1
|
Deng Y, Fu T, Gao D, Zhou J, Nie X, Wang F, Yu Q. Systemic Immune-Inflammation Index: A Promising, Non-Invasive Biomarker for Crohn's Disease Activity and Severity Assessment. Int J Gen Med 2025; 18:483-496. [PMID: 39901979 PMCID: PMC11789774 DOI: 10.2147/ijgm.s495692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/18/2025] [Indexed: 02/05/2025] Open
Abstract
Purpose Crohn's disease (CD) is a chronic inflammatory disorder with periods of exacerbation and remission. We aim to evaluate the systemic immune-inflammation index (SII) as a prognostic biomarker in CD and its utility in predicting disease activity and severity. Patients and Methods This retrospective study analyzed CD patients using the Harvey-Bradshaw index (HBI) for disease stratification and the Simple Endoscopic Score for Crohn's Disease (SES-CD) for post-treatment evaluation. Data analysis was conducted using R software. Serological indices underwent predictive analysis through the receiver operating characteristic (ROC) curve. The least absolute shrinkage and selection operator (LASSO) regression and multivariate logistic regression identified independent prognostic factors to construct nomograms. Model validation was performed using the Concordance index (C-index), calibration analysis and decision curve analysis (DCA). Results In this study, 254 patients with Crohn's disease (CD) were enrolled, including 171 males and 83 females, with ages ranging from 13 to 74. SII was significantly elevated in active CD (p<0.001), correlating with disease severity (p<0.001). Although SII decreased in patients with mucosal healing (p<0.001), its prognostic accuracy (AUC=0.719) was lower than other biomarkers. However, SII emerged as an independent predictor for CD activity and severity with higher efficacy (AUC=0.774 and 0.807). The CD activity and severity prediction nomograms showed high C-indices (0.8038 and 0.8208), indicating strong predictive performance. Conclusion SII is a valuable biomarker for assessing CD severity and monitoring mucosal healing post-treatment. The SII-based nomograms offer a reliable model for evaluating CD progression, aiding in personalized treatment approaches and enhancing clinical decision-making. We recommend randomized controlled trials (RCTs) or studies with larger sample sizes to improve the model.
Collapse
Affiliation(s)
- Yu'en Deng
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Huankui Academy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Ting Fu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Dian Gao
- Department of Pathogen Biology and Immunology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jianming Zhou
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xinhua Nie
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Fenfen Wang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| |
Collapse
|
2
|
Wang Q, Wu Y, Ouyang L, Min X, Zheng M, Gao L, Chen X, Hu Z, Yang S, Jiang W, Jia S, Lu Q, Zhao M. Single-cell analyses of intestinal epithelium reveal the dysregulation of gut immune microenvironment in systemic lupus erythematosus. J Transl Med 2025; 23:118. [PMID: 39871323 PMCID: PMC11773722 DOI: 10.1186/s12967-025-06147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND The small intestine harbors a rich array of intestinal intraepithelial lymphocytes (IELs) that interact with structural cells to collectively sustain gut immune homeostasis. Dysregulation of gut immune homeostasis was implicated in the pathogenesis of multiple autoimmune diseases, however, whether this homeostasis is disrupted in a lupus autoimmune background remains unclear. METHODS We performed single-cell RNA sequencing (scRNA-seq) analyses to elucidate immune and structural milieu in the intestinal epithelium of MRL/Lpr lupus mice (Lpr mice) and MRL/Mpj control mice (Mpj mice). Comprehensive analyses including unsupervised clustering, trajectories, and cellular communication were performed. The primary findings from scRNA-seq were further validated by quantitative polymerase chain reaction (qPCR), flow cytometry, and in vivo experiments including selenium supplementation. RESULTS We observed a significant reduction in CD8αα + IELs, accompanied by a marked increase in CD8αβ + IELs in Lpr mice. Additionally, subsets of CD8 + IELs exhibiting significantly enhanced effector functions were found to be markedly enriched in Lpr mice. Intercellular communication patterns within intestinal epithelial immune and structural cells were found to be specifically altered in Lpr mice. Moreover, scRNA-seq revealed significantly decreased intestinal TCRγδ T cells (γδT) associated with reduced aryl-hydrocarbon receptor repressor (AHRR) expression and subsequent oxidative stress and ferroptosis in Lpr mice. Antioxidant selenium effectively reversed the loss of γδT in Lpr mice, improved the gut barrier, and alleviated lupus symptoms. CONCLUSIONS Our high-resolution single-cell atlas enhances the understanding of the immune and structural milieu of intestinal epithelium in lupus and provides new insights into lupus pathogenesis mediated by intestinal immune dysregulation.
Collapse
Affiliation(s)
- Qiaolin Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China
| | - Yutong Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lianlian Ouyang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xiaoli Min
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China
| | - Meiling Zheng
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China
| | - Lingyu Gao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China
| | - Xiaoyun Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China
| | - Zhi Hu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China
| | - Shuang Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wenjuan Jiang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China.
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China.
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
3
|
Schnell A, Aicher C, Schnegelsberg PA, Schwarz B, Schmidt H, Allabauer I, Rueckel A, Regensburger AP, Woelfle J, Hoerning A. Exhausted Lag-3+ CD4+ T cells are increased in pediatric Inflammatory Bowel Disease. Clin Exp Immunol 2025; 219:uxae066. [PMID: 39044534 PMCID: PMC11771200 DOI: 10.1093/cei/uxae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/17/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024] Open
Abstract
T cells are one of the main drivers of inflammatory bowel diseases (IBD). Infliximab (IFX) is used in the treatment of IBD as an anti-inflammatory drug to induce remission by neutralizing TNFα. We determined the individual chemokine/homing receptor and cytokine profile in pediatric IBD patients before and during IFX therapy to identify predictive biomarkers for therapy success. Peripheral blood CD4+ cells from pediatric patients with IBD were immunomagnetically isolated and either directly analyzed by FACS for cell distribution and chemokine/homing receptor expression or evaluated for cytokine production after in-vitro-stimulation. Twenty-one responders (RS) and 21 non-responders (NRS) were recruited. Before IFX therapy, flow cytometry revealed decreased percentages of naïve conventional T cells in pediatric IBD patients. The proportions of CD62-L+ T cells were decreased in both CD and UC therapy responders. The cytokine profile of T cells was highly altered in IBD patients compared to healthy controls (HC). During IFX therapy, the frequencies of conventional memory and regulatory memory T cells expanded in both cohorts. IFX response was marked by a decrease of α4β7+ and IFNγ+ memory T cells in both CD and UC. In contrast, frequencies of Lag-3+ T cells proved to be significantly increased in NRS. These observations were irrespective of the underlying disease. T cells of pediatric IBD patients display an activated and rather Th1/Th17-shifted phenotype. The increased expression of the checkpoint molecule Lag-3 on T cells of NRS resembles a more exhausted phenotype than in RS and HC which appeared to be a relevant predictive marker for therapy failure.
Collapse
Affiliation(s)
- Alexander Schnell
- Pediatric Gastroenterology, Hepatology and Endoscopy, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-UniversityErlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - Carmen Aicher
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-UniversityErlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - Philipp A Schnegelsberg
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-UniversityErlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - Benedikt Schwarz
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-UniversityErlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - Hannah Schmidt
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-UniversityErlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - Ida Allabauer
- Pediatric Gastroenterology, Hepatology and Endoscopy, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-UniversityErlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - Aline Rueckel
- Pediatric Gastroenterology, Hepatology and Endoscopy, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-UniversityErlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - Adrian P Regensburger
- Pediatric Gastroenterology, Hepatology and Endoscopy, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-UniversityErlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-UniversityErlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - André Hoerning
- Pediatric Gastroenterology, Hepatology and Endoscopy, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-UniversityErlangen-Nuremberg, Erlangen, Bavaria, Germany
| |
Collapse
|
4
|
Yang Y, McCullough CG, Seninge L, Guo L, Kwon WJ, Zhang Y, Li NY, Gaddam S, Pan C, Zhen H, Torkelson J, Glass IA, Charville GW, Que J, Stuart JM, Ding H, Oro AE. A spatiotemporal and machine-learning platform facilitates the manufacturing of hPSC-derived esophageal mucosa. Dev Cell 2025:S1534-5807(24)00769-X. [PMID: 39798574 DOI: 10.1016/j.devcel.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/30/2023] [Accepted: 12/12/2024] [Indexed: 01/15/2025]
Abstract
Human pluripotent stem cell-derived tissue engineering offers great promise for designer cell-based personalized therapeutics, but harnessing such potential requires a deeper understanding of tissue-level interactions. We previously developed a cell replacement manufacturing method for ectoderm-derived skin epithelium. However, it remains challenging to manufacture the endoderm-derived esophageal epithelium despite possessing a similar stratified epithelial structure. Here, we employ single-cell and spatial technologies to generate a spatiotemporal multi-omics cell census for human esophageal development. We identify the cellular diversity, dynamics, and signal communications for the developing esophageal epithelium and stroma. Using Manatee, a machine-learning algorithm, we prioritize the combinations of candidate human developmental signals for in vitro derivation of esophageal basal cells. Functional validation of Manatee predictions leads to a clinically compatible system for manufacturing human esophageal mucosa.
Collapse
Affiliation(s)
- Ying Yang
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Carmel Grace McCullough
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Lucas Seninge
- Department of Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Lihao Guo
- Department of Pharmacy Practice and Science, University of Arizona, Tucson, AZ, USA
| | - Woo-Joo Kwon
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Yongchun Zhang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Nancy Yanzhe Li
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Sadhana Gaddam
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Cory Pan
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Hanson Zhen
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Jessica Torkelson
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Ian A Glass
- Birth Defect Research Laboratory Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Jianwen Que
- Department of Medicine, Columbia University, New York, NY, USA
| | - Joshua M Stuart
- Department of Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Hongxu Ding
- Department of Pharmacy Practice and Science, University of Arizona, Tucson, AZ, USA.
| | - Anthony E Oro
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Lee HS, Lee Y, Baek J, Kim Y, Park S, Jung S, Lee JG, Baek IJ, Kim K, Hwang SW, Lee JL, Park SH, Yang SK, Han B, Song K, Yoon YS, Ye BD. Nonlesional ileal transcriptome in Crohn's disease reveals alterations in immune response and metabolic pathway. J Gastroenterol Hepatol 2025; 40:208-217. [PMID: 39604213 DOI: 10.1111/jgh.16816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND AND AIM We aimed to assess the gene expression profiles of nonlesional small bowels in patients with Crohn's disease (CD) to identify its accompanying molecular alterations. METHODS We performed RNA sequencing of the uninflamed small bowel tissues obtained from 70 patients with ileal CD and 9 patients with colon cancer (non-CD controls) during bowel resection. Differentially expressed gene (DEG) analyses were performed using DESeq2. Gene set enrichment, correlation, and cell deconvolution analyses were applied to identify modules and functionally enriched transcriptional signatures of CD. RESULTS A comparison of CD patients and non-CD controls revealed that of the 372 DEGs, 49 protein-coding genes and 5 long non-coding RNAs overlapped with the inflammatory bowel disease susceptibility loci. The pathways related to immune and inflammatory reactions were upregulated in CD, while metabolic pathways were downregulated in CD. Compared with non-CD controls, CD patients had significantly higher proportions of immune cells, including plasma cells (P = 1.15 × 10-4), and a lower proportion of epithelial cells (P = 1.12 × 10-4). Co-upregulated genes (M14 module) and co-downregulated genes (M9 module) were identified in CD patients. The M14 module was enriched in immune-related genes and significantly associated with the responses to anti-tumor necrosis factor (TNF) therapy. The core signature of the M14 module was comprised of six genes and was upregulated in nonresponders to anti-TNF therapy of five independent cohorts (n = 163), indicating acceptable discrimination ability (area under the receiver operating characteristic curve of 75-86%). CONCLUSIONS The differences in gene expression and cellular composition between CD patients and non-CD controls imply significant molecular alterations, which are associated with the response to anti-TNF treatment.
Collapse
Affiliation(s)
- Ho-Su Lee
- Department of Biochemistry and Molecular Biology, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, Korea
| | - Yoonho Lee
- Department of Biochemistry and Molecular Biology, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, Korea
| | - Jiwon Baek
- Department of Biochemistry and Molecular Biology, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, Korea
| | - Yongjae Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, Korea
| | - Sojung Park
- Department of Biochemistry and Molecular Biology, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, Korea
| | - Seulgi Jung
- Department of Biochemistry and Molecular Biology, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Geol Lee
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - In-Jeoung Baek
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyuwon Kim
- Department of Gastroenterology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Sung Wook Hwang
- Inflammatory Bowel Disease Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Lyul Lee
- Inflammatory Bowel Disease Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Hyoung Park
- Inflammatory Bowel Disease Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Suk-Kyun Yang
- Inflammatory Bowel Disease Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Buhm Han
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, Korea
- Inflammatory Bowel Disease Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Sik Yoon
- Inflammatory Bowel Disease Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Byong Duk Ye
- Inflammatory Bowel Disease Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Wang C, Yu T, Wang Y, Xu M, Wang J, Zhao Y, Wan Q, Wang L, Yang J, Zhou J, Li B, Yu Y, Shen Y. Targeting the EP2 receptor ameliorates inflammatory bowel disease in mice by enhancing the immunosuppressive activity of T reg cells. Mucosal Immunol 2024:S1933-0219(24)00137-5. [PMID: 39746548 DOI: 10.1016/j.mucimm.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Inflammatory bowel diseases (IBDs) are characterized by unrestrained innate and adaptive immune responses and compromised intestinal epithelial barrier integrity. Regulatory T (Treg) cells are crucial for maintaining self-tolerance and immune homeostasis in intestinal tissues. Prostaglandin E2 (PGE2), a bioactive lipid compound derived from arachidonic acid, can modulate T cell functions in a receptor subtype-specific manner. However, whether PGE2 regulates Treg cell function and contributes to IBD pathogenesis remains unclear. Here, we found that the PGE2 receptor subtype 2 (EP2) is highly expressed in Treg cells. Treg cell-specific deletion of EP2 resulted in increased Treg cell numbers, and enhanced granzyme B(GzmB) expression and immunosuppressive capacity of Treg cells in mice. Adoptive transfer of EP2-deficient Treg cells attenuated naïve CD4+ T cell transfer-induced colitis in Rag1-/- mice. Mice with EP2-deficient Treg cells were protected from 2,4,6-trinitrobenzene sulfonic acid (TNBS)- and dextran sodium sulfate (DSS)-induced colitis. Pharmacological blockage of EP2 with PF-04418948 markedly alleviated DSS-induced colitis in mice in a Treg-dependent manner. Mechanistically, activation of EP2 suppressed Treg cell function, at least in part, through reduction of GzmB expression via PKA-mediated inhibition of NF-κB signaling. Thus, we identified the PGE2/EP2 axis as a key negative modulator of Treg cell function, suggesting EP2 inhibition as a potential therapeutic strategy for IBD treatment.
