1
|
Mallajosyula V, Chakraborty S, Sola E, Fong RF, Shankar V, Gao F, Burrell AR, Gupta N, Wagar LE, Mischel PS, Capasso R, Staat MA, Chien YH, Dekker CL, Wang TT, Davis MM. Coupling antigens from multiple subtypes of influenza can broaden antibody and T cell responses. Science 2024; 386:1389-1395. [PMID: 39700292 DOI: 10.1126/science.adi2396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/29/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024]
Abstract
The seasonal influenza vaccine contains strains of viruses from distinct subtypes that are grown independently and then combined. However, most individuals exhibit a more robust response to one of these strains and thus are vulnerable to infection by others. By studying a monozygotic twin cohort, we found that although prior exposure is a factor, host genetics are a stronger driver of subtype bias to influenza viral strains. We found that covalent coupling of heterologous hemagglutinin (HA) from different viral strains could largely eliminate subtype bias in an animal model and in a human tonsil organoid system. We proposed that coupling of heterologous antigens improves antibody responses across influenza strains by broadening T cell help, and we found that using this approach substantially improved the antibody response to avian influenza HA.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Antibodies, Viral/immunology
- Antibody Formation/immunology
- Antigens, Viral/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Influenza A virus/immunology
- Influenza A virus/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Palatine Tonsil/immunology
- Palatine Tonsil/virology
- CD4-Positive T-Lymphocytes/immunology
- Organoids/immunology
- Organoids/virology
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Vamsee Mallajosyula
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Saborni Chakraborty
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA
| | - Elsa Sola
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan Furuichi Fong
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Vishnu Shankar
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Fei Gao
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Allison R Burrell
- Department of Pediatrics, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Neha Gupta
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa E Wagar
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Robson Capasso
- Division of Sleep Surgery, Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Mary A Staat
- Department of Pediatrics, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yueh-Hsiu Chien
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Cornelia L Dekker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Taia T Wang
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Chakraborty C, Bhattacharya M. Evolution and mutational landscape of highly pathogenic avian influenza strain A(H5N1) in the current outbreak in the USA and global landscape. Virology 2024; 600:110246. [PMID: 39288609 DOI: 10.1016/j.virol.2024.110246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
The emergence of highly pathogenic avian influenza strain A (H5N1) in the USA is a high concern. Here, we illustrated the evolution, divergence, transmission pattern, infection pattern, entropy diversity, nucleotide diversity, and mutational landscape of HPAI(H5N1). We depicted three phylogenetic trees, i.e., from three perspectives: considering the HPAI H5N1 genome of the current outbreak in the USA (n = 971), considering the HPAI H5N1 spared in different hosts (cattle, hunan, avian, and nonhuman primates) and using the global genome sequences (n = 3154). We found that the clade 2.3.4.4b was responsible for the present infection. We noted that the USA's divergence rate is 3.43e-3 subs per site per year, and the global divergence rate is 5.21e-3 subs per site per year. We reported significant nucleotide changes to illustrate the genome. Similarly, we observe several point mutations in some proteins, such as PB2, PA, HA, NA, and NS1. Among point mutations, some common mutations are noted in PB2 (E362G, M631L) and PA (L219I, K497R). However, elimination strategies should be a high priority for dairy farm workers, domestic cattle, and poultry birds to limit future outbreaks.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| |
Collapse
|
3
|
Septer KM, Heinly TA, Sim DG, Patel DR, Roder AE, Wang W, Chung M, Johnson KEE, Ghedin E, Sutton TC. Vaccine-induced NA immunity decreases viral shedding, but does not disrupt chains of airborne transmission for the 2009 pandemic H1N1 virus in ferrets. mBio 2024; 15:e0216124. [PMID: 39248566 PMCID: PMC11481891 DOI: 10.1128/mbio.02161-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
Split-virion-inactivated influenza vaccines are formulated based on viral hemagglutinin content. These vaccines also contain the viral neuraminidase (NA) protein, but NA content is not standardized and varies between manufacturers. In clinical studies and animal models, antibodies directed toward NA reduced disease severity and viral load; however, the impact of vaccine-induced NA immunity on airborne transmission of influenza A viruses is not well characterized. Therefore, we evaluated if vaccination against NA could disrupt chains of airborne transmission for the 2009 pandemic H1N1 virus in ferrets. Immunologically naïve donor ferrets were infected with the 2009 pandemic H1N1 virus and then paired in transmission cages with mock- or NA-vaccinated respiratory contacts. The mock- and NA-vaccinated animals were then monitored daily for infection, and once infected, these animals were paired with a naive secondary respiratory contact. In these studies, all mock- and NA-vaccinated animals became infected; however, NA-vaccinated animals shed significantly less virus for fewer days relative to mock-vaccinated animals. For the secondary contacts, 6/6 and 5/6 animals became infected after exposure to mock- and NA-vaccinated animals, respectively. To determine if vaccine-induced immune pressure selected for escape variants, we sequenced viruses recovered from ferrets. No mutations in NA became enriched during transmission. These findings indicate that despite reducing viral load, vaccine-induced NA immunity does not prevent infection during continuous airborne exposure and subsequent onward airborne transmission of the 2009 pandemic H1N1 virus. IMPORTANCE In humans and animal models, immunity against neuraminidase (NA) reduces disease severity and viral replication during influenza infection. However, we have a limited understanding of the impact of NA immunity on viral transmission. Using chains of airborne transmission in ferrets as a strategy to simulate a more natural route of infection, we assessed if vaccine-induced NA immunity could disrupt transmission of the 2009 pandemic H1N1 virus. The 2009 pandemic H1N1 virus transmitted efficiently through chains of transmission in the presence of NA immunity, but NA-vaccinated animals shed significantly less virus and had accelerated viral clearance. To determine if immune pressure led to the generation of escape variants, viruses in ferret nasal wash samples were sequenced, and no mutations in NA were identified. These findings demonstrate that vaccine-induced NA immunity is not sufficient to prevent infection via airborne exposure and onward airborne transmission of the 2009 pandemic H1N1 virus.
Collapse
Affiliation(s)
- K. M. Septer
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Emory-UGA Center of Excellence of Influenza Research and Response (CEIRR), University Park, Pennsylvania, USA
| | - T. A. Heinly
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Emory-UGA Center of Excellence of Influenza Research and Response (CEIRR), University Park, Pennsylvania, USA
| | - D. G. Sim
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - D. R. Patel
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Emory-UGA Center of Excellence of Influenza Research and Response (CEIRR), University Park, Pennsylvania, USA
| | - A. E. Roder
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - W. Wang
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - M. Chung
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - K. E. E. Johnson
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - E. Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - T. C. Sutton
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Emory-UGA Center of Excellence of Influenza Research and Response (CEIRR), University Park, Pennsylvania, USA
| |
Collapse
|
4
|
Sircy LM, Ramstead AG, Gibbs LC, Joshi H, Baessler A, Mena I, García-Sastre A, Emerson LL, Fairfax KC, Williams MA, Hale JS. Generation of antigen-specific memory CD4 T cells by heterologous immunization enhances the magnitude of the germinal center response upon influenza infection. PLoS Pathog 2024; 20:e1011639. [PMID: 39283916 PMCID: PMC11404825 DOI: 10.1371/journal.ppat.1011639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/05/2024] [Indexed: 09/22/2024] Open
Abstract
Current influenza vaccine strategies have yet to overcome significant obstacles, including rapid antigenic drift of seasonal influenza viruses, in generating efficacious long-term humoral immunity. Due to the necessity of germinal center formation in generating long-lived high affinity antibodies, the germinal center has increasingly become a target for the development of novel or improvement of less-efficacious vaccines. However, there remains a major gap in current influenza research to effectively target T follicular helper cells during vaccination to alter the germinal center reaction. In this study, we used a heterologous infection or immunization priming strategy to seed an antigen-specific memory CD4+ T cell pool prior to influenza infection in mice to evaluate the effect of recalled memory T follicular helper cells in increased help to influenza-specific primary B cells and enhanced generation of neutralizing antibodies. We found that heterologous priming with intranasal infection with acute lymphocytic choriomeningitis virus (LCMV) or intramuscular immunization with adjuvanted recombinant LCMV glycoprotein induced increased antigen-specific effector CD4+ T and B cellular responses following infection with a recombinant influenza strain that expresses LCMV glycoprotein. Heterologously primed mice had increased expansion of secondary Th1 and Tfh cell subsets, including increased CD4+ TRM cells in the lung. However, the early enhancement of the germinal center cellular response following influenza infection did not impact influenza-specific antibody generation or B cell repertoires compared to primary influenza infection. Overall, our study suggests that while heterologous infection or immunization priming of CD4+ T cells is able to enhance the early germinal center reaction, further studies to understand how to target the germinal center and CD4+ T cells specifically to increase long-lived antiviral humoral immunity are needed.
Collapse
Affiliation(s)
- Linda M. Sircy
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew G. Ramstead
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Lisa C. Gibbs
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Hemant Joshi
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew Baessler
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Lyska L. Emerson
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Keke C. Fairfax
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Matthew A. Williams
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - J. Scott Hale
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
5
|
Liang Z, Lin X, Sun L, Edwards KM, Song W, Sun H, Xie Y, Lin F, Ling S, Liang T, Xiao B, Wang J, Li M, Leung CY, Zhu H, Bhandari N, Varadarajan R, Levine MZ, Peiris M, Webster R, Dhanasekaran V, Leung NHL, Cowling BJ, Webby RJ, Ducatez M, Zanin M, Wong SS. A(H2N2) and A(H3N2) influenza pandemics elicited durable cross-reactive and protective antibodies against avian N2 neuraminidases. Nat Commun 2024; 15:5593. [PMID: 38961067 PMCID: PMC11222539 DOI: 10.1038/s41467-024-49884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
Human cases of avian influenza virus (AIV) infections are associated with an age-specific disease burden. As the influenza virus N2 neuraminidase (NA) gene was introduced from avian sources during the 1957 pandemic, we investigate the reactivity of N2 antibodies against A(H9N2) AIVs. Serosurvey of healthy individuals reveal the highest rates of AIV N2 antibodies in individuals aged ≥65 years. Exposure to the 1968 pandemic N2, but not recent N2, protected against A(H9N2) AIV challenge in female mice. In some older adults, infection with contemporary A(H3N2) virus could recall cross-reactive AIV NA antibodies, showing discernable human- or avian-NA type reactivity. Individuals born before 1957 have higher anti-AIV N2 titers compared to those born between 1957 and 1968. The anti-AIV N2 antibodies titers correlate with antibody titers to the 1957 N2, suggesting that exposure to the A(H2N2) virus contribute to this reactivity. These findings underscore the critical role of neuraminidase immunity in zoonotic and pandemic influenza risk assessment.
