1
|
Savinkina A, Weinberger DM, Toscano CM, De Oliveira LH. Estimated Deaths Averted in Adults by COVID-19 Vaccination in Select Latin American and Caribbean Countries. Open Forum Infect Dis 2024; 11:ofae528. [PMID: 39411224 PMCID: PMC11474601 DOI: 10.1093/ofid/ofae528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/08/2024] [Indexed: 10/19/2024] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) pandemic has had a significant impact on global health, with millions of lives lost worldwide. Vaccination has emerged as a crucial strategy in mitigating the impact of the disease. This study aims to estimate the number of deaths averted through vaccination in Latin America and the Caribbean region (LAC) during the first year and a half of vaccination rollout (January 2021-May 2022). Methods Publicly available data on COVID-19 deaths and vaccination rates were used to estimate the total number of deaths averted via vaccination in LAC. Using estimates for number of deaths, number of vaccinated, and vaccine effectiveness, a counterfactual estimated number of deaths observed without vaccination was calculated. Vaccine effectiveness estimates were obtained from published studies. The analysis focused on 17 countries in LAC and considered adults aged 18 years and older. Results After accounting for underreporting, the analysis estimated that >1.49 million deaths were caused by COVID-19 in the selected countries during the study period. Without vaccination, the model estimated that between 2.10 and 4.11 million COVID-19 deaths would have occurred. Consequently, vaccination efforts resulted in ∼610 000 to 2.61 million deaths averted. Conclusions This study represents the first large-scale, multicenter estimate of population-level vaccine impact on COVID-19 mortality in LAC. The findings underscore the substantial impact of timely and widespread vaccination in averting COVID-19 deaths. These results provide crucial support for vaccination programs aimed at combating epidemic infectious diseases in the region and future pandemics.
Collapse
Affiliation(s)
- Alexandra Savinkina
- Department of Epidemiology of Microbial Diseases and Public Health Modeling Unit, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases and Public Health Modeling Unit, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Cristiana M Toscano
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Lucia H De Oliveira
- Independent Consultant, working at Comprehensive Immunization Program, Pan-American Health Organization (PAHO) when the project was conceived
| |
Collapse
|
2
|
Lazar Neto F, Mercadé-Besora N, Raventós B, Pérez-Crespo L, Castro Junior G, Ranzani OT, Duarte-Salles T. Effectiveness of COVID-19 vaccines against severe COVID-19 among patients with cancer in Catalonia, Spain. Nat Commun 2024; 15:5088. [PMID: 38898035 PMCID: PMC11187152 DOI: 10.1038/s41467-024-49285-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Patients with cancer were excluded from pivotal randomized clinical trials of COVID-19 vaccine products, and available observational evidence on vaccine effectiveness (VE) focused mostly on mild, and not severe COVID-19, which is the ultimate goal of vaccination for high-risk groups. Here, using primary care electronic health records from Catalonia, Spain (SIDIAP), we built two large cohorts of vaccinated and matched control cancer patients with a primary vaccination scheme (n = 184,744) and a booster (n = 108,534). Most patients received a mRNA-based product in primary (76.2%) and booster vaccination (99.9%). Patients had 51.8% (95% CI 40.3%-61.1%) and 58.4% (95% CI 29.3%-75.5%) protection against COVID-19 hospitalization and COVID-19 death respectively after full vaccination (two-doses) and 77.9% (95% CI 69.2%-84.2%) and 80.2% (95% CI 63.0%-89.4%) after booster. Compared to primary vaccination, the booster dose provided higher peak protection during follow-up. Calibration of VE estimates with negative outcomes, and sensitivity analyses with slight different population and COVID-19 outcomes definitions provided similar results. Our results confirm the role of primary and booster COVID-19 vaccination in preventing COVID-19 severe events in patients with cancer and highlight the need for the additional dose in this population.
Collapse
Affiliation(s)
- Felippe Lazar Neto
- Pulmonary Division, Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Serviço de Oncologia Clínica, Instituto do Câncer do Estado de São Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Núria Mercadé-Besora
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Berta Raventós
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Laura Pérez-Crespo
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Gilberto Castro Junior
- Serviço de Oncologia Clínica, Instituto do Câncer do Estado de São Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Otavio T Ranzani
- Pulmonary Division, Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.
| | - Talita Duarte-Salles
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain.
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Lazar Neto F, Hitchings MD, Amin AB, de França GV, Lind ML, Scaramuzzini Torres MS, Tsuha DH, de Oliveira RD, Cummings DA, Dean NE, Andrews JR, Ko AI, Croda J, Ranzani OT. Effectiveness of the fourth dose of COVID-19 vaccines against severe COVID-19 among adults 40 years or older in Brazil: a population-based cohort study. LANCET REGIONAL HEALTH. AMERICAS 2024; 34:100755. [PMID: 38737773 PMCID: PMC11087726 DOI: 10.1016/j.lana.2024.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
Background The emergence of COVID-19 variants with immune scape and the waning of primary vaccine schemes effectiveness have prompted many countries to indicate first and second booster COVID-19 vaccine doses to prevent severe COVID-19. However, current available evidence on second booster dose effectiveness are mostly limited to high-income countries, older adults, and mRNA-based vaccination schemes scenarios. We aimed to investigate the relative vaccine effectiveness (rVE) of the fourth dose compared to three doses for severe COVID-19 outcomes in Brazil; and compare the rVE of a fourth dose with an mRNA vaccine compared to adenovirus-based product in the same settings. Methods We performed a target emulated trial using a population-based cohort of individuals aged 40 years or older who have received a homologous primary scheme of CoronaVac, ChAdOx1, or BNT162b2, and any third dose product and were eligible for the fourth dose in Brazil. The primary outcome was COVID-19 associated hospitalization or death. We built Cohort A matching individuals vaccinated with a fourth dose to individuals who received three doses to estimate the rVE of the fourth dose. We built Cohort B, a subset of Cohort A, matching mRNA-based (mRNA) to adenovirus-based fourth dose vaccinated individuals to compare their relative hazards for severe COVID-19. Findings 46,693,484 individuals were included in Cohort A and 6,763,016 in Cohort B. 45% of them were aged between 40 and 60 years old, and 48% between 60 and 79 years old. In Cohort A, the most common previous series was a ChAdOx1 two-dose followed by BNT162b2 (44%), and a CoronaVac two-dose followed by a BNT162b2 (36%). Among those fourth dose vaccinated, 36.9% received ChAdOx1, 32.7% Ad26.COV2.S, 25.8% BNT162b2, and 4.7% CoronaVac. In Cohort B, among those who received an adenovirus fourth dose, 53.7% received ChAdOx1 and 46.3% received Ad26.COV2.S. The estimated rVE for the primary outcome of four doses compared to three doses was 44.1% (95% CI 42.3-46.0), with some waning during follow-up (rVE 7-60 days 46.8% [95% CI 44.4-49.1], rVE after 120 days 33.8% [95% CI 18.0-46.6]). Among fourth dose vaccinated individuals, mRNA-based vaccinated individuals had lower hazards for hospitalization or death compared to adenovirus-vaccinated individuals (HR 0.81, 95% CI 0.75-0.87). After 120 days, no difference in hazards between groups was observed (HR 1.35, 95% CI 0.93-1.97). Similar findings were observed for hospitalization and death separately, except no evidence for differences between fourth dose brands for death in Cohort B. Interpretation In a heterogeneous scenario of primary and first booster vaccination combinations, a fourth dose provided meaningful and durable protection against severe COVID-19 outcomes. Compared to adenovirus-based booster, a fourth dose wild-type mRNA vaccine was associated with immediate lower hazards of hospitalization or death unsustained after 120 days. Funding None.
Collapse
Affiliation(s)
- Felippe Lazar Neto
- Pulmonary Division, Heart Institute, Hospital das Clínicas, Faculdade de Medicina, São Paulo, SP, Brazil
| | - Matt D.T. Hitchings
- Department of Biostatistics, College of Public Health & Health Professions, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Avnika B. Amin
- Department of Biostatistics & Bioinformatics, Rollins School of Public Health, Emory, University, Atlanta, GA, USA
| | | | - Margaret L. Lind
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | | | | | - Roberto D. de Oliveira
- State University of Mato Grosso do Sul, Dourados, MS, Brazil
- Graduate Program in Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | - Derek A.T. Cummings
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Natalie E. Dean
- Department of Biostatistics & Bioinformatics, Rollins School of Public Health, Emory, University, Atlanta, GA, USA
| | - Jason R. Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil
| | - Julio Croda
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Fiocruz Mato Grosso do Sul, Fundação Oswaldo Cruz, Campo Grande, MS, Brazil
- State University of Mato Grosso do Sul, Dourados, MS, Brazil
- Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Otavio T. Ranzani
- Pulmonary Division, Heart Institute, Hospital das Clínicas, Faculdade de Medicina, São Paulo, SP, Brazil
- Barcelona Institute for Global Health, ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Mésidor M, Liu Y, Talbot D, Skowronski DM, De Serres G, Merckx J, Koushik A, Tadrous M, Carazo S, Jiang C, Schnitzer ME. Test negative design for vaccine effectiveness estimation in the context of the COVID-19 pandemic: A systematic methodology review. Vaccine 2024; 42:995-1003. [PMID: 38072756 DOI: 10.1016/j.vaccine.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND During the height of the global COVID-19 pandemic, the test-negative design (TND) was extensively used in many countries to evaluate COVID-19 vaccine effectiveness (VE). Typically, the TND involves the recruitment of care-seeking individuals who meet a common clinical case definition. All participants are then tested for an infection of interest. OBJECTIVES To review and describe the variation in TND methodology, and disclosure of potential biases, as applied to the evaluation of COVID-19 VE during the early vaccination phase of the pandemic. METHODS We conducted a systematic review by searching four biomedical databases using defined keywords to identify peer-reviewed articles published between January 1, 2020, and January 25, 2022. We included only original articles that employed a TND to estimate VE of COVID-19 vaccines in which cases and controls were evaluated based on SARS-CoV-2 laboratory test results. RESULTS We identified 96 studies, 35 of which met the defined criteria. Most studies were from North America (16 studies) and targeted the general population (28 studies). Outcome case definitions were based primarily on COVID-19-like symptoms; however, several papers did not consider or specify symptoms. Cases and controls had the same inclusion criteria in only half of the studies. Most studies relied upon administrative or hospital databases assembled for a different (non-evaluation) clinical purpose. Potential unmeasured confounding (20 studies), misclassification of current SARS-CoV-2 infection (16 studies) and selection bias (10 studies) were disclosed as limitations by some studies. CONCLUSION We observed potentially meaningful deviations from the validated design in the application of the TND during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Miceline Mésidor
- Département de médecine sociale et préventive, Université Laval, Québec, Canada; Centre de recherche du CHU de Québec - Université Laval, Québec, Canada
| | - Yan Liu
- Faculty of Pharmacy, Université de Montréal, Québec, Canada
| | - Denis Talbot
- Département de médecine sociale et préventive, Université Laval, Québec, Canada; Centre de recherche du CHU de Québec - Université Laval, Québec, Canada.
| | - Danuta M Skowronski
- British Columbia Centre for Disease Control, Vancouver, Canada; University of British Columbia, Vancouver, Canada
| | - Gaston De Serres
- Département de médecine sociale et préventive, Université Laval, Québec, Canada; Institut national de santé publique du Québec, Québec, Canada
| | - Joanna Merckx
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Anita Koushik
- Département de médecine sociale et préventive, Université de Montréal, Québec, Canada
| | | | - Sara Carazo
- Institut national de santé publique du Québec, Québec, Canada
| | - Cong Jiang
- Faculty of Pharmacy, Université de Montréal, Québec, Canada
| | - Mireille E Schnitzer
- Faculty of Pharmacy, Université de Montréal, Québec, Canada; Département de médecine sociale et préventive, Université de Montréal, Québec, Canada.
| |
Collapse
|
5
|
Català M, Burn E, Rathod-Mistry T, Xie J, Delmestri A, Prieto-Alhambra D, Jödicke AM. Observational methods for COVID-19 vaccine effectiveness research: an empirical evaluation and target trial emulation. Int J Epidemiol 2024; 53:dyad138. [PMID: 37833846 PMCID: PMC10859138 DOI: 10.1093/ije/dyad138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND There are scarce data on best practices to control for confounding in observational studies assessing vaccine effectiveness to prevent COVID-19. We compared the performance of three well-established methods [overlap weighting, inverse probability treatment weighting and propensity score (PS) matching] to minimize confounding when comparing vaccinated and unvaccinated people. Subsequently, we conducted a target trial emulation to study the ability of these methods to replicate COVID-19 vaccine trials. METHODS We included all individuals aged ≥75 from primary care records from the UK [Clinical Practice Research Datalink (CPRD) AURUM], who were not infected with or vaccinated against SARS-CoV-2 as of 4 January 2021. Vaccination status was then defined based on first COVID-19 vaccine dose exposure between 4 January 2021 and 28 January 2021. Lasso regression was used to calculate PS. Location, age, prior observation time, regional vaccination rates, testing effort and COVID-19 incidence rates at index date were forced into the PS. Following PS weighting and matching, the three methods were compared for remaining covariate imbalance and residual confounding. Last, a target trial emulation comparing COVID-19 at 3 and 12 weeks after first vaccine dose vs unvaccinated was conducted. RESULTS Vaccinated and unvaccinated cohorts comprised 583 813 and 332 315 individuals for weighting, respectively, and 459 000 individuals in the matched cohorts. Overlap weighting performed best in terms of minimizing confounding and systematic error. Overlap weighting successfully replicated estimates from clinical trials for vaccine effectiveness for ChAdOx1 (57%) and BNT162b2 (75%) at 12 weeks. CONCLUSION Overlap weighting performed best in our setting. Our results based on overlap weighting replicate previous pivotal trials for the two first COVID-19 vaccines approved in Europe.
