1
|
Step K, Eltaraifee E, Elsayed I, Rasaholiarison N, Okubadejo N, Walker R, Mohamed W, Rizig M, Bandres-Ciga S, Noyce AJ, Dey S, Bardien S, Periñan MT. Advancing Parkinson's Disease Research in Africa: A Strategic Training Framework of the Global Parkinson's Genetics Program. Mov Disord 2024. [PMID: 39482233 DOI: 10.1002/mds.30051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Affiliation(s)
- Kathryn Step
- Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Esraa Eltaraifee
- Department of Molecular Biology, Institute of Endemic Diseases, Khartoum, Sudan
| | - Inas Elsayed
- Faculty of Pharmacy University of Gezira, Wad Medani, Sudan
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | | | - Njideka Okubadejo
- Neurology Unit, Department of Medicine, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Richard Walker
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Wael Mohamed
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Shebin El-Kom, Egypt
| | - Mie Rizig
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Alastair J Noyce
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Sumit Dey
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Soraya Bardien
- Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences and South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Maria Teresa Periñan
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain
| |
Collapse
|
2
|
Boakye Serebour T, Cribbs AP, Baldwin MJ, Masimirembwa C, Chikwambi Z, Kerasidou A, Snelling SJB. Overcoming barriers to single-cell RNA sequencing adoption in low- and middle-income countries. Eur J Hum Genet 2024; 32:1206-1213. [PMID: 38565638 PMCID: PMC11499908 DOI: 10.1038/s41431-024-01564-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 04/04/2024] Open
Abstract
The advent of single-cell resolution sequencing and spatial transcriptomics has enabled the delivery of cellular and molecular atlases of tissues and organs, providing new insights into tissue health and disease. However, if the full potential of these technologies is to be equitably realised, ancestrally inclusivity is paramount. Such a goal requires greater inclusion of both researchers and donors in low- and middle-income countries (LMICs). In this perspective, we describe the current landscape of ancestral inclusivity in genomic and single-cell transcriptomic studies. We discuss the collaborative efforts needed to scale the barriers to establishing, expanding, and adopting single-cell sequencing research in LMICs and to enable globally impactful outcomes of these technologies.
Collapse
Affiliation(s)
- Tracy Boakye Serebour
- The Botnar Institute for Musculoskeletal Science, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Adam P Cribbs
- The Botnar Institute for Musculoskeletal Science, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Mathew J Baldwin
- The Botnar Institute for Musculoskeletal Science, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Collen Masimirembwa
- The African Institute of Biomedical Science and Technology, Harare, Zimbabwe
| | - Zedias Chikwambi
- The African Institute of Biomedical Science and Technology, Harare, Zimbabwe
| | - Angeliki Kerasidou
- The Ethox Centre and the Wellcome Centre for Ethics and Humanities, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sarah J B Snelling
- The Botnar Institute for Musculoskeletal Science, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Hamdi Y, Trabelsi M, Ghedira K, Boujemaa M, Ben Ayed I, Charfeddine C, Souissi A, Rejeb I, Kammoun Rebai W, Hkimi C, Neifar F, Jandoubi N, Mkaouar R, Chaouch M, Bennour A, Kamoun S, Chaker Masmoudi H, Abid N, Mezghani Khemakhem M, Masmoudi S, Saad A, BenJemaa L, BenKahla A, Boubaker S, Mrad R, Kamoun H, Abdelhak S, Gribaa M, Belguith N, Kharrat N, Hmida D, Rebai A. Genome Tunisia Project: paving the way for precision medicine in North Africa. Genome Med 2024; 16:104. [PMID: 39187811 PMCID: PMC11348534 DOI: 10.1186/s13073-024-01365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Key discoveries and innovations in the field of human genetics have led to the foundation of molecular and personalized medicine. Here, we present the Genome Tunisia Project, a two-phased initiative (2022-2035) which aims to deliver the reference sequence of the Tunisian Genome and to support the implementation of personalized medicine in Tunisia, a North African country that represents a central hub of population admixture and human migration between African, European, and Asian populations. The main goal of this initiative is to develop a healthcare system capable of incorporating omics data for use in routine medical practice, enabling medical doctors to better prevent, diagnose, and treat patients. METHODS A multidisciplinary partnership involving Tunisian experts from different institutions has come to discern all requirements that would be of high priority to fulfill the project's goals. One of the most urgent priorities is to determine the reference sequence of the Tunisian Genome. In addition, extensive situation analysis and revision of the education programs, community awareness, appropriate infrastructure including sequencing platforms and biobanking, as well as ethical and regulatory frameworks, have been undertaken towards building sufficient capacity to integrate personalized medicine into the Tunisian healthcare system. RESULTS In the framework of this project, an ecosystem with all engaged stakeholders has been implemented including healthcare providers, clinicians, researchers, pharmacists, bioinformaticians, industry, policymakers, and advocacy groups. This initiative will also help to reinforce research and innovation capacities in the field of genomics and to strengthen discoverability in the health sector. CONCLUSIONS Genome Tunisia is the first initiative in North Africa that seeks to demonstrate the major impact that can be achieved by Human Genome Projects in low- and middle-income countries to strengthen research and to improve disease management and treatment outcomes, thereby reducing the social and economic burden on healthcare systems. Sharing this experience within the African scientific community is a chance to turn a major challenge into an opportunity for dissemination and outreach. Additional efforts are now being made to advance personalized medicine in patient care by educating consumers and providers, accelerating research and innovation, and supporting necessary changes in policy and regulation.
Collapse
Affiliation(s)
- Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia.
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia.
| | - Mediha Trabelsi
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human Genetics, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
| | - Ikhlas Ben Ayed
- Department of Medical Genetics, Hedi Chaker University Hospital, University of Sfax, Sfax, Tunisia
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Cherine Charfeddine
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
- Higher Institute of Biotechnology of Sidi Thabet, BiotechPole of Sidi Thabet, University of Manouba, Ariana, Tunisia
| | - Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Imen Rejeb
- Department of Congenital and Hereditary Diseases, Mongi Slim University Hospital, Sidi Daoud La Marsa, Tunis, Tunisia
- Santé Mère-Enfant (LR22SP01), Tunis, Tunisia
| | - Wafa Kammoun Rebai
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
| | - Chaima Hkimi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Fadoua Neifar
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Nouha Jandoubi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
| | - Rahma Mkaouar
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
| | - Melek Chaouch
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ayda Bennour
- Faculty of Medicine, University of Sousse, Sousse, Tunisia
- Department of Genetics, Farhat HACHED University Hospital, Sousse, Tunisia
| | - Selim Kamoun
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hend Chaker Masmoudi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
- Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
- Department of Histology and Cytogenetics, Institute Pasteur of Tunis, Tunis, Tunisia
| | - Nabil Abid
- Laboratory of Transmissible Diseases and Biological Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Ibn Sina Street, Monastir, 5000, Tunisia
| | - Maha Mezghani Khemakhem
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 1068, Tunisia
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Ali Saad
- Faculty of Medicine, University of Sousse, Sousse, Tunisia
- Department of Genetics, Farhat HACHED University Hospital, Sousse, Tunisia
| | - Lamia BenJemaa
- Department of Congenital and Hereditary Diseases, Mongi Slim University Hospital, Sidi Daoud La Marsa, Tunis, Tunisia
- Santé Mère-Enfant (LR22SP01), Tunis, Tunisia
| | - Alia BenKahla
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Samir Boubaker
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Ridha Mrad
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human Genetics, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hassen Kamoun
- Department of Medical Genetics, Hedi Chaker University Hospital, University of Sfax, Sfax, Tunisia
- Laboratory of Human Molecular Genetics, LR99ES33, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
- Communication, Science and Society Support Unit (UniSS), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Moez Gribaa
- Faculty of Medicine, University of Sousse, Sousse, Tunisia
- Department of Genetics, Farhat HACHED University Hospital, Sousse, Tunisia
| | - Neila Belguith
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human Molecular Genetics, LR99ES33, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Najla Kharrat
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Dorra Hmida
- Faculty of Medicine, University of Sousse, Sousse, Tunisia
- Department of Genetics, Farhat HACHED University Hospital, Sousse, Tunisia
| | - Ahmed Rebai
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
4
|
Mc Cartney AM, Scholz AH, Groussin M, Staunton C. Benefit-Sharing by Design: A Call to Action for Human Genomics Research. Annu Rev Genomics Hum Genet 2024; 25:369-395. [PMID: 38608642 DOI: 10.1146/annurev-genom-021623-104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
The ethical standards for the responsible conduct of human research have come a long way; however, concerns surrounding equity remain in human genetics and genomics research. Addressing these concerns will help society realize the full potential of human genomics research. One outstanding concern is the fair and equitable sharing of benefits from research on human participants. Several international bodies have recognized that benefit-sharing can be an effective tool for ethical research conduct, but international laws, including the Convention on Biological Diversity and its Nagoya Protocol on Access and Benefit-Sharing, explicitly exclude human genetic and genomic resources. These agreements face significant challenges that must be considered and anticipated if similar principles are applied in human genomics research. We propose that benefit-sharing from human genomics research can be a bottom-up effort and embedded into the existing research process. We propose the development of a "benefit-sharing by design" framework to address concerns of fairness and equity in the use of human genomic resources and samples and to learn from the aspirations and decade of implementation of the Nagoya Protocol.
Collapse
Affiliation(s)
- Ann M Mc Cartney
- Genomics Institute, University of California, Santa Cruz, California, USA;
| | - Amber Hartman Scholz
- Department of Science Policy and Internationalisation, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany;
| | - Mathieu Groussin
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany;
| | - Ciara Staunton
- School of Law, University of KwaZulu-Natal, Durban, South Africa
- Institute for Biomedicine, Eurac Research, Bolzano, Italy;
| |
Collapse
|
5
|
Taylor DJ, Eizenga JM, Li Q, Das A, Jenike KM, Kenny EE, Miga KH, Monlong J, McCoy RC, Paten B, Schatz MC. Beyond the Human Genome Project: The Age of Complete Human Genome Sequences and Pangenome References. Annu Rev Genomics Hum Genet 2024; 25:77-104. [PMID: 38663087 PMCID: PMC11451085 DOI: 10.1146/annurev-genom-021623-081639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The Human Genome Project was an enormous accomplishment, providing a foundation for countless explorations into the genetics and genomics of the human species. Yet for many years, the human genome reference sequence remained incomplete and lacked representation of human genetic diversity. Recently, two major advances have emerged to address these shortcomings: complete gap-free human genome sequences, such as the one developed by the Telomere-to-Telomere Consortium, and high-quality pangenomes, such as the one developed by the Human Pangenome Reference Consortium. Facilitated by advances in long-read DNA sequencing and genome assembly algorithms, complete human genome sequences resolve regions that have been historically difficult to sequence, including centromeres, telomeres, and segmental duplications. In parallel, pangenomes capture the extensive genetic diversity across populations worldwide. Together, these advances usher in a new era of genomics research, enhancing the accuracy of genomic analysis, paving the path for precision medicine, and contributing to deeper insights into human biology.
Collapse
Affiliation(s)
- Dylan J Taylor
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA; , ,
| | - Jordan M Eizenga
- Genomics Institute, University of California, Santa Cruz, California, USA; , ,
| | - Qiuhui Li
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA; ,
| | - Arun Das
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA; ,
| | - Katharine M Jenike
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA;
| | - Karen H Miga
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
- Genomics Institute, University of California, Santa Cruz, California, USA; , ,
| | - Jean Monlong
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France;
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA; , ,
| | - Benedict Paten
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
- Genomics Institute, University of California, Santa Cruz, California, USA; , ,
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA; ,
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA; , ,
| |
Collapse
|
6
|
Saeidian AH, March ME, Youssefian L, Watson DJ, Bhandari E, Wang X, Zhao X, Owen NM, Strong A, Harr MH, Bhoj E, Zackai E, Vahidnezhad H, Gudjonsson JE, Cederbaum SD, Deignan JL, Glessner J, Grody WW, Hakonarson H. Secondary ACMG and non-ACMG genetic findings in a multiethnic cohort of 16,713 pediatric participants. Genet Med 2024; 26:101225. [PMID: 39096151 DOI: 10.1016/j.gim.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
PURPOSE Clinical next-generation sequencing is an effective approach for identifying pathogenic sequence variants that are medically actionable for participants and families but are not associated with the participant's primary diagnosis. These variants are called secondary findings (SFs). According to the literature, there is no report of the types and frequencies of SFs in a large pediatric cohort that includes substantial African-American participants. We sought to investigate the types (including American College of Medical Genetics and Genomics [ACMG] and non-ACMG-recommended gene lists), frequencies, and rates of SFs, as well as the effects of SF disclosure on the participants and families of a large pediatric cohort at the Center for Applied Genomics at The Children's Hospital of Philadelphia. METHODS We systematically identified pathogenic (P) and likely pathogenic (LP) variants in established disease-causing genes, adhering to ACMG v3.2 secondary finding guidelines and beyond. For non-ACMG SFs, akin to incidental findings in clinical settings, we utilized a set of criteria focusing on pediatric onset, high penetrance, moderate to severe phenotypes, and the clinical actionability of the variants. This criteria-based approach was applied rather than using a fixed gene list to ensure that the variants identified are likely to affect participant health significantly. To identify and categorize these variants, we used a clinical-grade variant classification standard per ACMG/AMP recommendations; additionally, we conducted a detailed literature search to ensure a comprehensive exploration of potential SFs relevant to pediatric participants. RESULTS We report a distinctive distribution of 1464 P/LP SF variants in 16,713 participants. There were 427 unique variants in ACMG genes and 265 in non-ACMG genes. The most frequently mutated genes among the ACMG and non-ACMG gene lists were TTR(41.6%) and CHEK2 (7.16%), respectively. Overall, variants of possible medical importance were found in 8.76% of participants in both ACMG (5.81%) and non-ACMG (2.95%) genes. CONCLUSION Our study revealed that 8.76% of a large, multiethnic pediatric cohort carried actionable secondary genetic findings, with 5.81% in ACMG genes and 2.95% in non-ACMG genes. These findings emphasize the importance of including diverse populations in genetic research to ensure that all groups benefit from early identification of disease risks. Our results provide a foundation for expanding the ACMG gene list and improving clinical care through early interventions.
