1
|
Luo Y, Meng D, Tang H, Wu P, Zhang Y. Exercise alleviates CUS-induced depressive-like behaviors by modulating paracellular and transcellular permeability of the blood-brain barrier in the prefrontal cortex. Behav Brain Res 2025; 476:115286. [PMID: 39389268 DOI: 10.1016/j.bbr.2024.115286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Increased blood-brain barrier (BBB) permeability is implicated in the pathophysiology of major depressive disorder (MDD). While aerobic exercise has shown promise in mitigating MDD symptoms by potentially preserving BBB integrity, the detailed mechanisms remain unclear. This study explores these mechanisms to assess aerobic exercise's therapeutic potential for MDD. METHODS Male C57BL/6 J mice were used in this study to investigate the effects of aerobic exercise on CUS-induced BBB permeability and depressive-like behaviors. Chronic unpredictable stress (CUS)-induced MDD mouse models were divided into three groups: Control, CUS, and CUS+Exercise. We monitored body weight, blood S100β levels, and cytokines via ELISA. Claudin-5 and Caveolin-1 (CAV-1) expressions in the medial prefrontal cortex were evaluated using Western blotting and immunofluorescence. BBB permeability was assessed using biocytin-TMR and Alb-Alexa 594 tracers. Transmission electron microscopy was used to observe ultrastructural changes in the BBB directly. Depression-related behaviors were tested through several behavioral assays. RESULTS CUS significantly increased CAV-1 expression and Alb-Alexa 594 leakage, suggesting enhanced transcellular BBB permeability. Despite unchanged Claudin-5 levels, its tight junction ultrastructure was altered, leading to increased biocytin-TMR leakage. Aerobic exercise ameliorated these disruptions, reduced inflammatory cytokines, and improved behavioral outcomes in CUS mice. CONCLUSION Disruptions in both paracellular and transcellular BBB pathways are pivotal in depression development. Aerobic exercise offers potential therapeutic benefits for MDD linked with BBB dysfunction by mitigating stress-induced structural and functional changes.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier/metabolism
- Male
- Mice, Inbred C57BL
- Prefrontal Cortex/metabolism
- Mice
- Physical Conditioning, Animal/physiology
- Stress, Psychological/metabolism
- Stress, Psychological/therapy
- Stress, Psychological/physiopathology
- Caveolin 1/metabolism
- Disease Models, Animal
- Claudin-5/metabolism
- Depressive Disorder, Major/therapy
- Depressive Disorder, Major/metabolism
- Depressive Disorder, Major/physiopathology
- Depression/therapy
- Depression/metabolism
- Behavior, Animal/physiology
- Permeability
- Exercise Therapy/methods
Collapse
Affiliation(s)
- Ye Luo
- College of fine arts, China West Normal University, Nanchong, China
| | - Dewang Meng
- College of Physical Education, China West Normal University, Nanchong, China
| | - Hui Tang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Panwen Wu
- College of Physical Education, China West Normal University, Nanchong, China
| | - Yuan Zhang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
2
|
Li K, Wang K, Xu SX, Xie XH, Tang Y, Zhang L, Liu Z. In vivo evidence of increased vascular endothelial growth factor in patients with major depressive disorder. J Affect Disord 2025; 368:151-159. [PMID: 39278472 DOI: 10.1016/j.jad.2024.09.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is a candidate mediator of blood-brain barrier (BBB) disruption in depression. However, previous studies have mainly focused on peripheral blood VEGF levels, and the results are heterogeneous. Here we use astrocyte-derived extracellular vesicles (ADEVs) isolated from plasma to explore the in vivo changes of VEGF levels in patients with major depressive disorder (MDD). METHODS Thirty-five unmedicated patients with MDD and 35 healthy controls (HCs) were enrolled, and plasma ADEVs were isolated from each participant. VEGF levels in ADEVs and glial fibrillary acidic protein (GFAP) in plasma were measured. Additionally, Alix and CD81, two established extracellular vesicle markers, were quantified in ADEVs. RESULTS At baseline, MDD patients exhibited significantly increased levels of VEGF in ADEVs and GFAP in plasma. Following four weeks of selective serotonin reuptake inhibitor treatment, these target protein levels did not significantly change. ROC curve analysis revealed an AUC of 0.711 for VEGF in ADEVs. In exploratory analysis, VEGF levels in ADEVs were positively correlated with Alix and CD81. LIMITATIONS Multiple factors regulate BBB permeability. This study focused solely on VEGF and the sample size for longitudinal analysis was relatively small. CONCLUSION Our study is the first to confirm increased ADEV-derived VEGF levels in patients with MDD, thereby providing preliminary evidence supporting the hypothesis that the BBB is disrupted in depression.
Collapse
Affiliation(s)
- Kun Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Clinical Laboratory, Affiliated Hospital of West Anhui Health Vocational College, Lu'an, Anhui, China
| | - Kun Wang
- Department of Psychiatry, Affied Hospital of West Anhui Health Vocational College, Lu'an, Anhui, China
| | - Shu-Xian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin-Hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Tang
- Department of Psychiatry, Affied Hospital of West Anhui Health Vocational College, Lu'an, Anhui, China
| | - Lihong Zhang
- Clinical Laboratory, Affiliated Hospital of West Anhui Health Vocational College, Lu'an, Anhui, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Wan S, Yu L, Yang Y, Liu W, Shi D, Cui X, Song J, Zhang Y, Liang R, Chen W, Wang B. Exposure to acrylamide and increased risk of depression mediated by inflammation, oxidative stress, and alkaline phosphatase: Evidence from a nationally representative population-based study. J Affect Disord 2024; 367:434-441. [PMID: 39236889 DOI: 10.1016/j.jad.2024.08.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND The health risk associated with acrylamide exposure has emerged as a significant issue of public health, attracting global attention. However, epidemiologic evidence on whether and how daily acrylamide exposure increases depression risk of the general population is unclear. METHODS The study included 3991 adults from the National Health and Nutrition Examination Survey. The urinary metabolites of acrylamide (N-Acetyl-S-(2-carbamoylethyl)-L-cysteine [AAMA] and N-Acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine [GAMA]) identified as reliable indicators of acrylamide exposure were examined to determine their relationships with depressive symptoms that were evaluated using the 9-item Patient Health Questionnaire. Besides, the measurements of alkaline phosphatase (ALP) and biomarkers of inflammation (white blood cell [WBC] count) and anti-oxidative stress (albumin [ALB]) were conducted to investigate their mediation roles in above relationships. RESULT AAMA, GAMA, and ΣUAAM (AAMA+GAMA) were linearly associated with increased risk of depressive symptoms. Each 2.7-fold increase in AAMA, GAMA, or ΣUAAM was associated with a 30 % (odds ratio: 1.30; 95 % confidence interval: 1.09, 1.55), 47 % (1.47; 1.16, 1.87), or 36 % (1.36; 1.13, 1.63) increment in risk of depressive symptoms, respectively. Increased WBC count (mediated proportion: 4.48-8.00 %), decreased ALB (4.88-7.78 %), and increased ALP (4.93-5.23 %) significantly mediated the associations between acrylamide metabolites and depressive symptoms. CONCLUSIONS Acrylamide exposure of the general adult population was related to increased risk of depressive symptoms, which was mediated in part by inflammation, oxidative stress, and increased ALP. Our findings provided pivotal epidemiologic evidence for depression risk increment from exposure to acrylamide.
Collapse
Affiliation(s)
- Shuhui Wan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yueru Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Da Shi
- Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Xiuqing Cui
- Institute of Health Surveillance Analysis and Protection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Jiahao Song
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yongfang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
4
|
Nisha, Paramanik V. Neuroprotective Roles of Daidzein Through Extracellular Signal-Regulated Kinases Dependent Pathway In Chronic Unpredictable Mild Stress Mouse Model. Mol Neurobiol 2024:10.1007/s12035-024-04567-w. [PMID: 39495229 DOI: 10.1007/s12035-024-04567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Depression is a stress-related neuropsychiatric disorder causing behavioural, biochemical, molecular dysfunctions and cognitive impairments. Previous studies suggested connection between neuropsychiatric diseases like depression with estrogen and estrogen receptors (ER). Daidzein is a phytoestrogen that functions as mammalian estrogen and regulates gene expressions through extracellular signal-regulated kinases (ERKs) dependent pathway by activating ERβ. ERβ modulates stress responses, physiological processes by activating protein kinases and plays a significant role in various neurological diseases like depression. However, significant roles of daidzein in depression involving ERK1/2, pERK1/2, and mTOR still unknown. Herein, we examined neuroprotective role of daidzein in chronic unpredictable mild stress (CUMS) mouse model. CUMS model was prepared, and placed in six groups namely, control, CUMS, CUMS vehicle, CUMS DZ (Daidzein 1 mg/kgbw, orally), CUMS PHTPP (ERβ blocker, 0.3 mg/kgbw, i..p.) and CUMS Untreated. Supplementation of daidzein to CUMS mice exhibits decrease depressive and anxiety-like behaviour, improved motor coordination and memory. Further, immunofluorescence results showed daidzein improved ERK1/2, pERK1/2 and mTOR expressions in the cortex, hippocampus and medulla of stressed mice. SOD, catalase and acetylcholinesterase levels were also improved. Blocking of ERβ with PHTPP stressed mice showed deficits in behaviour, low expression of ERK1/2, pERK1/2 and mTOR, and no significant changes in SOD, catalase and acetylcholinesterase level. Collectively, this study suggests that daidzein may ameliorate depressive and anxiety-like behaviour through ERK downregulating pathway by activating ERβ through ERK1/2, pERK1/2 and mTOR. Such study may be useful to understand daidzein dependent neuroprotection through ERβ in depression.
Collapse
Affiliation(s)
- Nisha
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484887, MP, India
| | - Vijay Paramanik
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484887, MP, India.
| |
Collapse
|
5
|
Maridaki Z, Syrros G, Gianna Delichatsiou S, Warsh J, Konstantinou GN. Claudin-5 and occludin levels in patients with psychiatric disorders - A systematic review. Brain Behav Immun 2024; 123:865-875. [PMID: 39500414 DOI: 10.1016/j.bbi.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/14/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Recent research has underscored the critical role of blood-brain barrier (BBB) integrity in psychiatric disorders, highlighting disruptions in tight junction (TJ) proteins, specifically claudin-5 and occludin. These proteins are pivotal in maintaining the BBB's selective permeability, which is essential forbrain homeostasis. Altered levels of the TJ proteins have been observed in various psychiatric conditions, suggesting potential as biomarkers for the pathophysiology of these disorders. This systematic review synthesizes existing research on the alterations of claudin-5 and occludin levels in the serum of individuals with psychiatric disorders, evaluating their correlation with BBB dysfunction and psychiatric pathophysiology. METHODS In adherence to the PRISMA guidelines, a comprehensive search strategy was employed, utilizing databases such as PubMed, Google Scholar, Web of Science, and Scopus. The review encompassed studies published between 2000 and 2024 that measured serum claudin-5 and occludin levels of psychiatric patients. Thorough data extraction and synthesis were conducted. RESULTS Seventeen studies met the inclusion criteria. Key findings include indications for increased claudin-5 levels in Schizophrenia, Bipolar Disorder, Depression, and Specific learning disorder, and increased occludin levels in ADHD and Autism Spectrum Disorder patients. No significant differences were found in studies of patients with Alcohol Use and Insomnia Disorder. CONCLUSIONS The review underscores the potential association between altered serum levels of claudin-5 and occludin and psychiatric disorders, supporting their utility as biomarkers for BBB integrity and psychiatric pathophysiology. Further research is essential to elucidate the mechanisms linking TJ protein alterations with pathophysiology and, potentially, neuroprogression in psychiatric disorders, which could lead to novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Zinovia Maridaki
- 1(st) Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Georgios Syrros
- 2(nd) Department of Psychiatry, Attikon Hospital, National and Kapodistrian University of Athens, Greece
| | | | - Jerry Warsh
- Department of Psychiatry, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health, Toronto, Canada
| | - Gerasimos N Konstantinou
- Department of Psychiatry, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health, Toronto, Canada; Poul Hansen Family Centre for Depression, Centre of Mental Health, University Health Network, Toronto, Canada.
| |
Collapse
|
6
|
Chen W, Liu Y, Pu J, Gui S, Wang D, Zhong X, Tao W, Chen X, Chen X, Chen Y, Zhao L, Wu Q, Chen X, Zhang Y, Xie A, Xie P. Comparative transcriptional analyses of the striatum in the chronic social defeat stress model in C57BL/6J male mice and the gut microbiota-dysbiosis model in Kumming mice. Neuroscience 2024; 562:217-226. [PMID: 39489477 DOI: 10.1016/j.neuroscience.2024.10.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/11/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Depression is a complex disorder with multiple contributing factors, and chronic stress has previously been recognized as a major causative factor, while gut microbes have also been found to be involved in depression recently. However, gene expression in depression models with different etiologies is unclear. Here, we compared the transcriptomes of the striatum in chronic social defeat stress (CSDS) model of C57BL/6J male mice and fecal microbiota transplant (FMT) model of Kumming male mice. We found that the proportion of shared differentially expressed genes (DEGs) between the two models was only 24 %. The specific DEGs of FMT model were enriched in immune and inflammatory, and are associated with changes in vascular and ciliated ependymal cells. The specific DEGs of CSDS model were enriched in neuron and synapse. The results of network analysis suggested the expression patterns and biological function of depressive-like behaviors-related modules in the two models are different. Further, the alternative splicing events of CSDS are more than FMT. Our results suggested models of depression induced by different etiologies differ significantly in gene expression and biological function. Our study also suggested us to pay attention to the characteristics of models of depression of different etiologies and provided a more comprehensive understanding of the heterogeneity of depression.