Collapse
Affiliation(s)
- Chenchen Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tingting Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuexin Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mengtong Xu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingjing Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yan Zhao
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiangyou Wan
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lu Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Jie Zhou
- Department of Immunology, Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bin Li
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
7
|
Jin Y, Xing J, Dai C, Jin L, Zhang W, Tao Q, Hou M, Li Z, Yang W, Feng Q, Wang H, Yu Q. NK cell exhaustion in Wilson's disease revealed by single-cell RNA sequencing predicts the prognosis of cholecystitis. eLife 2024; 13:RP98867. [PMID: 39854622 PMCID: PMC11684787 DOI: 10.7554/elife.98867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
Metabolic abnormalities associated with liver disease have a significant impact on the risk and prognosis of cholecystitis. However, the underlying mechanism remains to be elucidated. Here, we investigated this issue using Wilson's disease (WD) as a model, which is a genetic disorder characterized by impaired mitochondrial function and copper metabolism. Our retrospective clinical study found that WD patients have a significantly higher incidence of cholecystitis and a poorer prognosis. The hepatic immune cell landscape using single-cell RNA sequencing showed that the tissue immune microenvironment is altered in WD, mainly a major change in the constitution and function of the innate immune system. Exhaustion of natural killer (NK) cells is the fundamental factor, supported by the upregulated expression of inhibitory receptors and the downregulated expression of cytotoxic molecules, which was verified in clinical samples. Further bioinformatic analysis confirmed a positive correlation between NK cell exhaustion and poor prognosis in cholecystitis and other inflammatory diseases. The study demonstrated dysfunction of liver immune cells triggered by specific metabolic abnormalities in WD, with a focus on the correlation between NK cell exhaustion and poor healing of cholecystitis, providing new insights into the improvement of inflammatory diseases by assessing immune cell function.
Collapse
Affiliation(s)
- Yong Jin
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiayu Xing
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chenyu Dai
- Department of Cadre Cardiology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Lei Jin
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese Medicine, Hefei, China
| | - Wanying Zhang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qianqian Tao
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese Medicine, Hefei, China
| | - Mei Hou
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ziyi Li
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese Medicine, Hefei, China
| | - Wen Yang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Qiyu Feng
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongyang Wang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Qingsheng Yu
- Department of Cadre Cardiology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
8
|
Feng J, He LN, Yao R, Qiao Y, Yang T, Cui Z, Meng X, Tong J, Jia K, Zuo Z, Shen J. Comprehensive analysis of heterogeneity and cell-cell interactions in Crohn's disease reveals novel location-specific insights. J Adv Res 2024:S2090-1232(24)00620-9. [PMID: 39732334 DOI: 10.1016/j.jare.2024.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024] Open
Abstract
INTRODUCTION In Crohn's disease (CD), lesions are mainly distributed in a segmental manner, with the primary sites of involvement being the ileum and colon. Heterogeneity in colon and ileum results in location-specific clinical presentations and therapeutic responses. Mucosal healing tends to be more readily and quickly achieved in the colon than in the ileum, where lesions are more likely to develop into complex behaviors. The heterogeneity of colon and ileum in CD, which is essential for tailored therapeutic approaches, has not yet been systematically illustrated. OBJECTIVES CD presents with unique intestinal lesions, mainly impacting the terminal ileum and colon. It is essential to comprehend the diversity in pathogenesis and treatment response among various segments. METHODS We conducted comparative single-cell RNA sequencing analysis in treatment-naïve CD patients, concentrating on the colon and ileum. RESULTS A novel subset of epithelial cells expressing high levels of DUOX2 and DUOXA2 (DUOX2-epi) was discovered. This DUOX2-epi subcluster predominantly distributed in the tip epithelium of the inflamed colon, potentially in response to microbial infection, as evidenced by the significant enrichment of inflammatory and microbial response pathways. The colonic and ileal DUOX2-epi subsets trigger inflammatory responses through distinct mechanisms. The colonic DUOX2-epi primarily affects monocytes via the SAA1-FPR2 ligand-receptor interaction, whereas the ileal DUOX2-epi directly interacts with regulate T cells through the CXCL16-CXCR6 ligand-receptor pair. Moreover, the cell-cell communication networks involving DUOX2-epi in the colon and ileum can help predict the location-specific effects of biological therapies. CONCLUSION This study delves into the heterogeneity within the ileum and colon of Crohn's disease at the single-cell level, identifying a new epithelial subset DUOX2-epi. Predictive gene modules tailored to different locations for biological therapies are developed as well, based on the cell-cell communication network modulated by DUOX2-epi.
Collapse
Affiliation(s)
- Jing Feng
- Department of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Inflammatory Bowel Disease Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Na He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ruchen Yao
- Department of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Inflammatory Bowel Disease Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqi Qiao
- Department of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Inflammatory Bowel Disease Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian Yang
- Department of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Inflammatory Bowel Disease Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Cui
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangjun Meng
- Department of Gastroenterology, Center for Digestive Diseases Research and Clinical Translation of Shanghai Jiao Tong University, Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinlu Tong
- Department of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Inflammatory Bowel Disease Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keyu Jia
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixiang Zuo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Jun Shen
- Department of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Inflammatory Bowel Disease Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Kalafateli M, Tourkochristou E, Tsounis EP, Aggeletopoulou I, Triantos C. New Insights into the Pathogenesis of Intestinal Fibrosis in Inflammatory Bowel Diseases: Focusing on Intestinal Smooth Muscle Cells. Inflamm Bowel Dis 2024:izae292. [PMID: 39680685 DOI: 10.1093/ibd/izae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Indexed: 12/18/2024]
Abstract
Strictures in inflammatory bowel disease, especially Crohn's disease (CD), are characterized by increased intestinal wall thickness, which, according to recent accumulating data, is mainly attributed to the expansion of the intestinal smooth muscle layers and to a lesser extent to collagen deposition. In this review, we will discuss the role of intestinal smooth muscle cells (SMCs) as crucial orchestrators of stricture formation. Activated SMCs can synthesize extracellular matrix (ECM), thus contributing to intestinal fibrosis, as well as growth factors and cytokines that can further enhance ECM production, stimulate other surrounding mesenchymal and immune cells, and increase SMC proliferation via paracrine or autocrine signaling. There is also evidence that, in stricturing CD, a phenotypic modulation of SMC toward a myofibroblast-like synthetic phenotype takes place. Moreover, the molecular mechanisms and signaling pathways that regulate SMC hyperplasia/hypertrophy will be extensively reviewed. The understanding of the cellular network and the molecular background behind stricture formation is essential for the design of effective anti-fibrotic strategies, and SMCs might be a promising therapeutic target in the future.
Collapse
Affiliation(s)
- Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, Patras, Greece
| | - Evanthia Tourkochristou
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Efthymios P Tsounis
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Christos Triantos
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
10
|
Huo Y, Yang J, Wen Y, Liang W, Tao Q, Yan J, Xu H, Li L, Li Y, Xu L, Ding M, Gong F, Liu G. Lyophilized T Cell Reference Materials with Quantified Proportions of Subtypes. ACS OMEGA 2024; 9:48452-48459. [PMID: 39676957 PMCID: PMC11635674 DOI: 10.1021/acsomega.4c06867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 12/17/2024]
Abstract
The accurate quantification of T cell subtypes and their proportions is of great significance in cell-based biomanufacturing, diagnosis, and advanced therapy. The development and application of a cell reference material (RM) provide a solid foundation for reliable and consistent T cell quantification worldwide. However, creating a cell RM that is both accurate and practical remains a challenge. In this study, we have developed a series of T cell RMs with a certified subtype proportion based on traceable accurate quantification and stable long-term preservation. We developed a quantitative flow cytometry method for the ratio of T cell subtypes with improved accuracy by using the calibration of certified reference materials of polystyrene beads. The relative standard deviation (RSD) for the quantification of CD3+, CD4+, and CD8+ subtypes was 0.43%, 0.64%, and 1.31%, respectively. To ensure long-term stability, an innovative lyophilization preservation technique was developed for our T cell RMs. The morphology and surface antigens (CD45, CD3, CD4, and CD8) of T cell RMs were characterized after lyophilization using immunofluorescence, demonstrating their equally good integrity compared with fresh cells. Their stability at 4 °C was demonstrated by continuous monitoring over 12 months. The final value assignment of the RMs was performed through quantification using flow cytometry in different laboratories. One of our RMs has been applied for the calibration of 54 different flow cytometry instruments. The T cell RMs have outstanding potential in the quality control of multiparameter flow cytometry measurements, and we believe they have great application prospects for the establishment and validation of T cell assays.
Collapse
Affiliation(s)
- Yinbo Huo
- Key
Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Jiaqi Yang
- College
of Food Science & Technology Shanghai Ocean University, Shanghai 201306, China
| | - Yanli Wen
- Key
Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Wen Liang
- Key
Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Qing Tao
- Key
Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Juan Yan
- College
of Food Science & Technology Shanghai Ocean University, Shanghai 201306, China
| | - Hui Xu
- School
of Intelligent Manufacturing, Huzhou College, Huzhou 313000, China
| | - Lanying Li
- Key
Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Yan Li
- Key
Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Li Xu
- Key
Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Min Ding
- Key
Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Feiyan Gong
- Key
Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Gang Liu
- Key
Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| |
Collapse
|
11
|
Townsend HA, Rosenberger KJ, Vanderlinden LA, Inamo J, Zhang F. Evaluating methods for integrating single-cell data and genetics to understand inflammatory disease complexity. Front Immunol 2024; 15:1454263. [PMID: 39703500 PMCID: PMC11655331 DOI: 10.3389/fimmu.2024.1454263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024] Open
Abstract
Background Understanding genetic underpinnings of immune-mediated inflammatory diseases is crucial to improve treatments. Single-cell RNA sequencing (scRNA-seq) identifies cell states expanded in disease, but often overlooks genetic causality due to cost and small genotyping cohorts. Conversely, large genome-wide association studies (GWAS) are commonly accessible. Methods We present a 3-step robust benchmarking analysis of integrating GWAS and scRNA-seq to identify genetically relevant cell states and genes in inflammatory diseases. First, we applied and compared the results of three recent algorithms, based on pathways (scGWAS), single-cell disease scores (scDRS), or both (scPagwas), according to accuracy/sensitivity and interpretability. While previous studies focused on coarse cell types, we used disease-specific, fine-grained single-cell atlases (183,742 and 228,211 cells) and GWAS data (Ns of 97,173 and 45,975) for rheumatoid arthritis (RA) and ulcerative colitis (UC). Second, given the lack of scRNA-seq for many diseases with GWAS, we further tested the tools' resolution limits by differentiating between similar diseases with only one fine-grained scRNA-seq atlas. Lastly, we provide a novel evaluation of noncoding SNP incorporation methods by testing which enabled the highest sensitivity/accuracy of known cell-state calls. Results We first found that single-cell based tools scDRS and scPagwas called superior numbers of supported cell states that were overlooked by scGWAS. While scGWAS and scPagwas were advantageous for gene exploration, scDRS effectively accounted for batch effect and captured cellular heterogeneity of disease-relevance without single-cell genotyping. For noncoding SNP integration, we found a key trade-off between statistical power and confidence with positional (e.g. MAGMA) and non-positional approaches (e.g. chromatin-interaction, eQTL). Even when directly incorporating noncoding SNPs through 5' scRNA-seq measures of regulatory elements, non disease-specific atlases gave misleading results by not containing disease-tissue specific transcriptomic patterns. Despite this criticality of tissue-specific scRNA-seq, we showed that scDRS enabled deconvolution of two similar diseases with a single fine-grained scRNA-seq atlas and separate GWAS. Indeed, we identified supported and novel genetic-phenotype linkages separating RA and ankylosing spondylitis, and UC and crohn's disease. Overall, while noting evolving single-cell technologies, our study provides key findings for integrating expanding fine-grained scRNA-seq, GWAS, and noncoding SNP resources to unravel the complexities of inflammatory diseases.
Collapse
Affiliation(s)
- Hope A. Townsend
- Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, United States
- Department of Molecular, Cellular, Developmental Biology, University of Colorado Boulder, Boulder, CO, United States
| | - Kaylee J. Rosenberger
- Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, United States
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
| | - Lauren A. Vanderlinden
- Department of Medicine, Division of Rheumatology, University of Colorado Anschutz Medical Campus, Denver, CO, United States
- Department of Biomedical Informatics, Center for Health AI, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| | - Jun Inamo
- Department of Medicine, Division of Rheumatology, University of Colorado Anschutz Medical Campus, Denver, CO, United States
- Department of Biomedical Informatics, Center for Health AI, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| | - Fan Zhang
- Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, United States
- Department of Medicine, Division of Rheumatology, University of Colorado Anschutz Medical Campus, Denver, CO, United States
- Department of Biomedical Informatics, Center for Health AI, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| |
Collapse
|
12
|
Liu L, Davidorf B, Dong P, Peng A, Song Q, He Z. Decoding the mosaic of inflammatory bowel disease: Illuminating insights with single-cell RNA technology. Comput Struct Biotechnol J 2024; 23:2911-2923. [PMID: 39421242 PMCID: PMC11485491 DOI: 10.1016/j.csbj.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 10/19/2024] Open
Abstract
Inflammatory bowel diseases (IBD), comprising ulcerative colitis (UC) and Crohn's disease (CD), are complex chronic inflammatory intestinal conditions with a multifaceted pathology, influenced by immune dysregulation and genetic susceptibility. The challenges in understanding IBD mechanisms and implementing precision medicine include deciphering the contributions of individual immune and non-immune cell populations, pinpointing specific dysregulated genes and pathways, developing predictive models for treatment response, and advancing molecular technologies. Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool to address these challenges, offering comprehensive transcriptome profiles of various cell types at the individual cell level in IBD patients, overcoming limitations of bulk RNA sequencing. Additionally, single-cell proteomics analysis, T-cell receptor repertoire analysis, and epigenetic profiling provide a comprehensive view of IBD pathogenesis and personalized therapy. This review summarizes significant advancements in single-cell sequencing technologies for enhancing our understanding of IBD, covering pathogenesis, diagnosis, treatment, and prognosis. Furthermore, we discuss the challenges that persist in the context of IBD research, including the need for longitudinal studies, integration of multiple single-cell and spatial transcriptomics technologies, and the potential of microbial single-cell RNA-seq to shed light on the role of the gut microbiome in IBD.