Collapse
Affiliation(s)
- Amir Hossein Saeidian
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Michael E March
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Leila Youssefian
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA; Department of Pathology, Cytogenetics Laboratory, City of Hope National Medical Center, Irwindale, CA
| | - Deborah J Watson
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Esha Bhandari
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Drexel University College of Medicine, Philadelphia, PA
| | - Xiang Wang
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Xiaonan Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Nichole Marie Owen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Alanna Strong
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Margaret H Harr
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Elizabeth Bhoj
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elaine Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hassan Vahidnezhad
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI
| | - Stephen D Cederbaum
- Departments of Psychiatry, Pediatrics, and Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Joshua L Deignan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Joseph Glessner
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Wayne W Grody
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA; Departments of Pathology and Laboratory Medicine, Pediatrics, and Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Hakon Hakonarson
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Division of Pulmonary Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA.
| |
Collapse
|
7
|
Genetic ancestry contributes to gene expression in the brain. Nat Neurosci 2024; 27:1042-1043. [PMID: 38769150 DOI: 10.1038/s41593-024-01645-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
|
8
|
Benjamin KJM, Chen Q, Eagles NJ, Huuki-Myers LA, Collado-Torres L, Stolz JM, Pertea G, Shin JH, Paquola ACM, Hyde TM, Kleinman JE, Jaffe AE, Han S, Weinberger DR. Analysis of gene expression in the postmortem brain of neurotypical Black Americans reveals contributions of genetic ancestry. Nat Neurosci 2024; 27:1064-1074. [PMID: 38769152 PMCID: PMC11156587 DOI: 10.1038/s41593-024-01636-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/29/2024] [Indexed: 05/22/2024]
Abstract
Ancestral differences in genomic variation affect the regulation of gene expression; however, most gene expression studies have been limited to European ancestry samples or adjusted to identify ancestry-independent associations. Here, we instead examined the impact of genetic ancestry on gene expression and DNA methylation in the postmortem brain tissue of admixed Black American neurotypical individuals to identify ancestry-dependent and ancestry-independent contributions. Ancestry-associated differentially expressed genes (DEGs), transcripts and gene networks, while notably not implicating neurons, are enriched for genes related to the immune response and vascular tissue and explain up to 26% of heritability for ischemic stroke, 27% of heritability for Parkinson disease and 30% of heritability for Alzheimer's disease. Ancestry-associated DEGs also show general enrichment for the heritability of diverse immune-related traits but depletion for psychiatric-related traits. We also compared Black and non-Hispanic white Americans, confirming most ancestry-associated DEGs. Our results delineate the extent to which genetic ancestry affects differences in gene expression in the human brain and the implications for brain illness risk.
Collapse
Affiliation(s)
- Kynon J M Benjamin
- Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | | | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Joshua M Stolz
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Geo Pertea
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Apuã C M Paquola
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E Jaffe
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Neumora Therapeutics, Watertown, MA, USA
| | - Shizhong Han
- Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Jiang L, Gangireddy S, Dickson AL, Xin Y, Yan C, Kawai V, Cox NJ, Linton MF, Wei WQ, Stein CM, Feng Q. Characterizing genetic profiles for high triglyceride levels in U.S. patients of African ancestry. J Lipid Res 2024; 65:100569. [PMID: 38795861 PMCID: PMC11231545 DOI: 10.1016/j.jlr.2024.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024] Open
Abstract
Hypertriglyceridemia (HTG) is a common cardiovascular risk factor characterized by elevated triglyceride (TG) levels. Researchers have assessed the genetic factors that influence HTG in studies focused predominantly on individuals of European ancestry. However, relatively little is known about the contribution of genetic variation of HTG in people of African ancestry (AA), potentially constraining research and treatment opportunities. Our objective was to characterize genetic profiles among individuals of AA with mild-to-moderate HTG and severe HTG versus those with normal TGs by leveraging whole-genome sequencing data and longitudinal electronic health records available in the All of Us program. We compared the enrichment of functional variants within five canonical TG metabolism genes, an AA-specific polygenic risk score for TGs, and frequencies of 145 known potentially causal TG variants between HTG patients and normal TG among a cohort of AA patients (N = 15,373). Those with mild-to-moderate HTG (N = 342) and severe HTG (N ≤ 20) were more likely to carry APOA5 p.S19W (odds ratio = 1.94, 95% confidence interval = [1.48-2.54], P = 1.63 × 10-6 and OR = 3.65, 95% confidence interval: [1.22-10.93], P = 0.02, respectively) than those with normal TG. They were also more likely to have an elevated (top 10%) polygenic risk score, elevated carriage of potentially causal variant alleles, and carry any genetic risk factor. Alternative definitions of HTG yielded comparable results. In conclusion, individuals of AA with HTG were enriched for genetic risk factors compared to individuals with normal TGs.
Collapse
Affiliation(s)
- Lan Jiang
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Srushti Gangireddy
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alyson L Dickson
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yi Xin
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chao Yan
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vivian Kawai
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy J Cox
- Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - MacRae F Linton
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - C Michael Stein
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - QiPing Feng
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
10
|
Irvin MR, Ge T, Patki A, Srinivasasainagendra V, Armstrong ND, Davis B, Jones AC, Perez E, Stalbow L, Lebo M, Kenny E, Loos RJ, Ng MC, Smoller JW, Meigs JB, Lange LA, Karlson EW, Limdi NA, Tiwari HK. Polygenic Risk for Type 2 Diabetes in African Americans. Diabetes 2024; 73:993-1001. [PMID: 38470993 PMCID: PMC11109789 DOI: 10.2337/db23-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
African Americans (AAs) have been underrepresented in polygenic risk score (PRS) studies. Here, we integrated genome-wide data from multiple observational studies on type 2 diabetes (T2D), encompassing a total of 101,987 AAs, to train and optimize an AA-focused T2D PRS (PRSAA), using a Bayesian polygenic modeling method. We further tested the score in three independent studies with a total of 7,275 AAs and compared the PRSAA with other published scores. Results show that a 1-SD increase in the PRSAA was associated with 40-60% increase in the odds of T2D (odds ratio [OR] 1.60, 95% CI 1.37-1.88; OR 1.40, 95% CI 1.16-1.70; and OR 1.45, 95% CI 1.30-1.62) across three testing cohorts. These models captured 1.0-2.6% of the variance (R2) in T2D on the liability scale. The positive predictive values for three calculated score thresholds (the top 2%, 5%, and 10%) ranged from 14 to 35%. The PRSAA, in general, performed similarly to existing T2D PRS. The need remains for larger data sets to continue to evaluate the utility of within-ancestry scores in the AA population. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Marguerite R. Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Amit Patki
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL
| | | | - Nicole D. Armstrong
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL
| | - Brittney Davis
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Alana C. Jones
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL
| | - Emma Perez
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Mass General Brigham Personalized Medicine, Boston, MA
| | - Lauren Stalbow
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Matthew Lebo
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
- Mass General Brigham Personalized Medicine, Boston, MA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Eimear Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Genomic Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ruth J.F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Maggie C.Y. Ng
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jordan W. Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - James B. Meigs
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medicine, Massachusetts General Hospital, Boston, MA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA
| | - Leslie A. Lange
- Department of Epidemiology, University of Colorado School of Public Health, Aurora, CO
| | - Elizabeth W. Karlson
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Mass General Brigham Personalized Medicine, Boston, MA
| | - Nita A. Limdi
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Hemant K. Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
11
|
Khan Y, Davis CN, Jinwala Z, Feuer KL, Toikumo S, Hartwell EE, Sanchez-Roige S, Peterson RE, Hatoum AS, Kranzler HR, Kember RL. Combining Transdiagnostic and Disorder-Level GWAS Enhances Precision of Psychiatric Genetic Risk Profiles in a Multi-Ancestry Sample. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.09.24307111. [PMID: 38766259 PMCID: PMC11100926 DOI: 10.1101/2024.05.09.24307111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The etiology of substance use disorders (SUDs) and psychiatric disorders reflects a combination of both transdiagnostic (i.e., common) and disorder-level (i.e., independent) genetic risk factors. We applied genomic structural equation modeling to examine these genetic factors across SUDs, psychotic, mood, and anxiety disorders using genome-wide association studies (GWAS) of European- (EUR) and African-ancestry (AFR) individuals. In EUR individuals, transdiagnostic genetic factors represented SUDs (143 lead single nucleotide polymorphisms [SNPs]), psychotic (162 lead SNPs), and mood/anxiety disorders (112 lead SNPs). We identified two novel SNPs for mood/anxiety disorders that have probable regulatory roles on FOXP1, NECTIN3, and BTLA genes. In AFR individuals, genetic factors represented SUDs (1 lead SNP) and psychiatric disorders (no significant SNPs). The SUD factor lead SNP, although previously significant in EUR- and cross-ancestry GWAS, is a novel finding in AFR individuals. Shared genetic variance accounted for overlap between SUDs and their psychiatric comorbidities, with second-order GWAS identifying up to 12 SNPs not significantly associated with either first-order factor in EUR individuals. Finally, common and independent genetic effects showed different associations with psychiatric, sociodemographic, and medical phenotypes. For example, the independent components of schizophrenia and bipolar disorder had distinct associations with affective and risk-taking behaviors, and phenome-wide association studies identified medical conditions associated with tobacco use disorder independent of the broader SUDs factor. Thus, combining transdiagnostic and disorder-level genetic approaches can improve our understanding of co-occurring conditions and increase the specificity of genetic discovery, which is critical for psychiatric disorders that demonstrate considerable symptom and etiological overlap.
Collapse
Affiliation(s)
- Yousef Khan
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Christal N. Davis
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Zeal Jinwala
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Kyra L. Feuer
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Sylvanus Toikumo
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Emily E. Hartwell
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, United States
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37235, United States
- Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Roseann E. Peterson
- Institute for Department of Psychiatry and Behavioral Sciences, Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Alexander S. Hatoum
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Henry R. Kranzler
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Rachel L. Kember
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| |
Collapse
|
12
|
Mersha TB. From Mendel to multi-omics: shifting paradigms. Eur J Hum Genet 2024; 32:139-142. [PMID: 37468578 PMCID: PMC10853174 DOI: 10.1038/s41431-023-01420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/24/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023] Open
Affiliation(s)
- Tesfaye B Mersha
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
13
|
Martinez S, Garcia-Romeu A, Perez F, Jones JD. Resilience Phenotypes and Psychological Functioning among Individuals with Opioid Use Disorder. Subst Use Misuse 2023; 59:41-49. [PMID: 37752751 PMCID: PMC10829514 DOI: 10.1080/10826084.2023.2259450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
BACKGROUND Opioid use disorder (OUD) is a heterogeneous disorder. However, there is a lack of deep phenotyping investigations focusing on important psychological constructs such as resilience that may impact OUD. The present study aimed to investigate the relationship between trait resilience and the five-factor model of personality (FFM) among individuals with opioid use disorder (OUD). We also explored whether the FFM and trait resilience form specific phenotypes associated with psychological functioning. METHODS This secondary analysis of an epigenetic study included participants of African ancestry (n = 72), an understudied population, who met DSM-5 criteria for OUD. Participants completed measures to assess personality traits, trait resilience, current and previous drug use, and psychological functioning (depression, anxiety, and stress). RESULTS Linear regression revealed a significant relationship between resilience (CD-RISC-25 score) and the FFM, R2 = 0.56, F(5,62) = 15.7, p<.001. Further, a two-cluster classification emerged as the optimal solution from the cluster analysis. Cluster 1 (n = 33, 45.8% of the sample) showed lower resilience (CD-RISC-25 score: M = 58.6, SD = 11.2) compared to Cluster 2 (n = 35, 48.6%; CD-RISC-25 score: M = 76.1, SD = 11.9). The "High-Resilience Cluster" (Cluster 2) was characterized by higher FFM traits of: Extraversion, Openness, Agreeableness, and Conscientiousness, and lower Neuroticism versus Cluster 1. Multivariate analysis of variance revealed statistically significant differences between the two resilience clusters concerning other psychological symptoms, Λ = 0.732, F(4, 50) = 7.05, p < 0.003. CONCLUSIONS These findings suggest associations between the FFM and trait resilience among individuals with OUD. Two distinct "resilience phenotypes" emerged, with high-resilience individuals displaying less stress, anxiety, and depressive symptoms. Results highlight the clinical importance of resilience as a potential target for intervention in people with OUD.
Collapse
Affiliation(s)
- Suky Martinez
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| | - Albert Garcia-Romeu
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224 USA
| | - Freymon Perez
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| | - Jermaine D. Jones
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
14
|
Skantharajah N, Baichoo S, Boughtwood TF, Casas-Silva E, Chandrasekharan S, Dave SM, Fakhro KA, Falcon de Vargas AB, Gayle SS, Gupta VK, Hendricks-Sturrup R, Hobb AE, Li S, Llamas B, Lopez-Correa C, Machirori M, Melendez-Zajgla J, Millner MA, Page AJ, Paglione LD, Raven-Adams MC, Smith L, Thomas EM, Kumuthini J, Corpas M. Equity, diversity, and inclusion at the Global Alliance for Genomics and Health. CELL GENOMICS 2023; 3:100386. [PMID: 37868041 PMCID: PMC10589617 DOI: 10.1016/j.xgen.2023.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
A lack of diversity in genomics for health continues to hinder equitable leadership and access to precision medicine approaches for underrepresented populations. To avoid perpetuating biases within the genomics workforce and genomic data collection practices, equity, diversity, and inclusion (EDI) must be addressed. This paper documents the journey taken by the Global Alliance for Genomics and Health (a genomics-based standard-setting and policy-framing organization) to create a more equitable, diverse, and inclusive environment for its standards and members. Initial steps include the creation of two groups: the Equity, Diversity, and Inclusion Advisory Group and the Regulatory and Ethics Diversity Group. Following a framework that we call "Reflected in our Teams, Reflected in our Standards," both groups address EDI at different stages in their policy development process.
