
Collapse
|
33
|
Sohn JH, Mutlu B, Latorre-Muro P, Liang J, Bennett CF, Sharabi K, Kantorovich N, Jedrychowski M, Gygi SP, Banks AS, Puigserver P. Liver mitochondrial cristae organizing protein MIC19 promotes energy expenditure and pedestrian locomotion by altering nucleotide metabolism. Cell Metab 2023; 35:1356-1372.e5. [PMID: 37473754 PMCID: PMC10528355 DOI: 10.1016/j.cmet.2023.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/24/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023]
Abstract
Liver mitochondria undergo architectural remodeling that maintains energy homeostasis in response to feeding and fasting. However, the specific components and molecular mechanisms driving these changes and their impact on energy metabolism remain unclear. Through comparative mouse proteomics, we found that fasting induces strain-specific mitochondrial cristae formation in the liver by upregulating MIC19, a subunit of the MICOS complex. Enforced MIC19 expression in the liver promotes cristae formation, mitochondrial respiration, and fatty acid oxidation while suppressing gluconeogenesis. Mice overexpressing hepatic MIC19 show resistance to diet-induced obesity and improved glucose homeostasis. Interestingly, MIC19 overexpressing mice exhibit elevated energy expenditure and increased pedestrian locomotion. Metabolite profiling revealed that uracil accumulates in the livers of these mice due to increased uridine phosphorylase UPP2 activity. Furthermore, uracil-supplemented diet increases locomotion in wild-type mice. Thus, MIC19-induced mitochondrial cristae formation in the liver increases uracil as a signal to promote locomotion, with protective effects against diet-induced obesity.
Collapse
Affiliation(s)
- Jee Hyung Sohn
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Beste Mutlu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jiaxin Liang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Christopher F Bennett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kfir Sharabi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Noa Kantorovich
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mark Jedrychowski
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Steven P Gygi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Alexander S Banks
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
34
|
Chen L, Li Y, Zambidis A, Papadopoulos V. ATAD3A: A Key Regulator of Mitochondria-Associated Diseases. Int J Mol Sci 2023; 24:12511. [PMID: 37569886 PMCID: PMC10419812 DOI: 10.3390/ijms241512511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Mitochondrial membrane protein ATAD3A is a member of the AAA-domain-containing ATPases superfamily. It is important for the maintenance of mitochondrial DNA, structure, and function. In recent years, an increasing number of ATAD3A mutations have been identified in patients with neurological symptoms. Many of these mutations disrupt mitochondrial structure, function, and dynamics and are lethal to patients at a young age. Here, we summarize the current understanding of the relationship between ATAD3A and mitochondria, including the interaction of ATAD3A with mitochondrial DNA and mitochondrial/ER proteins, the regulation of ATAD3A in cholesterol mitochondrial trafficking, and the effect of known ATAD3A mutations on mitochondrial function. In the current review, we revealed that the oligomerization and interaction of ATAD3A with other mitochondrial/ER proteins are vital for its various functions. Despite affecting different domains of the protein, nearly all documented mutations observed in ATAD3A exhibit either loss-of-function or dominant-negative effects, potentially leading to disruption in the dimerization of ATAD3A; autophagy; mitophagy; alteration in mitochondrial number, size, and cristae morphology; and diminished activity of mitochondrial respiratory chain complexes I, IV, and V. These findings imply that ATAD3A plays a critical role in mitochondrial dynamics, which can be readily perturbed by ATAD3A mutation variants.
Collapse
Affiliation(s)
| | | | | | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 99089, USA; (L.C.); (Y.L.); (A.Z.)