Collapse
Affiliation(s)
- Martí Català
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Edward Burn
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Trishna Rathod-Mistry
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Junqing Xie
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Antonella Delmestri
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Daniel Prieto-Alhambra
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Annika M Jödicke
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Machado RRG, Candido ÉD, Aguiar AS, Chalup VN, Sanches PR, Dorlass EG, Amgarten DE, Pinho JRR, Durigon EL, Oliveira DBL. Immune Evasion of SARS-CoV-2 Omicron Subvariants XBB.1.5, XBB.1.16 and EG.5.1 in a Cohort of Older Adults after ChAdOx1-S Vaccination and BA.4/5 Bivalent Booster. Vaccines (Basel) 2024; 12:144. [PMID: 38400128 PMCID: PMC10892985 DOI: 10.3390/vaccines12020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 02/25/2024] Open
Abstract
The recently emerged SARS-CoV-2 Omicron sublineages, including the BA.2-derived XBB.1.5 (Kraken), XBB.1.16 (Arcturus), and EG.5.1 (Eris), have accumulated several spike mutations that may increase immune escape, affecting vaccine effectiveness. Older adults are an understudied group at significantly increased risk of severe COVID-19. Here we report the neutralizing activities of 177 sera samples from 59 older adults, aged 62-97 years, 1 and 4 months after vaccination with a 4th dose of ChAdOx1-S (Oxford/AstraZeneca) and 3 months after a 5th dose of Comirnaty Bivalent Original/Omicron BA.4/BA.5 vaccine (Pfizer-BioNTech). The ChAdOx1-S vaccination-induced antibodies neutralized efficiently the ancestral D614G and BA.4/5 variants, but to a much lesser extent the XBB.1.5, XBB.1.16, and EG.5.1 variants. The results showed similar neutralization titers between XBB.1.16 and EG.5.1 and were lower compared to XBB.1.5. Sera from the same individuals boosted with the bivalent mRNA vaccine contained higher neutralizing antibody titers, providing a better cross-protection against Omicron XBB.1.5, XBB.1.16 and EG.5.1 variants. Previous history of infection during the epidemiological waves of BA.1/BA.2 and BA.4/BA.5, poorly enhanced neutralization activity of serum samples against XBBs and EG.5.1 variants. Our data highlight the continued immune evasion of recent Omicron subvariants and support the booster administration of BA.4/5 bivalent vaccine, as a continuous strategy of updating future vaccine booster doses to match newly emerged SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Rafael Rahal Guaragna Machado
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Érika Donizetti Candido
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Andressa Simoes Aguiar
- Dom Pedro II Geriatric and Convalescent Hospital, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo 02265-002, SP, Brazil
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Vanessa Nascimento Chalup
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Patricia Romão Sanches
- Dom Pedro II Geriatric and Convalescent Hospital, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo 02265-002, SP, Brazil
| | - Erick Gustavo Dorlass
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
| | | | - João Renato Rebello Pinho
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
- Laboratório de Medicina Laboratorial (LIM03), Department of Pathology, School of Medicine, University of São Paulo, São Paulo 01246-903, SP, Brazil
- Laboratório de Gastroenterologia Clínica e Experimental (LIM07), Department of Gastroenterology, School of Medicine, University of São Paulo, São Paulo 01246-903, SP, Brazil
| | - Edison Luiz Durigon
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Scientific Platform Pasteur-USP, São Paulo 05508-020, SP, Brazil
| | - Danielle Bruna Leal Oliveira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
| |
Collapse
|
7
|
Reynolds L, Dewey C, Asfour G, Little M. Vaccine efficacy against SARS-CoV-2 for Pfizer BioNTech, Moderna, and AstraZeneca vaccines: a systematic review. Front Public Health 2023; 11:1229716. [PMID: 37942238 PMCID: PMC10628441 DOI: 10.3389/fpubh.2023.1229716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/15/2023] [Indexed: 11/10/2023] Open
Abstract
The purpose of this systematic review was to report on the vaccine efficacy (VE) of three SARS-CoV-2 vaccines approved by Health Canada: Pfizer BioNTech, Moderna, and AstraZeneca. Four databases were searched for primary publications on population-level VE. Ninety-two publications matched the inclusion criteria, and the extracted data were separated by vaccine type: mRNA vaccines (Pfizer and Moderna) and the AstraZeneca vaccine. The median VE for PCR-positive patients and various levels of clinical disease was determined for the first and second doses of both vaccine types against multiple SARS-CoV-2 variants. The median VE for PCR-positive infections against unidentified variants from an mRNA vaccine was 64.5 and 89%, respectively, after one or two doses. The median VE for PCR-positive infections against unidentified variants from the AstraZeneca vaccine was 53.4 and 69.6%, respectively, after one or two doses. The median VE for two doses of mRNA for asymptomatic, symptomatic, and severe infection against unidentified variants was 85.5, 93.2, and 92.2%, respectively. The median VE for two doses of AstraZeneca for asymptomatic, symptomatic, and severe infection against unidentified variants was 69.7, 71, and 90.2%, respectively. Vaccine efficacy numerically increased from the first to the second dose, increased from the first 2 weeks to the second 2 weeks post-vaccination for both doses, but decreased after 4 months from the second dose. Vaccine efficacy did not differ by person's age.
Collapse
Affiliation(s)
- Lia Reynolds
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Cate Dewey
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Ghaid Asfour
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Matthew Little
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- School of Public Health and Social Policy, Faculty of Human and Social Development, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
8
|
Irala S, Hamid S, Penayo E, Michel F, Couto P, Vazquez C, Ortega MJ, Domínguez C, Battaglia S, Von Horoch M, Montoya R, Sequera G, Nogareda F. COVID-19 vaccine effectiveness against hospitalizations in Paraguay, May 2021-April 2022: A test-negative design. Vaccine 2023; 41:6453-6460. [PMID: 37716830 PMCID: PMC11556362 DOI: 10.1016/j.vaccine.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Vaccine effectiveness (VE) estimates vary by population characteristics and circulating variants. North America and Europe have generated many COVID-19 VE estimates but relied heavily on mRNA vaccines. Fewer estimates are available for non-mRNA vaccines and from Latin America. We aimed to estimate the effectiveness of several COVID-19 vaccines in preventing SARS-CoV-2-associated severe acute respiratory infection (SARI) in Paraguay from May 2021 to April 2022. METHODS Using sentinel surveillance data from four hospitals in Paraguay, we conducted a test-negative case-control study to estimate COVID-19 vaccine effectiveness against SARI by vaccine type/brand and period of SARS-CoV-2 variant predominance (Gamma, Delta, Omicron). We used multivariable logistic regression adjusting for month of symptom onset, age group, and presence of ≥1 comorbidity to estimate the odds of COVID-19 vaccination in SARS-CoV-2 test-positive SARI case-patients compared to SARS-CoV-2 test-negative SARI control-patients. RESULTS Of 4,229 SARI patients, 2,381 (56%) were SARS-CoV-2-positive case-patients and 1,848 (44%) were SARS-CoV-2-negative control-patients. A greater proportion of case-patients (73%; 95% CI: 71-75) than of control-patients (40%; 95% CI: 38-42) were unvaccinated. During the Gamma variant-predominant period, VE estimates for partial vaccination with mRNA vaccines and Oxford/AstraZeneca Vaxzevria were 90.4% (95% CI: 66.4-97.6) and 52.2% (95% CI: 25.0-69.0), respectively. During the Delta variant-predominant period, VE estimates for complete vaccination with mRNA vaccines, Oxford/AstraZeneca Vaxzevria, or Gamaleya Sputnik V were 90.4% (95% CI: 74.3-97.3), 83.2% (95% CI: 67.8-91.9), and 82.9% (95% CI: 53.0-95.2), respectively. The effectiveness of all vaccines declined substantially during the Omicron variant-predominant period. CONCLUSIONS This study contributes to our understanding of COVID-19 VE in Latin America and to global understanding of vaccines that have not been widely used in North America and Europe. VE estimates from Paraguay can parameterize models to estimate the impact of the national COVID-19 vaccination campaign in Paraguay and similar settings.
Collapse
Affiliation(s)
- Sandra Irala
- Directorate General for Health Surveillance, Ministry of Public Health and Social Welfare, Paraguay
| | - Sarah Hamid
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, GA, USA; Epidemic Intelligence Service, US Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Elena Penayo
- Directorate General for Health Surveillance, Ministry of Public Health and Social Welfare, Paraguay.
| | | | - Paula Couto
- Pan American Health Organization, Washington, DC, USA
| | - Cynthia Vazquez
- Department of Virology, Central Laboratory for Public Health, Asunción, Paraguay
| | - María José Ortega
- Department of Virology, Central Laboratory for Public Health, Asunción, Paraguay
| | - Chavely Domínguez
- Directorate General for Health Surveillance, Ministry of Public Health and Social Welfare, Paraguay
| | - Silvia Battaglia
- National Program for Vaccine Preventable Diseases and Expanded Program on Immunization, Asunción, Paraguay
| | - Marta Von Horoch
- National Program for Vaccine Preventable Diseases and Expanded Program on Immunization, Asunción, Paraguay
| | - Romeo Montoya
- Pan American Health Organization, Asunción, Paraguay
| | - Guillermo Sequera
- Directorate General for Health Surveillance, Ministry of Public Health and Social Welfare, Paraguay
| | | |
Collapse
|
9
|
Yuan Z, Shao Z, Ma L, Guo R. Clinical Severity of SARS-CoV-2 Variants during COVID-19 Vaccination: A Systematic Review and Meta-Analysis. Viruses 2023; 15:1994. [PMID: 37896770 PMCID: PMC10611048 DOI: 10.3390/v15101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Due to the variation in the SARS-CoV-2 virus, COVID-19 exhibits significant variability in severity. This presents challenges for governments in managing the allocation of healthcare resources and prioritizing health interventions. Clinical severity is also a critical statistical parameter for researchers to quantify the risks of infectious disease, model the transmission of COVID-19, and provide some targeted measures to control the pandemic. To obtain more accurate severity estimates, including confirmed case-hospitalization risk, confirmed case-fatality risk, hospitalization-fatality risk, and hospitalization-ICU risk, we conducted a systematic review and meta-analysis on the clinical severity (including hospitalization, ICU, and fatality risks) of different variants during the period of COVID-19 mass vaccination and provided pooled estimates for each clinical severity metric. All searches were carried out on 1 February 2022 in PubMed for articles published from 1 January 2020 to 1 February 2022. After identifying a total of 3536 studies and excluding 3523 irrelevant studies, 13 studies were included. The severity results show that the Delta and Omicron variants have the highest (6.56%, 0.46%, 19.63%, and 9.06%) and lowest severities (1.51%, 0.04%, 6.01%, and 3.18%), respectively, according to the four clinical severity metrics. Adults over 65 have higher severity levels for all four clinical severity metrics.
Collapse
Affiliation(s)
- Zhilu Yuan
- School of Architecture and Urban Planning, Research Institute for Smart Cities, Shenzhen University, Shenzhen 518060, China; (Z.Y.); (R.G.)
| | - Zengyang Shao
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Lijia Ma
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Renzhong Guo
- School of Architecture and Urban Planning, Research Institute for Smart Cities, Shenzhen University, Shenzhen 518060, China; (Z.Y.); (R.G.)
| |
Collapse
|
10
|
Monteiro HS, Lima Neto AS, Kahn R, Sousa GS, Carmona HA, Andrade JS, Castro MC. Impact of CoronaVac on Covid-19 outcomes of elderly adults in a large and socially unequal Brazilian city: A target trial emulation study. Vaccine 2023; 41:5742-5751. [PMID: 37573202 DOI: 10.1016/j.vaccine.2023.07.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Although CoronaVac was the only Covid-19 vaccine adopted in the first months of the Brazilian vaccination campaign, randomized clinical trials to evaluate its efficacy in elderly adults were limited. In this study, we use routinely collected surveillance and SARS-CoV-2 vaccination and testing data comprising the population of the fifth largest city of Brazil to evaluate the effectiveness of CoronaVac in adults 60+ years old against severe outcomes. METHODS Using large observational databases on vaccination and surveillance data from the city of Fortaleza, Brazil, we defined a retrospective cohort including 324,302 eligible adults aged ≥60 years to evaluate the effectiveness of the CoronaVac vaccine. The cohort included individuals vaccinated between January 21, 2021, and August 31, 2021, who were matched with unvaccinated persons at the time of rollout following a 1:1 ratio according to baseline covariates of age, sex, and Human Development Index of the neighborhood of residence. Only Covid-19-related severe outcomes were included in the analysis: hospitalization, ICU admission, and death. Vaccine effectiveness for each outcome was calculated by using the risk ratio between the two groups, with the risk obtained by the Kaplan-Meier estimator. RESULTS We obtained 62,643 matched pairs for assessing the effectiveness of the two-dose regimen of CoronaVac. The demographic profile of the matched population was statistically representative of the population of Fortaleza. Using the cumulative incidence as the risk associated with each group, starting at day 14 since the receipt of the second dose, we found an 82.3 % (95 % CI 66.3-93.9) effectiveness against Covid-19-related death, 68.4 % (95 % CI 42.3-86.4) against ICU admission, and 55.8 % (95 % CI 42.7-68.3) against hospital admission. CONCLUSIONS Our results show that, despite critical delays in vaccine delivery and limited evidence in efficacy trial estimates, CoronaVac contributed to preventing deaths and severe morbidity due to Covid-19 in elderly adults.
Collapse
Affiliation(s)
- Higor S Monteiro
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil; Secretaria Municipal de Saúde de Fortaleza (SMS-Fortaleza), Fortaleza, Ceará, Brazil.
| | - Antonio S Lima Neto
- Secretaria Municipal de Saúde de Fortaleza (SMS-Fortaleza), Fortaleza, Ceará, Brazil; Centro de Ciências da Saúde, Universidade de Fortaleza (UNIFOR), Fortaleza, Ceará, Brazil
| | - Rebecca Kahn
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| | - Geziel S Sousa
- Secretaria Municipal de Saúde de Fortaleza (SMS-Fortaleza), Fortaleza, Ceará, Brazil; Centro de Ciências da Saúde, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Humberto A Carmona
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| | - José S Andrade
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| | - Marcia C Castro
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
11
|
Li KQ, Shi X, Miao W, Tchetgen ET. Double Negative Control Inference in Test-Negative Design Studies of Vaccine Effectiveness. J Am Stat Assoc 2023; 119:1859-1870. [PMID: 39524693 PMCID: PMC11545655 DOI: 10.1080/01621459.2023.2220935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 01/18/2023] [Accepted: 03/31/2023] [Indexed: 11/16/2024]
Abstract
The test-negative design (TND) has become a standard approach to evaluate vaccine effectiveness against the risk of acquiring infectious diseases in real-world settings, such as Influenza, Rotavirus, Dengue fever, and more recently COVID-19. In a TND study, individuals who experience symptoms and seek care are recruited and tested for the infectious disease which defines cases and controls. Despite TND's potential to reduce unobserved differences, in healthcare seeking behavior (HSB) between vaccinated and unvaccinated subjects, it remains subject to various potential biases. First, residual confounding may remain due to unobserved HSB occupation as healthcare worker, or previous infection history. Second, because selection into the TND sample is a common consequence of infection and HSB, collider stratification bias may exist when conditioning the analysis on tested samples, which further induces confounding by latent HSB. In this paper, we present a novel approach to identify and estimate vaccine effectiveness in the target population by carefully leveraging a pair of negative control exposure and outcome variables to account for potential hidden bias in TND studies. We illustrate our proposed method with extensive simulations and an application to study COVID-19 vaccine effectiveness using data from the University of Michigan Health System.
Collapse
Affiliation(s)
| | - Xu Shi
- Department of Biostatistics, University of Michigan
| | - Wang Miao
- Department of Probability and Statistics, Peking University
| | - Eric Tchetgen Tchetgen
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania
| |
Collapse
|
12
|
Schmidt P, Narayan K, Li Y, Kaku CI, Brown ME, Champney E, Geoghegan JC, Vásquez M, Krauland EM, Yockachonis T, Bai S, Gunn BM, Cammarata A, Rubino CM, Ambrose P, Walker LM. Antibody-mediated protection against symptomatic COVID-19 can be achieved at low serum neutralizing titers. Sci Transl Med 2023; 15:eadg2783. [PMID: 36947596 DOI: 10.1126/scitranslmed.adg2783] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Multiple studies of vaccinated and convalescent cohorts have demonstrated that serum neutralizing antibody (nAb) titers correlate with protection against coronavirus disease 2019 (COVID-19). However, the induction of multiple layers of immunity after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure has complicated the establishment of nAbs as a mechanistic correlate of protection (CoP) and hindered the definition of a protective nAb threshold. Here, we show that a half-life-extended monoclonal antibody (adintrevimab) provides about 50% protection against symptomatic COVID-19 in SARS-CoV-2-naïve adults at serum nAb titers on the order of 1:30. Vaccine modeling results support a similar 50% protective nAb threshold, suggesting that low titers of serum nAbs protect in both passive antibody prophylaxis and vaccination settings. Extrapolation of adintrevimab pharmacokinetic data suggests that protection against susceptible variants could be maintained for about 3 years. The results provide a benchmark for the selection of next-generation vaccine candidates and support the use of broad, long-acting monoclonal antibodies as alternatives or supplements to vaccination in high-risk populations.
