1
|
Huang LY, Ge YJ, Fu Y, Zhao YL, Ou YN, Zhang Y, Ma LZ, Chen SD, Guo ZX, Feng JF, Cheng W, Tan L, Yu JT. Identifying modifiable factors and their joint effect on brain health: an exposome-wide association study. GeroScience 2024; 46:6257-6268. [PMID: 38822946 PMCID: PMC11493923 DOI: 10.1007/s11357-024-01224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
Considerable uncertainty remains regarding the associations of multiple factors with brain health. We aimed to conduct an exposome-wide association study on neurodegenerative disease and neuropsychiatry disorders using data of participants from the UK Biobank. Multivariable Cox regression models with the least absolute shrinkage and selection operator technique as well as principal component analyses were used to evaluate the exposures in relation to common disorders of central nervous system (CNS). Restricted cubic splines were conducted to explore potential nonlinear correlations. Then, weighted standardized scores were generated based on the coefficients to calculate the joint effects of risk factors. We also estimated the potential impact of eliminating the unfavorable profiles of risk domains on CNS disorders using population attributable fraction (PAF). Finally, sensitivity analyses were performed to reduce the risk of reverse causality. The current study discovered the significantly associated exposures fell into six primary exposome categories. The joint effects of identified risk factors demonstrated higher risks for common disorders of CNS (HR = 1.278 ~ 3.743, p < 2e-16). The PAF varied by exposome categories, with lifestyle and medical history contributing to majority of disease cases. In total, we estimated that up to 3.7 ~ 64.1% of disease cases could be prevented.This study yielded modifiable variables of different categories and assessed their joint effects on common disorders of CNS. Targeting the identified exposures might help formulate effective strategies for maintaining brain health.
Collapse
Affiliation(s)
- Liang-Yu Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yi-Jun Ge
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yong-Li Zhao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yi Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling-Zhi Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ze-Xin Guo
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Wei Cheng
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Xie H, Sdougkou K, Bonnefille B, Papazian S, Bergdahl IA, Rantakokko P, Martin JW. Chemical Exposomics in Human Plasma by Lipid Removal and Large-Volume Injection Gas Chromatography-High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17592-17605. [PMID: 39376097 PMCID: PMC11465644 DOI: 10.1021/acs.est.4c05942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024]
Abstract
For comprehensive chemical exposomics in blood, analytical workflows are evolving through advances in sample preparation and instrumental methods. We hypothesized that gas chromatography-high-resolution mass spectrometry (GC-HRMS) workflows could be enhanced by minimizing lipid coextractives, thereby enabling larger injection volumes and lower matrix interference for improved target sensitivity and nontarget molecular discovery. A simple protocol was developed for small plasma volumes (100-200 μL) by using isohexane (H) to extract supernatants of acetonitrile-plasma (A-P). The HA-P method was quantitative for a wide range of hydrophobic multiclass target analytes (i.e., log Kow > 3.0), and the extracts were free of major lipids, thereby enabling robust large-volume injections (LVIs; 25 μL) in long sequences (60-70 h, 70-80 injections) to a GC-Orbitrap HRMS. Without lipid removal, LVI was counterproductive because method sensitivity suffered from the abundant matrix signal, resulting in low ion injection times to the Orbitrap. The median method quantification limit was 0.09 ng/mL (range 0.005-4.83 ng/mL), and good accuracy was shown for a certified reference serum. Applying the method to plasma from a Swedish cohort (n = 32; 100 μL), 51 of 103 target analytes were detected. Simultaneous nontarget analysis resulted in 112 structural annotations (12.8% annotation rate), and Level 1 identification was achieved for 7 of 8 substances in follow-up confirmations. The HA-P method is potentially scalable for application in cohort studies and is also compatible with many liquid-chromatography-based exposomics workflows.
Collapse
Affiliation(s)
- Hongyu Xie
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Kalliroi Sdougkou
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Bénilde Bonnefille
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, 171 65 Solna, Sweden
| | - Stefano Papazian
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, 171 65 Solna, Sweden
| | - Ingvar A. Bergdahl
- Department
of Public Health and Clinical Medicine, Section for Sustainable Health, Umeå University, 901 87 Umeå, Sweden
| | - Panu Rantakokko
- Department
of Public Health, Lifestyles and Living Environments Unit, National Institute for Health and Welfare, Neulaniementie 4, 702 10 Kuopio, Finland
| | - Jonathan W. Martin
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, 171 65 Solna, Sweden
| |
Collapse
|
3
|
Huang L, Fu Y, Zhang Y, Hu H, Ma L, Ge Y, Zhao Y, Zhang Y, Chen S, Feng J, Cheng W, Tan L, Yu J. Identifying modifiable factors associated with neuroimaging markers of brain health. CNS Neurosci Ther 2024; 30:e70057. [PMID: 39404063 PMCID: PMC11474882 DOI: 10.1111/cns.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024] Open
Abstract
AIMS Brain structural alterations begin long before the presentation of brain disorders; therefore, we aimed to systematically investigate a wide range of influencing factors on neuroimaging markers of brain health. METHODS Utilizing data from 30,651 participants from the UK Biobank, we explored associations between 218 modifiable factors and neuroimaging markers of brain health. We conducted an exposome-wide association study using the least absolute shrinkage and selection operator (LASSO) technique. Restricted cubic splines (RCS) were further employed to estimate potential nonlinear correlations. Weighted standardized scores for neuroimaging markers were computed based on the estimates for individual factors. Finally, stratum-specific analyses were performed to examine differences in factors affecting brain health at different ages. RESULTS The identified factors related to neuroimaging markers of brain health fell into six domains, including systematic diseases, lifestyle factors, personality traits, social support, anthropometric indicators, and biochemical markers. The explained variance percentage of neuroimaging markers by weighted standardized scores ranged from 0.5% to 7%. Notably, associations between systematic diseases and neuroimaging markers were stronger in older individuals than in younger ones. CONCLUSION This study identified a series of factors related to neuroimaging markers of brain health. Targeting the identified factors might help in formulating effective strategies for maintaining brain health.
Collapse
Affiliation(s)
- Liang‐Yu Huang
- Department of NeurologyQingdao Municipal Hospital, Qingdao UniversityQingdaoChina
| | - Yan Fu
- Department of NeurologyQingdao Municipal Hospital, Qingdao UniversityQingdaoChina
| | - Yi Zhang
- Department of Neurology and Institute of NeurologyHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - He‐Ying Hu
- Department of NeurologyQingdao Municipal Hospital, Qingdao UniversityQingdaoChina
| | - Ling‐Zhi Ma
- Department of NeurologyQingdao Municipal Hospital, Qingdao UniversityQingdaoChina
| | - Yi‐Jun Ge
- Department of Neurology and Institute of NeurologyHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Yong‐Li Zhao
- Department of NeurologyQingdao Municipal Hospital, Qingdao UniversityQingdaoChina
| | - Ya‐Ru Zhang
- Department of Neurology and Institute of NeurologyHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Shi‐Dong Chen
- Department of Neurology and Institute of NeurologyHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Jian‐Feng Feng
- Institute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
- Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired IntelligenceZhejiang Normal UniversityJinhuaChina
- MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Wei Cheng
- Department of Neurology and Institute of NeurologyHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
- Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired IntelligenceZhejiang Normal UniversityJinhuaChina
| | - Lan Tan
- Department of NeurologyQingdao Municipal Hospital, Qingdao UniversityQingdaoChina
| | - Jin‐Tai Yu
- Department of Neurology and Institute of NeurologyHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
4
|
Herkert NJ, Getzinger GJ, Hoffman K, Young AS, Allen JG, Levasseur JL, Ferguson PL, Stapleton HM. Wristband Personal Passive Samplers and Suspect Screening Methods Highlight Gender Disparities in Chemical Exposures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15497-15510. [PMID: 39171898 DOI: 10.1021/acs.est.4c06008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Wristband personal samplers enable human exposure assessments for a diverse range of chemical contaminants and exposure settings with a previously unattainable scale and cost-effectiveness. Paired with nontargeted analyses, wristbands can provide important exposure monitoring data to expand our understanding of the environmental exposome. Here, a custom scripted suspect screening workflow was developed in the R programming language for feature selection and chemical annotations using gas chromatography-high-resolution mass spectrometry data acquired from the analysis of wristband samples collected from five different cohorts. The workflow includes blank subtraction, internal standard normalization, prediction of chemical uses in products, and feature annotation using multiple library search metrics and metadata from PubChem, among other functionalities. The workflow was developed and validated against 104 analytes identified by targeted analytical results in previously published reports of wristbands. A true positive rate of 62 and 48% in a quality control matrix and wristband samples, respectively, was observed for our optimum set of parameters. Feature analysis identified 458 features that were significantly higher on female-worn wristbands and only 21 features that were significantly higher on male-worn wristbands across all cohorts. Tentative identifications suggest that personal care products are a primary driver of the differences observed.
Collapse
Affiliation(s)
- Nicholas J Herkert
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, United States
| | - Gordon J Getzinger
- School of Environmental Sustainability, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, United States
| | - Anna S Young
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Joseph G Allen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Jessica L Levasseur
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, United States
| | - P Lee Ferguson
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
5
|
Sies H, Mailloux RJ, Jakob U. Fundamentals of redox regulation in biology. Nat Rev Mol Cell Biol 2024; 25:701-719. [PMID: 38689066 DOI: 10.1038/s41580-024-00730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Oxidation-reduction (redox) reactions are central to the existence of life. Reactive species of oxygen, nitrogen and sulfur mediate redox control of a wide range of essential cellular processes. Yet, excessive levels of oxidants are associated with ageing and many diseases, including cardiological and neurodegenerative diseases, and cancer. Hence, maintaining the fine-tuned steady-state balance of reactive species production and removal is essential. Here, we discuss new insights into the dynamic maintenance of redox homeostasis (that is, redox homeodynamics) and the principles underlying biological redox organization, termed the 'redox code'. We survey how redox changes result in stress responses by hormesis mechanisms, and how the lifelong cumulative exposure to environmental agents, termed the 'exposome', is communicated to cells through redox signals. Better understanding of the molecular and cellular basis of redox biology will guide novel redox medicine approaches aimed at preventing and treating diseases associated with disturbed redox regulation.
