1
|
Gultom M, Lin L, Brandt CB, Milusev A, Despont A, Shaw J, Döring Y, Luo Y, Rieben R. Sustained Vascular Inflammatory Effects of SARS-CoV-2 Spike Protein on Human Endothelial Cells. Inflammation 2024:10.1007/s10753-024-02208-x. [PMID: 39739157 DOI: 10.1007/s10753-024-02208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been associated with systemic inflammation and vascular injury, which contribute to the development of acute respiratory syndrome (ARDS) and the mortality of COVID-19 infection. Moreover, multiorgan complications due to persistent endothelial dysfunction have been suspected as the cause of post-acute sequelae of SARS-CoV-2 infection. Therefore, elucidation of the vascular inflammatory effect of SARS-CoV-2 will increase our understanding of how endothelial cells (ECs) contribute to the short- and long-term consequences of SARS-CoV-2 infection. Here, we investigated the interaction of SARS-CoV-2 spike protein with human ECs from aortic (HAoEC) and pulmonary microvascular (HPMC) origins, cultured under physiological flow conditions. We showed that the SARS-CoV-2 spike protein triggers prolonged expression of cell adhesion markers in both ECs, similar to the effect of TNF-α. SARS-CoV-2 spike treatment also led to the release of various cytokines and chemokines observed in severe COVID-19 patients. Moreover, increased binding of leucocytes to the endothelial surface and a procoagulant state of the endothelium were observed. Transcriptomic profiles of SARS-CoV-2 spike-activated HPMC and HAoEC showed prolonged upregulation of genes and pathways associated with responses to virus, cytokine-mediated signaling, pattern recognition, as well as complement and coagulation pathways. Our findings support experimental and clinical observations of the vascular consequences of SARS-CoV-2 infection and highlight the importance of EC protection as one of the strategies to mitigate the severe effects as well as the possible post-acute complications of COVID-19 disease.
Collapse
Affiliation(s)
- Mitra Gultom
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Camilla Blunk Brandt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Anastasia Milusev
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Alain Despont
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Jane Shaw
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Yvonne Döring
- Department for Biomedical Research, University of Bern, Bern, Switzerland
- Department of Angiology, Inselspital, Bern University Hospital, Bern, Switzerland
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum Für Herz-Kreislauf-Forschung, DZHK), Munich Heart Alliance Partner Site, Munich, Germany
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Robert Rieben
- Department for Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Puerta-Guardo H, Biering SB, Castillo-Rojas B, DiBiasio-White MJ, Lo NT, Espinosa DA, Warnes CM, Wang C, Cao T, Glasner DR, Beatty PR, Kuhn RJ, Harris E. Flavivirus NS1-triggered endothelial dysfunction promotes virus dissemination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.625931. [PMID: 39651279 PMCID: PMC11623691 DOI: 10.1101/2024.11.29.625931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The Flaviviridae are a family of viruses that include the important arthropod-borne human pathogens dengue virus (DENV), West Nile virus, Zika virus, Japanese encephalitis virus, and yellow fever virus. Flavivirus nonstructural protein 1 (NS1) is essential for virus replication but is also secreted from virus-infected cells. Extracellular NS1 acts as a virulence factor during flavivirus infection in multiple ways, including triggering endothelial dysfunction and vascular leak via interaction with endothelial cells. While the role of NS1 in inducing vascular leak and exacerbating pathogenesis is well appreciated, if and how NS1-triggered endothelial dysfunction promotes virus infection remains obscure. Flaviviruses have a common need to disseminate from circulation into specific tissues where virus-permissive cells reside. Tissue-specific dissemination is associated with disease manifestations of a given flavivirus, but mechanisms dictating virus dissemination are unclear. Here we show that NS1-mediated endothelial dysfunction promotes virus dissemination in vitro and in vivo . In mouse models of DENV infection, we show that anti-NS1 antibodies decrease virus dissemination, while the addition of exogenous NS1 promotes virus dissemination. Using an in vitro system, we show that NS1 promotes virus dissemination in two distinct ways: (1) promoting crossing of barriers and (2) increasing infectivity of target cells in a tissue- and virus-specific manner. The capacity of NS1 to modulate infectivity correlates with a physical association between virions and NS1, suggesting a potential NS1-virion interaction. Taken together, our study indicates that flavivirus NS1 promotes virus dissemination across endothelial barriers, providing an evolutionary basis for virus-triggered vascular leak. Author Summary The Flaviviridae contain numerous medically important human pathogens that cause potentially life-threatening infections. Over half of the world's population is at risk of flavivirus infection, and this number is expected to increase as climate change expands the habitats of the arthropod vectors that transmit these flaviviruses. There are few effective vaccines and no therapeutics approved for prevention or treatment of flavivirus infection, respectively. Given these challenges, understanding how and why flaviviruses cause pathogenesis is critical for identifying targets for therapeutic intervention. The secreted nonstructural protein 1 (NS1) of flaviviruses is a conserved virulence factor that triggers endothelial dysfunction in a tissue-specific manner. It is unknown if this endothelial dysfunction provides any benefit for virus infection. Here we provide evidence that NS1-triggered endothelial dysfunction facilitates virus crossing of endothelial barriers and augments infection of target cells in vitro and promotes virus dissemination in vivo . This study provides an evolutionary explanation for flaviviruses evolving the capacity to trigger barrier dysfunction and highlights NS1 and the pathways governing endothelial dysfunction, as therapeutic targets to prevent flavivirus dissemination.
Collapse
|
3
|
Federico M. The Immunologic Downsides Associated with the Powerful Translation of Current COVID-19 Vaccine mRNA Can Be Overcome by Mucosal Vaccines. Vaccines (Basel) 2024; 12:1281. [PMID: 39591184 PMCID: PMC11599006 DOI: 10.3390/vaccines12111281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The action of mRNA-based vaccines requires the expression of the antigen in cells targeted by lipid nanoparticle-mRNA complexes. When the vaccine antigen is not fully retained by the producer cells, its local and systemic diffusion can have consequences depending on both the levels of antigen expression and its biological activity. A peculiarity of mRNA-based COVID-19 vaccines is the extraordinarily high amounts of the Spike antigen expressed by the target cells. In addition, vaccine Spike can be shed and bind to ACE-2 cell receptors, thereby inducing responses of pathogenetic significance including the release of soluble factors which, in turn, can dysregulate key immunologic processes. Moreover, the circulatory immune responses triggered by the vaccine Spike is quite powerful, and can lead to effective anti-Spike antibody cross-binding, as well as to the emergence of both auto- and anti-idiotype antibodies. In this paper, the immunologic downsides of the strong efficiency of the translation of the mRNA associated with COVID-19 vaccines are discussed together with the arguments supporting the idea that most of them can be avoided with the advent of next-generation, mucosal COVID-19 vaccines.
Collapse
Affiliation(s)
- Maurizio Federico
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
4
|
Monaco V, Iacobucci I, Canè L, Cipollone I, Ferrucci V, de Antonellis P, Quaranta M, Pascarella S, Zollo M, Monti M. SARS-CoV-2 uses Spike glycoprotein to control the host's anaerobic metabolism by inhibiting LDHB. Int J Biol Macromol 2024; 278:134638. [PMID: 39147351 DOI: 10.1016/j.ijbiomac.2024.134638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
The SARS-CoV-2 pandemic, responsible for approximately 7 million deaths worldwide, highlights the urgent need to understand the molecular mechanisms of the virus in order to prevent future outbreaks. The Spike glycoprotein of SARS-CoV-2, which is critical for viral entry through its interaction with ACE2 and other host cell receptors, has been a focus of this study. The present research goes beyond receptor recognition to explore Spike's influence on cellular metabolism. AP-MS interactome analysis revealed an interaction between the Spike S1 domain and lactate dehydrogenase B (LDHB), which was further confirmed by co-immunoprecipitation and immunofluorescence, indicating colocalisation in cells expressing the S1 domain. The study showed that Spike inhibits the catalytic activity of LDHB, leading to increased lactate levels in HEK-293T cells overexpressing the S1 subunit. In the hypothesised mechanism, Spike deprives LDHB of NAD+, facilitating a metabolic switch from aerobic to anaerobic energy production during infection. The Spike-NAD+ interacting region was characterised and mainly involves the W436 within the RDB domain. This novel hypothesis suggests that the Spike protein may play a broader role in altering host cell metabolism, thereby contributing to the pathophysiology of viral infection.
