1
|
Laguna A, Peñuelas N, Gonzalez-Sepulveda M, Nicolau A, Arthaud S, Guillard-Sirieix C, Lorente-Picón M, Compte J, Miquel-Rio L, Xicoy H, Liu J, Parent A, Cuadros T, Romero-Giménez J, Pujol G, Giménez-Llort L, Fort P, Bortolozzi A, Carballo-Carbajal I, Vila M. Modelling human neuronal catecholaminergic pigmentation in rodents recapitulates age-related neurodegenerative deficits. Nat Commun 2024; 15:8819. [PMID: 39394193 PMCID: PMC11470033 DOI: 10.1038/s41467-024-53168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/04/2024] [Indexed: 10/13/2024] Open
Abstract
One key limitation in developing effective treatments for neurodegenerative diseases is the lack of models accurately mimicking the complex physiopathology of the human disease. Humans accumulate with age the pigment neuromelanin inside neurons that synthesize catecholamines. Neurons reaching the highest neuromelanin levels preferentially degenerate in Parkinson's, Alzheimer's and apparently healthy aging individuals. However, this brain pigment is not taken into consideration in current animal models because common laboratory species, such as rodents, do not produce neuromelanin. Here we generate a tissue-specific transgenic mouse, termed tgNM, that mimics the human age-dependent brain-wide distribution of neuromelanin within catecholaminergic regions, based on the constitutive catecholamine-specific expression of human melanin-producing enzyme tyrosinase. We show that, in parallel to progressive human-like neuromelanin pigmentation, these animals display age-related neuronal dysfunction and degeneration affecting numerous brain circuits and body tissues, linked to motor and non-motor deficits, reminiscent of early neurodegenerative stages. This model could help explore new research avenues in brain aging and neurodegeneration.
Collapse
Affiliation(s)
- Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Institut de Neurociències-Autonomous University of Barcelona (INc-UAB), 08193, Cerdanyola del Vallès, Spain
| | - Núria Peñuelas
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Marta Gonzalez-Sepulveda
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alba Nicolau
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Sébastien Arthaud
- CNRS UMR5292, INSERM U1028, Lyon Neuroscience Research Centre (CRNL), SLEEP team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Claude Bernard, Lyon 1, Lyon, France
| | - Camille Guillard-Sirieix
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Marina Lorente-Picón
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Joan Compte
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Lluís Miquel-Rio
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC); Center for Networked Biomedical Research on Mental Health (CIBERSAM), 08036, Barcelona, Spain
- Systems Neuropharmacology Research Group, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036, Barcelona, Spain
| | - Helena Xicoy
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Jiong Liu
- CNRS UMR5292, INSERM U1028, Lyon Neuroscience Research Centre (CRNL), SLEEP team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Claude Bernard, Lyon 1, Lyon, France
| | - Annabelle Parent
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Thais Cuadros
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Jordi Romero-Giménez
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Gemma Pujol
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències-Autonomous University of Barcelona (INc-UAB), 08193, Cerdanyola del Vallès, Spain
- Department of Psychiatry and Forensic Medicine-Autonomous University of Barcelona (INc-UAB), 08193, Cerdanyola del Vallès, Spain
| | - Patrice Fort
- CNRS UMR5292, INSERM U1028, Lyon Neuroscience Research Centre (CRNL), SLEEP team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Claude Bernard, Lyon 1, Lyon, France
| | - Analia Bortolozzi
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC); Center for Networked Biomedical Research on Mental Health (CIBERSAM), 08036, Barcelona, Spain
- Systems Neuropharmacology Research Group, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036, Barcelona, Spain
| | - Iria Carballo-Carbajal
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Institut de Neurociències-Autonomous University of Barcelona (INc-UAB), 08193, Cerdanyola del Vallès, Spain.
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
2
|
Garcia MR, Ferreres F, Mineiro T, Videira RA, Gil-Izquierdo Á, Andrade PB, Seabra V, Dias-da-Silva D, Gomes NGM. Mexican calea (Calea zacatechichi Schltdl.) interferes with cholinergic and dopaminergic pathways and causes neuroglial toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118915. [PMID: 39389391 DOI: 10.1016/j.jep.2024.118915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The use of "Mexican calea" (Calea zacatechichi Schltdl.) in ritualistic ceremonies, due to its dream-inducing effects, was until recently limited to indigenous communities in Mexico. However, the plant has recently gained popularity in Western societies being commonly used in recreational settings. Despite the traditional and recreational uses, mechanisms underlying its reported oneirogenic effects remain unknown, with no data available on its neurotoxic profile. AIM OF THE STUDY The scarcity of toxicological data and the unknown role of major neurotransmitter systems in the dream-inducing properties of the plant prompted us to investigate which neurotransmitters might be affected upon its consumption, as well as the potential cytotoxic effects on neurons and microglial cells. Furthermore, we aimed to explore a relationship between the recorded effects and specific constituents. MATERIALS AND METHODS Effects on cholinergic and monoaminergic pathways were investigated using enzymatic assays, with the latter also being conducted in neuronal SH-SY5Y cells along with the impact on glutamate-induced excitotoxicity. Investigation of the neurotoxic profile was approached in neuronal SH-SY5Y and microglial BV-2 cells, evaluating effects on metabolic performance and membrane integrity using MTT and LDH leakage assays, respectively. Potential interference with oxidative stress was monitored by assessing free radical's levels, as well as 5-lipoxygenase mediated lipid peroxidation. Phenolic constituents were identified through HPLC-DAD-ESI(Ion Trap)MSn analysis. RESULTS Based on the significant inhibition upon acetylcholinesterase (p < 0.05) and tyrosinase (IC50 = 60.87 ± 7.3 μg/mL; p < 0.05), the aqueous extract obtained from the aerial parts of C. zacatechichi interferes with the cholinergic and dopaminergic systems, but has no impact against monoamine oxidase A. Additionally, a notable cytotoxic effect was observed in SH-SY5Y and BV-2 cells at concentrations as low as 125 and 500 μg/mL (p < 0.05), respectively, LDH leakage suggesting apoptosis may occur at these concentrations, with necroptosis observed at higher ones. Despite the neurocytotoxic profile, these effects appear to be independent of radical stress, as the C. zacatechichi extract scavenged nitric oxide and superoxide radicals at concentrations as low as 62.5 μg/mL, significantly inhibiting also 5-lipoxygenase (IC50 = 72.60 ± 7.3 μg/mL; p < 0.05). Qualitative and quantitative analysis using HPLC-DAD-ESI(Ion Trap)MSn enabled the identification of 28 constituents, with 24 of them being previously unreported in this species. These include a series of dicaffeoylquinic, caffeoylpentoside, and feruloylquinic acids, along with 8 flavonols not previously known to occur in the species, mainly 3-O-monoglycosylated derivatives of quercetin, kaempferol, and isorhamnetin. CONCLUSIONS Our findings regarding the neuroglial toxicity elicited by C. zacatechichi emphasize the necessity for a thorough elucidation of the plant's toxicity profile. Additionally, evidence is provided that the aerial parts of the plant inhibit both acetylcholinesterase and tyrosinase, potentially linking its psychopharmacological effects to the cholinergic and dopaminergic systems, with an apparent contribution from specific phenolic constituents previously unknown to occur in the species. Collectively, our results lay the groundwork for a regulatory framework on the consumption of C. zacatechichi in recreational settings and contribute to elucidating previous contradictory findings regarding the mechanisms underlying the dream-inducing effects of the plant.
Collapse
Affiliation(s)
- Maria Rita Garcia
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal; UCIBIO, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal.
| | - Federico Ferreres
- Molecular Recognition and Encapsulation (REM) Group, Department of Food Technology and Nutrition, Universidad Católica de Murcia, 30107, Murcia, Spain.
| | - Tiago Mineiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal.
| | - Romeu A Videira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Campus University Espinardo, 30100, Murcia, Spain.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| | - Vítor Seabra
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal.
| | - Diana Dias-da-Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal; UCIBIO, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal; LAQV/REQUIMTE, ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
| | - Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| |
Collapse
|
3
|
Doll HM, Risgaard RD, Thurston H, Chen RJ, Sousa AM. Evolutionary innovations in the primate dopaminergic system. Curr Opin Genet Dev 2024; 88:102236. [PMID: 39153332 PMCID: PMC11384322 DOI: 10.1016/j.gde.2024.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/12/2024] [Indexed: 08/19/2024]
Abstract
The human brain has evolved unique capabilities compared to other vertebrates. The mechanistic basis of these derived traits remains a fundamental question in biology due to its relevance to the origin of our cognitive abilities and behavioral repertoire, as well as to human-specific aspects of neuropsychiatric and neurodegenerative diseases. Comparisons of the human brain to those of nonhuman primates and other mammals have revealed that differences in the neuromodulatory systems, especially in the dopaminergic system, may govern some of these behavioral and cognitive alterations, including increased vulnerability to certain brain disorders. In this review, we highlight and discuss recent findings of human- and primate-specific alterations of the dopaminergic system, focusing on differences in anatomy, circuitry, and molecular properties.
Collapse
Affiliation(s)
- Hannah M Doll
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan D Risgaard
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Hailey Thurston
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Rachel J Chen
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - André Mm Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Jiang M, Deng X, Qiu Z, Li J, Song Z, Chen X, Chen R, Huang X, Cui X, Fu Y. Bibliometric analysis of global research trends in magnetic resonance imaging studies of substantia nigra in Parkinson's disease (2001-2024). Front Aging Neurosci 2024; 16:1455562. [PMID: 39291277 PMCID: PMC11405190 DOI: 10.3389/fnagi.2024.1455562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Background Parkinson's disease (PD) is a globally prevalent neurodegenerative disorder, primarily characterized by muscle rigidity, resting tremor, and bradykinesia. The incidence of PD is rapidly escalating worldwide. Numerous studies have been conducted on the application of magnetic resonance imaging (MRI) in investigating the substantia nigra (SN) in PD patients. However, to date, no bibliometric analysis has been performed on this specific research area. Therefore, this study aimed to provide a comprehensive analysis of the current status in MRI research on the SN in PD patients. Materials and methods MRI study records related to the SN in PD patients from 2001 to 2024 were searched by using the Web of Science Core Collection (WOSCC) database and then the CiteSpace and VOSviewer were used to conduct bibliometric analysis. Results Our analysis found that the number of published articles related studies on MRI of the SN in PD showed an overall upward trend over the past decade, in which Lehericy, Stephane, Du, Guangwei, and Huang, Xuemei are the top three authors with the most articles. Additionally, United States, China and Germany are the main contributors to MRI studies of SN in PD. And Shanghai Jiao Tong University, University of Florida and Seoul National University are the leading institutions in the field. Finally, the keyword analysis showed that the hotspots and trends of research in this field are mainly concentrated in quantitative susceptibility mapping, neuroimaging, and neuromelanin-sensitive MRI. Conclusion These analysis identified the most influential authors, institutions, countries and research hotspots in the field of SN-MRI research in PD, which has reference significance for the research interest in this field and provides a new idea for PD prevention.
Collapse
Affiliation(s)
- Mei Jiang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Xu Deng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Zixiong Qiu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Jie Li
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Zifan Song
- School of Sports Health, Guangdong Vocational Institute of Sport, Guangzhou, China
| | - Xiaoshuai Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Ruiqi Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Xianzhi Huang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Xiaojun Cui
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Yuan Fu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| |
Collapse
|
5
|
Liu H, Liu W, Li Y, Jiang X, Wang S, Zhang G, Luo X, Zhao Y. Fluorescent covalent organic framework as an ultrasensitive fluorescent probe for tyrosinase activity monitoring and inhibitor screening. Anal Chim Acta 2024; 1320:343026. [PMID: 39142791 DOI: 10.1016/j.aca.2024.343026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND As a significant biomarker of melanocytic lesions, tyrosinase (TYR) plays an essential role in the clinical diagnosis and treatment of melanin-related diseases. Thus, it is important to develop robust methods for assessing TYR activity. Covalent organic frameworks (COFs) have garnered considerable attention owing to their unique properties, including high chemical stability, good biocompatibility, and large surface area compared with organic dyes, noble metal nanoclusters, and semiconductor quantum dots. However, most COFs are insoluble in water and exhibit weak or no fluorescence emission. Therefore, the development of a water-soluble fluorescent COF for detecting TYR activity in biological samples remains highly desired. RESULTS In this work, a sensitive and facile fluorometric method based on fluorescent COF was constructed for the detection of TYR activity in human serum samples. The water-soluble COF was fabricated through the condensation polymerization of 4',4‴,4''''',4'''''''-(1,2-ethene-diylidene) tetrakis [1,1'-biphenyl]-4-carboxaldehyde and 2,4,6-tris-(4-aminophenyl)-triazine. The resulting COF displayed yellow-green fluorescence with a maximum emission peak at 560 nm. Tyrosine was catalyzed by TYR to produce melanin-like polymers which formed a coating on the surface of COF and effectively quenched its fluorescence due to fluorescence resonance energy transfer. The proposed approach demonstrated a strong linear correlation in the range of 0.5-80 U/L with a low detection limit of 0.09 U/L. Additionally, the limit of detection for kojic acid, serving as a representative TYR inhibitor, was determined to be 0.0004 μg/mL. SIGNIFICANCE Our proposed fluorometric sensing platform exhibited exceptional selectivity, sensitivity, and satisfactory recoveries in human serum samples, which is of paramount importance for the clinical diagnostics of melanin-related diseases. Furthermore, the proposed approach was further employed for the screening of TYR inhibitors, suggesting the potential applications in clinical treatment and pharmaceutical research.
