1
|
Mai Y, Wu S, Zhang P, Chen N, Wu J, Wei F. The anti-oxidation related bioactive materials for intervertebral disc degeneration regeneration and repair. Bioact Mater 2025; 45:19-40. [PMID: 39588482 PMCID: PMC11585838 DOI: 10.1016/j.bioactmat.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/27/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent chronic spinal condition characterized by the deterioration of the intervertebral discs (IVD), leading to structural damage and associated pain. This degenerative process is closely linked to oxidative stress injury, which plays a pivotal role in its onset and progression. Oxidative stress in IVDD results from the excessive production of reactive oxygen species (ROS) and impaired ROS clearance mechanisms, disrupting the redox balance within the intervertebral disc. Consequently, oxidative stress contributes to the degradation of the extracellular matrix (ECM), promotes cell apoptosis, and exacerbates disc tissue damage. Current treatment options for IVDD face significant challenges in effectively alleviating the oxidative stress-induced damage and facilitating disc tissue repair. However, recent advancements in biomaterials have opened new avenues of hope for IVDD treatment by addressing oxidative stress. In this review, we first provide an overview of the pathophysiological process of IVDD and explore the mechanisms and pathways associated with oxidative stress injury. Then, we delve into the current research on antioxidant biomaterials employed in the treatment of IVDD, and outline the advantages and limitations of hydrogel, nanomaterials, polyphenol and inorganic materials. Finally, we propose the future research direction of antioxidant biomaterials in IVDD treatment. The main idea of this review is shown in Scheme 1.
Collapse
Affiliation(s)
- Yingjie Mai
- Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Siying Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science & Technology (Guangzhou), Nansha, Guangzhou, Guangdong Province, 511400, China
| | - Penghui Zhang
- Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Ningning Chen
- Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science & Technology (Guangzhou), Nansha, Guangzhou, Guangdong Province, 511400, China
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong SAR, 999077, China
| | - Fuxin Wei
- Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| |
Collapse
|
2
|
Kandil K, Zaïri F, Zaïri F. Comprehensive analysis of damage evolution in human annulus fibrosus: Numerical exploration of mechanical sensitivity to biological age-dependent alteration. Comput Biol Med 2024; 182:109108. [PMID: 39276612 DOI: 10.1016/j.compbiomed.2024.109108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND AND OBJECTIVE The annulus fibrosus is an essential part of the intervertebral disc, critical for its structural integrity. Mechanical deterioration in this component can lead to complete disc failure, particularly through tears development, with radial tears being the most common. These tears are often the result of both mechanical and biological factors. This study aims to numerically investigate the mechanisms of radial failure in the annulus tissue, taking into account the mechanical and age-dependent biological damage origins. A newly developed microstructure-based model was upgraded to predict damage evolution in the different annulus regions. METHODS The study employs a computational model to predict mechanical failures in various annulus regions, using experimental data for comparison. The model incorporates age-dependent microstructural changes to evaluate the effects of biological aging on the mechanical behavior. It specifically includes a detailed analysis of the temporal changes in circumferential rigidity and failure strain of the annulus. RESULTS The model demonstrated a strong ability to replicate the experimental responses of the different annulus regions to failure. It revealed that age-related microstructural changes significantly impact the rigidity and failure response of the annulus, particularly in the posterior regions and as well the anterior inner side. These changes increase susceptibility to rupture with aging. A correlation was also observed between the composition of collagen fibers, water content, and the annulus transversal response in both radial and axial directions. CONCLUSION The findings challenge previous assumptions, showing that age-dependent microstructural changes have a notable effect on the annulus mechanical properties. The computational model closely aligns with experimental observations, underscoring the determinant role of oriented collagen fibers in radial failure. This study enhances the understanding of annulus failure and provides a foundation for further research on the impact of aging on disc mechanical integrity and failure.
Collapse
Affiliation(s)
- Karim Kandil
- Icam School of Engineering, Lille campus, 6 rue Auber, B.P. 10079, 59016, Lille, France; Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| | - Fahmi Zaïri
- Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France.
| | - Fahed Zaïri
- Ramsay Générale de Santé, Hôpital Privé Le Bois, 59000, Lille, France
| |
Collapse
|
3
|
D’Erminio DN, Adelzadeh KA, Rosenberg AM, Wiener RJ, Torre OM, Ferreri ED, Nasser P, Costa KD, Han WM, Huang AH, Iatridis JC. Regenerative potential of mouse neonatal intervertebral disc depends on collagen crosslink density. iScience 2024; 27:110883. [PMID: 39319260 PMCID: PMC11421255 DOI: 10.1016/j.isci.2024.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
Intervertebral disc (IVD) defects heal poorly and can cause back pain and disability. We identified that IVD herniation injury heals regeneratively in neonatal mice until postnatal day 14 (p14) and shifts to fibrotic healing by p28. This age coincides with the shift in expansive IVD growth from cell proliferation to matrix elaboration, implicating collagen crosslinking. β-aminopropionitrile treatment reduced IVD crosslinking and caused fibrotic healing without affecting cell proliferation. Bulk sequencing on naive IVDs was depleted for matrix structural organization from p14 to p28 to validate the importance of crosslinking in regenerative healing. We conclude that matrix changes are key drivers in the shift to fibrotic healing, and a stably crosslinked matrix is needed for IVD regeneration.
Collapse
Affiliation(s)
- Danielle N. D’Erminio
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Biomedical Engineering, The City College of New York at CUNY, New York, NY, USA
| | - Kaya A. Adelzadeh
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashley M. Rosenberg
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert J. Wiener
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivia M. Torre
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily D. Ferreri
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip Nasser
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin D. Costa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Woojin M. Han
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice H. Huang
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
| | - James C. Iatridis
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Roy A, Zhang Z, Eiken MK, Shi A, Pena-Francesch A, Loebel C. Programmable Tissue Folding Patterns in Structured Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300017. [PMID: 36961361 PMCID: PMC10518030 DOI: 10.1002/adma.202300017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/24/2023] [Indexed: 05/17/2023]
Abstract
Folding of mucosal tissues, such as the tissue within the epithelium of the upper respiratory airways, is critical for organ function. Studying the influence of folded tissue patterns on cellular function is challenging mainly due to the lack of suitable cell culture platforms that can recreate dynamic tissue folding in vitro. Here, a bilayer hydrogel folding system, composed of alginate/polyacrylamide double-network (DN) and hyaluronic acid (HA) hydrogels, to generate static folding patterns based on mechanical instabilities, is described. By encapsulating human fibroblasts into patterned HA hydrogels, human bronchial epithelial cells form a folded pseudostratified monolayer. Using magnetic microparticles, DN hydrogels reversibly fold into pre-defined patterns and enable programmable on-demand folding of cell-laden hydrogel systems upon applying a magnetic field. This hydrogel construction provides a dynamic culture system for mimicking tissue folding in vitro, which is extendable to other cell types and organ systems.
Collapse
Affiliation(s)
- Avinava Roy
- Department of Materials Science & Engineering, University of Michigan, North Campus Research Complex, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA
| | - Zenghao Zhang
- Department of Materials Science & Engineering, University of Michigan, North Campus Research Complex, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA
| | - Madeline K Eiken
- Department of Biomedical Engineering, University of Michigan, Carl A. Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
| | - Alan Shi
- Department of Materials Science & Engineering, University of Michigan, North Campus Research Complex, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA
| | - Abdon Pena-Francesch
- Department of Materials Science & Engineering, University of Michigan, North Campus Research Complex, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA
| | - Claudia Loebel
- Department of Materials Science & Engineering, University of Michigan, North Campus Research Complex, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Carl A. Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
| |
Collapse
|
5
|
Xu Y, Cai F, Zhou Y, Tang J, Mao J, Wang W, Li Z, Zhou L, Feng Y, Xi K, Gu Y, Chen L. Magnetically attracting hydrogel reshapes iron metabolism for tissue repair. SCIENCE ADVANCES 2024; 10:eado7249. [PMID: 39151007 PMCID: PMC11328908 DOI: 10.1126/sciadv.ado7249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/10/2024] [Indexed: 08/18/2024]
Abstract
Ferroptosis, caused by disorders of iron metabolism, plays a critical role in various diseases, making the regulation of iron metabolism essential for tissue repair. In our analysis of degenerated intervertebral disc tissue, we observe a positive correlation between the concentration of extracellular iron ions (ex-iron) and the severity of ferroptosis in intervertebral disc degeneration (IVDD). Hence, inspired by magnets attracting metals, we combine polyether F127 diacrylate (FDA) with tannin (TA) to construct a magnetically attracting hydrogel (FDA-TA). This hydrogel demonstrates the capability to adsorb ex-iron and remodel the iron metabolism of cells. Furthermore, it exhibits good toughness and self-healing properties. Notably, it can activate the PI3K-AKT pathway to inhibit nuclear receptor coactivator 4-mediated ferritinophagy under ex-iron enrichment conditions. The curative effect and related mechanism are further confirmed in vivo. Consequently, on the basis of the pathological mechanism, a targeted hydrogel is designed to reshape iron metabolism, offering insights for tissue repair.
Collapse
Affiliation(s)
- Yichang Xu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Feng Cai
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Yidi Zhou
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Jincheng Tang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Jiannan Mao
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Wei Wang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Ziang Li
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Liang Zhou
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Yu Feng
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Kun Xi
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Yong Gu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Liang Chen
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| |
Collapse
|
6
|
Pardo A, Gomez‐Florit M, Davidson MD, Öztürk‐Öncel MÖ, Domingues RMA, Burdick JA, Gomes ME. Hierarchical Design of Tissue-Mimetic Fibrillar Hydrogel Scaffolds. Adv Healthc Mater 2024; 13:e2303167. [PMID: 38400658 PMCID: PMC11209813 DOI: 10.1002/adhm.202303167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Most tissues of the human body present hierarchical fibrillar extracellular matrices (ECMs) that have a strong influence over their physicochemical properties and biological behavior. Of great interest is the introduction of this fibrillar structure to hydrogels, particularly due to the water-rich composition, cytocompatibility, and tunable properties of this class of biomaterials. Here, the main bottom-up fabrication strategies for the design and production of hierarchical biomimetic fibrillar hydrogels and their most representative applications in the fields of tissue engineering and regenerative medicine are reviewed. For example, the controlled assembly/arrangement of peptides, polymeric micelles, cellulose nanoparticles (NPs), and magnetically responsive nanostructures, among others, into fibrillar hydrogels is discussed, as well as their potential use as fibrillar-like hydrogels (e.g., those from cellulose NPs) with key biofunctionalities such as electrical conductivity or remote stimulation. Finally, the major remaining barriers to the clinical translation of fibrillar hydrogels and potential future directions of research in this field are discussed.
