1
|
Wu DH, Zhao ZL, Yin WT, Liu H, Xiang XY, Zhu LJ, Li JQ, Yan ZH, Li YJ, Jian YP, Xu ZX. STING exerts antiviral innate immune response by activating pentose phosphate pathway. Cell Commun Signal 2024; 22:599. [PMID: 39695767 DOI: 10.1186/s12964-024-01983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The innate immune system serves as the host's first line of defense against invading pathogens. Stimulator of interferon genes (STING) is a key component of this system, yet its relationship with glucose metabolism, particularly in antiviral immunity, remains underexplored. METHODS Metabolomics analysis was used for detecting metabolic alterations in spleens from STING knockout (KO) and wild-type (WT) mice. Co-immunoprecipitation was employed for determining ubiquitination of TKT. Mass spectrometry was used for detecting interaction proteins of STING. Enzyme activity kits were used for detecting the activities of TKT and G6PD. RESULTS In this study, we demonstrate that herpes simplex virus (HSV) infection activates the pentose phosphate pathway (PPP) in host cells, thereby initiating an antiviral immune response. Using STING-manipulated cells and systemic knockout mice, we show that STING positively regulates PPP, which, in turn, limits HSV infection. Inhibition of the PPP significantly reduced the production of antiviral immune factors and dampened STING-induced innate immune responses. Mechanistically, we discovered that STING interacts with transketolase (TKT), a key enzyme in the non-oxidative branch of the PPP, and reduces its ubiquitination via the E3 ubiquitin ligase UBE3A, stabilizing TKT. Silencing TKT or inhibiting its activity with oxythiamine diminished antiviral immune factor production. CONCLUSION Our findings reveal that the PPP plays a synergistic role in generating antiviral immune factors during viral infection and suggest that PPP activation could serve as an adjunct strategy for antiviral therapy.
Collapse
Affiliation(s)
- Dan-Hui Wu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Zi-Long Zhao
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Wei-Tao Yin
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Huai Liu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Xiong-Yan Xiang
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Ling-Jun Zhu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Jun-Qi Li
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Zhen-Hua Yan
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Yu-Jia Li
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Yong-Ping Jian
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China.
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China.
| |
Collapse
|
2
|
Nguyen NM, Conrady CD. A Better Understanding of the Clinical and Pathological Changes in Viral Retinitis: Steps to Improve Visual Outcomes. Microorganisms 2024; 12:2513. [PMID: 39770716 PMCID: PMC11678148 DOI: 10.3390/microorganisms12122513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Infectious retinitis, though rare, poses a significant threat to vision, often leading to severe and irreversible damage. Various pathogens, including viruses, bacteria, tick-borne agents, parasites, and fungi, can cause this condition. Among these, necrotizing herpetic retinitis represents a critical spectrum of retinal infections primarily caused by herpes viruses such as varicella-zoster virus (VZV), herpes simplex virus (HSV), and cytomegalovirus (CMV). This review underscores the retina's susceptibility to viral infections, focusing on the molecular mechanisms through which herpetic viruses invade and damage retinal tissue, supported by clinical and preclinical evidence. We also identify existing knowledge gaps and propose future research directions to deepen our understanding and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Nghi M. Nguyen
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christopher D. Conrady
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
3
|
Vance RE. Tuberculosis as an unconventional interferonopathy. Curr Opin Immunol 2024; 92:102508. [PMID: 39637776 DOI: 10.1016/j.coi.2024.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
Tuberculosis is caused by Mycobacterium tuberculosis, a bacterium that accounts for more human mortality than any other. Evidence is accumulating for the view that tuberculosis is an interferonopathy - a disease driven by type I interferons. However, how type I interferons exacerbate tuberculosis remains poorly understood. As an infection, tuberculosis is distinct from conventional interferonopathies, which are autoinflammatory diseases. Here I consider the hypothesis that type I interferons promote bacterial replication by impairing key antibacterial immune responses, including those orchestrated by interleukin-1 and interferon γ. Paradoxically, during tuberculosis, the underlying state of impaired antibacterial immunity co-exists with overt (but ineffective) inflammation. Conceiving of tuberculosis as an unconventional interferonopathy may suggest fruitful avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Russell E Vance
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA USA.
| |
Collapse
|
4
|
Swaraj S, Tripathi S. Interference without interferon: interferon-independent induction of interferon-stimulated genes and its role in cellular innate immunity. mBio 2024; 15:e0258224. [PMID: 39302126 PMCID: PMC11481898 DOI: 10.1128/mbio.02582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Interferons (IFNs) are multifaceted proteins that play pivotal roles in orchestrating robust antiviral immune responses and modulating the intricate landscape of host immunity. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, which leads to the transcription of a battery of genes, collectively known as IFN-stimulated genes (ISGs). While the well-established role of IFNs in coordinating the innate immune response against viral infections is widely acknowledged, recent years have provided a more distinct comprehension of the functional significance attributed to non-canonical, IFN-independent induction of ISGs. In this review, we summarize the non-conventional signaling pathways of ISG induction. These alternative pathways offer new avenues for developing antiviral strategies or immunomodulation in various diseases.
Collapse
Affiliation(s)
- Shachee Swaraj
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
5
|
Venkatraman R, Balka KR, Wong W, Sivamani J, Magill Z, Tullett KM, Lane RM, Saunders TL, Tailler M, Crack PJ, Wakim LM, Lahoud MH, Lawlor KE, Kile BT, O'Keeffe M, De Nardo D. IKKɛ induces STING non-IFN immune responses via a mechanism analogous to TBK1. iScience 2024; 27:110693. [PMID: 39262777 PMCID: PMC11387596 DOI: 10.1016/j.isci.2024.110693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
The cGAS-STING pathway responds to cytosolic DNA to elicit host immunity to infection. The activation of stimulator of interferon genes (STING) can trigger a number of critical cellular responses including inflammation, noncanonical autophagy, lipid metabolism, senescence, and cell death. STING-mediated immunity through the production of type I interferons (IFNs) and nuclear factor kappa B (NF-κB)-driven proinflammatory cytokines is primarily driven via the effector protein TBK1. We have previously found that IκBα kinase epsilon (IKKε), a homolog of TBK1, can also facilitate STING-NF-κB responses. Therefore, a thorough understanding of how IKKε participates in STING signaling is essential. Here, we used a combination of genetic and biochemical approaches to provide mechanistic details into how IKKε confers non-IFN (e.g., NF-κB and MAPK) STING responses in macrophages, including in the absence of TBK1. We demonstrate a conserved mechanism of STING binding between TBK1 and IKKε. These findings strengthen our understanding of cGAS-STING signaling and the preservation of host immunity in cases of TBK1-deficiency.
Collapse
Affiliation(s)
- Rajan Venkatraman
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Katherine R Balka
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Wilson Wong
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Jananipriya Sivamani
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Zoe Magill
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kirsteen M Tullett
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Rachael M Lane
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tahnee L Saunders
- Ubiquitin Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Maximilien Tailler
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Peter J Crack
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Mireille H Lahoud
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Benjamin T Kile
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Meredith O'Keeffe
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dominic De Nardo
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
6
|
Aybar-Torres AA, Saldarriaga LA, Pham AT, Emtiazjoo AM, Sharma AK, Bryant AJ, Jin L. The common Sting1 HAQ, AQ alleles rescue CD4 T cellpenia, restore T-regs, and prevent SAVI (N153S) inflammatory disease in mice. eLife 2024; 13:RP96790. [PMID: 39291958 PMCID: PMC11410371 DOI: 10.7554/elife.96790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
The significance of STING1 gene in tissue inflammation and cancer immunotherapy has been increasingly recognized. Intriguingly, common human STING1 alleles R71H-G230A-R293Q (HAQ) and G230A-R293Q (AQ) are carried by ~60% of East Asians and ~40% of Africans, respectively. Here, we examine the modulatory effects of HAQ, AQ alleles on STING-associated vasculopathy with onset in infancy (SAVI), an autosomal dominant, fatal inflammatory disease caused by gain-of-function human STING1 mutations. CD4 T cellpenia is evident in SAVI patients and mouse models. Using Sting1 knock-in mice expressing common human STING1 alleles HAQ, AQ, and Q293, we found that HAQ, AQ, and Q293 splenocytes resist STING1-mediated cell death ex vivo, establishing a critical role of STING1 residue 293 in cell death. The HAQ/SAVI(N153S) and AQ/SAVI(N153S) mice did not have CD4 T cellpenia. The HAQ/SAVI(N153S), AQ/SAVI(N153S) mice have more (~10-fold, ~20-fold, respectively) T-regs than WT/SAVI(N153S) mice. Remarkably, while they have comparable TBK1, IRF3, and NFκB activation as the WT/SAVI, the AQ/SAVI mice have no tissue inflammation, regular body weight, and normal lifespan. We propose that STING1 activation promotes tissue inflammation by depleting T-regs cells in vivo. Billions of modern humans have the dominant HAQ, AQ alleles. STING1 research and STING1-targeting immunotherapy should consider STING1 heterogeneity in humans.
Collapse
Affiliation(s)
- Alexandra a Aybar-Torres
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Lennon A Saldarriaga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Ann T Pham
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Amir M Emtiazjoo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Ashish K Sharma
- Division of Vascular Surgery & Endovascular Therapy, Department of Surgery, University of FloridaGainesvilleUnited States
| | - Andrew j Bryant
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| |
Collapse
|
7
|
Pavlou A, Mulenge F, Gern OL, Busker LM, Greimel E, Waltl I, Kalinke U. Orchestration of antiviral responses within the infected central nervous system. Cell Mol Immunol 2024; 21:943-958. [PMID: 38997413 PMCID: PMC11364666 DOI: 10.1038/s41423-024-01181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/05/2024] [Indexed: 07/14/2024] Open
Abstract
Many newly emerging and re-emerging viruses have neuroinvasive potential, underscoring viral encephalitis as a global research priority. Upon entry of the virus into the CNS, severe neurological life-threatening conditions may manifest that are associated with high morbidity and mortality. The currently available therapeutic arsenal against viral encephalitis is rather limited, emphasizing the need to better understand the conditions of local antiviral immunity within the infected CNS. In this review, we discuss new insights into the pathophysiology of viral encephalitis, with a focus on myeloid cells and CD8+ T cells, which critically contribute to protection against viral CNS infection. By illuminating the prerequisites of myeloid and T cell activation, discussing new discoveries regarding their transcriptional signatures, and dissecting the mechanisms of their recruitment to sites of viral replication within the CNS, we aim to further delineate the complexity of antiviral responses within the infected CNS. Moreover, we summarize the current knowledge in the field of virus infection and neurodegeneration and discuss the potential links of some neurotropic viruses with certain pathological hallmarks observed in neurodegeneration.