Collapse
Affiliation(s)
- Hongmei Liu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Weiping Liu
- Department of Clinical Laboratory, Zigong First People's Hospital, Zigong, 643000, Sichuan, China
| | - Yue Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Xinxin Jiang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Sikai Wang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, 610039, China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
6
|
Qi S, Guo L, Liang J, Wang K, Liao Q, He S, Lyu W, Cheng Z, Wang J, Luo X, Yan X, Lu Z, Wang X, Wang Z, Chen X, Li Q. A new strategy for the treatment of Parkinson's disease: Discovery and bio-evaluation of the first central-targeting tyrosinase inhibitor. Bioorg Chem 2024; 150:107612. [PMID: 38986418 DOI: 10.1016/j.bioorg.2024.107612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
The high level of tyrosinase leads to the generation of neuromelanin, further causing the abnormality of redox-related protein level and mediating the occurrence and development of Parkinson's disease (PD). However, the existing tyrosinase inhibitors are mostly natural product extracts or polyphenolic derivatives, which hindered them from penetrating the blood-brain barrier (BBB). Herein, we obtained a novel tyrosinase inhibitor, 2-06 (tyrosinase: monophenolase IC50 = 70.44 ± 22.69 μM, diphenolase IC50 = 1.89 ± 0.64 μM), through the structure-based screening method. The compound 2-06 presented good in vitro and in vivo safety, and can inhibit the tyrosinase and melanogenesis in B16F10. Moreover, this compound showed neuroprotective effects and Parkinsonism behavior improving function. 2-06 was proved to penetrate the BBB and enter the central nervous system (CNS). The exploration of the binding mode between 2-06 and tyrosinase provided the foundation for the subsequent structural optimization. This is the first research to develop a central-targeting tyrosinase inhibitor, which is crucial for in-depth study on the new strategy for utilizing tyrosinase inhibitors to treat PD.
Collapse
Affiliation(s)
- Shulei Qi
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Lina Guo
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Jinxin Liang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Kaixuan Wang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Qinghong Liao
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China; Shandong Kangqiao Biotechnology Co., Ltd, Qingdao 266033, Shandong, People's Republic of China
| | - Siyu He
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Weiping Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Zimeng Cheng
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Jiayi Wang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Xiaojia Luo
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Xiaomei Yan
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Ziyao Lu
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Xiaohan Wang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Ziming Wang
- School of Pharmacy, Binzhou Medical University, Yantai 256699, Shandong, People's Republic of China
| | - Xuehong Chen
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China.
| | - Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China.
| |
Collapse
|
7
|
Wengler K, Trujillo P, Cassidy CM, Horga G. Neuromelanin-sensitive MRI for mechanistic research and biomarker development in psychiatry. Neuropsychopharmacology 2024:10.1038/s41386-024-01934-y. [PMID: 39160355 DOI: 10.1038/s41386-024-01934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Neuromelanin-sensitive MRI is a burgeoning non-invasive neuroimaging method with an increasing number of applications in psychiatric research. This MRI modality is sensitive to the concentration of neuromelanin, which is synthesized from intracellular catecholamines and accumulates in catecholaminergic nuclei including the dopaminergic substantia nigra and the noradrenergic locus coeruleus. Emerging data suggest the utility of neuromelanin-sensitive MRI as a proxy measure for variability in catecholamine metabolism and function, even in the absence of catecholaminergic cell loss. Given the importance of catecholamine function to several psychiatric disorders and their treatments, neuromelanin-sensitive MRI is ideally positioned as an informative and easy-to-acquire catecholaminergic index. In this review paper, we examine basic aspects of neuromelanin and neuromelanin-sensitive MRI and focus on its psychiatric applications in the contexts of mechanistic research and biomarker development. We discuss ongoing debates and state-of-the-art research into the mechanisms of the neuromelanin-sensitive MRI contrast, standardized protocols and optimized analytic approaches, and application of cutting-edge methods such as machine learning and artificial intelligence to enhance the feasibility and predictive power of neuromelanin-sensitive-MRI-based tools. We finally lay out important future directions to allow neuromelanin-sensitive-MRI to fulfill its potential as a key component of the research, and ultimately clinical, toolbox in psychiatry.
Collapse
Affiliation(s)
- Kenneth Wengler
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Vanderbilt, TN, USA
| | - Clifford M Cassidy
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Guillermo Horga
- New York State Psychiatric Institute, New York, NY, USA.
- Department of Psychiatry, Columbia University, New York, NY, USA.
| |
Collapse
|
8
|
McCall A, Forouhandehpour R, Celebi S, Richard-Malenfant C, Hamati R, Guimond S, Tuominen L, Weinshenker D, Jaworska N, McQuaid RJ, Shlik J, Robillard R, Kaminsky Z, Cassidy CM. Evidence for Locus Coeruleus-Norepinephrine System Abnormality in Military Posttraumatic Stress Disorder Revealed by Neuromelanin-Sensitive Magnetic Resonance Imaging. Biol Psychiatry 2024; 96:268-277. [PMID: 38296219 DOI: 10.1016/j.biopsych.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 07/26/2024]
Abstract
BACKGROUND The complex neurobiology of posttraumatic stress disorder (PTSD) calls for the characterization of specific disruptions in brain functions that require targeted treatment. One such alteration could be an overactive locus coeruleus (LC)-norepinephrine system, which may be linked to hyperarousal symptoms, a characteristic and burdensome aspect of the disorder. METHODS Study participants were Canadian Armed Forces veterans with PTSD related to deployment to combat zones (n = 34) and age- and sex-matched healthy control participants (n = 32). Clinical measures included the Clinician-Administered PTSD Scale for DSM-5, and neuroimaging measures included a neuromelanin-sensitive magnetic resonance imaging scan to measure the LC signal. Robust linear regression analyses related the LC signal to clinical measures. RESULTS Compared with control participants, the LC signal was significantly elevated in the PTSD group (t62 = 2.64, p = .010), and this group difference was most pronounced in the caudal LC (t56 = 2.70, Cohen's d = 0.72). The caudal LC signal was also positively correlated with the severity of Clinician-Administered PTSD Scale for DSM-5 hyperarousal symptoms in the PTSD group (t26 = 2.16, p = .040). CONCLUSIONS These findings are consistent with a growing body of evidence indicative of elevated LC-norepinephrine system function in PTSD. Furthermore, they indicate the promise of neuromelanin-sensitive magnetic resonance imaging as a noninvasive method to probe the LC-norepinephrine system that has the potential to support subtyping and treatment of PTSD or other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Adelina McCall
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | | | - Seyda Celebi
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | | | - Rami Hamati
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Synthia Guimond
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Département de psychoéducation et de psychologie, Université du Québec en Outaouais, Gatineau, Quebec, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Natalia Jaworska
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Robyn J McQuaid
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Jakov Shlik
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Rebecca Robillard
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Zachary Kaminsky
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Clifford M Cassidy
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Renaissance School of Medicine at Stony Brook University, Stony Brook, New York.
| |
Collapse
|
9
|
Iannitelli AF, Hassenein L, Mulvey B, Blankenship HE, Liles LC, Sharpe AL, Pare JF, Segal A, Sloan SA, Martinowich K, McCann KE, Dougherty JD, Smith Y, Beckstead MJ, Weinshenker D. Tyrosinase-induced neuromelanin accumulation triggers rapid dysregulation and degeneration of the mouse locus coeruleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.07.530845. [PMID: 36945637 PMCID: PMC10028911 DOI: 10.1101/2023.03.07.530845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The locus coeruleus (LC), the major source of norepinephrine (NE) in the brain, is an early site of pathology in both Alzheimer's disease (AD) and Parkinson's disease (PD), and it undergoes catastrophic degeneration later in both disorders. Dysregulation of the LC is thought to contribute to prodromal symptoms of AD and PD such as anxiety and sleep disturbances, while frank LC-NE loss promotes cognitive decline. However, the mechanisms responsible for its selective vulnerability are unknown. The LC is among the only structures in the brain that produces appreciable amounts of neuromelanin (NM), a dark cytoplasmic pigment. It has been proposed that NM initially plays a protective role by sequestering toxic catecholamine metabolites and heavy metals, but may become harmful during aging as it overwhelms cellular machinery and is released during neurodegeneration. Rodents do not naturally produce NM, limiting the study of causal relationships between NM and LC pathology. Adapting a viral-mediated approach for expression of human tyrosinase, the enzyme responsible for peripheral melanin production, we successfully promoted pigmentation in mouse LC neurons that recapitulates key ultrastructural features of endogenous NM found in primates. Pigment expression results in LC neuron hyperactivity, reduced tissue NE levels, transcriptional changes, and novelty-induced anxiety phenotypes as early as 1-week post-injection. By 6-10 weeks, NM accumulation is associated with severe LC neuron neurodegeneration and microglial engulfment of the pigment granules, while the anxiety-like behavior is abated. These phenotypes are reminiscent of LC dysfunction and cell death in AD and PD, validating this model for studying the consequences of pigment accumulation in the LC as it relates to neurodegenerative disease.
Collapse
Affiliation(s)
- Alexa F. Iannitelli
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Leslie Hassenein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bernard Mulvey
- Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Harris E. Blankenship
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - L. Cameron Liles
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amanda L. Sharpe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, 73117
| | - Jean-Francoise Pare
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Arielle Segal
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Steven A. Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katharine E. McCann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joseph D. Dougherty
- Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yoland Smith
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Michael J. Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
Caldarelli M, Rio P, Marrone A, Giambra V, Gasbarrini A, Gambassi G, Cianci R. Inflammaging: The Next Challenge-Exploring the Role of Gut Microbiota, Environmental Factors, and Sex Differences. Biomedicines 2024; 12:1716. [PMID: 39200181 PMCID: PMC11351301 DOI: 10.3390/biomedicines12081716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
The term 'inflammaging' has been coined to describe the chronic state of inflammation derived from ongoing cycles of tissue damage and the subsequent immune responses. This inflammatory status contributes to the decline of organs and physiological functions, accelerates the aging process, and increases the risk of age-related illnesses and death. During aging, the gut microbiota (GM) undergoes significant changes, including a decreased diversity of species, a decline in beneficial bacteria, and a rise in proinflammatory ones, resulting in persistent low-grade inflammation. Moreover, environmental factors, such as diet and medications, contribute to age-related changes in GM and immune function, preventing or promoting inflammaging. This narrative review aims to clarify the underlying mechanisms of inflammaging and to specifically investigate the influence of GM and several environmental factors on these mechanisms, while also exploring potential differences related to sex. Moreover, lifestyle and pharmacological interventions will be suggested to promote healthy aging.
Collapse
Affiliation(s)
- Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.M.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.M.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Andrea Marrone
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.M.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.M.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.M.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.M.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| |
Collapse
|
11
|
Terranova ML. Physiological Roles of Eumelanin- and Melanogenesis-Associated Diseases: A Look at the Potentialities of Engineered and Microbial Eumelanin in Clinical Practice. Bioengineering (Basel) 2024; 11:756. [PMID: 39199714 PMCID: PMC11351163 DOI: 10.3390/bioengineering11080756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
This paper aims to highlight the physiological actions exerted by eumelanin present in several organs/tissues of the human body and to rationalise the often conflicting functional roles played by this biopolymer on the basis of its peculiar properties. Besides pigmentary disorders, a growing number of organ injuries and degenerative pathologies are presently ascribed to the modification of physiological eumelanin levels in terms of alterations in its chemical/structural features, and of a partial loss or uneven distribution of the pigment. The present review analyses the more recent research dedicated to the physiological and pathological actions of eumelanin and provides an insight into some melanogenesis-associated diseases of the skin, eye, ear, and brain, including the most significant neurodegenerative disorders. Also described are the potentialities of therapies based on the localised supply of exogeneous EU and the opportunities that EU produced via synthetic biology offers in order to redesign therapeutical and diagnostic applications.