Collapse
Affiliation(s)
| | | | - Yong Li
- Invivyd Inc., Waltham, MA 02451, USA
| | | | | | | | | | | | | | - Thomas Yockachonis
- Paul G. Allen School of Global Health, Washington State University, Pullman, WA 99164, USA
| | - Shuangyi Bai
- Paul G. Allen School of Global Health, Washington State University, Pullman, WA 99164, USA
| | - Bronwyn M Gunn
- Paul G. Allen School of Global Health, Washington State University, Pullman, WA 99164, USA
| | | | | | - Paul Ambrose
- Institute for Clinical Pharmacodynamics, Schenectady, NY 12305, USA
| | | |
Collapse
|
13
|
Guzzi PH, di Paola L, Puccio B, Lomoio U, Giuliani A, Veltri P. Computational analysis of the sequence-structure relation in SARS-CoV-2 spike protein using protein contact networks. Sci Rep 2023; 13:2837. [PMID: 36808182 PMCID: PMC9936485 DOI: 10.1038/s41598-023-30052-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
The structure of proteins impacts directly on the function they perform. Mutations in the primary sequence can provoke structural changes with consequent modification of functional properties. SARS-CoV-2 proteins have been extensively studied during the pandemic. This wide dataset, related to sequence and structure, has enabled joint sequence-structure analysis. In this work, we focus on the SARS-CoV-2 S (Spike) protein and the relations between sequence mutations and structure variations, in order to shed light on the structural changes stemming from the position of mutated amino acid residues in three different SARS-CoV-2 strains. We propose the use of protein contact network (PCN) formalism to: (i) obtain a global metric space and compare various molecular entities, (ii) give a structural explanation of the observed phenotype, and (iii) provide context dependent descriptors of single mutations. PCNs have been used to compare sequence and structure of the Alpha, Delta, and Omicron SARS-CoV-2 variants, and we found that omicron has a unique mutational pattern leading to different structural consequences from mutations of other strains. The non-random distribution of changes in network centrality along the chain has allowed to shed light on the structural (and functional) consequences of mutations.
Collapse
Affiliation(s)
- Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.
| | - Luisa di Paola
- grid.9657.d0000 0004 1757 5329Unit of Chemical-Physics Fundamentals in Chemical Engineering, Department of Engineering, Universita Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Barbara Puccio
- grid.411489.10000 0001 2168 2547Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Ugo Lomoio
- grid.411489.10000 0001 2168 2547Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Alessandro Giuliani
- grid.416651.10000 0000 9120 6856Environment and Health Department, Istituto Superiore di Sanita, Rome, Italy
| | - Pierangelo Veltri
- grid.411489.10000 0001 2168 2547Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy ,grid.7778.f0000 0004 1937 0319Department of Computer, Modeling, Electronics and System Engineering, University of Calabria, Rende, Italy
| |
Collapse
|
14
|
Hsu CY, Chang JC, Chen SLS, Chang HH, Lin ATY, Yen AMF, Chen HH. Primary and booster vaccination in reducing severe clinical outcomes associated with Omicron Naïve infection. J Infect Public Health 2023; 16:55-63. [PMID: 36470007 PMCID: PMC9708104 DOI: 10.1016/j.jiph.2022.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Little is known about long-term effectiveness of COVID-19 vaccine in reducing severity and deaths associated with Omicron VOC not perturbed by prior infection and independent of oral anti-viral therapy and non-pharmaceutical (NPI). METHODS A retrospective observational cohort study was applied to Taiwan community during the unprecedent large-scale outbreaks of Omicron BA.2 between April and August, 2022. Primary vaccination since March, 2021 and booster vaccination since January, 2022 were offered on population level. Oral Anti-viral therapy was also offered as of mid-May 2022. The population-based effectiveness of vaccination in reducing the risk of moderate and severe cases of and death from Omicron BA.2 with the consideration of NPI and oral anti-viral therapy were assessed by using Bayesian hierarchical models. RESULTS The risks of three clinical outcomes associated with Omicron VOC infection were lowest for booster vaccination, followed by primary vaccination, and highest for incomplete vaccination with the consistent trends of being at increased risk for three outcomes from the young people aged 12 years or below until the elderly people aged 75 years or older with 7 age groups. Before the period using oral anti-viral therapy, complete primary vaccination with the duration more than 9 months before outbreaks conferred the statistically significant 47 % (23-64 %) reduction of death, 48 % (30-61 %) of severe disease, and 46 % (95 % CI: 37-54 %) of moderate disease after adjusting for 10-20 % independent effect of NPI. The benefits of booster vaccination within three months were further enhanced to 76 % (95 % CI: 67-86 %), 74 % (95 % CI: 67-80 %), and 61 % (95 % CI: 56-65 %) for three corresponding outcomes. The additional effectiveness of oral anti-viral therapy in reducing moderate disease was 13 % for the booster group and 5.8 % for primary vaccination. CONCLUSIONS We corroborated population effectiveness of primary vaccination and its booster vaccination, independent of oral anti-viral therapy and NPI, in reducing severe clinical outcomes associated with Omicron BA.2 naïve infection population.
Collapse
Affiliation(s)
- Chen-Yang Hsu
- Master of Public Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan; Daichung Hospital, Miaoli, Taiwan
| | - Jung-Chen Chang
- School of Nursing, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Nursing, National Taiwan University Hospital, Taipei,Taiwan
| | - Sam Li-Shen Chen
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hao-Hsiang Chang
- Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Abbie Ting-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Amy Ming-Feng Yen
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Hsiu-Hsi Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
15
|
Effectiveness of COVID-19 Vaccines in Adults with Diabetes Mellitus: A Systematic Review. Vaccines (Basel) 2022; 11:vaccines11010024. [PMID: 36679869 PMCID: PMC9861646 DOI: 10.3390/vaccines11010024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Persons with diabetes mellitus may have an increased risk of severe illness or death from COVID-19 compared to persons without diabetes. Prior studies indicate that immune response and thus vaccine effectiveness might be lower in persons with diabetes. We aimed to systematically review the effectiveness of COVID-19 vaccines in adults with diabetes. Pubmed, Embase, Web of Science and Cochrane Library were searched for studies that evaluated the effectiveness of COVID-19 vaccines in adults with diabetes, published before 4 March 2022. Risk of bias in the included studies was evaluated using the ROBINS-I tool. At least two reviewers conducted the study selection, data extraction, and risk of bias assessment independently. After screening of 2196 studies, a total of 17 articles were included. Six different COVID-19 vaccines (Ad5-nCoV-S, AZD1222, BNT162b2, CoronaVac, JNJ-78436735, and mRNA-1273) were included in the synthesis. Vaccine effectiveness was reported for SARS-CoV-2 infection, symptomatic COVID-19, hospitalization, and death, and ranged from 24 to 96% in persons with diabetes, and from 33 to 97% in total study populations; effectiveness was generally lower for persons with diabetes. Odds ratios for breakthrough infection or severe COVID-19 ranged from 1.03 to 2.41 in vaccinated persons with diabetes compared to persons without diabetes. Even though the included studies were very heterogeneous, results from the synthesis indicate that effectiveness of COVID-19 vaccines might be lower in persons with diabetes. More research is needed on the comparison of vaccine effectiveness between persons with and without diabetes, and the effectiveness of repeat COVID-19 vaccinations.
Collapse
|
16
|
Lind ML, Robertson AJ, Silva J, Warner F, Coppi AC, Price N, Duckwall C, Sosensky P, Di Giuseppe EC, Borg R, Fofana MO, Ranzani OT, Dean NE, Andrews JR, Croda J, Iwasaki A, Cummings DAT, Ko AI, Hitchings MDT, Schulz WL. Association between primary or booster COVID-19 mRNA vaccination and Omicron lineage BA.1 SARS-CoV-2 infection in people with a prior SARS-CoV-2 infection: A test-negative case-control analysis. PLoS Med 2022; 19:e1004136. [PMID: 36454733 PMCID: PMC9714718 DOI: 10.1371/journal.pmed.1004136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/26/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The benefit of primary and booster vaccination in people who experienced a prior Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection remains unclear. The objective of this study was to estimate the effectiveness of primary (two-dose series) and booster (third dose) mRNA vaccination against Omicron (lineage BA.1) infection among people with a prior documented infection. METHODS AND FINDINGS We conducted a test-negative case-control study of reverse transcription PCRs (RT-PCRs) analyzed with the TaqPath (Thermo Fisher Scientific) assay and recorded in the Yale New Haven Health system from November 1, 2021, to April 30, 2022. Overall, 11,307 cases (positive TaqPath analyzed RT-PCRs with S-gene target failure [SGTF]) and 130,041 controls (negative TaqPath analyzed RT-PCRs) were included (median age: cases: 35 years, controls: 39 years). Among cases and controls, 5.9% and 8.1% had a documented prior infection (positive SARS-CoV-2 test record ≥90 days prior to the included test), respectively. We estimated the effectiveness of primary and booster vaccination relative to SGTF-defined Omicron (lineage BA.1) variant infection using a logistic regression adjusted for date of test, age, sex, race/ethnicity, insurance, comorbidities, social venerability index, municipality, and healthcare utilization. The effectiveness of primary vaccination 14 to 149 days after the second dose was 41.0% (95% confidence interval (CI): 14.1% to 59.4%, p 0.006) and 27.1% (95% CI: 18.7% to 34.6%, p < 0.001) for people with and without a documented prior infection, respectively. The effectiveness of booster vaccination (≥14 days after booster dose) was 47.1% (95% CI: 22.4% to 63.9%, p 0.001) and 54.1% (95% CI: 49.2% to 58.4%, p < 0.001) in people with and without a documented prior infection, respectively. To test whether booster vaccination reduced the risk of infection beyond that of the primary series, we compared the odds of infection among boosted (≥14 days after booster dose) and booster-eligible people (≥150 days after second dose). The odds ratio (OR) comparing boosted and booster-eligible people with a documented prior infection was 0.79 (95% CI: 0.54 to 1.16, p 0.222), whereas the OR comparing boosted and booster-eligible people without a documented prior infection was 0.54 (95% CI: 0.49 to 0.59, p < 0.001). This study's limitations include the risk of residual confounding, the use of data from a single system, and the reliance on TaqPath analyzed RT-PCR results. CONCLUSIONS In this study, we observed that primary vaccination provided significant but limited protection against Omicron (lineage BA.1) infection among people with and without a documented prior infection. While booster vaccination was associated with additional protection against Omicron BA.1 infection in people without a documented prior infection, it was not found to be associated with additional protection among people with a documented prior infection. These findings support primary vaccination in people regardless of documented prior infection status but suggest that infection history may impact the relative benefit of booster doses.
Collapse
Affiliation(s)
- Margaret L. Lind
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Alexander J. Robertson
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Julio Silva
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Frederick Warner
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, Connecticut, United States of America
| | - Andreas C. Coppi
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, Connecticut, United States of America
| | - Nathan Price
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, Connecticut, United States of America
| | - Chelsea Duckwall
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Peri Sosensky
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Erendira C. Di Giuseppe
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Ryan Borg
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Mariam O. Fofana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Otavio T. Ranzani
- Barcelona Institute for Global Health, ISGlobal, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Pulmonary Division, Heart Institute, Hospital das Clínicas, Faculdade de Medicina, São Paulo, Brazil
| | - Natalie E. Dean
- Department of Biostatistics & Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Jason R. Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, United States of America
| | - Julio Croda
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Fiocruz Mato Grosso do Sul, Fundação Oswaldo Cruz, Campo Grande, Brazil
- Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Derek A. T. Cummings
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Matt D. T. Hitchings
- Department of Biostatistics, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Wade L. Schulz
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
17
|
Khan MZI, Nazli A, Al-furas H, Asad MI, Ajmal I, Khan D, Shah J, Farooq MA, Jiang W. An overview of viral mutagenesis and the impact on pathogenesis of SARS-CoV-2 variants. Front Immunol 2022; 13:1034444. [PMID: 36518757 PMCID: PMC9742215 DOI: 10.3389/fimmu.2022.1034444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022] Open
Abstract
Viruses are submicroscopic, obligate intracellular parasites that carry either DNA or RNA as their genome, protected by a capsid. Viruses are genetic entities that propagate by using the metabolic and biosynthetic machinery of their hosts and many of them cause sickness in the host. The ability of viruses to adapt to different hosts and settings mainly relies on their ability to create de novo variety in a short interval of time. The size and chemical composition of the viral genome have been recognized as important factors affecting the rate of mutations. Coronavirus disease 2019 (Covid-19) is a novel viral disease that has quickly become one of the world's leading causes of mortality, making it one of the most serious public health problems in recent decades. The discovery of new medications to cope with Covid-19 is a difficult and time-consuming procedure, as new mutations represent a serious threat to the efficacy of recently developed vaccines. The current article discusses viral mutations and their impact on the pathogenicity of newly developed variants with a special emphasis on Covid-19. The biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), its mutations, pathogenesis, and treatment strategies are discussed in detail along with the statistical data.
Collapse
Affiliation(s)
| | - Adila Nazli
- Faculty of Biological Sciences, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hawaa Al-furas
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Muhammad Imran Asad
- Faculty of Biological Sciences, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iqra Ajmal
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Dildar Khan
- Faculty of Biological Sciences, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jaffer Shah
- Department of Health, New York, NY, United States,*Correspondence: Jaffer Shah, ; Muhammad Asad Farooq, ; Wenzheng Jiang,
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, China,*Correspondence: Jaffer Shah, ; Muhammad Asad Farooq, ; Wenzheng Jiang,
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, China,*Correspondence: Jaffer Shah, ; Muhammad Asad Farooq, ; Wenzheng Jiang,
| |
Collapse
|
18
|
Ferreira LS, de Almeida GB, Borges ME, Simon LM, Poloni S, Bagattini ÂM, da Rosa MQM, Diniz Filho JAF, Kuchenbecker RDS, Camey SA, Kraenkel RA, Coutinho RM, Toscano CM. Modelling optimal vaccination strategies against COVID-19 in a context of Gamma variant predominance in Brazil. Vaccine 2022; 40:6616-6624. [PMID: 36210250 PMCID: PMC9527216 DOI: 10.1016/j.vaccine.2022.09.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Brazil experienced moments of collapse in its health system throughout 2021, driven by the emergence of variants of concern (VOC) combined with an inefficient initial vaccination strategy against Covid-19. OBJECTIVES To support decision-makers in formulating COVID-19 immunization policy in the context of limited vaccine availability and evolving variants over time, we evaluate optimal strategies for Covid-19 vaccination in Brazil in 2021, when vaccination was rolled out during Gamma variant predominance. METHODS Using a discrete-time epidemic model we estimate Covid-19 deaths averted, considering the currently Covid-19 vaccine products and doses available in Brazil; vaccine coverage by target population; and vaccine effectiveness estimates. We evaluated a 5-month time horizon, from early August to the end of December 2021. Optimal vaccination strategies compared the outcomes in terms of averted deaths when varying dose intervals from 8 to 12 weeks, and choosing the minimum coverage levels per age group required prior to expanding vaccination to younger target populations. We also estimated dose availability required over time to allow the implementation of optimal strategies. RESULTS To maximize the number of averted deaths, vaccine coverage of at least 80 % should be reached in older age groups before starting vaccination into subsequent younger age groups. When evaluating varying dose intervals for AZD1222, reducing the dose interval from 12 to 8 weeks for the primary schedule would result in fewer COVID-19 deaths, but this can only be implemented if accompanied by an increase in vaccine supply of at least 50 % over the coming six-months in Brazil. CONCLUSION Covid-19 immunization strategies should be tailored to local vaccine product availability and supply over time, circulating variants of concern, and vaccine coverage in target population groups. Modelling can provide valuable and timely evidence to support the implementation of vaccination strategies considering the local context, yet following international and regional technical evidence-based guidance.