Collapse
Affiliation(s)
- Alberto Pardo
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
- Colloids and Polymers Physics GroupParticle Physics DepartmentMaterials Institute (iMATUS)and Health Research Institute (IDIS)University of Santiago de CompostelaSantiago de Compostela15782Spain
| | - Manuel Gomez‐Florit
- Health Research Institute of the Balearic Islands (IdISBa)Palma07010Spain
- Research Unit, Son Espases University Hospital (HUSE)Palma07010Spain
- Group of Cell Therapy and Tissue Engineering (TERCIT)Research Institute on Health Sciences (IUNICS)University of the Balearic Islands (UIB)Ctra. Valldemossa km 7.5Palma07122Spain
| | - Matthew D. Davidson
- BioFrontiers Institute and Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderCO80303USA
| | - Meftune Özgen Öztürk‐Öncel
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| | - Rui M. A. Domingues
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| | - Jason A. Burdick
- BioFrontiers Institute and Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderCO80303USA
| | - Manuela E. Gomes
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| |
Collapse
|
7
|
McKinley JP, O'Connell GD. Review of state-of-the-art micro and macro-bioreactors for the intervertebral disc. J Biomech 2024; 165:111964. [PMID: 38412621 DOI: 10.1016/j.jbiomech.2024.111964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
Lower back pain continues to be a global epidemic, limiting quality of life and ability to work, due in large part to symptomatic disc degeneration. Development of more effective and less invasive biological strategies are needed to treat disc degeneration. In vitro models such as macro- or micro-bioreactors or mechanically active organ-chips hold great promise in reducing the need for animal studies that may have limited clinical translatability, due to harsher and more complex mechanical loading environments in human discs than in most animal models. This review highlights the complex loading conditions of the disc in situ, evaluates state-of-the-art designs for applying such complex loads across multiple length scales, from macro-bioreactors that load whole discs to organ-chips that aim to replicate cellular or engineered tissue loading. Emphasis was placed on the rapidly evolving more customizable organ-chips, given their greater potential for studying the progression and treatment of symptomatic disc degeneration. Lastly, this review identifies new trends and challenges for using organ-chips to assess therapeutic strategies.
Collapse
Affiliation(s)
- Jonathan P McKinley
- Berkeley BioMechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley 94720, CA, USA.
| | - Grace D O'Connell
- Berkeley BioMechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley 94720, CA, USA.
| |
Collapse
|
8
|
Peredo AP, Tsinman TK, Bonnevie ED, Jiang X, Smith HE, Gullbrand SE, Dyment NA, Mauck RL. Developmental morphogens direct human induced pluripotent stem cells toward an annulus fibrosus-like cell phenotype. JOR Spine 2024; 7:e1313. [PMID: 38283179 PMCID: PMC10810760 DOI: 10.1002/jsp2.1313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Therapeutic interventions for intervertebral disc herniation remain scarce due to the inability of endogenous annulus fibrosus (AF) cells to respond to injury and drive tissue regeneration. Unlike other orthopedic tissues, such as cartilage, delivery of exogenous cells to the site of annular injury remains underdeveloped, largely due to a lack of an ideal cell source and the invasive nature of cell isolation. Human induced pluripotent stem cells (iPSCs) can be differentiated to specific cell fates using biochemical factors and are, therefore, an invaluable tool for cell therapy approaches. While differentiation protocols have been developed for cartilage and fibrous connective tissues (e.g., tendon), the signals that regulate the induction and differentiation of human iPSCs toward the AF fate remain unknown. Methods iPSC-derived sclerotome cells were treated with various combinations of developmental signals including transforming growth factor beta 3 (TGF-β3), connective tissue growth factor (CTGF), platelet derived growth factor BB (PDGF-BB), insulin-like growth factor 1 (IGF-1), or the Hedgehog pathway activator, Purmorphamine, and gene expression changes in major AF-associated ECM genes were assessed. The top performing combination treatments were further validated by using three distinct iPSC lines and by assessing the production of upregulated ECM proteins of interest. To conduct a broader analysis of the transcriptomic shifts elicited by each factor combination, and to compare genetic profiles of treated cells to mature human AF cells, a 96.96 Fluidigm gene expression array was applied, and principal component analysis was employed to identify the transcriptional signatures of each cell population and treatment group in comparison to native AF cells. Results TGF-β3, in combination with PDGF-BB, CTGF, or IGF-1, induced an upregulation of key AF ECM genes in iPSC-derived sclerotome cells. In particular, treatment with a combination of TGF-β3 with PDGF-BB for 14 days significantly increased gene expression of collagen II and aggrecan and increased protein deposition of collagen I and elastin compared to other treatment groups. Assessment of genes uniquely highly expressed by AF cells or SCL cells, respectively, revealed a shift toward the genetic profile of AF cells with the addition of TGF-β3 and PDGF-BB for 14 days. Discussion These findings represent an initial approach to guide human induced pluripotent stem cells toward an AF-like fate for cellular delivery strategies.
Collapse
Affiliation(s)
- Ana P. Peredo
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| | - Tonia K. Tsinman
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| | - Edward D. Bonnevie
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| | - Xi Jiang
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Harvey E. Smith
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| | - Sarah E. Gullbrand
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| | - Nathaniel A. Dyment
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Robert L. Mauck
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
9
|
Romero-Morales C, Berzosa-Rojo Á, Di Luca-Calabrese D, Vázquez-González S, Abuín-Porras V, Jaén-Crespo G, García-Sanz F, Pareja-Galeano H. Comparative analysis of patellar tendon, achilles tendon and plantar fascia structure in indoor and outdoor football players: a novel cross-sectional pilot study. Sci Rep 2024; 14:3930. [PMID: 38365861 PMCID: PMC10873369 DOI: 10.1038/s41598-024-54403-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/12/2024] [Indexed: 02/18/2024] Open
Abstract
Different sport modalities were associate with tendon adaptation or even tendon disturbances, such as volleyball, soccer or basketball. Purpose: the aim of the present study was to determine de difference between indoor and outdoor football players on patellar tendon (PT), Achilles tendon (AT), plantar fascia (FP) and Hoffa's fat pad thickness assessed with ultrasound imaging (USI). A cross-sectional study was developed with a total sample of 30 soccer players divided in two groups: outdoor group (n = 15) and indoor group (n = 15). The thickness of PT, AT, PF and Hoffa's fat pad has been assessed with USI. Hoffa's fat pad reported significant differences for the left side between groups (P = 0.026). The rest of variables did not show any significant difference (P < 0.05). The ultrasonography assessment of the thickness of the PT, AT and PF did not show differences between outdoor and indoor football players. Hoffa's fat pad resulted showed a significant decrease for outdoor soccer players with respect futsal players. Thus, it can be considered that the load stimuli received in both soccer players were not enough to produce structural adaptations in PT, AT and PF tissues.
Collapse
Affiliation(s)
- Carlos Romero-Morales
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain.
| | - Álvaro Berzosa-Rojo
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | | | - Sergio Vázquez-González
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Vanesa Abuín-Porras
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Gonzalo Jaén-Crespo
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Fernando García-Sanz
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
- Clínica CEMTRO, Madrid, Spain
| | - Helios Pareja-Galeano
- Department of Physical Education, Sport and Human Movement, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Xu H, Zhang Y, Zhang Y, Yu C, Xia K, Cheng F, Shi K, Huang X, Li Y, Chen J, Shu J, Zhou X, Tao Y, Liang C, Li F, Chen Q. A novel rat model of annulus fibrosus injury for intervertebral disc degeneration. Spine J 2024; 24:373-386. [PMID: 37797841 DOI: 10.1016/j.spinee.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND CONTEXT In clinical practice, acute trauma and chronic degeneration of the annulus fibrosus (AF) can promote further degeneration of the intervertebral disc (IVD). Therefore, it is critical to understand the AF repair process and its consequences on IVD. However, the lack of cost-effective and reproducible in vivo animal models of AF injury has limited research development in this field. PURPOSES The purpose of this study was to establish and evaluate the utility of a novel animal model for full-thickness AF injury. Three foci were proposed: (1) whether this new modeling method can cause full-layer AF damage; (2) the repair processes and pathological changes in the damaged area after AF injury, and (3) the morphological and histological changes in the IVD are after AF injury. STUDY DESIGN/SETTING In vivo rat AF injury model with characterization of AF damage repair, IVD degeneration. METHODS A total of 72,300 g male rats were randomly assigned to one of the two groups: experimental or sham. Annulus fibrosus was separated layer by layer under the microscope with a #11 blade up to the AF- nucleus pulpous (NP) junction. The repair process of the horizontal AF and morphological changes in the sagittal IVD were evaluated with HE staining. Sirius red staining under polarized light. Immunofluorescence was conducted to analyze changes in the expression of COL1 and COL3 in the AF injury area and 8-OHdg, IL-6, MMP13, FSP1, and ACAN in the IVD. The disc height and structural changes after AF injury were measured using X-ray and contrast-enhanced micro-CT. Additionally, the resistance of the AF to stretching was analyzed using three-point bending. RESULTS Annulus fibrosus-nucleus pulpous border was identified to stably induce the full-thickness AF injury without causing immediate NP injury. The AF repair process after injury was slow and expressed inflammation factors continuously, with abundant amounts of type III collagen appearing in the inner part of the AF. The scar at the AF lesion had decreased resistance to small molecule penetration and weakened tensile strength. Full-thickness AF injury induced disc degeneration with loss of disc height, progressive unilateral vertebral collapse, and ossification of the subchondral bone. Inflammatory-induced degeneration and extracellular matrix catabolism gradually appeared in the NP and cartilage endplate (CEP). CONCLUSIONS We established a low-cost and reproducible small animal model of AF injury which accurately replicated the pathological state of the limited AF self-repair ability and demonstrated that injury to the AF alone could cause further degeneration of the IVD. CLINICAL RELEVANCE This in vivo rat model can be used to study the repair process of the AF defect and pathological changes in the gradual degeneration of IVD after AF damage. In addition, the model provides an experimental platform for in vivo experimental research of potential clinical therapeutics.