| |
Collapse
|
35
|
Suga S, Nakamura K, Nakanishi Y, Humbel BM, Kawai H, Hirabayashi Y. An interactive deep learning-based approach reveals mitochondrial cristae topologies. PLoS Biol 2023; 21:e3002246. [PMID: 37651352 PMCID: PMC10470929 DOI: 10.1371/journal.pbio.3002246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 07/12/2023] [Indexed: 09/02/2023] Open
Abstract
The convolution of membranes called cristae is a critical structural and functional feature of mitochondria. Crista structure is highly diverse between different cell types, reflecting their role in metabolic adaptation. However, their precise three-dimensional (3D) arrangement requires volumetric analysis of serial electron microscopy and has therefore been limiting for unbiased quantitative assessment. Here, we developed a novel, publicly available, deep learning (DL)-based image analysis platform called Python-based human-in-the-loop workflow (PHILOW) implemented with a human-in-the-loop (HITL) algorithm. Analysis of dense, large, and isotropic volumes of focused ion beam-scanning electron microscopy (FIB-SEM) using PHILOW reveals the complex 3D nanostructure of both inner and outer mitochondrial membranes and provides deep, quantitative, structural features of cristae in a large number of individual mitochondria. This nanometer-scale analysis in micrometer-scale cellular contexts uncovers fundamental parameters of cristae, such as total surface area, orientation, tubular/lamellar cristae ratio, and crista junction density in individual mitochondria. Unbiased clustering analysis of our structural data unraveled a new function for the dynamin-related GTPase Optic Atrophy 1 (OPA1) in regulating the balance between lamellar versus tubular cristae subdomains.
Collapse
Affiliation(s)
- Shogo Suga
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Koki Nakamura
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yu Nakanishi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Bruno M. Humbel
- Imaging Section, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroki Kawai
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
Chapa-Dubocq XR, Rodríguez-Graciani KM, Escobales N, Javadov S. Mitochondrial Volume Regulation and Swelling Mechanisms in Cardiomyocytes. Antioxidants (Basel) 2023; 12:1517. [PMID: 37627512 PMCID: PMC10451443 DOI: 10.3390/antiox12081517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrion, known as the "powerhouse" of the cell, regulates ion homeostasis, redox state, cell proliferation and differentiation, and lipid synthesis. The inner mitochondrial membrane (IMM) controls mitochondrial metabolism and function. It possesses high levels of proteins that account for ~70% of the membrane mass and are involved in the electron transport chain, oxidative phosphorylation, energy transfer, and ion transport, among others. The mitochondrial matrix volume plays a crucial role in IMM remodeling. Several ion transport mechanisms, particularly K+ and Ca2+, regulate matrix volume. Small increases in matrix volume through IMM alterations can activate mitochondrial respiration, whereas excessive swelling can impair the IMM topology and initiates mitochondria-mediated cell death. The opening of mitochondrial permeability transition pores, the well-characterized phenomenon with unknown molecular identity, in low- and high-conductance modes are involved in physiological and pathological increases of matrix volume. Despite extensive studies, the precise mechanisms underlying changes in matrix volume and IMM structural remodeling in response to energy and oxidative stressors remain unknown. This review summarizes and discusses previous studies on the mechanisms involved in regulating mitochondrial matrix volume, IMM remodeling, and the crosstalk between these processes.
Collapse
Affiliation(s)
| | | | | | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936-5067, USA; (X.R.C.-D.); (K.M.R.-G.); (N.E.)
| |
Collapse
|
37
|
Ju WK, Perkins GA, Kim KY, Bastola T, Choi WY, Choi SH. Glaucomatous optic neuropathy: Mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog Retin Eye Res 2023; 95:101136. [PMID: 36400670 DOI: 10.1016/j.preteyeres.2022.101136] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by a slow, progressive, and multifactorial degeneration of retinal ganglion cells (RGCs) and their axons, resulting in vision loss. Despite its high prevalence in individuals 60 years of age and older, the causing factors contributing to glaucoma progression are currently not well characterized. Intraocular pressure (IOP) is the only proven treatable risk factor. However, lowering IOP is insufficient for preventing disease progression. One of the significant interests in glaucoma pathogenesis is understanding the structural and functional impairment of mitochondria in RGCs and their axons and synapses. Glaucomatous risk factors such as IOP elevation, aging, genetic variation, neuroinflammation, neurotrophic factor deprivation, and vascular dysregulation, are potential inducers for mitochondrial dysfunction in glaucoma. Because oxidative phosphorylation stress-mediated mitochondrial dysfunction is associated with structural and functional impairment of mitochondria in glaucomatous RGCs, understanding the underlying mechanisms and relationship between structural and functional alterations in mitochondria would be beneficial to developing mitochondria-related neuroprotection in RGCs and their axons and synapses against glaucomatous neurodegeneration. Here, we review the current studies focusing on mitochondrial dynamics-based structural and functional alterations in the mitochondria of glaucomatous RGCs and therapeutic strategies to protect RGCs against glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Won-Kyu Ju