Collapse
Affiliation(s)
- Leonardo Souto Ferreira
- São Paulo State University (UNESP), Institute for Theoretical Physics (IFT) - R. Dr. Bento Teobaldo Ferraz, 271 - Bloco II - Barra-Funda - São Paulo/SP - CEP 01140-070, Brazil,Observatório COVID-19 BR - São Paulo/SP, Brazil,Corresponding author
| | - Gabriel Berg de Almeida
- São Paulo State University (UNESP), Infectious Diseases Department, Botucatu Medical School (FMB) - Av. Prof. Mário Rubens Guimarães Montenegro, s/n - Botucatu/SP - CEP 18618-687, Brazil
| | - Marcelo Eduardo Borges
- Observatório COVID-19 BR - São Paulo/SP, Brazil,Federal University of ABC (UFABC), Center for Mathematics, Computation and Cognition - Avenida dos Estados, 5001 - Bairro Bangu - Santo André/SP - CEP 09210-580, Brazil
| | - Lorena Mendes Simon
- Federal University of Goiás (UFG), Department of Ecology, Postgraduate Programme in Ecology and Evolution - Av. Esperança, s/n - Chácaras de Recreio Samambaia - Goiânia/GO - CEP 74690-900, Brazil
| | - Silas Poloni
- São Paulo State University (UNESP), Institute for Theoretical Physics (IFT) - R. Dr. Bento Teobaldo Ferraz, 271 - Bloco II - Barra-Funda - São Paulo/SP - CEP 01140-070, Brazil,Observatório COVID-19 BR - São Paulo/SP, Brazil
| | - Ângela Maria Bagattini
- Federal University of Goiás (UFG), Institute of Tropical Pathology and Public Health (IPTSP) - R. 235, s/n - Setor Leste Universitário - Goiânia/GO - CEP 74605-050, Brazil
| | - Michelle Quarti Machado da Rosa
- Federal University of Goiás (UFG), Institute of Tropical Pathology and Public Health (IPTSP) - R. 235, s/n - Setor Leste Universitário - Goiânia/GO - CEP 74605-050, Brazil
| | - José Alexandre Felizola Diniz Filho
- Observatório COVID-19 BR - São Paulo/SP, Brazil,Federal University of Goiás (UFG), Department of Ecology, Postgraduate Programme in Ecology and Evolution - Av. Esperança, s/n - Chácaras de Recreio Samambaia - Goiânia/GO - CEP 74690-900, Brazil
| | - Ricardo de Souza Kuchenbecker
- Federal University of Rio Grande do Sul (UFRGS), Postgraduate Programme of Epidemiology, Medical School - Campus Saúde - R. Ramiro Barcelos, 2400 - Porto Alegre/RS - CEP 90035-003, Brazil
| | - Suzi Alves Camey
- Federal University of Rio Grande do Sul (UFRGS), Institute of Mathematics and Statistics, Department of Statistics - Av. Bento Gonçalves, 9500 - Agronomia - Porto Alegre/RS - CEP 91509-900, Brazil
| | - Roberto André Kraenkel
- São Paulo State University (UNESP), Institute for Theoretical Physics (IFT) - R. Dr. Bento Teobaldo Ferraz, 271 - Bloco II - Barra-Funda - São Paulo/SP - CEP 01140-070, Brazil,Observatório COVID-19 BR - São Paulo/SP, Brazil
| | - Renato Mendes Coutinho
- Observatório COVID-19 BR - São Paulo/SP, Brazil,Federal University of ABC (UFABC), Center for Mathematics, Computation and Cognition - Avenida dos Estados, 5001 - Bairro Bangu - Santo André/SP - CEP 09210-580, Brazil
| | - Cristiana Maria Toscano
- Federal University of Goiás (UFG), Institute of Tropical Pathology and Public Health (IPTSP) - R. 235, s/n - Setor Leste Universitário - Goiânia/GO - CEP 74605-050, Brazil
| |
Collapse
|
19
|
Sales-Moioli AIL, Galvão-Lima LJ, Pinto TKB, Cardoso PH, Silva RD, Fernandes F, Barbalho IMP, Farias FLO, Veras NVR, Souza GF, Cruz AS, Andrade IGM, Gama L, Valentim RAM. Effectiveness of COVID-19 Vaccination on Reduction of Hospitalizations and Deaths in Elderly Patients in Rio Grande do Norte, Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13902. [PMID: 36360782 PMCID: PMC9653712 DOI: 10.3390/ijerph192113902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Since the COVID-19 pandemic emerged, vaccination has been the core strategy to mitigate the spread of SARS-CoV-2 in humans. This paper analyzes the impact of COVID-19 vaccination on hospitalizations and deaths in the state of Rio Grande do Norte, Brazil. We analyzed data from 23,516 hospitalized COVID-19 patients diagnosed between April 2020 and August 2021. We excluded the data from patients hospitalized through direct occupancy, unknown outcomes, and unconfirmed COVID-19 cases, resulting in data from 12,635 patients cross-referenced with the immunization status during hospitalization. Our results indicated that administering at least one dose of the immunizers was sufficient to significantly reduce the occurrence of moderate and severe COVID-19 cases among patients under 59 years. Considering the partially or fully immunized patients, the mean age is similar between the analyzed groups, despite the occurrence of comorbidities and higher than that observed among not immunized patients. Thus, immunized patients present lower Unified Score for Prioritization (USP) levels when diagnosed with COVID-19. Our data suggest that COVID-19 vaccination significantly reduced the hospitalization and death of elderly patients (60+ years) after administration of at least one dose. Comorbidities do not change the mean age of moderate/severe COVID-19 cases and the days required for the hospitalization of these patients.
Collapse
Affiliation(s)
- Ana Isabela L. Sales-Moioli
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal 59012-300, RN, Brazil
| | - Leonardo J. Galvão-Lima
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal 59012-300, RN, Brazil
| | - Talita K. B. Pinto
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal 59012-300, RN, Brazil
| | - Pablo H. Cardoso
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal 59012-300, RN, Brazil
| | - Rodrigo D. Silva
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal 59012-300, RN, Brazil
| | - Felipe Fernandes
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal 59012-300, RN, Brazil
| | - Ingridy M. P. Barbalho
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal 59012-300, RN, Brazil
| | - Fernando L. O. Farias
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal 59012-300, RN, Brazil
| | - Nicolas V. R. Veras
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal 59012-300, RN, Brazil
| | - Gustavo F. Souza
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal 59012-300, RN, Brazil
| | - Agnaldo S. Cruz
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal 59012-300, RN, Brazil
| | - Ion G. M. Andrade
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal 59012-300, RN, Brazil
- Rio Grande do Norte School of Public Health (ESPRN), Natal 59015-350, RN, Brazil
| | - Lúcio Gama
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ricardo A. M. Valentim
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal 59012-300, RN, Brazil
| |
Collapse
|
20
|
Risk of SARS-CoV-2 infection following initial COVID-19 vaccination: Population-based cohort study. PLoS One 2022; 17:e0273903. [PMID: 36264950 PMCID: PMC9584446 DOI: 10.1371/journal.pone.0273903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/18/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Anecdotally there are reports of newly diagnosed SARS-CoV-2 infection shortly after vaccination. This has led some to speculate that vaccination itself might inadvertently increase the short-term risk of COVID potentially due to airborne spread at mass vaccination clinics or relaxation of precautions following vaccination. We explored whether receipt of vaccination was associated with a short-term increase in the risk of being diagnosed with COVID-19 and if differences exist between vaccination settings. METHODS We conducted a cohort study in Ontario, Canada to compare the risk of SARS-CoV-2 infection within 21 days of receiving a first vaccination, according to the setting in which vaccines were administered between March 1, 2021 and May 6, 2021. We used linked population-wide vaccination, laboratory testing, and health administrative databases. We created a 1:1 matched comparison group of unexposed individuals. We reported the overall risk of infection calculated at 3, 7, 10, 14, 18, and 21 days. This was completed overall and by setting of vaccine receipt. RESULTS We identified 4,798,430 Ontario residents who received their first dose of a COVID-19 vaccine. In the primary analysis, the rate of SARS-CoV-2 infection was significantly lower among vaccine recipients vs non-recipients at all the post-vaccination time points. Analysis stratified by vaccination setting found that mass vaccination clinics, pharmacies, and physician offices were consistent with the main findings. Individuals who received their first vaccine dose in congregate residential settings had a higher rate of SARS-CoV-2 infection at 7 days (HR 1.35, 95% CI 1.00-1.83) and 10 days (HR 1.49, 95% CI 1.03-2.15). CONCLUSION In this population-based cohort study, we found that there was no increased risk of SARS-CoV2 infection after vaccination suggesting no broad transmission of disease at time of vaccination. Some evidence of increased risk among those vaccinated in congregate settings, highlighting the need to consider opportunities for supporting safe vaccine administration in these settings. Given ongoing and future immunization programs, the results support the need for continued vigilance during any mass vaccination processes and education regarding the delayed nature of protection following vaccination.
Collapse
|
21
|
Schmidt P, Narayan K, Li Y, Kaku C, Brown M, Champney E, Geoghegan J, Vasquez M, Krauland E, Yockachonis T, Bai S, Gunn B, Cammarata A, Rubino C, Walker LM. Antibody-mediated protection against symptomatic COVID-19 can be achieved at low serum neutralizing titers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.10.18.22281172. [PMID: 36299436 PMCID: PMC9603828 DOI: 10.1101/2022.10.18.22281172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Multiple studies of vaccinated and convalescent cohorts have demonstrated that serum neutralizing antibody (nAb) titers correlate with protection against COVID-19. However, the induction of multiple layers of immunity following SARS-CoV-2 exposure has complicated the establishment of nAbs as a mechanistic correlate of protection (CoP) and hindered the definition of a protective nAb threshold. Here, we show that a half-life extended monoclonal antibody (adintrevimab) provides approximately 50% protection against symptomatic COVID-19 in SARS-CoV-2-naive adults at low serum nAb titers on the order of 1:30. Vaccine modeling supports a similar 50% protective nAb threshold, suggesting low levels of serum nAb can protect in both monoclonal and polyclonal settings. Extrapolation of adintrevimab pharmacokinetic data suggests that protection against susceptible variants could be maintained for approximately 3 years. The results provide a benchmark for the selection of next-generation vaccine candidates and support the use of broad, long-acting monoclonal antibodies as an alternative or supplement to vaccination in high-risk populations.
Collapse
|
22
|
Costa Clemens SA, Fortaleza CMCB, Crowe M, Tasca KI, Spadaro AG, Souza-Neto JA, Grotto RMT, Sider R, Jimeno J, Verstraeten T, Clemens R. Effectiveness of the Fiocruz recombinant ChadOx1-nCoV19 against variants of SARS-CoV-2 in the Municipality of Botucatu-SP. Front Public Health 2022; 10:1016402. [PMID: 36311567 PMCID: PMC9610568 DOI: 10.3389/fpubh.2022.1016402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/15/2022] [Indexed: 01/28/2023] Open
Abstract
Introduction As the COVID-19 pandemic progresses, rapidly emerging variants of concern raise fears that currently licensed vaccines may have reduced effectiveness against these new strains. In the municipality of Botucatu, São Paulo State, Brazil, a mass vaccination campaign using ChadOx1-nCoV19 was initiated on 16th of May 2021, targeting people 18-60 years old. Two vaccine doses were offered 12 weeks apart, with the second delivered on 8th of August, 2021. This setting offered a unique opportunity to assess the effectiveness of two ChadOx1-nCoV19 doses in a real-life setting. Materials and methods Data on testing, hospitalization, symptoms, demographics, and vaccination were obtained from the Hospital das Clínicas da Faculdade de Medicina de Botucatu. A test-negative study design was employed; whereby the odds of being vaccinated among cases vs controls were calculated to estimate vaccine effectiveness (VE; 1-OR). All individuals aged 18-60 who received a PCR test after the 16th of May and were unvaccinated prior to this date were included in the analysis until the study ended in mid-November 2021. Results 77,683 citizens of Botucatu aged 18-60 received the first dose, and 74,051 received a second ChadOx1-nCoV19 dose 12 weeks later for a vaccination coverage of 84.2 and 80.2%, respectively. Of 7.958 eligible PCR tests, 2.109 were positive and 5.849 negative. The VE against any symptomatic infection was estimated at 39.2%, 21 days after dose 1, and 74.5%, 14 days after dose 2. There were no COVID-19-related hospitalizations or deaths among the 74,051 fully vaccinated individuals. The VE against severe disease was estimated at 70.8 and 100% after doses 1 and 2, respectively. 90.5% of all lineages sequenced between doses 1 and 2 (16th of May-7th of August) were of the Gamma variant, while 83.0% were of the Delta variant during the second period after dose 2 (8th of August-18th of November). Discussion This observational study found the effectiveness of ChadOx1-nCoV19 to be 74.5% against COVID-19 disease of any severity, comparable to the efficacy observed in clinical trials (81.3% after dose 2), despite the dominance of the Gamma and Delta VoCs. No COVID-19-related hospitalizations or deaths in fully vaccinated individuals were reported.
Collapse
Affiliation(s)
- Sue Ann Costa Clemens
- Department of Pediatrics, Oxford University, Oxford, United Kingdom,Medical School, Institute for Global Health, Siena University, Siena, Italy
| | - Carlos Magno Castelo Branco Fortaleza
- Department of Infectious Diseases, Botucatu Medical School, São Paulo State University (Universidade Estadual Paulista), Botucatu, São Paulo State, Brazil
| | | | - Karen Ingrid Tasca
- Department of Infectious Diseases, Botucatu Medical School, São Paulo State University (Universidade Estadual Paulista), Botucatu, São Paulo State, Brazil
| | | | - Jayme Augusto Souza-Neto
- Department of Biotechnology, Faculty of Agronomical Sciences, São Paulo State University (Universidade Estadual Paulista), Botucatu, São Paulo State, Brazil
| | - Rejane Maria Tommasini Grotto
- Department of Biotechnology, Faculty of Agronomical Sciences, São Paulo State University (Universidade Estadual Paulista), Botucatu, São Paulo State, Brazil,Department of Clinical Medicine, Botucatu Medical School, São Paulo State University (Universidade Estadual Paulista), Botucatu, São Paulo State, Brazil
| | | | | | | | - Ralf Clemens
- International Vaccine Institute (IVI), Seoul, South Korea,*Correspondence: Ralf Clemens
| |
Collapse
|
23
|
Veerapu N, Inamdar DP, Kumar BPR, Anuradha B, Guddanti P, Issapuri SD, Ganta NS, Gopi A. Effectiveness of COVID-19 Vaccines against SARS-CoV-2 Infection among Persons Attending the RT-PCR center at a Medical College Hospital in Telangana: A Case- Control Study. Indian J Community Med 2022; 47:587-590. [PMID: 36742954 PMCID: PMC9891038 DOI: 10.4103/ijcm.ijcm_273_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
Background In January 2021, India's drug regulator issued restricted emergency approval for COVISHIELD and COVAXIN, which were manufactured in India. In mid-January 2021, in India, there were 10.5 million confirmed cases and 0.15 million deaths. The objectives were to evaluate vaccine effectiveness (VE) of coronavirus disease 2019 (COVID-19) vaccines made in India against severe acute respiratory syndrome coronavirus disease 2 (SARS-CoV-2) infection. Materials and Methods A test-negative case-control study was conducted from May 2021 to December 2021 for a duration of 8 months among people attending a reverse transcriptase polymerase chain reaction (RT-PCR) center at a medical college hospital for RT-PCR test for SARS-CoV-2. The baseline characteristics and RT-PCR report were collected from the RT-PCR center. The exposure to COVID-19 vaccines was enquired via phone call or was checked with data available with the health authorities. Results After applying inclusion and exclusion criteria and case and control definitions, a total of 380 participants (95 cases and 285 controls) were included. The adjusted VE of two doses of COVISHIED vaccine against symptomatic SARS-CoV-2 infection was 52.2% (41.7 to 62.1), and that of a single dose was 40.88% (31.26 to 51.29). The adjusted VE of two doses of COVAXIN vaccine against SARS-CoV-2 infection was 39% (29.40 to 49.27). The overall VE was 48.20% (37.90 to 58.22) for two doses of any vaccines. Conclusions Vaccines made in India were nearly 50% effective. Further new studies should be conducted as new variants of SARS-CoV-2 are emerging. We do not know the VE against the variants, and whether booster doses are required or not is not yet established.