Collapse
Affiliation(s)
- Zaolan Liang
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xia Lin
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Lihong Sun
- Guangzhou Institute for Respiratory Health and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kimberly M Edwards
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wenjun Song
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yanmin Xie
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Fangmei Lin
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Shiman Ling
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Tingting Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Biying Xiao
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jiaqi Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Min Li
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chin-Yu Leung
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Huachen Zhu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China
- Joint Institute of Virology (Shantou University and The University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou, P. R. China
| | - Nisha Bhandari
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Min Z Levine
- US Center for Disease Control and Prevention, Atlanta, GA, USA
| | - Malik Peiris
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Center for Immunology & Infection, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Robert Webster
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Vijaykrishna Dhanasekaran
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Nancy H L Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Richard J Webby
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mariette Ducatez
- Interactions Hosts-Pathogens (IHAP), Université de Toulouse, National Research Institute for Agriculture, Food and the Environment (INRAE), National Veterinary School of Toulouse (ENVT), Toulouse, France
| | - Mark Zanin
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Center for Immunology & Infection, Hong Kong Science and Technology Park, Hong Kong SAR, China.
| | - Sook-San Wong
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
6
|
Kim KH, Bhatnagar N, Subbiah J, Liu R, Pal SS, Raha JR, Grovenstein P, Shin CH, Wang BZ, Kang SM. Cross-protection against influenza viruses by chimeric M2e-H3 stalk protein or multi-subtype neuraminidase plus M2e virus-like particle vaccine in ferrets. Virology 2024; 595:110097. [PMID: 38685171 PMCID: PMC11110495 DOI: 10.1016/j.virol.2024.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Current influenza vaccine is not effective in providing cross-protection against variants. We evaluated the immunogenicity and efficacy of multi-subtype neuraminidase (NA) and M2 ectodomain virus-like particle (m-cNA-M2e VLP) and chimeric M2e-H3 stalk protein vaccines (M2e-H3 stalk) in ferrets. Our results showed that ferrets with recombinant m-cNA-M2e VLP or M2e-H3 stalk vaccination induced multi-vaccine antigen specific IgG antibodies (M2e, H3 stalk, NA), NA inhibition, antibody-secreting cells, and IFN-γ secreting cell responses. Ferrets immunized with either m-cNA-M2e VLP or M2e-H3 stalk vaccine were protected from H1N1 and H3N2 influenza viruses by lowering viral titers in nasal washes, trachea, and lungs after challenge. Vaccinated ferret antisera conferred broad humoral immunity in naïve mice. Our findings provide evidence that immunity to M2e and HA-stalk or M2e plus multi-subtype NA proteins induces cross-protection in ferrets.
Collapse
Affiliation(s)
- Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Noopur Bhatnagar
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Jeeva Subbiah
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Rong Liu
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Surya Sekhar Pal
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Jannatul Ruhan Raha
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Phillip Grovenstein
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Chong Hyun Shin
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA.
| |
Collapse
|
7
|
He P, Gui M, Chen T, Zeng Y, Chen C, Lu Z, Xia N, Wang G, Chen Y. A Chymotrypsin-Dependent Live-Attenuated Influenza Vaccine Provides Protective Immunity against Homologous and Heterologous Viruses. Vaccines (Basel) 2024; 12:512. [PMID: 38793763 PMCID: PMC11126036 DOI: 10.3390/vaccines12050512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Influenza virus is one of the main pathogens causing respiratory diseases in humans. Vaccines are the most effective ways to prevent viral diseases. However, the limited protective efficacy of current influenza vaccines highlights the importance of novel, safe, and effective universal influenza vaccines. With the progress of the COVID-19 pandemic, live-attenuated vaccines delivered through respiratory mucosa have shown robustly protective efficacy. How to obtain a safe and effective live-attenuated vaccine has become a major challenge. Herein, using the influenza virus as a model, we have established a strategy to quickly obtain a live-attenuated vaccine by mutating the cleavage site of the influenza virus. This mutated influenza virus can be specifically cleaved by chymotrypsin. It has similar biological characteristics to the original strain in vitro, but the safety is improved by at least 100 times in mice. It can effectively protect against lethal doses of both homologous H1N1 and heterologous H5N1 viruses post mucosal administration, confirming that the vaccine generated by this strategy has good safety and broad-spectrum protective activities. Therefore, this study can provide valuable insights for the development of attenuated vaccines for respiratory viruses or other viruses with cleavage sites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guosong Wang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; (P.H.); (M.G.); (T.C.); (Y.Z.); (C.C.); (Z.L.)
| | - Yixin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; (P.H.); (M.G.); (T.C.); (Y.Z.); (C.C.); (Z.L.)
| |
Collapse
|
8
|
Honda-Okubo Y, Bart Tarbet E, Hurst BL, Petrovsky N. An Advax-CpG adjuvanted recombinant H5 hemagglutinin vaccine protects mice against lethal influenza infection. Vaccine 2023; 41:5730-5741. [PMID: 37567799 DOI: 10.1016/j.vaccine.2023.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
There is a major unmet need for strategies to improve the immunogenicity of vaccines to protect against highly pathogenic avian influenza strains with pandemic potential. This study tested the ability of adjuvants based on delta inulin (Advax™) alone or combined with a TLR9 agonist (Advax-CpG™) to enhance the immunogenicity of recombinant H5 hemagglutinin antigen expressed in insect cells (rH5HA) to protect mice against lethal influenza infection. The Advax-adjuvanted rH5HA induced high serum hemagglutination inhibition activity, as well as Th1 and Th2 cytokine secreting CD4 and CD8 T cells. Immunization protected mice against a lethal heterosubtypic H5N1 virus challenge. Mice immunized with an Advax-adjuvanted rHA2 stem antigen prepared by enzymatic cleavage of rH5HA produced serum antibodies devoid of hemagglutination inhibition activity, but these anti-HA2 antibodies were nevertheless able to transfer protection against lethal H1N1 or H3N2 infections to naïve mice. We hypothesize that the enhanced protection afforded by Advax-adjuvanted rH5HA may be mediated by the combination of neutralizing antibodies directed at the HA head, anti-HA2 stem antibodies plus memory CD4 + and CD8 + T cells. This outcome supports further development of the Advax-adjuvanted rH5 pandemic influenza vaccine platform.
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- Vaxine Pty Ltd, Warradale, Adelaide, SA 5046, Australia; Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - E Bart Tarbet
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | - Brett L Hurst
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | | |
Collapse
|
9
|
Sircy LM, Ramstead AG, Joshi H, Baessler A, Mena I, García-Sastre A, Williams MA, Scott Hale J. Generation of antigen-specific memory CD4 T cells by heterologous immunization enhances the magnitude of the germinal center response upon influenza infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555253. [PMID: 37693425 PMCID: PMC10491174 DOI: 10.1101/2023.08.29.555253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Current influenza vaccine strategies have yet to overcome significant obstacles, including rapid antigenic drift of seasonal influenza viruses, in generating efficacious long-term humoral immunity. Due to the necessity of germinal center formation in generating long-lived high affinity antibodies, the germinal center has increasingly become a target for the development of novel or improvement of less-efficacious vaccines. However, there remains a major gap in current influenza research to effectively target T follicular helper cells during vaccination to alter the germinal center reaction. In this study, we used a heterologous infection or immunization priming strategy to seed an antigen-specific memory CD4+ T cell pool prior to influenza infection in mice to evaluate the effect of recalled memory T follicular helper cells in increased help to influenza-specific primary B cells and enhanced generation of neutralizing antibodies. We found that heterologous priming with intranasal infection with acute lymphocytic choriomeningitis virus (LCMV) or intramuscular immunization with adjuvanted recombinant LCMV glycoprotein induced increased antigen-specific effector CD4+ T and B cellular responses following infection with a recombinant influenza strain that expresses LCMV glycoprotein. Heterologously primed mice had increased expansion of secondary Th1 and Tfh cell subsets, including increased CD4+ TRM cells in the lung. However, the early enhancement of the germinal center cellular response following influenza infection did not impact influenza-specific antibody generation or B cell repertoires compared to primary influenza infection. Overall, our study suggests that while heterologous infection/immunization priming of CD4+ T cells is able to enhance the early germinal center reaction, further studies to understand how to target the germinal center and CD4+ T cells specifically to increase long-lived antiviral humoral immunity are needed.
Collapse
Affiliation(s)
- Linda M. Sircy
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew G. Ramstead
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Hemant Joshi
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew Baessler
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Matthew A. Williams
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - J. Scott Hale
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
10
|
McCraw DM, Myers ML, Gulati NM, Prabhakaran M, Brand J, Andrews S, Gallagher JR, Maldonado-Puga S, Kim AJ, Torian U, Syeda H, Boyoglu-Barnum S, Kanekiyo M, McDermott AB, Harris AK. Designed nanoparticles elicit cross-reactive antibody responses to conserved influenza virus hemagglutinin stem epitopes. PLoS Pathog 2023; 19:e1011514. [PMID: 37639457 PMCID: PMC10491405 DOI: 10.1371/journal.ppat.1011514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 09/08/2023] [Accepted: 06/26/2023] [Indexed: 08/31/2023] Open
Abstract
Despite the availability of seasonal vaccines and antiviral medications, influenza virus continues to be a major health concern and pandemic threat due to the continually changing antigenic regions of the major surface glycoprotein, hemagglutinin (HA). One emerging strategy for the development of more efficacious seasonal and universal influenza vaccines is structure-guided design of nanoparticles that display conserved regions of HA, such as the stem. Using the H1 HA subtype to establish proof of concept, we found that tandem copies of an alpha-helical fragment from the conserved stem region (helix-A) can be displayed on the protruding spikes structures of a capsid scaffold. The stem region of HA on these designed chimeric nanoparticles is immunogenic and the nanoparticles are biochemically robust in that heat exposure did not destroy the particles and immunogenicity was retained. Furthermore, mice vaccinated with H1-nanoparticles were protected from lethal challenge with H1N1 influenza virus. By using a nanoparticle library approach with this helix-A nanoparticle design, we show that this vaccine nanoparticle construct design could be applicable to different influenza HA subtypes. Importantly, antibodies elicited by H1, H5, and H7 nanoparticles demonstrated homosubtypic and heterosubtypic cross-reactivity binding to different HA subtypes. Also, helix-A nanoparticle immunizations were used to isolate mouse monoclonal antibodies that demonstrated heterosubtypic cross-reactivity and provided protection to mice from viral challenge via passive-transfer. This tandem helix-A nanoparticle construct represents a novel design to display several hundred copies of non-trimeric conserved HA stem epitopes on vaccine nanoparticles. This design concept provides a new approach to universal influenza vaccine development strategies and opens opportunities for the development of nanoparticles with broad coverage over many antigenically diverse influenza HA subtypes.