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Purcaro C, Marramiero L, Santangelo C, Bondi D, Di Filippo ES. Exposome on skeletal muscle system: a mini-review. Eur J Appl Physiol 2024; 124:2227-2233. [PMID: 38806941 PMCID: PMC11322190 DOI: 10.1007/s00421-024-05515-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
Exposomics is an ever-expanding field which captures the cumulative exposures to chemical, biological, physical, lifestyle, and social factors associated with biological responses. Since skeletal muscle is currently considered as the largest secretory organ and shows substantial plasticity over the life course, this reviews addresses the topic of exposome and skeletal muscle by reviewing the state-of-the-art evidence and the most intriguing perspectives. Muscle stem cells react to stressors via phosphorylated eukaryotic initiation factor 2α and tuberous sclerosis 1, and are sensible to hormetic factors via sirtuin 1. Microplastics can delay muscle regeneration via p38 mitogen-activated protein kinases and induce transdifferentiation to adipocytes via nuclear factor kappa B. Acrolein can inhibit myogenic differentiation and disrupt redox system. Heavy metals have been associated with reduced muscle strength in children. The deep study of pollutants and biological features can shed new light on neuromuscular pathophysiology. The analysis of a time-varying and dynamic exposome risk score from a panel of exposure and phenotypes of interest is promising. The systematization of hormetic factors and the role of the microbiota in modulating the effects of exposure on skeletal muscle responses are also promising. The comprehensive exposure assessment and its interactions with endogenous processes and the resulting biological effects deserve more efforts in the field of muscle health across the lifespan.
Collapse
Affiliation(s)
- Cristina Purcaro
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, Italy
- IIM-Interuniversity Institute of Myology, Chieti, Italy
| | - Lorenzo Marramiero
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, Italy
- IIM-Interuniversity Institute of Myology, Chieti, Italy
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, Italy
- IIM-Interuniversity Institute of Myology, Chieti, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, Italy.
- IIM-Interuniversity Institute of Myology, Chieti, Italy.
| | - Ester Sara Di Filippo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, Italy
- IIM-Interuniversity Institute of Myology, Chieti, Italy
| |
Collapse
|
7
|
Ercis M, Ozerdem A, Veldic M, Singh B, Coombes BJ, Biernacka JM, Lazaridis KN, Frye MA. Measuring the exposome in bipolar disorder. Bipolar Disord 2024; 26:488-490. [PMID: 38693064 DOI: 10.1111/bdi.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Affiliation(s)
- Mete Ercis
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Aysegul Ozerdem
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Balwinder Singh
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Brandon J Coombes
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Joanna M Biernacka
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Konstantinos N Lazaridis
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Lai Y, Koelmel JP, Walker DI, Price EJ, Papazian S, Manz KE, Castilla-Fernández D, Bowden JA, Nikiforov V, David A, Bessonneau V, Amer B, Seethapathy S, Hu X, Lin EZ, Jbebli A, McNeil BR, Barupal D, Cerasa M, Xie H, Kalia V, Nandakumar R, Singh R, Tian Z, Gao P, Zhao Y, Froment J, Rostkowski P, Dubey S, Coufalíková K, Seličová H, Hecht H, Liu S, Udhani HH, Restituito S, Tchou-Wong KM, Lu K, Martin JW, Warth B, Godri Pollitt KJ, Klánová J, Fiehn O, Metz TO, Pennell KD, Jones DP, Miller GW. High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12784-12822. [PMID: 38984754 PMCID: PMC11271014 DOI: 10.1021/acs.est.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.
Collapse
Affiliation(s)
- Yunjia Lai
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Jeremy P. Koelmel
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Douglas I. Walker
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Elliott J. Price
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Stefano Papazian
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Katherine E. Manz
- Department
of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Delia Castilla-Fernández
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - John A. Bowden
- Center for
Environmental and Human Toxicology, Department of Physiological Sciences,
College of Veterinary Medicine, University
of Florida, Gainesville, Florida 32611, United States
| | | | - Arthur David
- Univ Rennes,
Inserm, EHESP, Irset (Institut de recherche en santé, environnement
et travail) − UMR_S, 1085 Rennes, France
| | - Vincent Bessonneau
- Univ Rennes,
Inserm, EHESP, Irset (Institut de recherche en santé, environnement
et travail) − UMR_S, 1085 Rennes, France
| | - Bashar Amer
- Thermo
Fisher Scientific, San Jose, California 95134, United States
| | | | - Xin Hu
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Elizabeth Z. Lin
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Akrem Jbebli
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Brooklynn R. McNeil
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Dinesh Barupal
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Marina Cerasa
- Institute
of Atmospheric Pollution Research, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Hongyu Xie
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Vrinda Kalia
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Renu Nandakumar
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Randolph Singh
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Zhenyu Tian
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Peng Gao
- Department
of Environmental and Occupational Health, and Department of Civil
and Environmental Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- UPMC Hillman
Cancer Center, Pittsburgh, Pennsylvania 15232, United States
| | - Yujia Zhao
- Institute
for Risk Assessment Sciences, Utrecht University, Utrecht 3584CM, The Netherlands
| | | | | | - Saurabh Dubey
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Kateřina Coufalíková
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Hana Seličová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Helge Hecht
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Sheng Liu
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Hanisha H. Udhani
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sophie Restituito
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Kam-Meng Tchou-Wong
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Kun Lu
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, The University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jonathan W. Martin
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Benedikt Warth
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - Krystal J. Godri Pollitt
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Jana Klánová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Oliver Fiehn
- West Coast
Metabolomics Center, University of California−Davis, Davis, California 95616, United States
| | - Thomas O. Metz
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Kurt D. Pennell
- School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Dean P. Jones
- Department
of Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Gary W. Miller
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| |
Collapse
|
9
|
Cheng X, Gao L, Cao X, Zhang Y, Ai Q, Weng J, Liu Y, Li J, Zhang L, Lyu B, Wu Y, Zheng M. Identification and Prioritization of Organic Pollutants in Human Milk from the Yangtze River Delta, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11935-11944. [PMID: 38913859 DOI: 10.1021/acs.est.4c02909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Pollutants in human milk are critical for evaluating maternal internal exposure and infant external exposure. However, most studies have focused on a limited range of pollutants. Here, 15 pooled samples (prepared from 467 individual samples) of human milk from three areas of the Yangtze River Delta (YRD) in China were analyzed by gas chromatography quadrupole time-of-flight mass spectrometry. In total, 171 compounds of nine types were preliminarily identified. Among these, 16 compounds, including 2,5-di-tert-butylhydroquinone and 2-tert-butyl-1,4-benzoquinone, were detected in human milk for the first time. Partial least-squares discriminant analysis identified ten area-specific pollutants, including 2-naphthylamine, 9-fluorenone, 2-isopropylthianthrone, and benzo[a]pyrene, among pooled human milk samples from Shanghai (n = 3), Jiangsu Province (n = 6), and Zhejiang Province (n = 6). Risk index (RI) values were calculated and indicated that legacy polycyclic aromatic hydrocarbons (PAHs) contributed only 20% of the total RIs for the identified PAHs and derivatives, indicating that more attention should be paid to PAHs with various functional groups. Nine priority pollutants in human milk from the YRD were identified. The most important were 4-tert-amylphenol, caffeine, and 2,6-di-tert-butyl-p-benzoquinone, which are associated with apoptosis, oxidative stress, and other health hazards. The results improve our ability to assess the health risks posed by pollutants in human milk.
Collapse
Affiliation(s)
- Xin Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Xiaoying Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaofeng Ai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyuan Weng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingguang Li
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Lei Zhang
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Bing Lyu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
10
|
Perry AS, Zhang K, Murthy VL, Choi B, Zhao S, Gajjar P, Colangelo LA, Hou L, Rice MB, Carr JJ, Carson AP, Nigra AE, Vasan RS, Gerszten RE, Khan SS, Kalhan R, Nayor M, Shah RV. Proteomics, Human Environmental Exposure, and Cardiometabolic Risk. Circ Res 2024; 135:138-154. [PMID: 38662804 PMCID: PMC11189739 DOI: 10.1161/circresaha.124.324559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND The biological mechanisms linking environmental exposures with cardiovascular disease pathobiology are incompletely understood. We sought to identify circulating proteomic signatures of environmental exposures and examine their associations with cardiometabolic and respiratory disease in observational cohort studies. METHODS We tested the relations of >6500 circulating proteins with 29 environmental exposures across the built environment, green space, air pollution, temperature, and social vulnerability indicators in ≈3000 participants of the CARDIA study (Coronary Artery Risk Development in Young Adults) across 4 centers using penalized and ordinary linear regression. In >3500 participants from FHS (Framingham Heart Study) and JHS (Jackson Heart Study), we evaluated the prospective relations of proteomic signatures of the envirome with cardiovascular disease and mortality using Cox models. RESULTS Proteomic signatures of the envirome identified novel/established cardiovascular disease-relevant pathways including DNA damage, fibrosis, inflammation, and mitochondrial function. The proteomic signatures of the envirome were broadly related to cardiometabolic disease and respiratory phenotypes (eg, body mass index, lipids, and left ventricular mass) in CARDIA, with replication in FHS/JHS. A proteomic signature of social vulnerability was associated with a composite of cardiovascular disease/mortality (1428 events; FHS: hazard ratio, 1.16 [95% CI, 1.08-1.24]; P=1.77×10-5; JHS: hazard ratio, 1.25 [95% CI, 1.14-1.38]; P=6.38×10-6; hazard ratio expressed as per 1 SD increase in proteomic signature), robust to adjustment for known clinical risk factors. CONCLUSIONS Environmental exposures are related to an inflammatory-metabolic proteome, which identifies individuals with cardiometabolic disease and respiratory phenotypes and outcomes. Future work examining the dynamic impact of the environment on human cardiometabolic health is warranted.
Collapse
Affiliation(s)
- Andrew S Perry
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN (A.S.P., S.Z., J.J.C., R.V.S.)