Collapse
Affiliation(s)
- Maria Letizia Terranova
- Dip.to di Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", 00133 Roma, Italy
| |
Collapse
|
12
|
Yang H, Lin Y, Mo Q, Li Z, Yang F, Li X. Monitoring Enzymatic Reaction Kinetics and Activity Assays in Confined Nanospace. Anal Chem 2024. [PMID: 39024010 DOI: 10.1021/acs.analchem.4c01901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Enzyme-mediating biotransformations commonly occur in micro- and nanospace, which is crucial to maintain the essential biochemical processes and physiological functions in living systems. Probing enzyme-catalytic reactions in a biomimetic fashion remains challenging due to the lack of competent tools and methodology. Here, we show that studying enzymatic reaction kinetics can be readily achieved by a well-designed solid-state nanopore. Using tyrosine as a classical substrate, we quantitatively characterize the catalytic activity of tyrosinase (TYR) and tyrosine decarboxylase (TDC) in a nanoconfined space. Tyrosine was first immobilized in the nanopipette, wherein the active sites of tyrosine were left unoccupied. When successively exposed to TYR and TDC, a two-step cascade reaction can spontaneously take place. In this process, the surface wettability and charge of the nanopipette stemming from the catalytic products can sensitively regulate ion transport and ionic current rectification behavior, which were monitored by ionic current signal. In this biomimetic scenario, we obtained the enzymatic reaction kinetics of monophenyl oxidase that were not previously actualized in the conventional macroenvironment. Significantly, TYR showed higher enzyme activity, with a Km value of 1.59 mM, which was lower than that measured in a free and open space (with a Km of 3.01 mM). This suggests that tyrosine should be the most appropriate substrate of TYR, thus improving our understanding of tyrosine-associated biochemical reactions. This work offers an applicable technical platform to mimic enzyme-mediated biotransformations and biometabolisms.
Collapse
Affiliation(s)
- Huiping Yang
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Yinning Lin
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Qian Mo
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Zhaoquan Li
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Fan Yang
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Xinchun Li
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| |
Collapse
|
13
|
Currim F, Tanwar R, Brown-Leung JM, Paranjape N, Liu J, Sanders LH, Doorn JA, Cannon JR. Selective dopaminergic neurotoxicity modulated by inherent cell-type specific neurobiology. Neurotoxicology 2024; 103:266-287. [PMID: 38964509 PMCID: PMC11288778 DOI: 10.1016/j.neuro.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease affecting millions of individuals worldwide. Hallmark features of PD pathology are the formation of Lewy bodies in neuromelanin-containing dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNpc), and the subsequent irreversible death of these neurons. Although genetic risk factors have been identified, around 90 % of PD cases are sporadic and likely caused by environmental exposures and gene-environment interaction. Mechanistic studies have identified a variety of chemical PD risk factors. PD neuropathology occurs throughout the brain and peripheral nervous system, but it is the loss of DAergic neurons in the SNpc that produce many of the cardinal motor symptoms. Toxicology studies have found specifically the DAergic neuron population of the SNpc exhibit heightened sensitivity to highly variable chemical insults (both in terms of chemical structure and mechanism of neurotoxic action). Thus, it has become clear that the inherent neurobiology of nigral DAergic neurons likely underlies much of this neurotoxic response to broad insults. This review focuses on inherent neurobiology of nigral DAergic neurons and how such neurobiology impacts the primary mechanism of neurotoxicity. While interactions with a variety of other cell types are important in disease pathogenesis, understanding how inherent DAergic biology contributes to selective sensitivity and primary mechanisms of neurotoxicity is critical to advancing the field. Specifically, key biological features of DAergic neurons that increase neurotoxicant susceptibility.
Collapse
Affiliation(s)
- Fatema Currim
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Reeya Tanwar
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Josephine M Brown-Leung
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Neha Paranjape
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Liu
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laurie H Sanders
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jonathan A Doorn
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA.
| |
Collapse
|
14
|
Dahl MJ, Werkle-Bergner M, Mather M. Neuromodulatory systems in aging and disease. Neurosci Biobehav Rev 2024; 162:105647. [PMID: 38574783 DOI: 10.1016/j.neubiorev.2024.105647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Affiliation(s)
- Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin 14195, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin 14195, Germany
| | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Department of Psychology, University of Southern California, Los Angeles, CA, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
15
|
Hu R, Wang R, Yuan J, Lin Z, Hutchins E, Landin B, Liao Z, Liu G, Scherzer CR, Dong X. Transcriptional pathobiology and multi-omics predictors for Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599639. [PMID: 38948706 PMCID: PMC11212969 DOI: 10.1101/2024.06.18.599639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Early diagnosis and biomarker discovery to bolster the therapeutic pipeline for Parkinson's disease (PD) are urgently needed. In this study, we leverage the large-scale whole-blood total RNA-seq dataset from the Accelerating Medicine Partnership in Parkinson's Disease (AMP PD) program to identify PD-associated RNAs, including both known genes and novel circular RNAs (circRNA) and enhancer RNAs (eRNAs). There were 1,111 significant marker RNAs, including 491 genes, 599 eRNAs, and 21 circRNAs, that were first discovered in the PPMI cohort (FDR < 0.05) and confirmed in the PDBP/BioFIND cohorts (nominal p < 0.05). Functional enrichment analysis showed that the PD-associated genes are involved in neutrophil activation and degranulation, as well as the TNF-alpha signaling pathway. We further compare the PD-associated genes in blood with those in post-mortem brain dopamine neurons in our BRAINcode cohort. 44 genes show significant changes with the same direction in both PD brain neurons and PD blood, including neuroinflammation-associated genes IKBIP, CXCR2, and NFKBIB. Finally, we built a novel multi-omics machine learning model to predict PD diagnosis with high performance (AUC = 0.89), which was superior to previous studies and might aid the decision-making for PD diagnosis in clinical practice. In summary, this study delineates a wide spectrum of the known and novel RNAs linked to PD and are detectable in circulating blood cells in a harmonized, large-scale dataset. It provides a generally useful computational framework for further biomarker development and early disease prediction.
Collapse
Affiliation(s)
- Ruifeng Hu
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Ruoxuan Wang
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Jie Yuan
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Zechuan Lin
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Elizabeth Hutchins
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | | | - Zhixiang Liao
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ganqiang Liu
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Shenzhen Key Laboratory of Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Clemens R. Scherzer
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Xianjun Dong
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
16
|
Manchia M, Paribello P, Pinna M, Faa G. The Role of Copper Overload in Modulating Neuropsychiatric Symptoms. Int J Mol Sci 2024; 25:6487. [PMID: 38928192 PMCID: PMC11204094 DOI: 10.3390/ijms25126487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Copper is a transition metal essential for growth and development and indispensable for eukaryotic life. This metal is essential to neuronal function: its deficiency, as well as its overload have been associated with multiple neurodegenerative disorders such as Alzheimer's disease and Wilson's disease and psychiatric conditions such as schizophrenia, bipolar disorder, and major depressive disorders. Copper plays a fundamental role in the development and function of the human Central Nervous System (CNS), being a cofactor of multiple enzymes that play a key role in physiology during development. In this context, we thought it would be timely to summarize data on alterations in the metabolism of copper at the CNS level that might influence the development of neuropsychiatric symptoms. We present a non-systematic review with the study selection based on the authors' judgement to offer the reader a perspective on the most significant elements of neuropsychiatric symptoms in Wilson's disease. We highlight that Wilson's disease is characterized by marked heterogeneity in clinical presentation among patients with the same mutation. This should motivate more research efforts to disentangle the role of environmental factors in modulating the expression of genetic predisposition to this disorder.
Collapse
Affiliation(s)
- Mirko Manchia
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09124 Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Pasquale Paribello
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09124 Cagliari, Italy
| | - Martina Pinna
- Forensic Psychiatry Unit, Sardinia Health Agency, 09123 Cagliari, Italy;
| | - Gavino Faa
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
17
|
Ascsillán AA, Kemény LV. The Skin-Brain Axis: From UV and Pigmentation to Behaviour Modulation. Int J Mol Sci 2024; 25:6199. [PMID: 38892387 PMCID: PMC11172643 DOI: 10.3390/ijms25116199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
The skin-brain axis has been suggested to play a role in several pathophysiological conditions, including opioid addiction, Parkinson's disease and many others. Recent evidence suggests that pathways regulating skin pigmentation may directly and indirectly regulate behaviour. Conversely, CNS-driven neural and hormonal responses have been demonstrated to regulate pigmentation, e.g., under stress. Additionally, due to the shared neuroectodermal origins of the melanocytes and neurons in the CNS, certain CNS diseases may be linked to pigmentation-related changes due to common regulators, e.g., MC1R variations. Furthermore, the HPA analogue of the skin connects skin pigmentation to the endocrine system, thereby allowing the skin to index possible hormonal abnormalities visibly. In this review, insight is provided into skin pigment production and neuromelanin synthesis in the brain and recent findings are summarised on how signalling pathways in the skin, with a particular focus on pigmentation, are interconnected with the central nervous system. Thus, this review may supply a better understanding of the mechanism of several skin-brain associations in health and disease.
Collapse
Affiliation(s)
- Anna A. Ascsillán
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Lajos V. Kemény
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
18
|
Coukos R, Krainc D. Key genes and convergent pathogenic mechanisms in Parkinson disease. Nat Rev Neurosci 2024; 25:393-413. [PMID: 38600347 DOI: 10.1038/s41583-024-00812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder marked by the preferential dysfunction and death of dopaminergic neurons in the substantia nigra. The onset and progression of PD is influenced by a diversity of genetic variants, many of which lack functional characterization. To identify the most high-yield targets for therapeutic intervention, it is important to consider the core cellular compartments and functional pathways upon which the varied forms of pathogenic dysfunction may converge. Here, we review several key PD-linked proteins and pathways, focusing on the mechanisms of their potential convergence in disease pathogenesis. These dysfunctions primarily localize to a subset of subcellular compartments, including mitochondria, lysosomes and synapses. We discuss how these pathogenic mechanisms that originate in different cellular compartments may coordinately lead to cellular dysfunction and neurodegeneration in PD.
Collapse
Affiliation(s)
- Robert Coukos
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
19
|
Nagatsu T. Catecholamines and Parkinson's disease: tyrosine hydroxylase (TH) over tetrahydrobiopterin (BH4) and GTP cyclohydrolase I (GCH1) to cytokines, neuromelanin, and gene therapy: a historical overview. J Neural Transm (Vienna) 2024; 131:617-630. [PMID: 37638996 DOI: 10.1007/s00702-023-02673-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/12/2023] [Indexed: 08/29/2023]
Abstract
The author identified the genes and proteins of human enzymes involved in the biosynthesis of catecholamines (dopamine, norepinephrine, epinephrine) and tetrahydrobiopterin (BH4): tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (AADC), dopamine β-hydroxylase (DBH), phenylethanolamine N-methyltransferase (PNMT), and GTP cyclohydrolase I (GCH1). In Parkinson's disease (PD), the activities and levels of mRNA and protein of all catecholamine-synthesizing enzymes are decreased, especially in dopamine neurons in the substantia nigra. Hereditary GCH1 deficiency results in reductions in the levels of BH4 and the activities of TH, causing decreases in dopamine levels. Severe deficiencies in GCH1 or TH cause severe decreases in dopamine levels leading to severe neurological symptoms, whereas mild decreases in TH activity in mild GCH1 deficiency or in mild TH deficiency result in only modest reductions in dopamine levels and symptoms of DOPA-responsive dystonia (DRD, Segawa disease) or juvenile Parkinsonism. DRD is a treatable disease and small doses of L-DOPA can halt progression. The death of dopamine neurons in PD in the substantia nigra may be related to (i) inflammatory effect of extra neuronal neuromelanin, (ii) inflammatory cytokines which are produced by activated microglia, (iii) decreased levels of BDNF, and/or (iv) increased levels of apoptosis-related factors. This review also discusses progress in gene therapies for the treatment of PD, and of GCH1, TH and AADC deficiencies, by transfection of TH, AADC, and GCH1 via adeno-associated virus (AAV) vectors.
Collapse
Affiliation(s)
- Toshiharu Nagatsu
- Center for Research Promotion and Support, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
20
|
Shu D, Xie W, Liu H, Li J, Jiao J, Mao G, Yang S, Zhang K. Fluorescence monitoring of refluxed tyrosinase using endoplasmic reticulum-localized enzymatic activity-based sensing. Chem Commun (Camb) 2024; 60:5618-5621. [PMID: 38713525 DOI: 10.1039/d4cc00662c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
A tyrosinase-activatable fluorescent probe with endoplasmic reticulum targetability was developed for the first time. It can ratiometrically fluoresce and hence be used to monitor refluxed tyrosinase into the endoplasmic reticulum.
Collapse
Affiliation(s)
- Dunji Shu
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Wenzhi Xie
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Huihong Liu
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Jingjing Li
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Jinglong Jiao
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Guojiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Sheng Yang
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Kai Zhang
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, P. R. China.
| |
Collapse
|
21
|
Anderson G, Borooah S, Megaw R, Bagnaninchi P, Weller R, McLeod A, Dhillon B. UVR and RPE - The Good, the Bad and the degenerate Macula. Prog Retin Eye Res 2024; 100:101233. [PMID: 38135244 DOI: 10.1016/j.preteyeres.2023.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Ultraviolet Radiation (UVR) has a well-established causative influence within the aetiology of conditions of the skin and the anterior segment of the eye. However, a grounded assessment of the role of UVR within conditions of the retina has been hampered by a historical lack of quantitative, and spectrally resolved, assessment of how UVR impacts upon the retina in terms congruent with contemporary theories of ageing. In this review, we sought to summarise the key findings of research investigating the connection between UVR exposure in retinal cytopathology while identifying necessary avenues for future research which can deliver a deeper understanding of UVR's place within the retinal risk landscape.