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tonking Bastola
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Woo-Young Choi
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA; Department of Plastic Surgery, College of Medicine, Chosun University, Gwang-ju, South Korea
| | - Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
38
|
Chen Y, Zhou W, Xia Y, Zhang W, Zhao Q, Li X, Gao H, Liang Z, Ma G, Yang K, Zhang L, Zhang Y. Targeted cross-linker delivery for the in situ mapping of protein conformations and interactions in mitochondria. Nat Commun 2023; 14:3882. [PMID: 37391416 PMCID: PMC10313818 DOI: 10.1038/s41467-023-39485-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/15/2023] [Indexed: 07/02/2023] Open
Abstract
Current methods for intracellular protein analysis mostly require the separation of specific organelles or changes to the intracellular environment. However, the functions of proteins are determined by their native microenvironment as they usually form complexes with ions, nucleic acids, and other proteins. Here, we show a method for in situ cross-linking and analysis of mitochondrial proteins in living cells. By using the poly(lactic-co-glycolic acid) (PLGA) nanoparticles functionalized with dimethyldioctadecylammonium bromide (DDAB) to deliver protein cross-linkers into mitochondria, we subsequently analyze the cross-linked proteins using mass spectrometry. With this method, we identify a total of 74 pairs of protein-protein interactions that do not exist in the STRING database. Interestingly, our data on mitochondrial respiratory chain proteins ( ~ 94%) are also consistent with the experimental or predicted structural analysis of these proteins. Thus, we provide a promising technology platform for in situ defining protein analysis in cellular organelles under their native microenvironment.
Collapse
Affiliation(s)
- Yuwan Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weijie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xinwei Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Hang Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kaiguang Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
39
|
Barad BA, Medina M, Fuentes D, Wiseman RL, Grotjahn DA. Quantifying organellar ultrastructure in cryo-electron tomography using a surface morphometrics pipeline. J Cell Biol 2023; 222:e202204093. [PMID: 36786771 PMCID: PMC9960335 DOI: 10.1083/jcb.202204093] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/22/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
Cellular cryo-electron tomography (cryo-ET) enables three-dimensional reconstructions of organelles in their native cellular environment at subnanometer resolution. However, quantifying ultrastructural features of pleomorphic organelles in three dimensions is challenging, as is defining the significance of observed changes induced by specific cellular perturbations. To address this challenge, we established a semiautomated workflow to segment organellar membranes and reconstruct their underlying surface geometry in cryo-ET. To complement this workflow, we developed an open-source suite of ultrastructural quantifications, integrated into a single pipeline called the surface morphometrics pipeline. This pipeline enables rapid modeling of complex membrane structures and allows detailed mapping of inter- and intramembrane spacing, curvedness, and orientation onto reconstructed membrane meshes, highlighting subtle organellar features that are challenging to detect in three dimensions and allowing for statistical comparison across many organelles. To demonstrate the advantages of this approach, we combine cryo-ET with cryo-fluorescence microscopy to correlate bulk mitochondrial network morphology (i.e., elongated versus fragmented) with membrane ultrastructure of individual mitochondria in the presence and absence of endoplasmic reticulum (ER) stress. Using our pipeline, we demonstrate ER stress promotes adaptive remodeling of ultrastructural features of mitochondria including spacing between the inner and outer membranes, local curvedness of the inner membrane, and spacing between mitochondrial cristae. We show that differences in membrane ultrastructure correlate to mitochondrial network morphologies, suggesting that these two remodeling events are coupled. Our pipeline offers opportunities for quantifying changes in membrane ultrastructure on a single-cell level using cryo-ET, opening new opportunities to define changes in ultrastructural features induced by diverse types of cellular perturbations.