Collapse
Affiliation(s)
- Dustin M. McCraw
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mallory L. Myers
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Neetu M. Gulati
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Madhu Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua Brand
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sarah Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John R. Gallagher
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Samantha Maldonado-Puga
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander J. Kim
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Udana Torian
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hubza Syeda
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Audray K. Harris
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
11
|
Bhatnagar N, Kim KH, Subbiah J, Muhammad-Worsham S, Park BR, Liu R, Grovenstein P, Wang BZ, Kang SM. Heterologous Prime-Boost Vaccination with Inactivated Influenza Viruses Induces More Effective Cross-Protection than Homologous Repeat Vaccination. Vaccines (Basel) 2023; 11:1209. [PMID: 37515025 PMCID: PMC10386405 DOI: 10.3390/vaccines11071209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/24/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
With concerns about the efficacy of repeat annual influenza vaccination, it is important to better understand the impact of priming vaccine immunity and develop an effective vaccination strategy. Here, we determined the impact of heterologous prime-boost vaccination on inducing broader protective immunity compared to repeat vaccination with the same antigen. The primed mice that were intramuscularly boosted with a heterologous inactivated influenza A virus (H1N1, H3N2, H5N1, H7N9, H9N2) vaccine showed increased strain-specific hemagglutination inhibition titers against prime and boost vaccine strains. Heterologous prime-boost vaccination of mice with inactivated viruses was more effective in inducing high levels of IgG antibodies specific for groups 1 and 2 hemagglutinin stalk domains, as well as cross-protection, compared to homologous vaccination. Both humoral and T cell immunity were found to play a critical role in conferring cross-protection by heterologous prime-boost vaccination. These results support a strategy to enhance cross-protective efficacy by heterologous prime-boost influenza vaccination.
Collapse
Affiliation(s)
- Noopur Bhatnagar
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA; (N.B.); (K.-H.K.); (J.S.); (S.M.-W.); (B.R.P.); (R.L.); (P.G.); (B.-Z.W.)
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA; (N.B.); (K.-H.K.); (J.S.); (S.M.-W.); (B.R.P.); (R.L.); (P.G.); (B.-Z.W.)
| | - Jeeva Subbiah
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA; (N.B.); (K.-H.K.); (J.S.); (S.M.-W.); (B.R.P.); (R.L.); (P.G.); (B.-Z.W.)
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Sakinah Muhammad-Worsham
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA; (N.B.); (K.-H.K.); (J.S.); (S.M.-W.); (B.R.P.); (R.L.); (P.G.); (B.-Z.W.)
| | - Bo Ryoung Park
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA; (N.B.); (K.-H.K.); (J.S.); (S.M.-W.); (B.R.P.); (R.L.); (P.G.); (B.-Z.W.)
| | - Rong Liu
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA; (N.B.); (K.-H.K.); (J.S.); (S.M.-W.); (B.R.P.); (R.L.); (P.G.); (B.-Z.W.)
| | - Phillip Grovenstein
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA; (N.B.); (K.-H.K.); (J.S.); (S.M.-W.); (B.R.P.); (R.L.); (P.G.); (B.-Z.W.)
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA; (N.B.); (K.-H.K.); (J.S.); (S.M.-W.); (B.R.P.); (R.L.); (P.G.); (B.-Z.W.)
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA; (N.B.); (K.-H.K.); (J.S.); (S.M.-W.); (B.R.P.); (R.L.); (P.G.); (B.-Z.W.)
| |
Collapse
|
12
|
Moin SM, Boyington JC, Boyoglu-Barnum S, Gillespie RA, Cerutti G, Cheung CSF, Cagigi A, Gallagher JR, Brand J, Prabhakaran M, Tsybovsky Y, Stephens T, Fisher BE, Creanga A, Ataca S, Rawi R, Corbett KS, Crank MC, Karlsson Hedestam GB, Gorman J, McDermott AB, Harris AK, Zhou T, Kwong PD, Shapiro L, Mascola JR, Graham BS, Kanekiyo M. Co-immunization with hemagglutinin stem immunogens elicits cross-group neutralizing antibodies and broad protection against influenza A viruses. Immunity 2022; 55:2405-2418.e7. [PMID: 36356572 PMCID: PMC9772109 DOI: 10.1016/j.immuni.2022.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/19/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022]
Abstract
Current influenza vaccines predominantly induce immunity to the hypervariable hemagglutinin (HA) head, requiring frequent vaccine reformulation. Conversely, the immunosubdominant yet conserved HA stem harbors a supersite that is targeted by broadly neutralizing antibodies (bnAbs), representing a prime target for universal vaccines. Here, we showed that the co-immunization of two HA stem immunogens derived from group 1 and 2 influenza A viruses elicits cross-group protective immunity and neutralizing antibody responses in mice, ferrets, and nonhuman primates (NHPs). Immunized mice were protected from multiple group 1 and 2 viruses, and all animal models showed broad serum-neutralizing activity. A bnAb isolated from an immunized NHP broadly neutralized and protected against diverse viruses, including H5N1 and H7N9. Genetic and structural analyses revealed strong homology between macaque and human bnAbs, illustrating common biophysical constraints for acquiring cross-group specificity. Vaccine elicitation of stem-directed cross-group-protective immunity represents a step toward the development of broadly protective influenza vaccines.
Collapse
Affiliation(s)
- Syed M Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gabriele Cerutti
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Crystal Sao-Fong Cheung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Gallagher
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Brand
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Madhu Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Brian E Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sila Ataca
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Audray K Harris
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Oh J, Subbiah J, Kim KH, Park BR, Bhatnagar N, Garcia KR, Liu R, Jung YJ, Shin CH, Seong BL, Kang SM. Impact of hemagglutination activity and M2e immunity on conferring protection against influenza viruses. Virology 2022; 574:37-46. [PMID: 35914365 PMCID: PMC9978532 DOI: 10.1016/j.virol.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/05/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
To improve cross-protection of influenza vaccination, we tested conjugation of conserved M2e epitopes to the surface of inactivated influenza virus (iPR8-M2e*). Treatment of virus with chemical cross-linker led to diminished hemagglutination activity and failure to induce hemagglutination inhibiting antibodies. Conjugated iPR8-M2e* vaccine was less protective against homologous and heterosubtypic viruses, despite the induction of virus-specific binding IgG antibodies. In alternative approaches to enhance cross-protection, we developed a genetically linked chimeric protein (M2e-B stalk) vaccine with M2e of influenza A and hemagglutinin (HA) stalk of influenza B virus. Vaccination of mice with inactivated influenza A virus supplemented with M2e-B stalk effectively induced hemagglutination inhibiting antibodies, humoral and cellular M2e immune responses, and enhanced heterosubtypic protection. This study demonstrates the importance of HA functional integrity in influenza vaccine efficacy and that supplementation of influenza vaccines with M2e-B stalk protein could be a feasible strategy of improving cross-protection against influenza viruses.
Collapse
Affiliation(s)
- Judy Oh
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Jeeva Subbiah
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Bo Ryoung Park
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Noopur Bhatnagar
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Karla Ruiz Garcia
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Rong Liu
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Yu-Jin Jung
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Chong-Hyun Shin
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Baik-Lin Seong
- Department of Microbiology, College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sang-Moo Kang
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
14
|
Subbiah J, Oh J, Kim KH, Shin CH, Park BR, Bhatnagar N, Seong BL, Wang BZ, Kang SM. A chimeric thermostable M2e and H3 stalk-based universal influenza A virus vaccine. NPJ Vaccines 2022; 7:68. [PMID: 35768475 PMCID: PMC9243060 DOI: 10.1038/s41541-022-00498-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/16/2022] [Indexed: 12/30/2022] Open
Abstract
We developed a new chimeric M2e and H3 hemagglutinin (HA) stalk protein vaccine (M2e-H3 stalk) by genetic engineering of modified H3 stalk domain conjugated with conserved M2e epitopes to overcome the drawbacks of low efficacy by monomeric domain-based universal vaccines. M2e-H3 stalk protein expressed and purified from Escherichia coli was thermostable, displaying native-like antigenic epitopes recognized by antisera of different HA subtype proteins and influenza A virus infections. Adjuvanted M2e-H3 stalk vaccination induced M2e and stalk-specific IgG antibodies recognizing viral antigens on virus particles and on the infected cell surface, CD4+ and CD8+ T-cell responses, and antibody-dependent cytotoxic cell surrogate activity in mice. M2e-H3 stalk was found to confer protection against heterologous and heterosubtypic cross-group subtype viruses (H1N1, H5N1, H9N2, H3N2, H7N9) at similar levels in adult and aged mice. These results provide evidence that M2e-H3 stalk chimeric proteins can be developed as a universal influenza A virus vaccine candidate for young and aged populations.