Collapse
Affiliation(s)
- Liang Liu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benjamin Davidorf
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peixian Dong
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alice Peng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Zhiheng He
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Reynolds SR, Salas LA, Chen JQ, Christensen BC. Detailed immune profiling in pediatric Crohn's disease using methylation cytometry. Epigenetics 2024; 19:2289786. [PMID: 38090774 PMCID: PMC10761011 DOI: 10.1080/15592294.2023.2289786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
DNA methylation has been extensively utilized to study epigenetic patterns across many diseases as well as to deconvolve blood cell type proportions. This study builds upon previous studies examining methylation patterns in paediatric patients with varying stages of Crohn's disease to extend the immune profiling of these patients using a novel deconvolution approach. Compared with control subjects, we observed significantly decreased levels of CD4 memory and naive, CD8 naive, and natural killer cells and elevated neutrophil levels in Crohn's disease. In addition, Crohn's patients had a significantly elevated neutrophil-to-lymphocyte ratio. Using an epigenome-wide association approach and adjusting for potential confounders, including cell type, we observed 397 differentially methylated CpG (DMC) sites associated with Crohn's disease. The top genetic pathway associated with the DMCs was the regulation of arginine metabolic processes which are involved in the regulation of T cells.
Collapse
Affiliation(s)
- Samuel R. Reynolds
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, NH, Lebanon, USA
| | - Lucas A. Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, NH, Lebanon, USA
| | - Ji-Qing Chen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, NH, Lebanon, USA
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, NH, Lebanon, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, NH, Lebanon, USA
| |
Collapse
|
14
|
Chiarolla CM, Schulz AR, Meir M, Ferrara S, Xiao Y, Reu-Hofer S, Romero-Olmedo AJ, Falcone V, Hoffmann K, Büttner-Herold M, Prelog M, Rosenwald A, Hengel H, Lohoff M, Chang HD, Schlegel N, Mei HE, Berberich-Siebelt F. Pro-inflammatory NK-like T cells are expanded in the blood and inflamed intestine in Crohn's disease. Mucosal Immunol 2024:S1933-0219(24)00109-0. [PMID: 39521274 DOI: 10.1016/j.mucimm.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Altered intestinal immune homeostasis leads to chronic inflammation in Crohn's disease (CD). To address disease- and tissue-specific alterations, we performed a T cell-centric mass cytometry analysis of peripheral and intestinal lymphocytes from patients with CD and healthy donors' PBMCs. Chronic intestinal inflammation enforced activation, exhaustion, and terminal differentiation of CD4+ and CD8+ T cells and a relative enrichment of CD4+ regulatory T (Treg) cells. Moreover, enigmatic rare Treg subsets appeared upon inflammation, e.g. CD4+FOXP3+HLA-DR+TIGIT- and CD4+FOXP3+CD56+, expressing pro-inflammatory IFN-γ upon in vitro stimulation. Some conventional T (Tcon) cells acquired NK-like features. In CD patients' blood, not well studied CD16+CCR6+CD127+ T cells appeared, being CD4+ or CD8+, a phenotype inducible on healthy T cells by CD blood plasma. Upon CD16-mediated antibody binding, they could attain effector function. These findings suggest an uncommon pro-inflammatory innate-like differentiation of Treg and Tcon cells with acquisition of non-specific cytotoxicity. Most likely, this is both cause and consequence of intestinal inflammation during CD.
Collapse
Affiliation(s)
- Cristina M Chiarolla
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Axel R Schulz
- Mass Cytometry Lab, German Rheumatism Research Center Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Michael Meir
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Sebastian Ferrara
- Mass Cytometry Lab, German Rheumatism Research Center Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Yin Xiao
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Simone Reu-Hofer
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Addi J Romero-Olmedo
- Institute of Medical Microbiology and Hospital Hygiene, Philipps University Marburg, Marburg, Germany
| | - Valeria Falcone
- Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Katja Hoffmann
- Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Martina Prelog
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany; Comprehensive Cancer Centre Mainfranken, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Hartmut Hengel
- Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Michael Lohoff
- Institute of Medical Microbiology and Hospital Hygiene, Philipps University Marburg, Marburg, Germany
| | - Hyun-Dong Chang
- Schwiete Laboratory for Microbiota and Inflammation, German Rheumatism Research Center Berlin (DRFZ), Leibniz Institute, 10117 Berlin, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Henrik E Mei
- Mass Cytometry Lab, German Rheumatism Research Center Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | | |
Collapse
|
15
|
Oliver AJ, Huang N, Bartolome-Casado R, Li R, Koplev S, Nilsen HR, Moy M, Cakir B, Polanski K, Gudiño V, Melón-Ardanaz E, Sumanaweera D, Dimitrov D, Milchsack LM, FitzPatrick MEB, Provine NM, Boccacino JM, Dann E, Predeus AV, To K, Prete M, Chapman JA, Masi AC, Stephenson E, Engelbert J, Lobentanzer S, Perera S, Richardson L, Kapuge R, Wilbrey-Clark A, Semprich CI, Ellams S, Tudor C, Joseph P, Garrido-Trigo A, Corraliza AM, Oliver TRW, Hook CE, James KR, Mahbubani KT, Saeb-Parsy K, Zilbauer M, Saez-Rodriguez J, Høivik ML, Bækkevold ES, Stewart CJ, Berrington JE, Meyer KB, Klenerman P, Salas A, Haniffa M, Jahnsen FL, Elmentaite R, Teichmann SA. Single-cell integration reveals metaplasia in inflammatory gut diseases. Nature 2024; 635:699-707. [PMID: 39567783 PMCID: PMC11578898 DOI: 10.1038/s41586-024-07571-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/15/2024] [Indexed: 11/22/2024]
Abstract
The gastrointestinal tract is a multi-organ system crucial for efficient nutrient uptake and barrier immunity. Advances in genomics and a surge in gastrointestinal diseases1,2 has fuelled efforts to catalogue cells constituting gastrointestinal tissues in health and disease3. Here we present systematic integration of 25 single-cell RNA sequencing datasets spanning the entire healthy gastrointestinal tract in development and in adulthood. We uniformly processed 385 samples from 189 healthy controls using a newly developed automated quality control approach (scAutoQC), leading to a healthy reference atlas with approximately 1.1 million cells and 136 fine-grained cell states. We anchor 12 gastrointestinal disease datasets spanning gastrointestinal cancers, coeliac disease, ulcerative colitis and Crohn's disease to this reference. Utilizing this 1.6 million cell resource (gutcellatlas.org), we discover epithelial cell metaplasia originating from stem cells in intestinal inflammatory diseases with transcriptional similarity to cells found in pyloric and Brunner's glands. Although previously linked to mucosal healing4, we now implicate pyloric gland metaplastic cells in inflammation through recruitment of immune cells including T cells and neutrophils. Overall, we describe inflammation-induced changes in stem cells that alter mucosal tissue architecture and promote further inflammation, a concept applicable to other tissues and diseases.
Collapse
Affiliation(s)
- Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Ni Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Raquel Bartolome-Casado
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Pathology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Ruoyan Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, US
| | - Simon Koplev
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Hogne R Nilsen
- Department of Pathology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Madelyn Moy
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Batuhan Cakir
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Victoria Gudiño
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Elisa Melón-Ardanaz
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | | | - Daniel Dimitrov
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | | | - Michael E B FitzPatrick
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas M Provine
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Ken To
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jonathan A Chapman
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Andrea C Masi
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Emily Stephenson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Justin Engelbert
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Sebastian Lobentanzer
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Shani Perera
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Laura Richardson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Rakeshlal Kapuge
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | | | - Sophie Ellams
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Catherine Tudor
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Alba Garrido-Trigo
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Ana M Corraliza
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Thomas R W Oliver
- Department of Histopathology and Cytology, Cambridge University Hospitals, Cambridge, UK
| | | | - Kylie R James
- Translational Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Biorepository for Translational Medicine, Cambridge NIHR Biomedical Research Centre, Cambridge, UK
- Department of Haematology, Cambridge Stem Cell Institute, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Biorepository for Translational Medicine, Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Matthias Zilbauer
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- University Department of Paediatrics, University of Cambridge, Cambridge, UK
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals, Cambridge, UK
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Marte Lie Høivik
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Espen S Bækkevold
- Department of Pathology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | | | - Janet E Berrington
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Paul Klenerman
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Azucena Salas
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and National Institute for Health Research (NIHR) Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Frode L Jahnsen
- Department of Pathology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Ensocell Therapeutics, BioData Innovation Centre, Wellcome Genome Campus, Cambridge, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Ensocell Therapeutics, BioData Innovation Centre, Wellcome Genome Campus, Cambridge, UK.
- Theory of Condensed Matter, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
- CIFAR Macmillan Multi-scale Human Program, CIFAR, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Thomas T, Friedrich M, Rich-Griffin C, Pohin M, Agarwal D, Pakpoor J, Lee C, Tandon R, Rendek A, Aschenbrenner D, Jainarayanan A, Voda A, Siu JHY, Sanches-Peres R, Nee E, Sathananthan D, Kotliar D, Todd P, Kiourlappou M, Gartner L, Ilott N, Issa F, Hester J, Turner J, Nayar S, Mackerodt J, Zhang F, Jonsson A, Brenner M, Raychaudhuri S, Kulicke R, Ramsdell D, Stransky N, Pagliarini R, Bielecki P, Spies N, Marsden B, Taylor S, Wagner A, Klenerman P, Walsh A, Coles M, Jostins-Dean L, Powrie FM, Filer A, Travis S, Uhlig HH, Dendrou CA, Buckley CD. A longitudinal single-cell atlas of anti-tumour necrosis factor treatment in inflammatory bowel disease. Nat Immunol 2024; 25:2152-2165. [PMID: 39438660 PMCID: PMC11519010 DOI: 10.1038/s41590-024-01994-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Precision medicine in immune-mediated inflammatory diseases (IMIDs) requires a cellular understanding of treatment response. We describe a therapeutic atlas for Crohn's disease (CD) and ulcerative colitis (UC) following adalimumab, an anti-tumour necrosis factor (anti-TNF) treatment. We generated ~1 million single-cell transcriptomes, organised into 109 cell states, from 216 gut biopsies (41 subjects), revealing disease-specific differences. A systems biology-spatial analysis identified granuloma signatures in CD and interferon (IFN)-response signatures localising to T cell aggregates and epithelial damage in CD and UC. Pretreatment differences in epithelial and myeloid compartments were associated with remission outcomes in both diseases. Longitudinal comparisons demonstrated disease progression in nonremission: myeloid and T cell perturbations in CD and increased multi-cellular IFN signalling in UC. IFN signalling was also observed in rheumatoid arthritis (RA) synovium with a lymphoid pathotype. Our therapeutic atlas represents the largest cellular census of perturbation with the most common biologic treatment, anti-TNF, across multiple inflammatory diseases.
Collapse
Affiliation(s)
- Tom Thomas
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
- Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK
| | - Matthias Friedrich
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK
| | | | - Mathilde Pohin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Devika Agarwal
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Julia Pakpoor
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
- Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK
| | - Carl Lee
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Ruchi Tandon
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Aniko Rendek
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Dominik Aschenbrenner
- Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK
| | | | - Alexandru Voda
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | | | - Eloise Nee
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Dharshan Sathananthan
- University of Adelaide, Adelaide, Australia
- Lyell McEwin Hospital, Adelaide, Australia
| | - Dylan Kotliar
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Peter Todd
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Lisa Gartner
- Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK
| | - Nicholas Ilott
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Joanna Hester
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Jason Turner
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Saba Nayar
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre and NIHR Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Jonas Mackerodt
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Fan Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Health AI, University of Colorado Anschutz, Anschutz, CO, USA
| | - Anna Jonsson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael Brenner
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Soumya Raychaudhuri
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | - Noah Spies
- Celsius Therapeutics, Cambridge, MA, USA
| | - Brian Marsden
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Stephen Taylor
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Allon Wagner
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA
- The Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Paul Klenerman
- Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK
| | - Alissa Walsh
- Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK
| | - Mark Coles
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Fiona M Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Andrew Filer
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre and NIHR Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Simon Travis
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
- Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - Holm H Uhlig
- Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Calliope A Dendrou
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
- Centre for Human Genetics, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - Christopher D Buckley
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
- Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK.
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
17
|
Zhang H, Hasegawa Y, Suzuki M, Zhang T, Leitner DR, Jackson RP, Waldor MK. Mouse enteric neurons control intestinal plasmacytoid dendritic cell function via serotonin-HTR7 signaling. Nat Commun 2024; 15:9237. [PMID: 39455564 PMCID: PMC11511829 DOI: 10.1038/s41467-024-53545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Serotonergic neurons in the central nervous system control behavior and mood, but knowledge of the roles of serotonergic circuits in the regulation of immune homeostasis is limited. Here, we employ mouse genetics to investigate the functions of enteric serotonergic neurons in the control of immune responses and find that these circuits regulate IgA induction and boost host defense against oral, but not systemic Salmonella Typhimurium infection. Enteric serotonergic neurons promote gut-homing, retention and activation of intestinal plasmacytoid dendritic cells (pDC). Mechanistically, this neuro-immune crosstalk is achieved through a serotonin-5-HT receptor 7 (HTR7) signaling axis that ultimately facilitates the pDC-mediated differentiation of IgA+ B cells from IgD+ precursors in the gut. Single-cell RNA-seq data further reveal novel patterns of bidirectional communication between specific subsets of enteric neurons and lamina propria DC. Our findings thus reveal a close interplay between enteric serotonergic neurons and gut immune homeostasis that enhances mucosal defense.