Collapse
Affiliation(s)
- Neerjah Skantharajah
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Global Alliance for Genomics and Health, Toronto, ON, Canada
| | | | - Tiffany F. Boughtwood
- Australian Genomics, Parkville, VIC, Australia
- Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | | | | | - Sanjay M. Dave
- Department of Biotechnology, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Khalid A. Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Aida B. Falcon de Vargas
- Hospital Vargas de Caracas, Vargas Medical School, Universidad Central de Venezuela, Caracas, Venezuela
- Hospital de Clínicas Caracas, Caracas, Venezuela
| | | | - Vivek K. Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | | - Stephanie Li
- Global Alliance for Genomics and Health, Toronto, ON, Canada
- Broad Institute, Cambridge, MA, USA
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences and The Environment Institute, University of Adelaide, Adelaide, SA, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA, Australia
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Indigenous Genomics, Telethon Kids Institute, Adelaide, SA, Australia
| | | | - Mavis Machirori
- Ada Lovelace Institute, London, UK
- PEALS, Newcastle University, Newcastle Upon Tyne, UK
| | | | - Mareike A. Millner
- Maastricht University, Health Law and Governance Group, Maastricht, the Netherlands
| | - Angela J.H. Page
- Global Alliance for Genomics and Health, Toronto, ON, Canada
- Broad Institute, Cambridge, MA, USA
| | - Laura D. Paglione
- Spherical Cow Group, New York, NY, USA
- Laura Paglione LLC, New York, NY, USA
| | - Maili C. Raven-Adams
- Global Alliance for Genomics and Health, Toronto, ON, Canada
- Wellcome Sanger Institute, Hinxton, UK
| | - Lindsay Smith
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Global Alliance for Genomics and Health, Toronto, ON, Canada
| | - Ericka M. Thomas
- The All of Us Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Judit Kumuthini
- South African National Bioinformatics Institute, University of Western Cape, Cape Town, South Africa
| | - Manuel Corpas
- School of Life Sciences, University of Westminster, London, UK
| |
Collapse
|
15
|
Benjamin KJM, Chen Q, Eagles NJ, Huuki-Myers LA, Collado-Torres L, Stolz JM, Pertea G, Shin JH, Paquola ACM, Hyde TM, Kleinman JE, Jaffe AE, Han S, Weinberger DR. Genetic and environmental contributions to ancestry differences in gene expression in the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534458. [PMID: 37034760 PMCID: PMC10081196 DOI: 10.1101/2023.03.28.534458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ancestral differences in genomic variation are determining factors in gene regulation; however, most gene expression studies have been limited to European ancestry samples or adjusted for ancestry to identify ancestry-independent associations. We instead examined the impact of genetic ancestry on gene expression and DNA methylation (DNAm) in admixed African/Black American neurotypical individuals to untangle effects of genetic and environmental factors. Ancestry-associated differentially expressed genes (DEGs), transcripts, and gene networks, while notably not implicating neurons, are enriched for genes related to immune response and vascular tissue and explain up to 26% of heritability for ischemic stroke, 27% of heritability for Parkinson's disease, and 30% of heritability for Alzhemier's disease. Ancestry-associated DEGs also show general enrichment for heritability of diverse immune-related traits but depletion for psychiatric-related traits. The cell-type enrichments and direction of effects vary by brain region. These DEGs are less evolutionarily constrained and are largely explained by genetic variations; roughly 15% are predicted by DNAm variation implicating environmental exposures. We also compared Black and White Americans, confirming most of these ancestry-associated DEGs. Our results highlight how environment and genetic background affect genetic ancestry differences in gene expression in the human brain and affect risk for brain illness.
Collapse
Affiliation(s)
- Kynon J M Benjamin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | | | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Joshua M Stolz
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Geo Pertea
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Apuã C M Paquola
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E Jaffe
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Neumora Therapeutics, Watertown, MA, USA
| | - Shizhong Han
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Martinez S, Jones JD. A pilot study examining the relationship between chronic heroin use and telomere length among individuals of African ancestry. Pharmacol Biochem Behav 2023; 231:173631. [PMID: 37689117 PMCID: PMC10545475 DOI: 10.1016/j.pbb.2023.173631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Prior research has suggested a possible link between heroin use and shortened telomere length (TL), a marker of cellular aging and genomic stability. We sought to replicate these findings by examining the relationship between TL and heroin use among individuals of African ancestry. METHODS This cross-sectional study examined TL among 57 participants [17.5 % female; mean age 48.0 (±6.80) years] of African ancestry with Opioid Use Disorder (OUD) and a mean heroin use duration of 18.2 (±10.7) years. Quantitative polymerase chain reaction (qPCR) was used to calculate TL as the ratio between telomere repeat copy number (T) and a single-copy gene, copy number (S). The primary dependent variable was TL (T/S Ratio) measured in kilobase pairs. Covariates included heroin use years and personality traits. Using a hybrid approach, multiple linear regression and Bayesian linear regression examined the association of chronological age, heroin use years and personality traits with TL. RESULTS The multiple linear regression model fit the data well, R2 = 0.265, F(7,49) = 2.53, p < .026. Chronological age (β = -0.36, p = .017), neuroticism (β = 0.46, p = .044), and conscientiousness (β = 0.52, p = .040) were significant predictors of TL. Bayesian linear regression provided moderate support for the alternate hypothesis that chronological age and TL are associated, BF10 = 5.77, R2 = 0.120. The posterior summary of the coefficient was M = 0.719 (SD = 0.278, 95 % credible interval [-1.28, -0.163]). CONCLUSIONS Contrary to prior studies, these findings suggest that heroin use duration may not be significantly associated with TL among individuals of African ancestry, highlighting the need for more rigorous research to elucidate the complexity of this relationship.
Collapse
Affiliation(s)
- Suky Martinez
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA.
| | - Jermaine D Jones
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
17
|
Adebamowo CA, Callier S, Akintola S, Maduka O, Jegede A, Arima C, Ogundiran T, Adebamowo SN. The promise of data science for health research in Africa. Nat Commun 2023; 14:6084. [PMID: 37770478 PMCID: PMC10539491 DOI: 10.1038/s41467-023-41809-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Data science health research promises tremendous benefits for African populations, but its implementation is fraught with substantial ethical governance risks that could thwart the delivery of these anticipated benefits. We discuss emerging efforts to build ethical governance frameworks for data science health research in Africa and the opportunities to advance these through investments by African governments and institutions, international funding organizations and collaborations for research and capacity development.
Collapse
Affiliation(s)
- Clement A Adebamowo
- Department of Epidemiology and Public Health, and Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Research, Center for Bioethics and Research, Ibadan, Nigeria.
| | - Shawneequa Callier
- Department of Clinical Research and Leadership, School of Medicine and Health Sciences, The George Washington University, Washington DC, USA
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Simisola Akintola
- Department of Research, Center for Bioethics and Research, Ibadan, Nigeria
- Department of Business Law, Faculty of Law, University of Ibadan, Ibadan, Nigeria
- Department of Bioethics and Medical Humanities, Faculty of Multidisciplinary Studies, University of Ibadan, Ibadan, Nigeria
| | - Oluchi Maduka
- Department of Research, Center for Bioethics and Research, Ibadan, Nigeria
| | - Ayodele Jegede
- Department of Research, Center for Bioethics and Research, Ibadan, Nigeria
- Department of Bioethics and Medical Humanities, Faculty of Multidisciplinary Studies, University of Ibadan, Ibadan, Nigeria
- Department of Sociology, University of Ibadan, Ibadan, Nigeria
| | | | - Temidayo Ogundiran
- Department of Research, Center for Bioethics and Research, Ibadan, Nigeria
- Department of Bioethics and Medical Humanities, Faculty of Multidisciplinary Studies, University of Ibadan, Ibadan, Nigeria
- Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sally N Adebamowo
- Department of Epidemiology and Public Health, and Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Research, Center for Bioethics and Research, Ibadan, Nigeria
| |
Collapse
|
18
|
Hardcastle F, Lyle K, Horton R, Samuel G, Weller S, Ballard L, Thompson R, De Paula Trindade LV, Gómez Urrego JD, Kochin D, Johnson T, Tatz-Wieder N, Redrup Hill E, Robinson Adams F, Eskandar Y, Harriss E, Tsosie KS, Dixon P, Mackintosh M, Nightingale L, Lucassen A. The ethical challenges of diversifying genomic data: A qualitative evidence synthesis. CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 2:e1. [PMID: 38549845 PMCID: PMC10953735 DOI: 10.1017/pcm.2023.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 09/07/2024]
Abstract
This article aims to explore the ethical issues arising from attempts to diversify genomic data and include individuals from underserved groups in studies exploring the relationship between genomics and health. We employed a qualitative synthesis design, combining data from three sources: 1) a rapid review of empirical articles published between 2000 and 2022 with a primary or secondary focus on diversifying genomic data, or the inclusion of underserved groups and ethical issues arising from this, 2) an expert workshop and 3) a narrative review. Using these three sources we found that ethical issues are interconnected across structural factors and research practices. Structural issues include failing to engage with the politics of knowledge production, existing inequities, and their effects on how harms and benefits of genomics are distributed. Issues related to research practices include a lack of reflexivity, exploitative dynamics and the failure to prioritise meaningful co-production. Ethical issues arise from both the structure and the practice of research, which can inhibit researcher and participant opportunities to diversify data in an ethical way. Diverse data are not ethical in and of themselves, and without being attentive to the social, historical and political contexts that shape the lives of potential participants, endeavours to diversify genomic data run the risk of worsening existing inequities. Efforts to construct more representative genomic datasets need to develop ethical approaches that are situated within wider attempts to make the enterprise of genomics more equitable.
Collapse
Affiliation(s)
- Faranak Hardcastle
- Clinical Ethics, Law and Society group (CELS), and Centre for Personalised Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Clinical Ethics, Law and Society (CELS), The NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, UK
| | - Kate Lyle
- Clinical Ethics, Law and Society group (CELS), and Centre for Personalised Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Clinical Ethics, Law and Society (CELS), The NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, UK
| | - Rachel Horton
- Clinical Ethics, Law and Society group (CELS), and Centre for Personalised Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gabrielle Samuel
- Clinical Ethics, Law and Society group (CELS), and Centre for Personalised Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- King’s College London, London, UK
| | - Susie Weller
- Clinical Ethics, Law and Society group (CELS), and Centre for Personalised Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Clinical Ethics, Law and Society (CELS), The NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, UK
| | - Lisa Ballard
- Clinical Ethics, Law and Society (CELS), The NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, UK
| | - Rachel Thompson
- Clinical Ethics, Law and Society group (CELS), and Centre for Personalised Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Luiz Valerio De Paula Trindade
- Clinical Ethics, Law and Society (CELS), The NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, UK
| | - José David Gómez Urrego
- Clinical Ethics, Law and Society (CELS), The NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, UK
| | - Daniel Kochin
- Clinical Ethics, Law and Society group (CELS), and Centre for Personalised Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Tess Johnson
- Clinical Ethics, Law and Society group (CELS), and Centre for Personalised Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | - Florence Robinson Adams
- Clinical Ethics, Law and Society group (CELS), and Centre for Personalised Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Centre for Science and Policy, University of Cambridge, Cambridge, UK
| | - Yoseph Eskandar
- Clinical Ethics, Law and Society group (CELS), and Centre for Personalised Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Eli Harriss
- Bodleian Health Care Libraries, University of Oxford, Oxford, UK
| | | | - Padraig Dixon
- Clinical Ethics, Law and Society group (CELS), and Centre for Personalised Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | | | | | - Anneke Lucassen
- Clinical Ethics, Law and Society group (CELS), and Centre for Personalised Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Clinical Ethics, Law and Society (CELS), The NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, UK
| |
Collapse
|
19
|
Bracic A, Price Ii WN. Digital Simulacra, Bias, and Self-Reinforcing Exclusion Cycles. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2023; 23:60-63. [PMID: 37647489 DOI: 10.1080/15265161.2023.2237460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
20
|
Mohamed W. Leveraging genetic diversity to understand monogenic Parkinson's disease's landscape in AfrAbia. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2023; 12:108-122. [PMID: 37736165 PMCID: PMC10509492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
Parkinson's disease may be caused by a single highly deleterious and penetrant pathogenic variant in 5-10% of cases (monogenic). Research into these mutational disorders yields important pathophysiological insights. This article examines the phenotype, genotype, pathophysiology, and geographic and ethnic distribution of genetic forms of disease. Well established Parkinson's disease (PD) causal variants can follow an autosomal dominant (SNCA, LRRK2, and VPS35) and autosomal recessive pattern of inheritance (PRKN, PINK1, and DJ). Parkinson's disease is a worldwide condition, yet the AfrAbia population is understudied in this regard. No prevalence or incidence investigations have been conducted yet. Few studies on genetic risk factors for PD in AfrAbia communities have been reported which supported the notion that the prevalence and incidence rates of PD in AfrAbia are generally lower than those reported for European and North American populations. There have been only a handful of documented genetic studies of PD in AfrAbia and very limited cohort and case-control research studies on PD have been documented. In this article, we provide a summary of prior conducted research on monogenic PD in Africa and highlight data gaps and promising new research directions. We emphasize that monogenic Parkinson's disease is influenced by distinctions in ethnicity and geography, thereby reinforcing the need for global initiatives to aggregate large numbers of patients and identify novel candidate genes. The current article increases our knowledge of the genetics of Parkinson's disease (PD) and helps to further our knowledge on the genetic factors that contribute to PD, such as the lower penetrance and varying clinical expressivity of known genetic variants, particularly in AfrAbian PD patients.