Collapse
Affiliation(s)
- Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Felix Mulenge
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Olivia Luise Gern
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Lena Mareike Busker
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Elisabeth Greimel
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Inken Waltl
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
8
|
Leekha A, Saeedi A, Kumar M, Sefat KMSR, Martinez-Paniagua M, Meng H, Fathi M, Kulkarni R, Reichel K, Biswas S, Tsitoura D, Liu X, Cooper LJN, Sands CM, Das VE, Sebastian M, Hurst BL, Varadarajan N. An intranasal nanoparticle STING agonist protects against respiratory viruses in animal models. Nat Commun 2024; 15:6053. [PMID: 39025863 PMCID: PMC11258242 DOI: 10.1038/s41467-024-50234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/04/2024] [Indexed: 07/20/2024] Open
Abstract
Respiratory viral infections cause morbidity and mortality worldwide. Despite the success of vaccines, vaccination efficacy is weakened by the rapid emergence of viral variants with immunoevasive properties. The development of an off-the-shelf, effective, and safe therapy against respiratory viral infections is thus desirable. Here, we develop NanoSTING, a nanoparticle formulation of the endogenous STING agonist, 2'-3' cGAMP, to function as an immune activator and demonstrate its safety in mice and rats. A single intranasal dose of NanoSTING protects against pathogenic strains of SARS-CoV-2 (alpha and delta VOC) in hamsters. In transmission experiments, NanoSTING reduces the transmission of SARS-CoV-2 Omicron VOC to naïve hamsters. NanoSTING also protects against oseltamivir-sensitive and oseltamivir-resistant strains of influenza in mice. Mechanistically, NanoSTING upregulates locoregional interferon-dependent and interferon-independent pathways in mice, hamsters, as well as non-human primates. Our results thus implicate NanoSTING as a broad-spectrum immune activator for controlling respiratory virus infection.
Collapse
Affiliation(s)
- Ankita Leekha
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Arash Saeedi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Monish Kumar
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - K M Samiur Rahman Sefat
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Melisa Martinez-Paniagua
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Hui Meng
- College of Optometry, University of Houston, Houston, TX, USA
| | - Mohsen Fathi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Rohan Kulkarni
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Kate Reichel
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Sujit Biswas
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | | | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | | | | | - Vallabh E Das
- College of Optometry, University of Houston, Houston, TX, USA
| | | | - Brett L Hurst
- Institute for Antiviral Research, Utah State University, Logan, UT, USA
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
9
|
Lin W, Szabo C, Liu T, Tao H, Wu X, Wu J. STING trafficking activates MAPK-CREB signaling to trigger regulatory T cell differentiation. Proc Natl Acad Sci U S A 2024; 121:e2320709121. [PMID: 38985760 PMCID: PMC11260101 DOI: 10.1073/pnas.2320709121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
The Type-I interferon (IFN-I) response is the major outcome of stimulator of interferon genes (STING) activation in innate cells. STING is more abundantly expressed in adaptive T cells; nevertheless, its intrinsic function in T cells remains unclear. Intriguingly, we previously demonstrated that STING activation in T cells activates widespread IFN-independent activities, which stands in contrast to the well-known STING-mediated IFN response. Here, we have identified that STING activation induces regulatory T cells (Tregs) differentiation independently of IRF3 and IFN. Specifically, the translocation of STING from the endoplasmic reticulum to the Golgi activates mitogen-activated protein kinase (MAPK) activity, which subsequently triggers transcription factor cAMP response element-binding protein (CREB) activation. The activation of the STING-MAPK-CREB signaling pathway induces the expression of many cytokine genes, including interleukin-2 (IL-2) and transforming growth factor-beta 2 (TGF-β2), to promote the Treg differentiation. Genetic knockdown of MAPK p38 or pharmacological inhibition of MAPK p38 or CREB markedly inhibits STING-mediated Treg differentiation. Administration of the STING agonist also promotes Treg differentiation in mice. In the Trex1-/- autoimmune disease mouse model, we demonstrate that intrinsic STING activation in CD4+ T cells can drive Treg differentiation, potentially counterbalancing the autoimmunity associated with Trex1 deficiency. Thus, STING-MAPK-CREB represents an IFN-independent signaling axis of STING that may have profound effects on T cell effector function and adaptive immunity.
Collapse
Affiliation(s)
- Wei Lin
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH44195
| | - Claudia Szabo
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH44195
| | - Tao Liu
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH44195
| | - Huangheng Tao
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH44195
| | - Xianfang Wu
- Infection Biology Program, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH44195
| | - Jianjun Wu
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH44195
| |
Collapse
|
10
|
Cuddy SR, Flores ME, Krakowiak PA, Whitford AL, Dochnal SA, Babnis A, Miyake T, Tigano M, Engel DA, Cliffe AR. Co-option of mitochondrial nucleic acid sensing pathways by HSV-1 UL12.5 for reactivation from latent Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.601241. [PMID: 39005440 PMCID: PMC11245091 DOI: 10.1101/2024.07.06.601241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Although viruses subvert innate immune pathways for their replication, there is evidence they can also co-opt anti-viral responses for their benefit. The ubiquitous human pathogen, Herpes Simplex Virus-1 (HSV-1), encodes a protein (UL12.5) that induces the release of mitochondrial nucleic acid into the cytosol, which activates immune sensing pathways and reduces productive replication in non-neuronal cells. HSV-1 establishes latency in neurons and can reactivate to cause disease. We found that UL12.5 is required for HSV-1 reactivation in neurons and acts to directly promote viral lytic gene expression during initial exit from latency. Further, the direct activation of innate immune sensing pathways triggered HSV reactivation and compensated for a lack of UL12.5. Finally, we found that the induction of HSV-1 lytic genes during reactivation required intact RNA and DNA sensing pathways, demonstrating that HSV-1 can both respond to and active antiviral nucleic acid sensing pathways to reactivate from a latent infection.
Collapse
Affiliation(s)
- Sean R. Cuddy
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, 22908
| | - Matthew E. Flores
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Patryk A. Krakowiak
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Abigail L. Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Sara A. Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Aleksandra Babnis
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Tsuyoshi Miyake
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Marco Tigano
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia 19107
| | - Daniel A. Engel
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Anna. R Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| |
Collapse
|
11
|
Crow YJ, Casanova JL. Human life within a narrow range: The lethal ups and downs of type I interferons. Sci Immunol 2024; 9:eadm8185. [PMID: 38968338 DOI: 10.1126/sciimmunol.adm8185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/13/2024] [Indexed: 07/07/2024]
Abstract
The past 20 years have seen the definition of human monogenic disorders and their autoimmune phenocopies underlying either defective or enhanced type I interferon (IFN) activity. These disorders delineate the impact of type I IFNs in natural conditions and demonstrate that only a narrow window of type I IFN activity is beneficial. Insufficient type I IFN predisposes humans to life-threatening viral diseases (albeit unexpectedly few) with a central role in immunity to respiratory and cerebral viral infection. Excessive type I IFN, perhaps counterintuitively, appears to underlie a greater number of autoinflammatory and/or autoimmune conditions known as type I interferonopathies, whose study has revealed multiple molecular programs involved in the induction of type I IFN signaling. These observations suggest that the manipulation of type I IFN activity to within a physiological range may be clinically relevant for the prevention and treatment of viral and inflammatory diseases.
Collapse
Affiliation(s)
- Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR 1163, Paris, France
- University Paris Cité, Paris, France
| | - Jean-Laurent Casanova
- University Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Imagine Institute, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
12
|
Lanng KRB, Lauridsen EL, Jakobsen MR. The balance of STING signaling orchestrates immunity in cancer. Nat Immunol 2024; 25:1144-1157. [PMID: 38918609 DOI: 10.1038/s41590-024-01872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
Over the past decade, it has become clear that the stimulator of interferon genes (STING) pathway is critical for a variety of immune responses. This endoplasmic reticulum-anchored adaptor protein has regulatory functions in host immunity across a spectrum of conditions, including infectious diseases, autoimmunity, neurobiology and cancer. In this Review, we outline the central importance of STING in immunological processes driven by expression of type I and III interferons, as well as inflammatory cytokines, and we look at therapeutic options for targeting STING. We also examine evidence that challenges the prevailing notion that STING activation is predominantly beneficial in combating cancer. Further exploration is imperative to discern whether STING activation in the tumor microenvironment confers true benefits or has detrimental effects. Research in this field is at a crossroads, as a clearer understanding of the nuanced functions of STING activation in cancer is required for the development of next-generation therapies.
Collapse
|
13
|
Aybar-Torres A, Saldarriaga LA, Pham AT, Emtiazjoo AM, Sharma AK, Bryant AJ, Jin L. The common TMEM173 HAQ, AQ alleles rescue CD4 T cellpenia, restore T-regs, and prevent SAVI (N153S) inflammatory disease in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.05.561109. [PMID: 37886547 PMCID: PMC10602033 DOI: 10.1101/2023.10.05.561109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The significance of STING (encoded by the TMEM173 gene) in tissue inflammation and cancer immunotherapy has been increasingly recognized. Intriguingly, common human TMEM173 alleles R71H-G230A-R293Q (HAQ) and G230A-R293Q (AQ) are carried by ~60% of East Asians and ~40% of Africans, respectively. Here, we examine the modulatory effects of HAQ, AQ alleles on STING-associated vasculopathy with onset in infancy (SAVI), an autosomal dominant, fatal inflammatory disease caused by gain-of-function human STING mutations. CD4 T cellpenia is evident in SAVI patients and mouse models. Using STING knock-in mice expressing common human TMEM173 alleles HAQ, AQ, and Q293, we found that HAQ, AQ, and Q293 splenocytes resist STING-mediated cell death ex vivo, establishing a critical role of STING residue 293 in cell death. The HAQ/SAVI(N153S) and AQ/SAVI(N153S) mice did not have CD4 T cellpenia. The HAQ/SAVI(N153S), AQ/SAVI(N153S) mice have more (~10-fold, ~20-fold, respectively) T-regs than WT/SAVI(N153S) mice. Remarkably, while they have comparable TBK1, IRF3, and NFκB activation as the WT/SAVI, the AQ/SAVI mice have no tissue inflammation, regular body weight, and normal lifespan. We propose that STING activation promotes tissue inflammation by depleting T-regs cells in vivo. Billions of modern humans have the dominant HAQ, AQ alleles. STING research and STING-targeting immunotherapy should consider TMEM173 heterogeneity in humans.