Collapse
Affiliation(s)
- Weiyi Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Juncai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Siwen Gui
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Wei Tao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Xiaopeng Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Libo Zhao
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University 402160 Chongqing, China
| | - Qingyuan Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Xiangyu Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Yingying Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shan-dong, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shan-dong, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China.
| |
Collapse
|
7
|
Burke MR, Sotiropoulos I, Waites CL. The multiple roles of chronic stress and glucocorticoids in Alzheimer's disease pathogenesis. Trends Neurosci 2024; 47:933-948. [PMID: 39307629 DOI: 10.1016/j.tins.2024.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 11/15/2024]
Abstract
Chronic stress and the accompanying long-term elevation of glucocorticoids (GCs), the stress hormones of the body, increase the risk and accelerate the progression of Alzheimer's disease (AD). Signatures of AD include intracellular tau (MAPT) tangles, extracellular amyloid β (Aβ) plaques, and neuroinflammation. A growing body of work indicates that stress and GCs initiate cellular processes underlying these pathologies through dysregulation of protein homeostasis and trafficking, mitochondrial bioenergetics, and response to damage-associated stimuli. In this review, we integrate findings from mechanistic studies in rodent and cellular models, wherein defined chronic stress protocols or GC administration have been shown to elicit AD-related pathology. We specifically discuss the effects of chronic stress and GCs on tau pathogenesis, including hyperphosphorylation, aggregation, and spreading, amyloid precursor protein (APP) processing and trafficking culminating in Aβ production, immune priming by proinflammatory cytokines and disease-associated molecular patterns, and alterations to glial cell and blood-brain barrier (BBB) function.
Collapse
Affiliation(s)
- Mia R Burke
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Irving Medical Center, New York, NY, USA; Pathobiology and Mechanisms of Disease Graduate Program, Columbia University Irving Medical Center, New York, NY, USA
| | - Ioannis Sotiropoulos
- Institute of Biosciences and Applications, National Centre for Scientific Research (NCSR) Demokritos, Agia Paraskevi, Greece
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Irving Medical Center, New York, NY, USA; Department of Neuroscience, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
8
|
de Oliveira BH, Lins EF, Kunde NF, Salgado ASI, Martins LM, Bobinski F, Vieira WF, Cassano P, Quialheiro A, Martins DF. Transcranial photobiomodulation increases cognition and serum BDNF levels in adults over 50 years: A randomized, double-blind, placebo-controlled trial. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 260:113041. [PMID: 39423445 DOI: 10.1016/j.jphotobiol.2024.113041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND There is a significant lack of therapeutic options for mild cognitive impairment (MCI), which is rapidly becoming a global epidemic due to aging. Transcranial photobiomodulation (t-PBM) involves delivering near-infrared light (NIR) to the scalp, targeting cortical areas of the brain. NIR t-PBM has recently emerged as a potential therapy for various neurodegenerative conditions, including memory issues. AIMS This study aimed to evaluate cognition scores (primary outcome), depression, anxiety, resilience scores, neuroplasticity, and neurodegeneration biomarkers (secondary outcomes) in individuals with MCI undergoing t-PBM therapy or receiving a placebo. MATERIALS AND METHODS A total of 93 older adult individuals with MCI were randomly assigned to either a t-PBM (n = 47) or Placebo (n = 46) group. Clinical assessments were conducted at baseline, 60 days post-treatment, and a 150-day follow-up. We also measured serum levels of brain-derived neurotrophic factor (BDNF), a neuroplasticity biomarker, as well as neuron-specific enolase (NSE) and calcium-binding protein B (S100B), which are neurodegeneration biomarkers. Intervention effects were analyzed using repeated measures (RM) two-way ANOVA followed by Tukey post hoc test. Fischer's exact test and Generalized Estimating Equations (GEE) were also applied. RESULTS Of the 93 older adults individuals invited to participate, 76 (t-PBM: 40, placebo: 36) completed the study. The t-PBM significantly improved cognition as measured by the Montreal Cognitive Assessment (MoCA) compared to placebo (p = 0.0301). The delta values for MoCA scores were 3.20 in the t-PBM group and 1.97 in the placebo group. This effect persisted until the three-month follow-up, accompanied by increased BDNF levels in the t-PBM group but not in the placebo group (p = 0.0046). The delta values for BDNF were 821.94 in the t-PBM group and 359.41 in the placebo group. t-PBM did not alter depression, anxiety, resilience scores, nor the levels of NSE and S100B in individuals with MCI. CONCLUSION The t-PBM increases cognitive function and BDNF levels in adults with MCI. Its application as an adjunctive treatment may play a crucial role in preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Bruna H de Oliveira
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Elisa F Lins
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Naiara F Kunde
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | | | - Leidiane M Martins
- Department of morphological sciences, Federal University Santa Catarina, Florianópolis, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Willians F Vieira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Paolo Cassano
- Photobiomodulation, Division of Neuropsychiatry, Depression Clinical and Research Program Center for Anxiety and Traumatic Stress Disorders Associate Professor Harvard Medical School, Massachusetts General, Boston, USA
| | - Anna Quialheiro
- The Artificial Intelligence and Health Research Unit, Polytechnic University of Health, CESPU, Portugal
| | - Daniel F Martins
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil.
| |
Collapse
|
9
|
Shi W, Zhang S, Yao K, Meng Q, Lu Y, Ren Y, Li L, Zhao J. Breakdown of the blood-brain barrier in depressed mice induced by chronic unpredictable mild stress. J Psychiatr Res 2024; 180:138-146. [PMID: 39418882 DOI: 10.1016/j.jpsychires.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Recent studies have suggested potential impairment of the blood-brain barrier (BBB) in depression. However, due to the limited research and variability in animal models, further investigation using diverse and stable models is necessary. METHODS A male mouse model of depression was established using the chronic unpredictable mild stress (CUMS) protocol. Following model establishment, depression-like behaviors were assessed using the sucrose preference test, tail suspension test, and forced swimming test. Morphological changes in the hippocampus were examined through hematoxylin-eosin staining. BBB permeability was evaluated using the Evans blue leakage test, fluorescein sodium (NaF) leakage test, and serum S100B content assessment. Gene and protein expression levels of BBB-related proteins in the hippocampus were determined via real-time PCR, western blotting, and immunofluorescence assays. RESULTS CUMS exposure induced depression-like behaviors, including reduced body weight gain, diminished sucrose preference, and prolonged immobility in both the tail suspension test and forced swimming test. While no significant pathological changes were observed in the hippocampus of either group, increased BBB permeability was noted in the CUMS group, as evidenced by enhanced NaF leakage into the brain parenchyma and elevated serum S100B levels. Gene expression analysis revealed downregulation of angiogenesis-related genes and tight junction proteins in the CUMS group. Additionally, protein levels of tight junction proteins Claudin-5 and ZO-1 were lower in the CUMS group compared to controls. LIMITATIONS This study is limited to a male mouse model, and the BBB in females is worth exploring in the future. CONCLUSIONS Increased BBB permeability and decreased expression of tight junction proteins Claudin5 and ZO-1 were observed in mice with CUMS-induced depression.
Collapse
Affiliation(s)
- Wei Shi
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Shan Zhang
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Kaihu Yao
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Qinghong Meng
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yujia Lu
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yi Ren
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Li Li
- Department of International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Department of Integrated Traditional and Western Medicine, Capital Medical University, Beijing, 100050, China.
| | - Jingjie Zhao
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Department of Integrated Traditional and Western Medicine, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
10
|
Yuan M, Li L, Zhu H, Zheng B, Lui S, Zhang W. Cortical morphological changes and associated transcriptional signatures in post-traumatic stress disorder and psychological resilience. BMC Med 2024; 22:431. [PMID: 39379972 PMCID: PMC11462656 DOI: 10.1186/s12916-024-03657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Individuals who have experienced severe traumatic events are estimated to have a post-traumatic stress disorder (PTSD) prevalence rate ranging from 10 to 50%, while those not affected by trauma exposure are often considered to possess psychological resilience. However, the neural mechanisms underlying the development of PTSD, especially resilience after trauma, remain unclear. This study aims to investigate changes of cortical morphometric similarity network (MSN) in PTSD and trauma-exposed healthy individuals (TEHI), as well as the associated molecular alterations in gene expression, providing potential targets for the prevention and intervention of PTSD. METHODS We recruited PTSD patients and TEHI who had experienced severe earthquakes, and healthy controls who had not experienced earthquakes. We identified alterations in the whole-brain MSN changes in PTSD and TEHI, and established associations between these changes and brain-wide gene expression patterns from the Allen Human Brain Atlas microarray dataset using partial least squares regression. RESULTS At the neuroimaging level, we found not only trauma-susceptible changes in TEHI same as those in PTSD, but also unique neurobiological alterations to counteract the deleterious impact of severe trauma. We identified 1444 and 2214 genes transcriptionally related to MSN changes in PTSD and TEHI, respectively. Functional enrichment analysis of weighted gene expression for PTSD and TEHI revealed distinct enrichments in Gene Ontology biological processes and Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, gene expression profiles of astrocytes, excitatory neurons, and microglial cells are highly related to MSN abnormalities in PTSD. CONCLUSIONS The formation of resilience may be by an active compensatory process of the brain. The combination of macroscopic neuroimaging changes and microscopic human brain transcriptomics could offer a more direct and in-depth understanding of the pathogenesis of PTSD and psychological resilience, shedding light on new targets for the prevention and treatment of PTSD.
Collapse
Affiliation(s)
- Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China
| | - Lun Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China
- Sichuan Institute of Computer Sciences, 610041, Chengdu, People's Republic of China
| | - Hongru Zhu
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China
- Med-X Center for Informatics, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Bo Zheng
- Department of Interventional Medicine, Sichuan Science City Hospital, 621000, Mianyang, People's Republic of China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China.
- Huaxi Brain Research Center, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
- Medical Big Data Center, Sichuan University, 610041, Chengdu, People's Republic of China.
| |
Collapse
|
11
|
Euclydes V, Braga CI, Gouveia G, Martinez RC, Camilo C, Simões SN, Martins-Jr DC, Fracolli L, Argeu A, Ferraro A, Matijasevich A, Fatori D, Miguel EC, Polanczyk GV, Brentani H. Maternal immune response during pregnancy and neurodevelopmental outcomes: A longitudinal approach. Brain Behav Immun Health 2024; 40:100832. [PMID: 39193418 PMCID: PMC11347843 DOI: 10.1016/j.bbih.2024.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Background and objectives The neurodevelopment of the offspring is suggested to be influenced by the maternal immune system's responses throughout pregnancy, which in turn is also vulnerable to maternal psychosocial stress conditions. Therefore, our main goal was to investigate whether maternal peripheral immunological biomarkers (IB) during two stages of gestation are associated with distinct neurodevelopmental trajectories in the first two years of life. As a second goal, we also explored the association between maternal distal (childhood) and proximal (gestation) stressful experiences and the immunological markers assessed during pregnancy. Methods Maternal childhood trauma, depressive and anxiety symptoms, and peripheral IB (IFNγ, IL-10, IL1β, IL6, IL8, TNFα, EGF, IL13, IL17, IL1Ra and IL4) were measured at baseline (8-16 weeks of pregnancy) and at 30 weeks of pregnancy in 160 women. The participants had the blood samples collected from two randomized clinical trials conducted by the same team and methods in the same community. A Principal Component Analysis (PCA) was implemented to create meaningful composite variables that describe the cytokines joint variation. Finally, linear mixed-effects modeling was used to investigate the influence of inflammatory biomarkers, maternal childhood trauma, anxiety, and depressive symptoms on Bayley's III scores trajectories. Results The IB profile during the 3rd trimester of pregnancy predicted the offspring's neurodevelopmental trajectories in the first two years of life. The components derived from PCA were important predictors and captured different immune responses, reflecting both pro- and anti-inflammatory states. Maternal stressful experiences did not correlate with the immunological markers. Although not a reliable predictor alone, maternal psychosocial stress at the 1st trimester of pregnancy interacted with the mother's immune response while predicting the neurodevelopmental scores during the first two years of life. Conclusions Our results underscore the importance of the maternal immune response during pregnancy in shaping the neurodevelopmental trajectory of the offspring. Additionally, we observed that the maternal distress at the early stages of pregnancy has an incremental effect on the neurodevelopmental outcome but depends upon the immune response.