Collapse
Affiliation(s)
- Vittoria Monaco
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy
| | - Luisa Canè
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Irene Cipollone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy
| | - Veronica Ferrucci
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Pasqualino de Antonellis
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Miriana Quaranta
- Sapienza Università di Roma, Department of Biochemical Sciences "A. Rossi Fanelli", Rome 00185, Italy
| | - Stefano Pascarella
- Sapienza Università di Roma, Department of Biochemical Sciences "A. Rossi Fanelli", Rome 00185, Italy
| | - Massimo Zollo
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy.
| |
Collapse
|
5
|
du Preez HN, Lin J, Maguire GEM, Aldous C, Kruger HG. COVID-19 vaccine adverse events: Evaluating the pathophysiology with an emphasis on sulfur metabolism and endotheliopathy. Eur J Clin Invest 2024; 54:e14296. [PMID: 39118373 DOI: 10.1111/eci.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
In this narrative review, we assess the pathophysiology of severe adverse events that presented after vaccination with DNA and mRNA vaccines against COVID-19. The focus is on the perspective of an undersulfated and degraded glycocalyx, considering its impact on immunomodulation, inflammatory responses, coagulation and oxidative stress. The paper explores various factors that lead to glutathione and inorganic sulfate depletion and their subsequent effect on glycocalyx sulfation and other metabolites, including hormones. Components of COVID-19 vaccines, such as DNA and mRNA material, spike protein antigen and lipid nanoparticles, are involved in possible cytotoxic effects. The common thread connecting these adverse events is endotheliopathy or glycocalyx degradation, caused by depleted glutathione and inorganic sulfate levels, shear stress from circulating nanoparticles, aggregation and formation of protein coronas; leading to imbalanced immune responses and chronic release of pro-inflammatory cytokines, ultimately resulting in oxidative stress and systemic inflammatory response syndrome. By understanding the underlying pathophysiology of severe adverse events, better treatment options can be explored.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
6
|
Green AL, De Bellis D, Cowell E, Lenchine RV, Penn T, Kris LP, McEvoy-May J, Bihari S, Dixon DL, Carr JM. The Y498T499-SARS-CoV-2 spike (S) protein interacts poorly with rat ACE2 and does not affect the rat lung. Access Microbiol 2024; 6:000839.v3. [PMID: 39346684 PMCID: PMC11432600 DOI: 10.1099/acmi.0.000839.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
The rat is a useful laboratory model for respiratory diseases. SARS-CoV-2 proteins, such as the spike (S) protein, can induce inflammation. This study has investigated the ability of the Q498Y, P499T (QP-YT) amino acid change, described in the S-protein of the mouse-adapted laboratory SARS-CoV-2 MA strain, to interact with rat angiotensin converting enzyme-2 (ACE2) and stimulate responses in rat lungs. A real-time S-ACE2 quantitative fusion assay shows that ancestral and L452R S-proteins fuse with human but not rat ACE2 expressed on HEK293 (human embryonic kidney-293) cells. The QP-YT S-protein retains the ability to fuse with human ACE2 and increases the binding to rat ACE2. Although lower lung of the rat contains both ACE2 and TMPRSS2 (transmembrane serine protease 2) target cells, intratracheal delivery of ancestral or QP-YT S-protein pseudotyped lentivirus did not induce measurable respiratory changes, inflammatory infiltration or innate mRNA responses. Isolation of primary cells from rat alveoli demonstrated the presence of cells expressing ACE2 and TMPRSS2. Infection of these cells, however, with ancestral or QP-YT S-protein pseudotyped lentivirus was not observed, and the QP-YT S-protein pseudotyped lentivirus poorly infected HEK293 cells expressing rat ACE2. Analysis of the amino acid changes across the S-ACE2 interface highlights not only the Y498 interaction with H353 as a likely facilitator of binding to rat ACE2 but also other amino acids that could improve this interaction. Thus, rat lungs contain cells expressing receptors for SARS-CoV-2, and the QP-YT S-protein variant can bind to rat ACE2, but this does not result in infection or stimulate responses in the lung. Further, amino acid changes in S-protein may enhance this interaction to improve the utility of the rat model for defining the role of the S-protein in driving lung inflammation.
Collapse
Affiliation(s)
- Amy L Green
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Dylan De Bellis
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Evangeline Cowell
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Roman V Lenchine
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Timothy Penn
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Luke P Kris
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - James McEvoy-May
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Shailesh Bihari
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Dani-Louise Dixon
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Jillian M Carr
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Pira A, Mariotti F, Moro F, Didona B, Scaglione GL, Panebianco A, Abeni D, Di Zenzo G. COVID-19 Vaccine: A Potential Risk Factor for Accelerating the Onset of Bullous Pemphigoid. Vaccines (Basel) 2024; 12:1016. [PMID: 39340046 PMCID: PMC11436231 DOI: 10.3390/vaccines12091016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Bullous pemphigoid (BP) is the most common autoimmune bullous disease, whose main autoantigens are hemidesmosomal components BP180 and BP230. Although recent studies found no association between COVID-19 vaccines and BP, since mass vaccinations started, more than 90 vaccine-associated BP cases have been reported. To find an agreement among real-life clinical observations and recent epidemiologic data, we further investigated this topic. A total of 64 patients with BP onset in 2021 were demographically, clinically, and serologically characterized: 14 (21.9%) vaccine-associated patients (VA) developed BP within 5 weeks from the first/second vaccine dose. VA and vaccine-non-associated (VNA) patients had similar demographics and clinical and immunological characteristics. Noteworthy, the monthly distribution of BP onset during mass vaccinations paralleled vaccine administration to the elderly in the same catchment area. Additionally, in 2021, BP onsets in April-May and June-July significantly increased (p = 0.004) and declined (p = 0.027), respectively, compared to the three years before vaccination campaigns (2018-2020). Interestingly, VA and VNA patients showed statistically significant differences in the use of inhalers and diuretics. Our findings suggest that the COVID-19 vaccine may constitute an accelerating factor that, together with other triggering factors, could act in genetically predisposed individuals with possible sub-clinical autoreactivity against BP antigens, slightly accelerating BP onset.