Collapse
Affiliation(s)
- Haibin Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Yuang Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Yujie Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Chao Yu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Kaishun Xia
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Feng Cheng
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Kesi Shi
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Xianpeng Huang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Yi Li
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Jiangjie Chen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Jiawei Shu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Xiaopeng Zhou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Yiqing Tao
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Chengzhen Liang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China.
| | - Fangcai Li
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China.
| | - Qixin Chen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China.
| |
Collapse
|
11
|
Zhou D, Liu H, Zheng Z, Wu D. Design principles in mechanically adaptable biomaterials for repairing annulus fibrosus rupture: A review. Bioact Mater 2024; 31:422-439. [PMID: 37692911 PMCID: PMC10485601 DOI: 10.1016/j.bioactmat.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/25/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023] Open
Abstract
Annulus fibrosus (AF) plays a crucial role in the biomechanical loading of intervertebral disc (IVD). AF is difficult to self-heal when the annulus tears develop, because AF has a unique intricate structure and biologic milieu in vivo. Tissue engineering is promising for repairing AF rupture, but construction of suitable mechanical matching devices or scaffolds is still a grand challenge. To deeply know the varied forces involved in the movement of the native annulus is highly beneficial for designing biomimetic scaffolds to recreate the AF function. In this review, we overview six freedom degrees of forces and adhesion strength on AF tissue. Then, we summarize the mechanical modalities to simulate related forces on AF and to assess the characteristics of biomaterials. We finally outline some current advanced techniques to develop mechanically adaptable biomaterials for AF rupture repair.
Collapse
Affiliation(s)
- Dan Zhou
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Pain Research Center, Sun Yat-Sen University, Guangzhou 510080, China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
12
|
Bonnevie ED, Scanzello CR, Mauck RL. Modulating mechanobiology as a therapeutic target for synovial fibrosis to restore joint lubrication. Osteoarthritis Cartilage 2024; 32:41-51. [PMID: 37866546 PMCID: PMC10880438 DOI: 10.1016/j.joca.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023]
Abstract
OBJECTIVES Fibroses are disorders linked to persistence of myofibroblasts due to biochemical (e.g., Transforming growth factor-β) and biophysical cues (e.g., a stiff microenvironment). In the context of osteoarthritis, fibrotic changes in the joint-lining synovium have been linked with disease progression. The objective of this study was to probe synovial fibroblast mechanobiology and how essential functions (i.e., lubrication) are altered in fibrotic environments. DESIGN Both ex vivo and in vitro synovium models were assessed for fibrotic and lubrication biomarkers to better understand the role of mechanobiology and lubrication. Additionally, in vitro, work on small molecules targeting mechanobiology was assessed. RESULTS Our results indicated that modulating mechanobiology could rescue the fibrotic phenotype instigated by stiffening microenvironment that resulted in altered lubricant expression. A small molecule therapeutic, fasudil, blocked ROCK-mediated contractility and this inhibition of the fibrotic mechano-response of synovial fibroblasts restored proper lubrication function, providing insight into mechanisms of disease progression as well as a new avenue for therapeutic development. CONCLUSION This study identifies synovial fibrosis as a condition that potentially has joint-wide deficits through inhibiting lubrication. Additionally, modulating mechanobiology (i.e., ROCK-mediated contractility) may pose a potential target for small molecule therapies that can be delivered to the joint space. CLASSIFICATION Applied Biological Sciences.
Collapse
Affiliation(s)
- Edward D Bonnevie
- Translational Musculoskeletal Research Center, CMC VA Medical Center, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, United States.
| | - Carla R Scanzello
- Translational Musculoskeletal Research Center, CMC VA Medical Center, United States; Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Robert L Mauck
- Translational Musculoskeletal Research Center, CMC VA Medical Center, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, United States; Department of Bioengineering, University of Pennsylvania, United States.
| |
Collapse
|
13
|
Wang H, Zhang W, Cai Y, Guo Q, Pan L, Chu G, Chen J, Yuan Z, Li B. Moderate mechanical stimulation antagonizes inflammation of annulus fibrosus cells through YAP-mediated suppression of NF-κB signaling. J Orthop Res 2023; 41:2667-2684. [PMID: 37132373 DOI: 10.1002/jor.25596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/04/2023]
Abstract
Intervertebral disc degeneration (IDD) is a leading cause of low back pain. The inflammatory responses caused by aberrant mechanical loading are one of the major factors leading to annulus fibrosus (AF) degeneration and IDD. Previous studies have suggested that moderate cyclic tensile strain (CTS) can regulate anti-inflammatory activities of AF cells (AFCs), and Yes-associated protein (YAP) as a mechanosensitive coactivator senses diverse types of biomechanical stimuli and translates them into biochemical signals controlling cell behaviors. However, it remains poorly understood whether and how YAP mediates the effect of mechanical stimuli on AFCs. In this study, we aimed to investigate the exact effects of different CTS on AFCs as well as the role of YAP signaling involving in it. Our results found that 5% CTS inhibited the inflammatory response and promoted cell growth through inhibiting the phosphorylation of YAP and nuclear localization of NF-κB, while 12% CTS had a significant proinflammatory effect with the inactivation of YAP activity and the activation of NF-κB signaling in AFCs. Furthermore, moderate mechanical stimulation may alleviate the inflammatory reaction of intervertebral discs through YAP-mediated suppression of NF-κB signaling in vivo. Therefore, moderate mechanical stimulation may serve as a promising therapeutic approach for the prevention and treatment of IDD.
Collapse
Affiliation(s)
- Huan Wang
- Department of Orthopaedic Surgery, School of Biology & Basic Medical Sciences, Suzhou Medical College, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Jiangsu, Suzhou, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, School of Biology & Basic Medical Sciences, Suzhou Medical College, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Jiangsu, Suzhou, China
- Department of Orthopaedic Surgery, Affiliated Hospital of Nantong University, Jiangsu, Nantong, China
| | - Yan Cai
- Department of Orthopaedic Surgery, School of Biology & Basic Medical Sciences, Suzhou Medical College, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Jiangsu, Suzhou, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, School of Biology & Basic Medical Sciences, Suzhou Medical College, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Jiangsu, Suzhou, China
| | - Liangbin Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, School of Biology & Basic Medical Sciences, Suzhou Medical College, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Jiangsu, Suzhou, China
| | - Jianquan Chen
- Department of Orthopaedic Surgery, School of Biology & Basic Medical Sciences, Suzhou Medical College, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Jiangsu, Suzhou, China
- School of Medicine, Hangzhou City University, Zhejiang, Hangzhou, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, School of Biology & Basic Medical Sciences, Suzhou Medical College, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Jiangsu, Suzhou, China
| | - Bin Li
- Department of Orthopaedic Surgery, School of Biology & Basic Medical Sciences, Suzhou Medical College, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Jiangsu, Suzhou, China
- School of Medicine, Hangzhou City University, Zhejiang, Hangzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Jiangsu, Suzhou, China
| |
Collapse
|
14
|
Peredo AP, Gullbrand SE, Friday CS, Orozco BS, Dehghani B, Jenk AC, Bonnevie ED, Hilliard RL, Zlotnick HM, Dodge GR, Lee D, Engiles JB, Hast MW, Schaer TP, Smith HE, Mauck RL. Tension-activated nanofiber patches delivering an anti-inflammatory drug improve repair in a goat intervertebral disc herniation model. Sci Transl Med 2023; 15:eadf1690. [PMID: 37967202 PMCID: PMC10812087 DOI: 10.1126/scitranslmed.adf1690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
Conventional microdiscectomy treatment for intervertebral disc herniation alleviates pain but does not repair the annulus fibrosus, resulting in a high incidence of recurrent herniation and persistent dysfunction. The lack of repair and the acute inflammation that arise after injury can further compromise the disc and result in disc-wide degeneration in the long term. To address this clinical need, we developed tension-activated repair patches (TARPs) for annulus fibrosus repair and local delivery of the anti-inflammatory factor anakinra (a recombinant interleukin-1 receptor antagonist). TARPs transmit physiologic strain to mechanically activated microcapsules embedded within the patch, which release encapsulated bioactive molecules in direct response to spinal loading. Mechanically activated microcapsules carrying anakinra were loaded into TARPs, and the effects of TARP-mediated annular repair and anakinra delivery were evaluated in a goat model of annular injury in the cervical spine. TARPs integrated with native tissue and provided structural reinforcement at the injury site that prevented aberrant disc-wide remodeling resulting from detensioning of the annular fibrosus. The delivery of anakinra by TARP implantation increased matrix deposition and retention at the injury site and improved maintenance of disc extracellular matrix. Anakinra delivery additionally attenuated the inflammatory response associated with TARP implantation, decreasing osteolysis in adjacent vertebrae and preserving disc cellularity and matrix organization throughout the annulus fibrosus. These results demonstrate the therapeutic potential of TARPs for the treatment of intervertebral disc herniation.