Collapse
Affiliation(s)
- Alexandra Aybar-Torres
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Lennon A Saldarriaga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Ann T. Pham
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Amir M. Emtiazjoo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Ashish K Sharma
- Division of Vascular Surgery & Endovascular Therapy, Department of Surgery, University of Florida, Gainesville, FL 32610, U.S.A
| | - Andrew J. Bryant
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| |
Collapse
|
14
|
Vejvisithsakul PP, Thumarat C, Leelahavanichkul A, Hirankan N, Pisitkun T, Paludan SR, Pisitkun P. Elucidating the function of STING in systemic lupus erythematosus through the STING Goldenticket mouse mutant. Sci Rep 2024; 14:13968. [PMID: 38886451 PMCID: PMC11183220 DOI: 10.1038/s41598-024-64495-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/09/2024] [Indexed: 06/20/2024] Open
Abstract
The complexity of systemic lupus erythematosus (SLE) arises from intricate genetic and environmental interactions, with STING playing a pivotal role. This study aims to comprehend the function of STING using the pristane-induced lupus (PIL) model in Sting missense mutant mice (Goldenticket or StingGt), which contrasts with previous research using Sting knockout mice. Investigating two-month-old StingGt mice over six months post-PIL induction, we observed a profound reduction in autoimmune markers, including antinuclear and anti-dsDNA antibodies, germinal center B cells, and plasma cells, compared to their wild-type counterparts. A pivotal finding was the marked decrease in IL-17-producing T cells. Notably, the severity of lupus nephritis and pulmonary hemorrhages was significantly diminished in StingGt mice. These findings demonstrate that different genetic approaches to interfere with STING signaling can lead to contrasting outcomes in SLE pathogenesis, which highlights the need for a nuanced understanding of the role of STING in drug development for SLE. In summary, the loss of Sting function in Goldenticket mutant mice rescued autoimmune phenotypes in PIL. This study reveals the critical nature of STING in SLE, suggesting that the method of STING modulation significantly influences disease phenotypes and should be a key consideration in developing targeted therapies.
Collapse
Affiliation(s)
- Pichpisith Pierre Vejvisithsakul
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Chisanu Thumarat
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankan
- Centre of Excellent in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Prapaporn Pisitkun
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
15
|
Li L. Stimulating STING for cancer therapy: Taking the extracellular route. Cell Chem Biol 2024; 31:851-861. [PMID: 38723635 DOI: 10.1016/j.chembiol.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 04/09/2024] [Indexed: 05/19/2024]
Abstract
Ten years ago, the second messenger cGAMP was discovered as the activator of the anti-cancer STING pathway. The characterization of cGAMP's paracrine action and dominant extracellular hydrolase ENPP1 cemented cGAMP as an intercellular immunotransmitter that coordinates the innate and adaptive immune systems to fight cancer. In this Perspective, I look back at a decade of discovery of extracellular cGAMP biology and drug development aiming to supply or preserve extracellular cGAMP for cancer treatment. Reviewing our understanding of the cell type-specific regulatory mechanisms of STING agonists, including their transporters and degradation enzymes, I explain on a molecular and cellular level the successes and challenges of direct STING agonists for cancer therapy. Based on what we know now, I propose new ways to stimulate the STING pathway in a manner that is not only cancer specific, but also cell type specific to fully harness the anti-cancer effect of cGAMP while avoiding collateral damage.
Collapse
Affiliation(s)
- Lingyin Li
- Arc Institute, Palo Alto, CA, 94304 USA; Department of Biochemistry and Sarafan ChEM-H Institute, Stanford University, Stanford, CA, 94305 USA.
| |
Collapse
|
16
|
Imler JL, Cai H, Meignin C, Martins N. Evolutionary immunology to explore original antiviral strategies. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230068. [PMID: 38497262 PMCID: PMC10945398 DOI: 10.1098/rstb.2023.0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/25/2023] [Indexed: 03/19/2024] Open
Abstract
Over the past 25 years, the field of evolutionary developmental biology (evo-devo) has used genomics and genetics to gain insight on the developmental mechanisms underlying the evolution of morphological diversity of animals. Evo-devo exploits the key insight that conserved toolkits of development (e.g. Hox genes) are used in animals to produce genetic novelties that provide adaptation to a new environment. Like development, immunity is forged by interactions with the environment, namely the microbial world. Yet, when it comes to the study of immune defence mechanisms in invertebrates, interest primarily focuses on evolutionarily conserved molecules also present in humans. Here, focusing on antiviral immunity, we argue that immune genes not conserved in humans represent an unexplored resource for the discovery of new antiviral strategies. We review recent findings on the cGAS-STING pathway and explain how cyclic dinucleotides produced by cGAS-like receptors may be used to investigate the portfolio of antiviral genes in a broad range of species. This will set the stage for evo-immuno approaches, exploiting the investment in antiviral defences made by metazoans over hundreds of millions of years of evolution. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Jean-Luc Imler
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UPR9022, Strasbourg 67070, France
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Hua Cai
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Carine Meignin
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UPR9022, Strasbourg 67070, France
| | - Nelson Martins
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UPR9022, Strasbourg 67070, France
| |
Collapse
|
17
|
van der Horst D, Kurmasheva N, Marqvorsen MHS, Assil S, Rahimic AHF, Kollmann CF, Silva da Costa L, Wu Q, Zhao J, Cesari E, Iversen MB, Ren F, Jensen TI, Narita R, Schack VR, Zhang BC, Bak RO, Sette C, Fenton RA, Mikkelsen JG, Paludan SR, Olagnier D. SAM68 directs STING signaling to apoptosis in macrophages. Commun Biol 2024; 7:283. [PMID: 38454028 PMCID: PMC10920828 DOI: 10.1038/s42003-024-05969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
DNA is a danger signal sensed by cGAS to engage signaling through STING to activate innate immune functions. The best-studied downstream responses to STING activation include expression of type I interferon and inflammatory genes, but STING also activates other pathways, including apoptosis. Here, we report that STING-dependent induction of apoptosis in macrophages occurs through the intrinsic mitochondrial pathway and is mediated via IRF3 but acts independently of gene transcription. By intersecting four mass spectrometry datasets, we identify SAM68 as crucial for the induction of apoptosis downstream of STING activation. SAM68 is essential for the full activation of apoptosis. Still, it is not required for STING-mediated activation of IFN expression or activation of NF-κB. Mechanistic studies reveal that protein trafficking is required and involves SAM68 recruitment to STING upon activation, with the two proteins associating at the Golgi or a post-Golgi compartment. Collectively, our work identifies SAM68 as a STING-interacting protein enabling induction of apoptosis through this DNA-activated innate immune pathway.
Collapse
Affiliation(s)
- Demi van der Horst
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Naziia Kurmasheva
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Mikkel H S Marqvorsen
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Sonia Assil
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Anna H F Rahimic
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Christoph F Kollmann
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Leandro Silva da Costa
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Qi Wu
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Jian Zhao
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Eleonora Cesari
- GSTEP-Organoids Core Facility, IRCCS Fondazione Policlinico Agostino Gemelli, 00168, Rome, Italy
| | - Marie B Iversen
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Fanghui Ren
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Trine I Jensen
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Ryo Narita
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Vivien R Schack
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Bao-Cun Zhang
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Claudio Sette
- GSTEP-Organoids Core Facility, IRCCS Fondazione Policlinico Agostino Gemelli, 00168, Rome, Italy
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, 00168, Rome, Italy
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Jacob G Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark.
| | - David Olagnier
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark.
| |
Collapse
|
18
|
Li Y, An W, Lu L, Yuan J, Wu D, Yang Q, Guo J, Yang J, Liu M, He K, Lei X, Xu ZX. O-GlcNAc of STING mediates antiviral innate immunity. Cell Commun Signal 2024; 22:157. [PMID: 38429625 PMCID: PMC10908090 DOI: 10.1186/s12964-024-01543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/25/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND O-GlcNAcylation modification affects multiple physiological and pathophysiolocal functions of cells. Altered O-GlcNAcylation was reported to participate in antivirus response. Stimulator of interferon genes (STING) is an adaptor mediating DNA virus-induced innate immune response. Whether STING is able to be modified by O-GlcNAcylation and how O-GlcNAcylation affects STING-mediated anti-DNA virus response remain unknown. METHODS Metabolomics analysis was used for detecting metabolic alterations in HSV-1 infection cells. Succinylated wheat germ agglutinin (sWGA), co-immunoprecipitation, and pull-down assay were employed for determining O-GlcNAcylation. Mutagenesis PCR was applied for the generation of STING mutants. WT and Sting1-/- C57BL/6 mice (KOCMP-72512-Sting1-B6NVA) were infected with HSV-1 and treated with O-GlcNAcylation inhibitor for validating the role of STING O-GlcNAcylation in antiviral response. RESULTS STING was functionally activated by O-GlcNAcylation in host cells challenged with HSV-1. We demonstrated that this signaling event was initiated by virus infection-enhanced hexosamine biosynthesis pathway (HBP). HSV-1 (or viral DNA mimics) promotes glucose metabolism of host cells with a marked increase in HBP, which provides donor glucosamine for O-GlcNAcylation. STING was O-GlcNAcylated on threonine 229, which led to lysine 63-linked ubiquitination of STING and activation of antiviral immune responses. Mutation of STING T229 to alanine abrogated STING activation and reduced HSV-1 stimulated production of interferon (IFN). Application of 6-diazo-5-oxonorleucine (DON), an agent that blocks the production of UDP-GlcNAc and inhibits O-GlcNAcylation, markedly attenuated the removal of HSV-1 in wild type C57BL/6 mice, leading to an increased viral retention, elevated infiltration of inflammatory cells, and worsened tissue damages to those displayed in STING gene knockout mice. Together, our data suggest that STING is O-GlcNAcylated in HSV-1, which is crucial for an effective antiviral innate immune response. CONCLUSION HSV-1 infection activates the generation of UDP-Glc-NAc by upregulating the HBP metabolism. Elevated UDP-Glc-NAc promotes the O-GlcNAcylation of STING, which mediates the anti-viral function of STING. Targeting O-GlcNAcylation of STING could be a useful strategy for antiviral innate immunity.
Collapse
Affiliation(s)
- Yujia Li
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Wang An
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Liyuan Lu
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jiali Yuan
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Danhui Wu
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Qi Yang
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jinrong Guo
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jingyu Yang
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Mengjie Liu
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Kaiyue He
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Xinyuan Lei
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
19
|
Yang K, Tang Z, Xing C, Yan N. STING signaling in the brain: Molecular threats, signaling activities, and therapeutic challenges. Neuron 2024; 112:539-557. [PMID: 37944521 PMCID: PMC10922189 DOI: 10.1016/j.neuron.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Stimulator of interferon genes (STING) is an innate immune signaling protein critical to infections, autoimmunity, and cancer. STING signaling is also emerging as an exciting and integral part of many neurological diseases. Here, we discuss recent advances in STING signaling in the brain. We summarize how molecular threats activate STING signaling in the diseased brain and how STING signaling activities in glial and neuronal cells cause neuropathology. We also review human studies of STING neurobiology and consider therapeutic challenges in targeting STING to treat neurological diseases.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhen Tang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cong Xing
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Zhang K, Huang Q, Li X, Zhao Z, Hong C, Sun Z, Deng B, Li C, Zhang J, Wang S. The cGAS-STING pathway in viral infections: a promising link between inflammation, oxidative stress and autophagy. Front Immunol 2024; 15:1352479. [PMID: 38426093 PMCID: PMC10902852 DOI: 10.3389/fimmu.2024.1352479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The host defence responses play vital roles in viral infection and are regulated by complex interactive networks. The host immune system recognizes viral pathogens through the interaction of pattern-recognition receptors (PRRs) with pathogen-associated molecular patterns (PAMPs). As a PRR mainly in the cytoplasm, cyclic GMP-AMP synthase (cGAS) senses and binds virus DNA and subsequently activates stimulator of interferon genes (STING) to trigger a series of intracellular signalling cascades to defend against invading pathogenic microorganisms. Integrated omic and functional analyses identify the cGAS-STING pathway regulating various host cellular responses and controlling viral infections. Aside from its most common function in regulating inflammation and type I interferon, a growing body of evidence suggests that the cGAS-STING signalling axis is closely associated with a series of cellular responses, such as oxidative stress, autophagy, and endoplasmic reticulum stress, which have major impacts on physiological homeostasis. Interestingly, these host cellular responses play dual roles in the regulation of the cGAS-STING signalling axis and the clearance of viruses. Here, we outline recent insights into cGAS-STING in regulating type I interferon, inflammation, oxidative stress, autophagy and endoplasmic reticulum stress and discuss their interactions with viral infections. A detailed understanding of the cGAS-STING-mediated potential antiviral effects contributes to revealing the pathogenesis of certain viruses and sheds light on effective solutions for antiviral therapy.