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, (K.Z.)
| | | | - Bina Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA (B.C.)
| | - Shilin Zhao
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN (A.S.P., S.Z., J.J.C., R.V.S.)
| | - Priya Gajjar
- Cardiovascular Medicine Section, Department of Medicine (P.G.), Boston University School of Medicine, MA
| | - Laura A Colangelo
- Department of Preventive Medicine (L.A.C., L.H.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Lifang Hou
- Department of Preventive Medicine (L.A.C., L.H.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Mary B Rice
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA (M.B.R.)
| | - J Jeffrey Carr
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN (A.S.P., S.Z., J.J.C., R.V.S.)
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson (A.P.C.)
| | - Anne E Nigra
- Department of Environmental Health Science, Columbia University Mailman School of Public Health, New York, NY (A.E.N.)
| | - Ramachandran S Vasan
- School of Public Health, School of Medicine, University of Texas San Antonio (R.S.V.)
| | - Robert E Gerszten
- Broad Institute of Harvard and MIT, Cambridge, MA (R.E.G.)
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (R.E.G.)
| | - Sadiya S Khan
- Division of Cardiology, Department of Medicine (S.S.K.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Ravi Kalhan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine (R.K.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Matthew Nayor
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine (M.N.), Boston University School of Medicine, MA
| | - Ravi V Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN (A.S.P., S.Z., J.J.C., R.V.S.)
| |
Collapse
|
11
|
Lanata CM, Taylor KE, Hurst-Hopf J, Nititham J, Blazer A, Trupin L, Katz P, Dall’Era M, Yazdany J, Chung SA, Abrahamsson D, Gerona R, Criswell LA. Screening of Environmental Chemicals to Characterize Exposures in Participants With Systemic Lupus Erythematosus. Arthritis Rheumatol 2024; 76:905-918. [PMID: 38129991 PMCID: PMC11136608 DOI: 10.1002/art.42779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE There is a need to characterize exposures associated with the pathogenesis of systemic lupus erythematosus (SLE). In this pilot study, we explore a hypothesis-free approach that can measure thousands of exogenous chemicals in blood ("exposome") in patients with SLE and unaffected controls. METHODS This cross-sectional study analyzed a cohort of patients with prevalent SLE (n = 285) and controls (n = 106). Plasma was analyzed by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF/MS). Mass spectrometry features present in at least 25% of all samples were selected for association analysis (n = 2,737). Features were matched to potential chemicals using available databases. Association analysis of abundances of features with SLE status was performed, adjusting for age and sex. We also explored features associated with SLE phenotypes, sociodemographic factors, and current medication use. RESULTS We found 30 features significantly associated with SLE status (Bonferroni P < 0.05). Of these, seven matched chemical names based on databases. These seven features included phthalate metabolites, a formetanate metabolite, and eugenol. The abundance of acid pesticides differed between patients with SLE and controls (Bonferroni P < 0.05). Two unmatched features were associated with a history of lupus nephritis, and one with anti-double-stranded DNA antibody production (Bonferroni P < 0.05). Seventeen features varied by self-reported race and ethnicity, including a polyfluoroalkyl substance (analysis of variance P < 1.69 × 10-5). Eleven features correlated with antimalarials, 6 with mycophenolate mofetil, and 29 with prednisone use. CONCLUSION This proof-of-concept study demonstrates that LC-QTOF/MS is a powerful tool that agnostically detects circulating exogenous compounds. These analyses can generate hypotheses of disease-related exposures for future prospective, longitudinal studies.
Collapse
Affiliation(s)
- Cristina M. Lanata
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Kimberly E. Taylor
- Russell/Engelman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco USA
| | | | - Joanne Nititham
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Ashira Blazer
- Weil Cornell Department of Medicine, Division of Rheumatology, Hospital for Special Surgery, New York NY USA
| | - Laura Trupin
- Russell/Engelman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco USA
| | - Patricia Katz
- Russell/Engelman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco USA
| | - Maria Dall’Era
- Russell/Engelman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco USA
| | - Jinoos Yazdany
- Russell/Engelman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco USA
| | - Sharon A. Chung
- Russell/Engelman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco USA
| | | | - Roy Gerona
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | - Lindsey A. Criswell
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
12
|
Lin H, Gao W, Li J, Zhao N, Zhang H, Wei J, Wei X, Wang B, Lin Y, Zheng Y. Exploring Prenatal Exposure to Halogenated Compounds and Its Relationship with Birth Outcomes Using Nontarget Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6890-6899. [PMID: 38606954 DOI: 10.1021/acs.est.3c09534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Halogenated organic compounds (HOCs) are a class of contaminants showing high toxicity, low biodegradability, and high bioaccumulation potential, especially chlorinated and brominated HOCs (Cl/Br-HOCs). Knowledge gaps exist on whether novel Cl/Br-HOCs could penetrate the placental barrier and cause adverse birth outcomes. Herein, 326 cord blood samples were collected in a hospital in Jinan, Shandong Province from February 2017 to January 2022, and 44 Cl/Br-HOCs were identified with communicating confidence level above 4 based on a nontarget approach, covering veterinary drugs, pesticides, and their transformation products, pharmaceutical and personal care products, disinfection byproducts, and so on. To our knowledge, the presence of closantel, bromoxynil, 4-hydroxy-2,5,6-trichloroisophthalonitrile, 2,6-dibromo-4-nitrophenol, and related components in cord blood samples was reported for the first time. Both multiple linear regression (MLR) and Bayesian kernel machine regression (BKMR) models were applied to evaluate the relationships of newborn birth outcomes (birth weight, length, and ponderal index) with individual Cl/Br-HOC and Cl/Br-HOCs mixture exposure, respectively. A significantly negative association was observed between pentachlorophenol exposure and newborn birth length, but the significance vanished after the false discovery rate correction. The BKMR analysis showed that Cl/Br-HOCs mixture exposure was significantly associated with reduced newborn birth length, indicating higher risks of fetal growth restriction. Our findings offer an overview of Cl/Br-HOCs exposome during the early life stage and enhance the understanding of its exposure risks.
Collapse
Affiliation(s)
- Huan Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wei Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jingjing Li
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Nan Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Hongna Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Juntong Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoran Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Bing Wang
- Biomedical Centre, Qingdao University, Qingdao 266071, China
| | - Yongfeng Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yuxin Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
13
|
Huang Z, Peng C, Rong Z, Jiang L, Li Y, Feng Y, Chen S, Xie C, Jiang C. Longitudinal Mapping of Personal Biotic and Abiotic Exposomes and Transcriptome in Underwater Confined Space Using Wearable Passive Samplers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5229-5243. [PMID: 38466915 DOI: 10.1021/acs.est.3c09379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Silicone-based passive samplers, commonly paired with gas chromatography-mass spectrometry (GC-MS) analysis, are increasingly utilized for personal exposure assessments. However, its compatibility with the biotic exposome remains underexplored. In this study, we introduce the wearable silicone-based AirPie passive sampler, coupled with nontargeted liquid chromatography with high-resolution tandem mass spectrometry (LC-HRMS/MS), GC-HRMS, and metagenomic shotgun sequencing methods, offering a comprehensive view of personalized airborne biotic and abiotic exposomes. We applied the AirPie samplers to 19 participants in a unique deep underwater confined environment, annotating 4,390 chemical and 2,955 microbial exposures, integrated with corresponding transcriptomic data. We observed significant shifts in environmental exposure and gene expression upon entering this unique environment. We noted increased exposure to pollutants, such as benzenoids, polycyclic aromatic hydrocarbons (PAHs), opportunistic pathogens, and associated antibiotic-resistance genes (ARGs). Transcriptomic analyses revealed the activation of neurodegenerative disease-related pathways, mostly related to chemical exposure, and the repression of immune-related pathways, linked to both biological and chemical exposures. In summary, we provided a comprehensive, longitudinal exposome map of the unique environment and underscored the intricate linkages between external exposures and human health. We believe that the AirPie sampler and associated analytical methods will have broad applications in exposome and precision medicine.
Collapse
Affiliation(s)
- Zinuo Huang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China
| | - Chen Peng
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zixin Rong
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liuyiqi Jiang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yueer Li
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yue Feng
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | | | | | - Chao Jiang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China
| |
Collapse
|
14
|
Sørensen M, Pershagen G, Thacher JD, Lanki T, Wicki B, Röösli M, Vienneau D, Cantuaria ML, Schmidt JH, Aasvang GM, Al-Kindi S, Osborne MT, Wenzel P, Sastre J, Fleming I, Schulz R, Hahad O, Kuntic M, Zielonka J, Sies H, Grune T, Frenis K, Münzel T, Daiber A. Health position paper and redox perspectives - Disease burden by transportation noise. Redox Biol 2024; 69:102995. [PMID: 38142584 PMCID: PMC10788624 DOI: 10.1016/j.redox.2023.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023] Open
Abstract
Transportation noise is a ubiquitous urban exposure. In 2018, the World Health Organization concluded that chronic exposure to road traffic noise is a risk factor for ischemic heart disease. In contrast, they concluded that the quality of evidence for a link to other diseases was very low to moderate. Since then, several studies on the impact of noise on various diseases have been published. Also, studies investigating the mechanistic pathways underlying noise-induced health effects are emerging. We review the current evidence regarding effects of noise on health and the related disease-mechanisms. Several high-quality cohort studies consistently found road traffic noise to be associated with a higher risk of ischemic heart disease, heart failure, diabetes, and all-cause mortality. Furthermore, recent studies have indicated that road traffic and railway noise may increase the risk of diseases not commonly investigated in an environmental noise context, including breast cancer, dementia, and tinnitus. The harmful effects of noise are related to activation of a physiological stress response and nighttime sleep disturbance. Oxidative stress and inflammation downstream of stress hormone signaling and dysregulated circadian rhythms are identified as major disease-relevant pathomechanistic drivers. We discuss the role of reactive oxygen species and present results from antioxidant interventions. Lastly, we provide an overview of oxidative stress markers and adverse redox processes reported for noise-exposed animals and humans. This position paper summarizes all available epidemiological, clinical, and preclinical evidence of transportation noise as an important environmental risk factor for public health and discusses its implications on the population level.