Collapse
Affiliation(s)
- Graham Anderson
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, EH16 4UU, UK
| | - Shyamanga Borooah
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, UC San Diego, CA, 92093-0946, USA
| | - Roly Megaw
- Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, EH4 2XU, UK; Department of Clinical Ophthalmology, National Health Service Scotland, Edinburgh, EH3 9HA, UK
| | - Pierre Bagnaninchi
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, EH16 4UU, UK; Robert O Curle Eyelab, Instute for Regeneration and Repair, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Richard Weller
- Centre for Inflammation Research, University of Edinburgh, Edinburgh BioQuarter, EH16 4TJ, UK
| | - Andrew McLeod
- School of GeoSciences, University of Edinburgh, Crew Building, King's Buildings, EH9 3FF, UK
| | - Baljean Dhillon
- Department of Clinical Ophthalmology, National Health Service Scotland, Edinburgh, EH3 9HA, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, EH16 4SB, UK; Robert O Curle Eyelab, Instute for Regeneration and Repair, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
22
|
Cassani L, Silva A, Carpena M, Pellegrini MC, García-Pérez P, Grosso C, Barroso MF, Simal-Gandara J, Gómez-Zavaglia A, Prieto MA. Phytochemical compounds with promising biological activities from Ascophyllum nodosum extracts using microwave-assisted extraction. Food Chem 2024; 438:138037. [PMID: 38011789 DOI: 10.1016/j.foodchem.2023.138037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Phytochemical-rich antioxidant extracts were obtained from Ascophyllum nodosum (AN) using microwave-assisted extraction (MAE). Critical extraction factors such as time, pressure, and ethanol concentration were optimized by response surface methodology with a circumscribed central composite design. Under the optimal MAE conditions (3 min, 10.4 bar, 46.8 % ethanol), the maximum recovery of phytochemical compounds (polyphenols and fucoxanthin) with improved antioxidant activity from AN was obtained. In addition, the optimized AN extract showed significant biological activities as it was able to scavenge reactive oxygen and nitrogen species, inhibit central nervous system-related enzymes, and exhibit cytotoxic activity against different cancer cell lines. In addition, the optimized AN extract showed antimicrobial, and anti-quorum sensing activities, indicating that this extract could offer direct and indirect protection against infection by pathogenic microorganisms. This work demonstrated that the sustainably obtained AN extract could be an emerging, non-toxic, and natural ingredient with potential to be included in different applications.
Collapse
Affiliation(s)
- Lucía Cassani
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain.
| | - Aurora Silva
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain; REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Maria Carpena
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain
| | - María Celeste Pellegrini
- Grupo de Investigación en Ingeniería en Alimentos (GIIA), Instituto de Ciencia y Tecnología de alimentos y ambiente (INCITAA, CIC-UNMDP), Facultad de Ingeniería, Universidad Nacional de Mar del Plata, B7600 Mar del Plata, Argentina
| | - Pascual García-Pérez
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain; Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Maria Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain
| | - Andrea Gómez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), RA1900 La Plata, Argentina
| | - Miguel A Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain
| |
Collapse
|
23
|
Shebl N, El-Jaafary S, Saeed AA, Elkafrawy P, El-Sayed A, Shamma S, Elnemr R, Mekky J, Mohamed LA, Kittaneh O, El-Fawal H, Rizig M, Salama M. Metabolomic profiling reveals altered phenylalanine metabolism in Parkinson's disease in an Egyptian cohort. Front Mol Biosci 2024; 11:1341950. [PMID: 38516193 PMCID: PMC10955577 DOI: 10.3389/fmolb.2024.1341950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/18/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction: Parkinson's disease (PD) is the most common motor neurodegenerative disease worldwide. Given the complexity of PD etiology and the different metabolic derangements correlated to the disease, metabolomics profiling of patients is a helpful tool to identify patho-mechanistic pathways for the disease development. Dopamine metabolism has been the target of several previous studies, of which some have reported lower phenylalanine and tyrosine levels in PD patients compared to controls. Methods: In this study, we have collected plasma from 27 PD patients, 18 reference controls, and 8 high-risk controls to perform a metabolomic study using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). Results: Our findings revealed higher intensities of trans-cinnamate, a phenylalanine metabolite, in patients compared to reference controls. Thus, we hypothesize that phenylalanine metabolism has been shifted to produce trans-cinnamate via L-phenylalanine ammonia lyase (PAL), instead of producing tyrosine, a dopamine precursor, via phenylalanine hydroxylase (PAH). Discussion: Given that these metabolites are precursors to several other metabolic pathways, the intensities of many metabolites such as dopamine, norepinephrine, and 3-hydroxyanthranilic acid, which connects phenylalanine metabolism to that of tryptophan, have been altered. Consequently, and in respect to Metabolic Control Analysis (MCA) theory, the levels of tryptophan metabolites have also been altered. Some of these metabolites are tryptamine, melatonin, and nicotinamide. Thus, we assume that these alterations could contribute to the dopaminergic, adrenergic, and serotonergic neurodegeneration that happen in the disease.
Collapse
Affiliation(s)
- Nourhan Shebl
- Institute of Global Health and Human Ecology (I-GHHE), The American University in Cairo, Cairo, Egypt
| | - Shaimaa El-Jaafary
- Neurology Department, Faculty of Medicine, Cairo University, Giza, Egypt
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Ayman A Saeed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre (NRC), Giza, Egypt
| | - Passent Elkafrawy
- Technology and Energy Research Center, Effat University-College of Engineering-NSMTU, Jeddah, Saudi Arabia
| | - Amr El-Sayed
- Social Research Center, The American University in Cairo, Cairo, Egypt
| | - Samir Shamma
- Institute of Global Health and Human Ecology (I-GHHE), The American University in Cairo, Cairo, Egypt
| | - Rasha Elnemr
- Climate Change Information Center & Expert Systems (CCICES), Agriculture Research Center, Giza, Egypt
| | - Jaidaa Mekky
- Neurology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Lobna A Mohamed
- Neurology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Omar Kittaneh
- Technology and Energy Research Center, Effat University-College of Engineering-NSMTU, Jeddah, Saudi Arabia
| | - Hassan El-Fawal
- Institute of Global Health and Human Ecology (I-GHHE), The American University in Cairo, Cairo, Egypt
| | - Mie Rizig
- Queen Square, Institute of Neurology, University College London, London, United Kingdom
| | - Mohamed Salama
- Institute of Global Health and Human Ecology (I-GHHE), The American University in Cairo, Cairo, Egypt
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
24
|
Huenchuguala S, Segura-Aguilar J. Single-neuron neurodegeneration as a degenerative model for Parkinson's disease. Neural Regen Res 2024; 19:529-535. [PMID: 37721280 PMCID: PMC10581573 DOI: 10.4103/1673-5374.380878] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/22/2023] [Indexed: 09/19/2023] Open
Abstract
The positive effect of levodopa in the treatment of Parkinson's disease, although it is limited in time and has severe side effects, has encouraged the scientific community to look for new drugs that can stop the neurodegenerative process or even regenerate the neuromelanin-containing dopaminergic nigrostriatal neurons. Successful preclinical studies with coenzyme Q10, mitoquinone, isradipine, nilotinib, TCH346, neurturin, zonisamide, deferiprone, prasinezumab, and cinpanemab prompted clinical trials. However, these failed and after more than 50 years levodopa continues to be the key drug in the treatment of the disease, despite its severe side effects after 4-6 years of chronic treatment. The lack of translated successful results obtained in preclinical investigations based on the use of neurotoxins that do not exist in the human body as new drugs for Parkinson's disease treatment is a big problem. In our opinion, the cause of these failures lies in the experimental animal models involving neurotoxins that do not exist in the human body, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine, that induce a very fast, massive and expansive neurodegenerative process, which contrasts with the extremely slow one of neuromelanin-containing dopaminergic neurons. The exceedingly slow progress of the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson's patients is due to (i) a degenerative model in which the neurotoxic effect of an endogenous neurotoxin affects a single neuron, (ii) a neurotoxic event that is not expansive and (iii) the fact that the neurotoxin that triggers the neurodegenerative process is produced inside the neuromelanin-containing dopaminergic neurons. The endogenous neurotoxin that fits this degenerative model involving one single neuron at a time is aminochrome, since it (i) is generated within neuromelanin-containing dopaminergic neurons, (ii) does not cause an expansive neurotoxic effect and (iii) triggers all the mechanisms involved in the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson's disease. In conclusion, based on the hypothesis that the neurodegenerative process of idiopathic Parkinson's disease corresponds to a single-neuron neurodegeneration model, we must search for molecules that increase the expression of the neuroprotective enzymes DT-diaphorase and glutathione transferase M2-2. It has been observed that the activation of the Kelch-like ECH-associated protein 1/nuclear factor (erythroid-derived 2)-like 2 pathway is associated with the transcriptional activation of the DT-diaphorase and glutathione transferase genes.
Collapse
Affiliation(s)
- Sandro Huenchuguala
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras, Osorno, Chile
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, Instituto de Ciencias Biomedicas (ICBM), Faculty of medicine, University of Chile, Independencia, Santiago, Chile
| |
Collapse
|
25
|
Najafi Z, Zandi Haramabadi M, Chehardoli G, Ebadi A, Iraji A. Design, synthesis, and molecular dynamics simulation studies of some novel kojic acid fused 2-amino-3-cyano-4H-pyran derivatives as tyrosinase inhibitors. BMC Chem 2024; 18:41. [PMID: 38388934 PMCID: PMC10885651 DOI: 10.1186/s13065-024-01134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
A novel series of kojic acid fused 2-amino-3-cyano-4H-pyran derivatives were synthesized via a multicomponent reaction involving kojic acid, benzyloxy benzaldehyde, and malonitrile as tyrosinase inhibitors. Subsequently, the structures of the compounds were characterized using FT-IR, 1H-, and 13C-NMR spectroscopic analyses. The designed compounds fall into three series: (1) 4-benzyloxy-phenyl kojopyran 6a-e, (2) 3-benzyloxy- phenyl kojopyran derivatives 6f-j, and (3) 4-benzyloxy-3-methoxy-phenyl kojopyran derivative 6 k-o. The assessment of tyrosinase inhibition activity was conducted using L-Dopa as the substrate. Among synthesized compounds, 2-amino-4-(4-((4-fluorobenzyl)oxy)phenyl)-6-(hydroxymethyl)-8-oxo-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile (6b) demonstrated the highest antityrosinase activity with a competitive inhibition pattern (IC50 = 7.69 ± 1.99 μM) as compared to the control agent kojic acid (IC50 = 23.64 ± 2.56 µM). Since compound 6b was synthesized as a racemic mixture, in silico studies were performed for both R and S enantiomers. The R- enantiomer showed critical interactions compared with the S-enantiomer. Specifically, it established hydrogen bonds and hydrophobic interactions with crucial and highly conserved amino acids within the enzyme's binding site in the target protein. Moreover, the molecular dynamics simulations revealed that compound 6b demonstrated significant interactions with essential residues of the binding site, resulting in a stable complex throughout the entire simulation run. The drug-like and ADMET properties predictions showed an acceptable profile for compound 6b. Thus, it can serve as a drug candidate to develop more potent antityrosinase agents due to its low toxicity and its high inhibition activity.
Collapse
Affiliation(s)
- Zahra Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Maryam Zandi Haramabadi
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gholamabbas Chehardoli
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Ebadi
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
26
|
Wimalasena K, Adetuyi O, Eldani M. Metabolic energy decline coupled dysregulation of catecholamine metabolism in physiologically highly active neurons: implications for selective neuronal death in Parkinson's disease. Front Aging Neurosci 2024; 16:1339295. [PMID: 38450382 PMCID: PMC10914975 DOI: 10.3389/fnagi.2024.1339295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Parkinson's disease (PD) is an age-related irreversible neurodegenerative disease which is characterized as a progressively worsening involuntary movement disorder caused by the loss of dopaminergic (DA) neurons in substantia nigra pars compacta (SNpc). Two main pathophysiological features of PD are the accumulation of inclusion bodies in the affected neurons and the predominant loss of neuromelanin-containing DA neurons in substantia nigra pars compacta (SNpc) and noradrenergic (NE) neurons in locus coeruleus (LC). The inclusion bodies contain misfolded and aggregated α-synuclein (α-Syn) fibrils known as Lewy bodies. The etiology and pathogenic mechanisms of PD are complex, multi-dimensional and associated with a combination of environmental, genetic, and other age-related factors. Although individual factors associated with the pathogenic mechanisms of PD have been widely investigated, an integration of the findings to a unified causative mechanism has not been envisioned. Here we propose an integrated mechanism for the degeneration of DA neurons in SNpc and NE neurons in LC in PD, based on their unique high metabolic activity coupled elevated energy demand, using currently available experimental data. The proposed hypothetical mechanism is primarily based on the unique high metabolic activity coupled elevated energy demand of these neurons. We reason that the high vulnerability of a selective group of DA neurons in SNpc and NE neurons in LC in PD could be due to the cellular energy modulations. Such cellular energy modulations could induce dysregulation of DA and NE metabolism and perturbation of the redox active metal homeostasis (especially copper and iron) in these neurons.