Collapse
Affiliation(s)
- Kunli Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qiuyan Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xinming Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ziqiao Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Chun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zeyi Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Bo Deng
- Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunling Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Jianfeng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Sutian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
21
|
Hu Y, Ye R, Su J, Rui Y, Yu XF. cGAS-STING-mediated novel nonclassic antiviral activities. J Med Virol 2024; 96:e29403. [PMID: 38293806 DOI: 10.1002/jmv.29403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
Stimulatorof interferon genes (STING) is an intracellular sensor of cyclic dinucleotides involved in the innate immune response against pathogen- or self-derived DNA. For years, interferon (IFN) induction of cyclic GMP-AMP synthase (cGAS)-STING has been considered as a canonical pattern defending the host from viral invasion. The mechanism of the cGAS-STING-IFN pathway has been well-illustrated. However, other signalling cascades driven by cGAS-STING have emerged in recent years and some of them have been found to possess antiviral ability independent of IFN. Here, we summarize the current progress on cGAS-STING-mediated nonclassic antiviral activities with an emphasis on the nuclear factor-κB and autophagy pathways, which are the most-studied pathways. In addition, we briefly present the primordial function of the cGAS-STING pathway in primitive species to show the importance of IFN-unrelated antiviral activity from an evolutionary angle. Finally, we discuss open questions that need to be solved for further exploitation of this field.
Collapse
Affiliation(s)
- Ying Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China
| | - Runxin Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China
| | - Jiaming Su
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yajuan Rui
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Zhao M, Fan W, Wang Y, Qiang P, Zheng Z, Shan H, Zhang M, Liu P, Wang Y, Li G, Li M, Hong L. M335, a novel small-molecule STING agonist activates the immune response and exerts antitumor effects. Eur J Med Chem 2024; 264:116018. [PMID: 38091891 DOI: 10.1016/j.ejmech.2023.116018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
In the context of antitumor immune responses, the activation of the stimulator of interferon genes (STING) assumes a critical role and imparts enhanced immunogenicity. An effective strategy for exogenously activating the immune system involves the utilization of STING agonists, and prior investigations primarily concentrated on modifying endogenous cyclic dinucleotides (CDNs) to achieve this. Nevertheless, the practical utility of CDNs was restricted due to limitations associated with their physicochemical attributes and administration protocols. In this article, we present the discovery of a novel small-molecule agonist denoted as M335, identified through high-throughput screening using surface plasmon resonance (SPR). M335 demonstrates the ability to activate the TBK1-IRF3-IFN axis in a STING-dependent manner in vitro. Through experimentation on mouse models bearing tumors, we observed that the administration of M335 resulted in the activation of immune cells. Notably, significant antitumor effects were achieved with both intratumoral and intraperitoneal administration of M335. These findings suggest the potential of M335 as a promising agent for cancer immunotherapy, which will promote the development of STING agonists in anti-tumor applications.
Collapse
Affiliation(s)
- Man Zhao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Weizhen Fan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ying Wang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Pengfei Qiang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhihua Zheng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hao Shan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ming Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Pengyutian Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Yao Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guofeng Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Min Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
23
|
Wang Q, Gao Y, Li Q, He A, Xu Q, Mou Y. Enhancing Dendritic Cell Activation Through Manganese-Coated Nanovaccine Targeting the cGAS-STING Pathway. Int J Nanomedicine 2024; 19:263-280. [PMID: 38226319 PMCID: PMC10789576 DOI: 10.2147/ijn.s438359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024] Open
Abstract
Background Nanovaccines have emerged as a promising vaccination strategy, exhibiting their capacity to deliver antigens and adjuvants to elicit specific immune responses. Despite this potential, optimizing the design and delivery of nanovaccines remains a challenge. Methods In this study, we engineered a dendritic mesoporous silica-based nanocarrier enveloped in a metal-phenolic network (MPN) layer containing divalent manganese ions and tannic acid (MSN@MT). This nanocarrier was tailored for antigen loading to serve as a nanovaccine, aiming to activate the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway in dendritic cells (DCs). Our experimental approach encompassed both cellular assays and mouse immunizations, allowing a comprehensive evaluation of the nanovaccine's impact on DC activation and its influence on the generation of antigen-specific T-cell responses. Results MSN@MT demonstrated a remarkable enhancement in humoral and cellular immune responses in mice compared to control groups. This highlights the potential of MSN@MT to effectively trigger the cGAS-STING pathway in DCs, resulting in robust immune responses. Conclusion Our study introduces MSN@MT, a unique nanocarrier incorporating divalent manganese ions and tannic acid, showcasing its exceptional ability to amplify immune responses by activating the cGAS-STING pathway in DCs. This innovation signifies a stride in refining nanovaccine design for potent immune activation.
Collapse
Affiliation(s)
- Qiyu Wang
- Department of Oral Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Ying Gao
- Department of Stomatology, the 964 Hospital, Changchun, Jilin, People’s Republic of China
| | - Qiang Li
- Department of Oral Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Ao He
- Department of Oral Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Qinglin Xu
- Department of Oral Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Yongbin Mou
- Department of Oral Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, 210008, People’s Republic of China
| |
Collapse
|
24
|
Castillo Cabrera J, Dang H, Graves A, Zhang Z, Torres-Castillo J, Li K, King Z, Liu P, Aubé J, Bear JE, Damania B, Hagan RS, Baldwin AS. AGC kinase inhibitors regulate STING signaling through SGK-dependent and SGK-independent mechanisms. Cell Chem Biol 2023; 30:1601-1616.e6. [PMID: 37939709 PMCID: PMC10842197 DOI: 10.1016/j.chembiol.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 07/22/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Type 1 IFN expression is critical in the innate immune response, but aberrant expression is associated with autoimmunity and cancer. Here, we identify N-[4-(1H46 pyrazolo[3,4-b] pyrazin-6-yl)-phenyl]-sulfonamide (Sanofi-14h), a compound with preference for inhibition of the AGC family kinase SGK3, as an inhibitor of Ifnb1 gene expression in response to STING stimulation of macrophages. Sanofi-14h abrogated SGK activity and also impaired activation of the critical TBK1/IRF3 pathway downstream of STING activation, blocking interaction of STING with TBK1. Deletion of SGK1/3 in a macrophage cell line did not block TBK1/IRF3 activation but decreased expression of transcription factors, such as IRF7 and STAT1, required for the innate immune response. Other AGC kinase inhibitors blocked TBK1 and IRF3 activation suggesting common action on a critical regulatory node in the STING pathway. These studies reveal both SGK-dependent and SGK-independent mechanisms in the innate immune response and indicate an approach to block aberrant Ifnb1 expression.
Collapse
Affiliation(s)
- Johnny Castillo Cabrera
- Pathobiology and Translational Sciences Graduate Program, Department of Pathology and Laboratory Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hong Dang
- Division of Pulmonary Diseases and Critical Care Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Marsico Lung Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam Graves
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhigang Zhang
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jose Torres-Castillo
- Division of Pulmonary Diseases and Critical Care Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Marsico Lung Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zayna King
- Department of Cell Biology and Physiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeff Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James E Bear
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert S Hagan
- Division of Pulmonary Diseases and Critical Care Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Marsico Lung Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
25
|
Bhattacharya I, Volety I, Shukla D. OPTN-TBK1 axis and a role for PLK1 in HSV-1 infection. mBio 2023; 14:e0271523. [PMID: 38019030 PMCID: PMC10746225 DOI: 10.1128/mbio.02715-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Herpes simplex virus type 1 (HSV-1) is globally prevalent, with latent infections observed in up to 80% of the population. The virus is known for subverting host defense mechanisms and infiltrating the nervous system to establish latency in peripheral ganglia. Multiple stressors can reactivate the virus, and recurrent herpes has been linked to vision loss and neurodegeneration. Identifying critical host factors that limit the spread of HSV-1 and the subsequent establishment of latent infection holds the potential to drive new intervention strategies for eradicating the virus. Numerous pieces of evidence underscore the significance of Tank-binding kinase 1 (TBK1) in restricting HSV-1. Reports have also suggested that phosphorylation of optineurin (OPTN) by TBK1 is required for triggering OPTN-mediated autophagy for HSV degradation. This report adds new insights into the roles of OPTN and TBK1 in HSV-1 infection and provides proof of a TBK1-independent HSV-1 restriction through OPTN. It confirms that TBK1 activation can be substituted by PLK1 to provide protection against HSV-1. In contrast, the activation of OPTN is likely an indispensable host defense mechanism for optimal defense against HSV-1.