Collapse
Affiliation(s)
- Ana P. Peredo
- Department of Bioengineering, University of Pennsylvania; Philadelphia, 19104, USA
- Department of Orthopaedic Surgery, University of Pennsylvania; Philadelphia, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center; Philadelphia, 19104, USA
| | - Sarah E. Gullbrand
- Department of Bioengineering, University of Pennsylvania; Philadelphia, 19104, USA
- Department of Orthopaedic Surgery, University of Pennsylvania; Philadelphia, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center; Philadelphia, 19104, USA
| | - Chet S. Friday
- Department of Orthopaedic Surgery, University of Pennsylvania; Philadelphia, 19104, USA
| | - Briana S. Orozco
- Department of Bioengineering, University of Pennsylvania; Philadelphia, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center; Philadelphia, 19104, USA
| | - Bijan Dehghani
- Department of Orthopaedic Surgery, University of Pennsylvania; Philadelphia, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center; Philadelphia, 19104, USA
| | - Austin C. Jenk
- Department of Bioengineering, University of Pennsylvania; Philadelphia, 19104, USA
- Department of Orthopaedic Surgery, University of Pennsylvania; Philadelphia, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center; Philadelphia, 19104, USA
| | - Edward D. Bonnevie
- Department of Bioengineering, University of Pennsylvania; Philadelphia, 19104, USA
- Department of Orthopaedic Surgery, University of Pennsylvania; Philadelphia, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center; Philadelphia, 19104, USA
| | - Rachel L. Hilliard
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania; Philadelphia, PA 19348, USA
| | - Hannah M. Zlotnick
- Department of Bioengineering, University of Pennsylvania; Philadelphia, 19104, USA
- Department of Orthopaedic Surgery, University of Pennsylvania; Philadelphia, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center; Philadelphia, 19104, USA
| | - George R. Dodge
- Department of Orthopaedic Surgery, University of Pennsylvania; Philadelphia, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center; Philadelphia, 19104, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania; Philadelphia, 19104, USA
| | - Julie B. Engiles
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania; Philadelphia, PA 19348, USA
- Department of Pathobiology, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania; Philadelphia, PA 19348, USA
| | - Michael W. Hast
- Department of Bioengineering, University of Pennsylvania; Philadelphia, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center; Philadelphia, 19104, USA
| | - Thomas P. Schaer
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania; Philadelphia, PA 19348, USA
| | - Harvey E. Smith
- Department of Orthopaedic Surgery, University of Pennsylvania; Philadelphia, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center; Philadelphia, 19104, USA
| | - Robert L. Mauck
- Department of Bioengineering, University of Pennsylvania; Philadelphia, 19104, USA
- Department of Orthopaedic Surgery, University of Pennsylvania; Philadelphia, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center; Philadelphia, 19104, USA
| |
Collapse
|
15
|
Xie W, Xing Y, Xiao L, Zhang P, Oh R, Zhang Y, Yu X, He Y, Oh EG, Cao R, Ramasubramanian MK, Wang Y, Jin L, Oberhozler J, Li X. Intervertebral Disc-on-a-Chip MF: A New Model for Mouse Disc Culture via Integrating Mechanical Loading and Dynamic Media Flow. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2300606. [PMID: 39130370 PMCID: PMC11315454 DOI: 10.1002/admt.202300606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 08/13/2024]
Abstract
This study aims to develop an ex vivo organ-on-a-chip model, intervertebral Disc-on-a-ChipMF, to investigate integrated effects of mechanical loading and nutrition on disc health. The system consists of a detachable multilayer microfluidic chip, a Computer-Arduino-based control system, and a mechanical loading unit, which were optimized for accurate axial force measurement and the maintenance of a 21-day ex vivo disc culture. To ensure accuracy of axial force, we optimized the axial mechanical loading regimen, used the Computer-Arduino-based system and low-profile force sensors (LPFS) to control the mechanical loading unit, and modeled the force distribution by using computational simulation. A 21-day ex vivo disc culture was demonstrated using the Disc-on-a-ChipMF system, with optimized mechanical loading (0.02 MPa at 1Hz, 1.5 hr/day) and flow rate (1 μL/min). The structural integrity, collagen breakdown, catabolic enzyme activities, and disc cell and collagen alignment revealed that the on-chip cultured discs exhibited a preferred disc health similar to that of native discs for up to 21 days, while discs in a static culture showed detrimental degenerative changes. The mouse Disc-on-a-ChipMF system mimics in vivo disc microenvironment and provides a valuable platform for studying the effects of various factors on disc health and degeneration and testing new therapies.
Collapse
Affiliation(s)
- Wanqing Xie
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Yuan Xing
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
- Department of Surgery, University of Virginia, 345 Cripell Drive, Charlottesville, VA 22908, USA
| | - Li Xiao
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Pu Zhang
- Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer’s Way, Charlottesville, VA 22904, USA
| | - Richard Oh
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Yangpu Zhang
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
- Current address: Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Yu
- Department of Surgery, University of Virginia, 345 Cripell Drive, Charlottesville, VA 22908, USA
| | - Yi He
- Department of Surgery, University of Virginia, 345 Cripell Drive, Charlottesville, VA 22908, USA
| | - Eunha G Oh
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Ruofan Cao
- Department of BioMolecular Science, University of Mississippi, Oxford, MS 38677, USA
| | - Melur K Ramasubramanian
- Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer’s Way, Charlottesville, VA 22904, USA
| | - Yong Wang
- Department of Visceral Surgery and Transplantation, University of Zurich Hospital, 8091 Zürich, Switzerland
| | - Li Jin
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Jose Oberhozler
- Department of Visceral Surgery and Transplantation, University of Zurich Hospital, 8091 Zürich, Switzerland
| | - Xudong Li
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
16
|
Marvin JC, Brakewood ME, Poon MLS, Andarawis-Puri N. Regenerative MRL/MpJ tendon cells exhibit sex differences in morphology, proliferation, mechanosensitivity, and cell-ECM organization. J Orthop Res 2023; 41:2273-2286. [PMID: 37004178 DOI: 10.1002/jor.25562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/10/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Clinical and animal studies have reported the influence of sex on the incidence and progression of tendinopathy, which results in disparate structural and biomechanical outcomes. However, there remains a paucity in our understanding of the sex-specific biological mechanisms underlying effective tendon healing. To overcome this hurdle, our group has investigated the impact of sex on tendon regeneration using the super-healer Murphy Roths Large (MRL/MpJ) mouse strain. We have previously shown that the scarless healing capacity of MRL/MpJ patellar tendons is associated with sexually dimorphic regulation of gene expression for pathways involved in fibrosis, cell migration, adhesion, and extracellular matrix (ECM) remodeling following an acute mid-substance injury. Thus, we hypothesized that MRL/MpJ scarless tendon healing is mediated by sex-specific and temporally distinct orchestration of cell-ECM interactions. Accordingly, the present study comparatively evaluated MRL/MpJ tendon cells on two-dimensional (2D; glass) and scaffold platforms to examine cell behavior under biochemical and topographical cues associated with tendon homeostasis and healing. Female MRL/MpJ cells showed reduced 2D migration and spreading area accompanied by enhanced mechanosensing, ECM alignment, and fibronectin-mediated cell proliferation compared to male MRL/MpJ cells. Interestingly, female MRL/MpJ cells cultured on isotropic scaffolds showed diminished cell-ECM organization compared to male MRL/MpJ cells. Lastly, MRL/MpJ cells elicited enhanced cytoskeletal elongation and alignment, ECM deposition and organization, and connexin 43-mediated intercellular communication compared to male B6 cells, regardless of culture condition or sex. These results provide insight into the cellular features conserved within the MRL/MpJ phenotype and potential sex-specific targets for the development of more equitable therapeutics.
Collapse
Affiliation(s)
- Jason C Marvin
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Molly E Brakewood
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Mong L S Poon
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
- Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
17
|
Tsinman T, Huang Y, Ahmed S, Levillain A, Evans MK, Jiang X, Nowlan N, Dyment N, Mauck R. Lack of skeletal muscle contraction disrupts fibrous tissue morphogenesis in the developing murine knee. J Orthop Res 2023; 41:2305-2314. [PMID: 37408453 PMCID: PMC10528502 DOI: 10.1002/jor.25659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Externally applied forces, such as those generated through skeletal muscle contraction, are important to embryonic joint formation, and their loss can result in gross morphologic defects including joint fusion. While the absence of muscle contraction in the developing chick embryo leads to dissociation of dense connective tissue structures of the knee and ultimately joint fusion, the central knee joint cavitates whereas the patellofemoral joint does not in murine models lacking skeletal muscle contraction, suggesting a milder phenotype. These differential results suggest that muscle contraction may not have as prominent of a role in the growth and development of dense connective tissues of the knee. To explore this question, we investigated the formation of the menisci, tendon, and ligaments of the developing knee in two murine models that lack muscle contraction. We found that while the knee joint does cavitate, there were multiple abnormalities in the menisci, patellar tendon, and cruciate ligaments. The initial cellular condensation of the menisci was disrupted and dissociation was observed at later embryonic stages. The initial cell condensation of the tendon and ligaments were less affected than the meniscus, but these tissues contained cells with hyper-elongated nuclei and displayed diminished growth. Interestingly, lack of muscle contraction led to the formation of an ectopic ligamentous structure in the anterior region of the joint as well. These results indicate that muscle forces are essential for the continued growth and maturation of these structures during this embryonic period.
Collapse
Affiliation(s)
- T.K. Tsinman
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Y. Huang
- Department of Bioengineering, Imperial College London, London, UK
| | - S. Ahmed
- Department of Bioengineering, Imperial College London, London, UK
| | - A.L. Levillain
- Department of Bioengineering, Imperial College London, London, UK
| | - MK. Evans
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - X. Jiang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA
| | - N.C. Nowlan
- Department of Bioengineering, Imperial College London, London, UK
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - N.A. Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - R.L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA
| |
Collapse
|
18
|
Chen Z, Lv Z, Zhuang Y, Saiding Q, Yang W, Xiong W, Zhang Z, Chen H, Cui W, Zhang Y. Mechanical Signal-Tailored Hydrogel Microspheres Recruit and Train Stem Cells for Precise Differentiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300180. [PMID: 37230467 DOI: 10.1002/adma.202300180] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/31/2023] [Indexed: 05/27/2023]
Abstract
The aberrant mechanical microenvironment in degenerated tissues induces misdirection of cell fate, making it challenging to achieve efficient endogenous regeneration. Herein, a hydrogel microsphere-based synthetic niche with integrated cell recruitment and targeted cell differentiation properties via mechanotransduction is constructed . Through the incorporation of microfluidics and photo-polymerization strategies, fibronectin (Fn) modified methacrylated gelatin (GelMA) microspheres are prepared with the independently tunable elastic modulus (1-10Kpa) and ligand density (2 and 10 µg mL-1 ), allowing a wide range of cytoskeleton modulation to trigger the corresponding mechanobiological signaling. The combination of the soft matrix (2Kpa) and low ligand density (2 µg mL-1 ) can support the nucleus pulposus (NP)-like differentiation of intervertebral disc (IVD) progenitor/stem cells by translocating Yes-associated protein (YAP), without the addition of inducible biochemical factors. Meanwhile, platelet-derived growth factor-BB (PDGF-BB) is loaded onto Fn-GelMA microspheres (PDGF@Fn-GelMA) via the heparin-binding domain of Fn to initiate endogenous cell recruitment. In in vivo experiments, hydrogel microsphere-niche maintained the IVD structure and stimulated matrix synthesis. Overall, this synthetic niche with cell recruiting and mechanical training capabilities offered a promising strategy for endogenous tissue regeneration.