Collapse
Affiliation(s)
- Hailong Zhang
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Yuko Hasegawa
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Masataka Suzuki
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Ting Zhang
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Deborah R Leitner
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Ruaidhrí P Jackson
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
Liebing E, Krug SM, Neurath MF, Siegmund B, Becker C. Wall of Resilience: How the Intestinal Epithelium Prevents Inflammatory Onslaught in the Gut. Cell Mol Gastroenterol Hepatol 2024; 19:101423. [PMID: 39461590 PMCID: PMC11720114 DOI: 10.1016/j.jcmgh.2024.101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
The intestinal epithelium forms the boundary between the intestinal immune system in the lamina propria and the outside world, the intestinal lumen, which contains a diverse array of microbial and environmental antigens. Composed of specialized cells, this epithelial monolayer has an exceptional turnover rate. Differentiated epithelial cells are released into the intestinal lumen within a few days, at the villus tip, a process that requires strict regulation. Dysfunction of the epithelial barrier increases the intestinal permeability and paves the way for luminal antigens to pass into the intestinal serosa. Stem cells at the bottom of Lieberkühn crypts provide a constant supply of mature epithelial cells. Differentiated intestinal epithelial cells exhibit a diverse array of mechanisms that enable communication with surrounding cells, fortification against microorganisms, and orchestration of nutrient absorption and hormonal balance. Furthermore, tight junctions regulate paracellular permeability properties, and their disruption can lead to an impairment of the intestinal barrier, allowing inflammation to develop or further progress. Intestinal epithelial cells provide a communication platform through which they maintain homeostasis with a spectrum of entities including immune cells, neuronal cells, and connective tissue cells. This homeostasis can be disrupted in disease, such as inflammatory bowel disease. Patients suffering from inflammatory bowel disease show an impaired gut barrier, dysregulated cellular communication, and aberrant proliferation and demise of cells. This review summarizes the individual cellular and molecular mechanisms pivotal for upholding the integrity of the intestinal epithelial barrier and shows how these can be disrupted in diseases, such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Eva Liebing
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Susanne M Krug
- Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus F Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany.
| |
Collapse
|
19
|
Hamade H, Tsuda M, Oshima N, Stamps DT, Wong MH, Stamps JT, Thomas LS, Salumbides BC, Jin C, Nunnelee JS, Dhall D, Targan SR, Michelsen KS. Toll-like receptor 7 protects against intestinal inflammation and restricts the development of colonic tissue-resident memory CD8 + T cells. Front Immunol 2024; 15:1465175. [PMID: 39464882 PMCID: PMC11502343 DOI: 10.3389/fimmu.2024.1465175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction The maintenance of intestinal homeostasis depends on a complex interaction between the immune system, intestinal epithelial barrier, and microbiota. Alteration in one of these components could lead to the development of inflammatory bowel diseases (IBD). Variants within the autophagy gene ATG16L1 have been implicated in susceptibility and severity of Crohn's disease (CD). Individuals carrying the risk ATG16L1 T300A variant have higher caspase 3-dependent degradation of ATG16L1 resulting in impaired autophagy and increased cellular stress. ATG16L1-deficiency induces enhanced IL-1β secretion in dendritic cells in response to bacterial infection. Infection of ATG16L1-deficient mice with a persistent strain of murine norovirus renders these mice highly susceptible to dextran sulfate sodium colitis. Moreover, persistent norovirus infection leads to intestinal virus specific CD8+ T cells responses. Both Toll-like receptor 7 (TLR7), which recognizes single-stranded RNA viruses, and ATG16L1, which facilitates the delivery of viral nucleic acids to the autolysosome endosome, are required for anti-viral immune responses. Results and discussion However, the role of the enteric virome in IBD is still poorly understood. Here, we investigate the role of TLR7 and ATG16L1 in intestinal homeostasis and inflammation. At steady state, Tlr7-/- mice have a significant increase in large intestinal lamina propria (LP) granzyme B+ tissue-resident memory CD8+ T (TRM) cells compared to WT mice, reminiscent of persistent norovirus infection. Deletion of Atg16l1 in myeloid (Atg16l1ΔLyz2 ) or dendritic cells (Atg16l1ΔCd11c ) leads to a similar increase of LP TRM. Furthermore, Tlr7-/- and Atg16l1ΔCd11c mice were more susceptible to dextran sulfate sodium colitis with an increase in disease activity index, histoscore, and increased secretion of IFN-γ and TNF-α. Treatment of Atg16l1ΔCd11c mice with the TLR7 agonist Imiquimod attenuated colonic inflammation in these mice. Our data demonstrate that ATG16L1-deficiency in myeloid and dendritic cells leads to an increase in LP TRM and consequently to increased susceptibility to colitis by impairing the recognition of enteric viruses by TLR7. Conclusion In conclusion, the convergence of ATG16L1 and TLR7 signaling pathways plays an important role in the immune response to intestinal viruses. Our data suggest that activation of the TLR7 signaling pathway could be an attractive therapeutic target for CD patients with ATG16L1 risk variants.
Collapse
Affiliation(s)
- Hussein Hamade
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Masato Tsuda
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Naoki Oshima
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dalton T. Stamps
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Michelle H. Wong
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jasmine T. Stamps
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Lisa S. Thomas
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Brenda C. Salumbides
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Caroline Jin
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jordan S. Nunnelee
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Deepti Dhall
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Stephan R. Targan
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Kathrin S. Michelsen
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
20
|
Xu L, Zhao B, Cheng H, Li G, Sun Y. Bergapten enhances mitophagy to regulate intestinal barrier and Th17/Treg balance in mice with Crohn's disease-like colitis via PPARγ/NF-κB signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7589-7597. [PMID: 38664245 DOI: 10.1007/s00210-024-03113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 10/04/2024]
Abstract
This study aimed to investigate whether bergapten (BG), a furanocoumarin phytohormone, holds promise for Crohn's disease (CD)-like colitis treatment and to preliminarily explore its potential mechanisms. 2,4,6-Trinitrobenzenesufonic acid (TNBS)-treated mice were applied to establish an in vivo research model, and BG was administered with different concentrations. The status of mice in each group was evaluated by disease activity index (DAI), and the severity was evaluated by pathological sections. The intestinal barrier was assessed by measuring in vivo intestinal permeability, peripheral blood intestinal fatty acid-binding protein (I-FABP) levels, epithelial resistance values, and tight junction protein levels. Markers were then used to assess Th17/Treg levels, mitophagy, and the peroxisome proliferator-activated receptor (PPAR)γ/ nuclear factor kappa B (NF-κB) signaling pathway. BG significantly reduced colon tissue damage in a concentration-dependent manner. DAI scores showed that the loose feces, occult blood, and weight loss of mice in the BG treatment were significantly reduced, and pathological section results revealed reduced inflammatory infiltration and fibrosis. Reduced serum FITC-dextran and I-FABP and increased levels of epithelial resistance and tight junction proteins support that the intestinal barrier was protected upon BG. The proportion of Th17 in mesenteric lymph nodes increased while Treg decreased in the model group. BG treatment effectively reduced the conversion of Treg to Th17. Additionally, BG was found to enhance mitophagy and activate the PPARγ/NF-κB signaling. BG demonstrates promising effects in ameliorating intestinal barrier damage and Th17/Treg imbalance in a murine model of CD-like colitis, while also promoting intracellular mitophagy. The PPARγ/NF-κB signaling pathway may serve as a key mediator of BG's regulatory mechanisms.
Collapse
Affiliation(s)
- Ling Xu
- Department of Anorectal Surgery, Zhangjiagang Hospital Affiliated to Soochow University, No.68 West Jiyang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
| | - Bin Zhao
- Department of Gastroenterology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, Jiangsu, China
| | - Haihe Cheng
- Department of Anorectal Surgery, Zhangjiagang Hospital Affiliated to Soochow University, No.68 West Jiyang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
| | - Gang Li
- Department of Anorectal Surgery, Zhangjiagang Hospital Affiliated to Soochow University, No.68 West Jiyang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
| | - Yan Sun
- Department of Anorectal Surgery, Zhangjiagang Hospital Affiliated to Soochow University, No.68 West Jiyang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China.
| |
Collapse
|
21
|
Heintzman DR, Sinard RC, Fisher EL, Ye X, Patterson AR, Elasy JH, Voss K, Chi C, Sugiura A, Rodriguez-Garcia GJ, Chowdhury NU, Arner EN, Krystoviak ES, Mason FM, Toudji YT, Steiner KK, Khan W, Olson LM, Jones AL, Hong HS, Bass L, Beier KL, Deng W, Lyssiotis CA, Newcomb DC, Bick AG, Rathmell WK, Wilson JT, Rathmell JC. Subset-specific mitochondrial stress and DNA damage shape T cell responses to fever and inflammation. Sci Immunol 2024; 9:eadp3475. [PMID: 39303018 PMCID: PMC11607909 DOI: 10.1126/sciimmunol.adp3475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Heat is a cardinal feature of inflammation, yet its impacts on immune cells remain uncertain. We show that moderate-grade fever temperatures (39°C) increased murine CD4 T cell metabolism, proliferation, and inflammatory effector activity while decreasing regulatory T cell suppressive capacity. However, heat-exposed T helper 1 (TH1) cells selectively developed mitochondrial stress and DNA damage that activated Trp53 and stimulator of interferon genes pathways. Although many TH1 cells subjected to such temperatures died, surviving TH1 cells exhibited increased mitochondrial mass and enhanced activity. Electron transport chain complex 1 (ETC1) was rapidly impaired under fever-range temperatures, a phenomenon that was specifically detrimental to TH1 cells. TH1 cells with elevated DNA damage and ETC1 signatures were also detected in human chronic inflammation. Thus, fever-relevant temperatures disrupt ETC1 to selectively drive apoptosis or adaptation of TH1 cells to maintain genomic integrity and enhance effector functions.
Collapse
Affiliation(s)
- Darren R Heintzman
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachael C Sinard
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Emilie L Fisher
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew R Patterson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joel H Elasy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelsey Voss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Channing Chi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ayaka Sugiura
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gabriel J Rodriguez-Garcia
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nowrin U Chowdhury
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily N Arner
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Evan S Krystoviak
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Cell Imaging Shared Resource, Vanderbilt University, Nashville, TN, USA
| | - Frank M Mason
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yasmine T Toudji
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - KayLee K Steiner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wasay Khan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lana M Olson
- Vanderbilt Technologies for Advanced Genomics (VANTAGE), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Angela L Jones
- Vanderbilt Technologies for Advanced Genomics (VANTAGE), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hanna S Hong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Lindsay Bass
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine L Beier
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wentao Deng
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Dawn C Newcomb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander G Bick
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
22
|
Che S, Qin B, Wu K, Zhu M, Hu H, Peng C, Wang Z, Yin Y, Xia Y, Wu M. EGCG drives gut microbial remodeling-induced epithelial GPR43 activation to lessen Th1 polarization in colitis. Redox Biol 2024; 75:103291. [PMID: 39116526 PMCID: PMC11363845 DOI: 10.1016/j.redox.2024.103291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
Modulation of immune microenvironment is critical for inflammatory bowel disease (IBD) intervention. Epigallocatechin gallate (EGCG), as a natural low toxicity product, has shown promise in treating IBD. However, whether and how EGCG regulates the intestinal microenvironment is not fully understood. Here we report that EGCG lessens colitis by orchestrating Th1 polarization and self-amplification in a novel manner that required multilevel-regulated intestinal microecosystem. Mechanistically, EGCG activates GPR43 on IEC to inhibit Th1 polarization dependently of short chain fatty acid (SCFA)-producing gut microbiota. Inhibition of GPR43 activity weakens the protective effects of EGCG on colitis development. Moreover, we confirm that fecal SCFAs and/or intestinal GPR43 are limited in patients with colitis and are correlated with Th1 cell number. Taken together, our study reveals an intestinal microenvironment-dependent immunoregulatory effects of EGCG in treating IBD and provides insight into mechanisms of EGCG-based novel immunotherapeutic strategies for IBD.
Collapse
Affiliation(s)
- Siyan Che
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Beibei Qin
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Kunfu Wu
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Mingzhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, 410128, China
| | - Han Hu
- Institute of Apicultural Research/State Key Laboratory of Resource Insects, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Can Peng
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zi Wang
- Department of Hematology, The Second Xiangya Hospital of Central South University; Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China.
| | - Yulong Yin
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| | - Miaomiao Wu
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
23
|
Li J, Simmons AJ, Hawkins CV, Chiron S, Ramirez-Solano MA, Tasneem N, Kaur H, Xu Y, Revetta F, Vega PN, Bao S, Cui C, Tyree RN, Raber LW, Conner AN, Pilat JM, Jacobse J, McNamara KM, Allaman MM, Raffa GA, Gobert AP, Asim M, Goettel JA, Choksi YA, Beaulieu DB, Dalal RL, Horst SN, Pabla BS, Huo Y, Landman BA, Roland JT, Scoville EA, Schwartz DA, Washington MK, Shyr Y, Wilson KT, Coburn LA, Lau KS, Liu Q. Identification and multimodal characterization of a specialized epithelial cell type associated with Crohn's disease. Nat Commun 2024; 15:7204. [PMID: 39169060 PMCID: PMC11339313 DOI: 10.1038/s41467-024-51580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Crohn's disease (CD) is a complex chronic inflammatory disorder with both gastrointestinal and extra-intestinal manifestations associated immune dysregulation. Analyzing 202,359 cells from 170 specimens across 83 patients, we identify a distinct epithelial cell type in both terminal ileum and ascending colon (hereon as 'LND') with high expression of LCN2, NOS2, and DUOX2 and genes related to antimicrobial response and immunoregulation. LND cells, confirmed by in-situ RNA and protein imaging, are rare in non-IBD controls but expand in active CD, and actively interact with immune cells and specifically express IBD/CD susceptibility genes, suggesting a possible function in CD immunopathogenesis. Furthermore, we discover early and late LND subpopulations with different origins and developmental potential. A higher ratio of late-to-early LND cells correlates with better response to anti-TNF treatment. Our findings thus suggest a potential pathogenic role for LND cells in both Crohn's ileitis and colitis.