Collapse
Affiliation(s)
- Veronica Euclydes
- Instituto e Departamento de Psiquiatria, Faculdade de Medicina FMUSP, LIM/23, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Caio I.S. Braga
- Center for Mathematics, Computation and Cognition, Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Gisele Gouveia
- Instituto e Departamento de Psiquiatria, Faculdade de Medicina FMUSP, LIM/23, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Caroline Camilo
- Instituto e Departamento de Psiquiatria, Faculdade de Medicina FMUSP, LIM/23, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | - David C. Martins-Jr
- Center for Mathematics, Computation and Cognition, Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Lislaine Fracolli
- Escola de Enfermagem, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Adriana Argeu
- Instituto e Departamento de Psiquiatria, Faculdade de Medicina FMUSP, LIM/23, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Alexandre Ferraro
- Departamento de Pediatria, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Alicia Matijasevich
- Departamento de Medicina Preventiva, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Daniel Fatori
- Instituto e Departamento de Psiquiatria, Faculdade de Medicina FMUSP, LIM/23, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Euripedes C. Miguel
- Instituto e Departamento de Psiquiatria, Faculdade de Medicina FMUSP, LIM/23, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Guilherme V. Polanczyk
- Instituto e Departamento de Psiquiatria, Faculdade de Medicina FMUSP, LIM/23, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Helena Brentani
- Instituto e Departamento de Psiquiatria, Faculdade de Medicina FMUSP, LIM/23, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
12
|
Cattane N, Mazzelli M, Begni V, Mombelli E, Papp M, Maj C, Riva MA, Cattaneo A. Molecular mechanisms underlying stress vulnerability and resilience in the chronic mild stress model: New insights from mRNA and miRNAs data combining. Brain Behav Immun 2024; 121:340-350. [PMID: 39074628 DOI: 10.1016/j.bbi.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/23/2024] [Accepted: 07/20/2024] [Indexed: 07/31/2024] Open
Abstract
Stress is a major risk factor for the development of psychiatric disorders, including depression. However, its effects are not the same in all the subjects as only a portion of individuals exposed to stress will eventually develop negative mental outcomes, while others can be considered resilient. However, the biological processes underlying the development of a vulnerable or resilient phenotype are still poor understood. In order to cover this, we here used both transcriptomic and miRNomic based approaches in the ventral hippocampus of control (CON) and rats exposed to the chronic mild stress (CMS) paradigm, which were then divided into vulnerable (VULN) or resilient (RES) animals according to the sucrose consumption test. Transcriptomic analyses in VULN rats, compared to both the group of CON and RES animals, revealed the activation of inflammatory/immune-related pathways, specifically involved in antibodies and cytokine production, and the inhibition of pathways involved in protein synthesis. Conversely, transcriptomic data in RES animals suggested the activation of several pathways involved in neurotransmission. We then performed a mRNA-miRNA integration analysis by using miRComb R package, and we found that the most significant mRNA-miRNA pairs were involved in promoting the inflammatory status in VULN animals and, vice versa, by decreasing it in RES rats. Moreover, in VULN animals, the mRNA-miRNA combining analyses revealed the modulation of the olfactory sensory system, a key biological process that has been already found involved in the etiology of stress related disorders such as depression. Overall, our mRNA-miRNA integration-based approach identified distinct biological processes that are relevant for the development of a vulnerable or resilient phenotype in response to the negative effects of CMS exposure, which could allow the identification of novel targets for prevention or treatment.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Monica Mazzelli
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Begni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Elisa Mombelli
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Mariusz Papp
- Behavioral Pharmacology Laboratory, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Carlo Maj
- Center for Human Genetics, University of Marburg, Marburg, Germany
| | - Marco Andrea Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
13
|
Bekhbat M. Glycolytic metabolism: Food for immune cells, fuel for depression? Brain Behav Immun Health 2024; 40:100843. [PMID: 39263313 PMCID: PMC11387811 DOI: 10.1016/j.bbih.2024.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/16/2024] [Accepted: 08/10/2024] [Indexed: 09/13/2024] Open
Abstract
Inflammation is one biological pathway thought to impact the brain to contribute to major depressive disorder (MDD) and is reliably associated with resistance to standard antidepressant treatments. While peripheral immune cells, particularly monocytes, have been associated with aspects of increased inflammation in MDD and symptom severity, significant gaps in knowledge exist regarding the mechanisms by which these cells are activated to contribute to behavioral symptoms in MDD. One concept that has gained recent appreciation is that metabolic rewiring to glycolysis in activated myeloid cells plays a crucial role in facilitating these cells' pro-inflammatory functions, which may underlie myeloid contribution to systemic inflammation and its effects on the brain. Given emerging evidence from translational studies of depression that peripheral monocytes exhibit signs of glycolytic activation, better understanding the immunometabolic phenotypes of monocytes which are known to be elevated in MDD with high inflammation is a critical step toward comprehending and treating the impact of inflammation on the brain. This narrative review examines the extant literature on glycolytic metabolism of circulating monocytes in depression and discusses the functional implications of immunometabolic shifts at both cellular and systemic levels. Additionally, it proposes potential therapeutic applications of existing immunomodulators that target glycolysis and related metabolic pathways in order to reverse the impact of elevated inflammation on the brain and depressive symptoms.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
14
|
Goodman EJ, DiSabato DJ, Sheridan JF, Godbout JP. Novel microglial transcriptional signatures promote social and cognitive deficits following repeated social defeat. Commun Biol 2024; 7:1199. [PMID: 39341879 PMCID: PMC11438916 DOI: 10.1038/s42003-024-06898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Chronic stress is associated with anxiety and cognitive impairment. Repeated social defeat (RSD) in mice induces anxiety-like behavior driven by microglia and the recruitment of inflammatory monocytes to the brain. Nonetheless, it is unclear how microglia communicate with other cells to modulate the physiological and behavioral responses to stress. Using single-cell (sc)RNAseq, we identify novel, to the best of our knowledge, stress-associated microglia in the hippocampus defined by RNA profiles of cytokine/chemokine signaling, cellular stress, and phagocytosis. Microglia depletion with a CSF1R antagonist (PLX5622) attenuates the stress-associated profile of leukocytes, endothelia, and astrocytes. Furthermore, RSD-induced social withdrawal and cognitive impairment are microglia-dependent, but social avoidance is microglia-independent. Furthermore, single-nuclei (sn)RNAseq shows robust responses to RSD in hippocampal neurons that are both microglia-dependent and independent. Notably, stress-induced CREB, oxytocin, and glutamatergic signaling in neurons are microglia-dependent. Collectively, these stress-associated microglia influence transcriptional profiles in the hippocampus related to social and cognitive deficits.
Collapse
Affiliation(s)
- Ethan J Goodman
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210, USA
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Damon J DiSabato
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210, USA
| | - John F Sheridan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA.
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, 43210, USA.
| | - Jonathan P Godbout
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210, USA.
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA.
| |
Collapse
|
15
|
Hage Z, Madeira MM, Koliatsis D, Tsirka SE. Convergence of endothelial dysfunction, inflammation and glucocorticoid resistance in depression-related cardiovascular diseases. BMC Immunol 2024; 25:61. [PMID: 39333855 PMCID: PMC11428380 DOI: 10.1186/s12865-024-00653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Major Depressive Disorder, or depression, has been extensively linked to dysregulated HPA axis function, chronic inflammation and cardiovascular diseases. While the former two have been studied in depth, the mechanistic connection between depression and cardiovascular disease is unclear. As major mediators of vascular homeostasis, vascular pathology and immune activity, endothelial cells represent an important player connecting the diseases. Exaggerated inflammation and glucocorticoid function are important topics to explore in the endothelial response to MDD. Glucocorticoid resistance in several cell types strongly promotes inflammatory signaling and results in worsened severity in many diseases. However, endothelial health and inflammation in chronic stress and depression are rarely considered from the perspective of glucocorticoid signaling and resistance. In this review, we aim to discuss (1) endothelial dysfunction in depression, (2) inflammation in depression, (3) general glucocorticoid resistance in depression and (4) endothelial glucocorticoid resistance in depression co-morbid inflammatory diseases. We will first describe vascular pathology, inflammation and glucocorticoid resistance separately in depression and then describe their potential interactions with one another in depression-relevant diseases. Lastly, we will hypothesize potential mechanisms by which glucocorticoid resistance in endothelial cells may contribute to vascular disease states in depressed people. Overall, endothelial-glucocorticoid signaling may play an important role in connecting depression and vascular pathology and warrants further study.
Collapse
Affiliation(s)
- Zachary Hage
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Scholars in Biomedical Sciences Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Miguel M Madeira
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Scholars in Biomedical Sciences Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Dimitris Koliatsis
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Stella E Tsirka
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
- Scholars in Biomedical Sciences Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
16
|
Luo Y, Zhang Y, Feng Y, Zeng X, Zhu D, Yang Y, Hu H, Wang Q, Guo L, Zou L, Zhong X. Prenatal exposure to low doses of benzophenone-3 elicits disruption of cortical vasculature in fetuses through perturbations in Wnt/β-catenin signaling correlating with depression-like behavior in offspring mice. Toxicology 2024; 509:153960. [PMID: 39343157 DOI: 10.1016/j.tox.2024.153960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Benzophenone-3 (BP-3), commonly used in personal care products, is routinely detected in environmental and human matrices. Evidence delineates a correlation between gestational BP-3 exposure and emotional and social disorders in children and adolescents. However, sensitive target cells and the mode of action underlying the early responses to environmentally relevant level of BP-3 exposure remain unclear. In this study, 0.3 and 3 mg/kg of BP-3 were administered to pregnant mice. Compared with the control group, the cortical blood vessel development process manifested the highest susceptibility to BP-3 exposure using transcriptomic sequencing at embryonic day 14 (E14). Notably, the diminution in vascular density and tight junction proteins presence was observed in the fetal cortex at E14, concomitant with the suppressed transcriptional activity of genes essential to angiogenesis and barrier formation. Strikingly, the investigation revealed that BP-3 exposure impeded vascular sprouting in aortic ring explants and neuroendothelial migration, implicating the Wnt/β-catenin signaling pathway. Moreover, BP-3 exposure compromised perivascular neural stem cell differentiation. Cortical vascular injury correlated with the exhibition of depression-like behavior in four-week postnatal progeny. These insights underscore the cerebrovasculature as an early sensitive target for low doses of BP-3 exposure, fostering the development of biomarkers and the establishment of the adverse outcome pathway framework for BP-3 hazard evaluation.
Collapse
Affiliation(s)
- Yijun Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yangjian Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yang Feng
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, China
| | - Xiangyu Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dan Zhu
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Haichen Hu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lan Guo
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lianhong Zou
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, China; Geriatric Immunization Research Center of Hunan Provincial Geriatric Institute, Changsha, Hunan, China.
| | - Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
17
|
Huang H, Deng X, Wang Y, Shen S, Wang S, Hu M, Liu S, Su X, Li C, Li T, Lu Z, Cai W. Chronic Stress Exacerbates Cerebral Amyloid Angiopathy Through Promoting Neutrophil Extracellular Traps Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404096. [PMID: 39324658 DOI: 10.1002/advs.202404096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is the leading cause of vascular dementia among the elderly. Neuropsychiatric symptoms are commonly manifested in cerebral amyloid angiopathy patients but are usually considered as consequences of cerebral amyloid angiopathy pathology. Here, it is reported that chronic stress promotes cerebral amyloid angiopathy progression, which enhances deposition of amyloid protein beta (Aβ) in brain blood vessels and exacerbates subsequent brain injury. Mechanistically, neutrophil is implicated in cerebral amyloid angiopathy development. Aβ that accumulates in brain vasculature induces neutrophil extracellular traps (NETs) by activating STAT6 signaling, which inhibits neutrophil apoptosis and switches the programmed cell death toward NETosis. During chronic stress, circulatory Norepinephrine (NE) strengthens STAT6 activation in neutrophil and promotes NET formation, thus exacerbates the NET-dependent angiopathy. It is demonstrated that inhibiting neutrophil chemotaxis towards brain or suppressing NET formation both ameliorate cerebral amyloid angiopathy severity in the context of chronic stress. Therefore, it is proposed that stress-associated psychological disorders and NETs are promising therapeutic targets in cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Huipeng Huang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaohui Deng
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuge Wang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shishi Shen
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Mengyan Hu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Sanxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaotao Su
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Chunyi Li
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Tiemei Li
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510630, China
| |
Collapse
|
18
|
Alberti A, Araujo Coelho DR, Vieira WF, Moehlecke Iser B, Lampert RMF, Traebert E, Silva BBD, Oliveira BHD, Leão GM, Souza GD, Dallacosta FM, Kades G, Madeira K, Chupel MU, Grossl FS, Souza R, Hur Soares B, Endrigo Ruppel da Rocha R, da Silva Sipriano E, Fernandes Martins D, Agostinetto L. Factors Associated with the Development of Depression and the Influence of Obesity on Depressive Disorders: A Narrative Review. Biomedicines 2024; 12:1994. [PMID: 39335507 PMCID: PMC11429137 DOI: 10.3390/biomedicines12091994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
Depression affects several aspects of life, including socioeconomic status, relationships, behavior, emotions, and overall health. The etiology of depression is complex and influenced by various factors, with obesity emerging as a significant contributor. This narrative review aims to investigate the factors associated with the development of depression, with a particular focus on the role of obesity. The literature search was conducted on PubMed, Embase, and PsycINFO from May to July 2024. The review highlights the impact of environmental and socioeconomic conditions; lifestyle choices, including physical activity and dietary habits; stress; traumatic experiences; neurotransmitter imbalances; medical and psychological conditions; hormone fluctuations; and epigenetic factors on depression. A key emphasis is placed on the inflammatory processes linked to obesity, which may drive the bidirectional relationship between obesity and depression. The findings suggest that obesity is associated with an increased risk of depression, potentially due to chronic inflammation, neurochemical dysregulation, and the emotional and social challenges related to weight stigma and obesity management. Understanding these interconnected factors is important for developing targeted interventions to address both obesity and depression, leading to improved quality of life for those affected.