Collapse
Affiliation(s)
- Zehao Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- School of Mechatronic Engineering and Automation, Shanghai University, Nanchen Road 333, Shanghai, 200444, P. R. China
| | - Zhendong Lv
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Yaping Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Qimanguli Saiding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wu Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wei Xiong
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Zhen Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Nanchen Road 333, Shanghai, 200444, P. R. China
| | - Hao Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yuhui Zhang
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| |
Collapse
|
19
|
Lemmon EA, Bonnevie ED, Patel JM, Miller LM, Mauck RL. Transient inhibition of meniscus cell migration following acute inflammatory challenge. J Orthop Res 2023; 41:2055-2064. [PMID: 36866823 PMCID: PMC10750267 DOI: 10.1002/jor.25545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/23/2023] [Accepted: 03/01/2023] [Indexed: 03/04/2023]
Abstract
Meniscus tears represent a common orthopedic injury that often requires surgery to restore pain-free function. The need for surgical intervention is due, in part, to the inflammatory and catabolic environment that inhibits meniscus healing after injury. In other organ systems, healing is dependent on the migration of cells to the site of injury; however, in the meniscus, it is currently unknown how the microenvironment dictates cell migration in the postinjury inflamed setting. Here, we investigated how inflammatory cytokines alter meniscal fibrochondrocyte (MFC) migration and sensation of microenvironmental stiffness. We further tested whether an FDA approved interleukin-1 receptor antagonist (IL-1Ra; Anakinra) could rescue migratory deficits caused by inflammatory challenge. When cultured in the presence of inflammatory cytokines (tumor necrosis factor-α [TNF-α] or interleukin-1β [IL-1β]) for 1 day, MFC migration was inhibited for 3 days before returning to control levels at Day 7. This migratory deficit was clear in three-dimensional as well, where fewer MFCs exposed to inflammatory cytokines migrated from a living meniscal explant compared with control. Notably, addition of IL-1Ra to MFCs previously exposed to IL-1β restored migration to baseline levels. This study demonstrates that joint inflammation can have negative impacts on meniscus cell migration and mechanosensation, affecting their potential for repair, and that resolution of this inflammation with concurrent anti-inflammatories can reverse these deficits. Future work will apply these findings to mitigate the negative consequences of joint inflammation and promote repair in a clinically relevant meniscus injury model.
Collapse
Affiliation(s)
- Elisabeth A. Lemmon
- University of Pennsylvania Perelman School of Medicine, Department of Orthopaedic Surgery, Philadelphia, Pennsylvania, USA
| | - Edward D. Bonnevie
- University of Pennsylvania Perelman School of Medicine, Department of Orthopaedic Surgery, Philadelphia, Pennsylvania, USA
| | - Jay M. Patel
- Department of Orthopaedics, Emory University, Decatur, Georgia, USA
| | - Liane M. Miller
- University of Pennsylvania Perelman School of Medicine, Department of Orthopaedic Surgery, Philadelphia, Pennsylvania, USA
| | - Robert L. Mauck
- University of Pennsylvania Perelman School of Medicine, Department of Orthopaedic Surgery, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Liu C, Gao X, Lou J, Li H, Chen Y, Chen M, Zhang Y, Hu Z, Chang X, Luo M, Zhai Y, Li C. Aberrant mechanical loading induces annulus fibrosus cells apoptosis in intervertebral disc degeneration via mechanosensitive ion channel Piezo1. Arthritis Res Ther 2023; 25:117. [PMID: 37420255 PMCID: PMC10327399 DOI: 10.1186/s13075-023-03093-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/16/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is closely associated with the structural damage in the annulus fibrosus (AF). Aberrant mechanical loading is an important inducement of annulus fibrosus cells (AFCs) apoptosis, which contributes to the AF structural damage and aggravates IVDD, but the underlying mechanism is still unclear. This study aims to investigate the mechanism of a mechanosensitive ion channel protein Piezo1 in aberrant mechanical loading-induced AFCs apoptosis and IVDD. METHODS Rats were subjected to lumbar instability surgery to induce the unbalanced dynamic and static forces to establish the lumbar instability model. MRI and histological staining were used to evaluate the IVDD degree. A cyclic mechanical stretch (CMS)-stimulated AFCs apoptosis model was established by a Flexcell system in vitro. Tunel staining, mitochondrial membrane potential (MMP) detection, and flow cytometry were used to evaluate the apoptosis level. The activation of Piezo1 was detected using western blot and calcium fluorescent probes. Chemical activator Yoda1, chemical inhibitor GSMTx4, and a lentiviral shRNA-Piezo1 system (Lv-Piezo1) were utilized to regulate the function of Piezo1. High-throughput RNA sequencing (RNA-seq) was used to explore the mechanism of Piezo1-induced AFCs apoptosis. The Calpain activity and the activation of Calpain2/Bax/Caspase3 axis were evaluated by the Calpain activity kit and western blot with the siRNA-mediated Calapin1 or Calpain2 knockdown. Intradiscal administration of Lv-Piezo1 was utilized to evaluate the therapeutic effect of Piezo1 silencing in IVDD rats. RESULTS Lumbar instability surgery promoted the expression of Piezo1 in AFCs and stimulated IVDD in rats 4 weeks after surgery. CMS elicited distinct apoptosis of AFCs, with enhanced Piezo1 activation. Yoda1 further promoted CMS-induced apoptosis of AFCs, while GSMTx4 and Lv-Piezo1 exhibited opposite effects. RNA-seq showed that knocking down Piezo1 inhibited the calcium signaling pathway. CMS enhanced Calpain activity and elevated the expression of BAX and cleaved-Caspase3. Calpain2, but not Calpain1 knockdown, inhibited the expression of BAX and cleaved-Caspase3 and alleviated AFCs apoptosis. Lv-Piezo1 significantly alleviated the progress of IVDD in rats after lumbar instability surgery. CONCLUSIONS Aberrant mechanical loading induces AFCs apoptosis to promote IVDD by activating Piezo1 and downstream Calpain2/BAX/Caspase3 pathway. Piezo1 is expected to be a potential therapeutic target in treating IVDD.
Collapse
Affiliation(s)
- Chenhao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai, China
| | - Xiaoxin Gao
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
| | - Jinhui Lou
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
| | - Haiyin Li
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
| | - Yuxuan Chen
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
- Center of Traumatic Orthopedics, People's Liberation Army 990 Hospital, Xinyang, 464000, Henan, China
| | - Molong Chen
- Department of Orthopedics/Sports Medicine Center, The First Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
| | - Yuyao Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
| | - Zhilei Hu
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
| | - Xian Chang
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
| | - Menglin Luo
- Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai, China
| | - Yu Zhai
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China.
| | - Changqing Li
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China.
| |
Collapse
|
21
|
Lazaro-Pacheco D, Mohseni M, Rudd S, Cooper-White J, Holsgrove TP. The role of biomechanical factors in models of intervertebral disc degeneration across multiple length scales. APL Bioeng 2023; 7:021501. [PMID: 37180733 PMCID: PMC10168717 DOI: 10.1063/5.0137698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/24/2023] [Indexed: 05/16/2023] Open
Abstract
Low back pain is the leading cause of disability, producing a substantial socio-economic burden on healthcare systems worldwide. Intervertebral disc (IVD) degeneration is a primary cause of lower back pain, and while regenerative therapies aimed at full functional recovery of the disc have been developed in recent years, no commercially available, approved devices or therapies for the regeneration of the IVD currently exist. In the development of these new approaches, numerous models for mechanical stimulation and preclinical assessment, including in vitro cell studies using microfluidics, ex vivo organ studies coupled with bioreactors and mechanical testing rigs, and in vivo testing in a variety of large and small animals, have emerged. These approaches have provided different capabilities, certainly improving the preclinical evaluation of these regenerative therapies, but challenges within the research environment, and compromises relating to non-representative mechanical stimulation and unrealistic test conditions, remain to be resolved. In this review, insights into the ideal characteristics of a disc model for the testing of IVD regenerative approaches are first assessed. Key learnings from in vivo, ex vivo, and in vitro IVD models under mechanical loading stimulation to date are presented alongside the merits and limitations of each model based on the physiological resemblance to the human IVD environment (biological and mechanical) as well as the possible feedback and output measurements for each approach. When moving from simplified in vitro models to ex vivo and in vivo approaches, the complexity increases resulting in less controllable models but providing a better representation of the physiological environment. Although cost, time, and ethical constraints are dependent on each approach, they escalate with the model complexity. These constraints are discussed and weighted as part of the characteristics of each model.
Collapse
Affiliation(s)
- Daniela Lazaro-Pacheco
- Department of Engineering, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, United Kingdom
| | - Mina Mohseni
- School of Chemical Engineering, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Samuel Rudd
- School of Chemical Engineering, The University of Queensland, St. Lucia QLD 4072, Australia
| | | | - Timothy Patrick Holsgrove
- Department of Engineering, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, United Kingdom
| |
Collapse
|
22
|
Jones DL, Hallström GF, Jiang X, Locke RC, Evans MK, Bonnevie ED, Srikumar A, Leahy TP, Nijsure MP, Boerckel JD, Mauck RL, Dyment NA. Mechanoepigenetic regulation of extracellular matrix homeostasis via Yap and Taz. Proc Natl Acad Sci U S A 2023; 120:e2211947120. [PMID: 37216538 PMCID: PMC10235980 DOI: 10.1073/pnas.2211947120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Cells integrate mechanical cues to direct fate specification to maintain tissue function and homeostasis. While disruption of these cues is known to lead to aberrant cell behavior and chronic diseases, such as tendinopathies, the underlying mechanisms by which mechanical signals maintain cell function are not well understood. Here, we show using a model of tendon de-tensioning that loss of tensile cues in vivo acutely changes nuclear morphology, positioning, and expression of catabolic gene programs, resulting in subsequent weakening of the tendon. In vitro studies using paired ATAC/RNAseq demonstrate that the loss of cellular tension rapidly reduces chromatin accessibility in the vicinity of Yap/Taz genomic targets while also increasing expression of genes involved in matrix catabolism. Concordantly, the depletion of Yap/Taz elevates matrix catabolic expression. Conversely, overexpression of Yap results in a reduction of chromatin accessibility at matrix catabolic gene loci, while also reducing transcriptional levels. The overexpression of Yap not only prevents the induction of this broad catabolic program following a loss of cellular tension, but also preserves the underlying chromatin state from force-induced alterations. Taken together, these results provide novel mechanistic details by which mechanoepigenetic signals regulate tendon cell function through a Yap/Taz axis.