Collapse
Affiliation(s)
- Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Denmark.
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesse Daniel Thacher
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Timo Lanki
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland; School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Benedikt Wicki
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Manuella Lech Cantuaria
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Jesper Hvass Schmidt
- Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Gunn Marit Aasvang
- Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Sadeer Al-Kindi
- Department of Medicine, University Hospitals, Harrington Heart & Vascular Institute, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Michael T Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Philip Wenzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt Am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Rainer Schulz
- Institute of Physiology, Faculty of Medicine, Justus-Liebig University, Gießen, 35392, Gießen, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Katie Frenis
- Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
15
|
Chung MK, House JS, Akhtari FS, Makris KC, Langston MA, Islam KT, Holmes P, Chadeau-Hyam M, Smirnov AI, Du X, Thessen AE, Cui Y, Zhang K, Manrai AK, Motsinger-Reif A, Patel CJ. Decoding the exposome: data science methodologies and implications in exposome-wide association studies (ExWASs). EXPOSOME 2024; 4:osae001. [PMID: 38344436 PMCID: PMC10857773 DOI: 10.1093/exposome/osae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 03/07/2024]
Abstract
This paper explores the exposome concept and its role in elucidating the interplay between environmental exposures and human health. We introduce two key concepts critical for exposomics research. Firstly, we discuss the joint impact of genetics and environment on phenotypes, emphasizing the variance attributable to shared and nonshared environmental factors, underscoring the complexity of quantifying the exposome's influence on health outcomes. Secondly, we introduce the importance of advanced data-driven methods in large cohort studies for exposomic measurements. Here, we introduce the exposome-wide association study (ExWAS), an approach designed for systematic discovery of relationships between phenotypes and various exposures, identifying significant associations while controlling for multiple comparisons. We advocate for the standardized use of the term "exposome-wide association study, ExWAS," to facilitate clear communication and literature retrieval in this field. The paper aims to guide future health researchers in understanding and evaluating exposomic studies. Our discussion extends to emerging topics, such as FAIR Data Principles, biobanked healthcare datasets, and the functional exposome, outlining the future directions in exposomic research. This abstract provides a succinct overview of our comprehensive approach to understanding the complex dynamics of the exposome and its significant implications for human health.
Collapse
Affiliation(s)
- Ming Kei Chung
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - John S House
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Farida S Akhtari
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, School of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - Michael A Langston
- Department of Electrical Engineering and Computer Science, University of TN, Knoxville, TN, USA
| | - Khandaker Talat Islam
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern CA, Los Angeles, CA, USA
| | - Philip Holmes
- Department of Physics, Villanova University, Villanova, Philadelphia, USA
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Alex I Smirnov
- Department of Chemistry, NC State University, Raleigh, NC, USA
| | - Xiuxia Du
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of NC at Charlotte, Charlotte, NC, USA
| | - Anne E Thessen
- Department of Biomedical Informatics, University of CO Anschutz Medical Campus, Aurora, CO, USA
| | - Yuxia Cui
- Exposure, Response, and Technology Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of NY, Rensselaer, NY, USA
| | - Arjun K Manrai
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Alison Motsinger-Reif
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Chirag J Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Zhao Y, Meijer J, Walker DI, Kim J, Portengen L, Jones DP, Saberi Hosnijeh F, Vlaanderen J, Vermeulen R. Dioxin(-like)-Related Biological Effects through Integrated Chemical-wide and Metabolome-wide Analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:258-268. [PMID: 38149779 PMCID: PMC10785760 DOI: 10.1021/acs.est.3c07588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
Dioxin(-like) exposures are linked to adverse health effects, including cancer. However, metabolic alterations induced by these chemicals remain largely unknown. Beyond known dioxin(-like) compounds, we leveraged a chemical-wide approach to assess chlorinated co-exposures and parent compound products [termed dioxin(-like)-related compounds] among 137 occupational workers. Endogenous metabolites were profiled by untargeted metabolomics, namely, reversed-phase chromatography with negative electrospray ionization (C18-negative) and hydrophilic interaction liquid chromatography with positive electrospray ionization (HILIC-positive). We performed a metabolome-wide association study to select dioxin(-like) associated metabolic features using a 20% false discovery rate threshold. Metabolic features were then characterized by pathway enrichment analyses. There are no significant features associated with polychlorinated dibenzo-p-dioxins (PCDDs), a subgroup of known dioxin(-like) compounds. However, 3,110 C18-negative and 2,894 HILIC-positive features were associated with at least one of the PCDD-related compounds. Abundant metabolic changes were also observed for polychlorinated dibenzofuran-related and polychlorinated biphenyl-related compounds. These metabolic features were primarily enriched in pathways of amino acids, lipid and fatty acids, carbohydrates, cofactors, and nucleotides. Our study highlights the potential of chemical-wide analysis for comprehensive exposure assessment beyond targeted chemicals. Coupled with advanced endogenous metabolomics, this approach allows for an in-depth exploration of metabolic alterations induced by environmental chemicals.
Collapse
Affiliation(s)
- Yujia Zhao
- Institute
for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CM, The Netherlands
| | - Jeroen Meijer
- Institute
for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CM, The Netherlands
- Department
Environment & Health, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| | - Douglas I. Walker
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Juni Kim
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Lützen Portengen
- Institute
for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CM, The Netherlands
| | - Dean P. Jones
- Division
of Pulmonary, Allergy, Critical Care and Sleep Medicine, School of
Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Fatemeh Saberi Hosnijeh
- Institute
for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CM, The Netherlands
| | - Jelle Vlaanderen
- Institute
for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CM, The Netherlands
| | - Roel Vermeulen
- Institute
for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CM, The Netherlands
- Julius
Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
17
|
Murphy CC, Zaki TA. Changing epidemiology of colorectal cancer - birth cohort effects and emerging risk factors. Nat Rev Gastroenterol Hepatol 2024; 21:25-34. [PMID: 37723270 DOI: 10.1038/s41575-023-00841-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/20/2023]
Abstract
Incidence and mortality of colorectal cancer (CRC) are increasing worldwide, suggesting broad changes in the epidemiology of CRC. In this Review, we discuss the changes that are becoming evident, including trends in CRC incidence and mortality by age and birth cohort, and consider the contributions of early-life exposures and emerging risk factors to these changes. Importantly, incidence of CRC has increased among people born since the early 1950s in nearly all regions of the world. These so-called birth cohort effects imply the involvement of factors that influence the earliest stages of carcinogenesis and have effects across the life course. Accumulating evidence supports the idea that early-life exposures are important risk factors for CRC, including exposures during fetal development, childhood, adolescence and young adulthood. Environmental chemicals could also have a role because the introduction of many in the 1950s and 1960s coincides with increasing incidence of CRC among people born during those years. To reverse the expected increases in the global burden of CRC, participation in average-risk screening programmes needs to be increased by scaling up and implementing evidence-based screening strategies, and emerging risk factors responsible for these increases need to be identified.
Collapse
Affiliation(s)
- Caitlin C Murphy
- Department of Health Promotion & Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth Houston) School of Public Health, Houston, TX, USA.
| | - Timothy A Zaki
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
18
|
Hu X, Mar D, Suzuki N, Zhang B, Peter KT, Beck DAC, Kolodziej EP. Mass-Suite: a novel open-source python package for high-resolution mass spectrometry data analysis. J Cheminform 2023; 15:87. [PMID: 37741995 PMCID: PMC10517472 DOI: 10.1186/s13321-023-00741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/30/2023] [Indexed: 09/25/2023] Open
Abstract
Mass-Suite (MSS) is a Python-based, open-source software package designed to analyze high-resolution mass spectrometry (HRMS)-based non-targeted analysis (NTA) data, particularly for water quality assessment and other environmental applications. MSS provides flexible, user-defined workflows for HRMS data processing and analysis, including both basic functions (e.g., feature extraction, data reduction, feature annotation, data visualization, and statistical analyses) and advanced exploratory data mining and predictive modeling capabilities that are not provided by currently available open-source software (e.g., unsupervised clustering analyses, a machine learning-based source tracking and apportionment tool). As a key advance, most core MSS functions are supported by machine learning algorithms (e.g., clustering algorithms and predictive modeling algorithms) to facilitate function accuracy and/or efficiency. MSS reliability was validated with mixed chemical standards of known composition, with 99.5% feature extraction accuracy and ~ 52% overlap of extracted features relative to other open-source software tools. Example user cases of laboratory data evaluation are provided to illustrate MSS functionalities and demonstrate reliability. MSS expands available HRMS data analysis workflows for water quality evaluation and environmental forensics, and is readily integrated with existing capabilities. As an open-source package, we anticipate further development of improved data analysis capabilities in collaboration with interested users.
Collapse
Affiliation(s)
- Ximin Hu
- Center for Urban Waters, University of Washington Tacoma, Tacoma, WA, 98421, USA
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Derek Mar
- Department of Material Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Nozomi Suzuki
- Department of Material Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Bowei Zhang
- Department of Material Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Katherine T Peter
- Center for Urban Waters, University of Washington Tacoma, Tacoma, WA, 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA, 98421, USA
| | - David A C Beck
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA.
- eScience Institute, University of Washington, Seattle, WA, 98195, USA.
| | - Edward P Kolodziej
- Center for Urban Waters, University of Washington Tacoma, Tacoma, WA, 98421, USA.
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA.
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA, 98421, USA.
| |
Collapse
|
19
|
Gao P. Exploring Single-Cell Exposomics by Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12201-12209. [PMID: 37561608 PMCID: PMC10448745 DOI: 10.1021/acs.est.3c04524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 08/12/2023]
Abstract
Single-cell exposomics, a revolutionary approach that investigates cell-environment interactions at cellular and subcellular levels, stands distinct from conventional bulk exposomics. Leveraging advancements in mass spectrometry, it provides a detailed perspective on cellular dynamics, interactions, and responses to environmental stimuli and their impacts on human health. This work delves into this innovative realm, highlighting the nuanced interplay between environmental stressors and biological responses at cellular and subcellular levels. The application of spatial mass spectrometry in single-cell exposomics is discussed, revealing the intricate spatial organization and molecular composition within individual cells. Cell-type-specific exposomics, shedding light on distinct susceptibilities and adaptive strategies of various cell types to environmental exposures, is also examined. The Perspective further emphasizes the integration with molecular and cellular biology approaches to validate hypotheses derived from single-cell exposomics in a comprehensive biological context. Looking toward the future, we anticipate continued technological advancements and convergence with other -omics approaches and discuss implications for environmental health research, disease progression studies, and precision medicine. The final emphasis is on the need for robust computational tools and interdisciplinary collaboration to fully leverage the potential of single-cell exposomics, acknowledging the complexities inherent to this paradigm.