Collapse
Affiliation(s)
- Anna Pira
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata (IDI)-IRCCS, 00167 Rome, Italy
| | - Feliciana Mariotti
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata (IDI)-IRCCS, 00167 Rome, Italy
| | - Francesco Moro
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata (IDI)-IRCCS, 00167 Rome, Italy
- Dermatology Unit, Istituto Dermopatico dell'Immacolata (IDI)-IRCCS, 00167 Rome, Italy
| | - Biagio Didona
- Rare Diseases Unit, Istituto Dermopatico dell'Immacolata (IDI)-IRCCS, 00167 Rome, Italy
| | | | - Annarita Panebianco
- Medical Direction, Istituto Dermopatico dell'Immacolata (IDI)-IRCCS, 00167 Rome, Italy
| | - Damiano Abeni
- Clinical Epidemiology Unit, Istituto Dermopatico dell'Immacolata (IDI)-IRCCS, 00167 Rome, Italy
| | - Giovanni Di Zenzo
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata (IDI)-IRCCS, 00167 Rome, Italy
| |
Collapse
|
8
|
Clausen TM, Fargen KM, Primiani CT, Sattur M, Amans MR, Hui FK. Post-acute sequelae of COVID infection and cerebral venous outflow disorders: Overlapping symptoms and mechanisms? Interv Neuroradiol 2024:15910199241273946. [PMID: 39223825 PMCID: PMC11571337 DOI: 10.1177/15910199241273946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024] Open
Abstract
Neurological long Covid (NLC) is a major post-acute sequela of SARS-CoV-2 infection, affecting up to 10% of infected patients. The clinical presentation of patients with NLC is varied, but general NLC symptoms have been noted to closely mimic symptoms of cerebral venous outflow disorders (CVD). Here we review key literature and discuss evidence supporting this comparison. We also aimed to describe the similarity between CVD symptomatology and neuro-NLC symptoms from two perspectives: a Twitter-distributed survey for long covid sufferers to estimate nature and frequency of neurological symptoms, and through a small cohort of patients with long covid who underwent CVD work up per our standard workflow. Over 700 patients responded, and we argue that there is a close symptom overlap with those of CVD. CVD workup in a series of 6 patients with neurological long COVID symptoms showed jugular vein stenosis by CT venography and varying degrees of increased intracranial pressure. Finally, we discuss the potential pathogenic association between vascular inflammation, associated with COVID-19 infection, venous outflow congestion, and its potential involvement in NLC.
Collapse
Affiliation(s)
| | - Kyle M Fargen
- Departments of Neurological Surgery and Radiology, Wake Forest University, Winston-Salem, NC, USA
| | | | - Mithun Sattur
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Matthew R Amans
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ferdinand K Hui
- Neuroscience Institute, Division of Neurointerventional Surgery, Queen's Medical Center, Honolulu, HI, USA
| |
Collapse
|
9
|
De Luca M, Musio B, Balestra F, Arrè V, Negro R, Depalo N, Rizzi F, Mastrogiacomo R, Panzetta G, Donghia R, Pesole PL, Coletta S, Piccinno E, Scalavino V, Serino G, Maqoud F, Russo F, Orlando A, Todisco S, Mastrorilli P, Curri ML, Gallo V, Giannelli G, Scavo MP. Role of Extracellular Vesicles in Crohn's Patients on Adalimumab Who Received COVID-19 Vaccination. Int J Mol Sci 2024; 25:8853. [PMID: 39201543 PMCID: PMC11355036 DOI: 10.3390/ijms25168853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Crohn's disease (CD) is a type of inflammatory bowel disease (IBD) affecting the gastrointestinal tract that can also cause extra-intestinal complications. Following exposure to the mRNA vaccine BNT162b2 (Pfizer-BioNTech) encoding the SARS-CoV-2 Spike (S) protein, some patients experienced a lack of response to the biological drug Adalimumab and a recrudescence of the disease. In CD patients in progression, resistant to considered biological therapy, an abnormal increase in intestinal permeability was observed, more often with a modulated expression of different proteins such as Aquaporin 8 (AQP8) and in tight junctions (e.g., ZO-1, Claudin1, Claudin2, Occludin), especially during disease flares. The aim of this study is to investigate how the SARS-CoV-2 vaccine could interfere with IBD therapy and contribute to disease exacerbation. We investigated the role of the SARS-CoV-2 Spike protein, transported by extracellular vesicles (EVs), and the impact of various EVs components, namely, exosomes (EXOs) and microvesicles (MVs), in modulating the expression of molecules involved in the exacerbation of CD, which remains unknown.
Collapse
Affiliation(s)
- Maria De Luca
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Biagia Musio
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy; (B.M.); (S.T.); (P.M.); (V.G.)
| | - Francesco Balestra
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Valentina Arrè
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Roberto Negro
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)—CNR SS Bari, Via Orabona 4, 70126 Bari, Italy; (N.D.); (F.R.); (R.M.); (M.L.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Research Unit, Via Orabona 4, 70126 Bari, Italy
| | - Federica Rizzi
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)—CNR SS Bari, Via Orabona 4, 70126 Bari, Italy; (N.D.); (F.R.); (R.M.); (M.L.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Research Unit, Via Orabona 4, 70126 Bari, Italy
| | - Rita Mastrogiacomo
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)—CNR SS Bari, Via Orabona 4, 70126 Bari, Italy; (N.D.); (F.R.); (R.M.); (M.L.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Research Unit, Via Orabona 4, 70126 Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Giorgia Panzetta
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Rossella Donghia
- National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy;
| | - Pasqua Letizia Pesole
- Department of Pathology, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (P.L.P.); (S.C.)
| | - Sergio Coletta
- Department of Pathology, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (P.L.P.); (S.C.)
| | - Emanuele Piccinno
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (E.P.); (V.S.); (G.S.)
| | - Viviana Scalavino
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (E.P.); (V.S.); (G.S.)
| | - Grazia Serino
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (E.P.); (V.S.); (G.S.)
| | - Fatima Maqoud
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (F.M.); (F.R.); (A.O.)
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (F.M.); (F.R.); (A.O.)
| | - Antonella Orlando
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (F.M.); (F.R.); (A.O.)
| | - Stefano Todisco
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy; (B.M.); (S.T.); (P.M.); (V.G.)
| | - Pietro Mastrorilli
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy; (B.M.); (S.T.); (P.M.); (V.G.)
| | - Maria Lucia Curri
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)—CNR SS Bari, Via Orabona 4, 70126 Bari, Italy; (N.D.); (F.R.); (R.M.); (M.L.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Research Unit, Via Orabona 4, 70126 Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Vito Gallo
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy; (B.M.); (S.T.); (P.M.); (V.G.)
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy;
| | - Maria Principia Scavo
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| |
Collapse
|
10
|
Zarate-Sanchez E, George SC, Moya ML, Robertson C. Vascular dysfunction in hemorrhagic viral fevers: opportunities for organotypic modeling. Biofabrication 2024; 16:032008. [PMID: 38749416 PMCID: PMC11151171 DOI: 10.1088/1758-5090/ad4c0b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
The hemorrhagic fever viruses (HFVs) cause severe or fatal infections in humans. Named after their common symptom hemorrhage, these viruses induce significant vascular dysfunction by affecting endothelial cells, altering immunity, and disrupting the clotting system. Despite advances in treatments, such as cytokine blocking therapies, disease modifying treatment for this class of pathogen remains elusive. Improved understanding of the pathogenesis of these infections could provide new avenues to treatment. While animal models and traditional 2D cell cultures have contributed insight into the mechanisms by which these pathogens affect the vasculature, these models fall short in replicatingin vivohuman vascular dynamics. The emergence of microphysiological systems (MPSs) offers promising avenues for modeling these complex interactions. These MPS or 'organ-on-chip' models present opportunities to better mimic human vascular responses and thus aid in treatment development. In this review, we explore the impact of HFV on the vasculature by causing endothelial dysfunction, blood clotting irregularities, and immune dysregulation. We highlight how existing MPS have elucidated features of HFV pathogenesis as well as discuss existing knowledge gaps and the challenges in modeling these interactions using MPS. Understanding the intricate mechanisms of vascular dysfunction caused by HFV is crucial in developing therapies not only for these infections, but also for other vasculotropic conditions like sepsis.