Collapse
Affiliation(s)
- Nagapraveen Veerapu
- Department of Community Medicine, Mamata Medical College, Khammam, Telangana, India
| | | | - Baer P Ravi Kumar
- Department of Community Medicine, Mamata Medical College, Khammam, Telangana, India
| | - Basavaraju Anuradha
- Department of Microbiology, Mamata Medical College, Khammam, Telangana, India
| | - Pavitra Guddanti
- Department of Community Medicine, Mamata Medical College, Khammam, Telangana, India
| | - Sree D Issapuri
- Department of Community Medicine, Mamata Medical College, Khammam, Telangana, India
| | - Nikhita S Ganta
- Department of Community Medicine, Mamata Medical College, Khammam, Telangana, India
| | - Arun Gopi
- Department of Statistics, JSS Medical College, Mysuru, Karnataka, India
| |
Collapse
|
24
|
Helmy SA, El-Morsi RM, Helmy SAM, El-Masry SM. Towards novel nano-based vaccine platforms for SARS-CoV-2 and its variants of concern: Advances, challenges and limitations. J Drug Deliv Sci Technol 2022; 76:103762. [PMID: 36097606 PMCID: PMC9452404 DOI: 10.1016/j.jddst.2022.103762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/07/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022]
Abstract
Vaccination is the most effective tool available for fighting the spread of COVID-19. Recently, emerging variants of SARS-CoV-2 have led to growing concerns about increased transmissibility and decreased vaccine effectiveness. Currently, many vaccines are approved for emergency use and more are under development. This review highlights the ongoing advances in the design and development of different nano-based vaccine platforms. The challenges, limitations, and ethical consideration imposed by these nanocarriers are also discussed. Further, the effectiveness of the leading vaccine candidates against all SARS-CoV-2 variants of concern are highlighted. The review also focuses on the possibility of using an alternative non-invasive routes of vaccine administration using micro and nanotechnologies to enhance vaccination compliance and coverage.
Collapse
Affiliation(s)
- Sally A Helmy
- Department of Clinical and Hospital Pharmacy, Faculty of Pharmacy, Taibah University, AL-Madinah AL-Munawarah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Rasha M El-Morsi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Egypt
| | - Soha A M Helmy
- Department of Languages and Translation, College of Arts and Humanities, Taibah University, AL-Madinah AL-Munawarah, Saudi Arabia
- Department of Foreign Languages, Faculty of Education, Tanta University, Tanta, Egypt
| | - Soha M El-Masry
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
25
|
Dhawan M, Saied AA, Mitra S, Alhumaydhi FA, Emran TB, Wilairatana P. Omicron variant (B.1.1.529) and its sublineages: What do we know so far amid the emergence of recombinant variants of SARS-CoV-2? Biomed Pharmacother 2022; 154:113522. [PMID: 36030585 PMCID: PMC9376347 DOI: 10.1016/j.biopha.2022.113522] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Since the start of the COVID-19 pandemic, numerous variants of SARS-CoV-2 have been reported worldwide. The advent of variants of concern (VOCs) raises severe concerns amid the serious containment efforts against COVID-19 that include physical measures, pharmacological repurposing, immunization, and genomic/community surveillance. Omicron variant (B.1.1.529) has been identified as a highly modified, contagious, and crucial variant among the five VOCs of SARS-CoV-2. The increased affinity of the spike protein (S-protein), and host receptor, angiotensin converting enzyme-2 (ACE-2), due to a higher number of mutations in the receptor-binding domain (RBD) of the S-protein has been proposed as the primary reason for the decreased efficacy of majorly available vaccines against the Omicron variant and the increased transmissible nature of the Omicron variant. Because of its significant competitive advantage, the Omicron variant and its sublineages swiftly surpassed other variants to become the dominant circulating lineages in a number of nations. The Omicron variant has been identified as a prevalent strain in the United Kingdom and South Africa. Furthermore, the emergence of recombinant variants through the conjunction of the Omicron variant with other variants or by the mixing of the Omicron variant's sublineages/subvariants poses a major threat to humanity. This raises various issues and hazards regarding the Omicron variant and its sublineages, such as an Omicron variant breakout in susceptible populations among fully vaccinated persons. As a result, understanding the features and genetic implications of this variant is crucial. Hence, we explained in depth the evolution and features of the Omicron variant and analyzed the repercussions of spike mutations on infectiousness, dissemination ability, viral entry mechanism, and immune evasion. We also presented a viewpoint on feasible strategies for precluding and counteracting any future catastrophic emergence and spread of the omicron variant and its sublineages that could result in a detrimental wave of COVID-19 cases.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India; Trafford College, Altrincham, Manchester WA14 5PQ, UK.
| | - AbdulRahman A Saied
- National Food Safety Authority (NFSA), Aswan Branch, Aswan 81511, Egypt; Ministry of Tourism and Antiquities, Aswan Office, Aswan 81511, Egypt
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh.
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
26
|
Feng XL, Yu D, Zhang M, Li X, Zou QC, Ma W, Han JB, Xu L, Yang C, Qu W, Deng ZH, Long J, Long Y, Li M, Yao YG, Dong XQ, Zeng J, Li MH. Characteristics of replication and pathogenicity of SARS-CoV-2 Alpha and Delta isolates. Virol Sin 2022; 37:804-812. [PMID: 36167254 PMCID: PMC9507998 DOI: 10.1016/j.virs.2022.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/20/2022] [Indexed: 01/19/2023] Open
Abstract
The continuously arising of SARS-CoV-2 variants has been posting a great threat to public health safety globally, from B.1.17 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta) to B.1.1.529 (Omicron). The emerging or re-emerging of the SARS-CoV-2 variants of concern is calling for the constant monitoring of their epidemics, pathogenicity and immune escape. In this study, we aimed to characterize replication and pathogenicity of the Alpha and Delta variant strains isolated from patients infected in Laos. The amino acid mutations within the spike fragment of the isolates were determined via sequencing. The more efficient replication of the Alpha and Delta isolates was documented than the prototyped SARS-CoV-2 in Calu-3 and Caco-2 cells, while such features were not observed in Huh-7, Vero E6 and HPA-3 cells. We utilized both animal models of human ACE2 (hACE2) transgenic mice and hamsters to evaluate the pathogenesis of the isolates. The Alpha and Delta can replicate well in multiple organs and cause moderate to severe lung pathology in these animals. In conclusion, the spike protein of the isolated Alpha and Delta variant strains was characterized, and the replication and pathogenicity of the strains in the cells and animal models were also evaluated.
Collapse
Affiliation(s)
- Xiao-Li Feng
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Dandan Yu
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China,National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Mi Zhang
- Department of Infectious Diseases, Yunnan Provincial Infectious Diseases Hospital, Kunming, 650301, China
| | - Xiaohong Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Qing-Cui Zou
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Wentai Ma
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, 100101, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Bao Han
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Ling Xu
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China,National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Cuixian Yang
- Department of Infectious Diseases, Yunnan Provincial Infectious Diseases Hospital, Kunming, 650301, China
| | - Wang Qu
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Zhong-Hua Deng
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Junyi Long
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Yanghaopeng Long
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Mingkun Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, 100101, China,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yong-Gang Yao
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China,National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Xing-Qi Dong
- Department of Infectious Diseases, Yunnan Provincial Infectious Diseases Hospital, Kunming, 650301, China,Corresponding authors.
| | - Jianxiong Zeng
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China,National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China,Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China,Corresponding authors.
| | - Ming-Hua Li
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China,Corresponding authors.
| |
Collapse
|
27
|
Schwalb A, Armyra E, Méndez-Aranda M, Ugarte-Gil C. COVID-19 in Latin America and the Caribbean: Two years of the pandemic. J Intern Med 2022; 292:409-427. [PMID: 35411985 PMCID: PMC9115176 DOI: 10.1111/joim.13499] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Worldwide, nations have struggled during the coronavirus disease 2019 (COVID-19) pandemic. However, Latin America and the Caribbean faced an unmatched catastrophic toll. As of March 2022, the region has reported approximately 15% of cases and 28% of deaths worldwide. Considering the relatively late arrival of SARS-CoV-2, several factors in the region were determinants of the humanitarian crisis that ensued. Pandemic unpreparedness, fragile healthcare systems, forthright inequalities, and poor governmental support facilitated the spread of the virus throughout the region. Moreover, reliance on repurposed and ineffective drugs such as hydroxychloroquine and ivermectin-to treat or prevent COVID-19-was publicised through misinformation and created a false sense of security and poor adherence to social distancing measures. While there were hopes that herd immunity could be achieved after the region's disastrous first peak, the emergence of the Gamma, Lambda, and Mu variants made this unattainable. This review explores how Latin America and the Caribbean fared during the first 2 years of the pandemic, and how, despite all the challenges, the region became a global leader in COVID-19 vaccination, with 63% of its population fully vaccinated.
Collapse
Affiliation(s)
- Alvaro Schwalb
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,London School of Hygiene and Tropical Medicine, London, UK
| | - Eleonora Armyra
- Health Innovation Lab, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Melissa Méndez-Aranda
- Facultad de Ciencias y Filosofía, Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - César Ugarte-Gil
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,London School of Hygiene and Tropical Medicine, London, UK.,School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
28
|
Valim V, Martins-Filho OA, Gouvea MDPG, Camacho LAB, Villela DAM, de Lima SMB, Azevedo AS, Neto LFP, Domingues CMAS, de Medeiros Junior NF, Moulaz IR, Dias LH, Miyamoto ST, Teixeira-Carvalho A, Mill JG. Effectiveness, safety, and immunogenicity of half dose ChAdOx1 nCoV-19 COVID-19 Vaccine: Viana project. Front Immunol 2022; 13:966416. [PMID: 36105814 PMCID: PMC9464812 DOI: 10.3389/fimmu.2022.966416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Fractional dose is an important strategy to increase access to vaccines. This study evaluated the effectiveness, safety, and immunogenicity of half dose of ChAdOx1 nCoV-19 vaccine. A non-inferiority non-randomized controlled trial compared a half dose of ChAdOx1 nCoV-19 with the full dose, with an interval of 8 to 10 weeks, in individuals aged 18–49 years. The primary endpoints were the incidence rate of new cases/1,000 person-year at 90 days after 14 days of the second dose, confirmed by RT-PCR and new cases registered at SUS National Health Surveillance Database (e-SUS VS). The anti-SARS-CoV-2 spike (S) protein receptor binding domain (RBD) by chemiluminescence and the neutralizing antibodies by plaque reduction neutralization test (PRNT) were titrated. The soluble biomarkers were quantified with a multiplex immunoassay. Follow-up was 90 days after 14 days of the second dose. A total of 29,598 individuals were vaccinated. After exclusion, 16,570 individuals who received half a dose and 6,402 who received full doses were analyzed. The incidence of new cases confirmed by RT-PCR of half dose was non-inferior to full dose (23.7 vs. 25.7 cases per 1,000 persons-year [coefficient group -0.09 CI95%(-0.49 to 0.31)], even after adjusting for age and sex. There were no deaths or hospitalization after immunization of either group. Immunogenicity was evaluated in a subsample (N=558) compared to 154 healthcare workers who received a full dose. The seroconversion rate in seronegative individuals at baseline half dose was 99.8%, similar to that of the full dose (100%). Geometric mean concentration (95% CI; BAU/mL) were half dose = 188 (163-217) and full dose = 529 (423–663) (p < 0.001). In seropositive subjects at baseline (pre-immune individuals), the first dose induced very high and similar IgG-S in half dose 1,359 (1,245-1,483) and full dose 1,354 (1,048–1,749) BAU/mL. A half dose induced a high increase in plasma chemokines, pro-inflammatory/regulatory cytokines, and growth factors. The frequency of adverse events was similar. No serious adverse events or deaths were reported. A half dose of ChAdOx1 nCoV-19 is as effective, safe, and immunogenic as the full dose. The immune response in pre-immune (seropositive in the baseline) individuals indicates that the half dose may be a booster dose schedule.
Collapse
Affiliation(s)
- Valéria Valim
- Hospital Universitário Cassiano Antônio Moraes [HUCAM-UFES/ Empresa de Serviços Hospitalares (EBSERH)] and Programa de Pós Graduação em Saúde Coletiva (PPGSC), Universidade Federal do Espírito Santo, Vitória, Brazil,*Correspondence: Valéria Valim,
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, Brazil
| | - Maria da Penha Gomes Gouvea
- Hospital Universitário Cassiano Antônio Moraes [HUCAM-UFES/ Empresa de Serviços Hospitalares (EBSERH)] and Programa de Pós Graduação em Saúde Coletiva (PPGSC), Universidade Federal do Espírito Santo, Vitória, Brazil
| | | | | | - Sheila Maria Barbosa de Lima
- Laboratório de Tecnologia Virológica (LATEV) (Bio-Manguinhos), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Adriana Souza Azevedo
- Laboratório de Tecnologia Virológica (LATEV) (Bio-Manguinhos), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | | | | | - Isac Ribeiro Moulaz
- Hospital Universitário Cassiano Antônio Moraes, Universidade Federal do Espírito Santo [HUCAM-UFES/ Empresa de Serviços Hospitalares (EBSERH)], Vitória, Brazil
| | - Laiza Hombre Dias
- Hospital Universitário Cassiano Antônio Moraes, Universidade Federal do Espírito Santo [HUCAM-UFES/ Empresa de Serviços Hospitalares (EBSERH)], Vitória, Brazil
| | - Samira Tatiyama Miyamoto
- Departamento de Educação Integrada em Saúde, Universidade Federal do Espírito Santo (DEIS/UFES), Vitória, Brazil
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, Brazil
| | - José Geraldo Mill
- Hospital Universitário Cassiano Antônio Moraes [HUCAM-UFES/ Empresa de Serviços Hospitalares (EBSERH)] and Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | | |
Collapse
|
29
|
Lee KS, Wong TY, Russ BP, Horspool AM, Miller OA, Rader NA, Givi JP, Winters MT, Wong ZYA, Cyphert HA, Denvir J, Stoilov P, Barbier M, Roan NR, Amin MS, Martinez I, Bevere JR, Damron FH. SARS-CoV-2 Delta variant induces enhanced pathology and inflammatory responses in K18-hACE2 mice. PLoS One 2022; 17:e0273430. [PMID: 36037222 PMCID: PMC9423646 DOI: 10.1371/journal.pone.0273430] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/08/2022] [Indexed: 01/27/2023] Open
Abstract
The COVID-19 pandemic has been fueled by SARS-CoV-2 novel variants of concern (VOC) that have increased transmissibility, receptor binding affinity, and other properties that enhance disease. The goal of this study is to characterize unique pathogenesis of the Delta VOC strain in the K18-hACE2-mouse challenge model. Challenge studies suggested that the lethal dose of Delta was higher than Alpha or Beta strains. To characterize the differences in the Delta strain's pathogenesis, a time-course experiment was performed to evaluate the overall host response to Alpha or Delta variant challenge. qRT-PCR analysis of Alpha- or Delta-challenged mice revealed no significant difference between viral RNA burden in the lung, nasal wash or brain. However, histopathological analysis revealed high lung tissue inflammation and cell infiltration following Delta- but not Alpha-challenge at day 6. Additionally, pro-inflammatory cytokines were highest at day 6 in Delta-challenged mice suggesting enhanced pneumonia. Total RNA-sequencing analysis of lungs comparing challenged to no challenge mice revealed that Alpha-challenged mice have more total genes differentially activated. Conversely, Delta-challenged mice have a higher magnitude of differential gene expression. Delta-challenged mice have increased interferon-dependent gene expression and IFN-γ production compared to Alpha. Analysis of TCR clonotypes suggested that Delta challenged mice have increased T-cell infiltration compared to Alpha challenged. Our data suggest that Delta has evolved to engage interferon responses in a manner that may enhance pathogenesis. The in vivo and in silico observations of this study underscore the need to conduct experiments with VOC strains to best model COVID-19 when evaluating therapeutics and vaccines.