Collapse
Affiliation(s)
- Adriano Alberti
- Department of Biological and Health Sciences Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça 88132-260, Brazil
- Graduate Program in Environment and Health, University of Planalto Catarinense-UNIPLAC, Lages 88509-900, Brazil
| | | | - Willians Fernando Vieira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 5508-000, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-864, Brazil
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Campinas 13045-755, Brazil
| | - Betine Moehlecke Iser
- Department of Biological and Health Sciences Posgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão 88704-900, Brazil
| | - Rose Meiry Fernandez Lampert
- Department of Biological and Health Sciences Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça 88132-260, Brazil
| | - Eliane Traebert
- Department of Biological and Health Sciences Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça 88132-260, Brazil
| | - Bruna Becker da Silva
- Department of Biological and Health Sciences Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça 88132-260, Brazil
| | - Bruna Hoffmann de Oliveira
- Department of Biological and Health Sciences Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça 88132-260, Brazil
| | - Graziela Marques Leão
- Department of Biological and Health Sciences Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça 88132-260, Brazil
| | - Gabriela de Souza
- Department of Biological and Health Sciences Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça 88132-260, Brazil
| | | | - Gabriela Kades
- Department of Biosciences and Health, University of West Santa Catarina, Joaçaba 89600-000, Brazil
| | - Kristian Madeira
- Department of Mathematics and Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma 88806-000, Brazil
| | - Matheus Uba Chupel
- Hurvitz Brain Sciences, Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Fernando Schorr Grossl
- Department of Biosciences and Health, University of West Santa Catarina, Joaçaba 89600-000, Brazil
| | - Renan Souza
- Department of Biosciences and Health, University of West Santa Catarina, Joaçaba 89600-000, Brazil
| | - Ben Hur Soares
- Department of Physical Education and Physiotherapy, University of Passo Fundo, Passo Fundo 99052-900, Brazil
| | - Ricelli Endrigo Ruppel da Rocha
- Department of the Graduate Program in Development and Society-PPGEDS (UNIARP), University of Alto Vale do Rio do Peixe, Caçador 89500-199, Brazil
| | - Erica da Silva Sipriano
- Department of Mathematics and Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma 88806-000, Brazil
| | - Daniel Fernandes Martins
- Department of Biological and Health Sciences Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça 88132-260, Brazil
| | - Lenita Agostinetto
- Graduate Program in Environment and Health, University of Planalto Catarinense-UNIPLAC, Lages 88509-900, Brazil
| |
Collapse
|
19
|
Li Q, Pang B, Dang E, Wang G. Endothelial Dysfunction in Psoriasis: An Integrative Review. J Invest Dermatol 2024; 144:1935-1942. [PMID: 38493385 DOI: 10.1016/j.jid.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/18/2024]
Abstract
Vascular endothelial cells (ECs), the inner layer of blood vessels, were previously considered to be a passive lining that facilitates cellular and molecular exchange. However, recent studies have revealed that ECs can respond to various stimuli and actively regulate vascular function and skin inflammation. Specific subtypes of ECs are known to have significant roles in a diverse range of physiological and pathological processes in the skin. This review suggests that EC dysfunction is both causal and consequential in the pathogenesis of psoriasis. Further investigations into dysregulated pathways in EC dysfunction may provide new insights for the treatment of psoriasis.
Collapse
Affiliation(s)
- Qingyang Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People Republic of China
| | - Bingyu Pang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People Republic of China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People Republic of China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People Republic of China.
| |
Collapse
|
20
|
Banerjee P, Chau K, Kotla S, Davis EL, Turcios EB, Li S, Pengzhi Z, Wang G, Kolluru GK, Jain A, Cooke JP, Abe J, Le NT. A Potential Role for MAGI-1 in the Bi-Directional Relationship Between Major Depressive Disorder and Cardiovascular Disease. Curr Atheroscler Rep 2024; 26:463-483. [PMID: 38958925 DOI: 10.1007/s11883-024-01223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW Major Depressive Disorder (MDD) is characterized by persistent symptoms such as fatigue, loss of interest in activities, feelings of sadness and worthlessness. MDD often coexist with cardiovascular disease (CVD), yet the precise link between these conditions remains unclear. This review explores factors underlying the development of MDD and CVD, including genetic, epigenetic, platelet activation, inflammation, hypothalamic-pituitary-adrenal (HPA) axis activation, endothelial cell (EC) dysfunction, and blood-brain barrier (BBB) disruption. RECENT FINDINGS Single nucleotide polymorphisms (SNPs) in the membrane-associated guanylate kinase WW and PDZ domain-containing protein 1 (MAGI-1) are associated with neuroticism and psychiatric disorders including MDD. SNPs in MAGI-1 are also linked to chronic inflammatory disorders such as spontaneous glomerulosclerosis, celiac disease, ulcerative colitis, and Crohn's disease. Increased MAGI-1 expression has been observed in colonic epithelial samples from Crohn's disease and ulcerative colitis patients. MAGI-1 also plays a role in regulating EC activation and atherogenesis in mice and is essential for Influenza A virus (IAV) infection, endoplasmic reticulum stress-induced EC apoptosis, and thrombin-induced EC permeability. Despite being understudied in human disease; evidence suggests that MAGI-1 may play a role in linking CVD and MDD. Therefore, further investigation of MAG-1 could be warranted to elucidate its potential involvement in these conditions.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
| | - Khanh Chau
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eleanor L Davis
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Estefani Berrios Turcios
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Shengyu Li
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Zhang Pengzhi
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | | | - Abhishek Jain
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
- Department of Medical Physiology, School of Medicine, Texas A&M Health Science Center, Bryan, USA
| | - John P Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Junichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
21
|
Tripathi A, Bartosh A, Mata J, Jacks C, Madeshiya AK, Hussein U, Hong LE, Zhao Z, Pillai A. Microglial type I interferon signaling mediates chronic stress-induced synapse loss and social behavior deficits. Mol Psychiatry 2024:10.1038/s41380-024-02675-6. [PMID: 39095477 DOI: 10.1038/s41380-024-02675-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Inflammation and synapse loss have been associated with deficits in social behavior and are involved in pathophysiology of many neuropsychiatric disorders. Synapse loss, characterized by reduction in dendritic spines can significantly disrupt synaptic connectivity and neural circuitry underlying social behavior. Chronic stress is known to induce loss of spines and dendrites in the prefrontal cortex (PFC), a brain region implicated in social behavior. However, the underlying mechanisms are not well understood. In the present study, we investigated the role of type I Interferon (IFN-I) signaling in chronic unpredictable stress (CUS)-induced synapse loss and behavior deficits in mice. We found increased expression of type I IFN receptor (IFNAR) in microglia following CUS. Conditional knockout of microglial IFNAR in adult mice rescued CUS-induced social behavior deficits and synapse loss. Bulk RNA sequencing data show that microglial IFNAR deletion attenuated CUS-mediated changes in the expression of genes such as Keratin 20 (Krt20), Claudin-5 (Cldn5) and Nuclear Receptor Subfamily 4 Group A Member 1 (Nr4a1) in the PFC. Cldn5 and Nr4a1 are known for their roles in synaptic plasticity. Krt20 is an intermediate filament protein responsible for the structural integrity of epithelial cells. The reduction in Krt20 following CUS presents a novel insight into the potential contribution of cytokeratin in stress-induced alterations in neuroplasticity. Overall, these results suggest that microglial IFNAR plays a critical role in regulating synaptic plasticity and social behavior deficits associated with chronic stress conditions.
Collapse
Affiliation(s)
- Ashutosh Tripathi
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alona Bartosh
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jocelyn Mata
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chale Jacks
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Amit Kumar Madeshiya
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Usama Hussein
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Elliot Hong
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anilkumar Pillai
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
22
|
Rajkumar RP. Revisiting a hypothesis: the neurovascular unit as a link between major depression and neurodegenerative disorders. Front Cell Neurosci 2024; 18:1455606. [PMID: 39157756 PMCID: PMC11327082 DOI: 10.3389/fncel.2024.1455606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Affiliation(s)
- Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education, Pondicherry, India
| |
Collapse
|
23
|
Morys J, Małecki A, Nowacka-Chmielewska M. Stress and the gut-brain axis: an inflammatory perspective. Front Mol Neurosci 2024; 17:1415567. [PMID: 39092201 PMCID: PMC11292226 DOI: 10.3389/fnmol.2024.1415567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
The gut-brain axis (GBA) plays a dominant role in maintaining homeostasis as well as contributes to mental health maintenance. The pathways that underpin the axis expand from macroscopic interactions with the nervous system, to the molecular signals that include microbial metabolites, tight junction protein expression, or cytokines released during inflammation. The dysfunctional GBA has been repeatedly linked to the occurrence of anxiety- and depressive-like behaviors development. The importance of the inflammatory aspects of the altered GBA has recently been highlighted in the literature. Here we summarize current reports on GBA signaling which involves the immune response within the intestinal and blood-brain barrier (BBB). We also emphasize the effect of stress response on altering barriers' permeability, and the therapeutic potential of microbiota restoration by probiotic administration or microbiota transplantation, based on the latest animal studies. Most research performed on various stress models showed an association between anxiety- and depressive-like behaviors, dysbiosis of gut microbiota, and disruption of intestinal permeability with simultaneous changes in BBB integrity. It could be postulated that under stress conditions impaired communication across BBB may therefore represent a significant mechanism allowing the gut microbiota to affect brain functions.
Collapse
Affiliation(s)
| | | | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| |
Collapse
|
24
|
Kalisch R, Russo SJ, Müller MB. Neurobiology and systems biology of stress resilience. Physiol Rev 2024; 104:1205-1263. [PMID: 38483288 PMCID: PMC11381009 DOI: 10.1152/physrev.00042.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampus-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors [as found in fear-related disorders, including simpler forms of posttraumatic stress disorder (PTSD)] by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.
Collapse
Affiliation(s)
- Raffael Kalisch
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Marianne B Müller
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
25
|
Smith A, MacAulay B, Scheufen J, Hudak A, Abizaid A. Chronic Social Defeat Stress Increases Brain Permeability to Ghrelin in Male Mice. eNeuro 2024; 11:ENEURO.0093-24.2024. [PMID: 38937108 PMCID: PMC11253241 DOI: 10.1523/eneuro.0093-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024] Open
Abstract
Ghrelin is a stomach-derived hormone that increases feeding and is elevated in response to chronic psychosocial stressors. The effects of ghrelin on feeding are mediated by the binding of ghrelin to the growth hormone secretagogue receptor (GHSR), a receptor located in hypothalamic and extrahypothalamic regions important for regulating food intake and metabolic rate. The ability of ghrelin to enter the brain, however, seems to be restricted to circumventricular organs like the median eminence and the brainstem area postrema, whereas ghrelin does not readily enter other GHSR-expressing regions like the ventral tegmental area (VTA). Interestingly, social stressors result in increased blood-brain barrier permeability, and this could therefore facilitate the entry of ghrelin into the brain. To investigate this, we exposed mice to social defeat stress for 21 d and then peripherally injected a Cy5-labelled biologically active ghrelin analog. The results demonstrate that chronically stressed mice exhibit higher Cy5-ghrelin fluorescence in several hypothalamic regions in addition to the ARC, including the hippocampus and midbrain. Furthermore, Cy5-ghrelin injections resulted in increased FOS expression in regions associated with the reward system in chronically stressed mice. Further histologic analyses identified a reduction in the branching of hypothalamic astrocytes in the ARC-median eminence junction, suggesting increased blood-brain barrier permeability. These data support the hypothesis that during metabolically challenging conditions like chronic stress, ghrelin may be more able to cross the blood-brain barrier and diffuse throughout the brain to target GHSR-expressing brain regions away from circumventricular organs.