Collapse
Affiliation(s)
- Peng Gao
- Department
of Environmental and Occupational Health and Department of Civil and
Environmental Engineering, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- UPMC
Hillman Cancer Center, Pittsburgh, Pennsylvania 15232, United States
| |
Collapse
|
20
|
Go YM, Weinberg J, Teeny S, Cirillo PM, Krigbaum NY, Singer G, Tran V, Cohn BA, Jones DP. Exposome epidemiology for suspect environmental chemical exposures during pregnancy linked to subsequent breast cancer diagnosis. ENVIRONMENT INTERNATIONAL 2023; 178:108112. [PMID: 37517180 PMCID: PMC10863607 DOI: 10.1016/j.envint.2023.108112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
Breast cancer is now the most common cancer globally, accounting for 12% of all new annual cancer cases worldwide. Despite epidemiologic studies having established a number of risk factors, knowledge of chemical exposure risks is limited to a relatively small number of chemicals. In this exposome research study, we used non-targeted, high-resolution mass spectrometry of pregnancy cohort biospecimens in the Child Health and Development Studies to test for associations with breast cancer identified via the California Cancer Registry. Second and third trimester archival samples were analyzed from 182 women who subsequently developed breast cancer and 384 randomly selected women who did not develop breast cancer. Environmental chemicals were annotated with the Toxin and Toxin-Target Database for chemical signals that were higher in breast cancer cases and used with an exposome epidemiology analytic framework to identify suspect chemicals and associated metabolic networks. Network and pathway enrichment analyses showed consistent linkage in both second and third trimesters to inflammation pathways, including linoleate, arachidonic acid and prostaglandins, and identified new suspect environmental chemicals associated with breast cancer, i.e., an N-substituted piperidine insecticide and a common commercial product, 2,4-dinitrophenol, linked to variations in amino acid and nucleotide pathways in second trimester and benzo[a]carbazole and a benzoate derivative linked to glycan and amino sugar metabolism in third trimester. The results identify new suspect environmental chemical risk factors for breast cancer and provide an exposome epidemiology framework for discovery of suspect environmental chemicals and potential mechanistic associations with breast cancer.
Collapse
Affiliation(s)
- Young-Mi Go
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Jaclyn Weinberg
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Sami Teeny
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Piera M Cirillo
- Child Health and Development Studies, Public Health Institute, Berkeley, CA 94709, United States
| | - Nickilou Y Krigbaum
- Child Health and Development Studies, Public Health Institute, Berkeley, CA 94709, United States
| | - Grant Singer
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, United States
| | - ViLinh Tran
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Barbara A Cohn
- Child Health and Development Studies, Public Health Institute, Berkeley, CA 94709, United States.
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
21
|
Liang D, Walker DI. Invited Perspective: Application of Nontargeted Analysis in Characterizing the Maternal and Child Exposome. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:71303. [PMID: 37466316 DOI: 10.1289/ehp13042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Affiliation(s)
- Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
22
|
Shamji MH, Ollert M, Adcock IM, Bennett O, Favaro A, Sarama R, Riggioni C, Annesi-Maesano I, Custovic A, Fontanella S, Traidl-Hoffmann C, Nadeau K, Cecchi L, Zemelka-Wiacek M, Akdis CA, Jutel M, Agache I. EAACI guidelines on environmental science in allergic diseases and asthma - Leveraging artificial intelligence and machine learning to develop a causality model in exposomics. Allergy 2023; 78:1742-1757. [PMID: 36740916 DOI: 10.1111/all.15667] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Abstract
Allergic diseases and asthma are intrinsically linked to the environment we live in and to patterns of exposure. The integrated approach to understanding the effects of exposures on the immune system includes the ongoing collection of large-scale and complex data. This requires sophisticated methods to take full advantage of what this data can offer. Here we discuss the progress and further promise of applying artificial intelligence and machine-learning approaches to help unlock the power of complex environmental data sets toward providing causality models of exposure and intervention. We discuss a range of relevant machine-learning paradigms and models including the way such models are trained and validated together with examples of machine learning applied to allergic disease in the context of specific environmental exposures as well as attempts to tie these environmental data streams to the full representative exposome. We also discuss the promise of artificial intelligence in personalized medicine and the methodological approaches to healthcare with the final AI to improve public health.
Collapse
Affiliation(s)
- Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Imperial Biomedical Research Centre, London, UK
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), University of Southern Denmark, Odense, Denmark
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Imperial Biomedical Research Centre, London, UK
| | | | | | - Roudin Sarama
- National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Imperial Biomedical Research Centre, London, UK
| | - Carmen Riggioni
- Pediatric Allergy and Clinical Immunology Service, Institut de Reserca Sant Joan de Deú, Barcelona, Spain
| | - Isabella Annesi-Maesano
- Research Director and Deputy DIrector of Institut Desbrest of Epidemiology and Public Health (IDESP) French NIH (INSERM) and University of Montpellier, Montpellier, France
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Imperial Biomedical Research Centre, London, UK
| | - Sara Fontanella
- National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Imperial Biomedical Research Centre, London, UK
| | - Claudia Traidl-Hoffmann
- Environmental Medicine Faculty of Medicine University of Augsburg, Augsburg, Germany
- CK-CARE, Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Lorenzo Cecchi
- SOS Allergology and Clinical Immunology, USL Toscana Centro, Prato, Italy
| | | | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| |
Collapse
|
23
|
Huang K, Zhou W, Fu J, Zhang Q, Teng Y, Gu L, Fu Y, Hu B, Mei Y, Zhang H, Zhang A, Fu J, Jiang G. Linking Transthyretin-Binding Chemicals and Free Thyroid Hormones: In Vitro to In Vivo Extrapolation Based on a Competitive Binding Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:9130-9139. [PMID: 37261382 DOI: 10.1021/acs.est.3c01094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Large numbers of pollutants competitively inhibit the binding between thyroid hormones and transthyretin (TTR) in vitro. However, the impact of this unintended binding on free thyroid hormones in vivo has not yet been characterized. Herein, we established a quantitative in vitro to in vivo extrapolation (QIVIVE) method based on a competitive binding model to quantify the effect of TTR-binding chemicals on free thyroid hormones in human blood. Twenty-five TTR-binding chemicals including 6 hydroxyl polybromodiphenyl ethers (OH-PDBEs), 6 hydroxyl polychlorobiphenyls (OH-PCBs), 4 halogenphenols, 5 per- and polyfluorinated substances (PFASs), and 4 phenols were selected for investigation. Incorporating the in vitro binding parameters and human exposure data, the QIVIVE model could well predict the in vivo effect on free thyroid hormones. Co-exposure to twenty-five typical TTR-binding chemicals resulted in median increases of 0.080 and 0.060% in circulating levels of free thyroxine (FT4) and free triiodothyronine (FT3) in the general population. Individuals with occupational exposure to TTR-binding chemicals suffered 1.88-32.2% increases in free thyroid hormone levels. This study provides a quantitative tool to evaluate the thyroid-disrupting risks of TTR-binding chemicals and proposes a new framework for assessing the in vivo effects of chemical exposures on endogenous molecules.
Collapse
Affiliation(s)
- Kai Huang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wei Zhou
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Fu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qun Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunhe Teng
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Luyao Gu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yilin Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boyuan Hu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yang Mei
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Haiyan Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Aiqian Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianjie Fu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
24
|
Go YM, Weinberg J, Teeny S, Cirillo P, Krigbaum N, Singer G, Ly V, Cohn B, Jones DP. Exposome Epidemiology for Suspect Environmental Chemical Exposures during Pregnancy Linked to Subsequent Breast Cancer Diagnosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.20.23291648. [PMID: 37425678 PMCID: PMC10327225 DOI: 10.1101/2023.06.20.23291648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Breast cancer is now the most common cancer globally, accounting for 12% of all new annual cancer cases worldwide. Despite epidemiologic studies having established a number of risk factors, knowledge of chemical exposure risks is limited to a relatively small number of chemicals. In this exposome research study, we used non-targeted, high-resolution mass spectrometry (HRMS) of pregnancy cohort biospecimens in the Child Health and Development Studies (CHDS) to test for associations with breast cancer identified via the California Cancer Registry. Second (T2) and third (T3) trimester archival samples were analyzed from 182 women who subsequently developed breast cancer and 384 randomly selected women who did not develop breast cancer. Environmental chemicals were annotated with the Toxin and Toxin-Target Database (T3DB) for chemical signals that were higher in breast cancer cases and used with an exposome epidemiology analytic framework to identify suspect chemicals and associated metabolic networks. Network and pathway enrichment analyses showed consistent linkage in both T2 and T3 to inflammation pathways, including linoleate, arachidonic acid and prostaglandins, and identified new suspect environmental chemicals associated with breast cancer, i.e., an N-substituted piperidine insecticide and a common commercial product, 2,4-dinitrophenol (DNP), linked to variations in amino acid and nucleotide pathways in T2 and benzo[a]carbazole and a benzoate derivative linked to glycan and amino sugar metabolism in T3. The results identify new suspect environmental chemical risk factors for breast cancer and provide an exposome epidemiology framework for discovery of suspect environmental chemicals and potential mechanistic associations with breast cancer.