Collapse
Affiliation(s)
- Ilina Bhattacharya
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ipsita Volety
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
26
|
Madsen HB, Pease LI, Scanlan RL, Akbari M, Rasmussen LJ, Shanley DP, Bohr VA. The DNA repair enzyme, aprataxin, plays a role in innate immune signaling. Front Aging Neurosci 2023; 15:1290681. [PMID: 38161589 PMCID: PMC10754971 DOI: 10.3389/fnagi.2023.1290681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Ataxia with oculomotor apraxia type 1 (AOA1) is a progressive neurodegenerative disorder characterized by a gradual loss of coordination of hand movements, speech, and eye movements. AOA1 is caused by an inactivation mutation in the APTX gene. APTX resolves abortive DNA ligation intermediates. APTX deficiency may lead to the accumulation of 5'-AMP termini, especially in the mitochondrial genome. The consequences of APTX deficiency includes impaired mitochondrial function, increased DNA single-strand breaks, elevated reactive oxygen species production, and altered mitochondrial morphology. All of these processes can cause misplacement of nuclear and mitochondrial DNA, which can activate innate immune sensors to elicit an inflammatory response. This study explores the impact of APTX knockout in microglial cells, the immune cells of the brain. RNA-seq analysis revealed significant differences in the transcriptomes of wild-type and APTX knockout cells, especially in response to viral infections and innate immune pathways. Specifically, genes and proteins involved in the cGAS-STING and RIG-I/MAVS pathways were downregulated in APTX knockout cells, which suggests an impaired immune response to cytosolic DNA and RNA. The clinical relevance of these findings was supported by analyzing publicly available RNA-seq data from AOA1 patient cell lines. Comparisons between APTX-deficient patient cells and healthy control cells also revealed altered immune responses and dysregulated DNA- and RNA-sensing pathways in the patient cells. Overall, this study highlights the critical role of APTX in regulating innate immunity, particularly in DNA- and RNA-sensing pathways. Our findings contribute to a better understanding of the underlying molecular mechanisms of AOA1 pathology and highlights potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Helena B. Madsen
- Center for Healthy Aging, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Louise I. Pease
- CAMPUS for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | | | - Mansour Akbari
- Center for Healthy Aging, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lene J. Rasmussen
- Center for Healthy Aging, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daryl P. Shanley
- CAMPUS for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - Vilhelm A. Bohr
- Center for Healthy Aging, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Kotov DI, Lee OV, Fattinger SA, Langner CA, Guillen JV, Peters JM, Moon A, Burd EM, Witt KC, Stetson DB, Jaye DL, Bryson BD, Vance RE. Early cellular mechanisms of type I interferon-driven susceptibility to tuberculosis. Cell 2023; 186:5536-5553.e22. [PMID: 38029747 PMCID: PMC10757650 DOI: 10.1016/j.cell.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/16/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
Mycobacterium tuberculosis (Mtb) causes 1.6 million deaths annually. Active tuberculosis correlates with a neutrophil-driven type I interferon (IFN) signature, but the cellular mechanisms underlying tuberculosis pathogenesis remain poorly understood. We found that interstitial macrophages (IMs) and plasmacytoid dendritic cells (pDCs) are dominant producers of type I IFN during Mtb infection in mice and non-human primates, and pDCs localize near human Mtb granulomas. Depletion of pDCs reduces Mtb burdens, implicating pDCs in tuberculosis pathogenesis. During IFN-driven disease, we observe abundant DNA-containing neutrophil extracellular traps (NETs) described to activate pDCs. Cell-type-specific disruption of the type I IFN receptor suggests that IFNs act on IMs to inhibit Mtb control. Single-cell RNA sequencing (scRNA-seq) indicates that type I IFN-responsive cells are defective in their response to IFNγ, a cytokine critical for Mtb control. We propose that pDC-derived type I IFNs act on IMs to permit bacterial replication, driving further neutrophil recruitment and active tuberculosis disease.
Collapse
Affiliation(s)
- Dmitri I Kotov
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Ophelia V Lee
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stefan A Fattinger
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Charlotte A Langner
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jaresley V Guillen
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joshua M Peters
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Andres Moon
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Eileen M Burd
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Kristen C Witt
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel B Stetson
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - David L Jaye
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Russell E Vance
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
28
|
Zheng Z, Zhao M, Shan H, Fang D, Jin Z, Tang J, Liu Z, Hong L, Liu P, Li M. Noncanonical autophagy is a new strategy to inhibit HSV-1 through STING1 activation. Autophagy 2023; 19:3096-3112. [PMID: 37471002 PMCID: PMC10621258 DOI: 10.1080/15548627.2023.2237794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023] Open
Abstract
STING1 (stimulator of interferon response cGAMP interactor 1) plays an essential role in immune responses for virus inhibition via inducing the production of type I interferon, inflammatory factors and macroautophagy/autophagy. In this study, we found that STING1 activation could induce not only canonical autophagy but also non-canonical autophagy (NCA) which is independent of the ULK1 or BECN1 complexes to form MAP1LC3/LC3-positive structures. Whether STING1-induced NCA has similar characters and physiological functions to canonical autophagy is totally unknown. Different from canonical autophagy, NCA could increase single-membrane structures and failed to degrade long-lived proteins, and could be strongly suppressed by interrupting vacuolar-type H+-translocating ATPase (V-ATPase) activity. Importantly, STING1-induced NCA could effectively inhibit DNA virus HSV-1 in cell model. Moreover, STING1 [1-340], a STING1 mutant lacking immunity and inflammatory response due to deletion of the tail end of STING1, could degrade virus through NCA alone, suggesting that the antiviral effect of activated STING1 could be separately mediated by inherent immunity, canonical autophagy, and NCA. In addition, the translocation and dimerization of STING1 do not rely on its immunity function and autophagy pathway. Similar to canonical autophagy, LC3-positive structures of NCA induced by STING1 could finally fuse with lysosomes, and the degradation of HSV-1 could be reverted by inhibition of lysosome function, suggesting that the elimination of DNA virus via NCA still requires the lysosome pathway. Collectively, we proved that besides its classical immunity function and canonical autophagy pathway, STING1-induced NCA is also an efficient antiviral pathway for the host cell.Abbreviations: ATG: autophagy related; Baf: bafilomycin A1; CASM: conjugation of LC3 to a single membrane; CGAS: cyclic GMP-AMP synthase; cGAMP: cyclic GMP-AMP; CQ: chloroquine; CTD: C-terminal domain; CTT: C-terminal tail; ER: endoplasmic reticulum; ERGIC: ER-Golgi intermediate compartment; HSV-1: herpes simplex virus 1; IRF3: interferon regulatory factor 3; IFNs: interferons; LAMP1: lysosomal associated membrane protein 1; LAP: LC3-associated phagocytosis; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; RB1CC1/FIP200: RB1 inducible coiled-coil 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1; TGOLN2/TGN46: trans-golgi network protein 2; ULK1: unc-51 like autophagy activating kinase 1; V-ATPase: vacuolar-type H+-translocating ATPase; VSV: vesicular stomatitis virus.
Collapse
Affiliation(s)
- Zhihua Zheng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
- School of Pharmaceutical Sciences, Jinan University, Guangzhou, Guangdong, China
| | - Man Zhao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hao Shan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dongmei Fang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zuyi Jin
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiuge Tang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhiping Liu
- School of Pharmaceutical Sciences, Jinan University, Guangzhou, Guangdong, China
| | - Liang Hong
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
- School of Pharmaceutical Sciences, Jinan University, Guangzhou, Guangdong, China
| | - Min Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Salazar S, Luong KTY, Koyuncu OO. Cell Intrinsic Determinants of Alpha Herpesvirus Latency and Pathogenesis in the Nervous System. Viruses 2023; 15:2284. [PMID: 38140525 PMCID: PMC10747186 DOI: 10.3390/v15122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Alpha herpesvirus infections (α-HVs) are widespread, affecting more than 70% of the adult human population. Typically, the infections start in the mucosal epithelia, from which the viral particles invade the axons of the peripheral nervous system. In the nuclei of the peripheral ganglia, α-HVs establish a lifelong latency and eventually undergo multiple reactivation cycles. Upon reactivation, viral progeny can move into the nerves, back out toward the periphery where they entered the organism, or they can move toward the central nervous system (CNS). This latency-reactivation cycle is remarkably well controlled by the intricate actions of the intrinsic and innate immune responses of the host, and finely counteracted by the viral proteins in an effort to co-exist in the population. If this yin-yang- or Nash-equilibrium-like balance state is broken due to immune suppression or genetic mutations in the host response factors particularly in the CNS, or the presence of other pathogenic stimuli, α-HV reactivations might lead to life-threatening pathologies. In this review, we will summarize the molecular virus-host interactions starting from mucosal epithelia infections leading to the establishment of latency in the PNS and to possible CNS invasion by α-HVs, highlighting the pathologies associated with uncontrolled virus replication in the NS.
Collapse
Affiliation(s)
| | | | - Orkide O. Koyuncu
- Department of Microbiology & Molecular Genetics, School of Medicine and Center for Virus Research, University of California, Irvine, CA 92697, USA; (S.S.); (K.T.Y.L.)
| |
Collapse
|
30
|
Zhang N, Guan Y, Li J, Yu J, Yi T. Inactivation of the DNA-sensing pathway facilitates oncolytic herpes simplex virus inhibition of pancreatic ductal adenocarcinoma growth. Int Immunopharmacol 2023; 124:110969. [PMID: 37774484 DOI: 10.1016/j.intimp.2023.110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Oncolytic viruses are a new class of therapeutic agents for the treatment of cancer that have shown promising results in clinical trials. Oncolytic virus-mediated tumor rejection is highly dependent on viral replication in tumor cells to induce cell death. However, the antiviral immune response of tumor cells limits the replication capacity of oncolytic viruses. We hypothesized that inhibition of the antiviral immune response in infected cells would enhance the antitumor effect. Here, we confirmed that ablation of the key adaptor protein of cellular immunity, STING, significantly suppressed the antiviral immune response and promoted oncolytic herpes simplex virus-1 (oHSV1) proliferation in tumor cells. In a murine pancreatic ductal adenocarcinoma (PDAC) model, oHSV1 enhanced tumor suppression and prolonged the survival of mice in the absence of STING. On this basis, we further found that the TBK1 inhibitor can also significantly enhance the tumor-control ability of oHSV1. Our studies provide a novel strategy for oncolytic virus therapy by inhibiting the intrinsic antiviral response in solid tumors to improve antitumor efficacy.
Collapse
Affiliation(s)
- Nianchao Zhang
- Key Laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yude Guan
- Key Laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Li
- Key Laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jingxuan Yu
- Key Laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Tailong Yi
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| |
Collapse
|
31
|
Zou Y, Zhang M, Zhou J. Recent trends in STING modulators: Structures, mechanisms, and therapeutic potential. Drug Discov Today 2023; 28:103694. [PMID: 37393985 DOI: 10.1016/j.drudis.2023.103694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
The cyclic GMP-AMP synthase stimulator (cGAS)-stimulator of interferon gene (STING) signaling pathway has an integral role in the host immune response through DNA sensing followed by inducing a robust innate immune defense program. STING has become a promising therapeutic target associated with multiple diseases, including various inflammatory diseases, cancer, and infectious diseases, among others. Thus, modulators of STING are regarded as emerging therapeutic agents. Recent progress has been made in STING research, including recently identified STING-mediated regulatory pathways, the development of a new STING modulator, and the new association of STING with disease. In this review, we focus on recent trends in the development of STING modulators, including structures, mechanisms, and clinical application.
