1
|
Lin Z, Ying C, Si X, Xue N, Liu Y, Zheng R, Chen Y, Pu J, Zhang B. NOX4 exacerbates Parkinson's disease pathology by promoting neuronal ferroptosis and neuroinflammation. Neural Regen Res 2025; 20:2038-2052. [PMID: 38993139 PMCID: PMC11691449 DOI: 10.4103/nrr.nrr-d-23-01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/18/2023] [Accepted: 03/18/2024] [Indexed: 07/13/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202507000-00026/figure1/v/2024-09-09T124005Z/r/image-tiff Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta. Ferroptosis, a novel form of regulated cell death characterized by iron accumulation and lipid peroxidation, plays a vital role in the death of dopaminergic neurons. However, the molecular mechanisms underlying ferroptosis in dopaminergic neurons have not yet been completely elucidated. NADPH oxidase 4 is related to oxidative stress, however, whether it regulates dopaminergic neuronal ferroptosis remains unknown. The aim of this study was to determine whether NADPH oxidase 4 is involved in dopaminergic neuronal ferroptosis, and if so, by what mechanism. We found that the transcriptional regulator activating transcription factor 3 increased NADPH oxidase 4 expression in dopaminergic neurons and astrocytes in an 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced Parkinson's disease model. NADPH oxidase 4 inhibition improved the behavioral impairments observed in the Parkinson's disease model animals and reduced the death of dopaminergic neurons. Moreover, NADPH oxidase 4 inhibition reduced lipid peroxidation and iron accumulation in the substantia nigra of the Parkinson's disease model animals. Mechanistically, we found that NADPH oxidase 4 interacted with activated protein kinase C α to prevent ferroptosis of dopaminergic neurons. Furthermore, by lowering the astrocytic lipocalin-2 expression, NADPH oxidase 4 inhibition reduced 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced neuroinflammation. These findings demonstrate that NADPH oxidase 4 promotes ferroptosis of dopaminergic neurons and neuroinflammation, which contribute to dopaminergic neuron death, suggesting that NADPH oxidase 4 is a possible therapeutic target for Parkinson's disease.
Collapse
Affiliation(s)
- Zhihao Lin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Changzhou Ying
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiaoli Si
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Naijia Xue
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yi Liu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ran Zheng
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ying Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Zheng J, Conrad M. Ferroptosis: when metabolism meets cell death. Physiol Rev 2025; 105:651-706. [PMID: 39661331 DOI: 10.1152/physrev.00031.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
We present here a comprehensive update on recent advancements in the field of ferroptosis, with a particular emphasis on its metabolic underpinnings and physiological impacts. After briefly introducing landmark studies that have helped to shape the concept of ferroptosis as a distinct form of cell death, we critically evaluate the key metabolic determinants involved in its regulation. These include the metabolism of essential trace elements such as selenium and iron; amino acids such as cyst(e)ine, methionine, glutamine/glutamate, and tryptophan; and carbohydrates, covering glycolysis, the citric acid cycle, the electron transport chain, and the pentose phosphate pathway. We also delve into the mevalonate pathway and subsequent cholesterol biosynthesis, including intermediate metabolites like dimethylallyl pyrophosphate, squalene, coenzyme Q (CoQ), vitamin K, and 7-dehydrocholesterol, as well as fatty acid and phospholipid metabolism, including the biosynthesis and remodeling of ester and ether phospholipids and lipid peroxidation. Next, we highlight major ferroptosis surveillance systems, specifically the cyst(e)ine/glutathione/glutathione peroxidase 4 axis, the NAD(P)H/ferroptosis suppressor protein 1/CoQ/vitamin K system, and the guanosine triphosphate cyclohydrolase 1/tetrahydrobiopterin/dihydrofolate reductase axis. We also discuss other potential anti- and proferroptotic systems, including glutathione S-transferase P1, peroxiredoxin 6, dihydroorotate dehydrogenase, glycerol-3-phosphate dehydrogenase 2, vitamin K epoxide reductase complex subunit 1 like 1, nitric oxide, and acyl-CoA synthetase long-chain family member 4. Finally, we explore ferroptosis's physiological roles in aging, tumor suppression, and infection control, its pathological implications in tissue ischemia-reperfusion injury and neurodegeneration, and its potential therapeutic applications in cancer treatment. Existing drugs and compounds that may regulate ferroptosis in vivo are enumerated.
Collapse
Affiliation(s)
- Jiashuo Zheng
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
- Translational Redox Biology, Technical University of Munich (TUM), TUM Natural School of Sciences, Garching, Germany
| |
Collapse
|
3
|
Safari MH, Rahimzadeh P, Alaei E, Alimohammadi M, Esfandiari N, Daneshi S, Malgard N, Farahani N, Taheriazam A, Hashemi M. Targeting ferroptosis in gastrointestinal tumors: Interplay of iron-dependent cell death and autophagy. Mol Cell Probes 2025; 79:102013. [PMID: 39837469 DOI: 10.1016/j.mcp.2025.102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Ferroptosis is a regulated cell death mechanism distinct from apoptosis, autophagy, and necroptosis, marked by iron accumulation and lipid peroxidation. Since its identification in 2012, it has developed into a potential therapeutic target, especially concerning GI disorders like PC, HCC, GC, and CRC. This interest arises from the distinctive role of ferroptosis in the progression of diseases, presenting a new avenue for treatment where existing therapies fall short. Recent studies emphasize the promise of focusing on ferroptosis to fight GI cancers, showcasing its unique pathophysiological mechanisms compared to other types of cell death. By comprehending how ferroptosis aids in the onset and advancement of GI diseases, scientists aim to discover novel drug targets and treatment approaches. Investigating ferroptosis in gastrointestinal disorders reveals exciting possibilities for novel therapies, potentially revolutionizing cancer treatment and providing renewed hope for individuals affected by these tumors.
Collapse
Affiliation(s)
- Mohamad Hosein Safari
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Alaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Negin Esfandiari
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Neda Malgard
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Chakrabarti A, Verma S. Identifying potential genes driving ferroptosis in the substantia nigra and dopaminergic neurons in Parkinson's disease. Mol Cell Neurosci 2025; 132:103993. [PMID: 39848553 DOI: 10.1016/j.mcn.2025.103993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked by dopaminergic (DA) neuron degeneration in the substantia nigra (SN). Conventional dopamine replacement therapies provide limited long-term efficacy and significant side effects. Emerging evidence suggests ferroptosis-a form of cell death driven by iron-dependent lipid peroxidation-contributes to PD pathology, though direct evidence linking dysregulation of ferroptosis-related genes in DA neuron loss in PD remains limited. This study explores the expression of ferroptosis-associated genes in the SN and DA neurons of PD patients, identifying potential therapeutic targets. We analyzed two independent RNA-seq datasets, GSE7621 and GSE8397 (GPL-96), from the GEO database to identify common differentially expressed ferroptosis-related genes in the SN of PD patients. We also conducted Gene Ontology and pathway enrichment analyses of these genes to explore the underlying mechanisms and constructed a protein-protein interaction network. The findings were further validated using an additional dataset, GSE49036. We further explored the dysregulation of these ferroptosis-related genes in DA neurons using RNA-seq data GSE169755, derived from DA neurons isolated from the SN of PD patients and controls. Lastly, the proposed hypothesis was experimentally validated in an in vitro PD model. This comprehensive multi-dataset analysis uncovers novel insights into the expression of ferroptosis-related genes in PD, suggesting potential biomarkers and therapeutic targets for mitigating DA neuron loss and PD progression.
Collapse
Affiliation(s)
- Ardra Chakrabarti
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sonia Verma
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Wu J, Xia S, Ye W, Sun Y, Cai J, Yu F, Wen H, Yi X, Li T, Chen M, Chen J, Song G, Yang C, Song Y, Wang J. Dissecting the cell microenvironment of ovarian endometrioma through single-cell RNA sequencing. SCIENCE CHINA. LIFE SCIENCES 2025; 68:116-129. [PMID: 39470923 DOI: 10.1007/s11427-024-2638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/16/2024] [Indexed: 11/01/2024]
Abstract
Ovarian endometrioma (OE), also known as "chocolate cysts," is a cystic mass that develops in the ovaries due to endometriosis and is a common gynecological condition characterized by the growth of endometrial tissue outside the uterus, leading to symptoms such as dysmenorrhea, pelvic pain, and infertility. However, the precise molecular and cellular mechanisms driving this pathophysiology remain largely unknown, posing challenges for diagnosis and treatment. Here, we employed integrated single-cell transcriptomic profiling of over 52,000 individual cells from endometrial tissues of OE patients and healthy donors and identified twelve major cell populations. We identified notable alterations in cell type-specific proportions and molecular signatures associated with OE. Notably, the activation of IGFBP5+ macrophages with pro-inflammatory properties, NK cell exhaustion, and aberrant proliferation of IQCG+ and KLF2+ epithelium are key features and may be the potential mechanisms underlying the pathogenesis of OE. Collectively, our data contribute to a better understanding of OE at the single cell level and may pave the way for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Jiangpeng Wu
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan, 523000, China
- Department of Urology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Siyu Xia
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan, 523000, China
| | - Wenting Ye
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan, 523000, China
| | - Yan Sun
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan, 523000, China
| | - Jing Cai
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan, 523000, China
| | - Fubing Yu
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan, 523000, China
| | - Haiping Wen
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan, 523000, China
| | - Xiuwei Yi
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan, 523000, China
| | - Taikang Li
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan, 523000, China
| | - Mingwei Chen
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan, 523000, China
| | - Jiayun Chen
- Department of Urology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ge Song
- Reproductive Medicine Center, Foshan Women and Children Hospital, Foshan, 528000, China.
| | - Chuanbin Yang
- Department of Urology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Southern University of Science and Technology, Shenzhen, 518020, China.
| | - Yali Song
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan, 523000, China.
| | - Jigang Wang
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan, 523000, China.
- Department of Urology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Southern University of Science and Technology, Shenzhen, 518020, China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
6
|
Zhuang X, Wang Q, Joost S, Ferrena A, Humphreys DT, Li Z, Blum M, Krause K, Ding S, Landais Y, Zhan Y, Zhao Y, Chaligne R, Lee JH, Carrasco SE, Bhanot UK, Koche RP, Bott MJ, Katajisto P, Soto-Feliciano YM, Pisanic T, Thomas T, Zheng D, Wong ES, Tammela T. Ageing limits stemness and tumorigenesis by reprogramming iron homeostasis. Nature 2025; 637:184-194. [PMID: 39633048 DOI: 10.1038/s41586-024-08285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
Ageing is associated with a decline in the number and fitness of adult stem cells1,2. Ageing-associated loss of stemness is posited to suppress tumorigenesis3,4, but this hypothesis has not been tested in vivo. Here we use physiologically aged autochthonous genetically engineered5,6 mouse models and primary cells5,6 to demonstrate that ageing suppresses lung cancer initiation and progression by degrading the stemness of the alveolar cell of origin. This phenotype is underpinned by the ageing-associated induction of the transcription factor NUPR1 and its downstream target lipocalin-2 in the cell of origin in mice and humans, which leads to functional iron insufficiency in the aged cells. Genetic inactivation of the NUPR1-lipocalin-2 axis or iron supplementation rescues stemness and promotes the tumorigenic potential of aged alveolar cells. Conversely, targeting the NUPR1-lipocalin-2 axis is detrimental to young alveolar cells through ferroptosis induction. Ageing-associated DNA hypomethylation at specific enhancer sites is associated with increased NUPR1 expression, which is recapitulated in young alveolar cells through DNA methylation inhibition. We uncover that ageing drives functional iron insufficiency that leads to loss of stemness and tumorigenesis but promotes resistance to ferroptosis. These findings have implications for the therapeutic modulation of cellular iron homeostasis in regenerative medicine and in cancer prevention. Furthermore, our findings are consistent with a model whereby most human cancers initiate at a young age, thereby highlighting the importance of directing cancer prevention efforts towards young individuals.