Collapse
Affiliation(s)
- Kandatege Wimalasena
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS, United States
| | | | | |
Collapse
|
27
|
Watanabe H, Dijkstra JM, Nagatsu T. Parkinson's Disease: Cells Succumbing to Lifelong Dopamine-Related Oxidative Stress and Other Bioenergetic Challenges. Int J Mol Sci 2024; 25:2009. [PMID: 38396687 PMCID: PMC10888576 DOI: 10.3390/ijms25042009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The core pathological event in Parkinson's disease (PD) is the specific dying of dopamine (DA) neurons of the substantia nigra pars compacta (SNc). The reasons why SNc DA neurons are especially vulnerable and why idiopathic PD has only been found in humans are still puzzling. The two main underlying factors of SNc DA neuron vulnerability appear related to high DA production, namely (i) the toxic effects of cytoplasmic DA metabolism and (ii) continuous cytosolic Ca2+ oscillations in the absence of the Ca2+-buffer protein calbindin. Both factors cause oxidative stress by producing highly reactive quinones and increasing intra-mitochondrial Ca2+ concentrations, respectively. High DA expression in human SNc DA neuron cell bodies is suggested by the abundant presence of the DA-derived pigment neuromelanin, which is not found in such abundance in other species and has been associated with toxicity at higher levels. The oxidative stress created by their DA production system, despite the fact that the SN does not use unusually high amounts of energy, explains why SNc DA neurons are sensitive to various genetic and environmental factors that create mitochondrial damage and thereby promote PD. Aging increases multiple risk factors for PD, and, to a large extent, PD is accelerated aging. To prevent PD neurodegeneration, possible approaches that are discussed here are (1) reducing cytoplasmic DA accumulation, (2) blocking cytoplasmic Ca2+ oscillations, and (3) providing bioenergetic support.
Collapse
Affiliation(s)
- Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Johannes M. Dijkstra
- Center for Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Toshiharu Nagatsu
- Center for Research Promotion and Support, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| |
Collapse
|
28
|
Oresanya IO, Orhan IE, Heil J, Morlock GE. African Under-Utilized Medicinal Leafy Vegetables Studied by Microtiter Plate Assays and High-Performance Thin-Layer Chromatography-Planar Assays. Molecules 2024; 29:733. [PMID: 38338474 PMCID: PMC10856468 DOI: 10.3390/molecules29030733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Biological activities of six under-utilized medicinal leafy vegetable plants indigenous to Africa, i.e., Basella alba, Crassocephalum rubens, Gnetum africanum, Launaea taraxacifolia, Solanecio biafrae, and Solanum macrocarpon, were investigated via two independent techniques. The total phenolic content (TPC) was determined, and six microtiter plate assays were applied after extraction and fractionation. Three were antioxidant in vitro assays, i.e., ferric reducing antioxidant power (FRAP), cupric reduction antioxidant capacity (CUPRAC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, and the others were enzyme (acetylcholinesterase, butyrylcholinesterase, and tyrosinase) inhibition assays. The highest TPC and antioxidant activity from all the methods were obtained from polar and medium polar fractions of C. rubens, S. biafrae, and S. macrocarpon. The highest acetyl- and butyrylcholinesterase inhibition was exhibited by polar fractions of S. biafrae, C. rubens, and L. taraxacifolia, the latter comparable to galantamine. The highest tyrosinase inhibition was observed in the n-butanol fraction of C. rubens and ethyl acetate fraction of S. biafrae. In vitro assay results of the different extracts and fractions were mostly in agreement with the bioactivity profiling via high-performance thin-layer chromatography-multi-imaging-effect-directed analysis, exploiting nine different planar assays. Several separated compounds of the plant extracts showed antioxidant, α-glucosidase, α-amylase, acetyl- and butyrylcholinesterase-inhibiting, Gram-positive/-negative antimicrobial, cytotoxic, and genotoxic activities. A prominent apolar bioactive compound zone was tentatively assigned to fatty acids, in particular linolenic acid, via electrospray ionization high-resolution mass spectrometry. The detected antioxidant, antimicrobial, antidiabetic, anticholinesterase, cytotoxic, and genotoxic potentials of these vegetable plants, in particular C. rubens, S. biafrae, and S. macrocarpon, may validate some of their ethnomedicinal uses.
Collapse
Affiliation(s)
- Ibukun O. Oresanya
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Emniyet, Taç Sokağı No. 3, Yenimahalle, Ankara 06330, Turkey; (I.O.O.); (I.E.O.)
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Emniyet, Taç Sokağı No. 3, Yenimahalle, Ankara 06330, Turkey; (I.O.O.); (I.E.O.)
| | - Julia Heil
- Chair of Food Science, Institute of Nutritional Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
| | - Gertrud E. Morlock
- Chair of Food Science, Institute of Nutritional Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
- Center for Sustainable Food Systems, Justus Liebig University Giessen, Senckenbergstr. 3, 35390 Giessen, Germany
| |
Collapse
|
29
|
Van TP, Phan QK, Quang HP, Pham GB, Thi NHN, Thi HTT, Do AD. Multi-Strain Probiotics Enhance the Bioactivity of Cascara Kombucha during Microbial Composition-Controlled Fermentation. Prev Nutr Food Sci 2023; 28:502-513. [PMID: 38188087 PMCID: PMC10764222 DOI: 10.3746/pnf.2023.28.4.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 01/09/2024] Open
Abstract
Kombucha is a widely consumed fermented tea beverage with diverse health benefits. In a previous study, we demonstrated that the use of cascara as a substrate results in a special kombucha beverage with high bioactivity. Traditional kombucha fermentation using a symbiotic culture of bacteria and yeast (SCOBY) can lead to inconsistent product quality because of the lack of control over microbial composition. We successfully isolated and identified yeast and bacteria, including Saccharomyces cerevisiae, Komagataeibacter rhaeticus, and Lactobacillus brevis that are appropriate starter cultures for cascara kombucha fermentation. We also demonstrated that a supplementation with lactic acid bacteria (LAB) and a mixture of S. cerevisiae and K. rhaeticus resulted in higher total polyphenol and flavonoid content of cascara kombucha compared with the traditionally fermented product using SCOBY as the inoculum. The free radical scavenging activity, inhibitory effects on α-amylase, tyrosinase activity, and antibacterial properties of cascara kombucha were also enhanced as a result of LAB supplement. These findings provide valuable insights into the controlled microbiological composition required for the fermentation of cascara kombucha, thereby ensuring consistent quality and enhanced bioactivity of the product. Further, the use of cascara as a substrate for kombucha production not only offers various health benefits and biological effects, but also repurposes by-products from the coffee industry, which contributes to sustainable development and is eco-friendly.
Collapse
Affiliation(s)
- Thach Phan Van
- Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Quang Khai Phan
- Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Hoa Pham Quang
- Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Gia Bao Pham
- Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Ngoc Han Ngo Thi
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Hong Tham Truong Thi
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Anh Duy Do
- Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
30
|
Studzińska-Sroka E, Bulicz M, Henkel M, Rosiak N, Paczkowska-Walendowska M, Szwajgier D, Baranowska-Wójcik E, Korybalska K, Cielecka-Piontek J. Pleiotropic Potential of Evernia prunastri Extracts and Their Main Compounds Evernic Acid and Atranorin: In Vitro and In Silico Studies. Molecules 2023; 29:233. [PMID: 38202817 PMCID: PMC10780513 DOI: 10.3390/molecules29010233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Evernia prunastri is a lichen widely distributed in the Northern Hemisphere. Its biological properties still need to be discovered. Therefore, our paper focuses on studies of E. prunastri extracts, including its main metabolites evernic acid (EA) or atranorin (ATR). Phytochemical profiles using chromatographic analysis were confirmed. The antioxidant activity was evaluated using in vitro chemical tests and in vitro enzymatic cells-free tests, namely superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT). The anti-inflammatory potential using cyclooxygenase-2 (COX-2) and hyaluronidase were determined. The neuroprotective potential using acetylcholinesterase, (AChE), butyrylcholinesterase (BChE), and tyrosinase (Tyr) was estimated. The hypoglycemic activity was also confirmed (α-glucosidase). Principal component analysis was performed to determine the relationship between the biological activity of extracts. The inhibitory effect of EA and ATR on COX-2 AChE, BChE, Tyr, and α-glucosidase was evaluated using molecular docking techniques and confirmed for EA and ATR (besides α-glucosidase). The penetration of EA and ATR from extracts through the blood-brain barrier was confirmed using the parallel artificial membrane permeability assay blood-brain barrier test. In conclusion, depending on chemical surroundings and the concentration, the E. prunastri extracts, EA or ATR, showed attractive pleiotropic properties, which should be further investigated.
Collapse
Affiliation(s)
- Elżbieta Studzińska-Sroka
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Magdalena Bulicz
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Marika Henkel
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Natalia Rosiak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Magdalena Paczkowska-Walendowska
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8 Str., 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8 Str., 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Katarzyna Korybalska
- Department of Patophysiology, Poznan University of Medical Science, Rokietnicka 8 Str., 60-806 Poznań, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| |
Collapse
|
31
|
Felegyi K, Garádi Z, Studzińska-Sroka E, Papp V, Boldizsár I, Dancsó A, Béni S, Zalewski P, Ványolós A. Anticholinesterase and Antityrosinase Secondary Metabolites from the Fungus Xylobolus subpileatus. Molecules 2023; 29:213. [PMID: 38202796 PMCID: PMC10780293 DOI: 10.3390/molecules29010213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Xylobolus subpileatus is a widely distributed crust fungus reported from all continents except Antarctica, although considered a rare species in several European countries. Profound mycochemical analysis of the methanol extract of X. subpileatus resulted in the isolation of seven compounds (1-7). Among them, (3β,22E)-3-methoxy-ergosta-4,6,814,22-tetraene (1) is a new natural product, while the NMR assignment of its already known epimer (2) has been revised. In addition to a benzohydrofuran derivative fomannoxin (3), four ergostane-type triterpenes 4-7 were identified. The structure elucidation of the isolated metabolites was performed by one- and two-dimensional NMR and MS analysis. Compounds 2-7 as well as the chloroform, n-hexane, and methanol extracts of X. subpileatus were evaluated for their tyrosinase, acetylcholinesterase, and butyrylcholinesterase inhibitory properties. Among the examined compounds, only fomannoxin (3) displayed the antityrosinase property with 51% of inhibition, and the fungal steroids proved to be inactive. Regarding the potential acetylcholinesterase (AChE) inhibitory activity of the fungal extracts and metabolites, it was demonstrated that the chloroform extract and compounds 3-4 exerted noteworthy inhibitory activity, with 83.86 and 32.99%, respectively. The butyrylcholinesterase (BChE) inhibitory assay revealed that methanol and chloroform extracts, as well as compounds 3 and 4, exerted notable activity, while the rest of the compounds proved to be only weak enzyme inhibitors. Our study represents the first report on the chemical profile of basidiome of the wild-growing X. subpileatus, offering a thorough study on the isolation and structure determination of the most characteristic biologically active constituents of this species.
Collapse
Affiliation(s)
- Kristóf Felegyi
- Department of Pharmacognosy, Semmelweis University, 1085 Budapest, Hungary; (K.F.); (Z.G.); (I.B.); (S.B.)
| | - Zsófia Garádi
- Department of Pharmacognosy, Semmelweis University, 1085 Budapest, Hungary; (K.F.); (Z.G.); (I.B.); (S.B.)
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., 1475 Budapest, Hungary
| | - Elżbieta Studzińska-Sroka
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznan, Poland; (E.S.-S.); (P.Z.)
| | - Viktor Papp
- Department of Botany, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| | - Imre Boldizsár
- Department of Pharmacognosy, Semmelweis University, 1085 Budapest, Hungary; (K.F.); (Z.G.); (I.B.); (S.B.)
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - András Dancsó
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., 1475 Budapest, Hungary
| | - Szabolcs Béni
- Department of Pharmacognosy, Semmelweis University, 1085 Budapest, Hungary; (K.F.); (Z.G.); (I.B.); (S.B.)
- Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Przemysław Zalewski
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznan, Poland; (E.S.-S.); (P.Z.)
| | - Attila Ványolós
- Department of Pharmacognosy, Semmelweis University, 1085 Budapest, Hungary; (K.F.); (Z.G.); (I.B.); (S.B.)
| |
Collapse
|
32
|
Volpicelli-Daley L. Neuromelanin as a nidus for neurodegeneration. Brain 2023; 146:4794-4795. [PMID: 37967242 PMCID: PMC10689905 DOI: 10.1093/brain/awad385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023] Open
Abstract
This scientific commentary refers to ‘Neuromelanin accumulation drives endogenous synucleinopathy in non-human primates’ by Chocarro et al. (https://doi.org/10.1093/brain/awad331).