Collapse
Affiliation(s)
- Katherine S. Lee
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States of America
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States of America
| | - Ting Y. Wong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States of America
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States of America
| | - Brynnan P. Russ
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States of America
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States of America
| | - Alexander M. Horspool
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States of America
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States of America
| | - Olivia A. Miller
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States of America
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States of America
| | - Nathaniel A. Rader
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States of America
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States of America
| | - Jerome P. Givi
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University, Morgantown, WV, United States of America
| | - Michael T. Winters
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States of America
| | - Zeriel Y. A. Wong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States of America
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States of America
| | - Holly A. Cyphert
- Department of Biological Sciences, Marshall University, Huntington, WV, United States of America
| | - James Denvir
- Department of Biomedical Sciences, Marshall University, Huntington, WV, United States of America
| | - Peter Stoilov
- Department of Biochemistry, School of Medicine, West Virginia University Morgantown, Morgantown, WV, United States of America
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States of America
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States of America
| | - Nadia R. Roan
- Department or Urology, University of California, San Francisco, San Francisco, CA, United States of America
- Gladstone Institute of Virology, San Francisco, CA, United States of America
| | - Md. Shahrier Amin
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University, Morgantown, WV, United States of America
| | - Ivan Martinez
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States of America
- West Virginia University Cancer Institute, School of Medicine, Morgantown, WV, United States of America
| | - Justin R. Bevere
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States of America
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States of America
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States of America
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States of America
| |
Collapse
|
30
|
Hou YC, Wu CL, Lu KC, Kuo KL. Indoxyl Sulfate Alters the Humoral Response of the ChAdOx1 COVID-19 Vaccine in Hemodialysis Patients. Vaccines (Basel) 2022; 10:vaccines10091378. [PMID: 36146454 PMCID: PMC9501048 DOI: 10.3390/vaccines10091378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background and aims: Vaccination for severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) is strongly recommended. The efficacy of SARS-CoV-2 vaccine for patients with end-stage renal disease is low. Indoxyl sulfate (IS) is a representative protein bound uremic toxin arousing immune dysfunction in CKD patients. It is unknown whether IS impairs the efficacy of vaccines for SARS-CoV-2. Materials and Methods: From 1 June 2021, to 31 December 2021, hemodialysis patients (n = 358) and a control group (n = 59) were eligible to receive the first dose of the ChAdOx1 COVID-19 vaccine. Titer measurements indicative of the humoral response (anti-S1 IgG and surrogate virus neutralization test (sVNT) results) and indoxyl sulfate concentration measurement were performed 4 weeks after ChAdOx1 vaccine injection. Results: The serum concentrations of anti-S1 IgG were 272 ± 1726 AU/mL and 2111 ± 4424 AU/mL in hemodialysis patients and control group (p < 0.05), respectively. The sVNT values were 26.8 ± 21.1% and 54.0 ± 20.2% in the hemodialysis and control groups (p < 0.05), respectively. There was a decreasing trend for the anti-S1 IgG titer from the lowest to highest quartile of IS (p < 0.001). The patients with higher concentrations of IS had lower sVNT (p for trend < 0.001). Conclusion: Hemodialysis patients had weaker humoral immunity after the first dose of the ChAdOx1 vaccine. Higher concentration of IS altered the development of anti-S1 antibodies and sVNT-measured neutralization.
Collapse
Affiliation(s)
- Yi-Chou Hou
- Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, New Taipei City 231, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Chia-Lin Wu
- Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan
- School of Medicine, Chung-Shan Medical University, Taichung 402, Taiwan
| | - Kuo-Cheng Lu
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien 970, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, New Taipei City 242, Taiwan
| | - Ko-Lin Kuo
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien 970, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
- Correspondence: ; Tel.: +886-2-6628-9779
| |
Collapse
|
31
|
Patel RS, Agrawal B. Heterologous immunity induced by 1 st generation COVID-19 vaccines and its role in developing a pan-coronavirus vaccine. Front Immunol 2022; 13:952229. [PMID: 36045689 PMCID: PMC9420909 DOI: 10.3389/fimmu.2022.952229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/19/2022] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome virus-2 (SARS-CoV-2), the causative infectious agent of the COVID-19 pandemic, has led to multiple (4-6) waves of infections worldwide during the past two years. The development of vaccines against SARS-CoV-2 has led to successful mass immunizations worldwide, mitigating the worldwide mortality due the pandemic to a great extent. Yet the evolution of new variants highlights a need to develop a universal vaccine which can prevent infections from all virulent SARS-CoV-2. Most of the current first generation COVID-19 vaccines are based on the Spike protein from the original Wuhan-hu-1 virus strain. It is encouraging that they still protect from serious illnesses, hospitalizations and mortality against a number of mutated viral strains, to varying degrees. Understanding the mechanisms by which these vaccines provide heterologous protection against multiple highly mutated variants can reveal strategies to develop a universal vaccine. In addition, many unexposed individuals have been found to harbor T cells that are cross-reactive against SARS-CoV-2 antigens, with a possible protective role. In this review, we will discuss various aspects of natural or vaccine-induced heterologous (cross-reactive) adaptive immunity against SARS-CoV-2 and other coronaviruses, and their role in achieving the concept of a pan-coronavirus vaccine.
Collapse
Affiliation(s)
| | - Babita Agrawal
- Department of Surgery, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
32
|
Saberiyan M, Karimi E, Khademi Z, Movahhed P, Safi A, Mehri-Ghahfarrokhi A. SARS-CoV-2: phenotype, genotype, and characterization of different variants. Cell Mol Biol Lett 2022; 27:50. [PMID: 35715738 PMCID: PMC9204680 DOI: 10.1186/s11658-022-00352-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/31/2022] [Indexed: 12/31/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19), a major international public health concern. Because of very similar amino acid sequences of the seven domain names, SARS-CoV-2 belongs to the Coronavirinae subfamily of the family Coronaviridae, order Nidovirales, and realm Riboviria, placed in exceptional clusters, but categorized as a SARS-like species. As the RNA virus family with the longest genome, the Coronaviridae genome consists of a single strand of positive RNA (25-32 kb in length). Four major structural proteins of this genome include the spike (S), membrane (M), envelope (E), and the nucleocapsid (N) protein, all of which are encoded within the 3' end of the genome. By engaging with its receptor, angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 infects host cells. According to the most recent epidemiological data, as the illness spread globally, several genetic variations of SARS-CoV-2 appeared quickly, with the World Health Organization (WHO) naming 11 of them. Among these, seven SARS-CoV-2 subtypes have received the most attention. Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.617.2) are now designated as variations of concern (VOC) (B.1.1.529). Lambda (C.37) and Mu are variations of interest (VOI) (B.1.621). The remaining six are either being monitored or are no longer considered a threat. On the basis of studies done so far, antiviral drugs, antibiotics, glucocorticoids, recombinant intravenous immunoglobulin, plasma therapy, and IFN-α2b have been used to treat patients. Moreover, full vaccination is associated with lower infection and helps prevent transmission, but the risk of infection cannot be eliminated completely in vaccinated people.
Collapse
Affiliation(s)
- Mohammadreza Saberiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Karimi
- Department of Medical Genetics, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Khademi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Parvaneh Movahhed
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Safi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ameneh Mehri-Ghahfarrokhi
- Clinical Research Development Unit, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
33
|
Hitchings MDT, Ranzani OT, Lind ML, Dorion M, D'Agostini TL, de Paula RC, de Paula OFP, de Moura Villela EF, Scaramuzzini Torres MS, de Oliveira SB, Schulz W, Almiron M, Said R, de Oliveira RD, Vieira da Silva P, de Araújo WN, Gorinchteyn JC, Dean NE, Andrews JR, Cummings DAT, Ko AI, Croda J. Change in covid-19 risk over time following vaccination with CoronaVac: test negative case-control study. BMJ 2022; 377:e070102. [PMID: 35697361 PMCID: PMC9189440 DOI: 10.1136/bmj-2022-070102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To estimate the change in odds of covid-19 over time following primary series completion of the inactivated whole virus vaccine CoronaVac (Sinovac Biotech) in São Paulo State, Brazil. DESIGN Test negative case-control study. SETTING Community testing for covid-19 in São Paulo State, Brazil. PARTICIPANTS Adults aged ≥18 years who were residents of São Paulo state, had received two doses of CoronaVac, did not have a laboratory confirmed SARS-CoV-2 infection before vaccination, and underwent reverse transcription polymerase chain reaction (RT-PCR) testing for SARS-CoV-2 from 17 January to 14 December 2021. Cases were matched to test negative controls by age (in 5 year bands), municipality of residence, healthcare worker status, and epidemiological week of RT-PCR test. MAIN OUTCOME MEASURES RT-PCR confirmed symptomatic covid-19 and associated hospital admissions and deaths. Conditional logistic regression was adjusted for sex, number of covid-19 associated comorbidities, race, and previous acute respiratory illness. RESULTS From 202 741 eligible people, 52 170 cases with symptomatic covid-19 and 69 115 test negative controls with covid-19 symptoms were formed into 43 257 matched sets. Adjusted odds ratios of symptomatic covid-19 increased with time since completion of the vaccination series. The increase in odds was greater in younger people and among healthcare workers, although sensitivity analyses suggested that this was in part due to bias. In addition, the adjusted odds ratios of covid-19 related hospital admission or death significantly increased with time compared with the odds 14-41 days after series completion: from 1.25 (95% confidence interval 1.04 to 1.51) at 70-97 days up to 1.94 (1.41 to 2.67) from 182 days onwards. CONCLUSIONS Significant increases in the risk of moderate and severe covid-19 outcomes occurred three months after primary vaccination with CoronaVac among people aged 65 and older. These findings provide supportive evidence for the implementation of vaccine boosters in these populations who received this inactivated vaccine. Studies of waning should include analyses designed to uncover common biases.
Collapse
Affiliation(s)
- Matt D T Hitchings
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Otavio T Ranzani
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Pulmonary Division, Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Margaret L Lind
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Murilo Dorion
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | | | | | | | | | | | | | - Wade Schulz
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Almiron
- Pan American Health Organization, Brasília, DF, Brazil
| | - Rodrigo Said
- Pan American Health Organization, Brasília, DF, Brazil
| | | | | | - Wildo Navegantes de Araújo
- Pan American Health Organization, Brasília, DF, Brazil
- Universidade de Brasília, Brasília, DF, Brazil
- National Institute for Science and Technology for Health Technology Assessment, Porto Alegre, RS, Brazil
| | | | - Natalie E Dean
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
- Contributed equally
| | - Derek A T Cummings
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Contributed equally
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil
- Contributed equally
| | - Julio Croda
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil
- Fiocruz Mato Grosso do Sul, Fundação Oswaldo Cruz, Campo Grande, MS, Brazil
- Contributed equally
| |
Collapse
|
34
|
Hoteit R, Yassine HM. Biological Properties of SARS-CoV-2 Variants: Epidemiological Impact and Clinical Consequences. Vaccines (Basel) 2022; 10:919. [PMID: 35746526 PMCID: PMC9230982 DOI: 10.3390/vaccines10060919] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a virus that belongs to the coronavirus family and is the cause of coronavirus disease 2019 (COVID-19). As of May 2022, it had caused more than 500 million infections and more than 6 million deaths worldwide. Several vaccines have been produced and tested over the last two years. The SARS-CoV-2 virus, on the other hand, has mutated over time, resulting in genetic variation in the population of circulating variants during the COVID-19 pandemic. It has also shown immune-evading characteristics, suggesting that vaccinations against these variants could be potentially ineffective. The purpose of this review article is to investigate the key variants of concern (VOCs) and mutations of the virus driving the current pandemic, as well as to explore the transmission rates of SARS-CoV-2 VOCs in relation to epidemiological factors and to compare the virus's transmission rate to that of prior coronaviruses. We examined and provided key information on SARS-CoV-2 VOCs in this study, including their transmissibility, infectivity rate, disease severity, affinity for angiotensin-converting enzyme 2 (ACE2) receptors, viral load, reproduction number, vaccination effectiveness, and vaccine breakthrough.
Collapse
Affiliation(s)
- Reem Hoteit
- Clinical Research Institute, Faculty of Medicine, American University of Beirut, Beirut 110236, Lebanon;
| | - Hadi M. Yassine
- Biomedical Research Center and College of Health Sciences-QU Health, Qatar University, Doha 2713, Qatar
| |
Collapse
|
35
|
Higdon MM, Wahl B, Jones CB, Rosen JG, Truelove SA, Baidya A, Nande AA, ShamaeiZadeh PA, Walter KK, Feikin DR, Patel MK, Deloria Knoll M, Hill AL. A Systematic Review of Coronavirus Disease 2019 Vaccine Efficacy and Effectiveness Against Severe Acute Respiratory Syndrome Coronavirus 2 Infection and Disease. Open Forum Infect Dis 2022; 9:ofac138. [PMID: 35611346 PMCID: PMC9047227 DOI: 10.1093/ofid/ofac138] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/17/2022] [Indexed: 01/13/2023] Open
Abstract
Billions of doses of coronavirus disease 2019 (COVID-19) vaccines have been administered globally, dramatically reducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) incidence and severity in some settings. Many studies suggest vaccines provide a high degree of protection against infection and disease, but precise estimates vary and studies differ in design, outcomes measured, dosing regime, location, and circulating virus strains. In this study, we conduct a systematic review of COVID-19 vaccines through February 2022. We included efficacy data from Phase 3 clinical trials for 15 vaccines undergoing World Health Organization Emergency Use Listing evaluation and real-world effectiveness for 8 vaccines with observational studies meeting inclusion criteria. Vaccine metrics collected include protection against asymptomatic infection, any infection, symptomatic COVID-19, and severe outcomes including hospitalization and death, for partial or complete vaccination, and against variants of concern Alpha, Beta, Gamma, Delta, and Omicron. We additionally review the epidemiological principles behind the design and interpretation of vaccine efficacy and effectiveness studies, including important sources of heterogeneity.