Collapse
Affiliation(s)
- Andrea Smith
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | - Brenna MacAulay
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | - Jessica Scheufen
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | - Abagael Hudak
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S5B6, Canada
| |
Collapse
|
26
|
Zhu HM, Wang B, Wang T, Shao J, Chen HR, Zhang C, Xu LH, Li JJ, Wang M, Xu DX, Meng XH. Prenatal exposure to fenvalerate causes depressive-like behavior in adulthood by inhibiting brain-derived 5-HT synthesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124137. [PMID: 38740245 DOI: 10.1016/j.envpol.2024.124137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The developmental toxicity of fenvalerate, a representative pyrethroid insecticide, is well documented. The present study aimed to explore whether prenatal exposure to fenvalerate causes depression-like behavior in adulthood. Pregnant mice were orally administrated with either corn oil or fenvalerate (2 or 20 mg/kg) during pregnancy. Depressive-like behaviors were assessed by tail suspension test (TST), forced swim test (FST) and sucrose preference test (SPT). Immobility times in TST and FST were increased in offspring whose mothers were exposed to fenvalerate throughout pregnancy. By contrast, sugar preference index, as determined by SPT, was decreased in fenvalerate-exposed offspring. Prefrontal PSD95, a postsynaptic membrane marker, was downregulated in fenvalerate-exposed adulthood offspring. Fenvalerate-induced reduction of prefrontal PSD95 began at GD18 fetal period. Accordingly, prefrontal 5-HT, a neurotransmitter for synaptogenesis, was also reduced in fenvalerate-exposed GD18 fetuses. Tryptophan hydroxylase 2 (TPH2), a key enzyme for 5-HT synthesis, was downregulated in the midbrain of fenvalerate-exposed GD18 fetuses. Additional experiment showed that GRP78 and p-eIF2α, two endoplasmic reticulum stress-related proteins, were increased in the midbrain of fenvalerate-exposed fetal mice. The present results suggest that prenatal exposure to fenvalerate causes depressive-like behavior in adulthood, partially by inhibiting brain-derived 5-HT synthesis.
Collapse
Affiliation(s)
- Hui-Min Zhu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Bo Wang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tao Wang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jing Shao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hui-Ru Chen
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chi Zhang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Li-Hua Xu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jing-Jing Li
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Min Wang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - De-Xiang Xu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiu-Hong Meng
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
27
|
Nestler EJ, Russo SJ. Neurobiological basis of stress resilience. Neuron 2024; 112:1911-1929. [PMID: 38795707 PMCID: PMC11189737 DOI: 10.1016/j.neuron.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 05/01/2024] [Indexed: 05/28/2024]
Abstract
A majority of humans faced with severe stress maintain normal physiological and behavioral function, a process referred to as resilience. Such stress resilience has been modeled in laboratory animals and, over the past 15 years, has transformed our understanding of stress responses and how to approach the treatment of human stress disorders such as depression, post-traumatic stress disorder (PTSD), and anxiety disorders. Work in rodents has demonstrated that resilience to chronic stress is an active process that involves much more than simply avoiding the deleterious effects of the stress. Rather, resilience is mediated largely by the induction of adaptations that are associated uniquely with resilience. Such mechanisms of natural resilience in rodents are being characterized at the molecular, cellular, and circuit levels, with an increasing number being validated in human investigations. Such discoveries raise the novel possibility that treatments for human stress disorders, in addition to being geared toward reversing the damaging effects of stress, can also be based on inducing mechanisms of natural resilience in individuals who are inherently more susceptible. This review provides a progress report on this evolving field.
Collapse
Affiliation(s)
- Eric J Nestler
- Nash Family Department of Neuroscience and Department of Psychiatry, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Scott J Russo
- Nash Family Department of Neuroscience and Department of Psychiatry, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
28
|
Hashimoto Y, Greene C, Hanley N, Hudson N, Henshall D, Sweeney KJ, O'Brien DF, Campbell M. Pumilio-1 mediated translational control of claudin-5 at the blood-brain barrier. Fluids Barriers CNS 2024; 21:52. [PMID: 38898501 PMCID: PMC11188261 DOI: 10.1186/s12987-024-00553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Claudin-5 is one of the most essential tight junction proteins at the blood-brain barrier. A single nucleotide polymorphism rs10314 is located in the 3'-untranslated region of claudin-5 and has been shown to be a risk factor for schizophrenia. Here, we show that the pumilio RNA-binding protein, pumilio-1, is responsible for rs10314-mediated claudin-5 regulation. The RNA sequence surrounding rs10314 is highly homologous to the canonical pumilio-binding sequence and claudin-5 mRNA with rs10314 produces 25% less protein due to its inability to bind to pumilio-1. Pumilio-1 formed cytosolic granules under stress conditions and claudin-5 mRNA appeared to preferentially accumulate in these granules. Added to this, we observed granular pumilio-1 in endothelial cells in human brain tissues from patients with psychiatric disorders or epilepsy with increased/accumulated claudin-5 mRNA levels, suggesting translational claudin-5 suppression may occur in a brain-region specific manner. These findings identify a key regulator of claudin-5 translational processing and how its dysregulation may be associated with neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | - Chris Greene
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Nicole Hanley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Natalie Hudson
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - David Henshall
- Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, FutureNeuro, Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Ireland
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | | | | | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
- Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, FutureNeuro, Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
29
|
Wu S, Yin Y, Du L. The bidirectional relationship of depression and disturbances in B cell homeostasis: Double trouble. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110993. [PMID: 38490433 DOI: 10.1016/j.pnpbp.2024.110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Major depressive disorder (MDD) is a recurrent, persistent, and debilitating neuropsychiatric syndrome with an increasing morbidity and mortality, representing the leading cause of disability worldwide. The dysregulation of immune systems (including innate and adaptive immune systems) has been identified as one of the key contributing factors in the progression of MDD. As the main force of the humoral immunity, B cells have an essential role in the defense against infections, antitumor immunity and autoimmune diseases. Several recent studies have suggested an intriguing connection between disturbances in B cell homeostasis and the pathogenesis of MDD, however, the B-cell-dependent mechanism of MDD remains largely unexplored compared to other immune cells. In this review, we provide an overview of how B cell abnormality regulates the progression of MMD and the potential consequence of the disruption of B cell homeostasis in patients with MDD. Abnormalities of B-cell homeostasis not only promote susceptibility to MDD, but also lead to an increased risk of developing infection, malignancy and autoimmune diseases in patients with MDD. A better understanding of the contribution of B cells underlying MDD would provide opportunities for identification of more targeted treatment approaches and might provide an overall therapeutic benefit to improve the long-term outcomes of patients with MDD.
Collapse
Affiliation(s)
- Shusheng Wu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Yuye Yin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
30
|
Huang YY, Gan YH, Yang L, Cheng W, Yu JT. Depression in Alzheimer's Disease: Epidemiology, Mechanisms, and Treatment. Biol Psychiatry 2024; 95:992-1005. [PMID: 37866486 DOI: 10.1016/j.biopsych.2023.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023]
Abstract
Depression and Alzheimer's disease (AD) are substantial public health concerns. In the past decades, a link between the 2 disease entities has received extensive acknowledgment, yet the complex nature of this relationship demands further clarification. Some evidence indicates that midlife depression may be an AD risk factor, while a chronic course of depression in late life may be a precursor to or symptom of dementia. Recently, multiple pathophysiological mechanisms have been proposed to underlie the bidirectional relationship between depression and AD, including genetic predisposition, immune dysregulation, accumulation of AD-related biomarkers (e.g., amyloid-β and tau), and alterations in brain structure. Accordingly, numerous therapeutic approaches, such as pharmacology treatments, psychotherapy, and lifestyle interventions, have been suggested as potential means of interfering with these pathways. However, the current literature on this topic remains fragmented and lacks a comprehensive review characterizing the association between depression and AD. In this review, we aim to address these gaps by providing an overview of the co-occurrence and temporal relationship between depression and AD, as well as exploring their underlying mechanisms. We also examine the current therapeutic regimens for depression and their implications for AD management and outline key challenges facing the field.
Collapse
Affiliation(s)
- Yu-Yuan Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Han Gan
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
31
|
Mitra S, Sameer Kumar GS, Samanta A, Schmidt MV, Thakur SS. Hypothalamic protein profiling from mice subjected to social defeat stress. Mol Brain 2024; 17:30. [PMID: 38802853 PMCID: PMC11131206 DOI: 10.1186/s13041-024-01096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
The Hypothalmic-Pituitary-Adrenal axis also known as the HPA axis is central to stress response. It also acts as the relay center between the body and the brain. We analysed hypothalamic proteome from mice subjected to chronic social defeat paradigm using iTRAQ based quantitative proteomics to identify changes associated with stress response. We identified greater than 2000 proteins after processing our samples analysed through Q-Exactive (Thermo) and Orbitrap Velos (Thermo) at 5% FDR. Analysis of data procured from the runs showed that the proteins whose levels were affected belonged primarily to mitochondrial and metabolic processes, translation, complement pathway among others. We also found increased levels of fibrinogen, myelin basic protein (MBP) and neurofilaments (NEFL, NEFM, NEFH) in the hypothalamus from socially defeated mice. Interestingly, research indicates that these proteins are upregulated in blood and CSF of subjects exposed to trauma and stress. Since hypothalamus secreted proteins can be found in blood and CSF, their utility as biomarkers in depression holds an impressive probability and should be validated in clinical samples.
Collapse
Affiliation(s)
- Shiladitya Mitra
- Max Planck Institute of Psychiatry, Kraepelinstr 2-10, Munich, 80804, Germany.
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500007, India.
| | | | - Anumita Samanta
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500007, India
- Donders Institute for Brain Cognition and Behavior, Radboud University, Postbs 9010, Nijmegen, 6500GL, Netherlands
| | - Mathias V Schmidt
- Max Planck Institute of Psychiatry, Kraepelinstr 2-10, Munich, 80804, Germany
| | - Suman S Thakur
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500007, India
| |
Collapse
|
32
|
Varghese SM, Patel S, Nandan A, Jose A, Ghosh S, Sah RK, Menon B, K V A, Chakravarty S. Unraveling the Role of the Blood-Brain Barrier in the Pathophysiology of Depression: Recent Advances and Future Perspectives. Mol Neurobiol 2024:10.1007/s12035-024-04205-5. [PMID: 38730081 DOI: 10.1007/s12035-024-04205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Depression is a highly prevalent psychological disorder characterized by persistent dysphoria, psychomotor retardation, insomnia, anhedonia, suicidal ideation, and a remarkable decrease in overall well-being. Despite the prevalence of accessible antidepressant therapies, many individuals do not achieve substantial improvement. Understanding the multifactorial pathophysiology and the heterogeneous nature of the disorder could lead the way toward better outcomes. Recent findings have elucidated the substantial impact of compromised blood-brain barrier (BBB) integrity on the manifestation of depression. BBB functions as an indispensable defense mechanism, tightly overseeing the transport of molecules from the periphery to preserve the integrity of the brain parenchyma. The dysfunction of the BBB has been implicated in a multitude of neurological disorders, and its disruption and consequent brain alterations could potentially serve as important factors in the pathogenesis and progression of depression. In this review, we extensively examine the pathophysiological relevance of the BBB and delve into the specific modifications of its components that underlie the complexities of depression. A particular focus has been placed on examining the effects of peripheral inflammation on the BBB in depression and elucidating the intricate interactions between the gut, BBB, and brain. Furthermore, this review encompasses significant updates on the assessment of BBB integrity and permeability, providing a comprehensive overview of the topic. Finally, we outline the therapeutic relevance and strategies based on BBB in depression, including COVID-19-associated BBB disruption and neuropsychiatric implications. Understanding the comprehensive pathogenic cascade of depression is crucial for shaping the trajectory of future research endeavors.
Collapse
Affiliation(s)
- Shamili Mariya Varghese
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Shashikant Patel
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Soumya Ghosh
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Bindu Menon
- Department of Psychiatry, Amrita School of Medicine, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Athira K V
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India.
| | - Sumana Chakravarty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
33
|
Mallmann MP, Oliveira MS. Beta-caryophyllene in psychiatric and neurological diseases: Role of blood-brain barrier. VITAMINS AND HORMONES 2024; 126:125-168. [PMID: 39029971 DOI: 10.1016/bs.vh.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Beta-caryophyllene is an abundant terpene in cannabis, cinnamon, black pepper, cloves, and citrus fruit, delivering a striking, woody-spicy, like cloves and a sweet fruity aroma. Beta-caryophyllene is a Food and Drug Administration-approved food additive with Generally Recognized as Safe status. Interestingly, several biologic activities have been described for beta-caryophyllene, including anti-inflammatory and analgesic effects, neuroprotection against cerebral ischemia and neuronal injury, protection of neurovascular unit against oxidative damage, glial activation and neuroinflammation and anticonvulsant effects. In this chapter, we intend to review the beneficial effects of beta-caryophyllene in the context of psychiatric and neurological diseases. Also, we will analyze the possibility that the blood-brain-barrier may be a central target underlying the beneficial actions of beta-caryophyllene.