Collapse
Affiliation(s)
- Xueqian Zhuang
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qing Wang
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Simon Joost
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Ferrena
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, New York, NY, USA
| | - David T Humphreys
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Zhuxuan Li
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, NY, USA
| | - Melissa Blum
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Klavdija Krause
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Selena Ding
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuna Landais
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Yingqian Zhan
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yang Zhao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ronan Chaligne
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joo-Hyeon Lee
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sebastian E Carrasco
- Laboratory of Comparative Pathology, Weill Cornell Medicine, Memorial Sloan Kettering Cancer Center and Rockefeller University, New York, NY, USA
| | - Umeshkumar K Bhanot
- Pathology Core Facility, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew J Bott
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pekka Katajisto
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Yadira M Soto-Feliciano
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas Pisanic
- Institute for NanoBioTechnology, Department of Oncology-Cancer Genetics and Epigenetics, Johns Hopkins University, Baltimore, MD, USA
| | - Tiffany Thomas
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Deyou Zheng
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, New York, NY, USA
- Departments of Genetics, Neurology, and Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Emily S Wong
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
7
|
Chen F, Tang H, Lin J, Xiang L, Lu Y, Kang R, Tang D, Liu J. Macropinocytosis inhibits alkaliptosis in pancreatic cancer cells through fatty acid uptake. Carcinogenesis 2024; 45:953-964. [PMID: 39008332 DOI: 10.1093/carcin/bgae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 07/16/2024] Open
Abstract
Alkaliptosis, a form of regulated cell death, is characterized by lysosomal dysfunction and intracellular pH alkalinization. The pharmacological induction of alkaliptosis using the small molecule compound JTC801 has emerged as a promising anticancer strategy in various types of cancers, particularly pancreatic ductal adenocarcinoma (PDAC). In this study, we investigate a novel mechanism by which macropinocytosis, an endocytic process involving the uptake of extracellular material, promotes resistance to alkaliptosis in human PDAC cells. Through lipid metabolomics analysis and functional studies, we demonstrate that the inhibition of alkaliptosis by fatty acids, such as oleic acid, is not dependent on endogenous synthetic pathways but rather on exogenous uptake facilitated by macropinocytosis. Consequently, targeting macropinocytosis through pharmacological approaches (e.g. using EIPA or EHoP-016) or genetic interventions (e.g. RAC1 knockdown) effectively enhances JTC801-induced alkaliptosis in human PDAC cells. These findings provide compelling evidence that the modulation of macropinocytosis can increase the sensitivity of cancer cells to alkaliptosis inducers.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Hu Tang
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Junhao Lin
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Limin Xiang
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Yanjiao Lu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| |
Collapse
|
8
|
Zhang Q, Zhang Y, Guo S, Wang H. Emerging insights into the role of microRNAs regulation of ferroptosis in hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167642. [PMID: 39734007 DOI: 10.1016/j.bbadis.2024.167642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Hepatocellular carcinoma (HCC) is a major type of liver cancer and an important cause of cancer death. It has been reported that the hepatocyte death plays an important role in HCC. Ferroptosis is an iron-dependent programmed cell death characterized by the accumulation of free iron and lipid peroxidation. A series of studies have shown that ferroptosis contributes to the occurrence and development of HCC. MicroRNAs (miRNAs) are non-coding RNAs with a length of approximately 21-22 nt. In recent years, miRNAs have been shown to participate in regulating ferroptosis to play a vital role in HCC, but the related mechanisms are not fully understood. This review summarized the current understanding of ferroptosis, as well as the biogenesis and function of miRNAs, and focused on the role of miRNAs regulation of ferroptosis in HCC, with the hope of providing new targets and ideas for the treatment of HCC.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yingdan Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
9
|
Liao T, Ma Z, Liu D, Shi L, Mao J, Wang P, Ding L. [Knockdown of nuclear protein 1 delays pathological pro-gression of osteoarthritis through inhibiting chondrocyte ferroptosis]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:669-679. [PMID: 39482968 PMCID: PMC11736347 DOI: 10.3724/zdxbyxb-2024-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024]
Abstract
OBJECTIVES To investigate the effect of nuclear protein (Nupr) 1 on the pathological progression of osteoarthritis and its relationship with ferroptosis of chondrocytes. METHODS Chondrocytes from mouse knees were divided into small interfering RNA (siRNA) control group, small interfering RNA targeting Nupr1 (siNupr1) group, siRNA control+IL-1β group (siRNA control interference for 24 h followed by 10 ng/mL IL-1β) and siNupr1+IL-1β group (siNupr1 interference for 24 h followed by 10 ng/mL IL-1β). The protein and mRNA expressions of Nupr1 were detected by Western blotting and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell proliferation viabilities were measured using the cell counting kit-8 method. The levels of ferrous ions were detected by FerroOrange staining. Lipid peroxidation levels were detected by C11-BODIPY-591 fluorescence imaging. The contents of malondialdehyde (MDA) and glutathione (GSH) were detected by enzyme-linked immunosorbent assay. The protein expressions of acyl-CoA synthetase long-chain family (ACSL) 4, P53, glutathione peroxidase (GPX) 4 and solute carrier family 7 member 11 gene (SLC7A11) were detected by Western blotting. The osteoarthritis model was constructed by destabilization of the medial meniscus (DMM) surgery in 7-week-old male C57BL/6J mice. The mice were randomly divided into four groups with 10 animals in each group: sham surgery (Sham)+adeno-associated virus serotype 5 (AAV5)-short hairpin RNA (shRNA) control group, Sham+AAV5-shRNA control targeting Nupr1 (shNupr1) group, DMM+AAV5-shRNA control group, and DMM+AAV5-shNupr1 group. Hematoxylin and eosin staining and Safranin O-Fast Green staining were used to observe the morphological changes in cartilage tissue. The Osteoarthritis Research Society International (OARSI) osteoarthritis cartilage histopathology assessment system was used to evaluate the degree of cartilage degeneration in mice. The mRNA expressions of matrix metallopeptidase (MMP) 13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) 5, cyclooxy-genase (COX) 2, and GPX4 were detected by qRT-PCR. RESULTS In vitro experiments showed that knocking down Nupr1 alleviated the decrease of chondrocyte proliferation activity induced by IL-1β, reduced iron accumulation in mouse chondrocytes, lowered lipid peroxidation, downregulated ACSL4 and P53 protein expression and upregulated GPX4 and SLC7A11 protein expression (all P<0.01), thereby inhibiting ferroptosis in mouse chondrocytes. Meanwhile, in vivo animal experiments demonstrated that knocking down Nupr1 delayed the degeneration of articular cartilage in osteoarthritis mice, improved the OARSI score, slowed down the degradation of the extracellular matrix in osteoarthritis cartilage, and reduced the expression of the key ferroptosis regulator GPX4 (all P<0.01). CONCLUSIONS Knockdown of Nupr1 can delay the pathological progression of osteoarthritis through inhibiting ferroptosis in mouse chondrocytes.
Collapse
Affiliation(s)
- Taiyang Liao
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenyuan Ma
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Deren Liu
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lei Shi
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jun Mao
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Peimin Wang
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Liang Ding
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
10
|
Song X, Zhou Z, Elmezayen A, Wu R, Yu C, Gao B, Minna JD, Westover KD, Zeh HJ, Kroemer G, Heasley LE, Kang R, Tang D. SRC kinase drives multidrug resistance induced by KRAS-G12C inhibition. SCIENCE ADVANCES 2024; 10:eadq4274. [PMID: 39661665 PMCID: PMC11633746 DOI: 10.1126/sciadv.adq4274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Direct targeting of the KRAS-G12C-mutant protein using covalent inhibitors (G12Ci) acts on human non-small cell lung cancer (NSCLC). However, drug resistance is an emerging concern in this approach. Here, we show that MRTX849, a covalent inhibitor targeting the KRAS-G12C mutation, leads to the reactivation of the mitogen-activated protein kinase signaling pathway in MRTX849-resistant NSCLC and pancreatic ductal adenocarcinoma. A genome-wide CRISPR screen revealed that the adenosine triphosphate binding cassette transporter ABCC1 mediates MRTX849 resistance. Functional studies demonstrated that the transcription factor JUN drives ABCC1 expression, resulting in multidrug resistance. An unbiased drug screen identified the tyrosine kinase inhibitor dasatinib that potentiates MRTX849 efficacy by inhibiting SRC-dependent JUN activation, avoiding multidrug resistance and tumor suppression in vitro as well as in suitable preclinical mouse models and patient-derived organoids. SRC inhibitors (DGY-06-116, dasatinib, and bosutinib) also exhibit synergistic effects with MRTX849 in eliminating various tumor cell lines carrying KRAS-G12C mutations. Thus, SRC inhibitors amplify the therapeutic utility of G12Ci.
Collapse
Affiliation(s)
- Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhuan Zhou
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ammar Elmezayen
- Departments of Biochemistry and Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, Department of Pharmacology, Department of Internal Medicine, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, Department of Pharmacology, Department of Internal Medicine, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenneth D. Westover
- Departments of Biochemistry and Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Herbert J. Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lynn E. Heasley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
11
|
Lyu H, Kong J, Chen J, Zhang R, Xiao S, Guo D, Zhang Q, Chen XZ, Tang J, Zhou C. The Emerging Scenario of Ferroptosis in Pancreatic Cancer Tumorigenesis and Treatment. Int J Mol Sci 2024; 25:13334. [PMID: 39769097 PMCID: PMC11727763 DOI: 10.3390/ijms252413334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/05/2025] Open
Abstract
Pancreatic cancer remains one of the most lethal forms of cancer. Currently, there is a lack of effective drug treatments for pancreatic cancer. However, as a newly discovered form of non-apoptotic cell death, ferroptosis has garnered increasing attention in relation to pancreatic cancer. Understanding the role of ferroptosis in the tumorigenesis and treatment of pancreatic cancer may enable more effective clinical trials and treatments for pancreatic cancer and may minimize side effects or restrict the emergence of drug resistance. In this review, we summarize the current knowledge regarding the process and underlying mechanisms of ferroptosis, as well as its dual role in both promoting tumorigenesis and facilitating treatment strategies for pancreatic cancer. Additionally, how ferroptosis is implicated in the development of pancreatitis and insulin resistance, indicating that ferroptosis may play an important role in the risk of pancreatitis- and insulin-resistance-related pancreatic cancers, is also addressed.
Collapse
Affiliation(s)
- Hao Lyu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jinghua Kong
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jiasi Chen
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Qi Zhang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jingfeng Tang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Cefan Zhou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
12
|
Zhang G, Wu K, Jiang X, Gao Y, Ding D, Wang H, Yu C, Wang X, Jia N, Zhu L. The role of ferroptosis-related non-coding RNA in liver fibrosis. Front Cell Dev Biol 2024; 12:1517401. [PMID: 39717848 PMCID: PMC11663870 DOI: 10.3389/fcell.2024.1517401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Liver fibrosis represents a reversible pathophysiological process, caused by chronic inflammation stemming from hepatocyte damage. It delineates the initial stage in the progression of chronic liver disease. This pathological progression is characterized by the excessive accumulation of the extracellular matrix (ECM), which leads to significant structural disruption and ultimately impairs liver function. To date, no specific antifibrotic drugs have been developed, and advanced liver fibrosis remains largely incurable. Liver transplantation remains the sole efficacious intervention for advanced liver fibrosis; nevertheless, it is constrained by exorbitant costs and the risk of postoperative immune rejection, underscoring the imperative for novel therapeutic strategies. Ferroptosis, an emergent form of regulated cell death, has been identified as a pivotal regulatory mechanism in the development of liver fibrosis and is intricately linked with the progression of liver diseases. Recent investigations have elucidated that a diverse array of non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs, and circular RNAs, are involved in the ferroptosis pathway, thereby modulating the progression of various diseases, including liver fibrosis. In recent years, the roles of ferroptosis and ferroptosis-related ncRNAs in liver fibrosis have attracted escalating scholarly attention. This paper elucidates the pathophysiology of liver fibrosis, explores the mechanisms underlying ferroptosis, and delineates the involvement of ncRNA-mediated ferroptosis pathways in the pathology of liver fibrosis. It aims to propose novel strategies for the prevention and therapeutic intervention of liver fibrosis.