Collapse
|
25
|
Liang D, Li Z, Vlaanderen J, Tang Z, Jones DP, Vermeulen R, Sarnat JA. A State-of-the-Science Review on High-Resolution Metabolomics Application in Air Pollution Health Research: Current Progress, Analytical Challenges, and Recommendations for Future Direction. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:56002. [PMID: 37192319 PMCID: PMC10187974 DOI: 10.1289/ehp11851] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Understanding the mechanistic basis of air pollution toxicity is dependent on accurately characterizing both exposure and biological responses. Untargeted metabolomics, an analysis of small-molecule metabolic phenotypes, may offer improved estimation of exposures and corresponding health responses to complex environmental mixtures such as air pollution. The field remains nascent, however, with questions concerning the coherence and generalizability of findings across studies, study designs and analytical platforms. OBJECTIVES We aimed to review the state of air pollution research from studies using untargeted high-resolution metabolomics (HRM), highlight the areas of concordance and dissimilarity in methodological approaches and reported findings, and discuss a path forward for future use of this analytical platform in air pollution research. METHODS We conducted a state-of-the-science review to a) summarize recent research of air pollution studies using untargeted metabolomics and b) identify gaps in the peer-reviewed literature and opportunities for addressing these gaps in future designs. We screened articles published within Pubmed and Web of Science between 1 January 2005 and 31 March 2022. Two reviewers independently screened 2,065 abstracts, with discrepancies resolved by a third reviewer. RESULTS We identified 47 articles that applied untargeted metabolomics on serum, plasma, whole blood, urine, saliva, or other biospecimens to investigate the impact of air pollution exposures on the human metabolome. Eight hundred sixteen unique features confirmed with level-1 or -2 evidence were reported to be associated with at least one or more air pollutants. Hypoxanthine, histidine, serine, aspartate, and glutamate were among the 35 metabolites consistently exhibiting associations with multiple air pollutants in at least 5 independent studies. Oxidative stress and inflammation-related pathways-including glycerophospholipid metabolism, pyrimidine metabolism, methionine and cysteine metabolism, tyrosine metabolism, and tryptophan metabolism-were the most commonly perturbed pathways reported in > 70 % of studies. More than 80% of the reported features were not chemically annotated, limiting the interpretability and generalizability of the findings. CONCLUSIONS Numerous investigations have demonstrated the feasibility of using untargeted metabolomics as a platform linking exposure to internal dose and biological response. Our review of the 47 existing untargeted HRM-air pollution studies points to an underlying coherence and consistency across a range of sample analytical quantitation methods, extraction algorithms, and statistical modeling approaches. Future directions should focus on validation of these findings via hypothesis-driven protocols and technical advances in metabolic annotation and quantification. https://doi.org/10.1289/EHP11851.
Collapse
Affiliation(s)
- Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Zhenjiang Li
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jelle Vlaanderen
- Department Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Ziyin Tang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Dean P. Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Roel Vermeulen
- Department Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jeremy A. Sarnat
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
26
|
Bucher ML, Anderson FL, Lai Y, Dicent J, Miller GW, Zota AR. Exposomics as a tool to investigate differences in health and disease by sex and gender. EXPOSOME 2023; 3:osad003. [PMID: 37122372 PMCID: PMC10125831 DOI: 10.1093/exposome/osad003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 05/02/2023]
Abstract
The health and disease of an individual is mediated by their genetics, a lifetime of environmental exposures, and interactions between the two. Genetic or biological sex, including chromosome composition and hormone expression, may influence both the types and frequency of environmental exposures an individual experiences, as well as the biological responses an individual has to those exposures. Gender identity, which can be associated with social behaviors such as expressions of self, may also mediate the types and frequency of exposures an individual experiences. Recent advances in exposome-level analysis have progressed our understanding of how environmental factors affect health outcomes; however, the relationship between environmental exposures and sex- and gender-specific health remains underexplored. The comprehensive, non-targeted, and unbiased nature of exposomic research provides a unique opportunity to systematically evaluate how environmental exposures interact with biological sex and gender identity to influence health. In this forward-looking narrative review, we provide examples of how biological sex and gender identity influence environmental exposures, discuss how environmental factors may interact with biological processes, and highlight how an intersectional approach to exposomics can provide critical insights for sex- and gender-specific health sciences.
Collapse
Affiliation(s)
- Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, USA
| | - Faith L Anderson
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, USA
| | - Yunjia Lai
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, USA
| | - Jocelyn Dicent
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, USA
| | - Ami R Zota
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, USA
| |
Collapse
|
27
|
Saliba M, Drapeau N, Skime M, Hu X, Accardi CJ, Athreya AP, Kolacz J, Shekunov J, Jones DP, Croarkin PE, Romanowicz M. PISTACHIo (PreemptIon of diSrupTive behAvior in CHIldren): real-time monitoring of sleep and behavior of children 3-7 years old receiving parent-child interaction therapy augment with artificial intelligence - the study protocol, pilot study. Pilot Feasibility Stud 2023; 9:23. [PMID: 36759915 PMCID: PMC9909978 DOI: 10.1186/s40814-023-01254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Emotional behavior problems (EBP) are the most common and persistent mental health issues in early childhood. Early intervention programs are crucial in helping children with EBP. Parent-child interaction therapy (PCIT) is an evidence-based therapy designed to address personal difficulties of parent-child dyads as well as reduce externalizing behaviors. In clinical practice, parents consistently struggle to provide accurate characterizations of EBP symptoms (number, timing of tantrums, precipitating events) even from the week before in their young children. The main aim of the study is to evaluate feasibility of the use of smartwatches in children aged 3-7 years with EBP. METHODS This randomized double-blind controlled study aims to recruit a total of 100 participants, consisting of 50 children aged 3-7 years with an EBP measure rated above the clinically significant range (T-score ≥ 60) (Eyberg Child Behavior Inventory-ECBI; Eyberg & Pincus, 1999) and their parents who are at least 18 years old. Participants are randomly assigned to the artificial intelligence-PCIT group (AI-PCIT) or the PCIT-sham biometric group. Outcome parameters include weekly ECBI and Pediatric Sleep Questionnaire (PSQ) as well as Child Behavior Checklist (CBCL) obtained weeks 1, 6, and 12 of the study. Two smartphone applications (Garmin connect and mEMA) and a wearable Garmin smartwatch are used collect the data to monitor step count, sleep, heart rate, and activity intensity. In the AI-PCIT group, the mEMA application will allow for the ecological momentary assessment (EMA) and will send behavioral alerts to the parent. DISCUSSION Real-time predictive technologies to engage patients rely on daily commitment on behalf of the participant and recurrent frequent smartphone notifications. Ecological momentary assessment (EMA) provides a way to digitally phenotype in-the-moment behavior and functioning of the parent-child dyad. One of the study's goals is to determine if AI-PCIT outcomes are superior in comparison with standard PCIT. Overall, we believe that the PISTACHIo study will also be able to determine tolerability of smartwatches in children aged 3-7 with EBP and could participate in a fundamental shift from the traditional way of assessing and treating EBP to a more individualized treatment plan based on real-time information about the child's behavior. TRIAL REGISTRATION The ongoing clinical trial study protocol conforms to the international Consolidated Standards of Reporting Trials (CONSORT) guidelines and is registered in clinicaltrials.gov (ID: NCT05077722), an international clinical trial registry.
Collapse
Affiliation(s)
- Maria Saliba
- grid.66875.3a0000 0004 0459 167XDepartment of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905 USA
| | - Noelle Drapeau
- grid.66875.3a0000 0004 0459 167XDepartment of Pediatrics, Mayo Clinic, Rochester, MN 55905 USA
| | - Michelle Skime
- grid.66875.3a0000 0004 0459 167XDepartment of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905 USA
| | - Xin Hu
- grid.189967.80000 0001 0941 6502Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322 USA
| | - Carolyn Jonas Accardi
- grid.189967.80000 0001 0941 6502Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322 USA
| | - Arjun P. Athreya
- grid.66875.3a0000 0004 0459 167XDepartment of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Jacek Kolacz
- grid.412332.50000 0001 1545 0811Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Julia Shekunov
- grid.66875.3a0000 0004 0459 167XDepartment of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905 USA
| | - Dean P. Jones
- grid.189967.80000 0001 0941 6502Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322 USA
| | - Paul E. Croarkin
- grid.66875.3a0000 0004 0459 167XDepartment of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905 USA
| | - Magdalena Romanowicz
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
28
|
Krausová M, Braun D, Buerki-Thurnherr T, Gundacker C, Schernhammer E, Wisgrill L, Warth B. Understanding the Chemical Exposome During Fetal Development and Early Childhood: A Review. Annu Rev Pharmacol Toxicol 2023; 63:517-540. [PMID: 36202091 DOI: 10.1146/annurev-pharmtox-051922-113350] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Early human life is considered a critical window of susceptibility to external exposures. Infants are exposed to a multitude of environmental factors, collectively referred to as the exposome. The chemical exposome can be summarized as the sum of all xenobiotics that humans are exposed to throughout a lifetime. We review different exposure classes and routes that impact fetal and infant metabolism and the potential toxicological role of mixture effects. We also discuss the progress in human biomonitoring and present possiblemodels for studying maternal-fetal transfer. Data gaps on prenatal and infant exposure to xenobiotic mixtures are identified and include natural biotoxins, in addition to commonly reported synthetic toxicants, to obtain a more holistic assessment of the chemical exposome. We highlight the lack of large-scale studies covering a broad range of xenobiotics. Several recommendations to advance our understanding of the early-life chemical exposome and the subsequent impact on health outcomes are proposed.