Collapse
Affiliation(s)
- Melissa M Higdon
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Brian Wahl
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Carli B Jones
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph G Rosen
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Shaun A Truelove
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anurima Baidya
- International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anjalika A Nande
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Parisa A ShamaeiZadeh
- International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Karoline K Walter
- International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Daniel R Feikin
- Department of Immunization, Vaccines, and Biologicals, World Health Organization, Geneva, Switzerland
| | - Minal K Patel
- Department of Immunization, Vaccines, and Biologicals, World Health Organization, Geneva, Switzerland
| | - Maria Deloria Knoll
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Alison L Hill
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
36
|
Zeng B, Gao L, Zhou Q, Yu K, Sun F. Effectiveness of COVID-19 vaccines against SARS-CoV-2 variants of concern: a systematic review and meta-analysis. BMC Med 2022; 20:200. [PMID: 35606843 PMCID: PMC9126103 DOI: 10.1186/s12916-022-02397-y] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/09/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND It was urgent and necessary to synthesize the evidence for vaccine effectiveness (VE) against SARS-CoV-2 variants of concern (VOC). We conducted a systematic review and meta-analysis to provide a comprehensive overview of the effectiveness profile of COVID-19 vaccines against VOC. METHODS Published randomized controlled trials (RCTs), cohort studies, and case-control studies that evaluated the VE against VOC (Alpha, Beta, Gamma, Delta, or Omicron) were searched until 4 March 2022. Pooled estimates and 95% confidence intervals (CIs) were calculated using random-effects meta-analysis. VE was defined as (1-estimate). RESULTS Eleven RCTs (161,388 participants), 20 cohort studies (52,782,321 participants), and 26 case-control studies (2,584,732 cases) were included. Eleven COVID-19 vaccines (mRNA-1273, BNT162b2, ChAdOx1, Ad26.COV2.S, NVX-CoV2373, BBV152, CoronaVac, BBIBP-CorV, SCB-2019, CVnCoV, and HB02) were included in this analysis. Full vaccination was effective against Alpha, Beta, Gamma, Delta, and Omicron variants, with VE of 88.0% (95% CI, 83.0-91.5), 73.0% (95% CI, 64.3-79.5), 63.0% (95% CI, 47.9-73.7), 77.8% (95% CI, 72.7-82.0), and 55.9% (95% CI, 40.9-67.0), respectively. Booster vaccination was more effective against Delta and Omicron variants, with VE of 95.5% (95% CI, 94.2-96.5) and 80.8% (95% CI, 58.6-91.1), respectively. mRNA vaccines (mRNA-1273/BNT162b2) seemed to have higher VE against VOC over others; significant interactions (pinteraction < 0.10) were observed between VE and vaccine type (mRNA vaccines vs. not mRNA vaccines). CONCLUSIONS Full vaccination of COVID-19 vaccines is highly effective against Alpha variant, and moderate effective against Beta, Gamma, and Delta variants. Booster vaccination is more effective against Delta and Omicron variants. mRNA vaccines seem to have higher VE against Alpha, Beta, Gamma, and Delta variants over others.
Collapse
Affiliation(s)
- Baoqi Zeng
- Department of Science and Education, Peking University Binhai Hospital, Tianjin, China
| | - Le Gao
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Qingxin Zhou
- Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Kai Yu
- Department of Science and Education, Peking University Binhai Hospital, Tianjin, China.
| | - Feng Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China.
| |
Collapse
|
37
|
Wang K, Wang L, Li M, Xie B, He L, Wang M, Zhang R, Hou N, Zhang Y, Jia F. Real-Word Effectiveness of Global COVID-19 Vaccines Against SARS-CoV-2 Variants: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2022; 9:820544. [PMID: 35665358 PMCID: PMC9160927 DOI: 10.3389/fmed.2022.820544] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/05/2022] [Indexed: 12/14/2022] Open
Abstract
Background Currently, promoted vaccinations against SARS-CoV-2 are being given out globally. However, the occurrence of numerous COVID-19 variants has hindered the goal of rapid mitigation of the COVID-19 pandemic by effective mass vaccinations. The real-word effectiveness of the current vaccines against COVID-19 variants has not been assessed by published reviews. Therefore, our study evaluated the overall effectiveness of current vaccines and the differences between the various vaccines and variants. Methods PubMed, Embase, Cochrane Library, medRxiv, bioRxiv, and arXiv were searched to screen the eligible studies. The Newcastle-Ottawa scale and the Egger test were applied to estimate the quality of the literature and any publication bias, respectively. The pooled incident rates of different variants after vaccination were estimated by single-arm analysis. Meanwhile, the pooled efficacies of various vaccines against variants were evaluated by two-arm analysis using odds ratios (ORs) and vaccine effectiveness (VE). Results A total of 6,118 studies were identified initially and 44 articles were included. We found that the overall incidence of variants post first/second vaccine were 0.07 and 0.03, respectively. The VE of the incidence of variants post first vaccine between the vaccine and the placebo or unvaccinated population was 40% and post second vaccine was 96%, respectively. The sub-single-arm analysis showed a low prevalence rate of COVID-19 variants after specific vaccination with the pooled incidence below 0.10 in most subgroups. Meanwhile, the sub-two-arm analysis indicated that most current vaccines had a good or moderate preventive effect on certain variants considering that the VE in these subgroups was between 66 and 95%, which was broadly in line with the results of the sub-single-arm analysis. Conclusion Our meta-analysis shows that the current vaccines that are used globally could prevent COVID-19 infection and restrict the spread of variants to a great extent. We would also support maximizing vaccine uptake with two doses, as the effectiveness of which was more marked compared with one dose. Although the mRNA vaccine was the most effective against variants according to our study, specific vaccines should be taken into account based on the local dominant prevalence of variants.
Collapse
Affiliation(s)
- Kai Wang
- Department of Critical Care Medicine, Zibo Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Zibo, China
| | - Lin Wang
- Department of Critical Care Medicine, Zibo Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Zibo, China
| | - Mingzhe Li
- Independent Researcher, Leeds, United Kingdom
| | - Bing Xie
- Department of Hand and Foot Surgery, Zibo Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Zibo, China
| | - Lu He
- Hubei University of Medicine, Shiyan, China
| | - Meiyu Wang
- Department of Cardiology, The People's Hospital of Zhangdian District, Zibo, China
| | - Rumin Zhang
- Department of Critical Care Medicine, Zibo Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Zibo, China
| | - Nianzong Hou
- Department of Hand and Foot Surgery, Zibo Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Zibo, China
| | - Yi Zhang
- Department of Hand and Foot Surgery, Zibo Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Zibo, China
| | - Fusen Jia
- Department of Hand and Foot Surgery, Zibo Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Zibo, China
| |
Collapse
|
38
|
Orellana JDY, Cunha GMD, Marrero L, Leite IDC, Domingues CMAS, Horta BL. [Changes in the pattern of COVID-19 hospitalizations and deaths after substantial vaccination of the elderly in Manaus, Amazonas State, Brazil]. CAD SAUDE PUBLICA 2022; 38:PT192321. [PMID: 35584432 DOI: 10.1590/0102-311xpt192321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/13/2022] [Indexed: 01/02/2023] Open
Abstract
The impact of COVID-19 vaccination in the elderly has received relatively little attention, particularly in a scenario predominated by the gamma variant. The aim of this study was to assess vaccination coverage and its relationship to changes in the pattern of COVID-19 hospitalizations and deaths in the elderly in Manaus, Amazonas State, Brazil. This was an ecological study with Brazilian Ministry of Health data on hospitalizations and deaths, assessing vaccination coverage based on a two-dose regimen, in addition to two vaccination regimens associated with a significant protective effect, one partial (35 days or more after the first dose of the Oxford/AstraZeneca vaccine) and the other complete (14 days or more after the second dose of the Sinovac-CoronaVac vaccine). Based on the date of initial symptoms, patterns of COVID-19 hospitalizations and deaths were assessed comparatively in elderly 60-69 years and 70 years or more in two groups of Epidemiological Weeks (EW) in 2020 (unvaccinated) and 2021 (vaccinated). Hospitalization and death rates were estimated with Poisson regression. In the groups 60-69 and 70 years or more, vaccination coverage rates were 41.8% and 54.8%, as well as 53.5% and 90.1%, in the EW groups 18-20/2021 and 21-23/2021, respectively. Both EW groups in 2021 showed a substantial change in the patterns of COVID-19 hospitalizations and deaths, with an increase in the risk of hospitalization and death in unvaccinated younger individuals and an important reduction in vaccinated elderly, especially those 60-69 years of age, besides overall reductions of 62% (95%CI: 52-69) and 63% (95%CI: 43-75) in hospitalization and death rates, respectively. Our results emphasize the importance of mass vaccination, especially during an epidemic such as in Manaus, marked by high circulation of the gamma variant.
Collapse
Affiliation(s)
| | | | | | - Iuri da Costa Leite
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | | | | |
Collapse
|
39
|
Sendi P, Tande AJ. Analyzing COVID-19 vaccine efficacy in vulnerable communities: efforts Beyond Addressing vaccine inequity. Clin Microbiol Infect 2022; 28:1053-1054. [PMID: 35526690 PMCID: PMC9072754 DOI: 10.1016/j.cmi.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Parham Sendi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
| | - Aaron J Tande
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
40
|
van Gils MJ, Lavell A, van der Straten K, Appelman B, Bontjer I, Poniman M, Burger JA, Oomen M, Bouhuijs JH, van Vught LA, Slim MA, Schinkel M, Wynberg E, van Willigen HDG, Grobben M, Tejjani K, van Rijswijk J, Snitselaar JL, Caniels TG, Vlaar APJ, Prins M, de Jong MD, de Bree GJ, Sikkens JJ, Bomers MK, Sanders RW. Antibody responses against SARS-CoV-2 variants induced by four different SARS-CoV-2 vaccines in health care workers in the Netherlands: A prospective cohort study. PLoS Med 2022; 19:e1003991. [PMID: 35580156 PMCID: PMC9113667 DOI: 10.1371/journal.pmed.1003991] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/18/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Emerging and future SARS-CoV-2 variants may jeopardize the effectiveness of vaccination campaigns. Therefore, it is important to know how the different vaccines perform against diverse SARS-CoV-2 variants. METHODS AND FINDINGS In a prospective cohort of 165 SARS-CoV-2 naive health care workers in the Netherlands, vaccinated with either one of four vaccines (BNT162b2, mRNA-1273, AZD1222 or Ad26.COV2.S), we performed a head-to-head comparison of the ability of sera to recognize and neutralize SARS-CoV-2 variants of concern (VOCs; Alpha, Beta, Gamma, Delta and Omicron). Repeated serum sampling was performed 5 times during a year (from January 2021 till January 2022), including before and after booster vaccination with BNT162b2. Four weeks after completing the initial vaccination series, SARS-CoV-2 wild-type neutralizing antibody titers were highest in recipients of mRNA-1273, followed by recipients of BNT162b2 (geometric mean titers (GMT) of 358 [95% CI 231-556] and 214 [95% CI 153-299], respectively; p<0.05), and substantially lower in those vaccinated with the adenovirus vector-based vaccines AZD1222 and Ad26.COV2.S (GMT of 18 [95% CI 11-30] and 14 [95% CI 8-25] IU/ml, respectively; p<0.001). VOCs neutralization was reduced in all vaccine groups, with the greatest reduction in neutralization GMT observed against the Omicron variant (fold change 0.03 [95% CI 0.02-0.04], p<0.001). The booster BNT162b2 vaccination increased neutralizing antibody titers for all groups with substantial improvement against the VOCs including the Omicron variant. We used linear regression and linear mixed model analysis. All results were adjusted for possible confounding of age and sex. Study limitations include the lack of cellular immunity data. CONCLUSIONS Overall, this study shows that the mRNA vaccines appear superior to adenovirus vector-based vaccines in inducing neutralizing antibodies against VOCs four weeks after initial vaccination and after booster vaccination, which implies the use of mRNA vaccines for both initial and booster vaccination.
Collapse
Affiliation(s)
- Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Ayesha Lavell
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Karlijn van der Straten
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Brent Appelman
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Ilja Bontjer
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Meliawati Poniman
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Judith A. Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Melissa Oomen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Joey H. Bouhuijs
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Lonneke A. van Vught
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Marleen A. Slim
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Michiel Schinkel
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Elke Wynberg
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, the Netherlands
| | - Hugo D. G. van Willigen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Khadija Tejjani
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Jacqueline van Rijswijk
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Jonne L. Snitselaar
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Tom G. Caniels
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Amsterdam UMC COVID-19 S3/HCW study group
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Alexander P. J. Vlaar
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Maria Prins
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, the Netherlands
| | - Menno D. de Jong
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Godelieve J. de Bree
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Jonne J. Sikkens
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Marije K. Bomers
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| |
Collapse
|
41
|
Rodriguez-Morales AJ, Franco OH. Assessing the effectiveness of COVID-19 vaccines in older people in Latin America. THE LANCET. HEALTHY LONGEVITY 2022; 3:e219-e220. [PMID: 35340742 PMCID: PMC8937252 DOI: 10.1016/s2666-7568(22)00073-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
42
|
Wambani J, Okoth P. Scope of SARS-CoV-2 variants, mutations, and vaccine technologies. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2022; 34:34. [PMID: 35368846 PMCID: PMC8962228 DOI: 10.1186/s43162-022-00121-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background The COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is disseminated by respiratory aerosols. The virus uses the spike protein to target epithelial cells by binding to the ACE2 receptor on the host cells. As a result, effective vaccines must target the viral spike glycoprotein. However, the appearance of an Omicron variant with 32 mutations in its spike protein raises questions about the vaccine's efficacy. Vaccines are critical in boosting immunity, lowering COVID-19-related illnesses, reducing the infectious burden on the healthcare system, and reducing economic loss, according to current data. An efficient vaccination campaign is projected to increase innate and adaptive immune responses, offering better protection against SARS-CoV-2 variants. Main body The presence of altered SARS-CoV-2 variants circulating around the world puts the effectiveness of vaccines already on the market at risk. The problem is made even worse by the Omicron variant, which has 32 mutations in its spike protein. Experts are currently examining the potential consequences of commercial vaccines on variants. However, there are worries about the vaccines' safety, the protection they provide, and whether future structural changes are required for these vaccines to be more effective. As a result of these concerns, new vaccines based on modern technology should be developed to guard against the growing SARS-CoV-2 variations. Conclusion The choice of a particular vaccine is influenced by several factors including mode of action, storage conditions, group of the vaccinee, immune response mounted, cost, dosage protocol, age, and side effects. Currently, seven SARS-CoV-2 vaccine platforms have been developed. This comprises of inactivated viruses, messenger RNA (mRNA), DNA vaccines, protein subunits, nonreplicating and replicating vector viral-like particles (VLP), and live attenuated vaccines. This review focuses on the SARS-CoV-2 mutations, variants of concern (VOCs), and advances in vaccine technologies.
Collapse
Affiliation(s)
- Josephine Wambani
- Kenya Medical Research Institute (KEMRI) HIV Laboratory-Alupe, P.O Box 3-50400, Busia, Kenya
- Department of Medical Laboratory Sciences, School of Public Health, Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, P.O Box 190, Kakamega, 50100 Kenya
| | - Patrick Okoth
- Department of Biological Sciences, School of Natural Sciences, Masinde Muliro University of Science and Technology, P. O Box 190, Kakamega, 50100 Kenya
| |
Collapse
|
43
|
COVID-19 Vaccine: Between Myth and Truth. Vaccines (Basel) 2022; 10:vaccines10030349. [PMID: 35334981 PMCID: PMC8950941 DOI: 10.3390/vaccines10030349] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Since December 2019, a pandemic caused by the newly identified SARS-CoV-2 spread across the entire globe, causing 364,191,494 confirmed cases of COVID-19 to date. SARS-CoV-2 is a betacoronavirus, a positive-sense, single-stranded RNA virus with four structural proteins: spike (S), envelope (E), membrane (M), and nucleocapsid (N). The S protein plays a crucial role both in cell binding and in the induction of a strong immune response during COVID-19 infection. The clinical impact of SARS-CoV-2 and its spread led to the urgent need for vaccine development to prevent viral transmission and to reduce the morbidity and mortality associated with the disease. Multiple platforms have been involved in the rapid development of vaccine candidates, with the S protein representing a major target because it can stimulate the immune system, yielding neutralizing antibodies (NAbs), blocking viral entry into host cells, and evoking T-cell immune responses. To date, 178 SARS-CoV-2 vaccine candidates have been challenged in clinical trials, of which 33 were approved by various national regulatory agencies. In this review, we discuss the FDA- and/or EMA-authorized vaccines that are mostly based on mRNA or viral vector platforms. Furthermore, we debunk false myths about the COVID-19 vaccine as well as discuss the impact of viral variants and the possible future developments.