Collapse
Affiliation(s)
- Guozhu Zhang
- Department of Emergency Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Kejia Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaobo Jiang
- Kunshan Zhenchuan Community Health Service Center, Kunshan, Jiangsu, China
| | - Yuan Gao
- Department of Hepato-Biliary-Pancreatic Surgery, The Institute of Hepatobiliary and Pancreatic Diseases, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Dong Ding
- Department of Hepato-Biliary-Pancreatic Surgery, The Institute of Hepatobiliary and Pancreatic Diseases, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hao Wang
- Department of Emergency Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Chongyuan Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xiaozhong Wang
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University and the Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Naixin Jia
- Department of Hepatobiliary Surgery, Kunshan First People’s Hospital affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Li Zhu
- Department of Emergency Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
13
|
Wang Y, Zhang Y, Gao M, Chen Z, Lu J, Li Y, Di Y, Zhao Y, Liu B, Tang R. Lipocalin-2 promotes CKD vascular calcification by aggravating VSMCs ferroptosis through NCOA4/FTH1-mediated ferritinophagy. Cell Death Dis 2024; 15:865. [PMID: 39613734 DOI: 10.1038/s41419-024-07260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Vascular calcification (VC) is a common complication of chronic kidney disease (CKD), for which no effective therapies are available. Hyperphosphatemia, a feature of CKD, is a well-known inducer of VC. High phosphate (HP)-induced ferroptosis plays a crucial role in CKD-related VC (CKD-VC), but the mechanisms remain unclear. Lipocalin-2 (LCN2), an iron-trafficking protein, has been implicated in ferroptosis regulation. In the present study, the role of LCN2 as a potential mediator of CKD-VC was investigated. HP-induced LCN2 expression in the arteries of CKD-VC patients, animal models and vascular smooth muscle cells (VSMCs). LCN2 knockout (LCN2KO) mice and wild-type (WT) mice fed with a high adenine and phosphate (AP) diet were studied to explore CKD-VC. Compared with WT mice, LCN2KO mice showed an amelioration of the CKD-VC induced by the AP diet. The inhibition of LCN2 also alleviated HP-induced calcium deposition and phenotypic transition in VSMCs. Conversely, VSMCs-targeted LCN2 overexpression or recombinant LCN2 treatment exacerbated CKD-VC in vivo and in vitro. Mechanistically, nuclear receptor coactivator 4 (NCOA4)/ferritin heavy chain 1 (FTH1)-mediated ferritinophagy-dependent ferroptosis was involved in LCN2-mediated CKD-VC. Under HP conditions, LCN2 interacted with NCOA4, potentially accelerating the degradation of FTH1 and inducing ferroptosis. The inhibition of LCN2 may rescue the degradation of FTH1 and thus ameliorate ferroptosis, significantly suppressing VSMCs calcification. In summary, our study revealed a novel role for LCN2 induced ferritinophagy-dependent ferroptosis in CKD-VC, and targeting LCN2 might be a promising treatment for CKD-VC.
Collapse
MESH Headings
- Animals
- Lipocalin-2/metabolism
- Lipocalin-2/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Ferroptosis
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Mice
- Humans
- Nuclear Receptor Coactivators/metabolism
- Nuclear Receptor Coactivators/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice, Knockout
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice, Inbred C57BL
- Ferritins/metabolism
- Male
- Disease Models, Animal
- Oxidoreductases
Collapse
Affiliation(s)
- Yujia Wang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yuxia Zhang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Min Gao
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhiqing Chen
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jing Lu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yongqi Li
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yan Di
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yinan Zhao
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bicheng Liu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Rining Tang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
14
|
Liu X, Jimenez-Alesanco A, Li Z, Rizzuti B, Neira JL, Estaras M, Peng L, Chuluyan E, Garona J, Gottardo F, Velazquez-Campoy A, Xia Y, Abian O, Santofimia-Castaño P, Iovanna J. Development of an efficient NUPR1 inhibitor with anticancer activity. Sci Rep 2024; 14:29515. [PMID: 39604425 PMCID: PMC11603058 DOI: 10.1038/s41598-024-79340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Pancreatic cancer is highly lethal and has limited treatment options available. Our team had previously developed ZZW-115, a promising drug candidate that targets the nuclear protein 1 (NUPR1), which is involved in pancreatic cancer development and progression. However, clinical translation of ZZW-115 was hindered due to potential cardiotoxicity caused by its interaction with the human Ether-à-go-go-Related Gene (hERG) potassium channel. To address this, we have performed a high-throughput screening of 10,000 compounds from the HitFinder Chemical Library, and identified AJO14 as a lead compound that binds to NUPR1, without having favorable affinity towards hERG. AJO14 induced cell death through apoptosis, necroptosis, and parthanatos (induced by the poly-ADP ribose polymerase (PARP) overactivation), driven by mitochondrial catastrophe and decreased ATP production. This process seemed to be mediated by the hyperPARylation (an excessive modification of proteins by PARP, leading to cellular dysfunction), as it could be reversed by Olaparib, a PARP inhibitor. In xenografted mice, AJO14 demonstrated a dose-dependent tumor reduction activity. Furthermore, we attempted to improve the anti-cancer properties of AJO14 by molecular modification of the lead compound. Among the 51 candidates obtained and tested, 8 compounds exhibited a significant increase in efficacy and have been retained for further studies, especially LZX-2-73. These AJO14-derived compounds offer potent NUPR1 inhibition for pancreatic cancer treatment, without cardiotoxicity concerns.
Collapse
Affiliation(s)
- Xi Liu
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France
| | - Ana Jimenez-Alesanco
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
| | - Zexian Li
- Chongqing Key Lab oratory of Natural Product Synthesis and Drug Research, School ofPharmaceutical Sciences, Chongqing University, No.55 Daxuecheng South Road, Chongqing, 401331, People's Republic of China
| | - Bruno Rizzuti
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- CNR NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, Via P.Bucci, Cubo 31 C, 87036, Rende, Italy
| | - José L Neira
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- IDIBE, Universidad Miguel Hernández, Edificio Torregaitán, Avda. del Ferrocarril s/n, 03202, Elche, Alicante, Spain
| | - Matías Estaras
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France
| | - Ling Peng
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR7325, Parc Scientifique et Technologique de Luminy, Equipe labélisée Ligue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France
| | - Eduardo Chuluyan
- Center for Pharmacological and Botanical Studies, Faculty of Medicine, National Council for Scientific and Technical Research, Buenos Aires University, C1121ABG, Buenos Aires, Argentina
- Department of Microbiology, Parasitology and Immunology, Faculty of Medicine, Buenos Aires University, C1121ABG, Buenos Aires, Argentina
| | - Juan Garona
- Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires, Argentina
- University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina
| | - Florencia Gottardo
- Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires, Argentina
- University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina
| | - Adrián Velazquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfe rmedadesHepáticas y Digestivas (CIBERehd), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Yi Xia
- Chongqing Key Lab oratory of Natural Product Synthesis and Drug Research, School ofPharmaceutical Sciences, Chongqing University, No.55 Daxuecheng South Road, Chongqing, 401331, People's Republic of China
| | - Olga Abian
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfe rmedadesHepáticas y Digestivas (CIBERehd), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France.
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France.
- Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires, Argentina.
- University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Wang H, Ciccocioppo R, Terai S, Shoeibi S, Carnevale G, De Marchi G, Tsuchiya A, Ishii S, Tonouchi T, Furuyama K, Yang Y, Mito M, Abe H, Di Tinco R, Cardinale V. Targeted animal models for preclinical assessment of cellular and gene therapies in pancreatic and liver diseases: regulatory and practical insights. Cytotherapy 2024:S1465-3249(24)00934-4. [PMID: 39755978 DOI: 10.1016/j.jcyt.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 01/07/2025]
Abstract
Cellular and gene therapy (CGT) products have emerged as a popular approach in regenerative medicine, showing promise in treating various pancreatic and liver diseases in numerous clinical trials. Before these therapies can be tested in human clinical trials, it is essential to evaluate their safety and efficacy in relevant animal models. Such preclinical testing is often required to obtain regulatory approval for investigational new drugs. However, there is a lack of detailed guidance on selecting appropriate animal models for CGT therapies targeting specific pancreatic and liver conditions, such as pancreatitis and chronic liver diseases. In this review, the gastrointestinal committee for the International Society for Cell and Gene Therapy provides a summary of current recommendations for animal species and disease model selection, as outlined by the US Food and Drug Administration, with references to EU EMA and Japan PMDA. We discuss a range of small and large animal models, as well as humanized models, that are suitable for preclinical testing of CGT products aimed at treating pancreatic and liver diseases. For each model, we cover the associated pathophysiology, commonly used metrics for assessing disease status, the pros and limitations of the models, and the relevance of these models to human conditions. We also summarize the use and application of humanized mouse and other animal models in evaluating the safety and efficacy of CGT products. This review aims to provide comprehensive guidance for selecting appropriate animal species and models to help bridge the gap between the preclinical research and clinical trials using CGT therapies for specific pancreatic and liver diseases.
Collapse
Affiliation(s)
- Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA; Ralph H Johnson Veteran Medical Center, Charleston, South Carolina, USA.
| | - Rachele Ciccocioppo
- Department of Medicine, Gastroenterology Unit, Pancreas Institute, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Sara Shoeibi
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia De Marchi
- Department of Medicine, Gastroenterology Unit, Pancreas Institute, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Soichi Ishii
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takafumi Tonouchi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kaito Furuyama
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yuan Yang
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Mito
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Vincenzo Cardinale
- Department of Translational and Precision Medicine, University of Rome, Rome, Italy.
| |
Collapse
|
16
|
Wang S, Xu A, Chen M, Wu Y. NUPR1 modulates pulmonary embolism progression via smooth muscle cells phenotypic transformation. Heliyon 2024; 10:e38918. [PMID: 39524834 PMCID: PMC11550085 DOI: 10.1016/j.heliyon.2024.e38918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
Objective This study aimed to investigate the role of Nuclear Protein 1 (NUPR1) in pulmonary embolism (PE) and its impact on the phenotypic transformation of pulmonary artery smooth muscle cells (PASMCs). Methods A PE model was established via autologous pulmonary emboli infusion into the jugular vein. Partial Pressure of Oxygen (PaO2), Oxygenation Index (OI), Brain Natriuretic Peptide (BNP), and Troponin I (TnI) were measured, and lung tissue was subjected to hematoxylin-eosin (HE) staining. NUPR1 expression was assessed through Immunofluorescence and Western blot analyses. To investigate role of NUPR1, PE rats were treated with lentiviral vectors for NUPR1 knockdown (si-NUPR1) or overexpression (ov-NUPR1), and the effects on lung pathology were examined. NUPR1 expression was evaluated in human PASMCs. Additionally, PASMCs from SD rats were cultured under normoxic and hypoxic conditions to evaluate NUPR1 expression. Transfection of NUPR1 expression vectors into PASMCs allowed monitoring of phenotypic transformation-associated protein changes and PASMCs activity. Results Increased NURP1 was observed in human-derived PASMCs. In PE rats, histological examination revealed ruptured pulmonary alveoli, exudate accumulation, interstitial edema, and infiltration of inflammatory cells, concomitant with elevated NUPR1 expression levels. Knockdown of NUPR1 in PE rats significantly improved lung tissue structure, reducing alveolar rupture and interstitial edema. Conversely, NUPR1 overexpression exacerbated lung damage, leading to increased inflammatory infiltration. NUPR1 expression in rat PASMCs remained stable under normoxic conditions; however, under hypoxic conditions, NUPR1 protein expression increased progressively over time. Subsequent upregulation of NUPR1 expression led to a decrease in the levels of contractile phenotype markers α-SMA and SM22α in PASMCs, accompanied by increased expression of synthetic phenotype markers Vimentin and OPN. This phenotypic shift was associated with enhanced cellular proliferation, invasion, and migration. Conclusions Elevated NUPR1 expression in PE exacerbates abnormal PASMCs proliferation by promoting their phenotypic transformation, thereby fostering the pathological progression of PE.