Collapse
Affiliation(s)
- Evelyn Zarate-Sanchez
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Monica L Moya
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Claire Robertson
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
- UC Davis Comprehensive Cancer Center, Davis, CA, United States of America
| |
Collapse
|
11
|
Pahmeier F, Monticelli SR, Feng X, Hjorth CK, Wang A, Kuehne AI, Bakken RR, Batchelor TG, Lee SE, Middlecamp M, Stuart L, Abelson DM, McLellan JS, Biering SB, Herbert AS, Chandran K, Harris E. Antibodies targeting Crimean-Congo hemorrhagic fever virus GP38 limit vascular leak and viral spread. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595578. [PMID: 38826290 PMCID: PMC11142176 DOI: 10.1101/2024.05.23.595578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a priority pathogen transmitted by tick bites, with no vaccines or specific therapeutics approved to date. Severe disease manifestations include hemorrhage, endothelial dysfunction, and multiorgan failure. Infected cells secrete the viral glycoprotein GP38, whose extracellular function is presently unknown. GP38 is considered an important target for vaccine and therapeutic design as GP38-specific antibodies can protect against severe disease in animal models, albeit through a currently unknown mechanism of action. Here, we show that GP38 induces endothelial barrier dysfunction in vitro, and that CCHFV infection, and GP38 alone, can trigger vascular leak in a mouse model. Protective antibodies that recognize specific antigenic sites on GP38, but not a protective neutralizing antibody binding the structural protein Gc, potently inhibit endothelial hyperpermeability in vitro and vascular leak in vivo during CCHFV infection. This work uncovers a function of the secreted viral protein GP38 as a viral toxin in CCHFV pathogenesis and elucidates the mode of action of non-neutralizing GP38-specific antibodies.
Collapse
Affiliation(s)
- Felix Pahmeier
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Stephanie R. Monticelli
- Viral Immunology Branch, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
- The Geneva Foundation, Tacoma, WA, USA
| | - Xinyi Feng
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Christy K. Hjorth
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Albert Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana I. Kuehne
- Viral Immunology Branch, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Russell R. Bakken
- Viral Immunology Branch, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Thomas G. Batchelor
- Viral Immunology Branch, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
- Oak Ridge Institute of Science Education, Oak Ridge, TN, USA
| | - Saeyoung E. Lee
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | | | | | | | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Scott B. Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Andrew S. Herbert
- Viral Immunology Branch, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
12
|
Antia A, Alvarado DM, Zeng Q, Casorla-Perez LA, Davis DL, Sonnek NM, Ciorba MA, Ding S. SARS-CoV-2 Omicron BA.1 Variant Infection of Human Colon Epithelial Cells. Viruses 2024; 16:634. [PMID: 38675974 PMCID: PMC11055019 DOI: 10.3390/v16040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The Omicron variant of SARS-CoV-2, characterized by multiple subvariants including BA.1, XBB.1.5, EG.5, and JN.1, became the predominant strain in early 2022. Studies indicate that Omicron replicates less efficiently in lung tissue compared to the ancestral strain. However, the infectivity of Omicron in the gastrointestinal tract is not fully defined, despite the fact that 70% of COVID-19 patients experience digestive disease symptoms. Here, using primary human colonoids, we found that, regardless of individual variability, Omicron infects colon cells similarly or less effectively than the ancestral strain or the Delta variant. The variant induced limited type III interferon expression and showed no significant impact on epithelial integrity. Further experiments revealed inefficient cell-to-cell spread and spike protein cleavage in the Omicron spike protein, possibly contributing to its lower infectious particle levels. The findings highlight the variant-specific replication differences in human colonoids, providing insights into the enteric tropism of Omicron and its relevance to long COVID symptoms.
Collapse
Affiliation(s)
- Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.A.); (Q.Z.)
| | - David M. Alvarado
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.A.); (Q.Z.)
| | - Luis A. Casorla-Perez
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Deanna L. Davis
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Naomi M. Sonnek
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Matthew A. Ciorba
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.A.); (Q.Z.)
| |
Collapse
|
13
|
Stave GM, Nabeel I, Durand-Moreau Q. Long COVID-ACOEM Guidance Statement. J Occup Environ Med 2024; 66:349-357. [PMID: 38588073 DOI: 10.1097/jom.0000000000003059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
ABSTRACT Persistent symptoms are common after acute COVID-19, often referred to as long COVID. Long COVID may affect the ability to perform activities of daily living, including work. Long COVID occurs more frequently in those with severe acute COVID-19. This guidance statement reviews the pathophysiology of severe acute COVID-19 and long COVID and provides pragmatic approaches to long COVID symptoms, syndromes, and conditions in the occupational setting. Disability laws and workers' compensation are also addressed.
Collapse
Affiliation(s)
- Gregg M Stave
- From the Division of Occupational and Environmental Medicine, Duke University, Durham, NC (G.M.S.); Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY (I.N.); and Division of Preventive Medicine, University of Alberta, Edmonton, Canada (Q.D.-M.)
| | | | | |
Collapse
|
14
|
Zhang RG, Liu XJ, Guo YL, Chen CL. SARS-CoV-2 spike protein receptor binding domain promotes IL-6 and IL-8 release via ATP/P2Y 2 and ERK1/2 signaling pathways in human bronchial epithelia. Mol Immunol 2024; 167:53-61. [PMID: 38359646 DOI: 10.1016/j.molimm.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The spike protein of SARS-CoV-2 as well as its receptor binding domain (RBD) has been demonstrated to be capable of activating the release of pro-inflammatory mediators in endothelial cells and immune cells such as monocytes. However, the effects of spike protein or its RBD on airway epithelial cells and mechanisms underlying these effects have not been adequately characterized. Here, we show that the RBD of spike protein alone can induce bronchial epithelial inflammation in a manner of ATP/P2Y2 dependence. Incubation of human bronchial epithelia with RBD induced IL-6 and IL-8 release, which could be inhibited by antibody. The incubation of RBD also up-regulated the expression of inflammatory indicators such as ho-1 and mkp-1. Furthermore, ATP secretion was observed after RBD treatment, P2Y2 receptor knock down by siRNA significantly suppressed the IL-6 and IL-8 release evoked by RBD. Additionally, S-RBD elevated the phosphorylation level of ERK1/2, and the effect that PD98059 can inhibit the pro-inflammatory cytokine release suggested the participation of ERK1/2. These novel findings provide new evidence of SARS-CoV-2 on airway inflammation and introduce purinergic signaling as promising treatment target.
Collapse
Affiliation(s)
- Rui-Gang Zhang
- Department of Physiology, Basic Medical School, Guangdong Medical University, Zhanjiang, China.