Collapse
Affiliation(s)
- Benjamin A. Barad
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Michaela Medina
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Daniel Fuentes
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Danielle A. Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
40
|
Torres AK, Jara C, Llanquinao J, Lira M, Cortés-Díaz D, Tapia-Rojas C. Mitochondrial Bioenergetics, Redox Balance, and Calcium Homeostasis Dysfunction with Defective Ultrastructure and Quality Control in the Hippocampus of Aged Female C57BL/6J Mice. Int J Mol Sci 2023; 24:ijms24065476. [PMID: 36982549 PMCID: PMC10056753 DOI: 10.3390/ijms24065476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/15/2023] Open
Abstract
Aging is a physiological process that generates progressive decline in many cellular functions. There are many theories of aging, and one of great importance in recent years is the mitochondrial theory of aging, in which mitochondrial dysfunction that occurs at advanced age could be responsible for the aged phenotype. In this context, there is diverse information about mitochondrial dysfunction in aging, in different models and different organs. Specifically, in the brain, different studies have shown mitochondrial dysfunction mainly in the cortex; however, until now, no study has shown all the defects in hippocampal mitochondria in aged female C57BL/6J mice. We performed a complete analysis of mitochondrial function in 3-month-old and 20-month-old (mo) female C57BL/6J mice, specifically in the hippocampus of these animals. We observed an impairment in bioenergetic function, indicated by a decrease in mitochondrial membrane potential, O2 consumption, and mitochondrial ATP production. Additionally, there was an increase in ROS production in the aged hippocampus, leading to the activation of antioxidant signaling, specifically the Nrf2 pathway. It was also observed that aged animals had deregulation of calcium homeostasis, with more sensitive mitochondria to calcium overload and deregulation of proteins related to mitochondrial dynamics and quality control processes. Finally, we observed a decrease in mitochondrial biogenesis with a decrease in mitochondrial mass and deregulation of mitophagy. These results show that during the aging process, damaged mitochondria accumulate, which could contribute to or be responsible for the aging phenotype and age-related disabilities.
Collapse
Affiliation(s)
- Angie K. Torres
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
| | - Jesús Llanquinao
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
| | - Matías Lira
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Avda. Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Daniela Cortés-Díaz
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Avda. Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
- Correspondence:
| |
Collapse
|
41
|
Bulthuis EP, Dieteren CEJ, Bergmans J, Berkhout J, Wagenaars JA, van de Westerlo EMA, Podhumljak E, Hink MA, Hesp LFB, Rosa HS, Malik AN, Lindert MKT, Willems PHGM, Gardeniers HJGE, den Otter WK, Adjobo-Hermans MJW, Koopman WJH. Stress-dependent macromolecular crowding in the mitochondrial matrix. EMBO J 2023; 42:e108533. [PMID: 36825437 PMCID: PMC10068333 DOI: 10.15252/embj.2021108533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/25/2023] Open
Abstract
Macromolecules of various sizes induce crowding of the cellular environment. This crowding impacts on biochemical reactions by increasing solvent viscosity, decreasing the water-accessible volume and altering protein shape, function, and interactions. Although mitochondria represent highly protein-rich organelles, most of these proteins are somehow immobilized. Therefore, whether the mitochondrial matrix solvent exhibits macromolecular crowding is still unclear. Here, we demonstrate that fluorescent protein fusion peptides (AcGFP1 concatemers) in the mitochondrial matrix of HeLa cells display an elongated molecular structure and that their diffusion constant decreases with increasing molecular weight in a manner typical of macromolecular crowding. Chloramphenicol (CAP) treatment impaired mitochondrial function and reduced the number of cristae without triggering mitochondrial orthodox-to-condensed transition or a mitochondrial unfolded protein response. CAP-treated cells displayed progressive concatemer immobilization with increasing molecular weight and an eightfold matrix viscosity increase, compatible with increased macromolecular crowding. These results establish that the matrix solvent exhibits macromolecular crowding in functional and dysfunctional mitochondria. Therefore, changes in matrix crowding likely affect matrix biochemical reactions in a manner depending on the molecular weight of the involved crowders and reactants.