Collapse
Affiliation(s)
- Shu Wang
- Department of Respiratory and Critical Care Medicine, Zibo Central Hospital, Zibo, Shandong, 255036, China
| | - Aizhen Xu
- Department of Respiratory and Critical Care Medicine, Zibo Central Hospital, Zibo, Shandong, 255036, China
| | - Maoqing Chen
- Department of Respiratory and Critical Care Medicine, Zibo Central Hospital, Zibo, Shandong, 255036, China
| | - Yue Wu
- Department of Vascular Surgery, Zibo Central Hospital, Zibo, Shandong, 255036, China
| |
Collapse
|
17
|
Kumar S, Ziegler Y, Plotner BN, Flatt KM, Kim SH, Katzenellenbogen JA, Katzenellenbogen BS. Resistance to FOXM1 inhibitors in breast cancer is accompanied by impeding ferroptosis and apoptotic cell death. Breast Cancer Res Treat 2024; 208:307-320. [PMID: 38980505 PMCID: PMC11455716 DOI: 10.1007/s10549-024-07420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE Cancer treatments often become ineffective because of acquired drug resistance. To characterize changes in breast cancer cells accompanying development of resistance to inhibitors of the oncogenic transcription factor, FOXM1, we investigated the suppression of cell death pathways, especially ferroptosis, in FOXM1 inhibitor-resistant cells. We also explored whether ferroptosis activators can synergize with FOXM1 inhibitors and can overcome FOXM1 inhibitor resistance. METHODS In estrogen receptor-positive and triple-negative breast cancer cells treated with FOXM1 inhibitor NB73 and ferroptosis activators dihydroartemisinin and JKE1674, alone and in combination, we measured suppression of cell viability, motility, and colony formation, and monitored changes in gene and protein pathway expressions and mitochondrial integrity. RESULTS Growth suppression of breast cancer cells by FOXM1 inhibitors is accompanied by increased cell death and alterations in mitochondrial morphology and metabolic activity. Low doses of FOXM1 inhibitor strongly synergize with ferroptosis inducers to reduce cell viability, migration, colony formation, and expression of proliferation-related genes, and increase intracellular Fe+2 and lipid peroxidation, markers of ferroptosis. Acquired resistance to FOXM1 inhibition is associated with increased expression of cancer stem-cell markers and proteins that repress ferroptosis, enabling cell survival and drug resistance. Notably, resistant cells are still sensitive to growth suppression by low doses of ferroptosis activators, effectively overcoming the acquired resistance. CONCLUSION Delineating changes in viability and cell death pathways that can overcome drug resistance should be helpful in determining approaches that might best prevent or reverse resistance to therapeutic targeting of FOXM1 and ultimately improve patient clinical outcomes.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yvonne Ziegler
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Blake N Plotner
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kristen M Flatt
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - John A Katzenellenbogen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
18
|
Lin YS, Tsai YC, Li CJ, Wei TT, Wang JL, Lin BW, Wu YN, Wu SR, Lin SC, Lin SC. Overexpression of NUDT16L1 sustains proper function of mitochondria and leads to ferroptosis insensitivity in colorectal cancer. Redox Biol 2024; 77:103358. [PMID: 39317106 PMCID: PMC11465047 DOI: 10.1016/j.redox.2024.103358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
Cancer research is continuously exploring new avenues to improve treatments, and ferroptosis induction has emerged as a promising approach. However, the lack of comprehensive analysis of the ferroptosis sensitivity in different cancer types has limited its clinical application. Moreover, identifying the key regulator that influences the ferroptosis sensitivity during cancer progression remains a major challenge. In this study, we shed light on the role of ferroptosis in colorectal cancer and identified a novel ferroptosis repressor, NUDT16L1, that contributes to the ferroptosis insensitivity in this cancer type. Mechanistically, NUDT16L1 promotes ferroptosis insensitivity in colon cancer by enhancing the expression of key ferroptosis repressor and mitochondrial genes through direct binding to NAD-capped RNAs and the indirect action of MALAT1. Our findings also reveal that NUDT16L1 localizes to the mitochondria to maintain its proper function by preventing mitochondrial DNA leakage after treatment of ferroptosis inducer in colon cancer cells. Importantly, our orthotopic injection and Nudt16l1 transgenic mouse models of colon cancer demonstrated the critical role of NUDT16L1 in promoting tumor growth. Moreover, clinical specimens revealed that NUDT16L1 was overexpressed in colorectal cancer, indicating its potential as a therapeutic target. Finally, our study shows the therapeutic potential of a NUDT16L1 inhibitor in vitro, in vivo and ex vivo. Taken together, these findings provide new insights into the crucial role of NUDT16L1 in colorectal cancer and highlight its potential as a promising therapeutic target.
Collapse
Affiliation(s)
- Yi-Syuan Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chuan Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tzu-Tang Wei
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jui-Lin Wang
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, Taiwan
| | - Bo-Wen Lin
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Na Wu
- School of Dentistry and Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Rung Wu
- School of Dentistry and Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shin-Chih Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Chieh Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
19
|
Lu Y, Chen W, Xuan Y, Li X, Wu S, Wang H, Guo T, Wang C, Tian S, Li H, Lai D, Zhao W, Huang X, Zhao X, Wang B, Zhang X, Li H, Huang Y, Ma X. ATF4/NUPR1 axis promotes cancer cell survival and mediates immunosuppression in clear cell renal cell carcinoma. Discov Oncol 2024; 15:607. [PMID: 39480570 PMCID: PMC11528094 DOI: 10.1007/s12672-024-01485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Cancer cells encounter unavoidable stress during tumor growth. The stress-induced transcription factor, activating transcription factor 4 (ATF4), has been reported to upregulate various adaptive genes involved in salvage pathways to alleviate stress and promote tumor progression. However, this effect is unknown in clear cell renal cell carcinoma (ccRCC). In this study, we found that ATF4 expression was remarkably upregulated in tumor tissues and associated with poor ccRCC outcomes. ATF4 depletion significantly impaired ccRCC cell proliferation, migration, and invasion in vitro and in vivo by inhibiting the AKT/mTOR and epithelial-mesenchymal transition (EMT)-related signaling pathway. RNA sequencing and functional studies identified nuclear protein 1 (NUPR1) as a key downstream target of ATF4 for repressing ferroptosis and promoting ccRCC cell survival. In addition, targeting ATF4 or pharmacological inhibition using NUPR1 inhibitor ZZW115 promoted antitumor immunity in syngeneic graft mouse models, represented by increased infiltration of CD4+ and CD8+ T cells. Furthermore, ZZW115 could improve the response to the PD-1 immune checkpoint blockade. The results demonstrate that the ATF4/NUPR1 signaling axis promotes ccRCC survival and facilitates tumor-mediated immunosuppression, providing a set of potential targets and prognostic indicators for ccRCC patients.
Collapse
Affiliation(s)
- Yongliang Lu
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Weihao Chen
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Yundong Xuan
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Xiubin Li
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Shengpan Wu
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Hanfeng Wang
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Tao Guo
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Chenfeng Wang
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Shuo Tian
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Huaikang Li
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Dong Lai
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Wenlei Zhao
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Xing Huang
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Xupeng Zhao
- School of Medicine, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Baojun Wang
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Xu Zhang
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Hongzhao Li
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China.
| | - Yan Huang
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China.
| | - Xin Ma
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China.
| |
Collapse
|
20
|
Liu W, Xiong Z, Fu T, Yang J, Zou J, Wu Y, Kuang L, Wang Q, Li S, Le A. Regulation of renal ischemia-reperfusion injury and tubular epithelial cell ferroptosis by pparγ m6a methylation: mechanisms and therapeutic implications. Biol Direct 2024; 19:99. [PMID: 39444036 PMCID: PMC11515743 DOI: 10.1186/s13062-024-00515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/08/2024] [Indexed: 10/25/2024] Open
Abstract
This study aimed to elucidate the role and underlying mechanisms of Peroxisome proliferator-activated receptor gamma (PPARγ) and its m6A methylation in renal ischemia-reperfusion (I/R) injury and ferroptosis of tubular epithelial cells (TECs). High-throughput transcriptome sequencing was performed on renal tissue samples from I/R injury models and sham-operated mice, complemented by in vivo and in vitro experiments focusing on the PPARγ activator Rosiglitazone and the manipulation of METTL14 and IGF2BP2 expression. Key evaluations included renal injury assessment, ferroptosis indicator measurement, and m6A methylation analysis of PPARγ. Our findings highlight the critical role of the PPARγ pathway and ferroptosis in renal I/R injury, with Rosiglitazone ameliorating renal damage and TEC ferroptosis. METTL14-mediated m6A methylation of PPARγ, dependent on IGF2BP2, emerged as a pivotal regulator of PPARγ expression, renal injury, and ferroptosis. This study reveals that PPARγ m6A methylation, orchestrated by METTL14 through an IGF2BP2-dependent mechanism, plays a crucial role in mitigating renal I/R injury and TEC ferroptosis. These insights offer promising avenues for therapeutic strategies targeting acute kidney injury.
Collapse
Affiliation(s)
- Wei Liu
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Ziqing Xiong
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Tianmei Fu
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Juan Yang
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Juan Zou
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Yize Wu
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Linju Kuang
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Qian Wang
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Song Li
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Aiping Le
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
21
|
Begolli R, Patouna A, Vardakas P, Xagara A, Apostolou K, Kouretas D, Giakountis A. Deciphering the Landscape of GATA-Mediated Transcriptional Regulation in Gastric Cancer. Antioxidants (Basel) 2024; 13:1267. [PMID: 39456519 PMCID: PMC11504088 DOI: 10.3390/antiox13101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Gastric cancer (GC) is an asymptomatic malignancy in early stages, with an invasive and cost-ineffective diagnostic toolbox that contributes to severe global mortality rates on an annual basis. Ectopic expression of the lineage survival transcription factors (LS-TFs) GATA4 and 6 promotes stomach oncogenesis. However, LS-TFs also govern important physiological roles, hindering their direct therapeutic targeting. Therefore, their downstream target genes are particularly interesting for developing cancer-specific molecular biomarkers or therapeutic agents. In this work, we couple inducible knockdown systems with chromatin immunoprecipitation and RNA-seq to thoroughly detect and characterize direct targets of GATA-mediated transcriptional regulation in gastric cancer cells. Our experimental and computational strategy provides evidence that both factors regulate the expression of several coding and non-coding RNAs that in turn mediate for their cancer-promoting phenotypes, including but not limited to cell cycle, apoptosis, ferroptosis, and oxidative stress response. Finally, the diagnostic and prognostic potential of four metagene signatures consisting of selected GATA4/6 target transcripts is evaluated in a multi-cancer panel of ~7000 biopsies from nineteen tumor types, revealing elevated specificity for gastrointestinal tumors. In conclusion, our integrated strategy uncovers the landscape of GATA-mediated coding and non-coding transcriptional regulation, providing insights regarding their molecular and clinical function in gastric cancer.
Collapse
Affiliation(s)
- Rodiola Begolli
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Anastasia Patouna
- Laboratory of Animal Physiology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Periklis Vardakas
- Laboratory of Animal Physiology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Anastasia Xagara
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Mezourlo, 41110 Larissa, Greece
| | - Kleanthi Apostolou
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Demetrios Kouretas
- Laboratory of Animal Physiology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Antonis Giakountis
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
22
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
23
|
Ouyang S, Zeng Z, He J, Luo L. Epigenetic regulation of targeted ferroptosis: A new strategy for drug development. J Pharm Anal 2024; 14:101012. [PMID: 39850234 PMCID: PMC11755343 DOI: 10.1016/j.jpha.2024.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 01/25/2025] Open
Abstract
Ferroptosis is a newly discovered form of cell death that is influenced by iron levels and is triggered by cellular metabolism and excessive lipid peroxidation. Epigenetic regulation plays a crucial role in the development and progression of diseases, making it essential to understand these mechanisms in order to identify potential targets for drug development and clinical treatment. The intersection of ferroptosis and epigenetics has opened up new avenues for research in drug development, offering innovative strategies for combating diseases. Recent studies have shown that epigenetic modifications can impact pathways related to ferroptosis, potentially leading to organ dysfunction. Despite the increasing focus on this relationship, the role of epigenetic regulation in drug development remains largely unexplored. This article explores current research on the interplay between epigenetic regulation and ferroptosis, delving into their regulatory mechanisms and discussing the effects of existing epigenetic modification regulators on diseases. Additionally, we highlight ongoing research on epigenetic factors involved in targeting ferroptosis in cancer, providing new insights for the development of cancer treatments.
Collapse
Affiliation(s)
- Shengli Ouyang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Zeyao Zeng
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jieyi He
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| |
Collapse
|
24
|
Chen X, Chen X, Yan D, Zhang N, Fu W, Wu M, Ge F, Wang J, Li X, Geng M, Wang J, Tang D, Liu J. GV-971 prevents severe acute pancreatitis by remodeling the microbiota-metabolic-immune axis. Nat Commun 2024; 15:8278. [PMID: 39333064 PMCID: PMC11436807 DOI: 10.1038/s41467-024-52398-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/02/2024] [Indexed: 09/29/2024] Open
Abstract
Despite recent advances, severe acute pancreatitis (SAP) remains a lethal inflammation with limited treatment options. Here, we provide compelling evidence of GV-971 (sodium oligomannate), an anti-Alzheimer's medication, as being a protective agent in various male mouse SAP models. Microbiome sequencing, along with intestinal microbiota transplantation and mass cytometry technology, unveil that GV-971 reshapes the gut microbiota, increasing Faecalibacterium populations and modulating both peripheral and intestinal immune systems. A metabolomics analysis of cecal contents from GV-971-treated SAP mice further identifies short-chain fatty acids, including propionate and butyrate, as key metabolites in inhibiting macrophage M1 polarization and subsequent lethal inflammation by blocking the MAPK pathway. These findings suggest GV-971 as a promising therapeutic for SAP by targeting the microbiota metabolic immune axis.