| | - Xing-Jian Liu
- Department of Physiology, Basic Medical School, Guangdong Medical University, Zhanjiang, China
| | - Yu-Ling Guo
- First Clinical School, Guangdong Medical University, Zhanjiang, China
| | - Chun-Ling Chen
- Department of Physiology, Basic Medical School, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
15
|
Passi R, Cholewa-Waclaw J, Wereski R, Bennett M, Veizades S, Berkeley B, Caporali A, Li Z, Rodor J, Dewerchin M, Mills NL, Beqqali A, Brittan M, Baker AH. COVID-19 plasma induces subcellular remodelling within the pulmonary microvascular endothelium. Vascul Pharmacol 2024; 154:107277. [PMID: 38266794 DOI: 10.1016/j.vph.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can affect multiple organ systems, including the pulmonary vasculature. Endothelial cells (ECs) are thought to play a key role in the propagation of COVID-19, however, our understanding of the exact scale of dysregulation sustained by the pulmonary microvasculature (pMV) remains incomplete. Here we aim to identify transcriptional, phenotypic, and functional changes within the pMV induced by COVID-19. METHODS AND RESULTS Human pulmonary microvascular endothelial cells (HPMVEC) treated with plasma acquired from patients hospitalised with severe COVID-19 were compared to HPMVEC treated with plasma from patients hospitalised without COVID-19 but with other severe illnesses. Exposure to COVID-19 plasma caused a significant functional decline in HPMVECs as seen by a decrease in both cell viability via the WST-1 cell-proliferation assay and cell-to-cell barrier function as measured by electric cell-substrate impedance sensing. High-content imaging using a Cell Painting image-based assay further quantified morphological variations within sub-cellular organelles to show phenotypic changes in the whole endothelial cell, nucleus, mitochondria, plasma membrane and nucleolus morphology. RNA-sequencing of HPMVECs treated with COVID-19 plasma suggests the observed phenotype may, in part, be regulated by genes such as SMAD7, BCOR, SFMBT1, IFIT5 and ZNF566 which are involved in transcriptional regulation, protein monoubiquitination and TGF-β signalling. CONCLUSION AND IMPACT During COVID-19, the pMV undergoes significant remodelling, which is evident based on the functional, phenotypic, and transcriptional changes seen following exposure to COVID-19 plasma. The observed morphological variation may be responsible for downstream complications, such as a decline in overall cellular function and cell-to-cell barrier integrity. Moreover, genes identified through bulk RNA sequencing may contribute to our understanding of the observed phenotype and assist in developing strategies that can inform the rescue of the dysregulated endothelium.
Collapse
Affiliation(s)
- Rainha Passi
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, and VIB Centre for Cancer Biology, VIB, Leuven, Belgium
| | - Justyna Cholewa-Waclaw
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Edinburgh Bioquarter, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Ryan Wereski
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Matthew Bennett
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Stefan Veizades
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Stanford Cardiovascular Institute, Stanford University, Stanford 94305, CA, USA
| | - Bronwyn Berkeley
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrea Caporali
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ziwen Li
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Julie Rodor
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, and VIB Centre for Cancer Biology, VIB, Leuven, Belgium
| | - Nicholas L Mills
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Abdelaziz Beqqali
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Mairi Brittan
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrew H Baker
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 HX Maastricht, the Netherlands.
| |
Collapse
|
16
|
Nisa A, Kumar R, Ramasamy S, Kolloli A, Olejnik J, Jalloh S, Gummuluru S, Subbian S, Bushkin Y. Modulations of Homeostatic ACE2, CD147, GRP78 Pathways Correlate with Vascular and Endothelial Performance Markers during Pulmonary SARS-CoV-2 Infection. Cells 2024; 13:432. [PMID: 38474396 PMCID: PMC10930588 DOI: 10.3390/cells13050432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The pathologic consequences of Coronavirus Disease-2019 (COVID-19) include elevated inflammation and dysregulated vascular functions associated with thrombosis. In general, disruption of vascular homeostasis and ensuing prothrombotic events are driven by activated platelets, monocytes, and macrophages, which form aggregates (thrombi) attached to the endothelium lining of vessel walls. However, molecular pathways underpinning the pathological interactions between myeloid cells and endothelium during COVID-19 remain undefined. Here, we tested the hypothesis that modulations in the expression of cellular receptors angiotensin-converting enzyme 2 (ACE2), CD147, and glucose-regulated protein 78 (GRP78), which are involved in homeostasis and endothelial performance, are the hallmark responses induced by SARS-CoV-2 infection. Cultured macrophages and lungs of hamster model systems were used to test this hypothesis. The results indicate that while macrophages and endothelial cells are less likely to support SARS-CoV-2 proliferation, these cells may readily respond to inflammatory stimuli generated by the infected lung epithelium. SARS-CoV-2 induced modulations of tested cellular receptors correlated with corresponding changes in the mRNA expression of coagulation cascade regulators and endothelial integrity components in infected hamster lungs. Among these markers, tissue factor (TF) had the best correlation for prothrombotic events during SARS-CoV-2 infection. Furthermore, the single-molecule fluorescence in situ hybridization (smFISH) method alone was sufficient to determine the peak and resolution phases of SARS-CoV-2 infection and enabled screening for cellular markers co-expressed with the virus. These findings suggest possible molecular pathways for exploration of novel drugs capable of blocking the prothrombotic shift events that exacerbate COVID-19 pathophysiology and control the disease.
Collapse
Affiliation(s)
- Annuurun Nisa
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| | - Ranjeet Kumar
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| | - Santhamani Ramasamy
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| | - Afsal Kolloli
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| | - Judith Olejnik
- Department of Virology, Immunology & Microbiology, Boston University School of Medicine, Boston, MA 02130, USA; (J.O.); (S.J.); (S.G.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Sallieu Jalloh
- Department of Virology, Immunology & Microbiology, Boston University School of Medicine, Boston, MA 02130, USA; (J.O.); (S.J.); (S.G.)
| | - Suryaram Gummuluru
- Department of Virology, Immunology & Microbiology, Boston University School of Medicine, Boston, MA 02130, USA; (J.O.); (S.J.); (S.G.)
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| | - Yuri Bushkin
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| |
Collapse
|
17
|
Puccinelli RR, Sama SS, Worthington CM, Puschnik AS, Pak JE, Gómez-Sjöberg R. Open-source milligram-scale, four channel, automated protein purification system. PLoS One 2024; 19:e0297879. [PMID: 38394072 PMCID: PMC10889886 DOI: 10.1371/journal.pone.0297879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/10/2024] [Indexed: 02/25/2024] Open
Abstract
Liquid chromatography purification of multiple recombinant proteins, in parallel, could catalyze research and discovery if the processes are fast and approach the robustness of traditional, "one-protein-at-a-time" purification. Here, we report an automated, four channel chromatography platform that we have designed and validated for parallelized protein purification at milligram scales. The device can purify up to four proteins (each with its own single column), has inputs for up to eight buffers or solvents that can be directed to any of the four columns via a network of software-driven valves, and includes an automated fraction collector with ten positions for 1.5 or 5.0 mL collection tubes and four positions for 50 mL collection tubes for each column output. The control software can be accessed either via Python scripting, giving users full access to all steps of the purification process, or via a simple-to-navigate touch screen graphical user interface that does not require knowledge of the command line or any programming language. Using our instrument, we report milligram-scale, parallelized, single-column purification of a panel of mammalian cell expressed coronavirus (SARS-CoV-2, HCoV-229E, HCoV-OC43, HCoV-229E) trimeric Spike and monomeric Receptor Binding Domain (RBD) antigens, and monoclonal antibodies targeting SARS-CoV-2 Spike (S) and Influenza Hemagglutinin (HA). We include a detailed hardware build guide, and have made the controlling software open source, to allow others to build and customize their own protein purifier systems.
Collapse
Affiliation(s)
- Robert R. Puccinelli
- Chan Zuckerberg Biohub - San Francisco, San Francisco, California, United States of America
| | - Samia S. Sama
- Chan Zuckerberg Biohub - San Francisco, San Francisco, California, United States of America
| | | | - Andreas S. Puschnik
- Chan Zuckerberg Biohub - San Francisco, San Francisco, California, United States of America
| | - John E. Pak
- Chan Zuckerberg Biohub - San Francisco, San Francisco, California, United States of America
| | - Rafael Gómez-Sjöberg
- Chan Zuckerberg Biohub - San Francisco, San Francisco, California, United States of America
| |
Collapse
|
18
|
Zheng G, Qiu G, Qian H, Shu Q, Xu J. Multifaceted role of SARS-CoV-2 structural proteins in lung injury. Front Immunol 2024; 15:1332440. [PMID: 38375473 PMCID: PMC10875085 DOI: 10.3389/fimmu.2024.1332440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third human coronavirus to cause acute respiratory distress syndrome (ARDS) and contains four structural proteins: spike, envelope, membrane, and nucleocapsid. An increasing number of studies have demonstrated that all four structural proteins of SARS-CoV-2 are capable of causing lung injury, even without the presence of intact virus. Therefore, the topic of SARS-CoV-2 structural protein-evoked lung injury warrants more attention. In the current article, we first synopsize the structural features of SARS-CoV-2 structural proteins. Second, we discuss the mechanisms for structural protein-induced inflammatory responses in vitro. Finally, we list the findings that indicate structural proteins themselves are toxic and sufficient to induce lung injury in vivo. Recognizing mechanisms of lung injury triggered by SARS-CoV-2 structural proteins may facilitate the development of targeted modalities in treating COVID-19.