Collapse
Affiliation(s)
- Yan Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Min Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China.
| |
Collapse
|
32
|
Jiang S, Lv M, Zhang D, Cao Q, Xia N, Luo J, Zheng W, Chen N, Meurens F, Zhu J. The Chicken cGAS-STING Pathway Exerts Interferon-Independent Antiviral Function via Cell Apoptosis. Animals (Basel) 2023; 13:2573. [PMID: 37627364 PMCID: PMC10451998 DOI: 10.3390/ani13162573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
It has been recently recognized that the DNA sensing innate immune cGAS-STING pathway exerts an IFN-independent antiviral function; however, whether and how chicken STING (chSTING) exerts such an IFN-independent antiviral activity is still unknown. Here, we showed that chSTING exerts an antiviral activity in HEK293 cells and chicken cells, independent of IFN production. chSTING was able to trigger cell apoptosis and autophagy independently of IFN, and the apoptosis inhibitors, rather than autophagy inhibitors, could antagonize the antiviral function of chSTING, suggesting the involvement of apoptosis in IFN-independent antiviral function. In addition, chSTING lost its antiviral function in IRF7-knockout chicken macrophages, indicating that IRF7 is not only essential for the production of IFN, but also participates in the other activities of chSTING, such as the apoptosis. Collectively, our results showed that chSTING exerts an antiviral function independent of IFN, likely via apoptosis.
Collapse
Affiliation(s)
- Sen Jiang
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; (S.J.); (M.L.); (D.Z.); (Q.C.); (N.X.); (J.L.); (W.Z.); (N.C.)
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Mengjia Lv
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; (S.J.); (M.L.); (D.Z.); (Q.C.); (N.X.); (J.L.); (W.Z.); (N.C.)
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Desheng Zhang
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; (S.J.); (M.L.); (D.Z.); (Q.C.); (N.X.); (J.L.); (W.Z.); (N.C.)
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Qi Cao
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; (S.J.); (M.L.); (D.Z.); (Q.C.); (N.X.); (J.L.); (W.Z.); (N.C.)
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Nengwen Xia
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; (S.J.); (M.L.); (D.Z.); (Q.C.); (N.X.); (J.L.); (W.Z.); (N.C.)
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jia Luo
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; (S.J.); (M.L.); (D.Z.); (Q.C.); (N.X.); (J.L.); (W.Z.); (N.C.)
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Wanglong Zheng
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; (S.J.); (M.L.); (D.Z.); (Q.C.); (N.X.); (J.L.); (W.Z.); (N.C.)
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Nanhua Chen
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; (S.J.); (M.L.); (D.Z.); (Q.C.); (N.X.); (J.L.); (W.Z.); (N.C.)
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - François Meurens
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, St. Hyacinthe, QC J2S 2M2, Canada;
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Jianzhong Zhu
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; (S.J.); (M.L.); (D.Z.); (Q.C.); (N.X.); (J.L.); (W.Z.); (N.C.)
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
33
|
Alshebremi M, Tomchuck SL, Myers JT, Kingsley DT, Eid S, Abiff M, Bonner M, Saab ST, Choi SH, Huang AYC. Functional tumor cell-intrinsic STING, not host STING, drives local and systemic antitumor immunity and therapy efficacy following cryoablation. J Immunother Cancer 2023; 11:e006608. [PMID: 37553183 PMCID: PMC10414127 DOI: 10.1136/jitc-2022-006608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Despite its potential utility in delivering direct tumor killing and in situ whole-cell tumor vaccination, tumor cryoablation produces highly variable and unpredictable clinical response, limiting its clinical utility. The mechanism(s) driving cryoablation-induced local antitumor immunity and the associated abscopal effect is not well understood. METHODS The aim of this study was to identify and explore a mechanism of action by which cryoablation enhances the therapeutic efficacy in metastatic tumor models. We used the subcutaneous mouse model of the rhabdomyosarcoma (RMS) cell lines RMS 76-9STINGwt or RMS 76-9STING-/-, along with other murine tumor models, in C57BL/6 or STING-/- (TMEM173-/- ) mice to evaluate local tumor changes, lung metastasis, abscopal effect on distant tumors, and immune cell dynamics in the tumor microenvironment (TME). RESULTS The results show that cryoablation efficacy is dependent on both adaptive immunity and the STING signaling pathway. Contrary to current literature dictating an essential role of host-derived STING activation as a driver of antitumor immunity in vivo, we show that local tumor control, lung metastasis, and the abscopal effect on distant tumor are all critically dependent on a functioning tumor cell-intrinsic STING signaling pathway, which induces inflammatory chemokine and cytokine responses in the cryoablated TME. This reliance extends beyond cryoablation to include intratumoral STING agonist therapy. Additionally, surveys of gene expression databases and tissue microarrays of clinical tumor samples revealed a wide spectrum of expressions among STING-related signaling components. CONCLUSIONS Tumor cell-intrinsic STING pathway is a critical component underlying the effectiveness of cryoablation and suggests that expression of STING-related signaling components may serve as a potential therapy response biomarker. Our data also highlight an urgent need to further characterize tumor cell-intrinsic STING pathways and the associated downstream inflammatory response evoked by cryoablation and other STING-dependent therapy approaches.
Collapse
Affiliation(s)
- Mohammad Alshebremi
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Suzanne L Tomchuck
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jay T Myers
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Daniel T Kingsley
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Saada Eid
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Muta Abiff
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Melissa Bonner
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Shahrazad T Saab
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Sung Hee Choi
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Alex Yee-Chen Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Center for Pediatric Immunotherapy, Angie Fowler AYA Cancer Institute, UH Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
| |
Collapse
|
34
|
Wang K, Zhang J, Yang Y, Si Y, Zhou Z, Zhu X, Wu S, Liu H, Zhang H, Zhang L, Cheng L, Ye W, Lv X, Lei Y, Zhang X, Cheng S, Shen L, Zhang F, Ma H. STING strengthens host anti-hantaviral immunity through an interferon-independent pathway. Virol Sin 2023; 38:568-584. [PMID: 37355006 PMCID: PMC10436061 DOI: 10.1016/j.virs.2023.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
Hantaan virus (HTNV), the prototype virus of hantavirus, could escape innate immunity by restraining type I interferon (IFN) responses. It is largely unknown whether there existed other efficient anti-hantaviral tactics in host cells. Here, we demonstrate that the stimulator of interferon genes (STING) strengthens the host IFN-independent anti-hantaviral immunity. HTNV infection activates RIG-I through IRE1-XBP 1-mediated ER stress, which further facilitates the subcellular translocation and activation of STING. During this process, STING triggers cellular autophagy by interacting with Rab7A, thus restricting viral replication. To note, the anti-hantaviral effects of STING are independent of canonical IFN signaling. Additionally, neither application of the pharmacological antagonist nor the agonist targeting STING could improve the outcomes of nude mice post HTNV challenge in vivo. However, the administration of plasmids exogenously expressing the mutant C-terminal tail (ΔCTT) STING, which would not trigger the type I IFN responses, protected the nude mice from lethal HTNV infection. In summary, our research revealed a novel antiviral pathway through the RIG-I-STING-autophagy pathway, which offered novel therapeutic strategies against hantavirus infection.
Collapse
Affiliation(s)
- Kerong Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China; Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jian Zhang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yongheng Yang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yue Si
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ziqing Zhou
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xudong Zhu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China; College of Medicine, Yan'an University, Yan'an 716000, China
| | - Sushan Wu
- College of Life Sciences, Northwest University, Xi'an 710069, China; Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - He Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Hui Zhang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Liang Zhang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Linfeng Cheng
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Ye
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xin Lv
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yingfeng Lei
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xijing Zhang
- Department of Anesthesiology & Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shilin Cheng
- College of Life Sciences, Northwest University, Xi'an 710069, China; Medical Genetics and Developmental Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Lixin Shen
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Fanglin Zhang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Hongwei Ma
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
35
|
Chauvin SD, Stinson WA, Platt DJ, Poddar S, Miner JJ. Regulation of cGAS and STING signaling during inflammation and infection. J Biol Chem 2023; 299:104866. [PMID: 37247757 PMCID: PMC10316007 DOI: 10.1016/j.jbc.2023.104866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
Stimulator of interferon genes (STING) is a sensor of cyclic dinucleotides including cyclic GMP-AMP, which is produced by cyclic GMP-AMP synthase (cGAS) in response to cytosolic DNA. The cGAS-STING signaling pathway regulates both innate and adaptive immune responses, as well as fundamental cellular functions such as autophagy, senescence, and apoptosis. Mutations leading to constitutive activation of STING cause devastating human diseases. Thus, the cGAS-STING pathway is of great interest because of its role in diverse cellular processes and because of the potential therapeutic implications of targeting cGAS and STING. Here, we review molecular and cellular mechanisms of STING signaling, and we propose a framework for understanding the immunological and other cellular functions of STING in the context of disease.
Collapse
Affiliation(s)
- Samuel D Chauvin
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - W Alexander Stinson
- Departments of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Derek J Platt
- Department Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Subhajit Poddar
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jonathan J Miner
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Departments of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA; Department Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
36
|
Cuddy SR, Cliffe AR. The Intersection of Innate Immune Pathways with the Latent Herpes Simplex Virus Genome. J Virol 2023; 97:e0135222. [PMID: 37129520 PMCID: PMC10231182 DOI: 10.1128/jvi.01352-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023] Open
Abstract
Innate immune responses can impact different stages of viral life cycles. Herpes simplex virus latent infection of neurons and subsequent reactivation provide a unique context for immune responses to intersect with different stages of infection. Here, we discuss recent findings linking neuronal innate immune pathways with the modulation of latent infection, acting at the time of reactivation and during initial neuronal infection to have a long-term impact on the ability of the virus to reactivate.
Collapse
Affiliation(s)
- Sean R. Cuddy
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
37
|
Balka KR, Venkatraman R, Saunders TL, Shoppee A, Pang ES, Magill Z, Homman-Ludiye J, Huang C, Lane RM, York HM, Tan P, Schittenhelm RB, Arumugam S, Kile BT, O'Keeffe M, De Nardo D. Termination of STING responses is mediated via ESCRT-dependent degradation. EMBO J 2023:e112712. [PMID: 37139896 DOI: 10.15252/embj.2022112712] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
cGAS-STING signalling is induced by detection of foreign or mislocalised host double-stranded (ds)DNA within the cytosol. STING acts as the major signalling hub, where it controls production of type I interferons and inflammatory cytokines. Basally, STING resides on the ER membrane. Following activation STING traffics to the Golgi to initiate downstream signalling and subsequently to endolysosomal compartments for degradation and termination of signalling. While STING is known to be degraded within lysosomes, the mechanisms controlling its delivery remain poorly defined. Here we utilised a proteomics-based approach to assess phosphorylation changes in primary murine macrophages following STING activation. This identified numerous phosphorylation events in proteins involved in intracellular and vesicular transport. We utilised high-temporal microscopy to track STING vesicular transport in live macrophages. We subsequently identified that the endosomal complexes required for transport (ESCRT) pathway detects ubiquitinated STING on vesicles, which facilitates the degradation of STING in murine macrophages. Disruption of ESCRT functionality greatly enhanced STING signalling and cytokine production, thus characterising a mechanism controlling effective termination of STING signalling.