Collapse
Affiliation(s)
- Xi Chen
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xin Chen
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ding Yan
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Na Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wen Fu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Meixuan Wu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Feifei Ge
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiangtuan Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaofen Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jinheng Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
25
|
Chen M, Tong X, Sun Y, Dong C, Li C, Wang C, Zhang M, Wen Y, Ye P, Li R, Wan J, Liang S, Shi S. A ferroptosis amplifier based on triple-enhanced lipid peroxides accumulation strategy for effective pancreatic cancer therapy. Biomaterials 2024; 309:122574. [PMID: 38670032 DOI: 10.1016/j.biomaterials.2024.122574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
As an iron dependent regulatory cell death process driven by excessive lipid peroxides (LPO), ferroptosis is recognized as a powerful weapon for pancreatic cancer (PC) therapy. However, the tumor microenvironment (TME) with hypoxia and elevated glutathione (GSH) expression not only inhibits LPO production, but also induces glutathione peroxidase 4 (GPX4) mediated LPO clearance, which greatly compromise the therapeutic outcomes of ferroptosis. To address these issues, herein, a novel triple-enhanced ferroptosis amplifier (denoted as Zal@HM-PTBC) is rationally designed. After intravenous injection, the overexpressed H2O2/GSH in TME induces the collapse of Zal@HM-PTBC and triggers the production of oxygen and reactive oxygen species (ROS), which synergistically amplify the degree of lipid peroxidation (broaden sources). Concurrently, GSH consumption because of the degradation of the hollow manganese dioxide (HM) significantly weakens the activity of GPX4, resulting in a decrease in LPO clearance (reduce expenditure). Moreover, the loading and site-directed release of zalcitabine further promotes autophagy-dependent LPO accumulation (enhance effectiveness). Both in vitro and in vivo results validated that the ferroptosis amplifier demonstrated superior specificity and favorable therapeutic responses. Overall, this triple-enhanced LPO accumulation strategy demonstrates the ability to facilitate the efficacy of ferroptosis, injecting vigorous vitality into the treatment of PC.
Collapse
Affiliation(s)
- Mengyao Chen
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Xiaohan Tong
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Yanting Sun
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Chunyan Dong
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Chen Li
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Chunhui Wang
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Minyi Zhang
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Yixuan Wen
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Pinting Ye
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Ruihao Li
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Jie Wan
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Shujing Liang
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China.
| | - Shuo Shi
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
26
|
Maheshwari S, Singh A, Verma A. Ferroptosis: A Frontier in Osteoporosis. Horm Metab Res 2024; 56:625-632. [PMID: 38307092 DOI: 10.1055/a-2230-2664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Reduced bone mass and degeneration of the microarchitecture of bone tissue are the hallmarks of osteoporosis, a bone metabolic disease that increases skeletal fragility and fracture susceptibility. Osteoporosis is primarily caused by unbalanced bone remodeling, in which bone synthesis is outpaced by bone resorption caused by osteoclasts. Along with the bone-building vitamins calcium and vitamin D, typical medications for treating osteoporosis include bisphosphonates and calcitonin. The present therapies effectively stop osteoclast activation that is too high, however they come with varying degrees of negative effects. Numerous factors can contribute to osteoporosis, which is characterized by a loss of bone mass and density due to the deterioration of the bone's microstructure, which makes the bone more fragile. As a result, it is a systemic bone condition that makes patients more likely to fracture. Interest in the function of ferroptosis in the pathophysiology of osteoporosis is developing. In this review, we go through the shape of the cell, the fundamental mechanisms of ferroptosis, the relationship between osteoclasts and osteoblasts, the association between ferroptosis and diabetic osteoporosis, steroid-induced osteoporosis, and the relationship between ferroptosis and postmenopausal osteoporosis. The functions of ferroptosis and osteoporosis in cellular function, signaling cascades, pharmacological inhibition, and gene silencing have been better understood thanks to recent advances in biomedical research.
Collapse
Affiliation(s)
- Shubhrat Maheshwari
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
- Faculty of Pharmaceutical Sciences, Rama University, Kanpur, India
| | - Aditya Singh
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
27
|
Deng Y, Lu L, Zhu D, Zhang H, Fu Y, Tan Y, Tan X, Guo M, Zhang Y, Yang H, Yang B, Liu T, Chen Y. MafG/MYH9-LCN2 axis promotes liver fibrosis through inhibiting ferroptosis of hepatic stellate cells. Cell Death Differ 2024; 31:1127-1139. [PMID: 38871948 PMCID: PMC11369194 DOI: 10.1038/s41418-024-01322-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
Hepatic stellate cells (HSCs) secrete extracellular matrix for collagen deposition, contributing to liver fibrosis. Ferroptosis is a novel type of programmed cell death induced by iron overload-dependent lipid peroxidation. Regulation of ferroptosis in hepatic stellate cells (HSCs) may have therapeutic potential for liver fibrosis. Here, we found that Maf bZIP transcription factor G (MafG) was upregulated in human and murine liver fibrosis. Interestingly, MafG knockdown increased HSCs ferroptosis, while MafG overexpression conferred resistance of HSCs to ferroptosis. Mechanistically, MafG physically interacted with non-muscle myosin heavy chain IIa (MYH9) to transcriptionally activate lipocalin 2 (LCN2) expression, a known suppressor for ferroptosis. Site-directed mutations of MARE motif blocked the binding of MafG to LCN2 promoter. Re-expression of LCN2 in MafG knockdown HSCs restored resistance to ferroptosis. In bile duct ligation (BDL)-induced mice model, we found that treatment with erastin alleviated murine liver fibrosis by inducing HSC ferroptosis. HSC-specific knowdown MafG based on adeno-associated virus 6 (AAV-6) improved erastin-induced HSC ferroptosis and alleviation of liver fibrosis. Taken together, MafG inhibited HSCs ferroptosis to promote liver fibrosis through transcriptionally activating LCN2 expression. These results suggest that MafG/MYH9-LCN2 signaling pathway could be a novel targets for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yalan Deng
- Department of Ultrasonic Imaging, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Liqing Lu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Dandan Zhu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huajun Zhang
- Department of Ultrasonic Imaging, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuying Tan
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xuemei Tan
- Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ye Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Heping Yang
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bing Yang
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ting Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
28
|
Wen Y, Zhao C, Chen J, Tian L, Wu B, Xie W, Dong T. Gandouling Regulates Ferroptosis and Improves Neuroinflammation in Wilson's Disease Through the LCN2/NLRP3 Signaling Pathway. J Inflamm Res 2024; 17:5599-5618. [PMID: 39193124 PMCID: PMC11348929 DOI: 10.2147/jir.s465341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Purpose Neuroinflammation is a main cause of neurological damage in Wilson's disease (WD). Ferroptosis is present in the WD pathological process, which is also closely related to the neuroinflammation. LCN2, a ferroptosis-related gene in WD, is linked with the activation of NLRP3 inflammasome. Our group has previously demonstrated that Gandouling (GDL) can effectively improve neuroinflammation in WD. This study aims to investigate the protective effect of GDL on neuroinflammation in animal and cell models of WD, and whether the pharmacological mechanism is related to the LCN2/NLRP3 signaling pathway. Methods Toxic milk (TX) mice and HT22 cells stimulated by copper ions were selected as models. The pathology of hippocampal tissues in TX mice were observed by HE staining and transmission electron microscopy. High-throughput sequencing analysis was conducted to screen ferroptosis-related genes in WD. The expression of LCN2 and GPX4 in hippocampus of TX mice were detected by immunohistochemical. The expression of LCN2, NLRP3, GPX4, and SLC7A11 was determined in TX mice and HT22 cells by Western blotting and RT-qPCR. The levels of Fe2+, inflammatory factor indicators TNF-α, IL-1β and IL-6 and oxidative stress indicators 4-HNE, MAD, SOD, GSH and ROS were detected in each group by ELISA. Results The results showed that GDL ameliorated pathological and mitochondrial damages in hippocampus of TX mice. The analysis of bioinformatics showed that LCN2 was a differential gene associated with ferroptosis in WD. The results of Western blotting and RT-qPCR indicated that GDL reduced the expression of LCN2 and NLRP3, and enhanced the expression of GPX4 and SLC711 in TX mice and HT22 cells. The ELISA results showed that GDL decreased the expression of Fe2+ and inflammatory factors TNF-α, IL-1β and IL-6 in TX mice with ferroptosis inducer intervention and copper ion-loaded HT22 cells. GDL decreased the expression of oxidative stress indicators ROS, 4-HNE and MDA, and increased the expression of oxidative stress indicators GSH and SOD in TX mice and copper ion-loaded HT22 cells. Conclusion GDL has anti-inflammatory and antioxidant effects. LCN2 is a differential gene associated with ferroptosis in WD. GDL may alleviate ferroptosis by inhibiting the LCN2/NLPR3 signaling pathway, thereby improving neuroinflammatory responses and exerting neuroprotective effects in WD.
Collapse
Affiliation(s)
- Yuya Wen
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
| | - Chenling Zhao
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
| | - Jie Chen
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
| | - Liwei Tian
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
| | - Bojin Wu
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
| | - Wenting Xie
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
| | - Ting Dong
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
- Key Laboratory of Xin’An Medicine, Ministry of Education, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
| |
Collapse
|
29
|
Zhang X, Li Z, Zhang X, Yuan Z, Zhang L, Miao P. ATF family members as therapeutic targets in cancer: From mechanisms to pharmacological interventions. Pharmacol Res 2024; 208:107355. [PMID: 39179052 DOI: 10.1016/j.phrs.2024.107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
The activating transcription factor (ATF)/ cAMP-response element binding protein (CREB) family represents a large group of basic zone leucine zip (bZIP) transcription factors (TFs) with a variety of physiological functions, such as endoplasmic reticulum (ER) stress, amino acid stress, heat stress, oxidative stress, integrated stress response (ISR) and thus inducing cell survival or apoptosis. Interestingly, ATF family has been increasingly implicated in autophagy and ferroptosis in recent years. Thus, the ATF family is important for homeostasis and its dysregulation may promote disease progression including cancer. Current therapeutic approaches to modulate the ATF family include direct modulators, upstream modulators, post-translational modifications (PTMs) modulators. This review summarizes the structural domain and the PTMs feature of the ATF/CREB family and comprehensively explores the molecular regulatory mechanisms. On this basis, their pathways affecting proliferation, metastasis, and drug resistance in various types of cancer cells are sorted out and discussed. We then systematically summarize the status of the therapeutic applications of existing ATF family modulators and finally look forward to the future prospect of clinical applications in the treatment of tumors by modulating the ATF family.
Collapse
Affiliation(s)
- Xueyao Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaochun Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Peng Miao
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
30
|
Su D, Ding C, Wang R, Qiu J, Liu Y, Tao J, Luo W, Weng G, Yang G, Zhang T. E3 ubiquitin ligase RBCK1 confers ferroptosis resistance in pancreatic cancer by facilitating MFN2 degradation. Free Radic Biol Med 2024; 221:136-154. [PMID: 38763208 DOI: 10.1016/j.freeradbiomed.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Ferroptosis, a novel form of iron-dependent non-apoptotic cell death, plays an active role in the pathogenesis of diverse diseases, including cancer. However, the mechanism through which ferroptosis is regulated in pancreatic ductal adenocarcinoma (PDAC) remains unclear. Here, our study, via combining bioinformatic analysis with experimental validation, showed that ferroptosis is inhibited in PDAC. Genome-wide sequencing further revealed that the ferroptosis activator imidazole ketone erastin (IKE) induced upregulation of the E3 ubiquitin ligase RBCK1 in PDAC cells at the transcriptional or translational level. RBCK1 depletion or knockdown rendered PDAC cells more vulnerable to IKE-induced ferroptotic death in vitro. In a mouse xenograft model, genetic depletion of RBCK1 increased the killing effects of ferroptosis inducer on PDAC cells. Mechanistically, RBCK1 interacts with and polyubiquitylates mitofusin 2 (MFN2), a key regulator of mitochondrial dynamics, to facilitate its proteasomal degradation under ferroptotic stress, leading to decreased mitochondrial reactive oxygen species (ROS) production and lipid peroxidation. These findings not only provide new insights into the defense mechanisms of PDAC cells against ferroptotic death but also indicate that targeting the RBCK1-MFN2 axis may be a promising option for treating patients with PDAC.