Collapse
Affiliation(s)
| | - Guanguan Qiu
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Huifeng Qian
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Qiang Shu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jianguo Xu
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Panagiotides NG, Poledniczek M, Andreas M, Hülsmann M, Kocher AA, Kopp CW, Piechota-Polanczyk A, Weidenhammer A, Pavo N, Wadowski PP. Myocardial Oedema as a Consequence of Viral Infection and Persistence-A Narrative Review with Focus on COVID-19 and Post COVID Sequelae. Viruses 2024; 16:121. [PMID: 38257821 PMCID: PMC10818479 DOI: 10.3390/v16010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microvascular integrity is a critical factor in myocardial fluid homeostasis. The subtle equilibrium between capillary filtration and lymphatic fluid removal is disturbed during pathological processes leading to inflammation, but also in hypoxia or due to alterations in vascular perfusion and coagulability. The degradation of the glycocalyx as the main component of the endothelial filtration barrier as well as pericyte disintegration results in the accumulation of interstitial and intracellular water. Moreover, lymphatic dysfunction evokes an increase in metabolic waste products, cytokines and inflammatory cells in the interstitial space contributing to myocardial oedema formation. This leads to myocardial stiffness and impaired contractility, eventually resulting in cardiomyocyte apoptosis, myocardial remodelling and fibrosis. The following article reviews pathophysiological inflammatory processes leading to myocardial oedema including myocarditis, ischaemia-reperfusion injury and viral infections with a special focus on the pathomechanisms evoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition, clinical implications including potential long-term effects due to viral persistence (long COVID), as well as treatment options, are discussed.
Collapse
Affiliation(s)
- Noel G. Panagiotides
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Martin Hülsmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Alfred A. Kocher
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Annika Weidenhammer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
20
|
Cai Z, Bai H, Ren D, Xue B, Liu Y, Gong T, Zhang X, Zhang P, Zhu J, Shi B, Zhang C. Integrin αvβ1 facilitates ACE2-mediated entry of SARS-CoV-2. Virus Res 2024; 339:199251. [PMID: 37884208 PMCID: PMC10651773 DOI: 10.1016/j.virusres.2023.199251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/14/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Integrins have been suggested to be involved in SARS-CoV-2 infection, but the underlying mechanisms remain largely unclear. This study aimed to investigate how integrins facilitate the ACE2-mediated cellular entry of SARS-CoV-2. We first tested the susceptibility of a panel of human cell lines to SARS-CoV-2 infection using the spike protein pseudotyped virus assay and examined the expression levels of integrins in these cell lines by qPCR, western blot and flow cytometry. We found that integrin αvβ1 was highly enriched in the SARS-CoV-2 susceptible cell lines. Additional studies demonstrated that RGD (403-405)→AAA mutant was defective in binding to integrin αvβ1 compared to its wild type counterpart, and anti-αvβ1 integrin antibodies significantly inhibited the entry of SARS-CoV-2 into the cells. Further studies using mouse NIH3T3 cells expressing human ACE2, integrin αv, integrin β1, and/or integrin αvβ1 suggest that integrin αvβ1 was unable to function as an independent receptor but could significantly facilitate the cellular entry of SASR-CoV-2. Finally, we observed that the Omicron exhibited a significant increase in the ACE2-mediated viral entry. Our findings may enhance our understanding of the pathogenesis of SARS-CoV-2 infection and offer potential therapeutic target for COVID-19.
Collapse
Affiliation(s)
- Zeqiong Cai
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Han Bai
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Doudou Ren
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Biyun Xue
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Yijia Liu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Tian Gong
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China; Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China
| | - Xuan Zhang
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China; Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China
| | - Peng Zhang
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China; Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China
| | - Junsheng Zhu
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Binyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China.
| | - Chengsheng Zhang
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China; Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China; Department of Medical Genetics, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China.
| |
Collapse
|
21
|
Gressett TE, Hossen ML, Talkington G, Volic M, Perez H, Tiwari PB, Chapagain P, Bix G. Molecular interactions between perlecan LG3 and the SARS-CoV-2 spike protein receptor binding domain. Protein Sci 2024; 33:e4843. [PMID: 37996967 PMCID: PMC10731540 DOI: 10.1002/pro.4843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/14/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a global health crisis with significant clinical morbidity and mortality. While angiotensin-converting enzyme 2 (ACE2) is the primary receptor for viral entry, other cell surface and extracellular matrix proteins may also bind to the viral receptor binding domain (RBD) within the SARS-CoV-2 spike protein. Recent studies have implicated heparan sulfate proteoglycans, specifically perlecan LG3, in facilitating SARS-CoV-2 binding to ACE2. However, the role of perlecan LG3 in SARS-CoV-2 pathophysiology is not well understood. In this study, we investigated the binding interactions between the SARS-CoV-2 spike protein RBD and perlecan LG3 through molecular modeling simulations and surface plasmon resonance (SPR) experiments. Our results indicate stable binding between LG3 and SARS-CoV-2 spike protein RBD, which may potentially enhance RBD-ACE2 interactions. These findings shed light on the role of perlecan LG3 in SARS-CoV-2 infection and provide insight into SARS-CoV-2 pathophysiology and potential therapeutic strategy for COVID-19.
Collapse
Affiliation(s)
- Timothy E. Gressett
- Department of Neurosurgery, Clinical Neuroscience Research CenterTulane University School of MedicineNew OrleansLouisianaUSA
- Tulane Brain InstituteTulane UniversityNew OrleansLouisianaUSA
| | - Md Lokman Hossen
- Department of PhysicsFlorida International UniversityMiamiFloridaUSA
- Department of PhysicsUniversity of BarishalKornokathiBangladesh
| | - Grant Talkington
- Department of Neurosurgery, Clinical Neuroscience Research CenterTulane University School of MedicineNew OrleansLouisianaUSA
- Tulane Brain InstituteTulane UniversityNew OrleansLouisianaUSA
| | - Milla Volic
- Department of Neurosurgery, Clinical Neuroscience Research CenterTulane University School of MedicineNew OrleansLouisianaUSA
| | - Hugo Perez
- Department of PhysicsFlorida International UniversityMiamiFloridaUSA
| | | | - Prem Chapagain
- Department of PhysicsFlorida International UniversityMiamiFloridaUSA
- Biomolecular Sciences InstituteFlorida International UniversityMiamiFloridaUSA
| | - Gregory Bix
- Department of Neurosurgery, Clinical Neuroscience Research CenterTulane University School of MedicineNew OrleansLouisianaUSA
- Tulane Brain InstituteTulane UniversityNew OrleansLouisianaUSA
- Department of NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
- Department of Microbiology and ImmunologyTulane University School of MedicineNew OrleansLouisianaUSA
| |
Collapse
|
22
|
Barabutis N, Fakir S. Growth hormone-releasing hormone beyond cancer. Clin Exp Pharmacol Physiol 2024; 51:40-41. [PMID: 37750473 DOI: 10.1111/1440-1681.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/22/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Saikat Fakir
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| |
Collapse
|
23
|
Perico L, Benigni A, Remuzzi G. SARS-CoV-2 and the spike protein in endotheliopathy. Trends Microbiol 2024; 32:53-67. [PMID: 37393180 PMCID: PMC10258582 DOI: 10.1016/j.tim.2023.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
SARS-CoV-2, the causative agent of COVID-19, primarily affects the epithelial compartment in the upper and lower airways. There is evidence that the microvasculature in both the pulmonary and extrapulmonary systems is a major target of SARS-CoV-2. Consistent with this, vascular dysfunction and thrombosis are the most severe complications in COVID-19. The proinflammatory milieu triggered by the hyperactivation of the immune system by SARS-CoV-2 has been suggested to be the main trigger for endothelial dysfunction during COVID-19. More recently, a rapidly growing number of reports have indicated that SARS-CoV-2 can interact directly with endothelial cells through the spike protein, leading to multiple instances of endothelial dysfunction. Here, we describe all the available findings showing the direct effect of the SARS-CoV-2 spike protein on endothelial cells and offer mechanistic insights into the molecular basis of vascular dysfunction in severe COVID-19.