Collapse
Affiliation(s)
- Elianne P Bulthuis
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Cindy E J Dieteren
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands.,Department of Cell Biology and Electron Microscopy Center, Radboudumc, Nijmegen, The Netherlands
| | - Jesper Bergmans
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Job Berkhout
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Jori A Wagenaars
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Els M A van de Westerlo
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Emina Podhumljak
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Mark A Hink
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura F B Hesp
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Hannah S Rosa
- Department of Diabetes, King's College London, London, UK
| | - Afshan N Malik
- Department of Diabetes, King's College London, London, UK
| | - Mariska Kea-Te Lindert
- Department of Cell Biology and Electron Microscopy Center, Radboudumc, Nijmegen, The Netherlands
| | - Peter H G M Willems
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Han J G E Gardeniers
- Mesoscale Chemical Systems, University of Twente, Enschede, The Netherlands.,MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Wouter K den Otter
- MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands.,Thermal and Fluid Engineering, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
| | - Merel J W Adjobo-Hermans
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands.,Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
42
|
Ding X, Zhang Y, Pan P, Long C, Zhang X, Zhuo L, Zhou Q, Liao W, Tan G. Multiple mitochondria-targeted components screened from Sini decoction improved cardiac energetics and mitochondrial dysfunction to attenuate doxorubicin-induced cardiomyopathy. Theranostics 2023; 13:510-530. [PMID: 36632225 PMCID: PMC9830424 DOI: 10.7150/thno.80066] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Rationale: Sini decoction (SND) is an efficient formula against DOX-induced cardiomyopathy (DCM), but the active ingredient combination (AIC) and mechanisms of SND remain unclear. Therefore, the present study aimed to identify the AIC and elucidate the underlying mechanism of AIC on DCM. Methods: The AIC were screened by a novel comprehensive two-dimensional cardiac mitochondrial membrane chromatography (CMMC)-TOFMS analysis system and further validated by cell viability, reactive oxygen species (ROS) generation, ATP level, and mitochondrial membrane potential in DOX-induced H9c2 cell injury model. Then, an integrated model of cardiac mitochondrial metabolomics and proteomics were applied to clarify the underlying mechanism in vitro. Results: The CMMC column lifespan was significantly improved to more than 10 days. Songorine (S), neoline, talatizamine, 8-gingerol (G) and isoliquiritigenin (I), exhibiting stronger retention on the first-dimension CMMC column, were screened to have protective effects against DOX cardiotoxicity in the H9c2 cell model. S, G and I were selected as an AIC from SND according to the bioactivity evaluation and the compatibility theory of SND. The combined in vitro use of S, G and I produced more profound therapeutic effects than any component used individually on increasing ATP levels and mitochondrial membrane potential and suppressing intracellular ROS production. Moreover, SGI attenuated DCM might via regulating mitochondrial energy metabolism and mitochondrial dysfunction. Conclusions: The provided scientific evidence to support that SGI combination from SND could be used as a prebiotic agent for DCM. Importantly, the proposed two-dimensional CMMC-TOFMS analytical system provides a high-throughput screening strategy for mitochondria-targeted compounds from natural products, which could be applied to other subcellular organelle models for drug discovery.
Collapse
Affiliation(s)
- Xin Ding
- School of Pharmacy, Air Force Medical University, Xi'an 710032, China.,School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Ya Zhang
- School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Pengchao Pan
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.,Department of Cardiovascular Medicine, the First Naval Hospital of Southern Theater Command, Zhanjiang 524005, China
| | - Cuiping Long
- School of Pharmacy, Air Force Medical University, Xi'an 710032, China.,School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Xingxing Zhang
- School of Pharmacy, Air Force Medical University, Xi'an 710032, China.,School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Lingxin Zhuo
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qian Zhou
- Department of traditional Chinese medicine, Xijing Hospital, Air Force Medical University, Xi'an 710032, China.,✉ Corresponding authors: E-mail addresses: (Qian Zhou); (Wenting Liao); (Guangguo Tan)
| | - Wenting Liao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.,✉ Corresponding authors: E-mail addresses: (Qian Zhou); (Wenting Liao); (Guangguo Tan)
| | - Guangguo Tan
- School of Pharmacy, Air Force Medical University, Xi'an 710032, China.,✉ Corresponding authors: E-mail addresses: (Qian Zhou); (Wenting Liao); (Guangguo Tan)
| |
Collapse
|
43
|
Liu T, Stephan T, Chen P, Keller-Findeisen J, Chen J, Riedel D, Yang Z, Jakobs S, Chen Z. Multi-color live-cell STED nanoscopy of mitochondria with a gentle inner membrane stain. Proc Natl Acad Sci U S A 2022; 119:e2215799119. [PMID: 36534799 PMCID: PMC9907107 DOI: 10.1073/pnas.2215799119] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022] Open
Abstract
Capturing mitochondria's intricate and dynamic structure poses a daunting challenge for optical nanoscopy. Different labeling strategies have been demonstrated for live-cell stimulated emission depletion (STED) microscopy of mitochondria, but orthogonal strategies are yet to be established, and image acquisition has suffered either from photodamage to the organelles or from rapid photobleaching. Therefore, live-cell nanoscopy of mitochondria has been largely restricted to two-dimensional (2D) single-color recordings of cancer cells. Here, by conjugation of cyclooctatetraene (COT) to a benzo-fused cyanine dye, we report a mitochondrial inner membrane (IM) fluorescent marker, PK Mito Orange (PKMO), featuring efficient STED at 775 nm, strong photostability, and markedly reduced phototoxicity. PKMO enables super-resolution (SR) recordings of IM dynamics for extended periods in immortalized mammalian cell lines, primary cells, and organoids. Photostability and reduced phototoxicity of PKMO open the door to live-cell three-dimensional (3D) STED nanoscopy of mitochondria for 3D analysis of the convoluted IM. PKMO is optically orthogonal with green and far-red markers, allowing multiplexed recordings of mitochondria using commercial STED microscopes. Using multi-color STED microscopy, we demonstrate that imaging with PKMO can capture interactions of mitochondria with different cellular components such as the endoplasmic reticulum (ER) or the cytoskeleton, Bcl-2-associated X protein (BAX)-induced apoptotic process, or crista phenotypes in genetically modified cells, all at sub-100 nm resolution. Thereby, this work offers a versatile tool for studying mitochondrial IM architecture and dynamics in a multiplexed manner.