Collapse
Affiliation(s)
- Laura Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| |
Collapse
|
33
|
Meerman JJ, Legler J, Piersma AH, Westerink RHS, Heusinkveld HJ. An adverse outcome pathway for chemical-induced Parkinson's disease: Calcium is key. Neurotoxicology 2023; 99:226-243. [PMID: 37926220 DOI: 10.1016/j.neuro.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Exposure to pesticides is associated with an increased risk of developing Parkinson's disease (PD). Currently, rodent-based risk assessment studies cannot adequately capture neurodegenerative effects of pesticides due to a lack of human-relevant endpoints targeted at neurodegeneration. Thus, there is a need for improvement of the risk assessment guidelines. Specifically, a mechanistic assessment strategy, based on human physiology and (patho)biology is needed, which can be applied in next generation risk assessment. The Adverse Outcome Pathway (AOP) framework is particularly well-suited to provide the mechanistic basis for such a strategy. Here, we conducted a semi-systematic review in Embase and MEDLINE, focused on neurodegeneration and pesticides, to develop an AOP network for parkinsonian motor symptoms. Articles were labelled and included/excluded using the online platform Sysrev. Only primary articles, written in English, focused on effects of pesticides or PD model compounds in models for the brain were included. A total of 66 articles, out of the 1700 screened, was included. PD symptoms are caused by loss of function and ultimately death of dopaminergic neurons in the substantia nigra (SN). Our literature review highlights that a unique feature of these cells that increases their vulnerability is their reliance on continuous low-level influx of calcium. As such, excess intracellular calcium was identified as a central early Key Event (KE). This KE can lead to death of dopaminergic neurons of the SN, and eventually parkinsonian motor symptoms, via four distinct pathways: 1) activation of calpains, 2) endoplasmic reticulum stress, 3) impairment of protein degradation, and 4) oxidative damage. Several receptors have been identified that may serve as molecular initiating events (MIEs) to trigger one or more of these pathways. The proposed AOP network provides the biological basis that can be used to develop a mechanistic testing strategy that captures neurodegenerative effects of pesticides.
Collapse
Affiliation(s)
- Julia J Meerman
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Juliette Legler
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Remco H S Westerink
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Harm J Heusinkveld
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands.
| |
Collapse
|
34
|
Chocarro J, Rico AJ, Ariznabarreta G, Roda E, Honrubia A, Collantes M, Peñuelas I, Vázquez A, Rodríguez-Pérez AI, Labandeira-García JL, Vila M, Lanciego JL. Neuromelanin accumulation drives endogenous synucleinopathy in non-human primates. Brain 2023; 146:5000-5014. [PMID: 37769648 PMCID: PMC10689915 DOI: 10.1093/brain/awad331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023] Open
Abstract
Although neuromelanin is a dark pigment characteristic of dopaminergic neurons in the human substantia nigra pars compacta, its potential role in the pathogenesis of Parkinson's disease (PD) has often been neglected since most commonly used laboratory animals lack neuromelanin. Here we took advantage of adeno-associated viral vectors encoding the human tyrosinase gene for triggering a time-dependent neuromelanin accumulation within substantia nigra pars compacta dopaminergic neurons in macaques up to similar levels of pigmentation as observed in elderly humans. Furthermore, neuromelanin accumulation induced an endogenous synucleinopathy mimicking intracellular inclusions typically observed in PD together with a progressive degeneration of neuromelanin-expressing dopaminergic neurons. Moreover, Lewy body-like intracellular inclusions were observed in cortical areas of the frontal lobe receiving dopaminergic innervation, supporting a circuit-specific anterograde spread of endogenous synucleinopathy by permissive trans-synaptic templating. In summary, the conducted strategy resulted in the development and characterization of a new macaque model of PD matching the known neuropathology of this disorder with unprecedented accuracy. Most importantly, evidence is provided showing that intracellular aggregation of endogenous α-synuclein is triggered by neuromelanin accumulation, therefore any therapeutic approach intended to decrease neuromelanin levels may provide appealing choices for the successful implementation of novel PD therapeutics.
Collapse
Affiliation(s)
- Julia Chocarro
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Alberto J Rico
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Goiaz Ariznabarreta
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Elvira Roda
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Adriana Honrubia
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - María Collantes
- Translational Molecular Imaging Unit, Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Iván Peñuelas
- Translational Molecular Imaging Unit, Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Alfonso Vázquez
- Department of Neurosurgery, Hospital Universitario de Navarra, Servicio Navarro de Salud, 31008 Pamplona, Spain
| | - Ana I Rodríguez-Pérez
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José L Labandeira-García
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miquel Vila
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Vall d’Hebron Research Institute, Neurodegenerative Diseses Research Group, 08035 Barcelona, Spain
- Autonomous University of Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - José L Lanciego
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
35
|
Liu HM, Tang W, Wang XY, Jiang JJ, Zhang Y, Liu QL, Wang W. Experimental and theoretical studies on inhibition against tyrosinase activity and melanin biosynthesis by antioxidant ergothioneine. Biochem Biophys Res Commun 2023; 682:163-173. [PMID: 37816300 DOI: 10.1016/j.bbrc.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 10/12/2023]
Abstract
Ergothioneine, a natural derivative of histidine with a thiol/thine tautomeric structure, exhibits exceptional antioxidant properties and inhibition activities on tyrosinase. In this study, enzyme kinetics experiments and chromatographic spectral analysis revealed that ergothioneine inhibited tyrosinase in a reversible and non-competitive manner, with an inhibition constant of 0.554 mg/mL (2.41 mM). As the concentration of ergothioneine increased, the extremely flexible loop structure of tyrosinase extended from 40.1 % to 41.0 %, effectively covering the active center or binding site. Theoretical molecular docking simulation results show that ergothioneine forms complexes with tyrosinase through hydrogen bonding and salt bridges in the active center of Cu ions. Additionally, it was observed that ergothioneine's antioxidant had a stronger reducing impact on dopaquinone, an intermediate in melanin production, than the effect of ascorbic acid at an equivalent concentration (0.5 mg/mL). Ergothioneine reduced the intracellular reactive oxygen species to lower levels than the control group without UVA radiation and regulated the proliferation and differentiation in B16-F10 melanocytes. Clinical trials have shown that a 0.1 % concentration of ergothioneine can effectively suppress melanin production in irradiated skin. The significant reduction in melanin index and an increase in the individual type angle (ITA°) degree were measured after 4 weeks. These results collectively suggest that ergothioneine may be a promising inhibitor of natural antioxidant tyrosinase. Furthermore, due to its safety and efficacy, ergothioneine could be considered one of the bioactive substances for further study on diseases related to melanin production and tyrosinase activity which is of great significance for the cosmetics, medicine and food industries.
Collapse
Affiliation(s)
- Hui-Min Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China; Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai, 201418, China
| | - Wei Tang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Xiao-Yi Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jing-Jing Jiang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yun Zhang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Qing-Lei Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China; Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai, 201418, China
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China; Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai, 201418, China.
| |
Collapse
|
36
|
Beaumet M, Lazinski LM, Maresca M, Haudecoeur R. Catechol-mimicking transition-state analogues as non-oxidizable inhibitors of tyrosinases. Eur J Med Chem 2023; 259:115672. [PMID: 37487307 DOI: 10.1016/j.ejmech.2023.115672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Tyrosinases are copper-containing metalloenzymes involved in several processes in both mammals, insects, bacteria, fungi and plants. Their phenol oxidation properties are especially responsible for human melanogenesis, potentially leading to abnormal pigmentation, and for postharvest vegetable tissue browning. Thus, targeting tyrosinases attracts interest for applications both in dermocosmetic and agrofood fields. However, a large part of the literature about tyrosinase inhibitors is dedicated to the report of copper-interacting phenolic compounds, that are more likely alternative substrates leading to undesirable toxic quinones production. To circumvent this issue, the use of catechol-mimicking copper-chelating groups that are analogues of the tyrosinase oxidation transition state appears as a valuable strategy. Relying on several non-oxidizable pyridinone, pyrone or tropolone moieties, innovative inhibitors were developed, especially within the past decade, and the best reported analogues reached IC50 values in the nanomolar range. Herein, we review the design, the activity against several tyrosinases, and the proposed binding modes of reported catechol-mimicking, non-oxidizable molecules, in light of recent structural data.
Collapse
Affiliation(s)
- Morane Beaumet
- Univ. Grenoble Alpes, CNRS 5063, DPM, 38000, Grenoble, France
| | | | - Marc Maresca
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13013, Marseille, France
| | | |
Collapse
|
37
|
Kang MK, Yoon D, Jung HJ, Ullah S, Lee J, Park HS, Kim HJ, Kang D, Park Y, Chun P, Young Chung H, Moon HR. Identification and molecular mechanism of novel 5-alkenyl-2-benzylaminothiazol-4(5H)-one analogs as anti-melanogenic and antioxidant agents. Bioorg Chem 2023; 140:106763. [PMID: 37566943 DOI: 10.1016/j.bioorg.2023.106763] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Mushroom tyrosinase is a tetramer, whereas mammalian tyrosinase is a monomeric glycoprotein. In addition, the amino acid sequence of mushroom tyrosinases differs from that of mammalian tyrosinases. MHY2081 exhibits potent inhibitory activity against both mushroom and mammalian tyrosinases. Accordingly, based on the MHY2081 structure, 5-alkenyl-2-benzylaminothiazol-4(5H)-one analogs were designed as a novel anti-tyrosinase agent and synthesized using 2-((3,4-dimethoxybenzyl)amino)thiazol-4(5H)-one (16), a key intermediate obtained via the rearrangement of a benzylamino group. Compounds 6 and 9 (IC50 = 1.5-4.6 µM) exhibited higher mushroom tyrosinase inhibitory activity than kojic acid (IC50 = 20-21 µM) in the presence of l-tyrosine and/or l-dopa. Based on kinetic analysis using Lineweaver-Burk plots, 6 was a mixed inhibitor, whereas 9 was a competitive inhibitor, and docking simulation results supported that these compounds could bind to the active site of mushroom tyrosinase. Using B16F10 mammalian cells, we demonstrated that these compounds inhibited melanogenesis more potently than kojic acid, and their anti-melanogenic effects could be attributed to tyrosinase inhibition. All synthesized compounds could scavenge reactive oxygen species (ROS), with five compounds exhibiting mild-to-strong ABTS+ and DPPH radical-scavenging abilities. Compounds 6 and 9 were potent tyrosinase inhibitors with strong antioxidant activities against ROS, ABTS+, and DPPH radicals. Moreover, the compounds significantly suppressed tyrosinase expression in a dose-dependent manner. Collectively, these results suggest that the novel 5-alkenyl-2-benzylaminothiazol-4(5H)-one analogs, especially 6 and 9, are potential anti-melanogenic agents with antioxidant activity.
Collapse
Affiliation(s)
- Min Kyung Kang
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Dahye Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Sultan Ullah
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Jieun Lee
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hye Soo Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hye Jin Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Dongwan Kang
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Yujin Park
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
38
|
Riley E, Cicero N, Swallow K, De Rosa E, Anderson A. Locus coeruleus neuromelanin accumulation and dissipation across the lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562814. [PMID: 37905002 PMCID: PMC10614878 DOI: 10.1101/2023.10.17.562814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The pigment neuromelanin, produced in the locus coeruleus (LC) as a byproduct of catecholamine synthesis, gives the "blue spot" its name, and both identifies LC neurons and is thought to play an important yet complex role in normal and pathological aging. Using neuromelanin-sensitive T1-weighted turbo spin echo MRI scans we characterized volume and neuromelanin signal intensity in the LC of 96 participants between the ages of 19 and 86. Although LC volume did not change significantly throughout the lifespan, LC neuromelanin signal intensity increased from early adulthood, peaked around age 60 and precipitously declined thereafter. Neuromelanin intensity was greater in the caudal relative to rostral extent and in women relative to men. With regard to function, rostral LC neuromelanin intensity was associated with fluid cognition in older adults (60+) only in those above the 50th percentile of cognitive ability for age. The gradual accumulation of LC neuromelanin across the lifespan, its sudden dissipation in later life, and relation to preserved cognitive function, is consistent with its complex role in normal and pathological aging.