Collapse
Affiliation(s)
- Wael Mohamed
- Basic Medical Science Department, Kulliyah of Medicine, International Islamic University Malaysia Kuantan, Pahang, Malaysia
| |
Collapse
|
21
|
Smith LA, Cahill JA, Graim K. Equitable machine learning counteracts ancestral bias in precision medicine, improving outcomes for all. RESEARCH SQUARE 2023:rs.3.rs-3168446. [PMID: 37546907 PMCID: PMC10402189 DOI: 10.21203/rs.3.rs-3168446/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Gold standard genomic datasets severely under-represent non-European populations, leading to inequities and a limited understanding of human disease [1-8]. Therapeutics and outcomes remain hidden because we lack insights that we could gain from analyzing ancestry-unbiased genomic data. To address this significant gap, we present PhyloFrame, the first-ever machine learning method for equitable genomic precision medicine. PhyloFrame corrects for ancestral bias by integrating big data tissue-specific functional interaction networks, global population variation data, and disease-relevant transcriptomic data. Application of PhyloFrame to breast, thyroid, and uterine cancers shows marked improvements in predictive power across all ancestries, less model overfitting, and a higher likelihood of identifying known cancer-related genes. The ability to provide accurate predictions for underrepresented groups, in particular, is substantially increased. These results demonstrate how AI can mitigate ancestral bias in training data and contribute to equitable representation in medical research.
Collapse
Affiliation(s)
- Leslie A Smith
- Department of Computer & Information Science & Engineering, University of Florida, 432 Newell Dr, Gainesville, 32611, FL, USA
| | - James A Cahill
- Environmental Engineering Sciences Department, University of Florida, 432 Newell Dr, Gainesville, 32611, FL, USA
| | - Kiley Graim
- Department of Computer & Information Science & Engineering, University of Florida, 432 Newell Dr, Gainesville, 32611, FL, USA
| |
Collapse
|
22
|
Gao Y, Yang X, Chen H, Tan X, Yang Z, Deng L, Wang B, Kong S, Li S, Cui Y, Lei C, Wang Y, Pan Y, Ma S, Sun H, Zhao X, Shi Y, Yang Z, Wu D, Wu S, Zhao X, Shi B, Jin L, Hu Z, Lu Y, Chu J, Ye K, Xu S. A pangenome reference of 36 Chinese populations. Nature 2023; 619:112-121. [PMID: 37316654 PMCID: PMC10322713 DOI: 10.1038/s41586-023-06173-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/05/2023] [Indexed: 06/16/2023]
Abstract
Human genomics is witnessing an ongoing paradigm shift from a single reference sequence to a pangenome form, but populations of Asian ancestry are underrepresented. Here we present data from the first phase of the Chinese Pangenome Consortium, including a collection of 116 high-quality and haplotype-phased de novo assemblies based on 58 core samples representing 36 minority Chinese ethnic groups. With an average 30.65× high-fidelity long-read sequence coverage, an average contiguity N50 of more than 35.63 megabases and an average total size of 3.01 gigabases, the CPC core assemblies add 189 million base pairs of euchromatic polymorphic sequences and 1,367 protein-coding gene duplications to GRCh38. We identified 15.9 million small variants and 78,072 structural variants, of which 5.9 million small variants and 34,223 structural variants were not reported in a recently released pangenome reference1. The Chinese Pangenome Consortium data demonstrate a remarkable increase in the discovery of novel and missing sequences when individuals are included from underrepresented minority ethnic groups. The missing reference sequences were enriched with archaic-derived alleles and genes that confer essential functions related to keratinization, response to ultraviolet radiation, DNA repair, immunological responses and lifespan, implying great potential for shedding new light on human evolution and recovering missing heritability in complex disease mapping.
Collapse
Affiliation(s)
- Yang Gao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaofei Yang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- Genome Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Chen
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinjiang Tan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhaoqing Yang
- Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, China
| | - Lian Deng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Baonan Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Shuang Kong
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Songyang Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Yuhang Cui
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Chang Lei
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yimin Wang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuwen Pan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Sen Ma
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao Sun
- Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, China
| | - Xiaohan Zhao
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Yingbing Shi
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ziyi Yang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Shaoyuan Wu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, International Joint Center of Genomics of Jiangsu Province School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xingming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education Key (MOE) Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science Fudan University, Shanghai, China
| | - Binyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.
| | - Jiayou Chu
- Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, China.
| | - Kai Ye
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China.
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China.
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, International Joint Center of Genomics of Jiangsu Province School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
23
|
Sengupta D, Botha G, Meintjes A, Mbiyavanga M, Hazelhurst S, Mulder N, Ramsay M, Choudhury A. Performance and accuracy evaluation of reference panels for genotype imputation in sub-Saharan African populations. CELL GENOMICS 2023; 3:100332. [PMID: 37388906 PMCID: PMC10300601 DOI: 10.1016/j.xgen.2023.100332] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/11/2023] [Accepted: 05/02/2023] [Indexed: 07/01/2023]
Abstract
Based on evaluations of imputation performed on a genotype dataset consisting of about 11,000 sub-Saharan African (SSA) participants, we show Trans-Omics for Precision Medicine (TOPMed) and the African Genome Resource (AGR) to be currently the best panels for imputing SSA datasets. We report notable differences in the number of single-nucleotide polymorphisms (SNPs) that are imputed by different panels in datasets from East, West, and South Africa. Comparisons with a subset of 95 SSA high-coverage whole-genome sequences (WGSs) show that despite being about 20-fold smaller, the AGR imputed dataset has higher concordance with the WGSs. Moreover, the level of concordance between imputed and WGS datasets was strongly influenced by the extent of Khoe-San ancestry in a genome, highlighting the need for integration of not only geographically but also ancestrally diverse WGS data in reference panels for further improvement in imputation of SSA datasets. Approaches that integrate imputed data from different panels could also lead to better imputation.
Collapse
Affiliation(s)
- Dhriti Sengupta
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gerrit Botha
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Ayton Meintjes
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Mamana Mbiyavanga
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | | | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicola Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
24
|
Jackson F, Clinton C, Caldwell J. Core issues, case studies, and the need for expanded Legacy African American genomics. Front Genet 2023; 14:843209. [PMID: 37359364 PMCID: PMC10287052 DOI: 10.3389/fgene.2023.843209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/18/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: Genomic studies of Legacy African Americans have a tangled and convoluted history in western science. In this review paper, core issues affecting African American genomic studies are addressed and two case studies, the New York African Burial Ground and the Gullah Geechee peoples, are presented to highlight the current status of genomic research among Africa Americans. Methods: To investigate our target population's core issues, a metadatabase derived from 22 publicly accessible databases were reviewed, evaluated, and synthesized to identify the core bioethical issues prevalent during the centuries of the African American presence in North America. The sequence of metadatabase development included 5 steps: identification of information, record screening and retention of topic relevant information, identification of eligibility via synthesis for concept identifications, and inclusion of studies used for conceptual summaries and studies used for genetic and genomic summaries. To these data we added our emic perspectives and specific insights from our case studies. Results: Overall, there is a paucity of existing research on underrepresent African American genomic diversity. In every category of genomic testing (i.e., diagnostic, clinical predictive, pharmacogenomic, direct-to-consumer, and tumor testing), African Americans are disproportionately underrepresented compared to European Americans. The first of our case studies is from the New York African Burial Ground Project where genomic studies of grave soil derived aDNA yields insights into the causes of death of 17th and 18th Century African Americans. In the second of our case studies, research among the Gullah Geechee people of the Carolina Lowcountry reveals a connection between genomic studies and health disparities. Discussion: African Americans have historically borne the brunt of the earliest biomedical studies used to generate and refine primitive concepts in genetics. As exploited victims these investigations, African American men, women, and children were subjected to an ethics-free western science. Now that bioethical safeguards have been added, underrepresented and marginalized people who were once the convenient targets of western science, are now excluded from its health-related benefits. Recommendations to enhance the inclusion of African Americans in global genomic databases and clinical trials should include the following: emphasis on the connection of inclusion to advances in precision medicine, emphasis on the relevance of inclusion to fundamental questions in human evolutionary biology, emphasis on the historical relevance of inclusion for Legacy African Americans, emphasis on the ability of inclusion to foster expanded scientific expertise in the target population, ethical engagement with their descendants, and increase the number of science researchers from these communities.
Collapse
Affiliation(s)
- Fatimah Jackson
- Department of Biology, Howard University, Washington, DC, United States
| | - Carter Clinton
- Department of Biology, North Carolina State University, Raleigh, NC, United States
| | - Jennifer Caldwell
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
25
|
Gooden A, Thaldar D. Toward an open access genomics database of South Africans: ethical considerations. Front Genet 2023; 14:1166029. [PMID: 37260770 PMCID: PMC10228717 DOI: 10.3389/fgene.2023.1166029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Genomics research holds the potential to improve healthcare. Yet, a very low percentage of the genomic data used in genomics research internationally relates to persons of African origin. Establishing a large-scale, open access genomics database of South Africans may contribute to solving this problem. However, this raises various ethics concerns, including privacy expectations and informed consent. The concept of open consent offers a potential solution to these concerns by (a) being explicit about the research participant's data being in the public domain and the associated privacy risks, and (b) setting a higher-than-usual benchmark for informed consent by making use of the objective assessment of prospective research participants' understanding. Furthermore, in the South African context-where local culture is infused with Ubuntu and its relational view of personhood-community engagement is vital for establishing and maintaining an open access genomics database of South Africans. The South African National Health Research Ethics Council is called upon to provide guidelines for genomics researchers-based on open consent and community engagement-on how to plan and implement open access genomics projects.
Collapse
Affiliation(s)
- Amy Gooden
- School of Law, University of KwaZulu-Natal, Durban, South Africa
| | - Donrich Thaldar
- School of Law, University of KwaZulu-Natal, Durban, South Africa
- Petrie-Flom Center for Health Law Policy, Biotechnology and Bioethics, Harvard Law School, Cambridge, MA, United States
| |
Collapse
|
26
|
Rizig M, Bandres-Ciga S, Makarious MB, Ojo O, Crea PW, Abiodun O, Levine KS, Abubakar S, Achoru C, Vitale D, Adeniji O, Agabi O, Koretsky MJ, Agulanna U, Hall DA, Akinyemi R, Xie T, Ali M, Shamim EA, Ani-Osheku I, Padmanaban M, Arigbodi O, Standaert DG, Bello A, Dean M, Erameh C, Elsayed I, Farombi T, Okunoye O, Fawale M, Billingsley KJ, Imarhiagbe F, Jerez PA, Iwuozo E, Baker B, Komolafe M, Malik L, Nwani P, Daida K, Nwazor E, Miano-Burkhardt A, Nyandaiti Y, Fang ZH, Obiabo Y, Kluss JH, Odeniyi O, Hernandez D, Odiase F, Tayebi N, Ojini F, Sidranksy E, Onwuegbuzie G, D’Souza AM, Osaigbovo G, Berhe B, Osemwegie N, Reed X, Oshinaike O, Leonard H, Otubogun F, Alvarado CX, Oyakhire S, Ozomma S, Samuel S, Taiwo F, Wahab K, Zubair Y, Iwaki H, Kim JJ, Morris HR, Hardy J, Nalls M, Heilbron K, Norcliffe-Kaufmann L, Blauwendraat C, Houlden H, Singleton A, Okubadejo N. Genome-wide Association Identifies Novel Etiological Insights Associated with Parkinson's Disease in African and African Admixed Populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.05.23289529. [PMID: 37398408 PMCID: PMC10312852 DOI: 10.1101/2023.05.05.23289529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background Understanding the genetic mechanisms underlying diseases in ancestrally diverse populations is a critical step towards the realization of the global application of precision medicine. The African and African admixed populations enable mapping of complex traits given their greater levels of genetic diversity, extensive population substructure, and distinct linkage disequilibrium patterns. Methods Here we perform a comprehensive genome-wide assessment of Parkinson's disease (PD) in 197,918 individuals (1,488 cases; 196,430 controls) of African and African admixed ancestry, characterizing population-specific risk, differential haplotype structure and admixture, coding and structural genetic variation and polygenic risk profiling. Findings We identified a novel common risk factor for PD and age at onset at the GBA1 locus (risk, rs3115534-G; OR=1.58, 95% CI = 1.37 - 1.80, P=2.397E-14; age at onset, BETA =-2.004, SE =0.57, P = 0.0005), that was found to be rare in non-African/African admixed populations. Downstream short- and long-read whole genome sequencing analyses did not reveal any coding or structural variant underlying the GWAS signal. However, we identified that this signal mediates PD risk via expression quantitative trait locus (eQTL) mechanisms. While previously identified GBA1 associated disease risk variants are coding mutations, here we suggest a novel functional mechanism consistent with a trend in decreasing glucocerebrosidase activity levels. Given the high population frequency of the underlying signal and the phenotypic characteristics of the homozygous carriers, we hypothesize that this variant may not cause Gaucher disease. Additionally, the prevalence of Gaucher's disease in Africa is low. Interpretation The present study identifies a novel African-ancestry genetic risk factor in GBA1 as a major mechanistic basis of PD in the African and African admixed populations. This striking result contrasts to previous work in Northern European populations, both in terms of mechanism and attributable risk. This finding highlights the importance of understanding population-specific genetic risk in complex diseases, a particularly crucial point as the field moves toward precision medicine in PD clinical trials and while recognizing the need for equitable inclusion of ancestrally diverse groups in such trials. Given the distinctive genetics of these underrepresented populations, their inclusion represents a valuable step towards insights into novel genetic determinants underlying PD etiology. This opens new avenues towards RNA-based and other therapeutic strategies aimed at reducing lifetime risk. Research in Context Evidence Before this Study Our current understanding of Parkinson's disease (PD) is disproportionately based on studying populations of European ancestry, leading to a significant gap in our knowledge about the genetics, clinical characteristics, and pathophysiology in underrepresented populations. This is particularly notable in individuals of African and African admixed ancestries. Over the last two decades, we have witnessed a revolution in the research area of complex genetic diseases. In the PD field, large-scale genome-wide association studies in the European, Asian, and Latin American populations have identified multiple risk loci associated with disease. These include 78 loci and 90 independent signals associated with PD risk in the European population, nine replicated loci and two novel population-specific signals in the Asian population, and a total of 11 novel loci recently nominated through multi-ancestry GWAS efforts.Nevertheless, the African and African admixed populations remain completely unexplored in the context of PD genetics. Added Value of this Study To address the lack of diversity in our research field, this study aimed to conduct the first genome-wide assessment of PD genetics in the African and African admixed populations. Here, we identified a genetic risk factor linked to PD etiology, dissected African-specific differences in risk and age at onset, characterized known genetic risk factors, and highlighted the utility of the African and African admixed risk haplotype substructure for future fine-mapping efforts. We identified a novel disease mechanism via expression changes consistent with decreased GBA1 activity levels. Future large scale single cell expression studies should investigate the neuronal populations in which expression differences are most prominent. This novel mechanism may hold promise for future efficient RNA-based therapeutic strategies such as antisense oligonucleotides or short interfering RNAs aimed at preventing and decreasing disease risk. We envisage that these data generated under the umbrella of the Global Parkinson's Genetics Program (GP2) will shed light on the molecular mechanisms involved in the disease process and might pave the way for future clinical trials and therapeutic interventions. This work represents a valuable resource in an underserved population, supporting pioneering research within GP2 and beyond. Deciphering causal and genetic risk factors in all these ancestries will help determine whether interventions, potential targets for disease modifying treatment, and prevention strategies that are being studied in the European populations are relevant to the African and African admixed populations. Implications of all the Available Evidence We nominate a novel signal impacting GBA1 as the major genetic risk factor for PD in the African and African admixed populations. The present study could inform future GBA1 clinical trials, improving patient stratification. In this regard, genetic testing can help to design trials likely to provide meaningful and actionable answers. It is our hope that these findings may ultimately have clinical utility for this underrepresented population.