Collapse
Affiliation(s)
- Tianyan Liu
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Till Stephan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen37075, Germany
| | - Peng Chen
- Peking University-Nanjing Institute of Translational Medicine, Nanjing211800, China
- Genvivo Biotech, Nanjing211800, China
| | - Jan Keller-Findeisen
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Translational Neuroinflammation and Automated Microscopy, Göttingen37075, Germany
| | - Jingting Chen
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing100871, China
| | - Dietmar Riedel
- Laboratory of Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| | - Zhongtian Yang
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen37075, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Translational Neuroinflammation and Automated Microscopy, Göttingen37075, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells”, University of Göttingen, Göttingen37099, Germany
| | - Zhixing Chen
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing211800, China
- Genvivo Biotech, Nanjing211800, China
| |
Collapse
|
44
|
Osborne OM, Kowalczyk JM, Louis KDP, Daftari MT, Colbert BM, Naranjo O, Torices S, András IE, Dykxhoorn DM, Toborek M. Brain endothelium-derived extracellular vesicles containing amyloid-beta induce mitochondrial alterations in neural progenitor cells. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:340-362. [PMID: 36649440 PMCID: PMC9838065 DOI: 10.20517/evcna.2022.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aim Elevated brain deposits of amyloid beta (Aβ40) contribute to neuropathology and cognitive dysfunction in Alzheimer's disease (AD). However, the role of the blood-brain barrier (BBB) as an interface for the transfer of Aβ40 from the periphery into the brain is not well characterized. In addition, a substantial population of neural progenitor cells (NPCs) resides in close proximity to brain capillaries that form the BBB. The aim of this study is to understand the impact of brain endothelium-derived extracellular vesicles (EV) containing Aβ40 on metabolic functions and differentiation of NPCs. Methods Endothelial EVs were derived from an in vitro model of the brain endothelium treated with 100 nM Aβ40 or PBS. We then analyzed the impact of these EVs on mitochondrial morphology and bioenergetic disruption of NPCs. In addition, NPCs were differentiated and neurite development upon exposure to EVs was assessed using the IncuCyte Zoom live cell imaging system. Results We demonstrate that physiological concentrations of Aβ40 can be transferred to accumulate in NPCs via endothelial EVs. This transfer results in mitochondrial dysfunction, disrupting crista morphology, metabolic rates, fusion and fission dynamics of NPCs, as well as their neurite development. Conclusion Intercellular transfer of Aβ40 is carried out by brain endothelium-derived EVs, which can affect NPC differentiation and induce mitochondrial dysfunction, leading to aberrant neurogenesis. This has pathological implications because NPCs growing into neurons are incorporated into cerebral structures involved in learning and memory, two common phenotypes affected in AD and related dementias.