Collapse
Affiliation(s)
- Katherine R Balka
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Rajan Venkatraman
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Tahnee L Saunders
- Ubiquitin Signalling Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Angus Shoppee
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Ee Shan Pang
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Zoe Magill
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Jihane Homman-Ludiye
- Monash Micro Imaging, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Cheng Huang
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
- Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Vic., Australia
| | - Rachael M Lane
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Harrison M York
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Peck Tan
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Ralf B Schittenhelm
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
- Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Vic., Australia
| | - Senthil Arumugam
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, Vic., Australia
| | - Benjamin T Kile
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Meredith O'Keeffe
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Dominic De Nardo
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| |
Collapse
|
38
|
Kong L, Sui C, Chen T, Zhang L, Zhao W, Zheng Y, Liu B, Cheng X, Gao C. The ubiquitin E3 ligase TRIM10 promotes STING aggregation and activation in the Golgi apparatus. Cell Rep 2023; 42:112306. [PMID: 36972172 DOI: 10.1016/j.celrep.2023.112306] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/30/2023] [Accepted: 03/08/2023] [Indexed: 03/28/2023] Open
Abstract
STING is an endoplasmic reticulum-resident protein regulating innate immunity. After binding with cyclic guanosine monophosphate-AMP (cGAMP), STING translocates from the endoplasmic reticulum (ER) to the Golgi apparatus to stimulate TBK1 and IRF3 activation, leading to expression of type I interferon. However, the exact mechanism concerning STING activation remains largely enigmatic. Here, we identify tripartite motif 10 (TRIM10) as a positive regulator of STING signaling. TRIM10-deficient macrophages exhibit reduced type I interferon production upon double-stranded DNA (dsDNA) or cGAMP stimulation and decreased resistance to herpes simplex virus 1 (HSV-1) infection. Additionally, TRIM10-deficient mice are more susceptible to HSV-1 infection and exhibit faster melanoma growth. Mechanistically, TRIM10 associates with STING and catalyzes K27- and K29-linked polyubiquitination of STING at K289 and K370, which promotes STING trafficking from the ER to the Golgi apparatus, formation of STING aggregates, and recruitment of TBK1 to STING, ultimately enhancing the STING-dependent type I interferon response. Our study defines TRIM10 as a critical activator in cGAS-STING-mediated antiviral and antitumor immunity.
Collapse
Affiliation(s)
- Lingli Kong
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China; Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chao Sui
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China; Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tian Chen
- Department of Pathogenic Biology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lei Zhang
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China; Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wei Zhao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China; Department of Pathogenic Biology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China; Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bingyu Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China; Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaochen Cheng
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China; Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China.
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China; Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China.
| |
Collapse
|
39
|
Inborn Errors of Immunity Predisposing to Herpes Simplex Virus Infections of the Central Nervous System. Pathogens 2023; 12:pathogens12020310. [PMID: 36839582 PMCID: PMC9961685 DOI: 10.3390/pathogens12020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Herpesvirus infections can lead to a number of severe clinical manifestations, particularly when involving the central nervous system (CNS), causing encephalitis and meningitis. However, understanding of the host factors conferring increased susceptibility to these diseases and their complications remains incomplete. Previous studies have uncovered defects in the innate Toll-like receptor 3 pathway and production of type I interferon (IFN-I) in children and adults that predispose them to herpes simplex encephalitis. More recently, there is accumulating evidence for an important role of IFN-independent cell-autonomous intrinsic mechanisms, including small nucleolar RNAs, RNA lariat metabolism, and autophagy, in restricting herpesvirus replication and conferring protection against CNS infection. The present review first describes clinical manifestations of HSV infection with a focus on neurological complications and then summarizes the host-pathogen interactions and innate immune pathways responsible for sensing herpesviruses and triggering antiviral responses and immunity. Next, we review the current landscape of inborn errors of immunity and the underlying genetic defects and disturbances of cellular immune pathways that confer increased susceptibility to HSV infection in CNS. Ultimately, we discuss some of the present outstanding unanswered questions relating to inborn errors of immunity and HSV CNS infection together with some perspectives and future directions for research in the pathogenesis of these severe diseases in humans.
Collapse
|
40
|
Myristic acid as a checkpoint to regulate STING-dependent autophagy and interferon responses by promoting N-myristoylation. Nat Commun 2023; 14:660. [PMID: 36750575 PMCID: PMC9905541 DOI: 10.1038/s41467-023-36332-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
Stimulator of interferon gene (STING)-triggered autophagy is crucial for the host to eliminate invading pathogens and serves as a self-limiting mechanism of STING-induced interferon (IFN) responses. Thus, the mechanisms that ensure the beneficial effects of STING activation are of particular importance. Herein, we show that myristic acid, a type of long-chain saturated fatty acid (SFA), specifically attenuates cGAS-STING-induced IFN responses in macrophages, while enhancing STING-dependent autophagy. Myristic acid inhibits HSV-1 infection-induced innate antiviral immune responses and promotes HSV-1 replication in mice in vivo. Mechanistically, myristic acid enhances N-myristoylation of ARF1, a master regulator that controls STING membrane trafficking. Consequently, myristic acid facilitates STING activation-triggered autophagy degradation of the STING complex. Thus, our work identifies myristic acid as a metabolic checkpoint that contributes to immune homeostasis by balancing STING-dependent autophagy and IFN responses. This suggests that myristic acid and N-myristoylation are promising targets for the treatment of diseases caused by aberrant STING activation.
Collapse
|
41
|
Du Y, Hu Z, Luo Y, Wang HY, Yu X, Wang RF. Function and regulation of cGAS-STING signaling in infectious diseases. Front Immunol 2023; 14:1130423. [PMID: 36825026 PMCID: PMC9941744 DOI: 10.3389/fimmu.2023.1130423] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
The efficacious detection of pathogens and prompt induction of innate immune signaling serve as a crucial component of immune defense against infectious pathogens. Over the past decade, DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream signaling adaptor stimulator of interferon genes (STING) have emerged as key mediators of type I interferon (IFN) and nuclear factor-κB (NF-κB) responses in health and infection diseases. Moreover, both cGAS-STING pathway and pathogens have developed delicate strategies to resist each other for their survival. The mechanistic and functional comprehension of the interplay between cGAS-STING pathway and pathogens is opening the way for the development and application of pharmacological agonists and antagonists in the treatment of infectious diseases. Here, we briefly review the current knowledge of DNA sensing through the cGAS-STING pathway, and emphatically highlight the potent undertaking of cGAS-STING signaling pathway in the host against infectious pathogenic organisms.
Collapse
Affiliation(s)
- Yang Du
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yien Luo
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Helen Y. Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong-Fu Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
42
|
Gao KM, Marshak-Rothstein A, Fitzgerald KA. Type-1 interferon-dependent and -independent mechanisms in cyclic GMP-AMP synthase-stimulator of interferon genes-driven auto-inflammation. Curr Opin Immunol 2023; 80:102280. [PMID: 36638547 DOI: 10.1016/j.coi.2022.102280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/07/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023]
Abstract
The cyclic cyclic gaunosine monophosphate adenosine monophosphate (GMP-AMP) synthase-stimulator of interferon genes (cGAS-STING) pathway senses cytosolic dsDNA and initiates immune responses against pathogens. It is also implicated in several auto-inflammatory diseases known as monogenic interferonopathies, specifically Three prime repair exonuclease 1 (Trex1) loss-of-function (LOF), Dnase2 LOF, and stimulator of interferon genes-associated-vasculopathy-with-onset-in-infancy (SAVI). Although monogenic interferonopathies have diverse clinical presentations, they are distinguished by the elevation of type-1 interferons (T1IFNs). However, animal models have demonstrated that T1IFNs contribute to only some disease outcomes and that cGAS-STING activation also promotes T1IFN-independent pathology. For example, while T1IFNs drive the immunopathology associated with Trex1 LOF, disease in Dnase2 LOF is partially independent of T1IFNs, while disease in SAVI appears to occur entirely independent of T1IFNs. Additionally, while the cGAS-STING pathway is well characterized in hematopoietic cells, these animal models point to important roles for STING activity in nonhematopoietic cells in disease. Together, these models illustrate the complex role that cGAS-STING-driven responses play in the pathogenesis of inflammatory diseases across tissues.
Collapse
Affiliation(s)
- Kevin Mj Gao
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ann Marshak-Rothstein
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
43
|
Chen LY, Pang XY, Chen C, Xu HG. NF-κB regulates the expression of STING via alternative promoter usage. Life Sci 2023; 314:121336. [PMID: 36586574 DOI: 10.1016/j.lfs.2022.121336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
AIMS Stimulator of interferon genes (STING) is a transmembrane protein in endoplasmic reticulum and plays crucial roles in autophagy, antiviral and anti-tumor responses. However, there are few studies on the transcriptional regulation mechanism of STING. MAIN METHODS The 5' RACE experiment was used to determine the location of STING promoters. Luciferase reporting assay confirmed the activity and core region of STING internal promoter. Site-directed mutagenesis confirmed that NF-κB regulates the activity of STING promoters. The regulation of NF-κB on STING was investigated by real-time quantitative PCR, western blot, chromatin immunoprecipitation assay and lipopolysaccharide (LPS) inflammatory cell model. KEY FINDINGS There was also a transcription start site at the 17 bp sequence upstream of STING second exon. STING-285 was the core region of the internal promoter. After NF-κB binding site mutation, the activity of STING internal promoter decreased significantly. In addition, we found that NF-κB can bind to the promoter region of wild-type STING. Overexpression of NF-κB significantly increased the activity of STING internal promoter and wild-type promoter, while knockdown of endogenous NF-κB significantly inhibited the activity of STING promoters. The binding of NF-κB to STING promoters in vivo were confirmed by chromatin immunoprecipitation assay. Meanwhile, we stimulated HeLa cells with LPS to activate the NF-κB pathway and found that STING expression was up-regulated. SIGNIFICANCE These results suggest that transcription factor NF-κB positively regulates the expression of STING via alternative promoter usage. This provides a new basis and potential drug targets for the clinical treatment of STING related diseases.
Collapse
Affiliation(s)
- Lin-Yuan Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, Jiangsu, China
| | - Xiao-Yu Pang
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Can Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, Jiangsu, China
| | - Hua-Guo Xu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
44
|
Genomic instability caused by Arp2/3 complex inactivation results in micronucleus biogenesis and cellular senescence. PLoS Genet 2023; 19:e1010045. [PMID: 36706133 PMCID: PMC9907832 DOI: 10.1371/journal.pgen.1010045] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/08/2023] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
The Arp2/3 complex is an actin nucleator with well-characterized activities in cell morphogenesis and movement, but its roles in nuclear processes are relatively understudied. We investigated how the Arp2/3 complex affects genomic integrity and cell cycle progression using mouse fibroblasts containing an inducible knockout (iKO) of the ArpC2 subunit. We show that permanent Arp2/3 complex ablation results in DNA damage, the formation of cytosolic micronuclei, and cellular senescence. Micronuclei arise in ArpC2 iKO cells due to chromatin segregation defects during mitosis and premature mitotic exits. Such phenotypes are explained by the presence of damaged DNA fragments that fail to attach to the mitotic spindle, abnormalities in actin assembly during metaphase, and asymmetric microtubule architecture during anaphase. In the nuclei of Arp2/3-depleted cells, the tumor suppressor p53 is activated and the cell cycle inhibitor Cdkn1a/p21 mediates a G1 arrest. In the cytosol, micronuclei are recognized by the DNA sensor cGAS, which is important for stimulating a STING- and IRF3-associated interferon response. These studies establish functional requirements for the mammalian Arp2/3 complex in mitotic spindle organization and genome stability. They also expand our understanding of the mechanisms leading to senescence and suggest that cytoskeletal dysfunction is an underlying factor in biological aging.