Collapse
Affiliation(s)
- Magdaléna Krausová
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria; , ,
| | - Dominik Braun
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria; , ,
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles Biology Interactions, St. Gallen, Switzerland;
| | - Claudia Gundacker
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; .,Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria
| | - Eva Schernhammer
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria.,Center for Public Health, Department of Epidemiology, Medical University of Vienna, Vienna, Austria; .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Lukas Wisgrill
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria.,Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria;
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria; , , .,Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria
| |
Collapse
|
29
|
Grant CW, Juran BD, Ali AH, Schlicht EM, Bianchi JK, Hu X, Liang Y, Jarrell Z, Liu KH, Go YM, Jones DP, Walker DI, Miller GW, Folseraas T, Karlsen TH, LaRusso NF, Gores GJ, Athreya AP, Lazaridis KN. Environmental chemicals and endogenous metabolites in bile of USA and Norway patients with primary sclerosing cholangitis. EXPOSOME 2023; 3:osac011. [PMID: 36687160 PMCID: PMC9853141 DOI: 10.1093/exposome/osac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023]
Abstract
Primary sclerosing cholangitis (PSC) is a complex bile duct disorder. Its etiology is incompletely understood, but environmental chemicals likely contribute to risk. Patients with PSC have an altered bile metabolome, which may be influenced by environmental chemicals. This novel study utilized state-of-the-art high-resolution mass spectrometry (HRMS) with bile samples to provide the first characterization of environmental chemicals and metabolomics (collectively, the exposome) in PSC patients located in the United States of America (USA) (n = 24) and Norway (n = 30). First, environmental chemical- and metabolome-wide association studies were conducted to assess geographic-based similarities and differences in the bile of PSC patients. Nine environmental chemicals (false discovery rate, FDR < 0.20) and 3143 metabolic features (FDR < 0.05) differed by site. Next, pathway analysis was performed to identify metabolomic pathways that were similarly and differentially enriched by the site. Fifteen pathways were differentially enriched (P < .05) in the categories of amino acid, glycan, carbohydrate, energy, and vitamin/cofactor metabolism. Finally, chemicals and pathways were integrated to derive exposure-effect correlation networks by site. These networks demonstrate the shared and differential chemical-metabolome associations by site and highlight important pathways that are likely relevant to PSC. The USA patients demonstrated higher environmental chemical bile content and increased associations between chemicals and metabolic pathways than those in Norway. Polychlorinated biphenyl (PCB)-118 and PCB-101 were identified as chemicals of interest for additional investigation in PSC given broad associations with metabolomic pathways in both the USA and Norway patients. Associated pathways include glycan degradation pathways, which play a key role in microbiome regulation and thus may be implicated in PSC pathophysiology.
Collapse
Affiliation(s)
- Caroline W Grant
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Brian D Juran
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ahmad H Ali
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, MN, USA,Division of Gastroenterology and Hepatology, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO, USA
| | - Erik M Schlicht
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jackie K Bianchi
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Xin Hu
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, GA, USA, Atlanta
| | - Yongliang Liang
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, GA, USA, Atlanta
| | - Zachery Jarrell
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, GA, USA, Atlanta
| | - Ken H Liu
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, GA, USA, Atlanta
| | - Young-Mi Go
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, GA, USA, Atlanta
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, GA, USA, Atlanta
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Trine Folseraas
- Research Institute for Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway,Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tom H Karlsen
- Research Institute for Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway,Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Arjun P Athreya
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA,Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
30
|
Tumoral and normal brain tissue extraction protocol for wide-scope screening of organic pollutants. MethodsX 2023; 10:102069. [PMID: 36879761 PMCID: PMC9984680 DOI: 10.1016/j.mex.2023.102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Little is known about the presence of organic pollutants in human brain (and even less in brain tumors). In this regard, it is necessary to develop new analytical protocols capable of identifying a wide range of exogenous chemicals in this type of samples (by combining target, suspect and non-target strategies). These methodologies should be robust and simple. This is particularly challenging for solid samples, as reliable extraction and clean-up techniques should be combined to obtain an optimal result. Hence, the present study focuses on the development of an analytical methodology that allows the screening of a wide range of organic chemicals in brain and brain tumor samples. This protocol was based on a solid-liquid extraction based on bead beating, solid-phase extraction clean-up with multi-layer mixed-mode cartridges, reconstitution and LC-HRMS analysis. To evaluate the performance of the extraction methodology, a set of 66 chemicals (e.g., pharmaceuticals, biocides, or plasticizers, among others) with a wide range of physicochemical properties was employed. Quality control parameters (i.e., linear range, sensitivity, matrix effect (ME%), and recoveries (R%)) were calculated and satisfactory results were obtained for them (e.g., R% within 60-120% for 32 chemicals, or ME% higher than 50% (signal suppression) for 79% of the chemicals).
Collapse
|
31
|
Flasch M, Fitz V, Rampler E, Ezekiel CN, Koellensperger G, Warth B. Integrated Exposomics/Metabolomics for Rapid Exposure and Effect Analyses. JACS AU 2022; 2:2548-2560. [PMID: 36465551 PMCID: PMC9709941 DOI: 10.1021/jacsau.2c00433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
The totality of environmental exposures and lifestyle factors, commonly referred to as the exposome, is poorly understood. Measuring the myriad of chemicals that humans are exposed to is immensely challenging, and identifying disrupted metabolic pathways is even more complex. Here, we present a novel technological approach for the comprehensive, rapid, and integrated analysis of the endogenous human metabolome and the chemical exposome. By combining reverse-phase and hydrophilic interaction liquid chromatography (HILIC) and fast polarity-switching, molecules with highly diverse chemical structures can be analyzed in 15 min with a single analytical run as both column's effluents are combined before analysis. Standard reference materials and authentic standards were evaluated to critically benchmark performance. Highly sensitive median limits of detection (LODs) with 0.04 μM for >140 quantitatively assessed endogenous metabolites and 0.08 ng/mL for the >100 model xenobiotics and human estrogens in solvent were obtained. In matrix, the median LOD values were higher with 0.7 ng/mL (urine) and 0.5 ng/mL (plasma) for exogenous chemicals. To prove the dual-column approach's applicability, real-life urine samples from sub-Saharan Africa (high-exposure scenario) and Europe (low-exposure scenario) were assessed in a targeted and nontargeted manner. Our liquid chromatography high-resolution mass spectrometry (LC-HRMS) approach demonstrates the feasibility of quantitatively and simultaneously assessing the endogenous metabolome and the chemical exposome for the high-throughput measurement of environmental drivers of diseases.
Collapse
Affiliation(s)
- Mira Flasch
- Faculty
of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, Währinger Straße 38-40, 1090 Vienna, Austria
- Vienna
Doctoral School of Chemistry, University
of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Veronika Fitz
- Vienna
Doctoral School of Chemistry, University
of Vienna, Währinger Straße 42, 1090 Vienna, Austria
- Faculty
of Chemistry, Department of Analytical Chemistry, University of Vienna, Währinger Straße 38-40, 1090 Vienna, Austria
| | - Evelyn Rampler
- Faculty
of Chemistry, Department of Analytical Chemistry, University of Vienna, Währinger Straße 38-40, 1090 Vienna, Austria
| | - Chibundu N. Ezekiel
- Department
of Microbiology, Babcock University, 121103 Ilishan
Remo, Ogun State, Nigeria
| | - Gunda Koellensperger
- Faculty
of Chemistry, Department of Analytical Chemistry, University of Vienna, Währinger Straße 38-40, 1090 Vienna, Austria
- Exposome
Austria, Research Infrastructure and National EIRENE Hub, 1090 Vienna, Austria
| | - Benedikt Warth
- Faculty
of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, Währinger Straße 38-40, 1090 Vienna, Austria
- Exposome
Austria, Research Infrastructure and National EIRENE Hub, 1090 Vienna, Austria
| |
Collapse
|
32
|
Sun Y, Tang S, Cui H, Wang C, Yan H, Hu J, Wan Y. Tetraphenylphosphonium Chloride-Enhanced Ionization Coupled to Orbitrap Mass Spectrometry for Sensitive and Non-targeted Screening of Polyhalogenated Alkyl Compounds from Limited Serum. Anal Chem 2022; 94:14195-14204. [PMID: 36214478 DOI: 10.1021/acs.analchem.2c02158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although many types of halogenated compounds are known to bioaccumulate in humans, few are routinely biomonitored and many have remained uncharacterized in human exposome studies due to a lack of high-sensitivity and high-resolution analytical methods. In this study, we discovered tetraphenylphosphonium chloride (Ph4PCl, 10 μM) as a simple additive to the mobile phase, which enhanced the ionizations of polyhalogenated alkyl compounds (such as organochlorinated pesticides [OCPs], chlorinated paraffins [CPs], dechlorane plus [DPs], and some brominated flame retardants [BFRs]) in the form [M + Cl]- and boosted mass spectrometry responses by an average of 1-3 orders of magnitude at a resolution of 140,000. Ph4PCl-enhanced ionization coupled with a halogenation-guided screening process was used to establish a sensitive and non-targeted method that required only single-step sample preparation and identified Cl- and/or bromine-containing alkyl compounds. The method enabled the identification of ∼700 polyhalogenated compounds from 200 μL of human serum, 240 of which were known compounds: 33 short-chain CPs, 52 median-chain CPs, 97 long-chain CPs, 22 very short-chain CPs (vSCCPs), 19 OCPs, 13 DPs, and 4 BFRs. We also identified 325 emerging contaminants (34 unsaturated CPs, 285 chlorinated fatty acid methyl esters [CFAMEs], and 6 chloro-bromo alkenes) and 130 new contaminants (114 oxygen-containing CPs, 2 hexachlorocyclohexane structural analogs, and 11 amino-containing and 3 nitrate-containing chlorinated compounds). The full scan results highlighted the dominance of CPs, CFAMEs, vSCCPs, and dichlorodiphenyltrichloroethanes in the serum samples. Ph4PCl-enhanced ionization enabled the sensitive and non-targeted identifications of polyhalogenated compounds in small volumes of biological fluid.