Collapse
Affiliation(s)
- Jeeva Subbiah
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Judy Oh
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Chong-Hyun Shin
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Bo Ryoung Park
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Noopur Bhatnagar
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Baik-Lin Seong
- Department of Microbiology, College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
15
|
McKay PF, Zhou J, Frise R, Blakney AK, Bouton CR, Wang Z, Hu K, Samnuan K, Brown JC, Kugathasan R, Yeow J, Stevens MM, Barclay WS, Tregoning JS, Shattock RJ. Polymer formulated self-amplifying RNA vaccine is partially protective against influenza virus infection in ferrets. OXFORD OPEN IMMUNOLOGY 2022; 3:iqac004. [PMID: 35996628 PMCID: PMC9384352 DOI: 10.1093/oxfimm/iqac004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/03/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
COVID-19 has demonstrated the power of RNA vaccines as part of a pandemic response toolkit. Another virus with pandemic potential is influenza. Further development of RNA vaccines in advance of a future influenza pandemic will save time and lives. As RNA vaccines require formulation to enter cells and induce antigen expression, the aim of this study was to investigate the impact of a recently developed bioreducible cationic polymer, pABOL for the delivery of a self-amplifying RNA (saRNA) vaccine for seasonal influenza virus in mice and ferrets. Mice and ferrets were immunized with pABOL formulated saRNA vaccines expressing either haemagglutinin (HA) from H1N1 or H3N2 influenza virus in a prime boost regime. Antibody responses, both binding and functional were measured in serum after immunization. Animals were then challenged with a matched influenza virus either directly by intranasal inoculation or in a contact transmission model. While highly immunogenic in mice, pABOL-formulated saRNA led to variable responses in ferrets. Animals that responded to the vaccine with higher levels of influenza virus-specific neutralizing antibodies were more protected against influenza virus infection. pABOL-formulated saRNA is immunogenic in ferrets, but further optimization of RNA vaccine formulation and constructs is required to increase the quality and quantity of the antibody response to the vaccine.
Collapse
Affiliation(s)
- P F McKay
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - J Zhou
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - R Frise
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - A K Blakney
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - C R Bouton
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - Z Wang
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - K Hu
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - K Samnuan
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - J C Brown
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - R Kugathasan
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - J Yeow
- Departments of Materials and Bioengineering, Institute of Biomedical Engineering, Imperial College London , London SW7 2AZ, UK
| | - M M Stevens
- Departments of Materials and Bioengineering, Institute of Biomedical Engineering, Imperial College London , London SW7 2AZ, UK
| | - W S Barclay
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - J S Tregoning
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - R J Shattock
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| |
Collapse
|
16
|
Subbbiah J, Oh J, Kim KH, Shin CH, Park BR, Bhatnagar N, Jung YJ, Lee Y, Wang BZ, Seong BL, Kang SM. Thermostable H1 hemagglutinin stem with M2e epitopes provides broad cross-protection against group1 and 2 influenza A viruses. Mol Ther Methods Clin Dev 2022; 26:38-51. [PMID: 35755946 PMCID: PMC9198381 DOI: 10.1016/j.omtm.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
Hemagglutinin (HA) stem-based vaccines have limitations in providing broad and effective protection against cross-group influenza viruses, despite being a promising universal vaccine target. To overcome the limited cross-protection and low efficacy by HA stem vaccination, we genetically engineered a chimeric conjugate of thermostable H1 HA stem and highly conserved M2e repeat (M2e-H1stem), which was expressed at high yields in Escherichia coli. M2e-H1stem protein presented native-like epitopes reactive to antisera of live virus infection. M2e-H1stem protein vaccination of mice induced strong M2e- and HA stem-specific immune responses, conferring broadly effective cross-protection against both antigenically distinct group 1 (H1N1, H5N1, and H9N2 subtypes) and group 2 (H3N2 and H7N9 subtypes) seasonal and pandemic potential influenza viruses. M2e-H1stem vaccination generated CD4+ and CD8+ T cell responses and antibody-dependent cytotoxic cellular and humoral immunity, which contributed to enhancing cross-protection. Furthermore, comparable broad cross-group protection was observed in older aged mice after M2e-H1stem vaccination. This study provides evidence warranting further development of chimeric M2e-stem proteins as a promising universal influenza vaccine candidate in adult and aged populations.
Collapse
Affiliation(s)
- Jeeva Subbbiah
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 718 P.O. Box 5035, Atlanta, GA 30303, USA
| | - Judy Oh
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 718 P.O. Box 5035, Atlanta, GA 30303, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 718 P.O. Box 5035, Atlanta, GA 30303, USA
| | - Chong Hyun Shin
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 718 P.O. Box 5035, Atlanta, GA 30303, USA
| | - Bo Ryoung Park
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 718 P.O. Box 5035, Atlanta, GA 30303, USA
| | - Noopur Bhatnagar
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 718 P.O. Box 5035, Atlanta, GA 30303, USA
| | - Yu-Jin Jung
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 718 P.O. Box 5035, Atlanta, GA 30303, USA
| | - Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 718 P.O. Box 5035, Atlanta, GA 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 718 P.O. Box 5035, Atlanta, GA 30303, USA
| | - Baik-Lin Seong
- Department of Microbiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
- Vaccine Innovative Technology Alliance (VITAL), Seoul 03722, Republic of Korea
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 718 P.O. Box 5035, Atlanta, GA 30303, USA
- Corresponding author Sang-Moo Kang, PhD, Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 718 P.O. Box 5035, Atlanta, GA 30303, USA.
| |
Collapse
|
17
|
Kar U, Khaleeq S, Garg P, Bhat M, Reddy P, Vignesh VS, Upadhyaya A, Das M, Chakshusmathi G, Pandey S, Dutta S, Varadarajan R. Comparative Immunogenicity of Bacterially Expressed Soluble Trimers and Nanoparticle Displayed Influenza Hemagglutinin Stem Immunogens. Front Immunol 2022; 13:890622. [PMID: 35720346 PMCID: PMC9204493 DOI: 10.3389/fimmu.2022.890622] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Current influenza vaccines need to be updated annually due to mutations in the globular head of the viral surface protein, hemagglutinin (HA). To address this, vaccine candidates have been designed based on the relatively conserved HA stem domain and have shown protective efficacy in animal models. Oligomerization of the antigens either by fusion to oligomerization motifs or display on self-assembling nanoparticle scaffolds, can induce more potent immune responses compared to the corresponding monomeric antigen due to multivalent engagement of B-cells. Since nanoparticle display can increase manufacturing complexity, and often involves one or more mammalian cell expressed components, it is important to characterize and compare various display and oligomerization scaffolds. Using a structure guided approach, we successfully displayed multiple copies of a previously designed soluble, trimeric influenza stem domain immunogen, pH1HA10, on the ferritin like protein, MsDps2 (12 copies), Ferritin (24 copies) and Encapsulin (180 copies). All proteins were expressed in Escherichia coli. The nanoparticle fusion immunogens were found to be well folded and bound to the influenza stem directed broadly neutralizing antibodies with high affinity. An 8.5 Å Cryo-EM map of Msdps2-pH1HA10 confirmed the successful design of the nanoparticle fusion immunogen. Mice immunization studies with the soluble trimeric stem and nanoparticle fusion constructs revealed that all of them were immunogenic, and protected mice against homologous (A/Belgium/145-MA/2009) and heterologous (A/Puerto Rico/8/1934) challenge with 10MLD50 mouse adapted virus. Although nanoparticle display conferred a small but statistically significant improvement in protection relative to the soluble trimer in a homologous challenge, heterologous protection was similar in both nanoparticle-stem immunized and trimeric stem immunized groups. Such rapidly producible, bacterially expressed antigens and nanoparticle scaffolds are useful modalities to tackle future influenza pandemics.
Collapse
Affiliation(s)
- Uddipan Kar
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | - Sara Khaleeq
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | - Priyanka Garg
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | - Madhuraj Bhat
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | - Poorvi Reddy
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | | | - Aditya Upadhyaya
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | - Mili Das
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | - Ghadiyaram Chakshusmathi
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | - Suman Pandey
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | - Somnath Dutta
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
18
|
Caradonna TM, Schmidt AG. Protein engineering strategies for rational immunogen design. NPJ Vaccines 2021; 6:154. [PMID: 34921149 PMCID: PMC8683408 DOI: 10.1038/s41541-021-00417-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Antibody immunodominance refers to the preferential and asymmetric elicitation of antibodies against specific epitopes on a complex protein antigen. Traditional vaccination approaches for rapidly evolving pathogens have had limited success in part because of this phenomenon, as elicited antibodies preferentially target highly variable regions of antigens, and thus do not confer long lasting protection. While antibodies targeting functionally conserved epitopes have the potential to be broadly protective, they often make up a minority of the overall repertoire. Here, we discuss recent protein engineering strategies used to favorably alter patterns of immunodominance, and selectively focus antibody responses toward broadly protective epitopes in the pursuit of next-generation vaccines for rapidly evolving pathogens.
Collapse
Affiliation(s)
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
19
|
Patel DR, Field CJ, Septer KM, Sim DG, Jones MJ, Heinly TA, Vanderford TH, McGraw EA, Sutton TC. Transmission and Protection against Reinfection in the Ferret Model with the SARS-CoV-2 USA-WA1/2020 Reference Isolate. J Virol 2021; 95:e0223220. [PMID: 33827954 PMCID: PMC8315962 DOI: 10.1128/jvi.02232-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/02/2021] [Indexed: 01/10/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has initiated a global pandemic, and several vaccines have now received emergency use authorization. Using the reference strain SARS-CoV-2 USA-WA1/2020, we evaluated modes of transmission and the ability of prior infection or vaccine-induced immunity to protect against infection in ferrets. Ferrets were semipermissive to infection with the USA-WA1/2020 isolate. When transmission was assessed via the detection of viral RNA (vRNA) at multiple time points, direct contact transmission was efficient to 3/3 and 3/4 contact animals in 2 respective studies, while respiratory droplet transmission was poor to only 1/4 contact animals. To determine if previously infected ferrets were protected against reinfection, ferrets were rechallenged 28 or 56 days postinfection. Following viral challenge, no infectious virus was recovered in nasal wash samples. In addition, levels of vRNA in the nasal wash were several orders of magnitude lower than during primary infection, and vRNA was rapidly cleared. To determine if intramuscular vaccination protected ferrets, ferrets were vaccinated using a prime-boost strategy with the S protein receptor-binding domain formulated with an oil-in-water adjuvant. Upon viral challenge, none of the mock or vaccinated animals were protected against infection, and there were no significant differences in vRNA or infectious virus titers in the nasal wash. Combined, these studies demonstrate direct contact is the predominant mode of transmission of the USA-WA1/2020 isolate in ferrets and that immunity to SARS-CoV-2 is maintained for at least 56 days. Our studies also indicate protection of the upper respiratory tract against SARS-CoV-2 will require vaccine strategies that mimic natural infection or induce site-specific immunity. IMPORTANCE The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) USA-WA1/2020 strain is a CDC reference strain used by multiple research laboratories. Here, we show that the predominant mode of transmission of this isolate in ferrets is by direct contact. We further demonstrate ferrets are protected against reinfection for at least 56 days even when levels of neutralizing antibodies are low or undetectable. Last, we show that when ferrets were vaccinated by the intramuscular route to induce antibodies against SARS-CoV-2, ferrets remain susceptible to infection of the upper respiratory tract. Collectively, these studies suggest that protection of the upper respiratory tract will require vaccine approaches that mimic natural infection.