Collapse
|
45
|
Jeltema D, Abbott K, Yan N. STING trafficking as a new dimension of immune signaling. J Exp Med 2023; 220:213837. [PMID: 36705629 PMCID: PMC9930166 DOI: 10.1084/jem.20220990] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
The cGAS-STING pathway is an evolutionarily conserved immune signaling pathway critical for microbial defense. Unlike other innate immune pathways that largely rely on stationary cascades of signaling events, STING is highly mobile in the cell. STING is activated on the ER, but only signals after it arrives on the Golgi, and then it is quickly degraded by the lysosome. Each step of STING trafficking through the secretory pathway is regulated by host factors. Homeostatic STING trafficking via COPI-, COPII-, and clathrin-coated vesicles is important for maintaining baseline tissue and cellular immunity. Aberrant vesicular trafficking or lysosomal dysfunction produces an immune signal through STING, which often leads to tissue pathology in mice and humans. Many trafficking-mediated diseases of STING signaling appear to impact the central nervous system, leading to neurodegeneration. Therefore, STING trafficking introduces a new dimension of immune signaling that likely has broad implications in human disease.
Collapse
Affiliation(s)
- Devon Jeltema
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kennady Abbott
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nan Yan
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA,Correspondence to Nan Yan:
| |
Collapse
|
46
|
Pan J, Fei CJ, Hu Y, Wu XY, Nie L, Chen J. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Zool Res 2023; 44:183-218. [PMID: 36579404 PMCID: PMC9841179 DOI: 10.24272/j.issn.2095-8137.2022.464] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The innate immune system protects the host from external pathogens and internal damage in various ways. The cGAS-STING signaling pathway, comprised of cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and downstream signaling adaptors, plays an essential role in protective immune defense against microbial DNA and internal damaged-associated DNA and is responsible for various immune-related diseases. After binding with DNA, cytosolic cGAS undergoes conformational change and DNA-linked liquid-liquid phase separation to produce 2'3'-cGAMP for the activation of endoplasmic reticulum (ER)-localized STING. However, further studies revealed that cGAS is predominantly expressed in the nucleus and strictly tethered to chromatin to prevent binding with nuclear DNA, and functions differently from cytosolic-localized cGAS. Detailed delineation of this pathway, including its structure, signaling, and regulatory mechanisms, is of great significance to fully understand the diversity of cGAS-STING activation and signaling and will be of benefit for the treatment of inflammatory diseases and cancer. Here, we review recent progress on the above-mentioned perspectives of the cGAS-STING signaling pathway and discuss new avenues for further study.
Collapse
Affiliation(s)
- Jing Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Xiang-Yu Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| |
Collapse
|
47
|
Krawczyk E, Kangas C, He B. HSV Replication: Triggering and Repressing STING Functionality. Viruses 2023; 15:226. [PMID: 36680267 PMCID: PMC9864509 DOI: 10.3390/v15010226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Herpes simplex virus (HSV) has persisted within human populations due to its ability to establish both lytic and latent infection. Given this, human hosts have evolved numerous immune responses to protect against HSV infection. Critical in this defense against HSV, the host protein stimulator of interferon genes (STING) functions as a mediator of the antiviral response by inducing interferon (IFN) as well as IFN-stimulated genes. Emerging evidence suggests that during HSV infection, dsDNA derived from either the virus or the host itself ultimately activates STING signaling. While a complex regulatory circuit is in operation, HSV has evolved several mechanisms to neutralize the STING-mediated antiviral response. Within this review, we highlight recent progress involving HSV interactions with the STING pathway, with a focus on how STING influences HSV replication and pathogenesis.
Collapse
Affiliation(s)
| | | | - Bin He
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
48
|
Shen S, Rui Y, Wang Y, Su J, Yu X. SARS-CoV-2, HIV, and HPV: Convergent evolution of selective regulation of cGAS-STING signaling. J Med Virol 2023; 95:e28220. [PMID: 36229923 PMCID: PMC9874546 DOI: 10.1002/jmv.28220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 01/27/2023]
Abstract
Recognizing aberrant cytoplasmic double-stranded DNA and stimulating innate immunity is essential for the host's defense against viruses and tumors. Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor that synthesizes the second messenger 2'3'-cGAMP and subsequently activates stimulator of interferon genes (STING)-mediated activation of TANK-binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3) and the production of type I interferon (IFN-I). Both the cGAS-STING-mediated IFN-I antiviral defense and the countermeasures developed by diverse viruses have been extensively studied. However, recent studies have revealed a convergent evolutionary feature of severe acute respiratory syndrome coronavirus 2 and human immunodeficiency virus (HIV) viral proteins in terms of the selective regulation of cGAS-STING-mediated nuclear factor-κB (NF-κB) signaling without any effect on cGAS-STING-mediated TBK1/IRF3 activation and IFN production. The potential beneficial effect of this cGAS-STING-mediated, NF-κB-dependent antiviral effect, and the possible detrimental effect of IFN-I in the pathogenesis of coronavirus disease 2019 and HIV infection deserve more attention and future investigation.
Collapse
Affiliation(s)
- Si Shen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| | - Yajuan Rui
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| | - Yanpu Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| | - Jiaming Su
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| | - Xiao‐Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
49
|
Zhang Z, Zhou H, Ouyang X, Dong Y, Sarapultsev A, Luo S, Hu D. Multifaceted functions of STING in human health and disease: from molecular mechanism to targeted strategy. Signal Transduct Target Ther 2022; 7:394. [PMID: 36550103 PMCID: PMC9780328 DOI: 10.1038/s41392-022-01252-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of Stimulator of Interferon Genes (STING) as an important pivot for cytosolic DNA sensation and interferon (IFN) induction, intensive efforts have been endeavored to clarify the molecular mechanism of its activation, its physiological function as a ubiquitously expressed protein, and to explore its potential as a therapeutic target in a wide range of immune-related diseases. With its orthodox ligand 2'3'-cyclic GMP-AMP (2'3'-cGAMP) and the upstream sensor 2'3'-cGAMP synthase (cGAS) to be found, STING acquires its central functionality in the best-studied signaling cascade, namely the cGAS-STING-IFN pathway. However, recently updated research through structural research, genetic screening, and biochemical assay greatly extends the current knowledge of STING biology. A second ligand pocket was recently discovered in the transmembrane domain for a synthetic agonist. On its downstream outputs, accumulating studies sketch primordial and multifaceted roles of STING beyond its cytokine-inducing function, such as autophagy, cell death, metabolic modulation, endoplasmic reticulum (ER) stress, and RNA virus restriction. Furthermore, with the expansion of the STING interactome, the details of STING trafficking also get clearer. After retrospecting the brief history of viral interference and the milestone events since the discovery of STING, we present a vivid panorama of STING biology taking into account the details of the biochemical assay and structural information, especially its versatile outputs and functions beyond IFN induction. We also summarize the roles of STING in the pathogenesis of various diseases and highlight the development of small-molecular compounds targeting STING for disease treatment in combination with the latest research. Finally, we discuss the open questions imperative to answer.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, 430022, Wuhan, China.
- Clinical Research Center of Cancer Immunotherapy, 430022, Hubei, Wuhan, China.
| |
Collapse
|
50
|
Kumpunya S, Thim-uam A, Thumarat C, Leelahavanichkul A, Kalpongnukul N, Chantaravisoot N, Pisitkun T, Pisitkun P. cGAS deficiency enhances inflammasome activation in macrophages and inflammatory pathology in pristane-induced lupus. Front Immunol 2022; 13:1010764. [PMID: 36591278 PMCID: PMC9800982 DOI: 10.3389/fimmu.2022.1010764] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Type I interferon (IFN) plays a vital role in the pathogenesis of systemic lupus erythematosus. Cyclic GMP AMP synthase (cGAS) is a cytosolic DNA sensor that recognizes dsDNA and creates cGAMP to activate STING-mediated type I IFN production. The activation of STING induces lupus disease in Fcgr2b deficient mice through the differentiation of dendritic cells. In contrast, Cgas-deficient mice could be generated more autoantibody production and proteinuria in pristane-induced lupus (PIL). These data suggested that the other dsDNA sensors could be involved in lupus development mechanisms. Methods This study aimed to identify the cGAS-mediated mechanisms contributing to lupus pathogenesis in PIL. The Cgas-deficient and WT mice were induced lupus disease with pristane and subsequently analyzed autoantibody, histopathology, and immunophenotypes. The lung tissues were analyzed with the expression profiles by RT-PCR and western blot. The bone marrow-derived macrophages were stimulated with inflammasome activators and observed pyroptosis. Results The Cgas-/- mice developed more severe pulmonary hemorrhage and autoantibody production than WT mice. The activated dendritic cells, IFN-g-, and IL-17a-producing T helper cells, and infiltrated macrophages in the lung were detected in Cgas-/- mice higher than in WT mice. We observed an increase in expression of Aim2, Casp11, and Ifi16 in the lung and serum IL-1a but IL-1b in pristane-injected Cgas-/- mice. The rise of Caspase-11 in the lung of pristane-injected Cgas-/- mice suggested noncanonical inflammasome activation. The activation of AIM2 and NLRP3 inflammasomes in bone marrow-derived macrophages (BMDMs) enhanced the number of dead cells in Cgas-/- mice compared with WT mice. Activation of the inflammasome significantly induced pyroptosis in Cgas-/- BMDMs. The dsDNA level, but not mitochondrial DNA, increased dramatically in pristane-injected Cgas-/- mice suggesting the dsDNA could be a ligand activating inflammasomes. The cGAS agonist-induced BMDM activation in the Cgas-/- mice indicated that the activation of DNA sensors other than cGAS enhanced activated macrophages. Conclusion These findings suggested that cGAS hampers the unusual noncanonical inflammasome activation through other DNA sensors.
Collapse
Affiliation(s)
- Sarinya Kumpunya
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Arthid Thim-uam
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Chisanu Thumarat
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nuttiya Kalpongnukul
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand,Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Naphat Chantaravisoot
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,Epithelial Systems Biology Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States,*Correspondence: Prapaporn Pisitkun, ; Trairak Pisitkun,
| | - Prapaporn Pisitkun
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand,Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand,*Correspondence: Prapaporn Pisitkun, ; Trairak Pisitkun,
| |
Collapse
|