Collapse
|
44
|
Vaccine effectiveness of ChAdOx1 nCoV-19 against COVID-19 in a socially vulnerable community in Rio de Janeiro, Brazil: a test-negative design study. Clin Microbiol Infect 2022; 28:736.e1-736.e4. [PMID: 35150884 PMCID: PMC8828302 DOI: 10.1016/j.cmi.2022.01.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022]
Abstract
Objectives To estimate vaccine effectiveness after the first and second dose of ChAdOx1 nCoV-19 against symptomatic COVID-19 and infection in a socially vulnerable community in Brazil when Gamma and Delta were the predominant variants circulating. Methods We conducted a test-negative study in the community Complexo da Maré, the largest group of slums (n = 16) in Rio de Janeiro, Brazil, from January 17, 2021 to November 27, 2021. We selected RT-qPCR positive and negative tests from a broad community testing program. The primary outcome was symptomatic COVID-19 (positive RT-qPCR test with at least one symptom) and the secondary outcome was infection (any positive RT-qPCR test). Vaccine effectiveness was estimated as 1 – OR, which was obtained from adjusted logistic regression models. Results We included 10 077 RT-qPCR tests (6,394, 64% from symptomatic and 3,683, 36% from asymptomatic individuals). The mean age was 40 (SD: 14) years, and the median time between vaccination and RT-qPCR testing among vaccinated was 41 (25–75 percentile: 21–62) days for the first dose and 36 (25–75 percentile: 17–59) days for the second dose. Adjusted vaccine effectiveness against symptomatic COVID-19 was 31.6% (95% CI, 12.0–46.8) 21 days after the first dose and 65.1% (95% CI, 40.9–79.4) 14 days after the second dose. Adjusted vaccine effectiveness against COVID-19 infection was 31.0% (95% CI, 12.7–45.5) 21 days after the first dose and 59.0% (95% CI, 33.1–74.8) 14 days after the second dose. Discussion ChAdOx1 nCoV-19 was effective in reducing symptomatic COVID-19 in a socially vulnerable community in Brazil when Gamma and Delta were the predominant variants circulating.
Collapse
|
45
|
da Silva SJR, de Lima SC, da Silva RC, Kohl A, Pena L. Viral Load in COVID-19 Patients: Implications for Prognosis and Vaccine Efficacy in the Context of Emerging SARS-CoV-2 Variants. Front Med (Lausanne) 2022; 8:836826. [PMID: 35174189 PMCID: PMC8841511 DOI: 10.3389/fmed.2021.836826] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
The worldwide spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an unprecedented public health crisis in the 21st century. As the pandemic evolves, the emergence of SARS-CoV-2 has been characterized by the emergence of new variants of concern (VOCs), which resulted in a catastrophic impact on SARS-CoV-2 infection. In light of this, research groups around the world are unraveling key aspects of the associated illness, coronavirus disease 2019 (COVID-19). A cumulative body of data has indicated that the SARS-CoV-2 viral load may be a determinant of the COVID-19 severity. Here we summarize the main characteristics of the emerging variants of SARS-CoV-2, discussing their impact on viral transmissibility, viral load, disease severity, vaccine breakthrough, and lethality among COVID-19 patients. We also provide a rundown of the rapidly expanding scientific evidence from clinical studies and animal models that indicate how viral load could be linked to COVID-19 prognosis and vaccine efficacy among vaccinated individuals, highlighting the differences compared to unvaccinated individuals.
Collapse
Affiliation(s)
- Severino Jefferson Ribeiro da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Suelen Cristina de Lima
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | - Ronaldo Celerino da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Lindomar Pena
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| |
Collapse
|
46
|
Bouillon K, Baricault B, Botton J, Jabagi MJ, Bertrand M, Semenzato L, Le Vu S, Drouin J, Dray-Spira R, Weill A, Zureik M. Effectiveness of BNT162b2, mRNA-1273, and ChAdOx1-S vaccines against severe covid-19 outcomes in a nationwide mass vaccination setting: cohort study. BMJ MEDICINE 2022; 1:e000104. [PMID: 36936561 PMCID: PMC9978755 DOI: 10.1136/bmjmed-2021-000104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/11/2022] [Indexed: 11/07/2022]
Abstract
Objective To estimate the effectiveness of the three covid-19 vaccines by Pfizer-BioNTech (BNT162b2), Moderna (mRNA-1273), and Oxford-AstraZeneca (ChAdOx1-S) in people after receiving two doses. Design Cohort study. Setting Nationwide, population based data in France, from the French National Health Data System (Système National des Données de Santé), between 27 December 2020 and 30 April 2021. Participants Adults aged ≥50 years receiving a first dose of BNT162b2, mRNA-1273, or ChAdOx1-S were randomly selected (1:1) and matched on the date of vaccination with one unvaccinated control. Individuals were matched on year of birth, sex, region of residence, and residence in a nursing home (for individuals aged ≥75 years). All individuals were followed up until 20 August 2021. Main outcome measures Primary outcome measure was vaccine effectiveness estimated at least 14 days after the second dose against covid-19 related hospital admission using Cox proportional hazards models adjusted for baseline characteristics and comorbidities. Vaccine effectiveness against covid-19 related death in hospital was also investigated. Results 11 256 832 vaccinated individuals were included in the study (63.6% (n=7 161 658) with the BNT162b2 vaccine, 7.6% (n=856 599) with the mRNA-1273 vaccine, and 28.8% (n=3 238 575) with the ChAdOx1-S vaccine), along with 11 256 832 matched unvaccinated controls. During follow-up (up to 20 August 2021), 43 158 covid-19 related hospital admissions and 7957 covid-19 related deaths in hospital were registered. Compared with unvaccinated controls, vaccine effectiveness of two doses against covid-19 related hospital admission was 91% (95% confidence interval 91% to 92%), 95% (93% to 96%), and 91% (89% to 94%) for the BNT162b2, mRNA-1273, and ChAdOx1-S vaccines, respectively. Similar results were observed for vaccine effectiveness of two doses against covid-19 related deaths in hospital (BNT162b2, 91% (90% to 93%); mRNA-1273, 96% (92% to 98%); and ChAdOx1 nCoV-19, 88% (68% to 95%)). At 5-6 months after receiving the second dose of vaccine, effectiveness remained high at 94% (92% to 95%) for the BNT162b2 vaccine and 98% (93% to 100%) for the mRNA-1273 vaccine. Vaccine effectiveness of ChAdOx1-S estimated at 3-4 months was 90% (63% to 97%). All three vaccines remained effective at the time of circulation of the delta variant of SARS-CoV-2 between 1 July and 20 August 2021 (effectiveness between 89% and 95%). Conclusions These findings provide evidence indicating that two doses of ChAdOx1-S is as effective as two doses of mRNA vaccines in France against the alpha and delta variants of SARS-CoV-2. The effectiveness of ChAdOx1-S should be further examined with a longer follow-up and in the light of the circulation of new SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Kim Bouillon
- EPI-PHARE Scientific Interest Group in Epidemiology of Health Products, Saint-Denis, France
| | - Bérangère Baricault
- EPI-PHARE Scientific Interest Group in Epidemiology of Health Products, Saint-Denis, France
| | - Jérémie Botton
- EPI-PHARE Scientific Interest Group in Epidemiology of Health Products, Saint-Denis, France
- Faculty of Pharmacy, Paris-Saclay University, Châtenay-Malabry, France
| | - Marie-Joëlle Jabagi
- EPI-PHARE Scientific Interest Group in Epidemiology of Health Products, Saint-Denis, France
| | - Marion Bertrand
- EPI-PHARE Scientific Interest Group in Epidemiology of Health Products, Saint-Denis, France
| | - Laura Semenzato
- EPI-PHARE Scientific Interest Group in Epidemiology of Health Products, Saint-Denis, France
| | - Stéphane Le Vu
- EPI-PHARE Scientific Interest Group in Epidemiology of Health Products, Saint-Denis, France
| | - Jérôme Drouin
- EPI-PHARE Scientific Interest Group in Epidemiology of Health Products, Saint-Denis, France
| | - Rosemary Dray-Spira
- EPI-PHARE Scientific Interest Group in Epidemiology of Health Products, Saint-Denis, France
| | - Alain Weill
- EPI-PHARE Scientific Interest Group in Epidemiology of Health Products, Saint-Denis, France
| | - Mahmoud Zureik
- EPI-PHARE Scientific Interest Group in Epidemiology of Health Products, Saint-Denis, France
- CESP-Inserm, Anti-infective evasion and pharmacoepidemiology, Paris-Saclay University, UVSQ, Montigny le Bretonneux, France
| |
Collapse
|
47
|
Syahniar R, Kharisma DS. SARS-CoV-2 vaccine challenge based on spike glycoprotein against several new variants. Clin Exp Vaccine Res 2022; 11:173-183. [PMID: 35799876 PMCID: PMC9200648 DOI: 10.7774/cevr.2022.11.2.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/30/2022] [Indexed: 11/15/2022] Open
Abstract
The coronavirus disease 2019 pandemic has not ended, and several variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus continue to emerge. The emergence of new variants is worrying because higher transmission leads to spikes in infections, vaccine efforts, and other therapeutic developments. Existing literature reports that with new variants affecting vaccine efficacy, hospitalization and risk of a recurrent infection increase. In this review article, we describe the latest variants of SARS-CoV-2, and the impact of each new variant on the efficacy of the developed vaccines reported in the literature and findings. The report concludes that the emergence of a variant that completely evades the immune response and reduces neutralizing antibodies.
Collapse
Affiliation(s)
- Rike Syahniar
- Department of Microbiology, Faculty of Medicine and Health, Universitas Muhammadiyah Jakarta, South Jakarta, Indonesia
| | - Dayu Swasti Kharisma
- Department of Microbiology, Faculty of Medicine and Health, Universitas Muhammadiyah Jakarta, South Jakarta, Indonesia
| |
Collapse
|
48
|
Brüssow H, Zuber S. Can a combination of vaccination and face mask wearing contain the COVID-19 pandemic? Microb Biotechnol 2021; 15:721-737. [PMID: 34962710 PMCID: PMC8913850 DOI: 10.1111/1751-7915.13997] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
The COVID‐19 pandemic is going into its third year with Europe again being the focus of major epidemic activity. The present review tries to answer the question whether one can come to grip with the pandemic by a combination of vaccinations and non‐pharmaceutical interventions (NPIs). Several COVID‐19 vaccines are of remarkable efficacy and achieve high protection rates against symptomatic disease, especially severe disease, but mathematical models suggest that the current vaccination coverage in many countries is insufficient to achieve pandemic control. NPIs are needed as complementary measures because recent research has also revealed the limits of vaccination alone. Here, we review the evidence for efficacy of face mask wearing in various settings. Overall pooled analysis showed significant reduction in COVID‐19 incidence with mask wearing, although heterogeneity between studies was substantial. Controlled trials of mask wearing are difficult to conduct, separating mask wearing effects in population studies from the impact of other NPIs is challenging and the efficacy of masks depend on mask material and mask fit. The combination of vaccination and mask wearing is potentially synergistic since vaccination protects so far well from disease development (the omicron variant is currently an unknown) but immunity from infection wanes over few months after vaccination. In comparison, masks interfere with the virus transmission process at a level of a physical barrier independent of coronavirus variant. Vaccination and masks are much less costly to apply than other NPI measures which are associated with high economic and social costs, but paradoxically both measures are the target of a vocal opposition by a sizable minority of the society. In parallel with biomedical research, we need more social science research into this opposition to guide political decisions on how to end the pandemic. The present review tries to answer the question whether one can control the pandemic by a combination of vaccinations and non‐pharmaceutical interventions. The combination of vaccination and mask wearing is potentially synergistic since vaccination protects so far well from disease while masks interfere with the virus transmission process as a physical barrier against any type of coronavirus variant.
Collapse
Affiliation(s)
- Harald Brüssow
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Sophie Zuber
- Institute of Food Safety and Analytical Science, Nestlé Research, Lausanne 26, 1000, Switzerland
| |
Collapse
|
49
|
Hitchings MD, Ranzani OT, Lind ML, Dorion M, D’Agostini TL, de Paula RC, de Paula OFP, de Moura Villela EF, Torres MSS, de Oliveira SB, Schulz W, Almiron M, Said R, de Oliveira RD, da Silva PV, de Araújo WN, Gorinchteyn JC, Dean NE, Andrews JR, Cummings DA, Ko AI, Croda J. Change in COVID-19 risk over time following vaccination with CoronaVac: A testnegative case-control study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.12.23.21268335. [PMID: 34988559 PMCID: PMC8728874 DOI: 10.1101/2021.12.23.21268335] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To estimate the change in odds of covid-19 over time following primary series completion of the inactivated whole virus vaccine, CoronaVac (Sinovac Biotech) in São Paulo state, Brazil. DESIGN Test negative case-control study. SETTING Community testing for covid-19 in São Paulo state, Brazil. PARTICIPANTS Adults aged 18-120 years who were residents of São Paulo state, without a previous laboratory-confirmed covid-19 infection, who received only two doses of CoronaVac, and underwent reverse transcription polymerase chain reaction (RT-PCR) testing for SARS-CoV-2 from 17 January to 30 September 2021. MAIN OUTCOME MEASURES RT-PCR-confirmed symptomatic covid-19 and associated hospital admissions and deaths. Cases were pair-matched to test-negative controls by age (in 5-year bands), municipality of residence, healthcare worker (HCW) status, and date of RT-PCR test (±3 days). Conditional logistic regression was adjusted for sex, number of covid-19-associated comorbidities, race, and previous acute respiratory infection. RESULTS From 137,820 eligible individuals, 37,929 cases with symptomatic covid-19 and 25,756 test-negative controls with covid-19 symptoms were formed into 37,929 matched pairs. Adjusted odds ratios of symptomatic covid-19 increased with time since series completion, and this increase was greater in younger individuals, and among HCWs compared to non-HCWs. Adjusted odds ratios of covid-19 hospitalisation or death were significantly increased from 98 days since series completion, compared to individuals vaccinated 14-41 days previously: 1.40 (95% confidence interval 1.09 to 1.79) from 98-125 days, 1.55 (1.16 to 2.07) from 126-153 days, 1.56 (1.12 to 2.18) from 154-181 days, and 2.12 (1.39-3.22) from 182 days. CONCLUSIONS In the general population of São Paulo state, Brazil, an increase in odds of moderate and severe covid-19 outcomes was observed over time following primary series completion with CoronaVac.
Collapse
Affiliation(s)
- Matt D.T. Hitchings
- Department of Biostatistics, College of Public Health & Health Professions, University of Florida, Gainesville, FL, USA
| | - Otavio T. Ranzani
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Pulmonary Division, Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Margaret L. Lind
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Murilo Dorion
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | | | | | | | | | | | | | - Wade Schulz
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Almiron
- Pan American Health Organization, Brasília, DF, Brazil
| | - Rodrigo Said
- Pan American Health Organization, Brasília, DF, Brazil
| | | | | | - Wildo Navegantes de Araújo
- Pan American Health Organization, Brasília, DF, Brazil
- Universidade de Brasília, Brasília, DF, Brazil
- National Institute for Science and Technology for Health Technology Assessment, Porto Alegre, RS, Brazil
| | | | - Natalie E. Dean
- Department of Biostatistics & Bioinformatics, Rollins School of Public Health, Emory University
| | - Jason R. Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Derek A.T. Cummings
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil
| | - Julio Croda
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil
- Fiocruz Mato Grosso do Sul, Fundação Oswaldo Cruz, Campo Grande, MS, Brazil
| |
Collapse
|