Collapse
|
34
|
Silva S, Bicker J, Fialho S, Cunha S, Falcão A, Fortuna A. Intranasal delivery of paroxetine: A preclinical study on pharmacokinetics, depressive-like behaviour, and neurochemical sex differences. Biochem Pharmacol 2024; 223:116184. [PMID: 38556027 DOI: 10.1016/j.bcp.2024.116184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/02/2024]
Abstract
Treatment of major depressive disorder remains a major unmet clinical need. Given the advantages of intranasal administration for targeted brain delivery, the present study aimed at investigating the pharmacokinetics of paroxetine, after its intranasal instillation and assessing its potential therapeutic effect on female and male mice subjected to unpredictable chronic mild stress (UCMS) protocol. IN administration revealed direct nose-to-brain paroxetine delivery but dose- and sex-dependent differences. Pharmacokinetics was nonlinear and paroxetine concentrations were consistently higher in plasma and brain of male mice. Additionally, UCMS decreased animal preference for sucrose in both male and female mice following acute (p < 0.01) and chronic stress (p < 0.05), suggesting anhedonia. Both male and female mice exhibited depressive-like behavior in the forced swimming test. UCMS females displayed a significantly longer immobility time and shorter climbing time than the control group (p < 0.05), while no differences were found between male mice. Two weeks of paroxetine intranasal administration reduced immobility time and lengthened climbing and swimming time, approaching values similar to those observed in the healthy control group. The therapeutic effect was stronger on female mice. Importantly, melatonin plasma levels were significantly decreased in female mice following UCMS (p < 0.05), while males exhibited heightened corticosterone levels. On the other hand, treatment with IN paroxetine significantly increased corticosterone and melatonin levels in both sexes compared to healthy mice (p < 0.05). Intranasal paroxetine delivery undoubtedly ameliorated the behavioral despair, characteristic of depressive-like animals. Despite its efficiency in male and female mice subjected to UCMS, females were more prone to this novel therapeutic strategy.
Collapse
Affiliation(s)
- Soraia Silva
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - S Fialho
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Susana Cunha
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
35
|
Zhang Y, Li S, Li R, Rong F, Yu W, Zhang Z, Wan Y. Effects of social-ecological risk factors and resilience on the relationship between metabolic metrics and mental health among young adults. Psychiatry Res 2024; 337:115909. [PMID: 38703563 DOI: 10.1016/j.psychres.2024.115909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 05/06/2024]
Abstract
The correlation between metabolic metrics and mental health remains underexplored, with few in-depth studies examining whether this association exists among college students and whether it might be moderated by socio-ecological risk factors (SERFs) and mediated by resilience. A follow-up study design investigated the association between baseline metabolic metrics, SERFs and resilience and mental health. A multivariable linear regression model using the PROCESS method established the relationship of SERFs, resilience and metabolic metrics with mental health. Participants were 794 adolescents (mean age: 18.64 [±0.90] years). In multivariable linear regression, the high-level SERFs (β = 0.124), resilience (β = -0.042), LCI (β = 0.072), and RFM (β = 0.145) were associated with higher depression symptoms, while CVH (β = 0.602), TyG (β = 0.295), TyG-BMI (β = 0.004), and RC (β = -0.041) were not. An association was also observed between SERFs, resilience, RFM and anxiety. Resilience mediated the relationship between metabolic metrics and depression and anxiety, and SERFs moderated this relationship, demonstrating the relationship between resilience, metabolic metrics, SERFs and mental health. By revealing the potential sociological mechanism underlying the relationship between metabolic metrics and adolescents' mental health, this study provides a theoretical basis for further exploration of the biological foundations of mental health.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Department of Maternal, Child and Adolescent Health, School of public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shuqin Li
- Department of Maternal, Child and Adolescent Health, School of public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ruoyu Li
- Department of Maternal, Child and Adolescent Health, School of public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fan Rong
- Department of Maternal, Child and Adolescent Health, School of public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Weiqiang Yu
- Department of Maternal, Child and Adolescent Health, School of public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhisu Zhang
- General Hospital of Huainan Eastern Hospital Group, Huainan 232063, China.
| | - Yuhui Wan
- Department of Maternal, Child and Adolescent Health, School of public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
36
|
Zhou H, Zhu H, Wang J, Gao X, Jiang C. Association between hypothyroidism subtypes and major depression: A two-sample Mendelian randomization study. J Affect Disord 2024; 351:843-852. [PMID: 38341154 DOI: 10.1016/j.jad.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND The causal relationship between different hypothyroidism subtypes and the risk of major depression (MD) is yet to be fully elucidated. This study aimed to determine if there's a causal relationship between various hypothyroidism subtypes (and related factors) and the risk of MD. METHODS This genetic association study utilized a two-sample Mendelian Randomization (MR) approach to explore the causal relationships between various hypothyroidism subtypes and MD risk. Genome-Wide Association Study (GWAS) summary statistics were obtained from the FinnGen and the UK Biobank. Instrumental variables (IVs) were chosen based on single nucleotide polymorphisms (SNPs). RESULTS Among the analyzed hypothyroidism subtypes and related factors, "Hypothyroidism, strict autoimmune" (HTCBSA) and "Hypothyroidism, levothyroxin purchases" (HT/LP) demonstrated a statistically significant positive causal relationship with MD, with odds ratios of 1.020 (95 % CI: 1.004-1.037) and 1.022 (95 % CI: 1.005-1.040), respectively. The sensitivity analysis supported the robustness of these findings, showing no significant horizontal pleiotropy and confirming the stability of results when individual SNPs were removed. "Congenital iodine-deficiency syndrome/hypothyroidism" (CIDS/HT), "Postinfectious hypothyroidism" (PHT), "Hypothyroidism due to medicaments and other exogenous substances" (HDTDM and OES), "Thyroid Stimulating Hormone" (TSH), "Thyrotropin-releasing hormone" (THRH), and "Hypothyroidism, strict autoimmune, 3 medication purchases required" (HTCBSA/3MPR) showed no significant causal relationship with MD. LIMITATIONS The study population was limited to individuals of European ancestry, and there may be certain genetic differences between different ethnic groups. CONCLUSIONS This MR study suggests a potential causal relationship between certain hypothyroidism subtypes (specifically HTCBSA and HT/LP) and an increased risk of MD.
Collapse
Affiliation(s)
- Hongliang Zhou
- Department of Medical Psychology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.
| | - Haohao Zhu
- Department of Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jun Wang
- Department of Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xuezheng Gao
- Department of Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Chenguang Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
37
|
Aburto MR, Cryan JF. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota-gut-brain axis. Nat Rev Gastroenterol Hepatol 2024; 21:222-247. [PMID: 38355758 DOI: 10.1038/s41575-023-00890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Crosstalk between gut and brain has long been appreciated in health and disease, and the gut microbiota is a key player in communication between these two distant organs. Yet, the mechanisms through which the microbiota influences development and function of the gut-brain axis remain largely unknown. Barriers present in the gut and brain are specialized cellular interfaces that maintain strict homeostasis of different compartments across this axis. These barriers include the gut epithelial barrier, the blood-brain barrier and the blood-cerebrospinal fluid barrier. Barriers are ideally positioned to receive and communicate gut microbial signals constituting a gateway for gut-microbiota-brain communication. In this Review, we focus on how modulation of these barriers by the gut microbiota can constitute an important channel of communication across the gut-brain axis. Moreover, barrier malfunction upon alterations in gut microbial composition could form the basis of various conditions, including often comorbid neurological and gastrointestinal disorders. Thus, we should focus on unravelling the molecular and cellular basis of this communication and move from simplistic framing as 'leaky gut'. A mechanistic understanding of gut microbiota modulation of barriers, especially during critical windows of development, could be key to understanding the aetiology of gastrointestinal and neurological disorders.
Collapse
Affiliation(s)
- María R Aburto
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
38
|
López-Otín C, Kroemer G. The missing hallmark of health: psychosocial adaptation. Cell Stress 2024; 8:21-50. [PMID: 38476764 PMCID: PMC10928495 DOI: 10.15698/cst2024.03.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
The eight biological hallmarks of health that we initially postulated (Cell. 2021 Jan 7;184(1):33-63) include features of spatial compartmentalization (integrity of barriers, containment of local perturbations), maintenance of homeostasis over time (recycling & turnover, integration of circuitries, rhythmic oscillations) and an array of adequate responses to stress (homeostatic resilience, hormetic regulation, repair & regeneration). These hallmarks affect all eight somatic strata of the human body (molecules, organelles, cells, supracellular units, organs, organ systems, systemic circuitries and meta-organism). Here we postulate that mental and socioeconomic factors must be added to this 8×8 matrix as an additional hallmark of health ("psychosocial adaptation") and as an additional stratum ("psychosocial interactions"), hence building a 9×9 matrix. Potentially, perturbation of each of the somatic hallmarks and strata affects psychosocial factors and vice versa. Finally, we discuss the (patho)physiological bases of these interactions and their implications for mental health improvement.
Collapse
Affiliation(s)
- Carlos López-Otín
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
39
|
He H, He H, Mo L, Yuan Q, Xiao C, Ma Q, Yi S, Zhou T, You Z, Zhang J. Gut microbiota regulate stress resistance by influencing microglia-neuron interactions in the hippocampus. Brain Behav Immun Health 2024; 36:100729. [PMID: 38317780 PMCID: PMC10840119 DOI: 10.1016/j.bbih.2024.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Communication among the brain, gut and microbiota in the gut is known to affect the susceptibility to stress, but the mechanisms involved are unclear. Here we demonstrated that stress resistance in mice was associated with more abundant Lactobacillus and Akkermansia in the gut, but less abundant Bacteroides, Alloprevotella, Helicobacter, Lachnoclostridium, Blautia, Roseburia, Colidextibacter and Lachnospiraceae NK4A136. Stress-sensitive animals showed higher permeability and stronger immune responses in their colon, as well as higher levels of pro-inflammatory cytokines in serum. Their hippocampus also showed more extensive microglial activation, abnormal interactions between microglia and neurons, and lower synaptic plasticity. Transplanting fecal microbiota from stress-sensitive mice into naïve ones perturbed microglia-neuron interactions and impaired synaptic plasticity in the hippocampus, translating to more depression-like behavior after stress exposure. Conversely, transplanting fecal microbiota from stress-resistant mice into naïve ones protected microglia from activation and preserved synaptic plasticity in the hippocampus, leading to less depression-like behavior after stress exposure. These results suggested that gut microbiota may influence resilience to chronic psychological stress by regulating microglia-neuron interactions in the hippocampus.
Collapse
Affiliation(s)
- Haili He
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hui He
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Li Mo
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Qingsong Yuan
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Chenghong Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Qiman Ma
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Saini Yi
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Zili You
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
40
|
Pradhyumnan H, Perez GG, Patel SH, Blaya MO, Bramlett HM, Raval AP. A Perspective on Hormonal Contraception Usage in Central Nervous System Injury. J Neurotrauma 2024; 41:541-551. [PMID: 37975282 DOI: 10.1089/neu.2023.0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Naturally occurring life stages in women are associated with changes in the milieu of endogenous ovarian hormones. Women of childbearing age may be exposed to exogenous ovarian hormone(s) because of their use of varying combinations of estrogen and progesterone hormones-containing oral contraceptives (OC; also known as "the pill"). If women have central nervous system (CNS) injury such as spinal cord injury (SCI) and traumatic brain injury (TBI) during their childbearing age, they are likely to retain their reproductive capabilities and may use OC. Many deleterious side effects of long-term OC use have been reported, such as aberrant blood clotting and endothelial dysfunction that consequently increase the risk of myocardial infarction, venous thromboembolism, and ischemic brain injury. Although controversial, studies have suggested that OC use is associated with neuropsychiatric ramifications, including uncontrollable mood swings and poorer cognitive performance. Our understanding about how the combination of endogenous hormones and OC-conferred exogenous hormones affect outcomes after CNS injuries remains limited. Therefore, understanding the impact of OC use on CNS injury outcomes needs further investigation to reveal underlying mechanisms, promote reporting in clinical or epidemiological studies, and raise awareness of possible compounded consequences. The goal of the current review is to discuss the impacts of CNS injury on endogenous ovarian hormones and vice-versa, as well as the putative consequences of exogenous ovarian hormones (OC) on the CNS to identify potential gaps in our knowledge to consider for future laboratory, epidemiological, and clinical studies.