Collapse
Affiliation(s)
- Mie Rizig
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London, WC1N 3BG, UK
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Mary B Makarious
- UCL Movement Disorders Centre, University College London, London, WC1N 3BG, UK
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Oluwadamilola Ojo
- College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Peter Wild Crea
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Kristin S Levine
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA
| | - Sani Abubakar
- Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Charles Achoru
- Jos University Teaching Hospital, Jos, Plateau State, Nigeria
| | - Dan Vitale
- Data Tecnica International, Washington, DC, USA
| | | | - Osigwe Agabi
- College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Mathew J Koretsky
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Uchechi Agulanna
- Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Rufus Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Tao Xie
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Mohammed Ali
- Federal Teaching Hospital Gombe, Gombe State, Nigeria
| | - Ejaz A. Shamim
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Kaiser Permanente Mid-Atlantic States, Largo, Maryland, USA
- MidAtlantic Permanente Research Institute, Rockville, Maryland, USA
| | | | - Mahesh Padmanaban
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | | | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Abiodun Bello
- University of Ilorin Teaching Hospital, Ilorin, Kwara State, Nigeria
| | - Marissa Dean
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cyril Erameh
- Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Inas Elsayed
- Faculty of Pharmacy, University of Gezira, Wadmadani, 20, Sudan
| | | | - Olaitan Okunoye
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Michael Fawale
- Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Kimberley J Billingsley
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Pilar Alvarez Jerez
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | | | - Breeana Baker
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | | | - Laksh Malik
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Paul Nwani
- Nnamdi Azikiwe University Teaching Hospital, Nnewi, Anambra State, Nigeria
| | - Kensuke Daida
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Ernest Nwazor
- Rivers State University Teaching Hospital, Port Harcourt, Rivers State, Nigeria
| | - Abigail Miano-Burkhardt
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Yakub Nyandaiti
- University of Maiduguri Teaching Hospital, Maiduguri, Borno State, Nigeria
| | - Zih-Hua Fang
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
| | - Yahaya Obiabo
- Federal University of Health Sciences, Otukpo, Benue State, Nigeria
| | - Jillian H. Kluss
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Nahid Tayebi
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Francis Ojini
- College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Ellen Sidranksy
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Andrea M. D’Souza
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Bahafta Berhe
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Xylena Reed
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | | | - Hampton Leonard
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA
| | | | - Chelsea X Alvarado
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA
| | | | - Simon Ozomma
- University of Calabar Teaching Hospital, Calabar, Cross River State, Nigeria
| | - Sarah Samuel
- University of Maiduguri Teaching Hospital, Maiduguri, Borno State, Nigeria
| | | | - Kolawole Wahab
- University of Ilorin Teaching Hospital, Ilorin, Kwara State, Nigeria
- University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Yusuf Zubair
- National Hospital, Abuja, Federal Capital Territory, Nigeria
| | - Hirotaka Iwaki
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA
| | - Jonggeol Jeffrey Kim
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Huw R Morris
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London, WC1N 3BG, UK
| | - John Hardy
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mike Nalls
- Data Tecnica International, Washington, DC, USA
| | | | | | | | - Cornelis Blauwendraat
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Andrew Singleton
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Njideka Okubadejo
- College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| |
Collapse
|
27
|
Sterrett-Hong EM, Aliev F, Dick DM, Hooper LM, Mustanski B. Genetic Risk, Neighborhood Characteristics, and Behavioral Difficulties Among African American Adolescents Living in Very Low-Income Neighborhoods. Res Child Adolesc Psychopathol 2023; 51:653-664. [PMID: 36645613 PMCID: PMC10121776 DOI: 10.1007/s10802-023-01021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2022] [Indexed: 01/17/2023]
Abstract
Behavioral difficulties among African American youth are disproportionately detrimental to their future well-being compared to when demonstrated by White American youth. The majority of gene-environment studies of behavior have been conducted with European ancestry samples, limiting our knowledge of these processes among African Americans. This study examined the influence of positive and negative neighborhood conditions, in the context of genetic risk, on behavioral difficulties among low-income African American adolescents. Data were from the Genes, Environment, and Neighborhood Initiative study of African American youth in high-poverty neighborhoods, n = 524, M age = 15.89, SD = 1.42. DNA samples were collected using the Oragene Discovery 500 series, and polygenic risk scores for behavioral difficulties computed. Neighborhood informal social control, social cohesion, physical disorder, and social disorder were assessed. Adolescent alcohol use, hyperactivity/inattention and conduct problems were examined as outcomes. After controlling for polygenic risk, lower levels of neighborhood social disorder and higher levels of social cohesion were associated with fewer youth-reported hyperactivity/inattention and conduct problems. Less social disorder also was associated with fewer parent-reported behavioral difficulties. Neighborhood characteristics did not moderate associations between genetic risk and the outcomes. Higher levels of positive and lower levels of negative neighborhood characteristics can be associated with lower levels of behavioral difficulties among African American youth living in poverty, even after taking into account genetic risk.
Collapse
Affiliation(s)
- Emma M Sterrett-Hong
- Kent School of Social Work & Family Science, University of Louisville, Oppenheimer Hall #102, 2217 S. 3rd St, 40292, Louisville, KY, USA.
| | - Fazil Aliev
- Rutgers University, New Brunswick, United States
| | | | - Lisa M Hooper
- University of Northern Iowa, Cedar Falls, United States
| | | |
Collapse
|
28
|
Majara L, Kalungi A, Koen N, Tsuo K, Wang Y, Gupta R, Nkambule LL, Zar H, Stein DJ, Kinyanda E, Atkinson EG, Martin AR. Low and differential polygenic score generalizability among African populations due largely to genetic diversity. HGG ADVANCES 2023; 4:100184. [PMID: 36873096 PMCID: PMC9982687 DOI: 10.1016/j.xhgg.2023.100184] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/04/2023] [Indexed: 02/15/2023] Open
Abstract
African populations are vastly underrepresented in genetic studies but have the most genetic variation and face wide-ranging environmental exposures globally. Because systematic evaluations of genetic prediction had not yet been conducted in ancestries that span African diversity, we calculated polygenic risk scores (PRSs) in simulations across Africa and in empirical data from South Africa, Uganda, and the United Kingdom to better understand the generalizability of genetic studies. PRS accuracy improves with ancestry-matched discovery cohorts more than from ancestry-mismatched studies. Within ancestrally and ethnically diverse South African individuals, we find that PRS accuracy is low for all traits but varies across groups. Differences in African ancestries contribute more to variability in PRS accuracy than other large cohort differences considered between individuals in the United Kingdom versus Uganda. We computed PRS in African ancestry populations using existing European-only versus ancestrally diverse genetic studies; the increased diversity produced the largest accuracy gains for hemoglobin concentration and white blood cell count, reflecting large-effect ancestry-enriched variants in genes known to influence sickle cell anemia and the allergic response, respectively. Differences in PRS accuracy across African ancestries originating from diverse regions are as large as across out-of-Africa continental ancestries, requiring commensurate nuance.
Collapse
Affiliation(s)
- Lerato Majara
- Global Initiative for Neuropsychiatric Genetics Education in Research (GINGER), Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
- MRC Human Genetics Research Unit, Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Allan Kalungi
- Global Initiative for Neuropsychiatric Genetics Education in Research (GINGER), Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
- Department of Psychiatry, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Mental Health Project, Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) & London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Nastassja Koen
- Global Initiative for Neuropsychiatric Genetics Education in Research (GINGER), Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - Kristin Tsuo
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Ying Wang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rahul Gupta
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Lethukuthula L. Nkambule
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Heather Zar
- Department of Paediatrics and Child Health, Red Cross Children’s Hospital and Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J. Stein
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - Eugene Kinyanda
- Mental Health Project, Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) & London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Elizabeth G. Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alicia R. Martin
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
29
|
Iltis AS, Rolf L, Yaeger L, Goodman MS, DuBois JM. Attitudes and beliefs regarding race-targeted genetic testing of Black people: A systematic review. J Genet Couns 2023; 32:435-461. [PMID: 36644818 PMCID: PMC10349658 DOI: 10.1002/jgc4.1653] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 01/17/2023]
Abstract
Geographical ancestry has been associated with an increased risk of various genetic conditions. Race and ethnicity often have been used as proxies for geographical ancestry. Despite numerous problems associated with the crude reliance on race and ethnicity as proxies for geographical ancestry, some genetic testing in the clinical, research, and employment settings has been and continues to be race- or ethnicity-based. Race-based or race-targeted genetic testing refers to genetic testing offered only or primarily to people of particular racial or ethnic groups because of presumed differences among groups. One current example is APOL1 testing of Black kidney donors. Race-based genetic testing raises numerous ethical and policy questions. Given the ongoing reliance on the Black race in genetic testing, it is important to understand the views of people who identify as Black or are identified as Black (including African American, Afro-Caribbean, and Hispanic Black) regarding race-based genetic testing that targets Black people because of their race. We conducted a systematic review of studies and reports of stakeholder-engaged projects that examined how people who identify as or are identified as Black perceive genetic testing that specifically presumes genetic differences exist among racial groups or uses race as a surrogate for ancestral genetic variation and targets Black people. Our review identified 14 studies that explicitly studied this question and another 13 that implicitly or tacitly studied this matter. We found four main factors that contribute to a positive attitude toward race-targeted genetic testing (facilitators) and eight main factors that are associated with concerns regarding race-targeted genetic testing (barriers). This review fills an important gap. These findings should inform future genetic research and the policies and practices developed in clinical, research, public health, or other settings regarding genetic testing.
Collapse
Affiliation(s)
| | - Liz Rolf
- Washington University in St. Louis School of Medicine
| | - Lauren Yaeger
- Washington University in St. Louis School of Medicine
| | | | | |
Collapse
|
30
|
Carlberg C. Nutrigenomics in the context of evolution. Redox Biol 2023; 62:102656. [PMID: 36933390 PMCID: PMC10036735 DOI: 10.1016/j.redox.2023.102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/13/2023] Open
Abstract
Nutrigenomics describes the interaction between nutrients and our genome. Since the origin of our species most of these nutrient-gene communication pathways have not changed. However, our genome experienced over the past 50,000 years a number of evolutionary pressures, which are based on the migration to new environments concerning geography and climate, the transition from hunter-gatherers to farmers including the zoonotic transfer of many pathogenic microbes and the rather recent change of societies to a preferentially sedentary lifestyle and the dominance of Western diet. Human populations responded to these challenges not only by specific anthropometric adaptations, such as skin color and body stature, but also through diversity in dietary intake and different resistance to complex diseases like the metabolic syndrome, cancer and immune disorders. The genetic basis of this adaptation process has been investigated by whole genome genotyping and sequencing including that of DNA extracted from ancient bones. In addition to genomic changes, also the programming of epigenomes in pre- and postnatal phases of life has an important contribution to the response to environmental changes. Thus, insight into the variation of our (epi)genome in the context of our individual's risk for developing complex diseases, helps to understand the evolutionary basis how and why we become ill. This review will discuss the relation of diet, modern environment and our (epi)genome including aspects of redox biology. This has numerous implications for the interpretation of the risks for disease and their prevention.