Collapse
Affiliation(s)
- Dakota L. Jones
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
| | - Grey F. Hallström
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
| | - Xi Jiang
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
| | - Ryan C. Locke
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Translational Musculoskeletal Research Center, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA19104
| | - Mary Kate Evans
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Edward D. Bonnevie
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
- Translational Musculoskeletal Research Center, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA19104
| | - Anjana Srikumar
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
| | - Thomas P. Leahy
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Madhura P. Nijsure
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA19104
| | - Joel D. Boerckel
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA19104
| | - Robert L. Mauck
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Translational Musculoskeletal Research Center, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA19104
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA19104
| | - Nathaniel A. Dyment
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
23
|
Han F, Tu Z, Zhu Z, Liu D, Meng Q, Yu Q, Wang Y, Chen J, Liu T, Han F, Li B. Targeting Endogenous Reactive Oxygen Species Removal and Regulating Regenerative Microenvironment at Annulus Fibrosus Defects Promote Tissue Repair. ACS NANO 2023; 17:7645-7661. [PMID: 37022700 DOI: 10.1021/acsnano.3c00093] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The excessive reactive oxygen species (ROS) level, inflammation, and weak tissue regeneration ability after annulus fibrosus (AF) injury constitute an unfavorable microenvironment for AF repair. AF integrity is crucial for preventing disc herniation after discectomy; however, there is no effective way to repair the AF. Herein, a composite hydrogel integrating properties of antioxidant, anti-inflammation, and recruitment of AF cells is developed through adding mesoporous silica nanoparticles modified by ceria and transforming growth factor β3 (TGF-β3) to the hydrogels. The nanoparticle loaded gelatin methacrylate/hyaluronic acid methacrylate composite hydrogels eliminate ROS and induce anti-inflammatory M2 type macrophage polarization. The released TGF-β3 not only plays a role in recruiting AF cells but is also responsible for promoting extracellular matrix secretion. The composite hydrogels can be solidified in situ in the defect area to effectively repair AF in rats. The strategies targeting endogenous ROS removal and improving the regenerative microenvironment by the nanoparticle-loaded composite hydrogels have potential applications in AF repair and intervertebral disc herniation prevention.
Collapse
Affiliation(s)
- Feng Han
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhengdong Tu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhuang Zhu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Dachuan Liu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qingchen Meng
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qifan Yu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Ying Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Affiliated Guangji Hospital, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Jianquan Chen
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310000, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310000, China
| | - Tao Liu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Fengxuan Han
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310000, China
| | - Bin Li
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310000, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310000, China
| |
Collapse
|
24
|
Wang Y, Zheng G, Xie X, Yu W, Wang J, Zang F, Yang C, Xiao Q, Zhang R, Wei L, Wu X, Liang L, Cao P, Xu C, Li J, Hu B, Zhang T, Wu J, Chen H. Low-dose celecoxib-loaded PCL fibers reverse intervertebral disc degeneration by up-regulating CHSY3 expression. J Nanobiotechnology 2023; 21:76. [PMID: 36864461 PMCID: PMC9983215 DOI: 10.1186/s12951-023-01823-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Intervertebral disc degeneration (IDD) has been identified as one of the predominant factors leading to persistent low back pain and disability in middle-aged and elderly people. Dysregulation of Prostaglandin E2 (PGE2) can cause IDD, while low-dose celecoxib can maintain PGE2 at the physiological level and activate the skeletal interoception. Here, as nano fibers have been extensively used in the treatment of IDD, novel polycaprolactone (PCL) nano fibers loaded with low-dose celecoxib were fabricated for IDD treatment. In vitro studies demonstrated that the nano fibers had the ability of releasing low-dose celecoxib slowly and sustainably and maintain PGE2. Meanwhile, in a puncture-induced rabbit IDD model, the nano fibers reversed IDD. Furthermore, low-dose celecoxib released from the nano fibers was firstly proved to promote CHSY3 expression. In a lumbar spine instability-induced mouse IDD model, low-dose celecoxib inhibited IDD in CHSY3wt mice rather than CHSY3-/- mice. This model indicated that CHSY3 was indispensable for low-dose celecoxib to alleviate IDD. In conclusion, this study developed a novel low-dose celecoxib-loaded PCL nano fibers to reverse IDD by maintaining PGE2 at the physiological level and promoting CHSY3 expression.
Collapse
Affiliation(s)
- Yunhao Wang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Genjiang Zheng
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Xiaoxing Xie
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Wei Yu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianxi Wang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Fazhi Zang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Chen Yang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Qiangqiang Xiao
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Rongcheng Zhang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Leixin Wei
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Xiaodong Wu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Lei Liang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Peng Cao
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Chen Xu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Jing Li
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.,Department of Bioinformatics, Center for Translational Medicine, Naval Medical University, Shanghai, 200433, China
| | - Bo Hu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| | - Tao Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China.
| | - Huajiang Chen
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
25
|
Conley BM, Yang L, Bhujel B, Luo J, Han I, Lee KB. Development of a Nanohybrid Peptide Hydrogel for Enhanced Intervertebral Disc Repair and Regeneration. ACS NANO 2023; 17:3750-3764. [PMID: 36780291 DOI: 10.1021/acsnano.2c11441] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Effective therapeutic approaches to overcome the heterogeneous pro-inflammatory and inhibitory extracellular matrix (ECM) microenvironment are urgently needed to achieve robust structural and functional repair of severely wounded fibrocartilaginous tissues. Herein we developed a dynamic and multifunctional nanohybrid peptide hydrogel (NHPH) through hierarchical self-assembly of peptide amphiphile modified with biodegradable two-dimensional nanomaterials with enzyme-like functions. NHPH is not only injectable, biocompatible, and biodegradable but also therapeutic by catalyzing the scavenging of pro-inflammatory reactive oxygen species and promoting ECM remodeling. In addition, our NHPH method facilitated the structural and functional recovery of the intervertebral disc (IVD) after severe injuries by delivering pro-regenerative cytokines in a sustained manner, effectively suppressing immune responses and eventually restoring the regenerative microenvironment of the ECM. In parallel, the NHPH-enhanced nucleus pulposus cell differentiation and pain reduction in a rat nucleotomy model further validated the therapeutic potential of NHPH. Collectively, our advanced nanoscaffold technology will provide an alternative approach for the effective treatment of IVD degeneration as well as other fibrocartilaginous tissue injuries.
Collapse
Affiliation(s)
- Brian M Conley
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Basanta Bhujel
- Department of Neurosurgery, CHA University School of Medicine, Yatap-ro 59, Bundang-gu, Seongnam-si, Gyeonggi-do 13497, Korea
| | - Jeffrey Luo
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, Yatap-ro 59, Bundang-gu, Seongnam-si, Gyeonggi-do 13497, Korea
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
26
|
Zhang C, Lu Z, Lyu C, Zhang S, Wang D. Andrographolide Inhibits Static Mechanical Pressure-Induced Intervertebral Disc Degeneration via the MAPK/Nrf2/HO-1 Pathway. Drug Des Devel Ther 2023; 17:535-550. [PMID: 36845666 PMCID: PMC9951603 DOI: 10.2147/dddt.s392535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Purpose To explore the molecular mechanism by which andrographolide (ADR) inhibits static mechanical pressure-induced apoptosis in nucleus pulposus cells (NPCs) and to assess the role of ADR in inhibiting IDD. Methods Hematoxylin-eosin (HE), toluidine blue, and immunofluorescence staining were used to identify NPCs. An NPC apoptosis model was constructed using a homemade cell pressurization device. The proliferation activity, reactive oxygen species (ROS) content, and apoptosis rate were detected using kits. The expression of related proteins was detected using Western blot. A rat tailbone IDD model was constructed using a homemade tailbone stress device. HE staining and safranine O-fast green FCF cartilage staining were used to observe the degeneration degree of the intervertebral disk. Results ADR inhibits static mechanical pressure-induced apoptosis and ROS accumulation in NPCs and improves cell viability. ADR can promote the expression of Heme oxygenase-1 (HO-1), p-Nrf2, p-p38, p-Erk1/2, p-JNK, and other proteins, and its effects can be blocked by inhibitors of the above proteins. Conclusion ADR can inhibit IDD by activating the MAPK/Nrf2/HO-1 signaling pathway and suppressing static mechanical pressure-induced ROS accumulation in the NPCs.
Collapse
Affiliation(s)
- Cunxin Zhang
- Department of Spine Surgery, Qingdao Municipal Hospital, Shandong University, Qingdao, 266061, People’s Republic of China,Department of Spine Surgery, Jining No.1 People’s Hospital, Jining, 272011, People’s Republic of China
| | - Ziang Lu
- Jining Medical University, Jining, 272067, People’s Republic of China
| | - Chaoliang Lyu
- Department of Spine Surgery, Jining No.1 People’s Hospital, Jining, 272011, People’s Republic of China
| | - Shanshan Zhang
- Department of Neurology, Jining No.1 People’s Hospital, Jining, 272011, People’s Republic of China
| | - Dechun Wang
- Department of Spine Surgery, Qingdao Municipal Hospital, Shandong University, Qingdao, 266061, People’s Republic of China,Correspondence: Dechun Wang, Department of Spine surgery, Qingdao Municipal Hospital, Shandong University, 5# Donghai Road, Shinan District, Qingdao, 266061, People’s Republic of China, Tel +86+18661809296, Fax +86-0532-82716868, Email
| |
Collapse
|
27
|
Huang X, Chen D, Liang C, Shi K, Zhou X, Zhang Y, Li Y, Chen J, Xia K, Shu J, Yang B, Wang J, Xu H, Yu C, Cheng F, Wang S, Zhang Y, Wang C, Ying L, Li H, Han M, Li F, Tao Y, Zhao Q, Chen Q. Swelling-Mediated Mechanical Stimulation Regulates Differentiation of Adipose-Derived Mesenchymal Stem Cells for Intervertebral Disc Repair Using Injectable UCST Microgels. Adv Healthc Mater 2023; 12:e2201925. [PMID: 36250343 DOI: 10.1002/adhm.202201925] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Indexed: 01/26/2023]
Abstract
Mechanical stimulation is an effective approach for controlling stem cell differentiation in tissue engineering. However, its realization in in vivo tissue repair remains challenging since this type of stimulation can hardly be applied to injectable seeding systems. Here, it is presented that swelling of injectable microgels can be transformed to in situ mechanical stimulation via stretching the cells adhered on their surface. Poly(acrylamide-co-acrylic acid) microgels with the upper critical solution temperature property are fabricated using inverse emulsion polymerization and further coated with polydopamine to increase cell adhesion. Adipose-derived mesenchymal stem cells (ADSCs) adhered on the microgels can be omnidirectionally stretched along with the responsive swelling of the microgels, which upregulate TRPV4 and Piezo1 channel proteins and enhance nucleus pulposus (NP)-like differentiation of ADSCs. In vivo experiments reveal that the disc height and extracellular matrix content of NP are promoted after the implantation with the microgels. The findings indicate that swelling-induced mechanical stimulation has great potential for regulating stem cell differentiation during intervertebral disc repair.