Collapse
Affiliation(s)
- Yibin Sun
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Chao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hao Yan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
33
|
Baumert BO, Goodrich JA, Hu X, Walker DI, Alderete TL, Chen Z, Valvi D, Rock S, Berhane K, Gilliland FD, Goran MI, Jones DP, Conti DV, Chatzi L. Plasma concentrations of lipophilic persistent organic pollutants and glucose homeostasis in youth populations. ENVIRONMENTAL RESEARCH 2022; 212:113296. [PMID: 35447156 PMCID: PMC9831292 DOI: 10.1016/j.envres.2022.113296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/15/2022] [Accepted: 04/09/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Exposure to lipophilic persistent organic pollutants (POPs) is ubiquitous. POPs are metabolic disrupting chemicals and are potentially diabetogenic. METHODS Using a multi-cohort study including overweight adolescents from the Study of Latino Adolescents at Risk (SOLAR, N = 301, 2001-2012) and young adults from the Southern California Children's Health Study (CHS, N = 135, 2014-2018), we examined associations of POPs and risk factors for type 2 diabetes. SOLAR participants underwent annual visits for a median of 2.2 years and CHS participants performed a single visit, during which a 2-h oral glucose tolerance test was performed. Linear mixed models were used to examine associations between plasma concentrations of POPs [4,4'-dichlorodiphenyldichloroethylene (4,4'-DDE), hexachlorobenzene (HCB), PCBs-153, 138, 118, 180 and PBDEs-154, 153, 100, 85, 47] and changes in glucose homeostasis across age and pubertal stage. RESULTS In SOLAR, exposure to HCB, PCB-118, and PBDE-153 was associated with dysregulated glucose metabolism. For example, each two-fold increase in HCB was associated with approximately 2 mg/dL higher glucose concentrations at 30 min (p = 0.001), 45 min (p = 0.0006), and 60 min (p = 0.03) post glucose challenge. Compared to individuals with low levels of PCB-118, individuals with high levels exhibited a 4.7 mg/dL (p = 0.02) higher glucose concentration at 15 min and a 3.6 mg/dL (p = 0.01) higher glucose concentration at 30 min. The effects observed with exposure to organochlorine compounds were independent of pubertal stages. PBDE-153 was associated with the development of dysregulated glucose metabolism beginning in late puberty. At Tanner stage 4, exposure to PBDE-153 was associated with a 12.7 mg/dL higher 60-min glucose concentration (p = 0.009) and a 16.1 mg*dl-1*hr-1 higher glucose AUC (p = 0.01). These associations persisted at Tanner 5. In CHS, PBDE-153 and total PBDE were associated with similar increases in glucose concentrations. CONCLUSION Our results suggest that childhood exposure to lipophilic POPs is associated with dysregulated glucose metabolism.
Collapse
Affiliation(s)
- Brittney O Baumert
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Jesse A Goodrich
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xin Hu
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Zhanghua Chen
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sarah Rock
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kiros Berhane
- Department of Biostatistics, Columbia University, New York, NY, United States
| | - Frank D Gilliland
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Michael I Goran
- Department of Pediatrics, Children's Hospital of Los Angeles, The Saban Research Institute, United States
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States
| | - David V Conti
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Leda Chatzi
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
34
|
Manchia M, Zai CC, Fanni D, Faa G. Editorial: Looking for a culprit: The role of environmental co-factors in complex neuropsychiatric disorders. Front Neurosci 2022; 16:1000783. [PMID: 36090269 PMCID: PMC9450854 DOI: 10.3389/fnins.2022.1000783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Mirko Manchia
| | - Clement C. Zai
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Institute of Medical Science, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Daniela Fanni
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Gavino Faa
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| |
Collapse
|
35
|
Walker DI, Juran BD, Cheung AC, Schlicht EM, Liang Y, Niedzwiecki M, LaRusso NF, Gores GJ, Jones DP, Miller GW, Lazaridis KN. High-Resolution Exposomics and Metabolomics Reveals Specific Associations in Cholestatic Liver Diseases. Hepatol Commun 2022; 6:965-979. [PMID: 34825528 PMCID: PMC9035559 DOI: 10.1002/hep4.1871] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/20/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Progress in development of prognostic and therapeutic options for the rare cholestatic liver diseases, primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), is hampered by limited knowledge of their pathogeneses. In particular, the potential role of hepatotoxic and/or metabolism-altering environmental chemicals in the pathogenesis of these diseases remains relatively unstudied. Moreover, the extent to which metabolic pathways are altered due to ongoing cholestasis and subsequent liver damage or possibly influenced by hepatotoxic chemicals is poorly understood. In this study, we applied a comprehensive exposomics-metabolomics approach to uncover potential pathogenic contributors to PSC and PBC. We used untargeted high-resolution mass spectrometry to characterize a wide range of exogenous chemicals and endogenous metabolites in plasma and tested them for association with disease. Exposome-wide association studies (EWAS) identified environmental chemicals, including pesticides, additives and persistent pollutants, that were associated with PSC and/or PBC, suggesting potential roles for these compounds in disease pathogenesis. Metabolome-wide association studies (MWAS) found disease-associated alterations to amino acid, eicosanoid, lipid, co-factor, nucleotide, mitochondrial and microbial metabolic pathways, many of which were shared between PSC and PBC. Notably, this analysis implicates a potential role of the 5-lipoxygenase pathway in the pathogenesis of these diseases. Finally, EWAS × MWAS network analysis uncovered linkages between environmental agents and disrupted metabolic pathways that provide insight into potential mechanisms for PSC and PBC. Conclusion: This study establishes combined exposomics-metabolomics as a generalizable approach to identify potentially pathogenic environmental agents and enumerate metabolic alterations that may impact PSC and PBC, providing a foundation for diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Douglas I. Walker
- Department of Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Brian D. Juran
- Division of Gastroenterology and HepatologyMayo ClinicRochesterMNUSA
| | - Angela C. Cheung
- Gastroenterology and HepatologyDepartment of MedicineThe Ottawa HospitalOttawaONCanada
| | - Erik M. Schlicht
- Division of Gastroenterology and HepatologyMayo ClinicRochesterMNUSA
| | - Yongliang Liang
- Clinical Biomarkers LaboratoryDivision of PulmonaryAllergyCritical Care and Sleep MedicineEmory UniversityAtlantaGAUSA
| | - Megan Niedzwiecki
- Department of Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | | | - Gregory J. Gores
- Division of Gastroenterology and HepatologyMayo ClinicRochesterMNUSA
| | - Dean P. Jones
- Clinical Biomarkers LaboratoryDivision of PulmonaryAllergyCritical Care and Sleep MedicineEmory UniversityAtlantaGAUSA
| | - Gary W. Miller
- Department of Environmental Health SciencesColumbia University Mailman School of Public HealthNew YorkNYUSA
| | | |
Collapse
|
36
|
Abstract
Many neurological disorders have complex etiologies that include noninheritable factors, collectively called the neural exposome. The National Institute of Neurological Disorders and Stroke is developing a new office with goals to advance our understanding of the multiple causes of neurological illness and to enable the development of more effective interventions.
Collapse
Affiliation(s)
- Amir P Tamiz
- Division of Translational Research, National Institute of Neurological Disorders and Stroke, NIH, 6001 Executive Blvd., Rockville, MD 20852, USA
| | - Walter J Koroshetz
- National Institute of Neurological Disorders and Stroke, NIH, 31 Center Drive, 8A31, Bethesda, MD 20892, USA
| | - Neel T Dhruv
- Division of Translational Research, National Institute of Neurological Disorders and Stroke, NIH, 6001 Executive Blvd., Rockville, MD 20852, USA
| | - David A Jett
- Division of Translational Research, National Institute of Neurological Disorders and Stroke, NIH, 6001 Executive Blvd., Rockville, MD 20852, USA.
| |
Collapse
|
37
|
Metabolomics and the Multi-Omics View of Cancer. Metabolites 2022; 12:metabo12020154. [PMID: 35208228 PMCID: PMC8880085 DOI: 10.3390/metabo12020154] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer is widely regarded to be a genetic disease. Indeed, over the past five decades, the genomic perspective on cancer has come to almost completely dominate the field. However, this genome-only view is incomplete and tends to portray cancer as a disease that is highly heritable, driven by hundreds of complex genetic interactions and, consequently, difficult to prevent or treat. New evidence suggests that cancer is not as heritable or purely genetic as once thought and that it really is a multi-omics disease. As highlighted in this review, the genome, the exposome, and the metabolome all play roles in cancer’s development and manifestation. The data presented here show that >90% of cancers are initiated by environmental exposures (the exposome) which lead to cancer-inducing genetic changes. The resulting genetic changes are, then, propagated through the altered DNA of the proliferating cancer cells (the genome). Finally, the dividing cancer cells are nourished and sustained by genetically reprogrammed, cancer-specific metabolism (the metabolome). As shown in this review, all three “omes” play roles in initiating cancer. Likewise, all three “omes” interact closely, often providing feedback to each other to sustain or enhance tumor development. Thanks to metabolomics, these multi-omics feedback loops are now much more evident and their roles in explaining the hallmarks of cancer are much better understood. Importantly, this more holistic, multi-omics view portrays cancer as a disease that is much more preventable, easier to understand, and potentially, far more treatable.
Collapse
|
38
|
Fuentes ZC, Schwartz YL, Robuck AR, Walker DI. Operationalizing the Exposome Using Passive Silicone Samplers. CURRENT POLLUTION REPORTS 2022; 8:1-29. [PMID: 35004129 PMCID: PMC8724229 DOI: 10.1007/s40726-021-00211-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/11/2021] [Indexed: 05/15/2023]
Abstract
The exposome, which is defined as the cumulative effect of environmental exposures and corresponding biological responses, aims to provide a comprehensive measure for evaluating non-genetic causes of disease. Operationalization of the exposome for environmental health and precision medicine has been limited by the lack of a universal approach for characterizing complex exposures, particularly as they vary temporally and geographically. To overcome these challenges, passive sampling devices (PSDs) provide a key measurement strategy for deep exposome phenotyping, which aims to provide comprehensive chemical assessment using untargeted high-resolution mass spectrometry for exposome-wide association studies. To highlight the advantages of silicone PSDs, we review their use in population studies and evaluate the broad range of applications and chemical classes characterized using these samplers. We assess key aspects of incorporating PSDs within observational studies, including the need to preclean samplers prior to use to remove impurities that interfere with compound detection, analytical considerations, and cost. We close with strategies on how to incorporate measures of the external exposome using PSDs, and their advantages for reducing variability in exposure measures and providing a more thorough accounting of the exposome. Continued development and application of silicone PSDs will facilitate greater understanding of how environmental exposures drive disease risk, while providing a feasible strategy for incorporating untargeted, high-resolution characterization of the external exposome in human studies.
Collapse
Affiliation(s)
- Zoe Coates Fuentes
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| | - Yuri Levin Schwartz
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| | - Anna R. Robuck
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| |
Collapse
|