Collapse
Affiliation(s)
- Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Juliana Tuwima 10, PL-10748, Olsztyn, Poland; School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211, Kuopio, Finland.
| |
Collapse
|
31
|
Virolainen SJ, VonHandorf A, Viel KCMF, Weirauch MT, Kottyan LC. Gene-environment interactions and their impact on human health. Genes Immun 2023; 24:1-11. [PMID: 36585519 PMCID: PMC9801363 DOI: 10.1038/s41435-022-00192-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
The molecular processes underlying human health and disease are highly complex. Often, genetic and environmental factors contribute to a given disease or phenotype in a non-additive manner, yielding a gene-environment (G × E) interaction. In this work, we broadly review current knowledge on the impact of gene-environment interactions on human health. We first explain the independent impact of genetic variation and the environment. We next detail well-established G × E interactions that impact human health involving environmental toxicants, pollution, viruses, and sex chromosome composition. We conclude with possibilities and challenges for studying G × E interactions.
Collapse
Affiliation(s)
- Samuel J Virolainen
- Division of Human Genetics, Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45229, USA
| | - Andrew VonHandorf
- Division of Human Genetics, Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Kenyatta C M F Viel
- Division of Human Genetics, Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Matthew T Weirauch
- Division of Human Genetics, Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
- Immunology Graduate Program, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45229, USA.
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45229, USA.
| | - Leah C Kottyan
- Division of Human Genetics, Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
- Immunology Graduate Program, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45229, USA.
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., MLC 15012, Cincinnati, OH, 45229, USA.
| |
Collapse
|
32
|
Conery M, Grant SFA. Human height: a model common complex trait. Ann Hum Biol 2023; 50:258-266. [PMID: 37343163 PMCID: PMC10368389 DOI: 10.1080/03014460.2023.2215546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023]
Abstract
CONTEXT Like other complex phenotypes, human height reflects a combination of environmental and genetic factors, but is notable for being exceptionally easy to measure. Height has therefore been commonly used to make observations later generalised to other phenotypes though the appropriateness of such generalisations is not always considered. OBJECTIVES We aimed to assess height's suitability as a model for other complex phenotypes and review recent advances in height genetics with regard to their implications for complex phenotypes more broadly. METHODS We conducted a comprehensive literature search in PubMed and Google Scholar for articles relevant to the genetics of height and its comparatibility to other phenotypes. RESULTS Height is broadly similar to other phenotypes apart from its high heritability and ease of measurment. Recent genome-wide association studies (GWAS) have identified over 12,000 independent signals associated with height and saturated height's common single nucleotide polymorphism based heritability of height within a subset of the genome in individuals similar to European reference populations. CONCLUSIONS Given the similarity of height to other complex traits, the saturation of GWAS's ability to discover additional height-associated variants signals potential limitations to the omnigenic model of complex-phenotype inheritance, indicating the likely future power of polygenic scores and risk scores, and highlights the increasing need for large-scale variant-to-gene mapping efforts.
Collapse
Affiliation(s)
- Mitchell Conery
- Division of Human Genetics, Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of PA, Philadelphia, PA, USA
- Department of Pharmacology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Struan F A Grant
- Division of Human Genetics, Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of PA, Philadelphia, PA, USA
- Division of Diabetes and Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
33
|
Genetic regulators of cytokine responses upon BCG vaccination in children from West Africa. J Genet Genomics 2023:S1673-8527(23)00008-5. [PMID: 36681271 DOI: 10.1016/j.jgg.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023]
Abstract
Genetic variation is a key factor influencing cytokine production capacity, but which genetic loci regulate cytokine production before and after vaccination, particularly in African population is unknown. Here, we aimed to identify single-nucleotide polymorphisms (SNPs) controlling cytokine responses (cQTLs) after microbial stimulation in infants of West-African ancestry, comprising of low-birth-weight neonates randomized to bacillus Calmette-Guérin (BCG) vaccine-at-birth (intervention) or to the usual delayed BCG (control). Genome-wide cytokine QTL mapping revealed 12 independent cQTLs loci, of which the LINC01082-LINC00917 locus influenced more than half of the cytokine-stimulation pairs assessed. Furthermore, nine distinct cQTLs were found among infants randomized to BCG. Functional validation confirmed that several complement genes affect cytokine response after BCG vaccination. We observed a limited overlap of common cQTLs between the West-African infants and cohorts of Western European individuals. These data reveal strong population-specific genetic effects on cytokine production and may indicate new opportunities for therapeutic intervention and vaccine development in African populations.
Collapse
|
34
|
McLaughlin RT, Asthana M, Di Meo M, Ceccarelli M, Jacob HJ, Masica DL. Fast, accurate, and racially unbiased pan-cancer tumor-only variant calling with tabular machine learning. NPJ Precis Oncol 2023; 7:4. [PMID: 36611079 PMCID: PMC9825621 DOI: 10.1038/s41698-022-00340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/12/2022] [Indexed: 01/08/2023] Open
Abstract
Accurately identifying somatic mutations is essential for precision oncology and crucial for calculating tumor-mutational burden (TMB), an important predictor of response to immunotherapy. For tumor-only variant calling (i.e., when the cancer biopsy but not the patient's normal tissue sample is sequenced), accurately distinguishing somatic mutations from germline variants is a challenging problem that, when unaddressed, results in unreliable, biased, and inflated TMB estimates. Here, we apply machine learning to the task of somatic vs germline classification in tumor-only solid tumor samples using TabNet, XGBoost, and LightGBM, three machine-learning models for tabular data. We constructed a training set for supervised classification using features derived exclusively from tumor-only variant calling and drawing somatic and germline truth labels from an independent pipeline using the patient-matched normal samples. All three trained models achieved state-of-the-art performance on two holdout test datasets: a TCGA dataset including sarcoma, breast adenocarcinoma, and endometrial carcinoma samples (AUC > 94%), and a metastatic melanoma dataset (AUC > 85%). Concordance between matched-normal and tumor-only TMB improves from R2 = 0.006 to 0.71-0.76 with the addition of a machine-learning classifier, with LightGBM performing best. Notably, these machine-learning models generalize across cancer subtypes and capture kits with a call rate of 100%. We reproduce the recent finding that tumor-only TMB estimates for Black patients are extremely inflated relative to that of white patients due to the racial biases of germline databases. We show that our approach with XGBoost and LightGBM eliminates this significant racial bias in tumor-only variant calling.
Collapse
Affiliation(s)
| | - Maansi Asthana
- Agricultural and Biological Engineering at Purdue University, West Lafayette, IN, USA
| | - Marc Di Meo
- Johns Hopkins University, Baltimore, MD, USA
| | - Michele Ceccarelli
- Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy
- Biogem, Instituto di Biologia e Genetica Molecolare, Ariano Irpino, Italy
| | | | - David L Masica
- Genomics Research Center, AbbVie, Redwood City, CA, USA.
| |
Collapse
|
35
|
Boudeau S, Ramakodi MP, Zhou Y, Liu JC, Ragin C, Kulathinal RJ. Extensive set of African ancestry-informative markers (AIMs) to study ancestry and population health. Front Genet 2023; 14:1061781. [PMID: 36911410 PMCID: PMC9997643 DOI: 10.3389/fgene.2023.1061781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/20/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: Human populations are often highly structured due to differences in genetic ancestry among groups, posing difficulties in associating genes with diseases. Ancestry-informative markers (AIMs) aid in the detection of population stratification and provide an alternative approach to map population-specific alleles to disease. Here, we identify and characterize a novel set of African AIMs that separate populations of African ancestry from other global populations including those of European ancestry. Methods: Using data from the 1000 Genomes Project, highly informative SNP markers from five African subpopulations were selected based on estimates of informativeness (In) and compared against the European population to generate a final set of 46,737 African ancestry-informative markers (AIMs). The AIMs identified were validated using an independent set and functionally annotated using tools like SIFT, PolyPhen. They were also investigated for representation of commonly used SNP arrays. Results: This set of African AIMs effectively separates populations of African ancestry from other global populations and further identifies substructure between populations of African ancestry. When a subset of these AIMs was studied in an independent dataset, they differentiated people who self-identify as African American or Black from those who identify their ancestry as primarily European. Most of the AIMs were found to be in their intergenic and intronic regions with only 0.6% in the coding regions of the genome. Most of the commonly used SNP array investigated contained less than 10% of the AIMs. Discussion: While several functional annotations of both coding and non-coding African AIMs are supported by the literature and linked these high-frequency African alleles to diseases in African populations, more effort is needed to map genes to diseases in these genetically diverse subpopulations. The relative dearth of these African AIMs on current genotyping platforms (the array with the highest fraction, llumina's Omni 5, harbors less than a quarter of AIMs), further demonstrates a greater need to better represent historically understudied populations.
Collapse
Affiliation(s)
- Samantha Boudeau
- Department of Biology, Temple University, Philadelphia, PA, United States.,Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,African Caribbean Cancer Consortium, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Meganathan P Ramakodi
- Department of Biology, Temple University, Philadelphia, PA, United States.,Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,African Caribbean Cancer Consortium, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Yan Zhou
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Jeffrey C Liu
- Department of Otolaryngology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Surgical Oncology, Fox chase Cancer center, Philadelphia, PA, United States
| | - Camille Ragin
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,African Caribbean Cancer Consortium, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Rob J Kulathinal
- Department of Biology, Temple University, Philadelphia, PA, United States.,African Caribbean Cancer Consortium, Fox Chase Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
36
|
Trinidad MG, Ryan KA, Krenz CD, Roberts JS, McGuire AL, De Vries R, Zikmund-Fisher BJ, Kardia S, Marsh E, Forman J, Kent M, Wilborn D, Spector-Bagdady K. "Extremely slow and capricious": A qualitative exploration of genetic researcher priorities in selecting shared data resources. Genet Med 2023; 25:115-124. [PMID: 36371759 PMCID: PMC9843821 DOI: 10.1016/j.gim.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/14/2022] Open
Abstract
PURPOSE Genetic researchers' selection of a database can have scientific, regulatory, and ethical implications. It is important to understand what is driving database selection such that database stewards can be responsive to user needs while balancing the interests of communities in equitably benefiting from advances. METHODS We conducted 23 semistructured interviews with US academic genetic researchers working with private, government, and collaboratory data stewards to explore factors that they consider when selecting a genetic database. RESULTS Interviewees used existing databases to avoid burdens of primary data collection, which was described as expensive and time-consuming. They highlighted ease of access as the most important selection factor, integrating concepts of familiarity and efficiency. Data features, such as size and available phenotype, were also important. Demographic diversity was not originally cited by any interviewee as a pivotal factor; when probed, most stated that the option to consider diversity in database selection was limited. Database features, including integrity, harmonization, and storage were also described as key components of efficient use. CONCLUSION There is a growing market and competition between genetic data stewards. Data need to be accessible, harmonized, and administratively supported for their existence to be translated into use and, in turn, result in scientific advancements across diverse communities.
Collapse
Affiliation(s)
- M Grace Trinidad
- Department of Learning Health Sciences, University of Michigan Medical School, Ann Arbor, MI
| | - Kerry A Ryan
- Center for Bioethics and Social Sciences in Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Chris D Krenz
- Center for Bioethics and Social Sciences in Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - J Scott Roberts
- Center for Bioethics and Social Sciences in Medicine, University of Michigan Medical School, Ann Arbor, MI; Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, MI
| | - Amy L McGuire
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX
| | - Raymond De Vries
- Department of Learning Health Sciences, University of Michigan Medical School, Ann Arbor, MI; Center for Bioethics and Social Sciences in Medicine, University of Michigan Medical School, Ann Arbor, MI; Department of Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Brian J Zikmund-Fisher
- Center for Bioethics and Social Sciences in Medicine, University of Michigan Medical School, Ann Arbor, MI; Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, MI
| | - Sharon Kardia
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI
| | - Erica Marsh
- Department of Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Jane Forman
- VA Ann Arbor Healthcare System, Ann Arbor, MI
| | - Madison Kent
- David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | | | - Kayte Spector-Bagdady
- Center for Bioethics and Social Sciences in Medicine, University of Michigan Medical School, Ann Arbor, MI; Department of Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
37
|
Heard-Garris NJ, Brown JF, Ewulonu UC, Goel MS, Gordon AS, Henley C, Khan SS, Smith SM, McColley SA. Anti-racist strategies for clinical and translational research: Design, implementation, and lessons learned from a new course. J Clin Transl Sci 2022; 7:e26. [PMID: 36721401 PMCID: PMC9884545 DOI: 10.1017/cts.2022.524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Translational research should examine racism and bias and improve health equity. We designed and implemented a course for the Master of Science in Clinical Investigation program of the Northwestern University Clinical and Translational Sciences Institute. We describe curriculum development, content, outcomes, and revisions involving 36 students in 2 years of "Anti-Racist Strategies for Clinical and Translational Science." Ninety-six percent of students reported they would recommend the course. Many reported changes in research approaches based on course content. A course designed to teach anti-racist research design is feasible and has a positive short-term impact on learners.