Collapse
Affiliation(s)
- Dan Su
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Science, Beijing, 100730, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China
| | - Chen Ding
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Science, Beijing, 100730, PR China
| | - Ruobing Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Science, Beijing, 100730, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China
| | - Jiangdong Qiu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Science, Beijing, 100730, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China
| | - Yueze Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Science, Beijing, 100730, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China
| | - Jinxin Tao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Science, Beijing, 100730, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China
| | - Wenhao Luo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Science, Beijing, 100730, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China
| | - Guihu Weng
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Science, Beijing, 100730, PR China
| | - Gang Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Science, Beijing, 100730, PR China
| | - Taiping Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Science, Beijing, 100730, PR China.
| |
Collapse
|
31
|
Suzuki T, Bono H. A systematic exploration of unexploited genes for oxidative stress in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:160. [PMID: 39154038 PMCID: PMC11330442 DOI: 10.1038/s41531-024-00776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Human disease-associated gene data are accessible through databases, including the Open Targets Platform, DisGeNET, miRTex, RNADisease, and PubChem. However, missing data entries in such databases are anticipated because of curational errors, biases, and text-mining failures. Additionally, the extensive research on human diseases has led to challenges in registering comprehensive data. The lack of essential data in databases hinders knowledge sharing and should be addressed. Therefore, we propose an analysis pipeline to explore missing entries of unexploited genes in the human disease-associated gene databases. Using this pipeline for genes in Parkinson's disease with oxidative stress revealed two unexploited genes: nuclear protein 1 (NUPR1) and ubiquitin-like with PHD and ring finger domains 2 (UHRF2). This methodology enhances the identification of underrepresented disease-associated genes, facilitating easier access to potential human disease-related functional genes. This study aims to identify unexploited genes for further research and does not include independent experimental validation.
Collapse
Affiliation(s)
- Takayuki Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Hidemasa Bono
- Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
- Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
- Database Center for Life Science (DBCLS), Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), 178-4-4 Wakashiba, Kashiwa, Chiba, 277-0871, Japan.
| |
Collapse
|
32
|
Chen F, Lin J, Kang R, Tang D, Liu J. Alkaliptosis induction counteracts paclitaxel-resistant ovarian cancer cells via ATP6V0D1-mediated ABCB1 inhibition. Mol Carcinog 2024; 63:1515-1527. [PMID: 38751020 DOI: 10.1002/mc.23741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/23/2024] [Accepted: 05/04/2024] [Indexed: 07/10/2024]
Abstract
Paclitaxel serves as the cornerstone chemotherapy for ovarian cancer, yet its prolonged administration frequently culminates in drug resistance, presenting a substantial challenge. Here we reported that inducing alkaliptosis, rather than apoptosis or ferroptosis, effectively overcomes paclitaxel resistance. Mechanistically, ATPase H+ transporting V0 subunit D1 (ATP6V0D1), a key regulator of alkaliptosis, plays a pivotal role by mediating the downregulation of ATP-binding cassette subfamily B member 1 (ABCB1), a multidrug resistance protein. Both ATP6V0D1 overexpression through gene transfection and pharmacological enhancement of ATP6V0D1 protein stability using JTC801 effectively inhibit ABCB1 upregulation, resulting in growth inhibition in drug-resistant cells. Additionally, increasing intracellular pH to alkaline (pH 8.5) via sodium hydroxide application suppresses ABCB1 expression, whereas reducing the pH to acidic conditions (pH 6.5) with hydrochloric acid amplifies ABCB1 expression in drug-resistant cells. Collectively, these results indicate a potentially effective therapeutic strategy for targeting paclitaxel-resistant ovarian cancer by inducing ATP6V0D1-dependent alkaliptosis.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junhao Lin
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
33
|
Zhuang X, Wang Q, Joost S, Ferrena A, Humphreys DT, Li Z, Blum M, Bastl K, Ding S, Landais Y, Zhan Y, Zhao Y, Chaligne R, Lee JH, Carrasco SE, Bhanot UK, Koche RP, Bott MJ, Katajisto P, Soto-Feliciano YM, Pisanic T, Thomas T, Zheng D, Wong ES, Tammela T. Aging limits stemness and tumorigenesis in the lung by reprogramming iron homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.23.600305. [PMID: 38979280 PMCID: PMC11230188 DOI: 10.1101/2024.06.23.600305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Aging is associated with a decline in the number and fitness of adult stem cells 1-4 . Aging-associated loss of stemness is posited to suppress tumorigenesis 5,6 , but this hypothesis has not been tested in vivo . Here, using physiologically aged autochthonous genetically engineered mouse models and primary cells 7,8 , we demonstrate aging suppresses lung cancer initiation and progression by degrading stemness of the alveolar cell of origin. This phenotype is underpinned by aging-associated induction of the transcription factor NUPR1 and its downstream target lipocalin-2 in the cell of origin in mice and humans, leading to a functional iron insufficiency in the aged cells. Genetic inactivation of the NUPR1-lipocalin-2 axis or iron supplementation rescue stemness and promote tumorigenic potential of aged alveolar cells. Conversely, targeting the NUPR1- lipocalin-2 axis is detrimental to young alveolar cells via induction of ferroptosis. We find that aging-associated DNA hypomethylation at specific enhancer sites associates with elevated NUPR1 expression, which is recapitulated in young alveolar cells by inhibition of DNA methylation. We uncover that aging drives a functional iron insufficiency, which leads to loss of stemness and tumorigenesis, but promotes resistance to ferroptosis. These findings have significant implications for the therapeutic modulation of cellular iron homeostasis in regenerative medicine and in cancer prevention. Furthermore, our findings are consistent with a model whereby most human cancers initiate in young individuals, revealing a critical window for such cancer prevention efforts.
Collapse
|
34
|
Edalat SG, Gerber R, Houtman M, Lückgen J, Teixeira RL, Palacios Cisneros MDP, Pfanner T, Kuret T, Ižanc N, Micheroli R, Polido-Pereira J, Saraiva F, Lingam S, Burki K, Burja B, Pauli C, Rotar Ž, Tomšič M, Čučnik S, Fonseca JE, Distler O, Calado Â, Romão VC, Ospelt C, Sodin-Semrl S, Robinson MD, Frank Bertoncelj M. Molecular maps of synovial cells in inflammatory arthritis using an optimized synovial tissue dissociation protocol. iScience 2024; 27:109707. [PMID: 38832018 PMCID: PMC11144743 DOI: 10.1016/j.isci.2024.109707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/25/2024] [Accepted: 04/06/2024] [Indexed: 06/05/2024] Open
Abstract
In this study, we optimized the dissociation of synovial tissue biopsies for single-cell omics studies and created a single-cell atlas of human synovium in inflammatory arthritis. The optimized protocol allowed consistent isolation of highly viable cells from tiny fresh synovial biopsies, minimizing the synovial biopsy drop-out rate. The synovium scRNA-seq atlas contained over 100,000 unsorted synovial cells from 25 synovial tissues affected by inflammatory arthritis, including 16 structural, 11 lymphoid, and 15 myeloid cell clusters. This synovial cell map expanded the diversity of synovial cell types/states, detected synovial neutrophils, and broadened synovial endothelial cell classification. We revealed tissue-resident macrophage subsets with proposed matrix-sensing (FOLR2+COLEC12high) and iron-recycling (LYVE1+SLC40A1+) activities and identified fibroblast subsets with proposed functions in cartilage breakdown (SOD2highSAA1+SAA2+SDC4+) and extracellular matrix remodeling (SERPINE1+COL5A3+LOXL2+). Our study offers an efficient synovium dissociation method and a reference scRNA-seq resource, that advances the current understanding of synovial cell heterogeneity in inflammatory arthritis.
Collapse
Affiliation(s)
- Sam G. Edalat
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
| | - Reto Gerber
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
- Department of Molecular Life Sciences and SIB, Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Miranda Houtman
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
| | | | - Rui Lourenço Teixeira
- Instituto de Medicina Molecular (iMM) João Lobo Antunes, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Lisbon Academic Medical Center, 1649-028 Lisbon, Portugal
| | | | | | - Tadeja Kuret
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Nadja Ižanc
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Raphael Micheroli
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
| | - Joaquim Polido-Pereira
- Instituto de Medicina Molecular (iMM) João Lobo Antunes, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Lisbon Academic Medical Center, 1649-028 Lisbon, Portugal
| | - Fernando Saraiva
- Instituto de Medicina Molecular (iMM) João Lobo Antunes, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Lisbon Academic Medical Center, 1649-028 Lisbon, Portugal
| | - Swathi Lingam
- Team PTA, BioMed X Institute, 69120 Heidelberg, Germany
| | - Kristina Burki
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
| | - Blaž Burja
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Chantal Pauli
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Žiga Rotar
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Matija Tomšič
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Saša Čučnik
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - João Eurico Fonseca
- Instituto de Medicina Molecular (iMM) João Lobo Antunes, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Lisbon Academic Medical Center, 1649-028 Lisbon, Portugal
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
| | - Ângelo Calado
- Instituto de Medicina Molecular (iMM) João Lobo Antunes, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Vasco C. Romão
- Instituto de Medicina Molecular (iMM) João Lobo Antunes, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Lisbon Academic Medical Center, 1649-028 Lisbon, Portugal
| | - Caroline Ospelt
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
| | - Snežna Sodin-Semrl
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia
| | - Mark D. Robinson
- Department of Molecular Life Sciences and SIB, Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Mojca Frank Bertoncelj
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
- Department of Molecular Life Sciences and SIB, Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
35
|
Pye D, Scholey R, Ung S, Dawson M, Shahmalak A, Purba TS. Activation of the integrated stress response in human hair follicles. PLoS One 2024; 19:e0303742. [PMID: 38900734 PMCID: PMC11189182 DOI: 10.1371/journal.pone.0303742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/30/2024] [Indexed: 06/22/2024] Open
Abstract
Unravelling how energy metabolism and stress responses are regulated in human scalp hair follicles could reveal novel insights into the controls of hair growth and provide new targets to manage hair loss disorders. The Mitochondrial Pyruvate Carrier (MPC) imports pyruvate, produced via glycolysis, into the mitochondria, fuelling the TCA cycle. Previous work has shown that MPC inhibition promotes lactate generation, which activates murine epithelial hair follicle stem cells (eHFSCs). However, by pharmacologically targeting the MPC in short-term human hair follicle ex vivo organ culture experiments using UK-5099, we induced metabolic stress-responsive proliferative arrest throughout the human hair follicle epithelium, including within Keratin 15+ eHFSCs. Through transcriptomics, MPC inhibition was shown to promote a gene expression signature indicative of disrupted FGF, IGF, TGFβ and WNT signalling, mitochondrial dysfunction, and activation of the integrated stress response (ISR), which can arrest cell cycle progression. The ISR, mediated by the transcription factor ATF4, is activated by stressors including amino acid deprivation and ER stress, consistent with MPC inhibition within our model. Using RNAScope, we confirmed the upregulation of both ATF4 and the highly upregulated ATF4-target gene ADM2 on human hair follicle tissue sections in situ. Moreover, treatment with the ISR inhibitor ISRIB attenuated both the upregulation of ADM2 and the proliferative block imposed via MPC inhibition. Together, this work reveals how the human hair follicle, as a complex and metabolically active human tissue system, can dynamically adapt to metabolic stress.