Collapse
Affiliation(s)
- Jia Li
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Caroline V Hawkins
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sophie Chiron
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marisol A Ramirez-Solano
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naila Tasneem
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Harsimran Kaur
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yanwen Xu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Frank Revetta
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paige N Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shunxing Bao
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Can Cui
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Regina N Tyree
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Larry W Raber
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna N Conner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer M Pilat
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Justin Jacobse
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kara M McNamara
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Margaret M Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gabriella A Raffa
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeremy A Goettel
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yash A Choksi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Dawn B Beaulieu
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robin L Dalal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara N Horst
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baldeep S Pabla
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuankai Huo
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth A Scoville
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David A Schwartz
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Kay Washington
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| | - Ken S Lau
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
24
|
Lv J, Ibrahim YS, Yumashev A, Hjazi A, Faraz A, Alnajar MJ, Qasim MT, Ghildiyal P, Hussein Zwamel A, Fakri Mustafa Y. A comprehensive immunobiology review of IBD: With a specific glance to Th22 lymphocytes development, biology, function, and role in IBD. Int Immunopharmacol 2024; 137:112486. [PMID: 38901239 DOI: 10.1016/j.intimp.2024.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
The two primary forms of inflammatory disorders of the small intestine andcolon that make up inflammatory bowel disease (IBD) are ulcerative colitis (UC) and Crohn's disease (CD). While ulcerative colitis primarily affects the colon and the rectum, CD affects the small and large intestines, as well as the esophagus,mouth, anus, andstomach. Although the etiology of IBD is not completely clear, and there are many unknowns about it, the development, progression, and recurrence of IBD are significantly influenced by the activity of immune system cells, particularly lymphocytes, given that the disease is primarily caused by the immune system stimulation and activation against gastrointestinal (GI) tract components due to the inflammation caused by environmental factors such as viral or bacterial infections, etc. in genetically predisposed individuals. Maintaining homeostasis and the integrity of the mucosal barrier are critical in stopping the development of IBD. Specific immune system cells and the quantity of secretory mucus and microbiome are vital in maintaining this stability. Th22 cells are helper T lymphocyte subtypes that are particularly important for maintaining the integrity and equilibrium of the mucosal barrier. This review discusses the most recent research on these cells' biology, function, and evolution and their involvement in IBD.
Collapse
Affiliation(s)
- Jing Lv
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, PR China
| | - Yousif Saleh Ibrahim
- Department of Chemistry and Biochemistry, College of Medicine, University of Fallujah, Fallujah, Iraq
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Ali Faraz
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia.
| | | | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Aldiwaniyah, Aldiwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
25
|
Amatore F, Colombel JF, Delaporte E. Mucocutaneous manifestations of inflammatory bowel disease. Ann Dermatol Venereol 2024; 151:103301. [PMID: 39094469 DOI: 10.1016/j.annder.2024.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 08/04/2024]
Abstract
Mucocutaneous manifestations can be indicative of a variety of gastrointestinal diseases, and the dermatologist needs to know how to recognize them to refer the right patients to the gastroenterologist. Conversely, the gastroenterologist is often confronted with mucocutaneous lesions that raise the question of a possible association with a known digestive disease. Among the extra-intestinal manifestations of inflammatory bowel disease (IBD), mucocutaneous manifestations are the most common. This review will provide a breakdown by classifying them into 4 groups: 1) reactive manifestations, which include neutrophilic dermatoses, aphthous stomatitis, erythema nodosum, and vasculitis; 2) Crohn's disease-specific granulomatous skin lesions, which are histologically characterized by tuberculoid granulomas similar to those found in the gastrointestinal tract; 3) nutritional deficiency manifestations secondary to anorexia, malabsorption, loss, and drug interactions; and 3) a variety of autonomous autoimmune or inflammatory skin diseases. Dermatologists may also be involved in the management of the adverse effects of IBD treatments, especially the so-called "paradoxical" psoriatic eruptions.
Collapse
Affiliation(s)
- F Amatore
- Dermatology Department, North Hospital, Assistance-Publique Hopitaux de Marseille, Aix-Marseille University, Marseille, France.
| | - J-F Colombel
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - E Delaporte
- Dermatology Department, North Hospital, Assistance-Publique Hopitaux de Marseille, Aix-Marseille University, Marseille, France
| |
Collapse
|
26
|
Dovrolis N, Valatas V, Drygiannakis I, Filidou E, Spathakis M, Kandilogiannakis L, Tarapatzi G, Arvanitidis K, Bamias G, Vradelis S, Manolopoulos VG, Paspaliaris V, Kolios G. Landscape of Interactions between Stromal and Myeloid Cells in Ileal Crohn's Disease; Indications of an Important Role for Fibroblast-Derived CCL-2. Biomedicines 2024; 12:1674. [PMID: 39200138 PMCID: PMC11351973 DOI: 10.3390/biomedicines12081674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND AND AIMS Monocyte recruitment in the lamina propria and inflammatory phenotype driven by the mucosal microenvironment is critical for the pathogenesis of inflammatory bowel disease. However, the stimuli responsible remain largely unknown. Recent works have focused on stromal cells, the main steady-state cellular component in tissue, as they produce pro-inflammatory chemokines that contribute to the treatment-resistant nature of IBD. METHODS We studied the regulation of these processes by examining the communication patterns between stromal and myeloid cells in ileal Crohn's disease (CD) using a complete single-cell whole tissue sequencing analysis pipeline and in vitro experimentation in mesenchymal cells. RESULTS We report expansion of S4 stromal cells and monocyte-like inflammatory macrophages in the inflamed mucosa and describe interactions that may establish sustained local inflammation. These include expression of CCL2 by S1 fibroblasts to recruit and retain monocytes and macrophages in the mucosa, where they receive signals for proliferation, survival, and differentiation to inflammatory macrophages from S4 stromal cells through molecules such as MIF, IFNγ, and FN1. The overexpression of CCL2 in ileal CD and its stromal origin was further demonstrated in vitro by cultured mesenchymal cells and intestinal organoids in the context of an inflammatory milieu. CONCLUSIONS Our findings outline an extensive cross-talk between stromal and myeloid cells, which may contribute to the onset and progression of inflammation in ileal Crohn's disease. Understanding the mechanisms underlying monocyte recruitment and polarization, as well as the role of stromal cells in sustaining inflammation, can provide new avenues for developing targeted therapies to treat IBD.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Vassilis Valatas
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Ioannis Drygiannakis
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Eirini Filidou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Michail Spathakis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Leonidas Kandilogiannakis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Gesthimani Tarapatzi
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Konstantinos Arvanitidis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Giorgos Bamias
- GI Unit, 3 Department of Internal Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stergios Vradelis
- Second Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | | | - George Kolios
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| |
Collapse
|
27
|
Zhang Y, Wang J, Sun H, Xun Z, He Z, Zhao Y, Qi J, Sun S, Yang Q, Gu Y, Zhang L, Zhou C, Ye Y, Wu N, Zou D, Su B. TWIST1+FAP+ fibroblasts in the pathogenesis of intestinal fibrosis in Crohn's disease. J Clin Invest 2024; 134:e179472. [PMID: 39024569 PMCID: PMC11405050 DOI: 10.1172/jci179472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024] Open
Abstract
Intestinal fibrosis, a severe complication of Crohn's disease (CD), is characterized by excessive extracellular matrix (ECM) deposition and induces intestinal strictures, but there are no effective antifibrosis drugs available for clinical application. We performed single-cell RNA sequencing (scRNA-Seq) of fibrotic and nonfibrotic ileal tissues from patients with CD with intestinal obstruction. Analysis revealed mesenchymal stromal cells (MSCs) as the major producers of ECM and the increased infiltration of its subset FAP+ fibroblasts in fibrotic sites, which was confirmed by immunofluorescence and flow cytometry. Single-cell transcriptomic profiling of chronic dextran sulfate sodium salt murine colitis model revealed that CD81+Pi16- fibroblasts exhibited transcriptomic and functional similarities to human FAP+ fibroblasts. Consistently, FAP+ fibroblasts were identified as the key subtype with the highest level of ECM production in fibrotic intestines. Furthermore, specific knockout or pharmacological inhibition of TWIST1, which was highly expressed by FAP+ fibroblasts, could significantly ameliorate fibrosis in mice. In addition, TWIST1 expression was induced by CXCL9+ macrophages enriched in fibrotic tissues via IL-1β and TGF-β signal. These findings suggest the inhibition of TWIST1 as a promising strategy for CD fibrosis treatment.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Jiaxin Wang
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Hongxiang Sun
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Ministry of Education Key Laboratory of Cell Death and Differentiation, and
| | - Zhenzhen Xun
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Ministry of Education Key Laboratory of Cell Death and Differentiation, and
| | - Zirui He
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yizhou Zhao
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Jingjing Qi
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Ministry of Education Key Laboratory of Cell Death and Differentiation, and
| | - Sishen Sun
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Qidi Yang
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Yubei Gu
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Ling Zhang
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Chunhua Zhou
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Youqiong Ye
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Ministry of Education Key Laboratory of Cell Death and Differentiation, and
| | - Ningbo Wu
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Ministry of Education Key Laboratory of Cell Death and Differentiation, and
| | - Duowu Zou
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Bing Su
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Ministry of Education Key Laboratory of Cell Death and Differentiation, and
| |
Collapse
|
28
|
Manchester AC, Ammons DT, Lappin MR, Dow S. Single cell transcriptomic analysis of the canine duodenum in chronic inflammatory enteropathy and health. Front Immunol 2024; 15:1397590. [PMID: 38933260 PMCID: PMC11199541 DOI: 10.3389/fimmu.2024.1397590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic inflammatory enteropathy (CIE) is a common condition in dogs causing recurrent or persistent gastrointestinal clinical signs. Pathogenesis is thought to involve intestinal mucosal inflammatory infiltrates, but histopathological evaluation of intestinal biopsies from dogs with CIE fails to guide treatment, inform prognosis, or correlate with clinical remission. We employed single-cell RNA sequencing to catalog and compare the diversity of cells present in duodenal mucosal endoscopic biopsies from 3 healthy dogs and 4 dogs with CIE. Through characterization of 35,668 cells, we identified 31 transcriptomically distinct cell populations, including T cells, epithelial cells, and myeloid cells. Both healthy and CIE samples contributed to each cell population. T cells were broadly subdivided into GZMAhigh (putatively annotated as tissue resident) and IL7Rhigh (putatively annotated as non-resident) T cell categories, with evidence of a skewed proportion favoring an increase in the relative proportion of IL7Rhigh T cells in CIE dogs. Among the myeloid cells, neutrophils from CIE samples exhibited inflammatory (SOD2 and IL1A) gene expression signatures. Numerous differentially expressed genes were identified in epithelial cells, with gene set enrichment analysis suggesting enterocytes from CIE dogs may be undergoing stress responses and have altered metabolic properties. Overall, this work reveals the previously unappreciated cellular heterogeneity in canine duodenal mucosa and provides new insights into molecular mechanisms which may contribute to intestinal dysfunction in CIE. The cell type gene signatures developed through this study may also be used to better understand the subtleties of canine intestinal physiology in health and disease.
Collapse
Affiliation(s)
- Alison C. Manchester
- Colorado State University, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, United States
| | - Dylan T. Ammons
- Colorado State University, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, United States
| | - Michael R. Lappin
- Colorado State University, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, United States
| | - Steven Dow
- Colorado State University, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, United States
- Colorado State University, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, United States
| |
Collapse
|
29
|
Peruhova M, Miteva D, Kokudeva M, Banova S, Velikova T. Cytokine Signatures in Inflamed Mucosa of IBD Patients: State-of-the-Art. GASTROENTEROLOGY INSIGHTS 2024; 15:471-485. [DOI: 10.3390/gastroent15020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
The process of development, recurrence, and exacerbation of the inflammatory process depends on the cytokine levels in IBD. For that reason, many cytokine therapies have been developed for treating IBD patients. Researchers employ various techniques and methodologies for cytokine profiling to identify cytokine signatures in inflamed mucosa. These include enzyme-linked immunosorbent assays (ELISA), multiplex immunoassays, flow cytometry, and gene expression analysis techniques (i.e., microarray, RNA-seq, single-cell RNA-seq (scRNA-seq), mass cytometry (CyTOF), Luminex). Research knowledge so far can give us some insights into the cytokine milieu associated with mucosal inflammation by quantifying cytokine levels in mucosal tissues or biological fluids such as serum or stool. The review is aimed at presenting state-of-the-art techniques for cytokine profiling and the various biomarkers for follow-up and treatment.
Collapse
Affiliation(s)
- Milena Peruhova
- Division of Gastroenterology, University Hospital “Heart and Brain”, Zdrave Str. 1, 8000 Burgas, Bulgaria
| | - Dimitrina Miteva
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str, 1407 Sofia, Bulgaria
| | - Maria Kokudeva
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Medical University of Sofia, ul. Dunav 2, 1000 Sofia, Bulgaria
| | - Sonya Banova
- Division of Gastroenterology, University Hospital “Heart and Brain”, Zdrave Str. 1, 8000 Burgas, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str, 1407 Sofia, Bulgaria
| |
Collapse
|
30
|
Herren R, Geva-Zatorsky N. Spatial features of skip lesions in Crohn's disease. Trends Immunol 2024; 45:470-481. [PMID: 38782626 DOI: 10.1016/j.it.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Skip lesions are an enigmatic spatial feature characterizing Crohn's disease (CD). They comprise inflamed and adjacent non-inflamed tissue sections with a clear demarcation. Currently, spatial features of the human gastrointestinal (GI) system lack clarity regarding the organization of microbes, mucus, tissue, and host cells during inflammation. New technologies with multiplexing abilities and innovative approaches provide ways of examining the spatial organization of inflamed and non-inflamed tissues in CD, which may open new avenues for diagnosis, prognosis, and treatment. In this review, we present evidence of the relevance of spatial context in patients with CD and the methods and ideas recently published in studies of spatiality during inflammation. With this review, we aim to provide inspiration for further research to address existing gaps.