Collapse
Affiliation(s)
- Xianpeng Huang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Di Chen
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, 315100, China
| | - Chengzhen Liang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Kesi Shi
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Xiaopeng Zhou
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yuang Zhang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yi Li
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Jiangjie Chen
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Kaishun Xia
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Jiawei Shu
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Biao Yang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Jingkai Wang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Haibin Xu
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Chao Yu
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Feng Cheng
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Shaoke Wang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yongxiang Zhang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Chenggui Wang
- Department of Orthopedics Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Liwei Ying
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Hao Li
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Meiling Han
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Fangcai Li
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yiqing Tao
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Qixin Chen
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
28
|
Zou YP, Zhang QC, Zhang QY, Jiang LB, Li XL. Procyanidin B2 alleviates oxidative stress-induced nucleus pulposus cells apoptosis through upregulating Nrf2 via PI3K-Akt pathway. J Orthop Res 2022. [PMID: 36448180 DOI: 10.1002/jor.25492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/25/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Oxidative stress can lead to nucleus pulposus cell (NPC) apoptosis, which is considered to be one of the main contributors to intervertebral disc degeneration (IVDD). Procyanidin B2 is a natural antioxidant that protects against oxidative stress. However, whether procyanidin B2 protects NPCs from oxidative stress remains unknown. In this study, we demonstrated that procyanidin B2 could reduce tert-butyl hydroperoxide-induced reactive oxygen species in rat NPCs and attenuate rat NPC apoptosis. Further experiments revealed that procyanidin B2 upregulated the expression of both nuclear factor erythroid 2-related factor 2 (Nrf2) and phosphorylation of protein kinase B (Akt). We then used silencing of Nrf2 and LY294002 to silence Nrf2 expression and block the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, respectively, and found that the protective roles of procyanidin B2 in NPCs were inhibited. Therefore, we demonstrated that procyanidin B2 alleviated rat NPC apoptosis induced by oxidative stress by upregulating Nrf2 via activation of the PI3K/Akt signaling pathway. This study provides a potential therapeutic approach for procyanidin B2 in IVDD, which might help in the development of new drugs for IVDD treatment.
Collapse
Affiliation(s)
- Yan-Pei Zou
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Qi-Chen Zhang
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Qian-Yi Zhang
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Li-Bo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Xi-Lei Li
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
29
|
Chu G, Zhang W, Han F, Li K, Liu C, Wei Q, Wang H, Liu Y, Han F, Li B. The role of microenvironment in stem cell-based regeneration of intervertebral disc. Front Bioeng Biotechnol 2022; 10:968862. [PMID: 36017350 PMCID: PMC9395990 DOI: 10.3389/fbioe.2022.968862] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023] Open
Abstract
Regenerative medicine for intervertebral disc (IVD) disease, by utilizing chondrocytes, IVD cells, and stem cells, has progressed to clinical trials in the treatment of back pain, and has been studied in various animal models of disc degeneration in the past decade. Stem cells exist in their natural microenvironment, which provides vital dynamic physical and chemical signals for their survival, proliferation and function. Long-term survival, function and fate of mesenchymal stem cells (MSCs) depend on the microenvironment in which they are transplanted. However, the transplanted MSCs and the endogenous disc cells were influenced by the complicated microenvironment in the degenerating disc with the changes of biochemical and biophysical components. It is important to understand how the MSCs and endogenous disc cells survive and thrive in the harsh microenvironment of the degenerative disc. Furthermore, materials containing stem cells and their natural microenvironment have good clinical effects. However, the implantation of tissue engineering IVD (TE-IVD) cannot provide a complete and dynamic microenvironment for MSCs. IVD graft substitutes may need further improvement to provide the best engineered MSC microenvironment. Additionally, the IVD progenitor cells inside the stem cell niches have been regarded as popular graft cells for IVD regeneration. However, it is still unclear whether actual IVD progenitor cells exist in degenerative spinal conditions. Therefore, the purpose of this review is fourfold: to discuss the presence of endogenous stem cells; to review and summarize the effects of the microenvironment in biological characteristics of MSC, especially those from IVD; to explore the feasibility and prospects of IVD graft substitutes and to elaborate state of the art in the use of MSC transplantation for IVD degeneration in vivo as well as their clinical application.
Collapse
Affiliation(s)
- Genglei Chu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Feng Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Kexin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Chengyuan Liu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Qiang Wei
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Huan Wang
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yijie Liu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Fengxuan Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Bin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
30
|
Panebianco CJ, Rao S, Hom WW, Meyers JH, Lim TY, Laudier DM, Hecht AC, Weir MD, Weiser JR, Iatridis JC. Genipin-crosslinked fibrin seeded with oxidized alginate microbeads as a novel composite biomaterial strategy for intervertebral disc cell therapy. Biomaterials 2022; 287:121641. [PMID: 35759923 PMCID: PMC9758274 DOI: 10.1016/j.biomaterials.2022.121641] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
Discectomy procedures alleviate disability caused by intervertebral disc (IVD) herniation, but do not repair herniation-induced annulus fibrosus (AF) defects. Cell therapy shows promise for IVD repair, yet cell delivery biomaterials capable of sealing AF defects and restoring biomechanical function have poor biological performance. To balance the biomechanical and biological demands of IVD cell delivery biomaterials, we engineered an injectable composite biomaterial using cell-laden, degradable oxidized alginate (OxAlg) microbeads (MBs) to deliver AF cells within high-modulus genipin-crosslinked fibrin (FibGen) hydrogels (FibGen + MB composites). Conceptually, the high-modulus FibGen would immediately stabilize injured IVDs, while OxAlg MBs would protect and release cells required for long-term healing. We first showed that AF cells microencapsulated in OxAlg MBs maintained high viability and, upon release, displayed phenotypic AF cell morphology and gene expression. Next, we created cell-laden FibGen + MB composites and demonstrated that OxAlg MBs functionalized with RGD peptides (MB-RGD) minimized AF cell apoptosis and retained phenotypic gene expression. Further, we showed that cell-laden FibGen + MB composites are biomechanically stable and promote extracellular matrix (ECM) synthesis in long-term in vitro culture. Lastly, we evaluated cell-laden FibGen + MB-RGD composites in a long-term bovine caudal IVD organ culture bioreactor and found that composites had low herniation risk, provided superior biomechanical and biological repair to discectomy controls, and retained anabolic cells within the IVD injury space. This novel injectable composite hydrogel strategy shows promise as an IVD cell delivery sealant with potentially broad applications for its capacity to balance biomechanical and biological performance.
Collapse
Affiliation(s)
- Christopher J Panebianco
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanjna Rao
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York, NY, USA
| | - Warren W Hom
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James H Meyers
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tiffany Y Lim
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Damien M Laudier
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew C Hecht
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Jennifer R Weiser
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York, NY, USA
| | - James C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
31
|
Zhang T, Jia Y, Yu Y, Zhang B, Xu F, Guo H. Targeting the tumor biophysical microenvironment to reduce resistance to immunotherapy. Adv Drug Deliv Rev 2022; 186:114319. [PMID: 35545136 DOI: 10.1016/j.addr.2022.114319] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 02/06/2023]
Abstract
Immunotherapy based on immune checkpoint inhibitors has evolved into a new pillar of cancer treatment in clinics, but dealing with treatment resistance (either primary or acquired) is a major challenge. The tumor microenvironment (TME) has a substantial impact on the pathological behaviors and treatment response of many cancers. The biophysical clues in TME have recently been considered as important characteristics of cancer. Furthermore, there is mounting evidence that biophysical cues in TME play important roles in each step of the cascade of cancer immunotherapy that synergistically contribute to immunotherapy resistance. In this review, we summarize five main biophysical cues in TME that affect resistance to immunotherapy: extracellular matrix (ECM) structure, ECM stiffness, tumor interstitial fluid pressure (IFP), solid stress, and vascular shear stress. First, the biophysical factors involved in anti-tumor immunity and therapeutic antibody delivery processes are reviewed. Then, the causes of these five biophysical cues and how they contribute to immunotherapy resistance are discussed. Finally, the latest treatment strategies that aim to improve immunotherapy efficacy by targeting these biophysical cues are shared. This review highlights the biophysical cues that lead to immunotherapy resistance, also supplements their importance in related technologies for studying TME biophysical cues in vitro and therapeutic strategies targeting biophysical cues to improve the effects of immunotherapy.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710061, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuanbo Jia
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yang Yu
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710061, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710049, PR China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Hui Guo
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710061, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
32
|
Current Perspectives on Nucleus Pulposus Fibrosis in Disc Degeneration and Repair. Int J Mol Sci 2022; 23:ijms23126612. [PMID: 35743056 PMCID: PMC9223673 DOI: 10.3390/ijms23126612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022] Open
Abstract
A growing body of evidence in humans and animal models indicates an association between intervertebral disc degeneration (IDD) and increased fibrotic elements in the nucleus pulposus (NP). These include enhanced matrix turnover along with the abnormal deposition of collagens and other fibrous matrices, the emergence of fibrosis effector cells, such as macrophages and active fibroblasts, and the upregulation of the fibroinflammatory factors TGF-β1 and IL-1/-13. Studies have suggested a role for NP cells in fibroblastic differentiation through the TGF-βR1-Smad2/3 pathway, inflammatory activation and mechanosensing machineries. Moreover, NP fibrosis is linked to abnormal MMP activity, consistent with the role of matrix proteases in regulating tissue fibrosis. MMP-2 and MMP-12 are the two main profibrogenic markers of myofibroblastic NP cells. This review revisits studies in the literature relevant to NP fibrosis in an attempt to stratify its biochemical features and the molecular identity of fibroblastic cells in the context of IDD. Given the role of fibrosis in tissue healing and diseases, the perspective may provide new insights into the pathomechanism of IDD and its management.