Collapse
Affiliation(s)
| | | | | | - Eve De Rosa
- Department of Psychology, Cornell University
| | | |
Collapse
|
39
|
de Fàbregues O, Sellés M, Ramos-Vicente D, Roch G, Vila M, Bové J. Relevance of tissue-resident memory CD8 T cells in the onset of Parkinson's disease and examination of its possible etiologies: infectious or autoimmune? Neurobiol Dis 2023; 187:106308. [PMID: 37741513 DOI: 10.1016/j.nbd.2023.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/05/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023] Open
Abstract
Tissue-resident memory CD8 T cells are responsible for local immune surveillance in different tissues, including the brain. They constitute the first line of defense against pathogens and cancer cells and play a role in autoimmunity. A recently published study demonstrated that CD8 T cells with markers of residency containing distinct granzymes and interferon-γ infiltrate the parenchyma of the substantia nigra and contact dopaminergic neurons in an early premotor stage of Parkinson's disease. This infiltration precedes α-synuclein aggregation and neuronal loss in the substantia nigra, suggesting a relevant role for CD8 T cells in the onset of the disease. To date, the nature of the antigen that initiates the adaptive immune response remains unknown. This review will discuss the role of tissue-resident memory CD8 T cells in brain immune homeostasis and in the onset of Parkinson's disease and other neurological diseases. We also discuss how aging and genetic factors can affect the CD8 T cell immune response and how animal models can be misleading when studying human-related immune response. Finally, we speculate about a possible infectious or autoimmune origin of Parkinson's disease.
Collapse
Affiliation(s)
- Oriol de Fàbregues
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Movement Disorders Unit, Neurology Department, Vall d'Hebron University Hospital
| | - Maria Sellés
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - David Ramos-Vicente
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Gerard Roch
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Catalonia, Spain; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain.
| |
Collapse
|
40
|
Lauritsen J, Romero-Ramos M. The systemic immune response in Parkinson's disease: focus on the peripheral immune component. Trends Neurosci 2023; 46:863-878. [PMID: 37598092 DOI: 10.1016/j.tins.2023.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
During Parkinson's disease (PD), both the central nervous system (CNS) and peripheral nervous system (PNS) are affected. In parallel, innate immune cells respond early to neuronal changes and alpha-synuclein (α-syn) pathology. Moreover, some of the affected neuronal groups innervate organs with a relevant role in immunity. Consequently, not only microglia, but also peripheral immune cells are altered, resulting in a systemic immune response. Innate and adaptive immune cells may participate in the neurodegenerative process by acting peripherally, infiltrating the brain, or releasing mediators that can protect or harm neurons. However, the sequence of the changes and the significance of each immune compartment in the disease remain to be clarified. In this review, we describe current understanding of the peripheral immune response in PD and discuss the road ahead.
Collapse
Affiliation(s)
- Johanne Lauritsen
- Department of Biomedicine, Health Faculty & Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Marina Romero-Ramos
- Department of Biomedicine, Health Faculty & Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
41
|
Berg SZ, Berg J. Melanin: a unifying theory of disease as exemplified by Parkinson's, Alzheimer's, and Lewy body dementia. Front Immunol 2023; 14:1228530. [PMID: 37841274 PMCID: PMC10570809 DOI: 10.3389/fimmu.2023.1228530] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Melanin, a ubiquitous dark pigment, plays important roles in the immune system, including scavenging reactive oxygen species formed in response to ultraviolet radiation absorption, absorbing metals, thermal regulation, drug uptake, innate immune system functions, redox, and energy transduction. Many tissue types, including brain, heart, arteries, ovaries, and others, contain melanin. Almost all cells contain precursors to melanin. A growing number of diseases in which there is a loss of melanin and/or neuromelanin are increasingly thought to have infectious etiologies, for example, Alzheimer's disease (AD), Parkinson's disease (PD), Lewy Body Dementia (LBD), and vitiligo. AD, PD, LBD, and vitiligo have been linked with herpesvirus, which enters melanosomes and causes apoptosis, and with gut dysbiosis and inflammation. Herpesvirus is also linked with gut dysbiosis and inflammation. We theorize that under normal healthy states, melanin retains some of the energy it absorbs from electromagnetic radiation, which is then used to fuel cells, and energy from ATP is used to compliment that energy supply. We further theorize that loss of melanin reduces the energy supply of cells, which in the case of AD, PD, and LBD results in an inability to sustain immune system defenses and remove the plaques associated with the disease, which appear to be part of the immune system's attempt to eradicate the pathogens seen in these neurodegenerative diseases. In addition, in an attempt to explain why removing these plaques does not result in improvements in cognition and mood and why cognitions and moods in these individuals have ebbs and flows, we postulate that it is not the plaques that cause the cognitive symptoms but, rather, inflammation in the brain resulting from the immune system's response to pathogens. Our theory that energy retained in melanin fuels cells in an inverse relationship with ATP is supported by studies showing alterations in ATP production in relationship to melanin levels in melanomas, vitiligo, and healthy cells. Therefore, alteration of melanin levels may be at the core of many diseases. We propose regulating melanin levels may offer new avenues for treatment development.
Collapse
Affiliation(s)
- Stacie Z. Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| | - Jonathan Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| |
Collapse
|
42
|
Stasiłowicz-Krzemień A, Cielecka-Piontek J. Hop Flower Supercritical Carbon Dioxide Extracts Coupled with Carriers with Solubilizing Properties-Antioxidant Activity and Neuroprotective Potential. Antioxidants (Basel) 2023; 12:1722. [PMID: 37760025 PMCID: PMC10525257 DOI: 10.3390/antiox12091722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Lupuli flos shows many biological activities like antioxidant potential, extended by a targeted effect on selected enzymes, the expression of which is characteristic for neurodegenerative changes within the nervous system. Lupuli flos extracts (LFE) were prepared by supercritical carbon dioxide (scCO2) extraction with various pressure and temperature parameters. The antioxidant, chelating activity, and inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase by extracts were studied. The extracts containing ethanol were used as references. The most beneficial neuroprotective effects were shown by the extract obtained under 5000 PSI and 50 °C. The neuroprotective effect of active compounds is limited by poor solubility; therefore, carriers with solubilizing properties were used for scCO2 extracts, combined with post-scCO2 ethanol extract. Hydroxypropyl-β-cyclodextrin (HP-β-CD) in combination with magnesium aluminometasilicate (Neusilin US2) in the ratio 1:0.5 improved dissolution profiles to the greatest extent, while the apparent permeability coefficients of these compounds determined using the parallel artificial membrane permeability assay in the gastrointestinal (PAMPA GIT) model were increased the most by only HP-β-CD.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| |
Collapse
|
43
|
Liu X, Yang L, Zhang G, Ling J. Neuroprotective Effects of Phenolic Antioxidant Tert-butylhydroquinone (tBHQ) in Brain Diseases. Mol Neurobiol 2023; 60:4909-4923. [PMID: 37191855 DOI: 10.1007/s12035-023-03370-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Human life and health are gravely threatened by brain diseases. The onset and progression of the illnesses are influenced by a variety of factors, including pathogenic causes, environmental factors, mental issues, etc. According to scientific studies, neuroinflammation and oxidative stress play a significant role in the development and incidence of brain diseases by producing pro-inflammatory cytokines and oxidative tissue damage to induce inflammation and apoptosis. Neuroinflammation, oxidative stress, and oxidative stress-related changes are inseparable factors in the etiology of several brain diseases. Numerous neurodegenerative diseases have undergone substantial research into the therapeutic alternatives that target oxidative stress, the function of oxidative stress, and the possible therapeutic use of antioxidants. Formerly, tBHQ is a synthetic phenolic antioxidant, which has been widely used as a food additive. According to recent researches, tBHQ can suppress the processes that lead to neuroinflammation and oxidative stress, which offers a fresh approach to treating brain diseases. In order to achieve the goal of decreasing inflammation and apoptosis, tBHQ is a specialized nuclear factor erythroid 2-related factor (Nrf2) activator that decreases oxidative stress and enhances antioxidant status by upregulating the Nrf2 gene and reducing nuclear factor kappa-B (NF-κB) activity. This article reviews the effects of tBHQ on neuroinflammation and oxidative stress in recent years and looks into how tBHQ inhibits neuroinflammation and oxidative stress through human, animal, and cell experiments to play a neuroprotective role in Alzheimer's disease (AD), stroke, depression, and Parkinson's disease (PD). It is anticipated that this article will be useful as a reference for upcoming research and the creation of drugs to treat brain diseases.
Collapse
Affiliation(s)
- Xiaojin Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Shandong Medical College, Linyi, 276000, China
| | - Luodan Yang
- College of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Guoying Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jianya Ling
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
44
|
Iannitelli AF, Weinshenker D. Riddles in the dark: Decoding the relationship between neuromelanin and neurodegeneration in locus coeruleus neurons. Neurosci Biobehav Rev 2023; 152:105287. [PMID: 37327835 PMCID: PMC10523397 DOI: 10.1016/j.neubiorev.2023.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
The noradrenergic locus coeruleus (LC) is among the first regions of the brain affected by pathology in both Alzheimer's disease (AD) and Parkinson's disease (PD), but the reasons for this selective vulnerability are not completely understood. Several features of LC neurons have been proposed as contributing factors to this dysfunction and degeneration, and this review will focus on the presence of neuromelanin (NM). NM is a dark pigment unique to catecholaminergic cells that is formed of norepinephrine (NE) and dopamine (DA) metabolites, heavy metals, protein aggregates, and oxidated lipids. We cover what is currently known about NM and the limitations of historical approaches, then discuss the new human tyrosinase (hTyr) model of NM production in rodent catecholamine cells in vivo that offers unique opportunities for studying its neurobiology, neurotoxicity, and potential of NM-based therapeutics for treating neurodegenerative disease.
Collapse
Affiliation(s)
- Alexa F Iannitelli
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
45
|
Karpenko MN, Muruzheva ZM, Ilyechova EY, Babich PS, Puchkova LV. Abnormalities in Copper Status Associated with an Elevated Risk of Parkinson's Phenotype Development. Antioxidants (Basel) 2023; 12:1654. [PMID: 37759957 PMCID: PMC10525645 DOI: 10.3390/antiox12091654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
In the last 15 years, among the many reasons given for the development of idiopathic forms of Parkinson's disease (PD), copper imbalance has been identified as a factor, and PD is often referred to as a copper-mediated disorder. More than 640 papers have been devoted to the relationship between PD and copper status in the blood, which include the following markers: total copper concentration, enzymatic ceruloplasmin (Cp) concentration, Cp protein level, and non-ceruloplasmin copper level. Most studies measure only one of these markers. Therefore, the existence of a correlation between copper status and the development of PD is still debated. Based on data from the published literature, meta-analysis, and our own research, it is clear that there is a connection between the development of PD symptoms and the number of copper atoms, which are weakly associated with the ceruloplasmin molecule. In this work, the link between the risk of developing PD and various inborn errors related to copper metabolism, leading to decreased levels of oxidase ceruloplasmin in the circulation and cerebrospinal fluid, is discussed.
Collapse
Affiliation(s)
- Marina N. Karpenko
- I.P. Pavlov Department of Physiology, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia; (M.N.K.); (Z.M.M.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
| | - Zamira M. Muruzheva
- I.P. Pavlov Department of Physiology, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia; (M.N.K.); (Z.M.M.)
- State Budgetary Institution of Health Care “Leningrad Regional Clinical Hospital”, 194291 St. Petersburg, Russia
| | - Ekaterina Yu. Ilyechova
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Research Center of Advanced Functional Materials and Laser Communication Systems, ADTS Institute, ITMO University, 197101 St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Polina S. Babich
- Department of Zoology and Genetics, Faculty of Biology, Herzen State Pedagogical University of Russia, 191186 St. Petersburg, Russia;
| | - Ludmila V. Puchkova
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Research Center of Advanced Functional Materials and Laser Communication Systems, ADTS Institute, ITMO University, 197101 St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| |
Collapse
|
46
|
Huddleston DE, Chen X, Hwang K, Langley J, Tripathi R, Tucker K, McKay JL, Hu X, Factor SA. Neuromelanin-sensitive MRI correlates of cognitive and motor function in Parkinson's disease with freezing of gait. FRONTIERS IN DEMENTIA 2023; 2:1215505. [PMID: 39082000 PMCID: PMC11285586 DOI: 10.3389/frdem.2023.1215505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2024]
Abstract
Substantia nigra pars compacta (SNc) and locus coeruleus (LC) are neuromelanin-rich nuclei implicated in diverse cognitive and motor processes in normal brain function and disease. However, their roles in aging and neurodegenerative disease mechanisms have remained unclear due to a lack of tools to study them in vivo. Preclinical and post-mortem human investigations indicate that the relationship between tissue neuromelanin content and neurodegeneration is complex. Neuromelanin exhibits both neuroprotective and cytotoxic characteristics, and tissue neuromelanin content varies across the lifespan, exhibiting an inverted U-shaped relationship with age. Neuromelanin-sensitive MRI (NM-MRI) is an emerging modality that allows measurement of neuromelanin-associated contrast in SNc and LC in humans. NM-MRI robustly detects disease effects in these structures in neurodegenerative conditions, including Parkinson's disease (PD). Previous NM-MRI studies of PD have largely focused on detecting disease group effects, but few studies have reported NM-MRI correlations with phenotype. Because neuromelanin dynamics are complex, we hypothesize that they are best interpreted in the context of both disease stage and aging, with neuromelanin loss correlating with symptoms most clearly in advanced stages where neuromelanin loss and neurodegeneration are coupled. We tested this hypothesis using NM-MRI to measure SNc and LC volumes in healthy older adult control individuals and in PD patients with and without freezing of gait (FOG), a severe and disabling PD symptom. We assessed for group differences and correlations between NM-MRI measures and aging, cognition and motor deficits. SNc volume was significantly decreased in PD with FOG compared to controls. SNc volume correlated significantly with motor symptoms and cognitive measures in PD with FOG, but not in PD without FOG. SNc volume correlated significantly with aging in PD. When PD patients were stratified by disease duration, SNc volume correlated with aging, cognition, and motor deficits only in PD with disease duration >5 years. We conclude that in severe or advanced PD, identified by either FOG or disease duration >5 years, the observed correlations between SNc volume and aging, cognition, and motor function may reflect the coupling of neuromelanin loss with neurodegeneration and the associated emergence of a linear relationship between NM-MRI measures and phenotype.