Collapse
Affiliation(s)
- Rachel Herren
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422 Haifa, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422 Haifa, Israel; CIFAR, MaRS Centre, West Tower 661 University Avenue, Suite 505, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
31
|
Syed S, Boland BS, Bourke LT, Chen LA, Churchill L, Dobes A, Greene A, Heller C, Jayson C, Kostiuk B, Moss A, Najdawi F, Plung L, Rioux JD, Rosen MJ, Torres J, Zulqarnain F, Satsangi J. Challenges in IBD Research 2024: Precision Medicine. Inflamm Bowel Dis 2024; 30:S39-S54. [PMID: 38778628 DOI: 10.1093/ibd/izae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 05/25/2024]
Abstract
Precision medicine is part of 5 focus areas of the Challenges in IBD Research 2024 research document, which also includes preclinical human IBD mechanisms, environmental triggers, novel technologies, and pragmatic clinical research. Building on Challenges in IBD Research 2019, the current Challenges aims to provide a comprehensive overview of current gaps in inflammatory bowel diseases (IBDs) research and deliver actionable approaches to address them with a focus on how these gaps can lead to advancements in interception, remission, and restoration for these diseases. The document is the result of multidisciplinary input from scientists, clinicians, patients, and funders, and represents a valuable resource for patient-centric research prioritization. In particular, the precision medicine section is focused on the main research gaps in elucidating how to bring the best care to the individual patient in IBD. Research gaps were identified in biomarker discovery and validation for predicting disease progression and choosing the most appropriate treatment for each patient. Other gaps were identified in making the best use of existing patient biosamples and clinical data, developing new technologies to analyze large datasets, and overcoming regulatory and payer hurdles to enable clinical use of biomarkers. To address these gaps, the Workgroup suggests focusing on thoroughly validating existing candidate biomarkers, using best-in-class data generation and analysis tools, and establishing cross-disciplinary teams to tackle regulatory hurdles as early as possible. Altogether, the precision medicine group recognizes the importance of bringing basic scientific biomarker discovery and translating it into the clinic to help improve the lives of IBD patients.
Collapse
Affiliation(s)
- Sana Syed
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
- Patient representative for Crohn's & Colitis Foundation, New York, NY, USA
| | - Brigid S Boland
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lauren T Bourke
- Precision Medicine Drug Development, Early Respiratory and Immunology, AstraZeneca, Boston, MA, USA
| | - Lea Ann Chen
- Division of Gastroenterology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Laurie Churchill
- Leona M. and Harry B. Helmsley Charitable Trust, New York, NY, USA
| | | | - Adam Greene
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | | | | | | | - Alan Moss
- Crohn's & Colitis Foundation, New York, NY, USA
| | | | - Lori Plung
- Patient representative for Crohn's & Colitis Foundation, New York, NY, USA
| | - John D Rioux
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Michael J Rosen
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Joana Torres
- Division of Gastroenterology, Hospital Beatriz Ângelo, Hospital da Luz, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Fatima Zulqarnain
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Jack Satsangi
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Ciorba MA, Konnikova L, Hirota SA, Lucchetta EM, Turner JR, Slavin A, Johnson K, Condray CD, Hong S, Cressall BK, Pizarro TT, Hurtado-Lorenzo A, Heller CA, Moss AC, Swantek JL, Garrett WS. Challenges in IBD Research 2024: Preclinical Human IBD Mechanisms. Inflamm Bowel Dis 2024; 30:S5-S18. [PMID: 38778627 PMCID: PMC11491665 DOI: 10.1093/ibd/izae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 05/25/2024]
Abstract
Preclinical human inflammatory bowel disease (IBD) mechanisms is one of 5 focus areas of the Challenges in IBD Research 2024 document, which also includes environmental triggers, novel technologies, precision medicine, and pragmatic clinical research. Herein, we provide a comprehensive overview of current gaps in inflammatory bowel diseases research that relate to preclinical research and deliver actionable approaches to address them with a focus on how these gaps can lead to advancements in IBD interception, remission, and restoration. The document is the result of multidisciplinary input from scientists, clinicians, patients, and funders and represents a valuable resource for patient-centric research prioritization. This preclinical human IBD mechanisms section identifies major research gaps whose investigation will elucidate pathways and mechanisms that can be targeted to address unmet medical needs in IBD. Research gaps were identified in the following areas: genetics, risk alleles, and epigenetics; the microbiome; cell states and interactions; barrier function; IBD complications (specifically fibrosis and stricturing); and extraintestinal manifestations. To address these gaps, we share specific opportunities for investigation for basic and translational scientists and identify priority actions.
Collapse
Affiliation(s)
- Matthew A Ciorba
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Washington University in St. Louis, Saint Louis, MO, USA
| | - Liza Konnikova
- Departments of Pediatrics, Immunobiology, and Obstetric, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Simon A Hirota
- Snyder Institute for Chronic Diseases, Dept. of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Elena M Lucchetta
- The Leona M. and Harry B. Helmsley Charitable Trust, New York, NY, USA
| | - Jerrold R Turner
- Departments of Pathology and Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Cass D Condray
- Patient Representative for the Crohn’s & Colitis Foundation, New York, NY, USA
| | - Sungmo Hong
- Patient Representative for the Crohn’s & Colitis Foundation, New York, NY, USA
| | - Brandon K Cressall
- Patient Representative for the Crohn’s & Colitis Foundation, New York, NY, USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Caren A Heller
- Research Department, Crohn’s & Colitis Foundation, New York, NY, USA
| | - Alan C Moss
- Research Department, Crohn’s & Colitis Foundation, New York, NY, USA
| | | | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- The Harvard T. H. Chan Microbiome in Public Health Center, Boston, MA, USA
- Kymera Therapeutics, Watertown, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Yang Y, Hounye AH, Chen Y, Liu Z, Shi G, Xiao Y. Characterization of PANoptosis-related genes in Crohn's disease by integrated bioinformatics, machine learning and experiments. Sci Rep 2024; 14:11731. [PMID: 38778086 PMCID: PMC11111690 DOI: 10.1038/s41598-024-62259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Currently, the biological understanding of Crohn's disease (CD) remains limited. PANoptosis is a revolutionary form of cell death reported to participate in numerous diseases, including CD. In our study, we aimed to uncover the roles of PANoptosis in CD. Differentially expressed PANoptosis-related genes (DE-PRGs) were identified by overlapping PANoptosis-related genes and differentially expressed genes between CD and normal samples in a combined microarray dataset. Three machine learning algorithms were adopted to detect hub DE-PRGs. To stratify the heterogeneity within CD patients, nonnegative matrix factorization clustering was conducted. In terms of immune landscape analysis, the "ssGSEA" method was applied. qRT-PCR was performed to examine the expression levels of the hub DE-PRGs in CD patients and colitis model mice. Ten hub DE-PRGs with satisfactory diagnostic performance were identified and validated: CD44, CIDEC, NDRG1, NUMA1, PEA15, RAG1, S100A8, S100A9, TIMP1 and XBP1. These genes displayed significant associations with certain immune cell types and CD-related genes. We also constructed gene‒microRNA, gene‒transcription factor and drug‒gene interaction networks. CD samples were classified into two PANoptosis patterns according to the expression levels of the hub DE-PRGs. Our results suggest that PANoptosis plays a nonnegligible role in CD by modulating the immune system and interacting with CD-related genes.
Collapse
Affiliation(s)
- Yang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | | | - Yiqian Chen
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhuqing Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Guanzhong Shi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ying Xiao
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
34
|
Li Z, Xiong W, Liang Z, Wang J, Zeng Z, Kołat D, Li X, Zhou D, Xu X, Zhao L. Critical role of the gut microbiota in immune responses and cancer immunotherapy. J Hematol Oncol 2024; 17:33. [PMID: 38745196 PMCID: PMC11094969 DOI: 10.1186/s13045-024-01541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiota plays a critical role in the progression of human diseases, especially cancer. In recent decades, there has been accumulating evidence of the connections between the gut microbiota and cancer immunotherapy. Therefore, understanding the functional role of the gut microbiota in regulating immune responses to cancer immunotherapy is crucial for developing precision medicine. In this review, we extract insights from state-of-the-art research to decipher the complicated crosstalk among the gut microbiota, the systemic immune system, and immunotherapy in the context of cancer. Additionally, as the gut microbiota can account for immune-related adverse events, we discuss potential interventions to minimize these adverse effects and discuss the clinical application of five microbiota-targeted strategies that precisely increase the efficacy of cancer immunotherapy. Finally, as the gut microbiota holds promising potential as a target for precision cancer immunotherapeutics, we summarize current challenges and provide a general outlook on future directions in this field.
Collapse
Affiliation(s)
- Zehua Li
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, England
| | - Weixi Xiong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Zhu Liang
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, England
- Target Discovery Institute, Center for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, England
| | - Jinyu Wang
- Departments of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Ziyi Zeng
- Department of Neonatology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Xi Li
- Department of Urology, Churchill Hospital, Oxford University Hospitals NHS Foundation, Oxford, UK
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Xuewen Xu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Linyong Zhao
- Department of General Surgery and Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
35
|
Hammitzsch A, Ossadnik A, Bachmann Q, Merwald-Fraenk H, Lorenz G, Witt M, Wiesent F, Mühlhofer H, Simone D, Bowness P, Heemann U, Arbogast M, Moog P, Schmaderer C. Increased interleukin-26 in the peripheral joints of patients with axial spondyloarthritis and psoriatic arthritis, co-localizing with CD68-positive synoviocytes. Front Immunol 2024; 15:1355824. [PMID: 38799447 PMCID: PMC11127564 DOI: 10.3389/fimmu.2024.1355824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/01/2024] [Indexed: 05/29/2024] Open
Abstract
Objectives IL26 levels are elevated in the blood and synovial fluid of patients with inflammatory arthritis. IL26 can be produced by Th17 cells and locally within joints by tissue-resident cells. IL26 induces osteoblast mineralization in vitro. As osteoproliferation and Th17 cells are important factors in the pathogenesis of axial spondyloarthritis (axSpA), we aimed to clarify the cellular sources of IL26 in spondyloarthritis. Methods Serum, peripheral blood mononuclear cells (n = 15-35) and synovial tissue (n = 3-9) of adult patients with axSpA, psoriatic arthritis (PsA) and rheumatoid arthritis (RA) and healthy controls (HCs, n = 5) were evaluated by ELISA, flow cytometry including PrimeFlow assay, immunohistochemistry and immunofluorescence and quantitative PCR. Results Synovial tissue of axSpA patients shows significantly more IL26-positive cells than that of HCs (p < 0.01), but numbers are also elevated in PsA and RA patients. Immunofluorescence shows co-localization of IL26 with CD68, but not with CD3, SMA, CD163, cadherin-11, or CD90. IL26 is elevated in the serum of RA and PsA (but not axSpA) patients compared with HCs (p < 0.001 and p < 0.01). However, peripheral blood CD4+ T cells from axSpA and PsA patients show higher positivity for IL26 in the PrimeFlow assay compared with HCs. CD4+ memory T cells from axSpA patients produce more IL26 under Th17-favoring conditions (IL-1β and IL-23) than cells from PsA and RA patients or HCs. Conclusion IL26 production is increased in the synovial tissue of SpA and can be localized to CD68+ macrophage-like synoviocytes, whereas circulating IL26+ Th17 cells are only modestly enriched. Considering the osteoproliferative properties of IL26, this offers new therapeutic options independent of Th17 pathways.
Collapse
Affiliation(s)
- Ariane Hammitzsch
- Department of Nephrology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andreas Ossadnik
- Department of Nephrology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Quirin Bachmann
- Department of Nephrology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Helga Merwald-Fraenk
- Amedes Holding AG, Ambulatory Healthcare Center (MVZ) Endokrinologikum München, Munich, Germany
| | - Georg Lorenz
- Department of Nephrology and Rheumatology, Klinik Augustinum München, Munich, Germany
| | | | - Franziska Wiesent
- Amedes Holding AG, Ambulatory Healthcare Center (MVZ) Endokrinologikum München, Munich, Germany
| | - Heinrich Mühlhofer
- Clinic and Policlinic of Orthopaedics and Sports’ Orthopaedics, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Davide Simone
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Paul Bowness
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Uwe Heemann
- Department of Nephrology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Arbogast
- Department of Rheumatic Orthopedics and Hand Surgery, Klinik Oberammergau, Waldburg-Zeil Kliniken GmbH und Co KG, Oberammergau, Germany
| | - Philipp Moog
- Department of Nephrology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
36
|
Jiménez JM, Contreras-Riquelme JS, Vidal PM, Prado C, Bastías M, Meneses C, Martín AJM, Perez-Acle T, Pacheco R. Identification of master regulator genes controlling pathogenic CD4 + T cell fate in inflammatory bowel disease through transcriptional network analysis. Sci Rep 2024; 14:10553. [PMID: 38719901 PMCID: PMC11078927 DOI: 10.1038/s41598-024-61158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Inflammatory bowel diseases (IBD) are a group of chronic inflammatory conditions of the gastrointestinal tract associated with multiple pathogenic factors, including dysregulation of the immune response. Effector CD4+ T cells and regulatory CD4+ T cells (Treg) are central players in maintaining the balance between tolerance and inflammation. Interestingly, genetic modifications in these cells have been implicated in regulating the commitment of specific phenotypes and immune functions. However, the transcriptional program controlling the pathogenic behavior of T helper cells in IBD progression is still unknown. In this study, we aimed to find master transcription regulators controlling the pathogenic behavior of effector CD4+ T cells upon gut inflammation. To achieve this goal, we used an animal model of IBD induced by the transfer of naïve CD4+ T cells into recombination-activating gene 1 (Rag1) deficient mice, which are devoid of lymphocytes. As a control, a group of Rag1-/- mice received the transfer of the whole CD4+ T cells population, which includes both effector T cells and Treg. When gut inflammation progressed, we isolated CD4+ T cells from the colonic lamina propria and spleen tissue, and performed bulk RNA-seq. We identified differentially up- and down-regulated genes by comparing samples from both experimental groups. We found 532 differentially expressed genes (DEGs) in the colon and 30 DEGs in the spleen, mostly related to Th1 response, leukocyte migration, and response to cytokines in lamina propria T-cells. We integrated these data into Gene Regulatory Networks to identify Master Regulators, identifying four up-regulated master gene regulators (Lef1, Dnmt1, Mybl2, and Jup) and only one down-regulated master regulator (Foxo3). The altered expression of master regulators observed in the transcriptomic analysis was confirmed by qRT-PCR analysis and found an up-regulation of Lef1 and Mybl2, but without differences on Dnmt1, Jup, and Foxo3. These two master regulators have been involved in T cells function and cell cycle progression, respectively. We identified two master regulator genes associated with the pathogenic behavior of effector CD4+ T cells in an animal model of IBD. These findings provide two new potential molecular targets for treating IBD.