Collapse
Affiliation(s)
- Olivia M. Osborne
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jennifer M. Kowalczyk
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kelssey D. Pierre Louis
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Manav T. Daftari
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Brett M. Colbert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ibolya E. András
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Derek M. Dykxhoorn
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
45
|
Jiang T, Wang Q, Lv J, Lin L. Mitochondria-endoplasmic reticulum contacts in sepsis-induced myocardial dysfunction. Front Cell Dev Biol 2022; 10:1036225. [PMID: 36506093 PMCID: PMC9730255 DOI: 10.3389/fcell.2022.1036225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial and endoplasmic reticulum (ER) are important intracellular organelles. The sites that mitochondrial and ER are closely related in structure and function are called Mitochondria-ER contacts (MERCs). MERCs are involved in a variety of biological processes, including calcium signaling, lipid synthesis and transport, autophagy, mitochondrial dynamics, ER stress, and inflammation. Sepsis-induced myocardial dysfunction (SIMD) is a vital organ damage caused by sepsis, which is closely associated with mitochondrial and ER dysfunction. Growing evidence strongly supports the role of MERCs in the pathogenesis of SIMD. In this review, we summarize the biological functions of MERCs and the roles of MERCs proteins in SIMD.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jiagao Lv, ; Li Lin, ,
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jiagao Lv, ; Li Lin, ,
| |
Collapse
|
46
|
Luo M, Lu J, Li C, Wen B, Chu W, Dang X, Zhang Y, An G, Wang J, Fan R, Chen X. Hydrogen improves exercise endurance in rats by promoting mitochondrial biogenesis. Genomics 2022; 114:110523. [PMID: 36423772 DOI: 10.1016/j.ygeno.2022.110523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/03/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Previous studies have shown that hydrogen water has antioxidant and anti-inflammatory effects on exercise-induced fatigue; however, its molecular mechanism remains unclear. METHODS Adult male Sprague-Dawley rats were randomly divided into a pure water drinking group (NC) and a hydrogen water drinking group (HW) (n = 7), and 2-week treadmill training was used to establish a sports model. Gut bacterial community profiling was performed using 16S rRNA gene sequencing analysis. The expression levels of mitochondrial energy metabolism-related genes and the levels of sugar metabolites and enzymes were measured. RESULTS The exercise tolerance of rats in the HW group significantly improved, and the distribution and diversity of intestinal microbes were altered. Hydrogen significantly upregulated genes related to mitochondrial biogenesis, possibly via the Pparγ/Pgc-1α/Tfam pathway. In addition, hydrogen effectively mediated the reprogramming of skeletal muscle glucose metabolism. CONCLUSION Our findings establish a critical role for hydrogen in improving endurance exercise performance by promoting mitochondrial biogenesis via the Pparγ/Pgc-1α/Tfam pathway.
Collapse
Affiliation(s)
- Mingzhu Luo
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Junyu Lu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Chao Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Bo Wen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Wenbin Chu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiangchen Dang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yujiao Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Gaihong An
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Rong Fan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Central laboratory, Tianjin Xiqing Hospital, Tianjin 300380, China.
| | - Xuewei Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
47
|
Means RE, Katz SG. Balancing life and death: BCL-2 family members at diverse ER-mitochondrial contact sites. FEBS J 2022; 289:7075-7112. [PMID: 34668625 DOI: 10.1111/febs.16241] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023]
Abstract
The outer mitochondrial membrane is a busy place. One essential activity for cellular survival is the regulation of membrane integrity by the BCL-2 family of proteins. Another critical facet of the outer mitochondrial membrane is its close approximation with the endoplasmic reticulum. These mitochondrial-associated membranes (MAMs) occupy a significant fraction of the mitochondrial surface and serve as key signaling hubs for multiple cellular processes. Each of these pathways may be considered as forming their own specialized MAM subtype. Interestingly, like membrane permeabilization, most of these pathways play critical roles in regulating cellular survival and death. Recently, the pro-apoptotic BCL-2 family member BOK has been found within MAMs where it plays important roles in their structure and function. This has led to a greater appreciation that multiple BCL-2 family proteins, which are known to participate in numerous functions throughout the cell, also have roles within MAMs. In this review, we evaluate several MAM subsets, their role in cellular homeostasis, and the contribution of BCL-2 family members to their functions.