Collapse
Affiliation(s)
- Devanshi R. Patel
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Cassandra J. Field
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
- Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), University Park, Pennsylvania, USA
| | - Kayla M. Septer
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Derek G. Sim
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biology, The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Matthew J. Jones
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biology, The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Talia A. Heinly
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
- Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), University Park, Pennsylvania, USA
| | - Thomas H. Vanderford
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Elizabeth A. McGraw
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Troy C. Sutton
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
- Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), University Park, Pennsylvania, USA
| |
Collapse
|
20
|
Chakraborty S, Mallajosyula V, Tato CM, Tan GS, Wang TT. SARS-CoV-2 vaccines in advanced clinical trials: Where do we stand? Adv Drug Deliv Rev 2021; 172:314-338. [PMID: 33482248 PMCID: PMC7816567 DOI: 10.1016/j.addr.2021.01.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
The ongoing SARS-CoV-2 pandemic has led to the focused application of resources and scientific expertise toward the goal of developing investigational vaccines to prevent COVID-19. The highly collaborative global efforts by private industry, governments and non-governmental organizations have resulted in a number of SARS-CoV-2 vaccine candidates moving to Phase III trials in a period of only months since the start of the pandemic. In this review, we provide an overview of the preclinical and clinical data on SARS-CoV-2 vaccines that are currently in Phase III clinical trials and in few cases authorized for emergency use. We further discuss relevant vaccine platforms and provide a discussion of SARS-CoV-2 antigens that may be targeted to increase the breadth and durability of vaccine responses.
Collapse
Affiliation(s)
- Saborni Chakraborty
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA
| | - Vamsee Mallajosyula
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Cristina M Tato
- Infectious Disease Initiative, Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gene S Tan
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA; Department of Infectious Diseases, University of California San Diego, La Jolla, CA 92037, USA
| | - Taia T Wang
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
21
|
Darricarrère N, Qiu Y, Kanekiyo M, Creanga A, Gillespie RA, Moin SM, Saleh J, Sancho J, Chou TH, Zhou Y, Zhang R, Dai S, Moody A, Saunders KO, Crank MC, Mascola JR, Graham BS, Wei CJ, Nabel GJ. Broad neutralization of H1 and H3 viruses by adjuvanted influenza HA stem vaccines in nonhuman primates. Sci Transl Med 2021; 13:13/583/eabe5449. [PMID: 33658355 DOI: 10.1126/scitranslmed.abe5449] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/28/2021] [Indexed: 12/21/2022]
Abstract
Seasonal influenza vaccines confer protection against specific viral strains but have restricted breadth that limits their protective efficacy. The H1 and H3 subtypes of influenza A virus cause most of the seasonal epidemics observed in humans and are the major drivers of influenza A virus-associated mortality. The consequences of pandemic spread of COVID-19 underscore the public health importance of prospective vaccine development. Here, we show that headless hemagglutinin (HA) stabilized-stem immunogens presented on ferritin nanoparticles elicit broadly neutralizing antibody (bnAb) responses to diverse H1 and H3 viruses in nonhuman primates (NHPs) when delivered with a squalene-based oil-in-water emulsion adjuvant, AF03. The neutralization potency and breadth of antibodies isolated from NHPs were comparable to human bnAbs and extended to mismatched heterosubtypic influenza viruses. Although NHPs lack the immunoglobulin germline VH1-69 residues associated with the most prevalent human stem-directed bnAbs, other gene families compensated to generate bnAbs. Isolation and structural analyses of vaccine-induced bnAbs revealed extensive interaction with the fusion peptide on the HA stem, which is essential for viral entry. Antibodies elicited by these headless HA stabilized-stem vaccines neutralized diverse H1 and H3 influenza viruses and shared a mode of recognition analogous to human bnAbs, suggesting that these vaccines have the potential to confer broadly protective immunity against diverse viruses responsible for seasonal and pandemic influenza infections in humans.
Collapse
Affiliation(s)
| | - Yu Qiu
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Syed M Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Jose Sancho
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Te-Hui Chou
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Yanfeng Zhou
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Ruijun Zhang
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Shujia Dai
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chih-Jen Wei
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA.
| | - Gary J Nabel
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA.
| |
Collapse
|
22
|
Abstract
Influenza viruses cause seasonal epidemics and represent a pandemic risk. With current vaccine methods struggling to protect populations against emerging strains, there is a demand for a next-generation flu vaccine capable of providing broad protection. Recombinant biotechnology, combined with nanomedicine techniques, could address this demand by increasing immunogenicity and directing immune responses toward conserved antigenic targets on the virus. Various nanoparticle candidates have been tested for use in vaccines, including virus-like particles, protein and carbohydrate nanoconstructs, antigen-carrying lipid particles, and synthetic and inorganic particles modified for antigen presentation. These methods have yielded some promising results, including protection in animal models against antigenically distinct influenza strains, production of antibodies with broad reactivity, and activation of potent T cell responses. Based on the evidence of current research, it is feasible that the next generation of influenza vaccines will combine recombinant antigens with nanoparticle carriers.
Collapse
MESH Headings
- Animals
- Antigens, Viral/administration & dosage
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Disease Models, Animal
- Drug Carriers/chemistry
- Humans
- Immunogenicity, Vaccine
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/pharmacokinetics
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Nanoparticles/chemistry
- Protein Engineering
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/pharmacokinetics
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Proteins/administration & dosage
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/pharmacokinetics
Collapse
Affiliation(s)
- Zachary R Sia
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Matthew S Miller
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Diseases Research, McMaster Immunology Research Centre, McMaster University, Ontario, Canada
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
23
|
Kerstetter LJ, Buckley S, Bliss CM, Coughlan L. Adenoviral Vectors as Vaccines for Emerging Avian Influenza Viruses. Front Immunol 2021; 11:607333. [PMID: 33633727 PMCID: PMC7901974 DOI: 10.3389/fimmu.2020.607333] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
It is evident that the emergence of infectious diseases, which have the potential for spillover from animal reservoirs, pose an ongoing threat to global health. Zoonotic transmission events have increased in frequency in recent decades due to changes in human behavior, including increased international travel, the wildlife trade, deforestation, and the intensification of farming practices to meet demand for meat consumption. Influenza A viruses (IAV) possess a number of features which make them a pandemic threat and a major concern for human health. Their segmented genome and error-prone process of replication can lead to the emergence of novel reassortant viruses, for which the human population are immunologically naïve. In addition, the ability for IAVs to infect aquatic birds and domestic animals, as well as humans, increases the likelihood for reassortment and the subsequent emergence of novel viruses. Sporadic spillover events in the past few decades have resulted in human infections with highly pathogenic avian influenza (HPAI) viruses, with high mortality. The application of conventional vaccine platforms used for the prevention of seasonal influenza viruses, such as inactivated influenza vaccines (IIVs) or live-attenuated influenza vaccines (LAIVs), in the development of vaccines for HPAI viruses is fraught with challenges. These issues are associated with manufacturing under enhanced biosafety containment, and difficulties in propagating HPAI viruses in embryonated eggs, due to their propensity for lethality in eggs. Overcoming manufacturing hurdles through the use of safer backbones, such as low pathogenicity avian influenza viruses (LPAI), can also be a challenge if incompatible with master strain viruses. Non-replicating adenoviral (Ad) vectors offer a number of advantages for the development of vaccines against HPAI viruses. Their genome is stable and permits the insertion of HPAI virus antigens (Ag), which are expressed in vivo following vaccination. Therefore, their manufacture does not require enhanced biosafety facilities or procedures and is egg-independent. Importantly, Ad vaccines have an exemplary safety and immunogenicity profile in numerous human clinical trials, and can be thermostabilized for stockpiling and pandemic preparedness. This review will discuss the status of Ad-based vaccines designed to protect against avian influenza viruses with pandemic potential.
Collapse
Affiliation(s)
- Lucas J. Kerstetter
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Stephen Buckley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Carly M. Bliss
- Division of Cancer & Genetics, Division of Infection & Immunity, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
24
|
Modular vaccine platform based on the norovirus-like particle. J Nanobiotechnology 2021; 19:25. [PMID: 33468139 PMCID: PMC7815183 DOI: 10.1186/s12951-021-00772-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Virus-like particle (VLP) vaccines have recently emerged as a safe and effective alternative to conventional vaccine technologies. The strong immunogenic effects of VLPs can be harnessed for making vaccines against any pathogen by decorating VLPs with antigens from the pathogen. Producing the antigenic pathogen fragments and the VLP platform separately makes vaccine development rapid and convenient. Here we decorated the norovirus-like particle with two conserved influenza antigens and tested for the immunogenicity of the vaccine candidates in BALB/c mice. RESULTS SpyTagged noro-VLP was expressed with high efficiency in insect cells and purified using industrially scalable methods. Like the native noro-VLP, SpyTagged noro-VLP is stable for months when refrigerated in a physiological buffer. The conserved influenza antigens were produced separately as SpyCatcher fusions in E. coli before covalent conjugation on the surface of noro-VLP. The noro-VLP had a high adjuvant effect, inducing high titers of antibody production against the antigens presented on its surface. CONCLUSIONS The modular noro-VLP vaccine platform presented here offers a rapid, convenient and safe method to present various soluble protein antigens to the immune system for vaccination and antibody production purposes.