Collapse
Affiliation(s)
- José M Jiménez
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
| | | | - Pía M Vidal
- Biomedical Science Research Laboratory, Neuroimmunology and Regeneration of the Central Nervous System Unit, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Carolina Prado
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510156, Providencia, Santiago, Chile
| | - Macarena Bastías
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Meneses
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alberto J M Martín
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
- Escuela de Ingeniería, Facultad de Ingeniería Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| | - Tomás Perez-Acle
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
- Escuela de Ingeniería, Facultad de Ingeniería Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| | - Rodrigo Pacheco
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510156, Providencia, Santiago, Chile.
| |
Collapse
|
37
|
Kilian M, Friedrich MJ, Lu KHN, Vonhören D, Jansky S, Michel J, Keib A, Stange S, Hackert N, Kehl N, Hahn M, Habel A, Jung S, Jähne K, Sahm F, Betge J, Cerwenka A, Westermann F, Dreger P, Raab MS, Meindl-Beinker NM, Ebert M, Bunse L, Müller-Tidow C, Schmitt M, Platten M. The immunoglobulin superfamily ligand B7H6 subjects T cell responses to NK cell surveillance. Sci Immunol 2024; 9:eadj7970. [PMID: 38701193 DOI: 10.1126/sciimmunol.adj7970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/15/2024] [Indexed: 05/05/2024]
Abstract
Understanding the mechanisms that regulate T cell immunity is critical for the development of effective therapies for diseases associated with T cell dysfunction, including autoimmune diseases, chronic infections, and cancer. Co-inhibitory "checkpoint molecules," such as programmed cell death protein-1, balance excessive or prolonged immune activation by T cell-intrinsic signaling. Here, by screening for mediators of natural killer (NK) cell recognition on T cells, we identified the immunoglobulin superfamily ligand B7H6 to be highly expressed by activated T cells, including patient-infused CD19-targeting chimeric antigen receptor (CAR) T cells. Unlike other checkpoint molecules, B7H6 mediated NKp30-dependent recognition and subsequent cytolysis of activated T cells by NK cells. B7H6+ T cells were prevalent in the tissue and blood of several diseases, and their abundance in tumor tissue positively correlated with clinical response in a cohort of patients with immune checkpoint inhibitor-treated esophageal cancer. In humanized mouse models, NK cell surveillance via B7H6 limited the persistence and antitumor activity of CAR T cells, and its genetic deletion enhanced T cell proliferation and persistence. Together, we provide evidence of B7H6 protein expression by activated T cells and suggest the B7H6-NKp30 axis as a therapeutically actionable NK cell-dependent immune checkpoint that regulates human T cell function.
Collapse
Affiliation(s)
- Michael Kilian
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mirco J Friedrich
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kevin Hai-Ning Lu
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Pediatric Hematology and Oncology, Clinic of Pediatrics III, University Hospital Essen, Essen, Germany
| | - David Vonhören
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Selina Jansky
- Department of Pediatric Hematology and Oncology, Clinic of Pediatrics III, University Hospital Essen, Essen, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Julius Michel
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anna Keib
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Saskia Stange
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nicolaj Hackert
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Niklas Kehl
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus Hahn
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Antje Habel
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefanie Jung
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kristine Jähne
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Betge
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine II, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Adelheid Cerwenka
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank Westermann
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Dreger
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc S Raab
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadja M Meindl-Beinker
- Department of Medicine II, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
| | - Matthias Ebert
- Department of Medicine II, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
| | - Lukas Bunse
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Müller-Tidow
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Schmitt
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Platten
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Helmholtz Institute of Translational Oncology (HI-TRON), Mainz, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
38
|
Zhang S, Zhong R, Tang S, Chen L, Zhang H. Metabolic regulation of the Th17/Treg balance in inflammatory bowel disease. Pharmacol Res 2024; 203:107184. [PMID: 38615874 DOI: 10.1016/j.phrs.2024.107184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Inflammatory bowel disease (IBD) is a long-lasting and inflammatory autoimmune condition affecting the gastrointestinal tract, impacting millions of individuals globally. The balance between T helper 17 (Th17) cells and regulatory T cells (Tregs) is pivotal in the pathogenesis and progression of IBD. This review summarizes the pivotal role of Th17/Treg balance in maintaining intestinal homeostasis, elucidating how its dysregulation contributes to the development and exacerbation of IBD. It comprehensively synthesizes the current understanding of how dietary factors regulate the metabolic pathways influencing Th17 and Treg cell differentiation and function. Additionally, this review presents evidence from the literature on the potential of dietary regimens to regulate the Th17/Treg balance as a strategy for the management of IBD. By exploring the intersection between diet, metabolic regulation, and Th17/Treg balance, the review reveals innovative therapeutic approaches for IBD treatment, offering a promising perspective for future research and clinical practice.
Collapse
Affiliation(s)
- Shunfen Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
39
|
Murakami M. Tissue-resident memory T cells: decoding intra-organ diversity with a gut perspective. Inflamm Regen 2024; 44:19. [PMID: 38632596 PMCID: PMC11022361 DOI: 10.1186/s41232-024-00333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Tissue-resident memory T cells (TRM) serve as the frontline of host defense, playing a critical role in protection against invading pathogens. This emphasizes their role in providing rapid on-site immune responses across various organs. The physiological significance of TRM is not just confined to infection control; accumulating evidence has revealed that TRM also determine the pathology of diseases such as autoimmune disorders, inflammatory bowel disease, and cancer. Intensive studies on the origin, mechanisms of formation and maintenance, and physiological significance of TRM have elucidated the transcriptional and functional diversity of these cells, which are often affected by local cues associated with their presence. These were further confirmed by the recent remarkable advancements of next-generation sequencing and single-cell technologies, which allow the transcriptional and phenotypic characterization of each TRM subset induced in different microenvironments. This review first overviews the current knowledge of the cell fate, molecular features, transcriptional and metabolic regulation, and biological importance of TRM in health and disease. Finally, this article presents a variety of recent studies on disease-associated TRM, particularly focusing and elaborating on the TRM in the gut, which constitute the largest and most intricate immune network in the body, and their pathological relevance to gut inflammation in humans.
Collapse
Affiliation(s)
- Mari Murakami
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
40
|
Cadinu P, Sivanathan KN, Misra A, Xu RJ, Mangani D, Yang E, Rone JM, Tooley K, Kye YC, Bod L, Geistlinger L, Lee T, Mertens RT, Ono N, Wang G, Sanmarco L, Quintana FJ, Anderson AC, Kuchroo VK, Moffitt JR, Nowarski R. Charting the cellular biogeography in colitis reveals fibroblast trajectories and coordinated spatial remodeling. Cell 2024; 187:2010-2028.e30. [PMID: 38569542 PMCID: PMC11017707 DOI: 10.1016/j.cell.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/20/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used multiplexed error-robust fluorescence in situ hybridization (MERFISH) to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations, charted their spatial organization, and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.
Collapse
Affiliation(s)
- Paolo Cadinu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kisha N Sivanathan
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Aditya Misra
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Rosalind J Xu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Davide Mangani
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Evan Yang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph M Rone
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine Tooley
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Yoon-Chul Kye
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lloyd Bod
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ludwig Geistlinger
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02115, USA
| | - Tyrone Lee
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02115, USA
| | - Randall T Mertens
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77030, USA
| | - Gang Wang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Liliana Sanmarco
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Francisco J Quintana
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ana C Anderson
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jeffrey R Moffitt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Roni Nowarski
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
41
|
Kosinsky RL, Gonzalez MM, Saul D, Barros LL, Sagstetter MR, Fedyshyn Y, Nair A, Sun Z, Hamdan FH, Gibbons HR, Perez Pachon ME, Druliner BR, Johnsen SA, Faubion WA. The FOXP3 + Pro-Inflammatory T Cell: A Potential Therapeutic Target in Crohn's Disease. Gastroenterology 2024; 166:631-644.e17. [PMID: 38211712 PMCID: PMC10960691 DOI: 10.1053/j.gastro.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND & AIMS The incidence of Crohn's disease (CD) continues to increase worldwide. The contribution of CD4+ cell populations remains to be elucidated. We aimed to provide an in-depth transcriptional assessment of CD4+ T cells driving chronic inflammation in CD. METHODS We performed single-cell RNA-sequencing in CD4+ T cells isolated from ileal biopsies of patients with CD compared with healthy individuals. Cells underwent clustering analysis, followed by analysis of gene signaling networks. We overlapped our differentially expressed genes with publicly available microarray data sets and performed functional in vitro studies, including an in vitro suppression assay and organoid systems, to model gene expression changes observed in CD regulatory T (Treg) cells and to test predicted therapeutics. RESULTS We identified 5 distinct FOXP3+ regulatory Treg subpopulations. Tregs isolated from healthy controls represent the origin of pseudotemporal development into inflammation-associated subtypes. These proinflammatory Tregs displayed a unique responsiveness to tumor necrosis factor-α signaling with impaired suppressive activity in vitro and an elevated cytokine response in an organoid coculture system. As predicted in silico, the histone deacetylase inhibitor vorinostat normalized gene expression patterns, rescuing the suppressive function of FOXP3+ cells in vitro. CONCLUSIONS We identified a novel, proinflammatory FOXP3+ T cell subpopulation in patients with CD and developed a pipeline to specifically target these cells using the US Food and Drug Administration-approved drug vorinostat.
Collapse
Affiliation(s)
- Robyn Laura Kosinsky
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Michelle M Gonzalez
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Dominik Saul
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota; Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center, Tübingen, Germany
| | - Luísa Leite Barros
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Mary R Sagstetter
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Asha Nair
- Division of Computational Biology, Mayo Clinic, Rochester, Minnesota
| | - Zhifu Sun
- Division of Computational Biology, Mayo Clinic, Rochester, Minnesota
| | - Feda H Hamdan
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Hunter R Gibbons
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Brooke R Druliner
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - William A Faubion
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, Arizona.
| |
Collapse
|
42
|
Xu C, Shao J. High-throughput omics technologies in inflammatory bowel disease. Clin Chim Acta 2024; 555:117828. [PMID: 38355001 DOI: 10.1016/j.cca.2024.117828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing intestinal disease. Elucidation of the pathogenic mechanisms of IBD requires high-throughput technologies (HTTs) to effectively obtain and analyze large amounts of data. Recently, HTTs have been widely used in IBD, including genomics, transcriptomics, proteomics, microbiomics, metabolomics and single-cell sequencing. When combined with endoscopy, the application of these technologies can provide an in-depth understanding on the alterations of intestinal microbe diversity and abundance, the abnormalities of signaling pathway-mediated immune responses and functionality, and the evaluation of therapeutic effects, improving the accuracy of early diagnosis and treatment of IBD. This review comprehensively summarizes the development and advancement of HTTs, and also highlights the challenges and future directions of these technologies in IBD research. Although HTTs have made striking breakthrough in IBD, more standardized methods and large-scale dataset processing are still needed to achieve the goal of personalized medicine.
Collapse
Affiliation(s)
- Chen Xu
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China; Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China.
| |
Collapse
|
43
|
de Ponthaud C, Abdalla S, Belot MP, Shao X, Penna C, Brouquet A, Bougnères P. Increased CpG methylation at the CDH1 locus in inflamed ileal mucosa of patients with Crohn disease. Clin Epigenetics 2024; 16:28. [PMID: 38355645 PMCID: PMC10865720 DOI: 10.1186/s13148-024-01631-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND E-cadherin, a major actor of cell adhesion in the intestinal barrier, is encoded by the CDH1 gene associated with susceptibility to Crohn Disease (CD) and colorectal cancer. Since epigenetic mechanisms are suspected to contribute to the multifactorial pathogenesis of CD, we studied CpG methylation at the CDH1 locus. The methylation of the CpG island (CGI) and of the 1st enhancer, two critical regulatory positions, was quantified in surgical specimens of inflamed ileal mucosa and in peripheral blood mononuclear cells (PBMC) of 21 CD patients. Sixteen patients operated on for a non-inflammatory bowel disease, although not normal controls, provided a macroscopically normal ileal mucosa and PBMC for comparison. RESULTS In ileal mucosa, 19/21 (90%) CD patients vs 8/16 control patients (50%) (p < 0.01) had a methylated CDH1 promoter CGI. In PBMC, CD patients with methylated CGI were 11/21 (52%) vs 7/16 controls (44%), respectively. Methylation in the 1st enhancer of CDH1 was also higher in the CD group for each of the studied CpGs and for their average value (45 ± 17% in CD patients vs 36 ± 17% in controls; p < 0.001). Again, methylation was comparable in PBMC. Methylation of CGI and 1st enhancer were not correlated in mucosa or PBMC. CONCLUSIONS Methylation of several CpGs at the CDH1 locus was increased in the inflamed ileal mucosa, not in the PBMC, of CD patients, suggesting the association of CDH1 methylation with ileal inflammation. Longitudinal studies will explore if this increased methylation is a risk marker for colorectal cancer.
Collapse
Affiliation(s)
- Charles de Ponthaud
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
- UMR INSERM 1169 and Université Paris Saclay, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Solafah Abdalla
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
- UMR INSERM 1169 and Université Paris Saclay, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Marie-Pierre Belot
- Groupe d'Études sur le Diabète, l'Obésité, la Croissance, GETDOC, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Xiaojian Shao
- Digital Technologies Research Center, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Christophe Penna
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Antoine Brouquet
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Pierre Bougnères
- UMR INSERM 1169 and Université Paris Saclay, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France.
- Groupe d'Études sur le Diabète, l'Obésité, la Croissance, GETDOC, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France.