Collapse
Affiliation(s)
- Robert E Means
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel G Katz
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
48
|
Pezzotta A, Perico L, Morigi M, Corna D, Locatelli M, Zoja C, Benigni A, Remuzzi G, Imberti B. Low Nephron Number Induced by Maternal Protein Restriction Is Prevented by Nicotinamide Riboside Supplementation Depending on Sirtuin 3 Activation. Cells 2022; 11:cells11203316. [PMID: 36291179 PMCID: PMC9600228 DOI: 10.3390/cells11203316] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
A reduced nephron number at birth, due to critical gestational conditions, including maternal malnutrition, is associated with the risk of developing hypertension and chronic kidney disease in adulthood. No interventions are currently available to augment nephron number. We have recently shown that sirtuin 3 (SIRT3) has an important role in dictating proper nephron endowment. The present study explored whether SIRT3 stimulation, by means of supplementation with nicotinamide riboside (NR), a precursor of the SIRT3 co-substrate nicotinamide adenine dinucleotide (NAD+), was able to improve nephron number in a murine model of a low protein (LP) diet. Our findings show that reduced nephron number in newborn mice (day 1) born to mothers fed a LP diet was associated with impaired renal SIRT3 expression, which was restored through supplementation with NR. Glomerular podocyte density, as well as the rarefaction of renal capillaries, also improved through NR administration. In mechanistic terms, the restoration of SIRT3 expression through NR was mediated by the induction of proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α). Moreover, NR restored SIRT3 activity, as shown by the reduction of the acetylation of optic atrophy 1 (OPA1) and superoxide dismutase 2 (SOD2), which resulted in improved mitochondrial morphology and protection against oxidative damage in mice born to mothers fed the LP diet. Our results provide evidence that it is feasible to prevent nephron mass shortage at birth through SIRT3 boosting during nephrogenesis, thus providing a therapeutic option to possibly limit the long-term sequelae of reduced nephron number in adulthood.
Collapse
|
49
|
Cai C, Wu F, He J, Zhang Y, Shi N, Peng X, Ou Q, Li Z, Jiang X, Zhong J, Tan Y. Mitochondrial quality control in diabetic cardiomyopathy: from molecular mechanisms to therapeutic strategies. Int J Biol Sci 2022; 18:5276-5290. [PMID: 36147470 PMCID: PMC9461654 DOI: 10.7150/ijbs.75402] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/18/2022] [Indexed: 11/05/2022] Open
Abstract
In diabetic cardiomyopathy (DCM), a major diabetic complication, the myocardium is structurally and functionally altered without evidence of coronary artery disease, hypertension or valvular disease. Although numerous anti-diabetic drugs have been applied clinically, specific medicines to prevent DCM progression are unavailable, so the prognosis of DCM remains poor. Mitochondrial ATP production maintains the energetic requirements of cardiomyocytes, whereas mitochondrial dysfunction can induce or aggravate DCM by promoting oxidative stress, dysregulated calcium homeostasis, metabolic reprogramming, abnormal intracellular signaling and mitochondrial apoptosis in cardiomyocytes. In response to mitochondrial dysfunction, the mitochondrial quality control (MQC) system (including mitochondrial fission, fusion, and mitophagy) is activated to repair damaged mitochondria. Physiological mitochondrial fission fragments the network to isolate damaged mitochondria. Mitophagy then allows dysfunctional mitochondria to be engulfed by autophagosomes and degraded in lysosomes. However, abnormal MQC results in excessive mitochondrial fission, impaired mitochondrial fusion and delayed mitophagy, causing fragmented mitochondria to accumulate in cardiomyocytes. In this review, we summarize the molecular mechanisms of MQC and discuss how pathological MQC contributes to DCM development. We then present promising therapeutic approaches to improve MQC and prevent DCM progression.
Collapse
Affiliation(s)
- Chen Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Feng Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jing He
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yaoyuan Zhang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Nengxian Shi
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaojie Peng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qing Ou
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ziying Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqing Jiang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiankai Zhong
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528308, Guangdong, China
| | - Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
50
|
Mitochondrial a Kinase Anchor Proteins in Cardiovascular Health and Disease: A Review Article on Behalf of the Working Group on Cellular and Molecular Biology of the Heart of the Italian Society of Cardiology. Int J Mol Sci 2022; 23:ijms23147691. [PMID: 35887048 PMCID: PMC9322728 DOI: 10.3390/ijms23147691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Second messenger cyclic adenosine monophosphate (cAMP) has been found to regulate multiple mitochondrial functions, including respiration, dynamics, reactive oxygen species production, cell survival and death through the activation of cAMP-dependent protein kinase A (PKA) and other effectors. Several members of the large family of A kinase anchor proteins (AKAPs) have been previously shown to locally amplify cAMP/PKA signaling to mitochondria, promoting the assembly of signalosomes, regulating multiple cardiac functions under both physiological and pathological conditions. In this review, we will discuss roles and regulation of major mitochondria-targeted AKAPs, along with opportunities and challenges to modulate their functions for translational purposes in the cardiovascular system.
Collapse
|