Collapse
|
25
|
Carreño JM, McDonald JU, Hurst T, Rigsby P, Atkinson E, Charles L, Nachbagauer R, Behzadi MA, Strohmeier S, Coughlan L, Aydillo T, Brandenburg B, García-Sastre A, Kaszas K, Levine MZ, Manenti A, McDermott AB, Montomoli E, Muchene L, Narpala SR, Perera RAPM, Salisch NC, Valkenburg SA, Zhou F, Engelhardt OG, Krammer F. Development and Assessment of a Pooled Serum as Candidate Standard to Measure Influenza A Virus Group 1 Hemagglutinin Stalk-Reactive Antibodies. Vaccines (Basel) 2020; 8:vaccines8040666. [PMID: 33182279 PMCID: PMC7712758 DOI: 10.3390/vaccines8040666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
The stalk domain of the hemagglutinin has been identified as a target for induction of protective antibody responses due to its high degree of conservation among numerous influenza subtypes and strains. However, current assays to measure stalk-based immunity are not standardized. Hence, harmonization of assay readouts would help to compare experiments conducted in different laboratories and increase confidence in results. Here, serum samples from healthy individuals (n = 110) were screened using a chimeric cH6/1 hemagglutinin enzyme-linked immunosorbent assay (ELISA) that measures stalk-reactive antibodies. We identified samples with moderate to high IgG anti-stalk antibody levels. Likewise, screening of the samples using the mini-hemagglutinin (HA) headless construct #4900 and analysis of the correlation between the two assays confirmed the presence and specificity of anti-stalk antibodies. Additionally, samples were characterized by a cH6/1N5 virus-based neutralization assay, an antibody-dependent cell-mediated cytotoxicity (ADCC) assay, and competition ELISAs, using the stalk-reactive monoclonal antibodies KB2 (mouse) and CR9114 (human). A “pooled serum” (PS) consisting of a mixture of selected serum samples was generated. The PS exhibited high levels of stalk-reactive antibodies, had a cH6/1N5-based neutralization titer of 320, and contained high levels of stalk-specific antibodies with ADCC activity. The PS, along with blinded samples of varying anti-stalk antibody titers, was distributed to multiple collaborators worldwide in a pilot collaborative study. The samples were subjected to different assays available in the different laboratories, to measure either binding or functional properties of the stalk-reactive antibodies contained in the serum. Results from binding and neutralization assays were analyzed to determine whether use of the PS as a standard could lead to better agreement between laboratories. The work presented here points the way towards the development of a serum standard for antibodies to the HA stalk domain of phylogenetic group 1.
Collapse
Affiliation(s)
- Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
| | - Jacqueline U. McDonald
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar EN6 3QG, UK; (J.U.M.); (T.H.); (L.C.)
| | - Tara Hurst
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar EN6 3QG, UK; (J.U.M.); (T.H.); (L.C.)
| | - Peter Rigsby
- Division of Analytical and Biological Sciences, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar EN6 3QG, UK; (P.R.); (E.A.)
| | - Eleanor Atkinson
- Division of Analytical and Biological Sciences, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar EN6 3QG, UK; (P.R.); (E.A.)
| | - Lethia Charles
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar EN6 3QG, UK; (J.U.M.); (T.H.); (L.C.)
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
| | - Mohammad Amin Behzadi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
| | - Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
- Global Health and Emerging Pathogens Institute, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA
| | - Boerries Brandenburg
- Janssen Vaccines & Prevention BV, 2333 CP Leiden, The Netherlands; (B.B.); (K.K.); (L.M.); (N.C.S.)
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
- Global Health and Emerging Pathogens Institute, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA
| | - Krisztian Kaszas
- Janssen Vaccines & Prevention BV, 2333 CP Leiden, The Netherlands; (B.B.); (K.K.); (L.M.); (N.C.S.)
| | - Min Z. Levine
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA;
| | | | - Adrian B. McDermott
- Vaccine Immunology Program (VIP), Vaccine Research Center (VRC), National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (A.B.M.); (S.R.N.)
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
| | - Leacky Muchene
- Janssen Vaccines & Prevention BV, 2333 CP Leiden, The Netherlands; (B.B.); (K.K.); (L.M.); (N.C.S.)
| | - Sandeep R. Narpala
- Vaccine Immunology Program (VIP), Vaccine Research Center (VRC), National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (A.B.M.); (S.R.N.)
| | - Ranawaka A. P. M. Perera
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (R.A.P.M.P.); (S.A.V.)
| | - Nadine C. Salisch
- Janssen Vaccines & Prevention BV, 2333 CP Leiden, The Netherlands; (B.B.); (K.K.); (L.M.); (N.C.S.)
| | - Sophie A. Valkenburg
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (R.A.P.M.P.); (S.A.V.)
| | - Fan Zhou
- Influenza Center, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway;
- K.G. Jebsen Center for influenza vaccines, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Othmar G. Engelhardt
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar EN6 3QG, UK; (J.U.M.); (T.H.); (L.C.)
- Correspondence: (O.G.E.); (F.K.)
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
- Correspondence: (O.G.E.); (F.K.)
| |
Collapse
|
26
|
Skarlupka AL, Handel A, Ross TM. Influenza hemagglutinin antigenic distance measures capture trends in HAI differences and infection outcomes, but are not suitable predictive tools. Vaccine 2020; 38:5822-5830. [PMID: 32682618 DOI: 10.1016/j.vaccine.2020.06.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/28/2020] [Accepted: 06/16/2020] [Indexed: 01/24/2023]
Abstract
Vaccination is the most effective method to combat influenza. Vaccine effectiveness is influenced by the antigenic distance between the vaccine strain and the actual circulating virus. Amino acid sequence based methods of quantifying the antigenic distance were designed to predict influenza vaccine effectiveness in humans. The use of these antigenic distance measures has been proposed as an additive method for seasonal vaccine selection. In this report, several antigenic distance measures were evaluated as predictors of hemagglutination inhibition titer differences and clinical outcomes following influenza vaccination or infection in mice or ferrets. The antigenic distance measures described the increasing trend in the change of HAI titer, lung viral titer and percent weight loss in mice and ferrets. However, the variability of outcome variables produced wide prediction intervals for any given antigenic distance value. The amino acid substitution based antigenic distance measures were no better predictors of viral load and weight loss than HAI titer differences, the current predictive measure of immunological correlate of protection for clinical signs after challenge.
Collapse
Affiliation(s)
- Amanda L Skarlupka
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Andreas Handel
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
27
|
De Jong NMC, Aartse A, Van Gils MJ, Eggink D. Development of broadly reactive influenza vaccines by targeting the conserved regions of the hemagglutinin stem and head domains. Expert Rev Vaccines 2020; 19:563-577. [PMID: 32510256 DOI: 10.1080/14760584.2020.1777861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Influenza virus infections cause serious illness in millions of people each year. Although influenza virus vaccines are available, they are not optimally effective due to mismatches between the influenza virus strains used for the vaccine and the circulating strains. To improve protection by vaccines, a broadly protective or universal vaccine may be required. Strategies to develop universal vaccines aim to elicit broadly reactive antibodies, which target regions on the viral hemagglutinin (HA) protein which are conserved between strains. Broadly reactive antibodies have helped to identify such targets and can guide the design of such a vaccine. AREAS COVERED The first part of this review provides an in-depth overview of broadly reactive anti-HA antibodies, discussing their origin, breadth and their mechanisms of protection. The second part discusses the technical design and mode of action of potential universal vaccine candidates that aim to elicit these broadly reactive antibodies and provide protection against a majority of influenza strains. EXPERT OPINION While great strides have been made in the development of universal influenza vaccine candidates, real-life use still requires improvement of stability, enhancement of their breadth of protection and ease of production, while efficacies need to be determined in human trials.
Collapse
Affiliation(s)
- Nina M C De Jong
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam , Amsterdam, The Netherlands
| | - Aafke Aartse
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam , Amsterdam, The Netherlands.,Department of Virology, Biomedical Primate Research Centre , Rijswijk, The Netherlands
| | - Marit J Van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam , Amsterdam, The Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam , Amsterdam, The Netherlands
| |
Collapse
|
28
|
Shirvani E, Paldurai A, Varghese BP, Samal SK. Contributions of HA1 and HA2 Subunits of Highly Pathogenic Avian Influenza Virus in Induction of Neutralizing Antibodies and Protection in Chickens. Front Microbiol 2020; 11:1085. [PMID: 32582071 PMCID: PMC7291869 DOI: 10.3389/fmicb.2020.01085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/30/2020] [Indexed: 01/04/2023] Open
Abstract
Highly pathogenic avian influenza virus (HPAIV) subtype H5N1 causes a devastating disease in poultry. Vaccination is an effective method of controlling avian influenza virus (AIV) infection in poultry. The hemagglutinin (HA) protein is the major determinant recognized by the immune system of the host. Cleavage of the HA precursor HA0 into HA1 and HA2 subunits is required for infectivity of the AIV. We evaluated the individual contributions of HA1 and HA2 subunits to the induction of HPAIV serum neutralizing antibodies and protective immunity in chickens. Using reverse genetics, recombinant Newcastle disease viruses (rNDVs) were generated, each expressing HA1, HA2, or HA protein of H5N1 HPAIV. Chickens were immunized with rNDVs expressing HA1, HA2, or HA. Immunization with HA induced high titers of serum neutralizing antibodies and prevented death following challenge. Immunization with HA1 or HA2 alone neither induced serum neutralizing antibodies nor prevented death following challenge. Our results suggest that interaction of HA1 and HA2 subunits is necessary for the display of epitopes on HA protein involved in the induction of neutralizing antibodies and protection. These epitopes are lost when the two subunits are separated. Therefore, vaccination with either a HA1 or HA2 subunit may not provide protection against HPAIV.
Collapse
Affiliation(s)
- Edris Shirvani
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, College Park, MD, United States
| | - Anandan Paldurai
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, College Park, MD, United States
| | - Berin P Varghese
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, College Park, MD, United States
| | - Siba K Samal
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
29
|
Boyoglu-Barnum S, Hutchinson GB, Boyington JC, Moin SM, Gillespie RA, Tsybovsky Y, Stephens T, Vaile JR, Lederhofer J, Corbett KS, Fisher BE, Yassine HM, Andrews SF, Crank MC, McDermott AB, Mascola JR, Graham BS, Kanekiyo M. Glycan repositioning of influenza hemagglutinin stem facilitates the elicitation of protective cross-group antibody responses. Nat Commun 2020; 11:791. [PMID: 32034141 PMCID: PMC7005838 DOI: 10.1038/s41467-020-14579-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/18/2020] [Indexed: 11/23/2022] Open
Abstract
The conserved hemagglutinin (HA) stem has been a focus of universal influenza vaccine efforts. Influenza A group 1 HA stem-nanoparticles have been demonstrated to confer heterosubtypic protection in animals; however, the protection does not extend to group 2 viruses, due in part to differences in glycosylation between group 1 and 2 stems. Here, we show that introducing the group 2 glycan at Asn38HA1 to a group 1 stem-nanoparticle (gN38 variant) based on A/New Caledonia/20/99 (H1N1) broadens antibody responses to cross-react with group 2 HAs. Immunoglobulins elicited by the gN38 variant provide complete protection against group 2 H7N9 virus infection, while the variant loses protection against a group 1 H5N1 virus. The N38HA1 glycan thus is pivotal in directing antibody responses by controlling access to group-determining stem epitopes. Precise targeting of stem-directed antibody responses to the site of vulnerability by glycan repositioning may be a step towards achieving cross-group influenza protection.