Collapse
Affiliation(s)
- Derek Pye
- Division Musculoskeletal and Dermatological Sciences, Centre for Dermatology Research, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biosciences, The University of Manchester, Manchester, United Kingdom
| | - Rachel Scholey
- Bioinformatics Core Facility, University of Manchester, Manchester, United Kingdom
| | - Sin Ung
- Division Musculoskeletal and Dermatological Sciences, Centre for Dermatology Research, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biosciences, The University of Manchester, Manchester, United Kingdom
| | - Madoc Dawson
- Division Musculoskeletal and Dermatological Sciences, Centre for Dermatology Research, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biosciences, The University of Manchester, Manchester, United Kingdom
| | | | - Talveen S. Purba
- Division Musculoskeletal and Dermatological Sciences, Centre for Dermatology Research, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biosciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
36
|
Chen F, Tang H, Lin J, Kang R, Tang D, Liu J. Ciprofloxacin is a novel anti-ferroptotic antibiotic. Heliyon 2024; 10:e32571. [PMID: 38961954 PMCID: PMC11219506 DOI: 10.1016/j.heliyon.2024.e32571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Cancer patients undergoing chemotherapy are susceptible to various bacterial infections, necessitating prompt and precise antimicrobial treatment with antibiotics. Ciprofloxacin is a clinically utilized broad-spectrum antimicrobial agent known for its robust antiseptic activity. While ferroptosis, an oxidative form of cell death, has garnered attention as a promising avenue in cancer therapy, the potential impact of ciprofloxacin on the anticancer effects of ferroptosis remains unclear. This study seeks to investigate the potential influence of antibiotics on ferroptosis in human pancreatic ductal adenocarcinoma (PDAC) cells. Here, we report a previously unrecognized role of ciprofloxacin in inhibiting ferroptosis in human PDAC cells. Mechanistically, ciprofloxacin suppresses erastin-induced endoplasmic reticulum (ER) stress through the activating transcription factor 6 (ATF6) and ER to nucleus signaling 1 (ERN1) pathway. Excessive ER stress activation can trigger glutathione peroxidase 4 (GPX4) degradation through autophagic mechanisms. In contrast, ciprofloxacin enhances the protein stability of GPX4, a crucial regulator that suppresses ferroptosis by inhibiting lipid peroxidation. Thus, our study demonstrates the anti-ferroptotic role of ciprofloxacin, highlighting the importance of careful consideration when contemplating the combination of ciprofloxacin with specific ferroptosis inducers in PDAC patients.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Hu Tang
- DAMP Laboratory, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Junhao Lin
- DAMP Laboratory, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiao Liu
- DAMP Laboratory, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| |
Collapse
|
37
|
Chen F, Kang R, Tang D, Liu J. Ferroptosis: principles and significance in health and disease. J Hematol Oncol 2024; 17:41. [PMID: 38844964 PMCID: PMC11157757 DOI: 10.1186/s13045-024-01564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024] Open
Abstract
Ferroptosis, an iron-dependent form of cell death characterized by uncontrolled lipid peroxidation, is governed by molecular networks involving diverse molecules and organelles. Since its recognition as a non-apoptotic cell death pathway in 2012, ferroptosis has emerged as a crucial mechanism in numerous physiological and pathological contexts, leading to significant therapeutic advancements across a wide range of diseases. This review summarizes the fundamental molecular mechanisms and regulatory pathways underlying ferroptosis, including both GPX4-dependent and -independent antioxidant mechanisms. Additionally, we examine the involvement of ferroptosis in various pathological conditions, including cancer, neurodegenerative diseases, sepsis, ischemia-reperfusion injury, autoimmune disorders, and metabolic disorders. Specifically, we explore the role of ferroptosis in response to chemotherapy, radiotherapy, immunotherapy, nanotherapy, and targeted therapy. Furthermore, we discuss pharmacological strategies for modulating ferroptosis and potential biomarkers for monitoring this process. Lastly, we elucidate the interplay between ferroptosis and other forms of regulated cell death. Such insights hold promise for advancing our understanding of ferroptosis in the context of human health and disease.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, 75390, USA.
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
38
|
Dixon SJ, Olzmann JA. The cell biology of ferroptosis. Nat Rev Mol Cell Biol 2024; 25:424-442. [PMID: 38366038 DOI: 10.1038/s41580-024-00703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2024] [Indexed: 02/18/2024]
Abstract
Ferroptosis is a non-apoptotic cell death mechanism characterized by iron-dependent membrane lipid peroxidation. Here, we review what is known about the cellular mechanisms mediating the execution and regulation of ferroptosis. We first consider how the accumulation of membrane lipid peroxides leads to the execution of ferroptosis by altering ion transport across the plasma membrane. We then discuss how metabolites and enzymes that are distributed in different compartments and organelles throughout the cell can regulate sensitivity to ferroptosis by impinging upon iron, lipid and redox metabolism. Indeed, metabolic pathways that reside in the mitochondria, endoplasmic reticulum, lipid droplets, peroxisomes and other organelles all contribute to the regulation of ferroptosis sensitivity. We note how the regulation of ferroptosis sensitivity by these different organelles and pathways seems to vary between different cells and death-inducing conditions. We also highlight transcriptional master regulators that integrate the functions of different pathways and organelles to modulate ferroptosis sensitivity globally. Throughout this Review, we highlight open questions and areas in which progress is needed to better understand the cell biology of ferroptosis.
Collapse
Affiliation(s)
- Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA.
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
39
|
Wei Q, Xue C, Li M, Wei J, Zheng L, Chen S, Duan Y, Deng H, Tang F, Xiong W, Zhou M. Ferroptosis: a critical mechanism of N 6-methyladenosine modification involved in carcinogenesis and tumor progression. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1119-1132. [PMID: 38811442 DOI: 10.1007/s11427-023-2474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/23/2023] [Indexed: 05/31/2024]
Abstract
Ferroptosis is an iron-dependent regulatory cell necrosis induced by iron overload and lipid peroxidation. It occurs when multiple redox-active enzymes are ectopically expressed or show abnormal function. Hence, the precise regulation of ferroptosis-related molecules is mediated across multiple levels, including transcriptional, posttranscriptional, translational, and epigenetic levels. N6-methyladenosine (m6A) is a highly evolutionarily conserved epigenetic modification in mammals. The m6A modification is commonly linked to tumor proliferation, progression, and therapy resistance because it is involved in RNA metabolic processes. Intriguingly, accumulating evidence suggests that dysregulated ferroptosis caused by the m6A modification drives tumor development. In this review, we summarized the roles of m6A regulators in ferroptosis-mediated malignant tumor progression and outlined the m6A regulatory mechanism involved in ferroptosis pathways. We also analyzed the potential value and application strategies of targeting m6A/ferroptosis pathway in the clinical diagnosis and therapy of tumors.
Collapse
Affiliation(s)
- Qingqing Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Changning Xue
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Mengna Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Jianxia Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Lemei Zheng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Shipeng Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Yumei Duan
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Hongyu Deng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Faqing Tang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China.
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
40
|
Piergiorge RM, Vasconcelos ATRD, Santos-Rebouças CB. Understanding the (epi)genetic dysregulation in Parkinson's disease through an integrative brain competitive endogenous RNA network. Mech Ageing Dev 2024; 219:111942. [PMID: 38762037 DOI: 10.1016/j.mad.2024.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Parkinson's disease (PD) is a rapidly growing neurodegenerative disorder characterized by dopaminergic neuron loss in the substantia nigra pars compacta (SN) and aggregation of α-synuclein. Its aetiology involves a multifaceted interplay among genetic, environmental, and epigenetic factors. We integrated brain gene expression data from PD patients to construct a comprehensive regulatory network encompassing messenger RNAs (mRNAs), microRNAs (miRNAs), circular RNAs (circRNAs) and, for the first time, RNA binding proteins (RBPs). Expression data from the SN of PD patients and controls were systematically selected from public databases to identify combined differentially expressed genes (DEGs). Brain co-expression analysis revealed modules comprising significant DEGs that function cooperatively. The relationships among co-expressed DEGs, miRNAs, circRNAs, and RBPs revealed an intricate competitive endogenous RNA (ceRNA) network responsible for post-transcriptional dysregulation in PD. Many genes in the ceRNA network, including the TOMM20 and HMGCR genes, overlap with the most relevant genes in our previous Alzheimer's disease-associated ceRNA network, suggesting common underlying mechanisms between both conditions. Moreover, in the ceRNA subnetwork, the RBP Aly/REF export factor (ALYREF), which acts as an RNA 5-methylcytosine(m5C)-binding protein, stood out. Our data sheds new light on the potential role of brain ceRNA networks in PD pathogenesis.
Collapse
Affiliation(s)
- Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
41
|
Zhang XY, Li SS, Gu YR, Xiao LX, Ma XY, Chen XR, Wang JL, Liao CH, Lin BL, Huang YH, Lian YF. CircPIAS1 promotes hepatocellular carcinoma progression by inhibiting ferroptosis via the miR-455-3p/NUPR1/FTH1 axis. Mol Cancer 2024; 23:113. [PMID: 38802795 PMCID: PMC11131253 DOI: 10.1186/s12943-024-02030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/24/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The role of circRNAs in hepatocellular carcinoma (HCC) progression remains unclear. CircPIAS1 (circBase ID: hsa_circ_0007088) was identified as overexpressed in HCC cases through bioinformatics analysis. This study aimed to investigate the oncogenic properties and mechanisms of circPIAS1 in HCC development. METHODS Functional analyses were conducted to assess circPIAS1's impact on HCC cell proliferation, migration, and ferroptosis. Xenograft mouse models were employed to evaluate circPIAS1's effects on tumor growth and pulmonary metastasis in vivo. Bioinformatics analysis, RNA immunoprecipitation, and luciferase reporter assays were utilized to elucidate the molecular pathways influenced by circPIAS1. Additional techniques, including RNA pulldown, fluorescence in situ hybridization (FISH), chromatin immunoprecipitation (ChIP), qPCR, and western blotting, were used to further explore the underlying mechanisms. RESULTS CircPIAS1 expression was elevated in HCC tissues and cells. Silencing circPIAS1 suppressed HCC cell proliferation and migration both in vitro and in vivo. Mechanically, circPIAS1 overexpression inhibited ferroptosis by competitively binding to miR-455-3p, leading to upregulation of Nuclear Protein 1 (NUPR1). Furthermore, NUPR1 promoted FTH1 transcription, enhancing iron storage in HCC cells and conferring resistance to ferroptosis. Treatment with ZZW-115, an NUPR1 inhibitor, reversed the tumor-promoting effects of circPIAS1 and sensitized HCC cells to lenvatinib. CONCLUSION This study highlights the critical role of circPIAS1 in HCC progression through modulation of ferroptosis. Targeting the circPIAS1/miR-455-3p/NUPR1/FTH1 regulatory axis may represent a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shan-Shan Li
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yu-Rong Gu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Le-Xin Xiao
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin-Yi Ma
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin-Ru Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia-Liang Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chun-Hong Liao
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bing-Liang Lin
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China.
| | - Yue-Hua Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Yi-Fan Lian
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
42
|
Mao ZH, Gao ZX, Pan SK, Liu DW, Liu ZS, Wu P. Ferroptosis: a potential bridge linking gut microbiota and chronic kidney disease. Cell Death Discov 2024; 10:234. [PMID: 38750055 PMCID: PMC11096411 DOI: 10.1038/s41420-024-02000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Ferroptosis is a novel form of lipid peroxidation-driven, iron-dependent programmed cell death. Various metabolic pathways, including those involved in lipid and iron metabolism, contribute to ferroptosis regulation. The gut microbiota not only supplies nutrients and energy to the host, but also plays a crucial role in immune modulation and metabolic balance. In this review, we explore the metabolic pathways associated with ferroptosis and the impact of the gut microbiota on host metabolism. We subsequently summarize recent studies on the influence and regulation of ferroptosis by the gut microbiota and discuss potential mechanisms through which the gut microbiota affects ferroptosis. Additionally, we conduct a bibliometric analysis of the relationship between the gut microbiota and ferroptosis in the context of chronic kidney disease. This analysis can provide new insights into the current research status and future of ferroptosis and the gut microbiota.
Collapse
Affiliation(s)
- Zi-Hui Mao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Zhong-Xiuzi Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Shao-Kang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China.
| | - Peng Wu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China.
| |
Collapse
|
43
|
Diao J, Jia Y, Dai E, Liu J, Kang R, Tang D, Han L, Zhong Y, Meng L. Ferroptotic therapy in cancer: benefits, side effects, and risks. Mol Cancer 2024; 23:89. [PMID: 38702722 PMCID: PMC11067110 DOI: 10.1186/s12943-024-01999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by iron accumulation and uncontrolled lipid peroxidation, leading to plasma membrane rupture and intracellular content release. Originally investigated as a targeted therapy for cancer cells carrying oncogenic RAS mutations, ferroptosis induction now exhibits potential to complement chemotherapy, immunotherapy, and radiotherapy in various cancer types. However, it can lead to side effects, including immune cell death, bone marrow impairment, liver and kidney damage, cachexia (severe weight loss and muscle wasting), and secondary tumorigenesis. In this review, we discuss the advantages and offer an overview of the diverse range of documented side effects. Furthermore, we examine the underlying mechanisms and explore potential strategies for side effect mitigation.
Collapse
Affiliation(s)
- Jiandong Diao
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Yuanyuan Jia
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Enyong Dai
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Jiao Liu
- DAMP laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Leng Han
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Yingjie Zhong
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Lingjun Meng
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| |
Collapse
|
44
|
Arnér ESJ, Schmidt EE. Unresolved questions regarding cellular cysteine sources and their possible relationships to ferroptosis. Adv Cancer Res 2024; 162:1-44. [PMID: 39069366 PMCID: PMC11785257 DOI: 10.1016/bs.acr.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cysteine is required for synthesis of glutathione (GSH), coenzyme A, other sulfur-containing metabolites, and most proteins. In most cells, cysteine comes from extracellular disulfide sources including cystine, glutathione-disulfide, and peptides. The thioredoxin reductase-1 (TrxR1)- or glutathione-disulfide reductase (GSR)-driven enzymatic systems can fuel cystine reduction via thioredoxins, glutaredoxins, or other thioredoxin-fold proteins. Free cystine enters cells thorough the cystine-glutamate antiporter, xCT, but systemically, plasma glutathione-disulfide might predominate as a cystine source. Erastin, inhibiting both xCT and voltage-dependent anion channels, induces ferroptotic cell death, so named because this type of cell death is antagonized by iron-chelators. Many cancer cells seem to be predisposed to ferroptosis, which has been proposed as a targetable cancer liability. Ferroptosis is associated with lipid peroxidation and loss of either glutathione peroxidase-4 (GPX4) or ferroptosis suppressor protein-1 (FSP1), which each prevent accumulation of lipid peroxides. It has been suggested that an xCT inhibition-induced cellular cysteine-deficiency lowers GSH levels, starving GPX4 for reducing power and allowing membrane lipid peroxides to accumulate, thereby causing ferroptosis. Aspects of ferroptosis are however not fully understood and need to be further scrutinized, for example that neither disruption of GSH synthesis, loss of GSH, nor disruption of glutathione disulfide reductase (GSR), triggers ferroptosis in animal models. Here we reevaluate the relationships between Erastin, xCT, GPX4, cellular cysteine and GSH, RSL3 or ML162, and ferroptosis. We conclude that, whereas both Cys and ferroptosis are potential liabilities in cancer, their relationship to each other remains insufficiently understood.