Collapse
Affiliation(s)
- Hari Pradhyumnan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Gina G Perez
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Shahil H Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Meghan O Blaya
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
- The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
- The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, USA
| |
Collapse
|
41
|
Zhou J, Liu R, Zhou J, Liu J, Zhou Y, Yang J, Wang G. Elevated VCAM-1 levels in peripheral blood are associated with brain structural and functional alterations in major depressive disorder. J Affect Disord 2024; 347:584-590. [PMID: 38065481 DOI: 10.1016/j.jad.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/19/2023] [Accepted: 12/02/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Vascular cell adhesion molecule-1 (VCAM-1) is a well-known biomarker of endothelial activation. This study aimed to determine whether changes in peripheral VCAM-1 levels occurred in major depressive disorder (MDD) patients and explored immune-brain interactions based on neuroimaging. METHODS This study included 165 subjects (80 healthy controls [HCs] and 85 MDD patients). Of them, 133 underwent magnetic resonance imaging. VCAM-1 was measured using a commercially available Enzyme-Linked Immunosorbent Assay kit following the manufacturer's instructions. The gray matter volume (GMV) and surface-based functional connectivity (FC) were calculated based on Schaefer parcellation 400 parcels. RESULTS Compared with the HCs, MDD patients exhibited significantly higher level of VCAM-1. The correlation analysis showed that VCAM-1 had a significant negative correlation with GMV of the right medial frontal cortex (MFC) and postcentral (PostCG). The mediation analyses showed that VCAM-1 mediated the association between group and GMV of PostCG and the FC of left ventral prefrontal cortex (vPFC) with right inferior parietal lobe (IPL). CONCLUSIONS This study showed that a high level of VCAM-1 was associated to the decreased GMV in the right MFC and PostCG, and mediated the FC of the left vPFC with right IPL. These findings suggested that VCAM-1 might contribute to the etiology of MDD by influencing brain structure and function. LIMITATIONS The cross-sectional design makes it difficult to determine the causal relationship and dynamic effect among VCAM-1, brain structure/function features, and depressive symptoms.
Collapse
Affiliation(s)
- Jingjing Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Rui Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jia Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jing Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yuan Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
42
|
Reyes-Lizaola S, Luna-Zarate U, Tendilla-Beltrán H, Morales-Medina JC, Flores G. Structural and biochemical alterations in dendritic spines as key mechanisms for severe mental illnesses. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110876. [PMID: 37863171 DOI: 10.1016/j.pnpbp.2023.110876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Severe mental illnesses (SMI) collectively affect approximately 20% of the global population, as estimated by the World Health Organization (WHO). Despite having diverse etiologies, clinical symptoms, and pharmacotherapies, these diseases share a common pathophysiological characteristic: the misconnection of brain areas involved in reality perception, executive control, and cognition, including the corticolimbic system. Dendritic spines play a crucial role in excitatory neurotransmission within the central nervous system. These small structures exhibit remarkable plasticity, regulated by factors such as neurotransmitter tone, neurotrophic factors, and innate immunity-related molecules, and other mechanisms - all of which are associated with the pathophysiology of SMI. However, studying dendritic spine mechanisms in both healthy and pathological conditions in patients is fraught with technical limitations. This is where animal models related to these diseases become indispensable. They have played a pivotal role in elucidating the significance of dendritic spines in SMI. In this review, the information regarding the potential role of dendritic spines in SMI was summarized, drawing from clinical and animal model reports. Also, the implications of targeting dendritic spine-related molecules for SMI treatment were explored. Specifically, our focus is on major depressive disorder and the neurodevelopmental disorders schizophrenia and autism spectrum disorder. Abundant clinical and basic research has studied the functional and structural plasticity of dendritic spines in these diseases, along with potential pharmacological targets that modulate the dynamics of these structures. These targets may be associated with the clinical efficacy of the pharmacotherapy.
Collapse
Affiliation(s)
- Sebastian Reyes-Lizaola
- Departamento de Ciencias de la Salud, Licenciatura en Medicina, Universidad Popular del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Ulises Luna-Zarate
- Departamento de Ciencias de la Salud, Licenciatura en Medicina, Universidad de las Américas Puebla (UDLAP), Puebla, Mexico
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|
43
|
Zhang Y, Wang D, Liu J, Bai Y, Fan B, Lu C, Wang F. Structural Characterization and Antidepressant-like Effects of Polygonum sibiricum Polysaccharides on Regulating Microglial Polarization in Chronic Unpredictable Mild Stress-Induced Zebrafish. Int J Mol Sci 2024; 25:2005. [PMID: 38396684 PMCID: PMC10888389 DOI: 10.3390/ijms25042005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Polysaccharides are one of the main active ingredients of Polygonum sibiricum (PS), which is a food and medicine homolog used throughout Chinese history. The antidepressant-like effects of PSP and its underlying mechanisms remain elusive, especially the regulation of microglial polarization. The current study determined the chemical composition and structural characteristics of PSP. Then, the chronic unpredictable mild stress (CUMS) procedure was carried out on the zebrafish for 5 weeks, and PSP was immersed for 9 days (1 h/d). The body weight of zebrafish was monitored, and behavioral tests, including the novel tank test and light and dark tank test, were performed to evaluate the antidepressant-like effects of PSP. Then, the function of the hypothalamic-pituitary-interrenal (HPI) axis, the levels of peripheral inflammation, neuronal and blood-brain barrier damage in the mesencephalon and telencephalon, and the mRNA expression of M1/M2 phenotype genes in the brain were examined. PSP samples had the typical structural characteristics of polysaccharides, consisting of glucose, mannose, and galactose, with an average Mw of 20.48 kDa, which presented porous and agglomerated morphologies. Compared with untreated zebrafish, the depression-like behaviors of CUMS-induced zebrafish were significantly attenuated. PSP significantly decreased the levels of cortisol and pro-inflammatory cytokines and increased the levels of the anti-inflammatory cytokines in the body of CUMS-induced depressive zebrafish. Furthermore, PSP remarkably reversed the neuronal and blood-brain barrier damage in the mesencephalon and telencephalon and the mRNA expression of M1/M2 phenotype genes in the brain. These findings indicated that the antidepressant-like effects of PSP were related to altering the HPI axis hyperactivation, suppressing peripheral inflammation, inhibiting neuroinflammation induced by microglia hyperactivation, and modulating microglial M1/M2 polarization. The current study provides the foundations for future examinations of PSP in the functional foods of emotional regulation.
Collapse
Affiliation(s)
- Yingyu Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.Z.); (D.W.)
| | - Danyang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.Z.); (D.W.)
| | - Jiameng Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.Z.); (D.W.)
| | - Yajuan Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.Z.); (D.W.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.Z.); (D.W.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Cong Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.Z.); (D.W.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.Z.); (D.W.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| |
Collapse
|
44
|
Kerr P, Le Page C, Giguère CÉ, Marin MF, Trudel-Fitzgerald C, Romain AJ, Taschereau-Dumouchel V, Ouellet-Morin I, Lecomte T, Potvin S, Geoffrion S, Sasseville M, Caihol L, Lipp O, Pelletier JF, Dumais A, Lesage A, Labelle R, Lavoie M, Godbout R, Vincent P, Boissonneault J, Findlay H, Lupien SJ, Guay S, Juster RP, Consortium S. The Signature Biobank: A longitudinal biopsychosocial repository of psychiatric emergency patients. Psychiatry Res 2024; 332:115718. [PMID: 38198857 DOI: 10.1016/j.psychres.2024.115718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
The Signature Biobank is a longitudinal repository of biospecimen, psychological, sociodemographic, and diagnostic data that was created in 2012. The Signature Consortium represents a group of approximately one hundred Quebec-based transdisciplinary clinicians and research scientists with various expertise in the field of psychiatry. The objective of the Signature Biobank is to investigate the multi-faceted underpinnings of psychiatric disorders among patients in crisis. The Signature Consortium is expanding and includes new active members that seek to highlight the contributions made by Signature Biobank since its inception. This article details our research protocol, directions, and summarizes contributions. To date, we have collected biological samples (n = 1,986), and questionnaire data (n = 2,085) from psychiatric emergency patients of the Institut universitaire en santé mentale de Montréal (Quebec, Canada), with a large proportion from whom both data types were collected (n = 1,926). In addition to this, a subsample of patients was followed-up at hospital discharge, and two additional outpatient clinic appointments (n = 958 with at least one follow-up). In addition, a socio-demographically matched comparison group of individuals who were not hospitalized for psychiatric disorders (n = 149) was recruited from the surrounding catchment area. To summarize, a systematic review of the literature shows that the Signature Biobank has contributed to better characterizing psychiatric comorbidities, biological profiles, and psychosocial functioning across some of the most common psychiatric disorders, including psychosis, mood, anxiety, and substance use disorders. The Signature Biobank is now one of the world's largest repositories of data collected from patients receiving care at a psychiatric emergency unit.
Collapse
Affiliation(s)
- Philippe Kerr
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada; Department of Psychiatry and Addictology, Université de Montréal, Montréal, Québec, Canada
| | - Cécile Le Page
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada
| | - Charles-Édouard Giguère
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada
| | - Marie-France Marin
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada; Département de Psychologie, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Claudia Trudel-Fitzgerald
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada; Département de Psychologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada; Lee Kum Sheung Center for Health and Happiness, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Ahmed Jérôme Romain
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada; School of Kinesiology and Physical Activity Sciences, Université de Montréal, Montréal, Québec, Canada
| | - Vincent Taschereau-Dumouchel
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada; Department of Psychiatry and Addictology, Université de Montréal, Montréal, Québec, Canada
| | - Isabelle Ouellet-Morin
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada; School of Criminology, Université de Montréal, Montréal, Québec, Canada
| | - Tania Lecomte
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada; Département de Psychologie, Université de Montréal, Montréal, Québec, Canada
| | - Stéphane Potvin
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada; Department of Psychiatry and Addictology, Université de Montréal, Montréal, Québec, Canada
| | - Steve Geoffrion
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada; School of Psychoeducation, Université de Montréal, Montréal, Québec, Canada
| | - Marc Sasseville
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada; Department of Psychiatry and Addictology, Université de Montréal, Montréal, Québec, Canada
| | - Lionel Caihol
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada; Department of Psychiatry and Addictology, Université de Montréal, Montréal, Québec, Canada
| | - Olivier Lipp
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada; Department of Psychiatry and Addictology, Université de Montréal, Montréal, Québec, Canada
| | - Jean-François Pelletier
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada; Department of Psychiatry, Yale University, New Haven, Connecticut, United States; CISSS de la Montérégie-Ouest, Québec, Canada
| | - Alexandre Dumais
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada; Department of Psychiatry and Addictology, Université de Montréal, Montréal, Québec, Canada
| | - Alain Lesage
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada; Department of Psychiatry and Addictology, Université de Montréal, Montréal, Québec, Canada
| | - Réal Labelle
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada; Département de Psychologie, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Marc Lavoie
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada; Department of Psychiatry and Addictology, Université de Montréal, Montréal, Québec, Canada
| | - Roger Godbout
- Department of Psychiatry and Addictology, Université de Montréal, Montréal, Québec, Canada
| | - Philippe Vincent
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada; Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Janick Boissonneault
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada
| | - Helen Findlay
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada
| | - Sonia J Lupien
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada; Department of Psychiatry and Addictology, Université de Montréal, Montréal, Québec, Canada
| | - Stéphane Guay
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada; Department of Psychiatry and Addictology, Université de Montréal, Montréal, Québec, Canada; School of Criminology, Université de Montréal, Montréal, Québec, Canada
| | - Robert-Paul Juster
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada; Department of Psychiatry and Addictology, Université de Montréal, Montréal, Québec, Canada.
| | - Signature Consortium
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada
| |
Collapse
|
45
|
Cathomas F, Lin HY, Chan KL, Li L, Parise LF, Alvarez J, Durand-de Cuttoli R, Aubry AV, Muhareb S, Desland F, Shimo Y, Ramakrishnan A, Estill M, Ferrer-Pérez C, Parise EM, Wilk CM, Kaster MP, Wang J, Sowa A, Janssen WG, Costi S, Rahman A, Fernandez N, Campbell M, Swirski FK, Nestler EJ, Shen L, Merad M, Murrough JW, Russo SJ. Circulating myeloid-derived MMP8 in stress susceptibility and depression. Nature 2024; 626:1108-1115. [PMID: 38326622 PMCID: PMC10901735 DOI: 10.1038/s41586-023-07015-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/29/2023] [Indexed: 02/09/2024]
Abstract
Psychosocial stress has profound effects on the body, including the immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3, the underlying mechanisms are not well understood. Here we show that expression of a circulating myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is increased in the serum of humans with MDD as well as in stress-susceptible mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), as well as altered social behaviour. Using a combination of mass cytometry and single-cell RNA sequencing, we performed high-dimensional phenotyping of immune cells in circulation and in the brain and demonstrate that peripheral monocytes are strongly affected by stress. In stress-susceptible mice, both circulating monocytes and monocytes that traffic to the brain showed increased Mmp8 expression following chronic social defeat stress. We further demonstrate that circulating MMP8 directly infiltrates the NAc parenchyma and controls the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Flurin Cathomas
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Hsiao-Yun Lin
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenny L Chan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Long Li
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lyonna F Parise
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Johana Alvarez
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Romain Durand-de Cuttoli
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Antonio V Aubry
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samer Muhareb
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fiona Desland
- Department of Oncological Sciences, Marc and Jennifer Lipschultz Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yusuke Shimo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Estill
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen Ferrer-Pérez
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - C Matthias Wilk
- Department of Oncological Sciences, Marc and Jennifer Lipschultz Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuella P Kaster
- Department of Biochemistry, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Jun Wang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allison Sowa
- Microscopy CoRE and Advanced Bioimaging Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William G Janssen
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Microscopy CoRE and Advanced Bioimaging Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Costi
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine of Mount Sinai, New York, NY, USA
| | - Adeeb Rahman
- Department of Oncological Sciences, Marc and Jennifer Lipschultz Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicolas Fernandez
- Department of Oncological Sciences, Marc and Jennifer Lipschultz Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Filip K Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Oncological Sciences, Marc and Jennifer Lipschultz Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James W Murrough
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine of Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
46
|
Tachibana K, Hirayama R, Sato N, Hattori K, Kato T, Takeda H, Kondoh M. Association of Plasma Claudin-5 with Age and Alzheimer Disease. Int J Mol Sci 2024; 25:1419. [PMID: 38338697 PMCID: PMC10855409 DOI: 10.3390/ijms25031419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The blood-brain barrier (BBB) plays pivotal roles in synaptic and neuronal functioning by sealing the space between adjacent microvascular endothelial cells. BBB breakdown is present in patients with mild cognitive impairment (MCI) or Alzheimer disease (AD). Claudin-5 (CLDN-5) is a tetra-spanning protein essential for sealing the intercellular space between adjacent endothelial cells in the BBB. In this study, we developed a blood-based assay for CLDN-5 and investigated its diagnostic utility using 100 cognitively normal (control) subjects, 100 patients with MCI, and 100 patients with AD. Plasma CLDN-5 levels were increased in patients with AD (3.08 ng/mL) compared with controls (2.77 ng/mL). Plasma levels of phosphorylated tau (pTau181), a biomarker of pathological tau, were elevated in patients with MCI or AD (2.86 and 4.20 pg/mL, respectively) compared with control subjects (1.81 pg/mL). In patients with MCI or AD, plasma levels of CLDN-5-but not pTau181-decreased with age, suggesting some age-dependent BBB changes in MCI and AD. These findings suggest that plasma CLDN-5 may a potential biochemical marker for the diagnosis of AD.