Collapse
Affiliation(s)
- Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Geoffrey B Hutchinson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Syed M Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, ATRF, 8560 Progressive Drive, Frederick, MD, 21702, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, ATRF, 8560 Progressive Drive, Frederick, MD, 21702, USA
| | - John R Vaile
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Brian E Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, New Research Complex Zone 5, Doha, Qatar
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA.
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
30
|
Biswas A, Chakrabarti AK, Dutta S. Current challenges: from the path of “original antigenic sin” towards the development of universal flu vaccines. Int Rev Immunol 2019; 39:21-36. [DOI: 10.1080/08830185.2019.1685990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Asim Biswas
- Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Alok K. Chakrabarti
- Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
31
|
Fox A, Quinn KM, Subbarao K. Extending the Breadth of Influenza Vaccines: Status and Prospects for a Universal Vaccine. Drugs 2019; 78:1297-1308. [PMID: 30088204 DOI: 10.1007/s40265-018-0958-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite the widespread use of seasonal influenza vaccines, there is urgent need for a universal influenza vaccine to provide broad, long-term protection. A number of factors underpin this urgency, including threats posed by zoonotic and pandemic influenza A viruses, suboptimal effectiveness of seasonal influenza vaccines, and concerns surrounding the effects of annual vaccination. In this article, we discuss approaches that are being investigated to increase influenza vaccine breadth, which are near-term, readily achievable approaches to increase the range of strains recognized within a subtype, or longer-term more challenging approaches to produce a truly universal influenza vaccine. Adjuvanted and neuraminidase-optimized vaccines are emerging as the most feasible and promising approaches to extend protection to cover a broader range of strains within a subtype. The goal of developing a universal vaccine has also been advanced with the design of immunogenic influenza HA-stem constructs that induce broadly neutralizing antibodies. However, these constructs are not yet sufficiently immunogenic to induce lasting universal immunity in humans. Advances in understanding how T cells mediate protection, and how viruses are packaged, have facilitated the rationale design and delivery of replication-incompetent virus vaccines that induce broad protection mediated by lung-resident memory T cells. While the lack of clear mechanistic correlates of protection, other than haemagglutination-inhibiting antibodies, remains an impediment to further advancing novel influenza vaccines, the pressing need for such a vaccine is supporting development of highly innovative and effective strategies.
Collapse
Affiliation(s)
- Annette Fox
- WHO Collaborating Centre for Reference and Research on Influenza, and the Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC, Australia
| | - Kylie M Quinn
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza, and the Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC, Australia.
| |
Collapse
|
32
|
Auladell M, Jia X, Hensen L, Chua B, Fox A, Nguyen THO, Doherty PC, Kedzierska K. Recalling the Future: Immunological Memory Toward Unpredictable Influenza Viruses. Front Immunol 2019; 10:1400. [PMID: 31312199 PMCID: PMC6614380 DOI: 10.3389/fimmu.2019.01400] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/03/2019] [Indexed: 01/09/2023] Open
Abstract
Persistent and durable immunological memory forms the basis of any successful vaccination protocol. Generation of pre-existing memory B cell and T cell pools is thus the key for maintaining protective immunity to seasonal, pandemic and avian influenza viruses. Long-lived antibody secreting cells (ASCs) are responsible for maintaining antibody levels in peripheral blood. Generated with CD4+ T help after naïve B cell precursors encounter their cognate antigen, the linked processes of differentiation (including Ig class switching) and proliferation also give rise to memory B cells, which then can change rapidly to ASC status after subsequent influenza encounters. Given that influenza viruses evolve rapidly as a consequence of antibody-driven mutational change (antigenic drift), the current influenza vaccines need to be reformulated frequently and annual vaccination is recommended. Without that process of regular renewal, they provide little protection against “drifted” (particularly H3N2) variants and are mainly ineffective when a novel pandemic (2009 A/H1N1 “swine” flu) strain suddenly emerges. Such limitation of antibody-mediated protection might be circumvented, at least in part, by adding a novel vaccine component that promotes cross-reactive CD8+ T cells specific for conserved viral peptides, presented by widely distributed HLA types. Such “memory” cytotoxic T lymphocytes (CTLs) can rapidly be recalled to CTL effector status. Here, we review how B cells and follicular T cells are elicited following influenza vaccination and how they survive into a long-term memory. We describe how CD8+ CTL memory is established following influenza virus infection, and how a robust CTL recall response can lead to more rapid virus elimination by destroying virus-infected cells, and recovery. Exploiting long-term, cross-reactive CTL against the continuously evolving and unpredictable influenza viruses provides a possible mechanism for preventing a disastrous pandemic comparable to the 1918-1919 H1N1 “Spanish flu,” which killed more than 50 million people worldwide.
Collapse
Affiliation(s)
- Maria Auladell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Brendon Chua
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Annette Fox
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
33
|
Trucchi C, Paganino C, Amicizia D, Orsi A, Tisa V, Piazza MF, Icardi G, Ansaldi F. Universal influenza virus vaccines: what needs to happen next? Expert Opin Biol Ther 2019; 19:671-683. [PMID: 30957589 DOI: 10.1080/14712598.2019.1604671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Influenza occurs worldwide and causes significant disease burden in terms of morbidity, associated complications, hospitalizations, and deaths. Vaccination constitutes the primary approach for controlling influenza. Current influenza vaccines elicit a strain-specific response yet occasionally exhibit suboptimal effectiveness. This review describes the limits of available immunization tools and the future prospects and potentiality of universal influenza vaccines. AREAS COVERED New 'universal' vaccines, which are presently under development, are expected to overcome the problems related to the high variability of influenza viruses, such as the need for seasonal vaccine updates and re-vaccination. Here, we explore vaccines based on the highly conserved epitopes of the HA, NA, or extracellular domain of the influenza M2 protein, along with those based on the internal proteins such as NP and M1. EXPERT OPINION The development of a universal influenza vaccine that confers protection against homologous, drifted, and shifted influenza virus strains could obviate the need for annual reformulation and mitigate disease burden. The scientific community has long been awaiting the advent of universal influenza vaccines; these are currently under development in laboratories worldwide. If such vaccines are immunogenic, efficacious, and able to confer long-lasting immunity, they might be integrated with or supplant traditional influenza vaccines.
Collapse
Affiliation(s)
- Cecilia Trucchi
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy.,b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy
| | - Chiara Paganino
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy
| | - Daniela Amicizia
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy.,b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Andrea Orsi
- b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Valentino Tisa
- c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Maria Francesca Piazza
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Giancarlo Icardi
- b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Filippo Ansaldi
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy.,b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| |
Collapse
|
34
|
Corbett KS, Moin SM, Yassine HM, Cagigi A, Kanekiyo M, Boyoglu-Barnum S, Myers SI, Tsybovsky Y, Wheatley AK, Schramm CA, Gillespie RA, Shi W, Wang L, Zhang Y, Andrews SF, Joyce MG, Crank MC, Douek DC, McDermott AB, Mascola JR, Graham BS, Boyington JC. Design of Nanoparticulate Group 2 Influenza Virus Hemagglutinin Stem Antigens That Activate Unmutated Ancestor B Cell Receptors of Broadly Neutralizing Antibody Lineages. mBio 2019; 10:e02810-18. [PMID: 30808695 PMCID: PMC6391921 DOI: 10.1128/mbio.02810-18] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/10/2019] [Indexed: 12/22/2022] Open
Abstract
Influenza vaccines targeting the highly conserved stem of the hemagglutinin (HA) surface glycoprotein have the potential to protect against pandemic and drifted seasonal influenza viruses not covered by current vaccines. While HA stem-based immunogens derived from group 1 influenza A viruses have been shown to induce intragroup heterosubtypic protection, HA stem-specific antibody lineages originating from group 2 may be more likely to possess broad cross-group reactivity. We report the structure-guided development of mammalian-cell-expressed candidate vaccine immunogens based on influenza A virus group 2 H3 and H7 HA stem trimers displayed on self-assembling ferritin nanoparticles using an iterative, multipronged approach involving helix stabilization, loop optimization, disulfide bond addition, and side-chain repacking. These immunogens were thermostable, formed uniform and symmetric nanoparticles, were recognized by cross-group-reactive broadly neutralizing antibodies (bNAbs) with nanomolar affinity, and elicited protective, homosubtypic antibodies in mice. Importantly, several immunogens were able to activate B cells expressing inferred unmutated common ancestor (UCA) versions of cross-group-reactive human bNAbs from two multidonor classes, suggesting they could initiate elicitation of these bNAbs in humans.IMPORTANCE Current influenza vaccines are primarily strain specific, requiring annual updates, and offer minimal protection against drifted seasonal or pandemic strains. The highly conserved stem region of hemagglutinin (HA) of group 2 influenza A virus subtypes is a promising target for vaccine elicitation of broad cross-group protection against divergent strains. We used structure-guided protein engineering employing multiple protein stabilization methods simultaneously to develop group 2 HA stem-based candidate influenza A virus immunogens displayed as trimers on self-assembling nanoparticles. Characterization of antigenicity, thermostability, and particle formation confirmed structural integrity. Group 2 HA stem antigen designs were identified that, when displayed on ferritin nanoparticles, activated B cells expressing inferred unmutated common ancestor (UCA) versions of human antibody lineages associated with cross-group-reactive, broadly neutralizing antibodies (bNAbs). Immunization of mice led to protection against a lethal homosubtypic influenza virus challenge. These candidate vaccines are now being manufactured for clinical evaluation.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- B-Lymphocytes/immunology
- Cross Reactions
- Drug Carriers/metabolism
- Ferritins/metabolism
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Immunity, Heterologous
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/isolation & purification
- Mice
- Protein Multimerization
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/isolation & purification
Collapse
Affiliation(s)
- Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Syed M Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hadi M Yassine
- Qatar University Biomedical Research Center, Doha, Qatar
| | - Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sky I Myers
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Adam K Wheatley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
35
|
Structure-function analysis of neutralizing antibodies to H7N9 influenza from naturally infected humans. Nat Microbiol 2019; 4:306-315. [PMID: 30478290 DOI: 10.1038/s41564-018-0303-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022]
Abstract
Little is known about the specificities and neutralization breadth of the H7-reactive antibody repertoire induced by natural H7N9 infection in humans. We have isolated and characterized 73 H7-reactive monoclonal antibodies from peripheral B cells from four donors infected in 2013 and 2014. Of these, 45 antibodies were H7-specific, and 17 of these neutralized the virus, albeit with few somatic mutations in their variable domain sequences. An additional set of 28 antibodies, isolated from younger donors born after 1968, cross-reacted between H7 and H3 haemagglutinins in binding assays, and had accumulated significantly more somatic mutations, but were predominantly non-neutralizing in vitro. Crystal structures of three neutralizing and protective antibodies in complex with the H7 haemagglutinin revealed that they recognize overlapping residues surrounding the receptor-binding site of haemagglutinin. One of the antibodies, L4A-14, bound into the sialic acid binding site and made contacts with haemagglutinin residues that were conserved in the great majority of 2016-2017 H7N9 isolates. However, only 3 of the 17 neutralizing antibodies retained activity for the Yangtze River Delta lineage viruses isolated in 2016-2017 that have undergone antigenic change, which emphasizes the need for updated H7N9 vaccines.