Collapse
Affiliation(s)
- Daniel E. Huddleston
- Jean and Paul Amos Parkinson's Disease and Movement Disorder Program, Department of Neurology, Emory University, Atlanta, GA, United States
| | - Xiangchuan Chen
- Jean and Paul Amos Parkinson's Disease and Movement Disorder Program, Department of Neurology, Emory University, Atlanta, GA, United States
| | - Kristy Hwang
- Department of Neurology, University of California, San Diego, La Jolla, CA, United States
| | - Jason Langley
- Center for Advanced Neuroimaging, University of California, Riverside, Riverside, CA, United States
| | - Richa Tripathi
- Jean and Paul Amos Parkinson's Disease and Movement Disorder Program, Department of Neurology, Emory University, Atlanta, GA, United States
| | - Kelsey Tucker
- Jean and Paul Amos Parkinson's Disease and Movement Disorder Program, Department of Neurology, Emory University, Atlanta, GA, United States
| | - J. Lucas McKay
- Jean and Paul Amos Parkinson's Disease and Movement Disorder Program, Department of Neurology, Emory University, Atlanta, GA, United States
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States
| | - Xiaoping Hu
- Center for Advanced Neuroimaging, University of California, Riverside, Riverside, CA, United States
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Stewart A. Factor
- Jean and Paul Amos Parkinson's Disease and Movement Disorder Program, Department of Neurology, Emory University, Atlanta, GA, United States
| |
Collapse
|
47
|
Mondal R, Banerjee C, Nandy S, Roy M, Chakraborty J. Calcineurin inhibition protects against dopamine toxicity and attenuates behavioral decline in a Parkinson's disease model. Cell Biosci 2023; 13:140. [PMID: 37528492 PMCID: PMC10394860 DOI: 10.1186/s13578-023-01068-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD), a highly prevalent neuro-motor disorder is caused due to progressive loss of dopaminergic (DAergic) neurons at substantia nigra region of brain. This leads to depleted dopamine (DA) content at striatum, thus affecting the fine tuning of basal ganglia. In patients, this imbalance is manifested by akinesia, catalepsy and tremor. PD associated behavioral dysfunctions are frequently mitigated by l-DOPA (LD) therapy, a precursor for DA synthesis. Due to progressive neurodegeneration, LD eventually loses applicability in PD. Although DA is cytotoxic, it is unclear whether LD therapy can accelerate PD progression or not. LD itself does not lead to neurodegeneration in vivo, but previous reports demonstrate that LD treatment mediated excess DA can potentiate neurotoxicity when PD associated genetic or epigenetic aberrations are involved. So, minimizing DA toxicity during the therapy is an absolute necessity to halt or slowdown PD progression. The two major contributing factors associated with DA toxicity are: degradation by Monoamine oxidase and DAquinone (DAQ) formation. RESULTS Here, we report that apoptotic mitochondrial fragmentation via Calcineurin (CaN)-DRP1 axis is a common downstream event for both these initial cues, inhibiting which can protect cells from DA toxicity comprehensively. No protective effect is observed, in terms of cell survival when only PxIxIT domain of CaN is obstructed, demonstrating the importance to block DRP1-CaN axis specifically. Further, evaluation of the impact of DA exposure on PD progression in a mice model reveal that LD mediated behavioral recovery diminishes with time, mostly because of continued DAergic cell death and dendritic spine loss at striatum. CaN inhibition, alone or in combination with LD, offer long term behavioral protection. This protective effect is mediated specifically by hindering CaN-DRP1 axis, whereas inhibiting interaction between CaN and other substrates, including proteins involved in neuro-inflammation, remained ineffective when LD is co-administered. CONCLUSIONS In this study, we conclude that DA toxicity can be circumvented by CaN inhibition and it can mitigate PD related behavioral aberrations by protecting neuronal architecture at striatum. We propose that CaN inhibitors might extend the therapeutic efficacy of LD treatment.
Collapse
Affiliation(s)
- Rupsha Mondal
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chayan Banerjee
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumangal Nandy
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Moumita Roy
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Joy Chakraborty
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
48
|
Rocha E, Chamoli M, Chinta SJ, Andersen JK, Wallis R, Bezard E, Goldberg M, Greenamyre T, Hirst W, Kuan WL, Kirik D, Niedernhofer L, Rappley I, Padmanabhan S, Trudeau LE, Spillantini M, Scott S, Studer L, Bellantuono I, Mortiboys H. Aging, Parkinson's Disease, and Models: What Are the Challenges? AGING BIOLOGY 2023; 1:e20230010. [PMID: 38978807 PMCID: PMC11230631 DOI: 10.59368/agingbio.20230010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Parkinson's disease (PD) is a chronic, neurodegenerative condition characterized by motor symptoms such as bradykinesia, rigidity, and tremor, alongside multiple nonmotor symptoms. The appearance of motor symptoms is linked to progressive dopaminergic neuron loss within the substantia nigra. PD incidence increases sharply with age, suggesting a strong association between mechanisms driving biological aging and the development and progression of PD. However, the role of aging in the pathogenesis of PD remains understudied. Numerous models of PD, including cell models, toxin-induced models, and genetic models in rodents and nonhuman primates (NHPs), reproduce different aspects of PD, but preclinical studies of PD rarely incorporate age as a factor. Studies using patient neurons derived from stem cells via reprogramming methods retain some aging features, but their characterization, particularly of aging markers and reproducibility of neuron type, is suboptimal. Investigation of age-related changes in PD using animal models indicates an association, but this is likely in conjunction with other disease drivers. The biggest barrier to drawing firm conclusions is that each model lacks full characterization and appropriate time-course assessments. There is a need to systematically investigate whether aging increases the susceptibility of mouse, rat, and NHP models to develop PD and understand the role of cell models. We propose that a significant investment in time and resources, together with the coordination and sharing of resources, knowledge, and data, is required to accelerate progress in understanding the role of biological aging in PD development and improve the reliability of models to test interventions.
Collapse
Affiliation(s)
- Emily Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Shankar J Chinta
- Buck Institute for Research on Aging, Novato, CA, USA
- Touro University California, College of Pharmacy, Vallejo, CA, USA
| | | | - Ruby Wallis
- The Healthy Lifespan Institute, Sheffield, United Kingdom
| | | | | | - Tim Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - We-Li Kuan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (BRAINS), Lund, Sweden
| | - Laura Niedernhofer
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Irit Rappley
- Recursion pharmaceuticals, Salt Lake City, UT, USA
| | | | - Louis-Eric Trudeau
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Maria Spillantini
- Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Lorenz Studer
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Ilaria Bellantuono
- The Healthy Lifespan Institute, Sheffield, United Kingdom
- Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Heather Mortiboys
- The Healthy Lifespan Institute, Sheffield, United Kingdom
- Department of Neuroscience, Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kindgom
| |
Collapse
|
49
|
Dovonou A, Bolduc C, Soto Linan V, Gora C, Peralta Iii MR, Lévesque M. Animal models of Parkinson's disease: bridging the gap between disease hallmarks and research questions. Transl Neurodegener 2023; 12:36. [PMID: 37468944 PMCID: PMC10354932 DOI: 10.1186/s40035-023-00368-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms. More than 200 years after its first clinical description, PD remains a serious affliction that affects a growing proportion of the population. Prevailing treatments only alleviate symptoms; there is still neither a cure that targets the neurodegenerative processes nor therapies that modify the course of the disease. Over the past decades, several animal models have been developed to study PD. Although no model precisely recapitulates the pathology, they still provide valuable information that contributes to our understanding of the disease and the limitations of our treatment options. This review comprehensively summarizes the different animal models available for Parkinson's research, with a focus on those induced by drugs, neurotoxins, pesticides, genetic alterations, α-synuclein inoculation, and viral vector injections. We highlight their characteristics and ability to reproduce PD-like phenotypes. It is essential to realize that the strengths and weaknesses of each model and the induction technique at our disposal are determined by the research question being asked. Our review, therefore, seeks to better aid researchers by ensuring a concrete discernment of classical and novel animal models in PD research.
Collapse
Affiliation(s)
- Axelle Dovonou
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Cyril Bolduc
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Victoria Soto Linan
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Charles Gora
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Modesto R Peralta Iii
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Martin Lévesque
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
50
|
Huddleston DE, Chen X, Hwang K, Langley J, Tripathi R, Tucker K, McKay JL, Hu X, Factor SA. Neuromelanin-sensitive MRI correlates of cognitive and motor function in Parkinson's disease with freezing of gait. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.04.23292227. [PMID: 37461735 PMCID: PMC10350131 DOI: 10.1101/2023.07.04.23292227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Substantia nigra pars compacta (SNc) and locus coeruleus (LC) are neuromelanin-rich nuclei implicated in diverse cognitive and motor processes in normal brain function and disease. However, their roles in aging and neurodegenerative disease mechanisms have remained unclear due to a lack of tools to study them in vivo. Preclinical and post-mortem human investigations indicate that the relationship between tissue neuromelanin content and neurodegeneration is complex. Neuromelanin exhibits both neuroprotective and cytotoxic characteristics, and tissue neuromelanin content varies across the lifespan, exhibiting an inverted U-shaped relationship with age. Neuromelanin-sensitive MRI (NM-MRI) is an emerging modality that allows measurement of neuromelanin-associated contrast in SNc and LC in humans. NM-MRI robustly detects disease effects in these structures in neurodegenerative and psychiatric conditions, including Parkinson's disease (PD). Previous NM-MRI studies of PD have largely focused on detecting disease group effects, but few studies have reported NM-MRI correlations with phenotype. Because neuromelanin dynamics are complex, we hypothesize that they are best interpreted in the context of both disease stage and aging, with neuromelanin loss correlating with symptoms most clearly in advanced stages where neuromelanin loss and neurodegeneration are coupled. We tested this hypothesis using NM-MRI to measure SNc and LC volumes in healthy older adult control individuals and in PD patients with and without freezing of gait (FOG), a severe and disabling PD symptom. We assessed for group differences and correlations between NM-MRI measures and aging, cognition and motor deficits. SNc volume was significantly decreased in PD with FOG compared to controls. SNc volume correlated significantly with motor symptoms and cognitive measures in PD with FOG, but not in PD without FOG. SNc volume correlated significantly with aging in PD. When PD patients were stratified by disease duration, SNc volume correlated with aging, cognition, and motor deficits only in PD with disease duration >5 years. We conclude that in severe or advanced PD, identified by either FOG or disease duration >5 years, the observed correlations between SNc volume and aging, cognition, and motor function may reflect the coupling of neuromelanin loss with neurodegeneration and the associated emergence of a linear relationship between NM-MRI measures and phenotype.
Collapse
Affiliation(s)
- Daniel E. Huddleston
- Jean and Paul Amos Parkinson’s Disease and Movement Disorder Program, Department of Neurology, Emory University, Atlanta, GA, USA
| | - Xiangchuan Chen
- Jean and Paul Amos Parkinson’s Disease and Movement Disorder Program, Department of Neurology, Emory University, Atlanta, GA, USA
| | - Kristy Hwang
- Department of Neurology, University of California, San Diego
| | - Jason Langley
- Center for Advanced Neuroimaging, University of California Riverside, Riverside, CA, USA
| | - Richa Tripathi
- Jean and Paul Amos Parkinson’s Disease and Movement Disorder Program, Department of Neurology, Emory University, Atlanta, GA, USA
| | - Kelsey Tucker
- Jean and Paul Amos Parkinson’s Disease and Movement Disorder Program, Department of Neurology, Emory University, Atlanta, GA, USA
| | - J. Lucas McKay
- Jean and Paul Amos Parkinson’s Disease and Movement Disorder Program, Department of Neurology, Emory University, Atlanta, GA, USA
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA
| | - Xiaoping Hu
- Center for Advanced Neuroimaging, University of California Riverside, Riverside, CA, USA
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | - Stewart A. Factor
- Jean and Paul Amos Parkinson’s Disease and Movement Disorder Program, Department of Neurology, Emory University, Atlanta, GA, USA
| |
Collapse
|