- MIRCEN Institute, CEA Paris-Saclay/site de Fontenay-aux-Roses, Bâtiment 56 PC 103, 18 route du Panorama, BP6 92265, Fontenay-aux-Roses Cedex, France.
| |
Collapse
|
44
|
du Halgouet A, Bruder K, Peltokangas N, Darbois A, Obwegs D, Salou M, Thimme R, Hofmann M, Lantz O, Sagar. Multimodal profiling reveals site-specific adaptation and tissue residency hallmarks of γδ T cells across organs in mice. Nat Immunol 2024; 25:343-356. [PMID: 38177282 PMCID: PMC10834366 DOI: 10.1038/s41590-023-01710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024]
Abstract
γδ T cells perform heterogeneous functions in homeostasis and disease across tissues. However, it is unclear whether these roles correspond to distinct γδ subsets or to a homogeneous population of cells exerting context-dependent functions. Here, by cross-organ multimodal single-cell profiling, we reveal that various mouse tissues harbor unique site-adapted γδ subsets. Epidermal and intestinal intraepithelial γδ T cells are transcriptionally homogeneous and exhibit epigenetic hallmarks of functional diversity. Through parabiosis experiments, we uncovered cellular states associated with cytotoxicity, innate-like rapid interferon-γ production and tissue repair functions displaying tissue residency hallmarks. Notably, our observations add nuance to the link between interleukin-17-producing γδ T cells and tissue residency. Moreover, transcriptional programs associated with tissue-resident γδ T cells are analogous to those of CD8+ tissue-resident memory T cells. Altogether, this study provides a multimodal landscape of tissue-adapted γδ T cells, revealing heterogeneity, lineage relationships and their tissue residency program.
Collapse
Affiliation(s)
- Anastasia du Halgouet
- Institut National de la Santé et de la Recherche Médicale U932, PSL University, Institut Curie, Paris, France
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Kerstin Bruder
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Peltokangas
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Aurélie Darbois
- Institut National de la Santé et de la Recherche Médicale U932, PSL University, Institut Curie, Paris, France
| | - David Obwegs
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marion Salou
- Institut National de la Santé et de la Recherche Médicale U932, PSL University, Institut Curie, Paris, France
| | - Robert Thimme
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Olivier Lantz
- Institut National de la Santé et de la Recherche Médicale U932, PSL University, Institut Curie, Paris, France
- Laboratoire d'Immunologie Clinique, Institut Curie, Paris, France
- Centre d'Investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428) Institut Curie, Paris, France
| | - Sagar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
45
|
Devan J, Nosi V, Spagnuolo J, Chancellor A, Beshirova A, Loureiro JP, Vacchini A, Hendrik Niess J, Calogero R, Mori L, De Libero G, Hruz P. Surface protein and functional analyses identify CD4+CD39+ TCR αβ+ and activated TCR Vδ1+ cells with distinct pro-inflammatory functions in Crohn's disease lesions. Clin Exp Immunol 2024; 215:79-93. [PMID: 37586415 PMCID: PMC10776239 DOI: 10.1093/cei/uxad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023] Open
Abstract
Crohn's disease (CD) is a chronic immune-mediated disorder of the gastrointestinal tract. Extensive screening studies have revealed the accumulation of immune cell subsets with unique plasticity and immunoregulatory properties in patients with CD. We performed phenotypic and functional studies on inflamed and non-inflamed bioptic tissue to investigate the presence of distinct T cells in the intestinal mucosa of CD patients. We analysed hundreds of surface molecules expressed on cells isolated from the intestinal tissue of CD patients using anti-CD45 mAbs-based barcoding. A gene ontology enrichment analysis showed that proteins that regulate the activation of T cells were the most enriched group. We, therefore, designed T-cell focused multicolour flow-cytometry panels and performed clustering analysis which revealed an accumulation of activated TEM CD4+CD39+ T cells producing IL-17 and IL-21 and increased frequency of terminally differentiated TCR Vδ1+ cells producing TNF-α and IFN-γ in inflamed tissue of CD patients. The different functional capacities of CD4+ and TCR Vδ1+ cells in CD lesions indicate their non-overlapping contribution to inflammation. The abnormally high number of terminally differentiated TCR Vδ1+ cells suggests that they are continuously activated in inflamed tissue, making them a potential target for novel therapies.
Collapse
Affiliation(s)
- Jan Devan
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Vladimir Nosi
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Julian Spagnuolo
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Andrew Chancellor
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Aisha Beshirova
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jose Pedro Loureiro
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jan Hendrik Niess
- Gastroenterology, Department of Biomedicine, University of Basel, Clarunis, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
- University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Raffaele Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Petr Hruz
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| |
Collapse
|
46
|
Karmele EP, Moldoveanu AL, Kaymak I, Jugder BE, Ursin RL, Bednar KJ, Corridoni D, Ort T. Single cell RNA-sequencing profiling to improve the translation between human IBD and in vivo models. Front Immunol 2023; 14:1291990. [PMID: 38179052 PMCID: PMC10766350 DOI: 10.3389/fimmu.2023.1291990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an umbrella term for two conditions (Crohn's Disease and Ulcerative Colitis) that is characterized by chronic inflammation of the gastrointestinal tract. The use of pre-clinical animal models has been invaluable for the understanding of potential disease mechanisms. However, despite promising results of numerous therapeutics in mouse colitis models, many of these therapies did not show clinical benefits in patients with IBD. Single cell RNA-sequencing (scRNA-seq) has recently revolutionized our understanding of complex interactions between the immune system, stromal cells, and epithelial cells by mapping novel cell subpopulations and their remodeling during disease. This technology has not been widely applied to pre-clinical models of IBD. ScRNA-seq profiling of murine models may provide an opportunity to increase the translatability into the clinic, and to choose the most appropriate model to test hypotheses and novel therapeutics. In this review, we have summarized some of the key findings at the single cell transcriptomic level in IBD, how specific signatures have been functionally validated in vivo, and highlighted the similarities and differences between scRNA-seq findings in human IBD and experimental mouse models. In each section of this review, we highlight the importance of utilizing this technology to find the most suitable or translational models of IBD based on the cellular therapeutic target.
Collapse
Affiliation(s)
- Erik P. Karmele
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Ana Laura Moldoveanu
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Irem Kaymak
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Bat-Erdene Jugder
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Waltham, MA, United States
| | - Rebecca L. Ursin
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Waltham, MA, United States
| | - Kyle J. Bednar
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Daniele Corridoni
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Tatiana Ort
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
47
|
Lutter L, Ter Linde JJM, Brand EC, Hoytema van Konijnenburg DP, Roosenboom B, Horjus Talabur-Horje C, Oldenburg B, van Wijk F. Compartment-driven imprinting of intestinal CD4 T cells in inflammatory bowel disease and homeostasis. Clin Exp Immunol 2023; 214:235-248. [PMID: 37565620 PMCID: PMC10719222 DOI: 10.1093/cei/uxad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/16/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023] Open
Abstract
The mucosal immune system is implicated in the etiology and progression of inflammatory bowel diseases. The lamina propria and epithelium of the gut mucosa constitute two separate compartments, containing distinct T-cell populations. Human CD4 T-cell programming and regulation of lamina propria and epithelium CD4 T cells, especially during inflammation, remain incompletely understood. We performed flow cytometry, bulk, and single-cell RNA-sequencing to profile ileal lamina propria and intraepithelial CD4 T cells (CD4CD8αα, regulatory T cells (Tregs), CD69- and CD69high Trm T cells) in controls and Crohn's disease (CD) patients (paired non-inflamed and inflamed). Inflammation results in alterations of the CD4 T-cell population with a pronounced increase in Tregs and migrating/infiltrating cells. On a transcriptional level, inflammation within the epithelium induced T-cell activation, increased IFNγ responses, and an effector Treg profile. Conversely, few transcriptional changes within the lamina propria were observed. Key regulators including the chromatin remodelers ARID4B and SATB1 were found to drive compartment-specific transcriptional programming of CD4 T(reg) cells. In summary, inflammation in CD patients primarily induces changes within the epithelium and not the lamina propria. Additionally, there is compartment-specific CD4 T-cell imprinting, driven by shared regulators, between the lamina propria and the epithelium. The main consequence of intraepithelial adaptation, irrespective of inflammation, seems to be an overall dampening of broad (pro-inflammatory) responses and tight regulation of lifespan. These data suggest differential regulation of the lamina propria and epithelium, with a specific regulatory role in the inflamed epithelium.
Collapse
Affiliation(s)
- Lisanne Lutter
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - José J M Ter Linde
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Eelco C Brand
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - David P Hoytema van Konijnenburg
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Britt Roosenboom
- Department of Gastroenterology and Hepatology, Rijnstate Hospital, Arnhem, The Netherlands
| | | | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Femke van Wijk
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
48
|
Herrera-De La Mata S, Ramírez-Suástegui C, Mistry H, Castañeda-Castro FE, Kyyaly MA, Simon H, Liang S, Lau L, Barber C, Mondal M, Zhang H, Arshad SH, Kurukulaaratchy RJ, Vijayanand P, Seumois G. Cytotoxic CD4 + tissue-resident memory T cells are associated with asthma severity. MED 2023; 4:875-897.e8. [PMID: 37865091 PMCID: PMC10964988 DOI: 10.1016/j.medj.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Patients with severe uncontrolled asthma represent a distinct endotype with persistent airway inflammation and remodeling that is refractory to corticosteroid treatment. CD4+ TH2 cells play a central role in orchestrating asthma pathogenesis, and biologic therapies targeting their cytokine pathways have had promising outcomes. However, not all patients respond well to such treatment, and their effects are not always durable nor reverse airway remodeling. This observation raises the possibility that other CD4+ T cell subsets and their effector molecules may drive airway inflammation and remodeling. METHODS We performed single-cell transcriptome analysis of >50,000 airway CD4+ T cells isolated from bronchoalveolar lavage samples from 30 patients with mild and severe asthma. FINDINGS We observed striking heterogeneity in the nature of CD4+ T cells present in asthmatics' airways, with tissue-resident memory T (TRM) cells making a dominant contribution. Notably, in severe asthmatics, a subset of CD4+ TRM cells (CD103-expressing) was significantly increased, comprising nearly 65% of all CD4+ T cells in the airways of male patients with severe asthma when compared to mild asthma (13%). This subset was enriched for transcripts linked to T cell receptor activation (HLA-DRB1, HLA-DPA1) and cytotoxicity (GZMB, GZMA) and, following stimulation, expressed high levels of transcripts encoding for pro-inflammatory non-TH2 cytokines (CCL3, CCL4, CCL5, TNF, LIGHT) that could fuel persistent airway inflammation and remodeling. CONCLUSIONS Our findings indicate the need to look beyond the traditional T2 model of severe asthma to better understand the heterogeneity of this disease. FUNDING This research was funded by the NIH.
Collapse
Affiliation(s)
| | | | - Heena Mistry
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK
| | | | - Mohammad A Kyyaly
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK
| | - Hayley Simon
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Shu Liang
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Laurie Lau
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK
| | - Clair Barber
- National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK
| | | | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK
| | - Ramesh J Kurukulaaratchy
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK.
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK.
| | | |
Collapse
|
49
|
Vebr M, Pomahačová R, Sýkora J, Schwarz J. A Narrative Review of Cytokine Networks: Pathophysiological and Therapeutic Implications for Inflammatory Bowel Disease Pathogenesis. Biomedicines 2023; 11:3229. [PMID: 38137450 PMCID: PMC10740682 DOI: 10.3390/biomedicines11123229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a lifelong inflammatory immune mediated disorder, encompassing Crohn's disease (CD) and ulcerative colitis (UC); however, the cause and specific pathogenesis of IBD is yet incompletely understood. Multiple cytokines produced by different immune cell types results in complex functional networks that constitute a highly regulated messaging network of signaling pathways. Applying biological mechanisms underlying IBD at the single omic level, technologies and genetic engineering enable the quantification of the pattern of released cytokines and new insights into the cytokine landscape of IBD. We focus on the existing literature dealing with the biology of pro- or anti-inflammatory cytokines and interactions that facilitate cell-based modulation of the immune system for IBD inflammation. We summarize the main roles of substantial cytokines in IBD related to homeostatic tissue functions and the remodeling of cytokine networks in IBD, which may be specifically valuable for successful cytokine-targeted therapies via marketed products. Cytokines and their receptors are validated targets for multiple therapeutic areas, we review the current strategies for therapeutic intervention and developing cytokine-targeted therapies. New biologics have shown efficacy in the last few decades for the management of IBD; unfortunately, many patients are nonresponsive or develop therapy resistance over time, creating a need for novel therapeutics. Thus, the treatment options for IBD beyond the immune-modifying anti-TNF agents or combination therapies are expanding rapidly. Further studies are needed to fully understand the immune response, networks of cytokines, and the direct pathogenetic relevance regarding individually tailored, safe and efficient targeted-biotherapeutics.
Collapse
Affiliation(s)
- Marek Vebr
- Departments of Pediatrics, Faculty Hospital, Faculty of Medicine in Pilsen, Charles University of Prague, 323 00 Pilsen, Czech Republic; (R.P.); (J.S.); (J.S.)
| | | | | | | |
Collapse
|
50
|
Gupta A, Weinand K, Nathan A, Sakaue S, Zhang MJ, Donlin L, Wei K, Price AL, Amariuta T, Raychaudhuri S. Dynamic regulatory elements in single-cell multimodal data implicate key immune cell states enriched for autoimmune disease heritability. Nat Genet 2023; 55:2200-2210. [PMID: 38036783 PMCID: PMC10787644 DOI: 10.1038/s41588-023-01577-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
In autoimmune diseases such as rheumatoid arthritis, the immune system attacks the body's own cells. Developing a precise understanding of the cell states where noncoding autoimmune risk variants impart causal mechanisms is critical to developing curative therapies. Here, to identify noncoding regions with accessible chromatin that associate with cell-state-defining gene expression patterns, we leveraged multimodal single-nucleus RNA and assay for transposase-accessible chromatin (ATAC) sequencing data across 28,674 cells from the inflamed synovial tissue of 12 donors. Specifically, we used a multivariate Poisson model to predict peak accessibility from single-nucleus RNA sequencing principal components. For 14 autoimmune diseases, we discovered that cell-state-dependent ('dynamic') chromatin accessibility peaks in immune cell types were enriched for heritability, compared with cell-state-invariant ('cs-invariant') peaks. These dynamic peaks marked regulatory elements associated with T peripheral helper, regulatory T, dendritic and STAT1+CXCL10+ myeloid cell states. We argue that dynamic regulatory elements can help identify precise cell states enriched for disease-critical genetic variation.
Collapse
Affiliation(s)
- Anika Gupta
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Kathryn Weinand
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Saori Sakaue
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martin Jinye Zhang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Laura Donlin
- Weill Cornell Medicine, New York, NY, USA
- Hospital for Special Surgery, New York, NY, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alkes L Price
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tiffany Amariuta
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|