Collapse
Affiliation(s)
- Nia J. Heard-Garris
- Department of Pediatrics, Division of Advanced General Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Jen F. Brown
- Alliance for Research in Chicagoland Communities, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Uchenna C. Ewulonu
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Division of Hospital Based Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mita S. Goel
- Department of Medicine, Division of General Medicine, Northwestern University Feinberg School of Medicine, ChicagoIL, USA
| | - Adam S. Gordon
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Candace Henley
- Alliance for Research in Chicagoland Communities, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Blue Hat Foundation, Chicago, IL, USA
| | - Sadiya S. Khan
- Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shawn M. Smith
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Division of Hospital Based Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Susanna A. McColley
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
38
|
Ndong Sima CAA, Smith D, Petersen DC, Schurz H, Uren C, Möller M. The immunogenetics of tuberculosis (TB) susceptibility. Immunogenetics 2022; 75:215-230. [DOI: 10.1007/s00251-022-01290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
|
39
|
Greater genetic diversity is needed in human pluripotent stem cell models. Nat Commun 2022; 13:7301. [PMID: 36435871 PMCID: PMC9701202 DOI: 10.1038/s41467-022-34940-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 11/11/2022] [Indexed: 11/28/2022] Open
|
40
|
Wojcik GL, Murphy J, Edelson JL, Gignoux CR, Ioannidis AG, Manning A, Rivas MA, Buyske S, Hendricks AE. Opportunities and challenges for the use of common controls in sequencing studies. Nat Rev Genet 2022; 23:665-679. [PMID: 35581355 PMCID: PMC9765323 DOI: 10.1038/s41576-022-00487-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2022] [Indexed: 01/02/2023]
Abstract
Genome-wide association studies using large-scale genome and exome sequencing data have become increasingly valuable in identifying associations between genetic variants and disease, transforming basic research and translational medicine. However, this progress has not been equally shared across all people and conditions, in part due to limited resources. Leveraging publicly available sequencing data as external common controls, rather than sequencing new controls for every study, can better allocate resources by augmenting control sample sizes or providing controls where none existed. However, common control studies must be carefully planned and executed as even small differences in sample ascertainment and processing can result in substantial bias. Here, we discuss challenges and opportunities for the robust use of common controls in high-throughput sequencing studies, including study design, quality control and statistical approaches. Thoughtful generation and use of large and valuable genetic sequencing data sets will enable investigation of a broader and more representative set of conditions, environments and genetic ancestries than otherwise possible.
Collapse
Affiliation(s)
- Genevieve L Wojcik
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jessica Murphy
- Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO, USA
| | - Jacob L Edelson
- Department of Biomedical Data Science, Stanford Medical School, Stanford, CA, USA
| | - Christopher R Gignoux
- Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander G Ioannidis
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Alisa Manning
- Metabolism Program, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Manuel A Rivas
- Department of Biomedical Data Science, Stanford Medical School, Stanford, CA, USA
| | - Steven Buyske
- Department of Statistics, Rutgers University, Piscataway, NJ, USA
| | - Audrey E Hendricks
- Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA.
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO, USA.
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
41
|
Nankabirwa JI, Rek J, Arinaitwe E, Namuganga JF, Nsobya SL, Asua V, Mawejje HD, Epstein A, Greenhouse B, Rodriguez-Barraquer I, Briggs J, Krezanoski PJ, Rosenthal PJ, Conrad M, Smith D, Staedke SG, Drakeley C, Bousema T, Andolina C, Donnelly MJ, Kamya MR, Dorsey G. East Africa International Center of Excellence for Malaria Research: Summary of Key Research Findings. Am J Trop Med Hyg 2022; 107:21-32. [PMID: 36228916 PMCID: PMC9662228 DOI: 10.4269/ajtmh.21-1285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
The Program for Resistance, Immunology, Surveillance, and Modeling of Malaria (PRISM) has been conducting malaria research in Uganda since 2010 to improve the understanding of the disease and measure the impact of population-level control interventions in the country. Here, we will summarize key research findings from a series of studies addressing routine health facility-based surveillance, comprehensive cohort studies, studies of the molecular epidemiology, and transmission of malaria, evaluation of antimalarial drug efficacy, and resistance across the country, and assessments of insecticide resistance. Among our key findings are the following. First, we found that in historically high transmission areas of Uganda, a combination of universal distribution of long-lasting insecticidal-treated nets (LLINs) and sustained indoor residual spraying (IRS) of insecticides lowered the malaria burden greatly, but marked resurgences occurred if IRS was discontinued. Second, submicroscopic infections are common and key drivers of malaria transmission, especially in school-age children (5-15 years). Third, markers of drug resistance have changed over time, with new concerning emergence of markers predicting resistance to artemisinin antimalarials. Fourth, insecticide resistance monitoring has demonstrated high levels of resistance to pyrethroids, appreciable impact of the synergist piperonyl butoxide to pyrethroid susceptibility, emerging resistance to carbamates, and complete susceptibility of malaria vectors to organophosphates, which could have important implications for vector control interventions. Overall, PRISM has yielded a wealth of information informing researchers and policy-makers on the malaria burden and opportunities for improved malaria control and eventual elimination in Uganda. Continued studies concerning all the types of surveillance discussed above are ongoing.
Collapse
Affiliation(s)
- Joaniter I. Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, College of Health Sciences, Kampala, Uganda
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Sam L. Nsobya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Adrienne Epstein
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California
| | | | - Jessica Briggs
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Paul J. Krezanoski
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Melissa Conrad
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - David Smith
- Institute for Health Metrics & Evaluation, University of Washington, Seattle, Washington
| | - Sarah G. Staedke
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Chris Drakeley
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Chiara Andolina
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Moses R. Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
42
|
Coronavirus Host Genomics Study: South Africa (COVIGen-SA). GLOBAL HEALTH 2022; 2022:7405349. [PMID: 36263375 PMCID: PMC9560830 DOI: 10.1155/2022/7405349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022]
Abstract
Host genetic factors are known to modify the susceptibility, severity, and outcomes of COVID-19 and vary across populations. However, continental Africans are yet to be adequately represented in such studies despite the importance of genetic factors in understanding Africa's response to the pandemic. We describe the development of a research resource for coronavirus host genomics studies in South Africa known as COVIGen-SA-a multicollaborator strategic partnership designed to provide harmonised demographic, clinical, and genetic information specific to Black South Africans with COVID-19. Over 2,000 participants have been recruited to date. Preliminary results on 1,354 SARS-CoV-2 positive participants from four participating studies showed that 64.7% were female, 333 had severe disease, and 329 were people living with HIV. Through this resource, we aim to provide insights into host genetic factors relevant to African-ancestry populations, using both genome-wide association testing and targeted sequencing of important genomic loci. This project will promote and enhance partnerships, build skills, and develop resources needed to address the COVID-19 burden and associated risk factors in South African communities.
Collapse
|
43
|
Caliebe A, Tekola‐Ayele F, Darst BF, Wang X, Song YE, Gui J, Sebro RA, Balding DJ, Saad M, Dubé M. Including diverse and admixed populations in genetic epidemiology research. Genet Epidemiol 2022; 46:347-371. [PMID: 35842778 PMCID: PMC9452464 DOI: 10.1002/gepi.22492] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
The inclusion of ancestrally diverse participants in genetic studies can lead to new discoveries and is important to ensure equitable health care benefit from research advances. Here, members of the Ethical, Legal, Social, Implications (ELSI) committee of the International Genetic Epidemiology Society (IGES) offer perspectives on methods and analysis tools for the conduct of inclusive genetic epidemiology research, with a focus on admixed and ancestrally diverse populations in support of reproducible research practices. We emphasize the importance of distinguishing socially defined population categorizations from genetic ancestry in the design, analysis, reporting, and interpretation of genetic epidemiology research findings. Finally, we discuss the current state of genomic resources used in genetic association studies, functional interpretation, and clinical and public health translation of genomic findings with respect to diverse populations.
Collapse
Affiliation(s)
- Amke Caliebe
- Institute of Medical Informatics and StatisticsKiel University and University Hospital Schleswig‐HolsteinKielGermany
| | - Fasil Tekola‐Ayele
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Burcu F. Darst
- Center for Genetic EpidemiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Xuexia Wang
- Department of MathematicsUniversity of North TexasDentonTexasUSA
| | - Yeunjoo E. Song
- Department of Population and Quantitative Health SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth CollegeOne Medical Center Dr.LebanonNew HampshireUSA
| | | | - David J. Balding
- Melbourne Integrative Genomics, Schools of BioSciences and of Mathematics & StatisticsUniversity of MelbourneMelbourneAustralia
| | - Mohamad Saad
- Qatar Computing Research InstituteHamad Bin Khalifa UniversityDohaQatar
- Neuroscience Research Center, Faculty of Medical SciencesLebanese UniversityBeirutLebanon
| | - Marie‐Pierre Dubé
- Department of Medicine, and Social and Preventive MedicineUniversité de MontréalMontréalQuébecCanada
- Beaulieu‐Saucier Pharmacogenomcis CentreMontreal Heart InstituteMontrealCanada
| | | |
Collapse
|
44
|
Lee SSJ, Fullerton SM, McMahon CE, Bentz M, Saperstein A, Jeske M, Vasquez E, Foti N, Saco L, Shim JK. Targeting Representation: Interpreting Calls for Diversity in Precision Medicine Research. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:317-326. [PMID: 36187415 PMCID: PMC9511949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Scientists have identified a "diversity gap" in genetic samples and health data, which have been drawn predominantly from individuals of European ancestry, as posing an existential threat to the promise of precision medicine. Inadequate inclusion as articulated by scientists, policymakers, and ethicists has prompted large-scale initiatives aimed at recruiting populations historically underrepresented in biomedical research. Despite explicit calls to increase diversity, the meaning of diversity - which dimensions matter for what outcomes and why - remain strikingly imprecise. Drawing on our document review and qualitative data from observations and interviews of funders and research teams involved in five precision medicine research (PMR) projects, we note that calls for increasing diversity often focus on "representation" as the goal of recruitment. The language of representation is used flexibly to refer to two objectives: achieving sufficient genetic variation across populations and including historically disenfranchised groups in research. We argue that these dual understandings of representation are more than rhetorical slippage, but rather allow for the contemporary collection of samples and data from marginalized populations to stand in as correcting historical exclusion of social groups towards addressing health inequity. We trace the unresolved historical debates over how and to what extent researchers should procure diversity in PMR and how they contributed to ongoing uncertainty about what axes of diversity matter and why. We argue that ambiguity in the meaning of representation at the outset of a study contributes to a lack of clear conceptualization of diversity downstream throughout subsequent phases of the study.
Collapse
Affiliation(s)
- Sandra Soo-Jin Lee
- Division of Ethics, Department of Medical Humanities
and Ethics, Columbia University, New York, NY, USA,To whom all correspondence should be addressed:
Sandra Soo-Jin Lee, Department of Medical Humanities and Ethics, Columbia
University, New York, NY; ; ORCID: https://www.orcid.org/0000-0002-2312-9814
| | - Stephanie M. Fullerton
- Department of Bioethics & Humanities, School of
Medicine, University of Washington, Seattle, WA, USA
| | - Caitlin E. McMahon
- Division of Ethics, Department of Medical Humanities
and Ethics, Columbia University, New York, NY, USA
| | - Michael Bentz
- Division of Ethics, Department of Medical Humanities
and Ethics, Columbia University, New York, NY, USA
| | | | - Melanie Jeske
- Department of Social and Behavioral Sciences,
University of California, San Francisco, CA, USA
| | - Emily Vasquez
- Department of Sociology, University of
Illinois-Chicago, Chicago, IL, USA
| | - Nicole Foti
- Department of Social and Behavioral Sciences,
University of California, San Francisco, CA, USA
| | - Larissa Saco
- Department of Sociology, University of California,
Davis, Davis, CA, USA
| | - Janet K. Shim
- Department of Social and Behavioral Sciences,
University of California, San Francisco, CA, USA
| |
Collapse
|
45
|
Lodge EK, Dhingra R, Martin CL, Fry RC, White AJ, Ward-Caviness CK, Wani AH, Uddin M, Wildman DE, Galea S, Aiello AE. Serum lead, mercury, manganese, and copper and DNA methylation age among adults in Detroit, Michigan. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac018. [PMID: 36330039 PMCID: PMC9620967 DOI: 10.1093/eep/dvac018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/03/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Although the effects of lead, mercury, manganese, and copper on individual disease processes are well understood, estimating the health effects of long-term exposure to these metals at the low concentrations often observed in the general population is difficult. In addition, the health effects of joint exposure to multiple metals are difficult to estimate. Biological aging refers to the integrative progression of multiple physiologic and molecular changes that make individuals more at risk of disease. Biomarkers of biological aging may be useful to estimate the population-level effects of metal exposure prior to the development of disease in the population. We used data from 290 participants in the Detroit Neighborhood Health Study to estimate the effect of serum lead, mercury, manganese, and copper on three DNA methylation-based biomarkers of biological aging (Horvath Age, PhenoAge, and GrimAge). We used mixed models and Bayesian kernel machine regression and controlled for participant sex, race, ethnicity, cigarette use, income, educational attainment, and block group poverty. We observed consistently positive estimates of the effects between lead and GrimAge acceleration and mercury and PhenoAge acceleration. In contrast, we observed consistently negative associations between manganese and PhenoAge acceleration and mercury and Horvath Age acceleration. We also observed curvilinear relationships between copper and both PhenoAge and GrimAge acceleration. Increasing total exposure to the observed mixture of metals was associated with increased PhenoAge and GrimAge acceleration and decreased Horvath Age acceleration. These findings indicate that an increase in serum lead or mercury from the 25th to 75th percentile is associated with a ∼0.25-year increase in two epigenetic markers of all-cause mortality in a population of adults in Detroit, Michigan. While few of the findings were statistically significant, their consistency and novelty warrant interest.