Collapse
Affiliation(s)
- Keisuke Tachibana
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Osaka, Japan;
| | - Ryuichi Hirayama
- Graduate School of Medicine, Osaka University, Suita 565-0871, Osaka, Japan; (R.H.); (N.S.)
| | - Naoyuki Sato
- Graduate School of Medicine, Osaka University, Suita 565-0871, Osaka, Japan; (R.H.); (N.S.)
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu 474-8511, Aichi, Japan
| | - Kotaro Hattori
- Department of Bioresources, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan;
| | - Takashi Kato
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu 474-8511, Aichi, Japan;
| | - Hiroyuki Takeda
- Proteo-Science Center, Ehime University, Matsuyama 790-8577, Ehime, Japan;
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Osaka, Japan;
| |
Collapse
|
47
|
Doney E, Dion-Albert L, Coulombe-Rozon F, Osborne N, Bernatchez R, Paton SE, Kaufmann FN, Agomma RO, Solano JL, Gaumond R, Dudek KA, Szyszkowicz JK, Lebel M, Doyen A, Durand A, Lavoie-Cardinal F, Audet MC, Menard C. Chronic Stress Exposure Alters the Gut Barrier: Sex-Specific Effects on Microbiota and Jejunum Tight Junctions. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:213-228. [PMID: 38306213 PMCID: PMC10829561 DOI: 10.1016/j.bpsgos.2023.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 02/04/2024] Open
Abstract
Background Major depressive disorder (MDD) is the leading cause of disability worldwide. Of individuals with MDD, 30% to 50% are unresponsive to common antidepressants, highlighting untapped causal biological mechanisms. Dysfunction in the microbiota-gut-brain axis has been implicated in MDD pathogenesis. Exposure to chronic stress disrupts blood-brain barrier integrity; still, little is known about intestinal barrier function in these conditions, particularly for the small intestine, where absorption of most foods and drugs takes place. Methods We investigated how chronic social or variable stress, two mouse models of depression, impact the jejunum intestinal barrier in males and females. Mice were subjected to stress paradigms followed by analysis of gene expression profiles of intestinal barrier-related targets, fecal microbial composition, and blood-based markers. Results Altered microbial populations and changes in gene expression of jejunum tight junctions were observed depending on the type and duration of stress, with sex-specific effects. We used machine learning to characterize in detail morphological tight junction properties, identifying a cluster of ruffled junctions in stressed animals. Junctional ruffling is associated with inflammation, so we evaluated whether lipopolysaccharide injection recapitulates stress-induced changes in the jejunum and observed profound sex differences. Finally, lipopolysaccharide-binding protein, a marker of gut barrier leakiness, was associated with stress vulnerability in mice, and translational value was confirmed on blood samples from women with MDD. Conclusions Our results provide evidence that chronic stress disrupts intestinal barrier homeostasis in conjunction with the manifestation of depressive-like behaviors in a sex-specific manner in mice and, possibly, in human depression.
Collapse
Affiliation(s)
- Ellen Doney
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Francois Coulombe-Rozon
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Natasha Osborne
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Renaud Bernatchez
- Department of Computer Science and Software Engineering and Department of Electrical and Computer Engineering, Université Laval, Québec City, Québec, Canada
| | - Sam E.J. Paton
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Fernanda Neutzling Kaufmann
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Roseline Olory Agomma
- Department of Computer Science and Software Engineering and Department of Electrical and Computer Engineering, Université Laval, Québec City, Québec, Canada
| | - José L. Solano
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Raphael Gaumond
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Katarzyna A. Dudek
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Joanna Kasia Szyszkowicz
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Manon Lebel
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Alain Doyen
- Department of Food Science, Institute of Nutrition and Functional Foods, Université Laval, Québec City, Québec, Canada
| | - Audrey Durand
- Department of Computer Science and Software Engineering and Department of Electrical and Computer Engineering, Université Laval, Québec City, Québec, Canada
| | - Flavie Lavoie-Cardinal
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Marie-Claude Audet
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
48
|
Shang B, Wang T, Zhao S, Yi S, Zhang T, Yang Y, Zhang F, Zhang D, Xu X, Xu J, Shan B, Cheng Y. Higher Blood-brain barrier permeability in patients with major depressive disorder identified by DCE-MRI imaging. Psychiatry Res Neuroimaging 2024; 337:111761. [PMID: 38061159 DOI: 10.1016/j.pscychresns.2023.111761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/11/2023] [Accepted: 11/03/2023] [Indexed: 01/02/2024]
Abstract
BACKGROUND Studies from animal models and clinical trials of blood and cerebrospinal fluid have proposed that blood-brain barrier (BBB) dysfunction in depression (MDD). But there are no In vivo proves focused on BBB dysfunction in MDD patients. The present study aimed to identify whether there was abnormal BBB permeability, as well as the association with clinical status in MDD patients using dynamic contrast-enhanced magnetic resonance (DCE-MRI) imaging. METHODS Patients with MDD and healthy adults were recruited and underwent DCE-MRI and structural MRI scans. The mean volume transfer constant (Ktrans) values were calculated for a quantitative assessment of BBB leakage. For each subject, the mean Ktrans values were calculated for the whole gray matter, white matter, and 90 brain regions of the anatomical automatic labeling template (AAL). The differences in Ktrans values between patients and controls and between treated and untreated patients were compared. RESULTS 23 MDD patients (12 males and 11 females, mean age 28.09 years) and 18 healthy controls (HC, 8 males and 10 females, mean age 30.67 years) were recruited in the study. We found that the Ktrans values in the olfactory, caudate, and thalamus were higher in MDD patients compared to healthy controls (p<0.05). The Ktrans values in the orbital lobe, anterior cingulate gyrus, putamen, and thalamus in treated patients were lower than the patients never treated. There were positive correlations between HAMD total score with Ktrans values in whole brain WM, hippocampus and thalamus. The total HAMA score was positively correlated with the Ktrans of hippocampus. CONCLUSION These findings supported a link between blood-brain barrier leakage and depression and symptom severity. The results also suggested a role for non-invasive DCE-MRI in detecting blood-brain barrier dysfunction in depression patients.
Collapse
Affiliation(s)
- Binli Shang
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Ting Wang
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Shilun Zhao
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing,100049, China
| | - Shu Yi
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Tianhao Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing,100049, China
| | - Yifan Yang
- Department of Rheumatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Fengrui Zhang
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Dafu Zhang
- Department of Medical Imaging, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China; Yunnan Clinical Research Centre for Mental Health, Kunming, 650032, China
| | - Jian Xu
- Department of Rheumatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Baoci Shan
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing,100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China; Yunnan medical Centre for Mental Health, Kunming, 650032, China.
| |
Collapse
|
49
|
Zheng YB, Sheng XM, Jin X, Guan W. MiR-182-5p: A Novel Biomarker in the Treatment of Depression in CSDS-Induced Mice. Int J Neuropsychopharmacol 2024; 27:pyad064. [PMID: 38038373 PMCID: PMC10799762 DOI: 10.1093/ijnp/pyad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Depression is a neuropsychiatric disease with a high disability rate and mainly caused by the chronic stress or genetic factors. There is increasing evidence that microRNAs (miRNAs) play a critical role in the pathogenesis of depression. However, the underlying molecular mechanism for the pathophysiology of depression of miRNA remains entirely unclear so far. METHODS We first established a chronic social defeat stress (CSDS) mice model of depression, and depression-like behaviors of mice were evaluated by a series of behavioral tests. Next, we detected several abundantly expressive miRNAs suggested in previous reports to be involved in depression and found miR-182-5p was selected as a candidate for analysis in the hippocampus. Then western blotting and immunofluorescence were used together to examine whether adeno-associated virus (AAV)-siR-182-5p treatment alleviated chronic stress-induced decrease in hippocampal Akt/GSK3β/cAMP-response element binding protein (CREB) signaling pathway and increase in neurogenesis impairment and neuroinflammation. Furthermore, CREB inhibitor was adopted to examine if blockade of Akt/GSK3β/CREB signaling pathway abolished the antidepressant actions of AAV-siR-182-5p in mice. RESULTS Knockdown of miR-182-5p alleviated depression-like behaviors and impaired neurogenesis of CSDS-induced mice. Intriguingly, the usage of agomiR-182-5p produced significant increases in immobility times and aggravated neuronal neurogenesis damage of mice. More importantly, it suggested that 666-15 blocked the reversal effects of AAV-siR-182-5p on the CSDS-induced depressive-like behaviors in behavioral testing and neuronal neurogenesis within hippocampus of mice. CONCLUSIONS These findings indicated that hippocampal miR-182-5p/Akt/GSK3β/CREB signaling pathway participated in the pathogenesis of depression, and it might give more opportunities for new drug developments based on the miRNA target in the clinic.
Collapse
Affiliation(s)
- Ya-Bin Zheng
- Department of Neurology, The second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiao-Ming Sheng
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiang Jin
- Department of Pharmacy, The Second People’s Hospital of Nantong, Nantong, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
50
|
Gusev E, Sarapultsev A. Interplay of G-proteins and Serotonin in the Neuroimmunoinflammatory Model of Chronic Stress and Depression: A Narrative Review. Curr Pharm Des 2024; 30:180-214. [PMID: 38151838 DOI: 10.2174/0113816128285578231218102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION This narrative review addresses the clinical challenges in stress-related disorders such as depression, focusing on the interplay between neuron-specific and pro-inflammatory mechanisms at the cellular, cerebral, and systemic levels. OBJECTIVE We aim to elucidate the molecular mechanisms linking chronic psychological stress with low-grade neuroinflammation in key brain regions, particularly focusing on the roles of G proteins and serotonin (5-HT) receptors. METHODS This comprehensive review of the literature employs systematic, narrative, and scoping review methodologies, combined with systemic approaches to general pathology. It synthesizes current research on shared signaling pathways involved in stress responses and neuroinflammation, including calcium-dependent mechanisms, mitogen-activated protein kinases, and key transcription factors like NF-κB and p53. The review also focuses on the role of G protein-coupled neurotransmitter receptors (GPCRs) in immune and pro-inflammatory responses, with a detailed analysis of how 13 of 14 types of human 5-HT receptors contribute to depression and neuroinflammation. RESULTS The review reveals a complex interaction between neurotransmitter signals and immunoinflammatory responses in stress-related pathologies. It highlights the role of GPCRs and canonical inflammatory mediators in influencing both pathological and physiological processes in nervous tissue. CONCLUSION The proposed Neuroimmunoinflammatory Stress Model (NIIS Model) suggests that proinflammatory signaling pathways, mediated by metabotropic and ionotropic neurotransmitter receptors, are crucial for maintaining neuronal homeostasis. Chronic mental stress can disrupt this balance, leading to increased pro-inflammatory states in the brain and contributing to neuropsychiatric and psychosomatic disorders, including depression. This model integrates traditional theories on depression pathogenesis, offering a comprehensive understanding of the multifaceted nature of the condition.
Collapse
Affiliation(s)
- Evgenii Gusev
- Laboratory of Inflammation Immunology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
| | - Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
- Laboratory of Immunopathophysiology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
| |
Collapse
|