Collapse
|
36
|
Epstein SL. Universal Influenza Vaccines: Progress in Achieving Broad Cross-Protection In Vivo. Am J Epidemiol 2018; 187:2603-2614. [PMID: 30084906 DOI: 10.1093/aje/kwy145] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/09/2018] [Indexed: 01/08/2023] Open
Abstract
Despite all we have learned since 1918 about influenza virus and immunity, available influenza vaccines remain inadequate to control outbreaks of unexpected strains. Universal vaccines not requiring strain matching would be a major improvement. Their composition would be independent of predicting circulating viruses and thus potentially effective against unexpected drift or pandemic strains. This commentary explores progress with candidate universal vaccines based on various target antigens. Candidates include vaccines based on conserved viral proteins such as nucleoprotein and matrix, on the conserved hemagglutinin (HA) stem, and various combinations. Discussion covers the differing evidence for each candidate vaccine demonstrating protection in animals against influenza viruses of widely divergent HA subtypes and groups; durability of protection; routes of administration, including mucosal, providing local immunity; and reduction of transmission. Human trials of some candidate universal vaccines have been completed or are underway. Interestingly, the HA stem, like nucleoprotein and matrix, induces immunity that permits some virus replication and emergence of escape mutants fit enough to cause disease. Vaccination with multiple target antigens will thus have advantages over use of single antigens. Ultimately, a universal vaccine providing long-term protection against all influenza virus strains might contribute to pandemic control and routine vaccination.
Collapse
Affiliation(s)
- Suzanne L Epstein
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
37
|
Li Z, Wan Z, Li T, Xie Q, Sun H, Chen H, Liang G, Shao H, Qin A, Ye J. A novel linear epitope crossing Group 1 and Group 2 influenza A viruses located in the helix A of HA2 derived from H7N9. Vet Microbiol 2018; 228:39-44. [PMID: 30593378 DOI: 10.1016/j.vetmic.2018.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 11/27/2022]
Abstract
In this research, four monoclonal antibodies (mAbs) were first generated as an immunogen by using the GST fusion protein that carries the fusion peptide and helix A derived from H7N9 influenza A virus (IAV). These mAbs could react with HA of H7N9, H3N2, and H9N2 with neutralizing activity. A novel linear epitope recognized by these mAbs was identified by peptide-based ELISA, and this epitope was located in TAADYKSTQSAIDQITGKLN at the C terminus of the helix A of H7N9. 3 A11, which is one of the four mAbs, could efficiently recognize the corresponding epitopes derived from H9, H7, H5, H3, and H1. Analysis of sera against the corresponding epitope from different HAs revealed that the C terminus of helix A in H9, H7, and H3 possessed dominant B cell epitopes that cross both Group 1 and Group 2 IAV, whereas the C terminus of helix A in H5 possessed only dominant B cell epitopes that cross subtypes in Group 1 virus. All these results demonstrated that the linear epitope identified in the helix A of H7N9 could be a novel target for developing broad-spectrum influenza diagnostics or vaccine candidates.
Collapse
Affiliation(s)
- Zhanping Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Zhimin Wan
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Tuofan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Quan Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Haiwei Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China.
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China.
| | - Guangchen Liang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Aijian Qin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
38
|
van der Lubbe JEM, Verspuij JWA, Huizingh J, Schmit-Tillemans SPR, Tolboom JTBM, Dekking LEHA, Kwaks T, Brandenburg B, Meijberg W, Zahn RC, Roozendaal R, Kuipers H. Mini-HA Is Superior to Full Length Hemagglutinin Immunization in Inducing Stem-Specific Antibodies and Protection Against Group 1 Influenza Virus Challenges in Mice. Front Immunol 2018; 9:2350. [PMID: 30369928 PMCID: PMC6194913 DOI: 10.3389/fimmu.2018.02350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022] Open
Abstract
Seasonal influenza vaccines are updated almost annually to match the antigenic drift in influenza hemagglutinin (HA) surface glycoprotein. A new HA stem-based antigen, the so-called “mini-HA,” was recently shown to induce cross-protective antibodies. However, cross-reactive antibodies targeting the HA stem can also be found in mice and humans after administration of seasonal vaccine. This has raised the question whether in similar conditions such a mini-HA would be able to show an increased breadth of protection over immunization with full length (FL) HA. We show in mice that in a direct comparison to H1 FL HA, using the same immunization regimen, dosing and adjuvant, a group 1 mini-HA has a higher protective efficacy against group 1 influenza virus challenges not homologous to the H1 FL HA. Although both antigens induce a similar breadth of HA subtype binding, mini-HA immunization induces significantly more HA stem-specific antibodies correlating with survival. In addition, both mini-HA and H1 FL HA immunization induce influenza neutralizing antibodies while mini-HA induces significantly higher levels of mFcγRIII activation, involved in Fc-mediated antibody effector functions. In agreement with previous findings, this confirms that more than one mechanism contributes to protection against influenza. Together our results further warrant the development of a universal influenza vaccine based on the HA stem region.
Collapse
Affiliation(s)
- Joan E M van der Lubbe
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, Netherlands
| | - Johan W A Verspuij
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, Netherlands
| | - Jeroen Huizingh
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, Netherlands
| | | | - Jeroen T B M Tolboom
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, Netherlands
| | - Liesbeth E H A Dekking
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, Netherlands
| | - Ted Kwaks
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, Netherlands
| | - Börries Brandenburg
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, Netherlands
| | - Wim Meijberg
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, Netherlands
| | - Roland C Zahn
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, Netherlands
| | - Ramon Roozendaal
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, Netherlands
| | - Harmjan Kuipers
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, Netherlands
| |
Collapse
|
39
|
Medigeshi GR, Fink K, Hegde NR. Position Paper on Road Map for RNA Virus Research in India. Front Microbiol 2018; 9:1753. [PMID: 30131779 PMCID: PMC6090158 DOI: 10.3389/fmicb.2018.01753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/13/2018] [Indexed: 11/21/2022] Open
Abstract
The Indian subcontinent with its population density, climatic conditions, means of subsistence, socioeconomic factors as well as travel and tourism presents a fertile ground for thriving of RNA viruses. Despite being pathogens of huge significance, there is very little focus on research into the biology and pathogenesis of RNA viruses in India. Studies on epidemiology and disease burden, risk factors, the immune response to RNA viruses, circulating virus strains and virus evolution, animal models of disease, antivirals and vaccines are strikingly absent. Emerging RNA viruses such as Zika virus, Nipah virus and Crimean-Congo haemorrhagic fever virus are a matter of grave concern to India. Here we summarize the outcome of the India|EMBO symposium on “RNA viruses: immunology, pathogenesis and translational opportunities” organized at Faridabad, National Capital Region, India, on March 28–30, 2018. The meeting focused on RNA viruses (non-HIV), and both national and international experts on RNA viruses covered topics ranging from epidemiology, immune response, virus evolution and vaccine trials concerning RNA viruses. The aim of the symposium was to create a road map for RNA virus research in India. Both concrete and tentative ideas pointing towards short-term and long-term goals were presented with recommendations for follow-up at government level.
Collapse
Affiliation(s)
| | - Katja Fink
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | | |
Collapse
|
40
|
Development of next generation hemagglutinin-based broadly protective influenza virus vaccines. Curr Opin Immunol 2018; 53:51-57. [DOI: 10.1016/j.coi.2018.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/21/2018] [Accepted: 04/02/2018] [Indexed: 11/24/2022]
|
41
|
Gallagher JR, McCraw DM, Torian U, Gulati NM, Myers ML, Conlon MT, Harris AK. Characterization of Hemagglutinin Antigens on Influenza Virus and within Vaccines Using Electron Microscopy. Vaccines (Basel) 2018; 6:E31. [PMID: 29799445 PMCID: PMC6027289 DOI: 10.3390/vaccines6020031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 01/08/2023] Open
Abstract
Influenza viruses affect millions of people worldwide on an annual basis. Although vaccines are available, influenza still causes significant human mortality and morbidity. Vaccines target the major influenza surface glycoprotein hemagglutinin (HA). However, circulating HA subtypes undergo continual variation in their dominant epitopes, requiring vaccines to be updated annually. A goal of next-generation influenza vaccine research is to produce broader protective immunity against the different types, subtypes, and strains of influenza viruses. One emerging strategy is to focus the immune response away from variable epitopes, and instead target the conserved stem region of HA. To increase the display and immunogenicity of the HA stem, nanoparticles are being developed to display epitopes in a controlled spatial arrangement to improve immunogenicity and elicit protective immune responses. Engineering of these nanoparticles requires structure-guided design to optimize the fidelity and valency of antigen presentation. Here, we review electron microscopy applied to study the 3D structures of influenza viruses and different vaccine antigens. Structure-guided information from electron microscopy should be integrated into pipelines for the development of both more efficacious seasonal and universal influenza vaccine antigens. The lessons learned from influenza vaccine electron microscopic research could aid in the development of novel vaccines for other pathogens.
Collapse
Affiliation(s)
- John R Gallagher
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| | - Dustin M McCraw
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| | - Udana Torian
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| | - Neetu M Gulati
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| | - Mallory L Myers
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| | - Michael T Conlon
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| | - Audray K Harris
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| |
Collapse
|