Collapse
Affiliation(s)
- Luca Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Bergamo, Italy.
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Bergamo, Italy
| |
Collapse
|
24
|
Zhang H, Wang Z, Nguyen HTT, Watson AJ, Lao Q, Li A, Zhu J. Integrin α 5β 1 contributes to cell fusion and inflammation mediated by SARS-CoV-2 spike via RGD-independent interaction. Proc Natl Acad Sci U S A 2023; 120:e2311913120. [PMID: 38060559 PMCID: PMC10723138 DOI: 10.1073/pnas.2311913120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/03/2023] [Indexed: 12/17/2023] Open
Abstract
The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infects host cells by engaging its spike (S) protein with human ACE2 receptor. Recent studies suggest the involvement of integrins in SARS-CoV-2 infection through interaction with the S protein, but the underlying mechanism is not well understood. This study investigated the role of integrin α5β1, which recognizes the Arg-Gly-Asp (RGD) motif in its physiological ligands, in S-mediated virus entry and cell-cell fusion. Our results showed that α5β1 does not directly contribute to S-mediated cell entry, but it enhances S-mediated cell-cell fusion in collaboration with ACE2. This effect cannot be inhibited by the putative α5β1 inhibitor ATN-161 or the high-affinity RGD-mimetic inhibitor MK-0429 but requires the participation of α5 cytoplasmic tail (CT). We detected a direct interaction between α5β1 and the S protein, but this interaction does not rely on the RGD-containing receptor binding domain of the S1 subunit of the S protein. Instead, it involves the S2 subunit of the S protein and α5β1 homo-oligomerization. Furthermore, we found that the S protein induces inflammatory responses in human endothelial cells, characterized by NF-κB activation, gasdermin D cleavage, and increased secretion of proinflammatory cytokines IL-6 and IL-1β. These effects can be attenuated by the loss of α5 expression or inhibition of the α5 CT binding protein phosphodiesterase-4D (PDE4D), suggesting the involvement of α5 CT and PDE4D pathway. These findings provide molecular insights into the pathogenesis of SARS-CoV-2 mediated by a nonclassical RGD-independent ligand-binding and signaling function of integrin α5β1 and suggest potential targets for antiviral treatment.
Collapse
Affiliation(s)
- Heng Zhang
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Zhengli Wang
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Huong T. T. Nguyen
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Abigail J. Watson
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Qifang Lao
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - An Li
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Jieqing Zhu
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI53226
| |
Collapse
|
25
|
Li JH, Yu GS, Wang YD, Li TK. In vitro protective effect of recombinant prominin-1 combined with microRNA-29b on N-methyl-D-aspartate-induced excitotoxicity in retinal ganglion cells. Int J Ophthalmol 2023; 16:1746-1755. [PMID: 38028520 PMCID: PMC10626362 DOI: 10.18240/ijo.2023.11.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/15/2023] [Indexed: 12/01/2023] Open
Abstract
AIM To determine the in vitro protective effect of recombinant prominin-1 (Prominin-1)+microRNA-29b (P1M29) on N-methyl-D-aspartate (NMDA)-induced excitotoxicity in retinal ganglion cells (RGCs). METHODS RGC-5 cells were cultured, and NMDA-induced excitotoxicity at the range of 100-800 µmol/L was assessed using the MTT assay. NMDA (800 µmol/L) was selected as the appropriate concentration for preparing the cell model. To evaluate the protective effect of P1M29 on the cell model, Prominin-1 was added at the concentration of 1-6 ng/mL for 48h, and the cell survival was investigated with/without microRNA-29b. After obtaining the appropriate concentration and time of P1M29 at 48h, real-time polymerase chain reaction (PCR) was utilized to detect the relative mRNA expression of vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-β2. Western blot detection was applied to measure the phosphorylation levels of protein kinase B (AKT) and extracellular regulated protein kinases (ERK) in RGC-5 cells after treatment with Prominin-1. Apoptosis study of the cell model was conducted by flow cytometry for estimating the anti-apoptotic effect of P1M29. Immunofluorescence analysis was used to analyze the expression levels of VEGF and TGF-β2. RESULTS MTT cytotoxicity assays demonstrated that P1M29 group had significantly higher cell survival rate than Prominin-1 group (P<0.05). Real-time PCR data indicated that the expression levels of VEGF were significantly increased in both Prominin-1 and P1M29 groups compared NMDA and microRNA-29b group (P<0.05), while TGF-β2 were significantly decreased in both microRNA-29b and P1M29 groups compared NMDA and Prominin-1 group (P<0.05). Western blot results showed that both Prominin-1 and P1M29 groups significantly increased the phosphorylation levels of AKT and ERK compared to NMDA and microRNA-29b groups (P<0.05). Flow cytometry analysis revealed that P1M29 could prevent RGC-5 cell apoptosis in the early stage of apoptosis, while immunofluorescence results showed that P1M29 group had higher expression of VEGF and lower expression of TGF-β2 with a stronger green fluorescence than NMDA group. CONCLUSION Prominin-1 combined with microRNA-29b can provide a suitable therapeutic option for ameliorating NMDA-induced excitotoxicity in RGC-5 cells.
Collapse
Affiliation(s)
- Jun-Hua Li
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
- Eye Hospital of Wenzhou Medical University Hangzhou Branch, Hangzhou 310020, Zhejiang Province, China
| | - Guan-Shun Yu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
- Eye Hospital of Wenzhou Medical University Hangzhou Branch, Hangzhou 310020, Zhejiang Province, China
| | - Yu-Da Wang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
- Eye Hospital of Wenzhou Medical University Hangzhou Branch, Hangzhou 310020, Zhejiang Province, China
| | | |
Collapse
|
26
|
Barabutis N. Heat shock protein 90 inhibition in the endothelium. Front Med (Lausanne) 2023; 10:1255488. [PMID: 37746080 PMCID: PMC10513060 DOI: 10.3389/fmed.2023.1255488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, United States
| |
Collapse
|
27
|
Guo TJF, Singhera GK, Leung JM, Dorscheid DR. Airway Epithelial-Derived Immune Mediators in COVID-19. Viruses 2023; 15:1655. [PMID: 37631998 PMCID: PMC10458661 DOI: 10.3390/v15081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
The airway epithelium, which lines the conducting airways, is central to the defense of the lungs against inhaled particulate matter and pathogens such as SARS-CoV-2, the virus that causes COVID-19. Recognition of pathogens results in the activation of an innate and intermediate immune response which involves the release of cytokines and chemokines by the airway epithelium. This response can inhibit further viral invasion and influence adaptive immunity. However, severe COVID-19 is characterized by a hyper-inflammatory response which can give rise to clinical presentations including lung injury and lead to acute respiratory distress syndrome, viral pneumonia, coagulopathy, and multi-system organ failure. In response to SARS-CoV-2 infection, the airway epithelium can mount a maladaptive immune response which can delay viral clearance, perpetuate excessive inflammation, and contribute to the pathogenesis of severe COVID-19. In this article, we will review the barrier and immune functions of the airway epithelium, how SARS-CoV-2 can interact with the epithelium, and epithelial-derived cytokines and chemokines and their roles in COVID-19 and as biomarkers. Finally, we will discuss these immune mediators and their potential as therapeutic targets in COVID-19.