Collapse
Affiliation(s)
- Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Department of Selenoprotein Research and the National Tumor Biology Laboratory, National Institutes of Oncology, Budapest, Hungary
| | - Edward E Schmidt
- Laboratory of Redox Biology, University of Veterinary Medicine, Budapest, Hungary; Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States.
| |
Collapse
|
45
|
Ashoub MH, Razavi R, Heydaryan K, Salavati-Niasari M, Amiri M. Targeting ferroptosis for leukemia therapy: exploring novel strategies from its mechanisms and role in leukemia based on nanotechnology. Eur J Med Res 2024; 29:224. [PMID: 38594732 PMCID: PMC11003188 DOI: 10.1186/s40001-024-01822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
The latest findings in iron metabolism and the newly uncovered process of ferroptosis have paved the way for new potential strategies in anti-leukemia treatments. In the current project, we reviewed and summarized the current role of nanomedicine in the treatment and diagnosis of leukemia through a comparison made between traditional approaches applied in the treatment and diagnosis of leukemia via the existing investigations about the ferroptosis molecular mechanisms involved in various anti-tumor treatments. The application of nanotechnology and other novel technologies may provide a new direction in ferroptosis-driven leukemia therapies. The article explores the potential of targeting ferroptosis, a new form of regulated cell death, as a new therapeutic strategy for leukemia. It discusses the mechanisms of ferroptosis and its role in leukemia and how nanotechnology can enhance the delivery and efficacy of ferroptosis-inducing agents. The article not only highlights the promise of ferroptosis-targeted therapies and nanotechnology in revolutionizing leukemia treatment, but also calls for further research to overcome challenges and fully realize the clinical potential of this innovative approach. Finally, it discusses the challenges and opportunities in clinical applications of ferroptosis.
Collapse
Affiliation(s)
- Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Razieh Razavi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran
| | - Kamran Heydaryan
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
46
|
Sun G, Wang J, Liu F, Zhao C, Cui S, Wang Z, Liu Z, Zhang Q, Xiang C, Zhang Y, Galons H, Yu P, Teng Y. G-4 inhibits triple negative breast cancer by inducing cell apoptosis and promoting LCN2-dependent ferroptosis. Biochem Pharmacol 2024; 222:116077. [PMID: 38395264 DOI: 10.1016/j.bcp.2024.116077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/27/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Compound G-4 is a derivate of cyclin-dependent kinase inhibitor Rocovitine and showed strong sensitivity to triple negative breast cancer (TNBC) cells. In this study, the antitumor activity, mechanism and possible targets of G-4 in TNBC were investigated. Flow cytometry and immunoblotting showed that G-4 not only arrested the S phase of the cell cycle, but also induced apoptosis in TNBC cells via the mitochondrial pathway through inhibiting epidermal growth factor receptor (EGFR), AKT and MAPK pathways. In addition, G-4 induced the iron-mutagenesis process in TNBC cells and down-regulated differentially expressed gene lipid carrier protein 2 (LCN2) by RNA-seq. Moreover, G-4 elevated levels of cytosolic reactive oxygen species (ROS), lipid ROS, Fe and malondialdehyde (MDA), but decreased levels of superoxide dismutase (SOD) and glutathione (GSH), consistent with the effects of iron-mutagenic agonists Erastin and RSL3, which were inhibited by the iron inhibitor ferrostatin-1 (Fer-1). Furthermore, a LCN2 knockdown cell model was established by siRNA transfection, the IC50 of G-4 was increased nearly 100-fold, accompanied by a trend of no ferroptosis characteristic index. The results indicated that G-4 suppressed the malignant phenotype of TNBC, induced apoptosis by inhibiting EGFR pathway and promoted LCN2-dependent ferroptosis.
Collapse
Affiliation(s)
- Guoyang Sun
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinjin Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Futao Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Cai Zhao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shanshan Cui
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhaoyang Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhen Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qian Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Cen Xiang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yongmin Zhang
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR8232 CNRS, 4 place Jussieu, 75005 Paris, France
| | - Herve Galons
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457, China; Université Paris Cité, 4, avenue de l'Observatoire 75006 Paris, France
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
47
|
Tan M, He Y, Yi J, Chen J, Guo Q, Liao N, Peng L. WTAP Mediates NUPR1 Regulation of LCN2 Through m 6A Modification to Influence Ferroptosis, Thereby Promoting Breast Cancer Proliferation, Migration and Invasion. Biochem Genet 2024; 62:876-891. [PMID: 37477758 DOI: 10.1007/s10528-023-10423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/07/2023] [Indexed: 07/22/2023]
Abstract
Ferroptosis is involved in various pathophysiological diseases, including triple-negative breast cancer (TNBC). Targeting ferroptosis is considered as a novel anti-TNBC strategy. Nevertheless, the regulatory mechanism of ferroptosis during TNBC progression is unclear. Here, the role of WTAP in ferroptosis during TNBC progression was investigated. The clinicopathological significance of WTAP, NUPR1 and LCN2 was analyzed by Kaplan-Meier method. Cell viability was assessed using MTT assay. Transwell assay was employed to analyze cell migration and invasion. GSH/GSSG and Fe2+ levels in TNBC cells were analyzed using kits. m6A level was examined using m6A dot blot assay. NUPR1 mRNA stability was analyzed using RNA degradation assay. RIP was performed to analyze the interaction between eIF3a and NURP1. Herein, our results revealed that WTAP, NUPR1 and LCN2 expressions were significantly elevated in TNBC. NUPR1 silencing inhibited TNBC cell proliferation, migration and invasion by inducing ferroptosis. NUPR1 positively regulated LCN2 expression in TNBC cells, and LCN2 knockdown induced ferroptosis to suppress TNBC cell malignant behaviors. Our molecular study further revealed that WTAP promoted NUPR1 expression in an m6A-EIF3A mediated manner. And, as expected, WTAP knockdown promoted ferroptosis to suppress TNBC cell malignant behaviors, which were abrogated by NUPR1 overexpression. WTAP upregulated LCN2 by regulation of NUPR1 m6A modification, thereby suppressing ferroptosis to contribute to accelerate TNBC progression. Our study revealed the cancer-promoting effect of WTAP, NUPR1 and LCN2 in TNBC and clarified the relevant mechanism, providing a theoretical basis for developing novel diagnostic and therapeutic strategies for TNBC.
Collapse
Affiliation(s)
- Miduo Tan
- Department of Breast surgery, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan Province, P.R. China
| | - Yazhou He
- Health Management Center, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan Province, P.R. China
| | - Jiansheng Yi
- Department of Breast surgery, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan Province, P.R. China
| | - Jingjing Chen
- Department of Breast surgery, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan Province, P.R. China
| | - Qiong Guo
- Department of Breast surgery, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan Province, P.R. China
| | - Ni Liao
- Department of Breast surgery, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan Province, P.R. China.
- Department of Breast surgery, Zhuzhou Central Hospital, No.116, Changjiang South Road, Tianyuan District, Zhuzhou, 412000, Hunan Province, P.R. China.
| | - Liping Peng
- Department of Breast and Nails, The First Affiliated Hospital of Jishou University, The intersection of Shiji Avenue and Jianxin Road, Jishou, 416000, Hunan Province, P.R. China.
| |
Collapse
|
48
|
Tang H, Kang R, Liu J, Tang D. ATF4 in cellular stress, ferroptosis, and cancer. Arch Toxicol 2024; 98:1025-1041. [PMID: 38383612 DOI: 10.1007/s00204-024-03681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding (CREB) family, plays a critical role as a stress-induced transcription factor. It orchestrates cellular responses, particularly in the management of endoplasmic reticulum stress, amino acid deprivation, and oxidative challenges. ATF4's primary function lies in regulating gene expression to ensure cell survival during stressful conditions. However, when considering its involvement in ferroptosis, characterized by severe lipid peroxidation and pronounced endoplasmic reticulum stress, the ATF4 pathway can either inhibit or promote ferroptosis. This intricate relationship underscores the complexity of cellular responses to varying stress levels. Understanding the connections between ATF4, ferroptosis, and endoplasmic reticulum stress holds promise for innovative cancer therapies, especially in addressing apoptosis-resistant cells. In this review, we provide an overview of ATF4, including its structure, modifications, and functions, and delve into its dual role in both ferroptosis and cancer.
Collapse
Affiliation(s)
- Hu Tang
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
49
|
Fang W, Xie S, Deng W. Ferroptosis mechanisms and regulations in cardiovascular diseases in the past, present, and future. Cell Biol Toxicol 2024; 40:17. [PMID: 38509409 PMCID: PMC10955039 DOI: 10.1007/s10565-024-09853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Cardiovascular diseases (CVDs) are the main diseases that endanger human health, and their risk factors contribute to high morbidity and a high rate of hospitalization. Cell death is the most important pathophysiology in CVDs. As one of the cell death mechanisms, ferroptosis is a new form of regulated cell death (RCD) that broadly participates in CVDs (such as myocardial infarction, heart transplantation, atherosclerosis, heart failure, ischaemia/reperfusion (I/R) injury, atrial fibrillation, cardiomyopathy (radiation-induced cardiomyopathy, diabetes cardiomyopathy, sepsis-induced cardiac injury, doxorubicin-induced cardiac injury, iron overload cardiomyopathy, and hypertrophic cardiomyopathy), and pulmonary arterial hypertension), involving in iron regulation, metabolic mechanism and lipid peroxidation. This article reviews recent research on the mechanism and regulation of ferroptosis and its relationship with the occurrence and treatment of CVDs, aiming to provide new ideas and treatment targets for the clinical diagnosis and treatment of CVDs by clarifying the latest progress in CVDs research.
Collapse
Affiliation(s)
- Wenxi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
50
|
Cai H, Zhang B, Ahrenfeldt J, Joseph JV, Riedel M, Gao Z, Thomsen SK, Christensen DS, Bak RO, Hager H, Vendelbo MH, Gao X, Birkbak N, Thomsen MK. CRISPR/Cas9 model of prostate cancer identifies Kmt2c deficiency as a metastatic driver by Odam/Cabs1 gene cluster expression. Nat Commun 2024; 15:2088. [PMID: 38453924 PMCID: PMC10920892 DOI: 10.1038/s41467-024-46370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
Metastatic prostate cancer (PCa) poses a significant therapeutic challenge with high mortality rates. Utilizing CRISPR-Cas9 in vivo, we target five potential tumor suppressor genes (Pten, Trp53, Rb1, Stk11, and RnaseL) in the mouse prostate, reaching humane endpoint after eight weeks without metastasis. By further depleting three epigenetic factors (Kmt2c, Kmt2d, and Zbtb16), lung metastases are present in all mice. While whole genome sequencing reveals few mutations in coding sequence, RNA sequencing shows significant dysregulation, especially in a conserved genomic region at chr5qE1 regulated by KMT2C. Depleting Odam and Cabs1 in this region prevents metastasis. Notably, the gene expression signatures, resulting from our study, predict progression-free and overall survival and distinguish primary and metastatic human prostate cancer. This study emphasizes positive genetic interactions between classical tumor suppressor genes and epigenetic modulators in metastatic PCa progression, offering insights into potential treatments.
Collapse
Affiliation(s)
- Huiqiang Cai
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bin Zhang
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Johanne Ahrenfeldt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Justin V Joseph
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Maria Riedel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Zongliang Gao
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sofie K Thomsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ditte S Christensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Henrik Hager
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Mikkel H Vendelbo
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Xin Gao
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nicolai Birkbak
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Martin K Thomsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark.
| |
Collapse
|