Collapse
Affiliation(s)
- Evans K Lodge
- *Correspondence address. Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599, USA. Tel: +574-339-0253; Fax: +919-966-2089; E-mail:
| | - Radhika Dhingra
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr, Chapel Hill, NC 27599, USA
- Institute for Environmental Health Solutions, University of North Carolina at Chapel Hill, 135 Dauer Dr, Chapel Hill, NC 27599, USA
| | - Chantel L Martin
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr, Chapel Hill, NC 27599, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, 123 W Franklin St, Chapel Hill, NC 27516, USA
- Center for Environmental Health & Susceptibility, University of North Carolina at Chapel Hill, 135 Dauer Dr, Chapel Hill, NC 27599, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr, Chapel Hill, NC 27599, USA
- Center for Environmental Health & Susceptibility, University of North Carolina at Chapel Hill, 135 Dauer Dr, Chapel Hill, NC 27599, USA
| | - Alexandra J White
- Epidemiology Branch, National Institute of Environmental Health Sciences, A323 David P Rall Building, Research Triangle Park, NC 27709, USA
| | - Cavin K Ward-Caviness
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, 104 Mason Farm Rd, Chapel Hill, NC 27514, USA
| | - Agaz H Wani
- Genomics Program, College of Public Health, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Monica Uddin
- Genomics Program, College of Public Health, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Derek E Wildman
- Genomics Program, College of Public Health, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Sandro Galea
- School of Public Health, Boston University, 715 Albany St, Boston, MA 02118, USA
| | - Allison E Aiello
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr, Chapel Hill, NC 27599, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, 123 W Franklin St, Chapel Hill, NC 27516, USA
| |
Collapse
|
46
|
Kim MS, Naidoo D, Hazra U, Quiver MH, Chen WC, Simonti CN, Kachambwa P, Harlemon M, Agalliu I, Baichoo S, Fernandez P, Hsing AW, Jalloh M, Gueye SM, Niang L, Diop H, Ndoye M, Snyper NY, Adusei B, Mensah JE, Abrahams AOD, Biritwum R, Adjei AA, Adebiyi AO, Shittu O, Ogunbiyi O, Adebayo S, Aisuodionoe-Shadrach OI, Nwegbu MM, Ajibola HO, Oluwole OP, Jamda MA, Singh E, Pentz A, Joffe M, Darst BF, Conti DV, Haiman CA, Spies PV, van der Merwe A, Rohan TE, Jacobson J, Neugut AI, McBride J, Andrews C, Petersen LN, Rebbeck TR, Lachance J. Testing the generalizability of ancestry-specific polygenic risk scores to predict prostate cancer in sub-Saharan Africa. Genome Biol 2022; 23:194. [PMID: 36100952 PMCID: PMC9472407 DOI: 10.1186/s13059-022-02766-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Genome-wide association studies do not always replicate well across populations, limiting the generalizability of polygenic risk scores (PRS). Despite higher incidence and mortality rates of prostate cancer in men of African descent, much of what is known about cancer genetics comes from populations of European descent. To understand how well genetic predictions perform in different populations, we evaluated test characteristics of PRS from three previous studies using data from the UK Biobank and a novel dataset of 1298 prostate cancer cases and 1333 controls from Ghana, Nigeria, Senegal, and South Africa. RESULTS Allele frequency differences cause predicted risks of prostate cancer to vary across populations. However, natural selection is not the primary driver of these differences. Comparing continental datasets, we find that polygenic predictions of case vs. control status are more effective for European individuals (AUC 0.608-0.707, OR 2.37-5.71) than for African individuals (AUC 0.502-0.585, OR 0.95-2.01). Furthermore, PRS that leverage information from African Americans yield modest AUC and odds ratio improvements for sub-Saharan African individuals. These improvements were larger for West Africans than for South Africans. Finally, we find that existing PRS are largely unable to predict whether African individuals develop aggressive forms of prostate cancer, as specified by higher tumor stages or Gleason scores. CONCLUSIONS Genetic predictions of prostate cancer perform poorly if the study sample does not match the ancestry of the original GWAS. PRS built from European GWAS may be inadequate for application in non-European populations and perpetuate existing health disparities.
Collapse
Affiliation(s)
- Michelle S Kim
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr, Atlanta, GA, 30332, USA
| | - Daphne Naidoo
- Centre for Proteomic and Genomic Research, Cape Town, South Africa
| | - Ujani Hazra
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr, Atlanta, GA, 30332, USA
| | - Melanie H Quiver
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr, Atlanta, GA, 30332, USA
| | - Wenlong C Chen
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,National Cancer Registry, National Health Laboratory Service, Johannesburg, South Africa
| | - Corinne N Simonti
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr, Atlanta, GA, 30332, USA
| | | | - Maxine Harlemon
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr, Atlanta, GA, 30332, USA
| | - Ilir Agalliu
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Pedro Fernandez
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ann W Hsing
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | | | | | - Lamine Niang
- Universite Cheikh Anta Diop de Dakar, Dakar, Senegal
| | | | - Medina Ndoye
- Universite Cheikh Anta Diop de Dakar, Dakar, Senegal
| | | | | | - James E Mensah
- Korle-Bu Teaching Hospital and University of Ghana Medical School, Accra, Ghana
| | - Afua O D Abrahams
- Korle-Bu Teaching Hospital and University of Ghana Medical School, Accra, Ghana
| | - Richard Biritwum
- Korle-Bu Teaching Hospital and University of Ghana Medical School, Accra, Ghana
| | - Andrew A Adjei
- Department of Pathology, University of Ghana Medical School, Accra, Ghana
| | | | | | | | - Sikiru Adebayo
- College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Maxwell M Nwegbu
- College of Health Sciences, University of Abuja and University of Abuja Teaching Hospital, Abuja, Nigeria
| | - Hafees O Ajibola
- College of Health Sciences, University of Abuja and University of Abuja Teaching Hospital, Abuja, Nigeria
| | - Olabode P Oluwole
- College of Health Sciences, University of Abuja and University of Abuja Teaching Hospital, Abuja, Nigeria
| | - Mustapha A Jamda
- College of Health Sciences, University of Abuja and University of Abuja Teaching Hospital, Abuja, Nigeria
| | - Elvira Singh
- National Cancer Registry, National Health Laboratory Service, Johannesburg, South Africa
| | - Audrey Pentz
- Non-Communicable Diseases Research Division, Wits Health Consortium (PTY) Ltd, Johannesburg, South Africa
| | - Maureen Joffe
- Non-Communicable Diseases Research Division, Wits Health Consortium (PTY) Ltd, Johannesburg, South Africa.,MRC Developmental Pathways to Health Research Unit, Department of Pediatrics, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Burcu F Darst
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David V Conti
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christopher A Haiman
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Petrus V Spies
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - André van der Merwe
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Thomas E Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Judith Jacobson
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Alfred I Neugut
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Jo McBride
- Centre for Proteomic and Genomic Research, Cape Town, South Africa
| | | | | | - Timothy R Rebbeck
- Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr, Atlanta, GA, 30332, USA.
| |
Collapse
|
47
|
Jacobs BM, Peter M, Giovannoni G, Noyce AJ, Morris HR, Dobson R. Towards a global view of multiple sclerosis genetics. Nat Rev Neurol 2022; 18:613-623. [PMID: 36075979 DOI: 10.1038/s41582-022-00704-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/09/2022]
Abstract
Multiple sclerosis (MS) is a neuroimmunological disorder of the CNS with a strong heritable component. The genetic architecture of MS susceptibility is well understood in populations of European ancestry. However, the extent to which this architecture explains MS susceptibility in populations of non-European ancestry remains unclear. In this Perspective article, we outline the scientific arguments for studying MS genetics in ancestrally diverse populations. We argue that this approach is likely to yield insights that could benefit individuals with MS from all ancestral groups. We explore the logistical and theoretical challenges that have held back this field to date and conclude that, despite these challenges, inclusion of participants of non-European ancestry in MS genetics studies will ultimately be of value to all patients with MS worldwide.
Collapse
Affiliation(s)
- Benjamin Meir Jacobs
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University London, London, UK. .,Department of Neurology, Royal London Hospital, London, UK.
| | - Michelle Peter
- NHS North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Gavin Giovannoni
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University London, London, UK.,Department of Neurology, Royal London Hospital, London, UK.,Blizard Institute, Queen Mary University London, London, UK
| | - Alastair J Noyce
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University London, London, UK.,Department of Neurology, Royal London Hospital, London, UK.,Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Huw R Morris
- Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ruth Dobson
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University London, London, UK.,Department of Neurology, Royal London Hospital, London, UK
| |
Collapse
|
48
|
Tetikol HS, Turgut D, Narci K, Budak G, Kalay O, Arslan E, Demirkaya-Budak S, Dolgoborodov A, Kabakci-Zorlu D, Semenyuk V, Jain A, Davis-Dusenbery BN. Pan-African genome demonstrates how population-specific genome graphs improve high-throughput sequencing data analysis. Nat Commun 2022; 13:4384. [PMID: 35927245 PMCID: PMC9352875 DOI: 10.1038/s41467-022-31724-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Graph-based genome reference representations have seen significant development, motivated by the inadequacy of the current human genome reference to represent the diverse genetic information from different human populations and its inability to maintain the same level of accuracy for non-European ancestries. While there have been many efforts to develop computationally efficient graph-based toolkits for NGS read alignment and variant calling, methods to curate genomic variants and subsequently construct genome graphs remain an understudied problem that inevitably determines the effectiveness of the overall bioinformatics pipeline. In this study, we discuss obstacles encountered during graph construction and propose methods for sample selection based on population diversity, graph augmentation with structural variants and resolution of graph reference ambiguity caused by information overload. Moreover, we present the case for iteratively augmenting tailored genome graphs for targeted populations and demonstrate this approach on the whole-genome samples of African ancestry. Our results show that population-specific graphs, as more representative alternatives to linear or generic graph references, can achieve significantly lower read mapping errors and enhanced variant calling sensitivity, in addition to providing the improvements of joint variant calling without the need of computationally intensive post-processing steps.
Collapse
Affiliation(s)
| | | | - Kubra Narci
- Seven Bridges Genomics, Charlestown, MA, USA
| | | | - Ozem Kalay
- Seven Bridges Genomics, Charlestown, MA, USA
| | - Elif Arslan
- Seven Bridges Genomics, Charlestown, MA, USA
| | | | | | | | | | - Amit Jain
- Seven Bridges Genomics, Charlestown, MA, USA
| | | |
Collapse
|
49
|
Silva-Alarcon S, Valencia C, Newball L, Saldarriaga W, Castillo A. Molecular Variants in Genes related to the Response to Ocular Hypotensive Drugs in an Afro-Colombian Population. Open Ophthalmol J 2022. [DOI: 10.2174/18743641-v16-e2205250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aims:
This study aimed to conduct an exploratory analysis of the pharmacogenomic variants involved in ocular hypotensive drugs to understand the individual differential response in an Afro-descendant population.
Background:
Glaucoma is the leading cause of irreversible blindness worldwide. The pharmacologic treatment available consists of lowering intraocular pressure by administering topical drugs. In Asian and Caucasian people, pharmacogenomic variants associated with the efficacy of these treatments have been identified. However, in Afro-descendant populations, there is a profound gap in this knowledge.
Objective:
This study identified the pharmacogenomic variants related to ocular hypotensive efficacy treatment in Afro-descendant individuals from the Archipelago of San Andres and Providence, Colombia.
Methods:
An analysis of whole-exome sequencings (WES), functional annotation, and clinical significance was performed for pharmacogenomic variants reported in PharmGKB databases; in turn, an in silico available prediction analysis was carried out for the novel variants.
Results:
We identified six out of 18 non-synonymous variants with a clinical annotation in PharmGKB. Five were classified as level three evidence for the hypotensive drugs; rs1801252 and rs1801253 in the ADRB1 gene and rs1042714 in the ADRB2 gene. These pharmacogenomic variants have been involved in a lack of efficacy of topical beta-blockers and higher systolic and diastolic pressure under treatment with ophthalmic timolol drug. The rs1045642 in the ABCB1 gene was associated with greater efficacy of treatments with latanoprost drug. Also, we found the haplotypes *17 for CYP2D6 and *10 for CYP2C19; both related to reducing the enzyme activity to timolol drug metabolization. In addition, we observed 50 novel potentially actionable variants; 36 synonymous, two insertion variants that caused frameshift mutations, and 12 non-synonymous, where five were predicted to be pathogenic based on several pathogenicity predictions.
Conclusion:
Our results suggested that the pharmacogenomic variants were found to decrease the ocular hypotensive efficacy treatment in a Colombian Afro-descendant population and revealed a significant proportion of novel variants with a potential to influence drug response.
Collapse
|
50
|
Müller-Nedebock AC, Pfaff AL, Pienaar IS, Kõks S, van der Westhuizen FH, Elson JL, Bardien S. Mitochondrial DNA variation in Parkinson’s disease: Analysis of “out-of-place” population variants as a risk factor. Front Aging Neurosci 2022; 14:921412. [PMID: 35912088 PMCID: PMC9330142 DOI: 10.3389/fnagi.2022.921412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/30/2022] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial DNA (mtDNA), a potential source of mitochondrial dysfunction, has been implicated in Parkinson’s disease (PD). However, many previous studies investigating associations between mtDNA population variation and PD reported inconsistent or contradictory findings. Here, we investigated an alternative hypothesis to determine whether mtDNA variation could play a significant role in PD risk. Emerging evidence suggests that haplogroup-defining mtDNA variants may have pathogenic potential if they occur “out-of-place” on a different maternal lineage. We hypothesized that the mtDNA of PD cases would be enriched for out-of-place variation in genes encoding components of the oxidative phosphorylation complexes. We tested this hypothesis with a unique dataset comprising whole mitochondrial genomes of 70 African ancestry PD cases, two African ancestry control groups (n = 78 and n = 53) and a replication group of 281 European ancestry PD cases and 140 controls from the Parkinson’s Progression Markers Initiative cohort. Significantly more African ancestry PD cases had out-of-place variants than controls from the second control group (P < 0.0125), although this association was not observed in the first control group nor the replication group. As the first mtDNA study to include African ancestry PD cases and to explore out-of-place variation in a PD context, we found evidence that such variation might be significant in this context, thereby warranting further replication in larger cohorts.
Collapse
Affiliation(s)
- Amica C. Müller-Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Abigail L. Pfaff
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Ilse S. Pienaar
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | | | - Joanna L. Elson
- Human Metabolomics, North-West University, Potchefstroom, South Africa
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
- *Correspondence: Soraya Bardien,
| |
Collapse
|