Collapse
Affiliation(s)
- Tony J. F. Guo
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
| | - Gurpreet K. Singhera
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| | - Janice M. Leung
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| | - Delbert R. Dorscheid
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
28
|
Escaffre O, Szaniszlo P, Törő G, Vilas CL, Servantes BJ, Lopez E, Juelich TL, Levine CB, McLellan SLF, Cardenas JC, Freiberg AN, Módis K. Hydrogen Sulfide Ameliorates SARS-CoV-2-Associated Lung Endothelial Barrier Disruption. Biomedicines 2023; 11:1790. [PMID: 37509430 PMCID: PMC10376201 DOI: 10.3390/biomedicines11071790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
Recent studies have confirmed that lung microvascular endothelial injury plays a critical role in the pathophysiology of COVID-19. Our group and others have demonstrated the beneficial effects of H2S in several pathological processes and provided a rationale for considering the therapeutic implications of H2S in COVID-19 therapy. Here, we evaluated the effect of the slow-releasing H2S donor, GYY4137, on the barrier function of a lung endothelial cell monolayer in vitro, after challenging the cells with plasma samples from COVID-19 patients or inactivated SARS-CoV-2 virus. We also assessed how the cytokine/chemokine profile of patients' plasma, endothelial barrier permeability, and disease severity correlated with each other. Alterations in barrier permeability after treatments with patient plasma, inactivated virus, and GYY4137 were monitored and assessed by electrical impedance measurements in real time. We present evidence that GYY4137 treatment reduced endothelial barrier permeability after plasma challenge and completely reversed the endothelial barrier disruption caused by inactivated SARS-CoV-2 virus. We also showed that disease severity correlated with the cytokine/chemokine profile of the plasma but not with barrier permeability changes in our assay. Overall, these data demonstrate that treatment with H2S-releasing compounds has the potential to ameliorate SARS-CoV-2-associated lung endothelial barrier disruption.
Collapse
Affiliation(s)
- Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections & Immunity, Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Peter Szaniszlo
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gabor Törő
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Caitlyn L. Vilas
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Brenna J. Servantes
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ernesto Lopez
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Terry L. Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Corri B. Levine
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Susan L. F. McLellan
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jessica C. Cardenas
- The Center for Translational Injury Research, Department of Surgery, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections & Immunity, Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555, USA
- The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Katalin Módis
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
29
|
Wimalawansa SJ. Physiological Basis for Using Vitamin D to Improve Health. Biomedicines 2023; 11:1542. [PMID: 37371637 DOI: 10.3390/biomedicines11061542] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 06/29/2023] Open
Abstract
Vitamin D is essential for life-its sufficiency improves metabolism, hormonal release, immune functions, and maintaining health. Vitamin D deficiency increases the vulnerability and severity of type 2 diabetes, metabolic syndrome, cancer, obesity, and infections. The active enzyme that generates vitamin D [calcitriol: 1,25(OH)2D], CYP27B1 (1α-hydoxylase), and its receptors (VDRs) are distributed ubiquitously in cells. Once calcitriol binds with VDRs, the complexes are translocated to the nucleus and interact with responsive elements, up- or down-regulating the expression of over 1200 genes and modulating metabolic and physiological functions. Administration of vitamin D3 or correct metabolites at proper doses and frequency for longer periods would achieve the intended benefits. While various tissues have different thresholds for 25(OH)D concentrations, levels above 50 ng/mL are necessary to mitigate conditions such as infections/sepsis, cancer, and reduce premature deaths. Cholecalciferol (D3) (not its metabolites) should be used to correct vitamin D deficiency and raise serum 25(OH)D to the target concentration. In contrast, calcifediol [25(OH)D] raises serum 25(OH)D concentrations rapidly and is the agent of choice in emergencies such as infections, for those who are in ICUs, and for insufficient hepatic 25-hydroxylase (CYP2R1) activity. In contrast, calcitriol is necessary to maintain serum-ionized calcium concentration in persons with advanced renal failure and hypoparathyroidism. Calcitriol is, however, ineffective in most other conditions, including infections, and as vitamin D replacement therapy. Considering the high costs and higher incidence of adverse effects due to narrow therapeutic margins (ED50), 1α-vitamin D analogs, such as 1α-(OH)D and 1,25(OH)2D, should not be used for other conditions. Calcifediol analogs cost 20 times more than D3-thus, they are not indicated as a routine vitamin D supplement for hypovitaminosis D, osteoporosis, or renal failure. Healthcare workers should resist accepting inappropriate promotions, such as calcifediol for chronic renal failure and calcitriol for osteoporosis or infections-there is no physiological rationale for doing so. Maintaining the population's vitamin D sufficiency (above 40 ng/mL) with vitamin D3 supplements and/or daily sun exposure is the most cost-effective way to reduce chronic diseases and sepsis, overcome viral epidemics and pandemics, and reduce healthcare costs. Furthermore, vitamin D sufficiency improves overall health (hence reducing absenteeism), reduces the severity of chronic diseases such as metabolic and cardiovascular diseases and cancer, decreases all-cause mortality, and minimizes infection-related complications such as sepsis and COVID-19-related hospitalizations and deaths. Properly using vitamin D is the most cost-effective way to reduce chronic illnesses and healthcare costs: thus, it should be a part of routine clinical care.
Collapse
Affiliation(s)
- Sunil J Wimalawansa
- Medicine, Endocrinology & Nutrition, Cardio Metabolic Institute, (Former) Rutgers University, North Brunswick, NJ 08901, USA
| |
Collapse
|
30
|
Petersen E, Chudakova D, Erdyneeva D, Zorigt D, Shabalina E, Gudkov D, Karalkin P, Reshetov I, Mynbaev OA. COVID-19-The Shift of Homeostasis into Oncopathology or Chronic Fibrosis in Terms of Female Reproductive System Involvement. Int J Mol Sci 2023; 24:ijms24108579. [PMID: 37239926 DOI: 10.3390/ijms24108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 coronavirus remains a global public health concern due to the systemic nature of the infection and its long-term consequences, many of which remain to be elucidated. SARS-CoV-2 targets endothelial cells and blood vessels, altering the tissue microenvironment, its secretion, immune-cell subpopulations, the extracellular matrix, and the molecular composition and mechanical properties. The female reproductive system has high regenerative potential, but can accumulate damage, including due to SARS-CoV-2. COVID-19 is profibrotic and can change the tissue microenvironment toward an oncogenic niche. This makes COVID-19 and its consequences one of the potential regulators of a homeostasis shift toward oncopathology and fibrosis in the tissues of the female reproductive system. We are looking at SARS-CoV-2-induced changes at all levels in the female reproductive system.
Collapse
Affiliation(s)
- Elena Petersen
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Daria Chudakova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Daiana Erdyneeva
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Dulamsuren Zorigt
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | - Denis Gudkov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Pavel Karalkin
- P.A. Herzen Moscow Research Institute of Oncology, 125284 Moscow, Russia
- Institute of Cluster Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Igor Reshetov
- Institute of Cluster Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Ospan A Mynbaev
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|