Collapse
|
33
|
Zhu L, Yang Y, Yan Z, Zeng J, Weng F, Shi Y, Shen P, Liu L, Yang H. Controlled Release of TGF-β3 for Effective Local Endogenous Repair in IDD Using Rat Model. Int J Nanomedicine 2022; 17:2079-2096. [PMID: 35592099 PMCID: PMC9113136 DOI: 10.2147/ijn.s358396] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/14/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- Lifan Zhu
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215200, People’s Republic of China
- Lifan Zhu, Department of Orthopedics, Suzhou Ninth Hospital affiliated to Soochow University, Suzhou, 215200, People’s Republic of China, Email
| | - Yanjun Yang
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Zhanjun Yan
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Jincai Zeng
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Fengbiao Weng
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Yuhui Shi
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Pengcheng Shen
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Ling Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215200, People’s Republic of China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215200, People’s Republic of China
- Correspondence: Huilin Yang, Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People’s Republic of China, Email
| |
Collapse
|
34
|
Patel JM. Impediments to Meniscal Repair: Factors at Play Beyond Vascularity. Front Bioeng Biotechnol 2022; 10:843166. [PMID: 35299635 PMCID: PMC8921501 DOI: 10.3389/fbioe.2022.843166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jay M. Patel
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, United States
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, United States
- *Correspondence: Jay M. Patel,
| |
Collapse
|
35
|
DiStefano TJ, Vaso K, Danias G, Chionuma HN, Weiser JR, Iatridis JC. Extracellular Vesicles as an Emerging Treatment Option for Intervertebral Disc Degeneration: Therapeutic Potential, Translational Pathways, and Regulatory Considerations. Adv Healthc Mater 2022; 11:e2100596. [PMID: 34297485 PMCID: PMC8783929 DOI: 10.1002/adhm.202100596] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/08/2021] [Indexed: 12/14/2022]
Abstract
Emergent approaches in regenerative medicine look toward the use of extracellular vesicles (EVs) as a next-generation treatment strategy for intervertebral disc (IVD) degeneration (IVDD) because of their ability to attenuate chronic inflammation, reduce apoptosis, and stimulate proliferation in a number of tissue systems. Yet, there are no Food and Drug Administration (FDA)-approved EV therapeutics in the market with an indication for IVDD, which motivates this article to review the current state of the field and provide an IVD-specific framework to assess its efficacy. In this systematic review, 29 preclinical studies that investigate EVs in relation to the IVD are identified, and additionally, the regulatory approval process is reviewed in an effort to accelerate emerging EV-based therapeutics toward FDA submission and timeline-to-market. The majority of studies focus on nucleus pulposus responses to EV treatment, where the main findings show that stem cell-derived EVs can decelerate the progression of IVDD on the molecular, cellular, and organ level. The findings also highlight the importance of the EV parent cell's pathophysiological and differentiation state, which affects downstream treatment responses and therapeutic outcomes. This systematic review substantiates the use of EVs as a promising cell-free strategy to treat IVDD and enhance endogenous repair.
Collapse
Affiliation(s)
- Tyler J. DiStefano
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Keti Vaso
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York NY, USA
| | - George Danias
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Henry N. Chionuma
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Jennifer R. Weiser
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York NY, USA
| | - James C. Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| |
Collapse
|
36
|
Metabolic labeling of secreted matrix to investigate cell-material interactions in tissue engineering and mechanobiology. Nat Protoc 2022; 17:618-648. [PMID: 35140408 PMCID: PMC8985381 DOI: 10.1038/s41596-021-00652-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/25/2021] [Indexed: 12/19/2022]
Abstract
Re-creating features of the native extracellular matrix (ECM) with engineered biomaterials has become a valuable tool to probe the influence of ECM properties on cellular functions (e.g., differentiation) and toward the engineering of tissues. However, characterization of newly secreted (nascent) matrix and turnover, which are important in the context of cells interacting with these biomaterials, has been limited by a lack of tools. We developed a protocol to visualize and quantify the spatiotemporal evolution of newly synthesized and deposited matrix by cells that are either cultured atop (2D) or embedded within (3D) biomaterial systems (e.g., hydrogels, fibrous matrices). This technique relies on the incorporation of a noncanonical amino acid (azidohomoalanine) into proteins as they are synthesized. Deposited nascent ECM components are then visualized with fluorescent cyclooctynes via copper-free cycloaddition for spatiotemporal analysis or modified with cleavable biotin probes for identification. Here we describe the preparation of hyaluronic acid hydrogels through ultraviolet or visible light induced cross-linking for 2D and 3D cell culture, as well as the fluorescent labeling of nascent ECM deposited by cells during culture. We also provide protocols for secondary immunofluorescence of specific ECM components and ImageJ-based ECM quantification methods. Hyaluronic acid polymer synthesis takes 2 weeks to complete, and hydrogel formation for 2D or 3D cell culture is performed in 2-3 h. Lastly, we detail the identification of nascent proteins, including enrichment, preparation and analysis with mass spectrometry, which can be completed in 10 d.
Collapse
|
37
|
Disney C, Mo J, Eckersley A, Bodey A, Hoyland J, Sherratt M, Pitsillides A, Lee P, Bay B. Regional variations in discrete collagen fibre mechanics within intact intervertebral disc resolved using synchrotron computed tomography and digital volume correlation. Acta Biomater 2022; 138:361-374. [PMID: 34644611 PMCID: PMC8904373 DOI: 10.1016/j.actbio.2021.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023]
Abstract
Many soft tissues, such as the intervertebral disc (IVD), have a hierarchical fibrous composite structure which suffers from regional damage. We hypothesise that these tissue regions have distinct, inherent fibre structure and structural response upon loading. Here we used synchrotron computed tomography (sCT) to resolve collagen fibre bundles (∼5μm width) in 3D throughout an intact native rat lumbar IVD under increasing compressive load. Using intact samples meant that tissue boundaries (such as endplate-disc or nucleus-annulus) and residual strain were preserved; this is vital for characterising both the inherent structure and structural changes upon loading in tissue regions functioning in a near-native environment. Nano-scale displacement measurements along >10,000 individual fibres were tracked, and fibre orientation, curvature and strain changes were compared between the posterior-lateral region and the anterior region. These methods can be widely applied to other soft tissues, to identify fibre structures which cause tissue regions to be more susceptible to injury and degeneration. Our results demonstrate for the first time that highly-localised changes in fibre orientation, curvature and strain indicate differences in regional strain transfer and mechanical function (e.g. tissue compliance). This included decreased fibre reorientation at higher loads, specific tissue morphology which reduced capacity for flexibility and high strain at the disc-endplate boundary. Statement of significance The analyses presented here are applicable to many collagenous soft tissues which suffer from regional damage. We aimed to investigate regional intervertebral disc (IVD) structural and functional differences by characterising collagen fibre architecture and linking specific fibre- and tissue-level deformation behaviours. Synchrotron CT provided the first demonstration of tracking discrete fibres in 3D within an intact IVD. Detailed analysis of regions was performed using over 200k points, spaced every 8 μm along 10k individual fibres. Such comprehensive structural characterisation is significant in informing future computational models. Morphological indicators of tissue compliance (change in fibre curvature and orientation) and fibre strain measurements revealed localised and regional differences in tissue behaviour.
Collapse
|
38
|
Integrin and syndecan binding peptide-conjugated alginate hydrogel for modulation of nucleus pulposus cell phenotype. Biomaterials 2021; 277:121113. [PMID: 34492582 DOI: 10.1016/j.biomaterials.2021.121113] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 01/05/2023]
Abstract
Biomaterial based strategies have been widely explored to preserve and restore the juvenile phenotype of cells of the nucleus pulposus (NP) in degenerated intervertebral discs (IVD). With aging and maturation, NP cells lose their ability to produce necessary extracellular matrix and proteoglycans, accelerating disc degeneration. Previous studies have shown that integrin or syndecan binding peptide motifs from laminin can induce NP cells from degenerative human discs to re-express juvenile NP-specific cell phenotype and biosynthetic activity. Here, we engineered alginate hydrogels to present integrin- and syndecan-binding peptides alone or in combination (cyclic RGD and AG73, respectively) to introduce bioactive features into the alginate gels. We demonstrated human NP cells cultured upon and within alginate hydrogels presented with cRGD and AG73 peptides exhibited higher cell viability, biosynthetic activity, and NP-specific protein expression over alginate alone. Moreover, the combination of the two peptide motifs elicited markers of the NP-specific cell phenotype, including N-Cadherin, despite differences in cell morphology and multicellular cluster formation between 2D and 3D cultures. These results represent a promising step toward understanding how distinct adhesive peptides can be combined to guide NP cell fate. In the future, these insights may be useful to rationally design hydrogels for NP cell-transplantation based therapies for IVD degeneration.
Collapse
|
39
|
Patel JM, Loebel C, Saleh KS, Wise BC, Bonnevie ED, Miller LM, Carey JL, Burdick JA, Mauck RL. Stabilization of Damaged Articular Cartilage with Hydrogel-Mediated Reinforcement and Sealing. Adv Healthc Mater 2021; 10:e2100315. [PMID: 33738988 DOI: 10.1002/adhm.202100315] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 01/08/2023]
Abstract
Cartilage injuries and subsequent tissue deterioration impact millions of patients. Since the regeneration of functional hyaline cartilage remains elusive, methods to stabilize the remaining tissue, and prevent further deterioration, would be of significant clinical utility and prolong joint function. Finite element modeling shows that fortification of the degenerate cartilage (Reinforcement) and reestablishment of a superficial zone (Sealing) are both required to restore fluid pressurization within the tissue and restrict fluid flow and matrix loss from the defect surface. Here, a hyaluronic acid (HA) hydrogel system is designed to both interdigitate with and promote the sealing of the degenerated cartilage. Interdigitating fortification restores both bulk and local pericellular tissue mechanics, reestablishing the homeostatic mechanotransduction of endogenous chondrocytes within the tissue. This HA therapy is further functionalized to present chemo mechanical cues that improve the attachment and direct the response of mesenchymal stem/stromal cells at the defect site, guiding localized extracellular matrix deposition to "seal" the defect. Together, these results support the therapeutic potential, across cell and tissue length scales, of an innovative hydrogel therapy for the treatment of damaged cartilage.
Collapse
Affiliation(s)
- Jay M. Patel
- McKay Orthopaedic Research Laboratory Department of Orthopaedic Surgery University of Pennsylvania 3450 Hamilton Walk, 371 Stemmler Hall Philadelphia PA 19104 USA
- Translational Musculoskeletal Research Center Corporal Michael J Crescenz VA Medical Center 3900 Woodland Avenue Philadelphia PA 19104 USA
- Department of Orthopaedics Emory University School of Medicine 201 Dowman Drive Atlanta GA 30322 USA
| | - Claudia Loebel
- Translational Musculoskeletal Research Center Corporal Michael J Crescenz VA Medical Center 3900 Woodland Avenue Philadelphia PA 19104 USA
- Department of Bioengineering University of Pennsylvania 210 South 33 Street, Suite 240 Skirkanich Hall Philadelphia PA 19104‐6321 USA
| | - Kamiel S. Saleh
- McKay Orthopaedic Research Laboratory Department of Orthopaedic Surgery University of Pennsylvania 3450 Hamilton Walk, 371 Stemmler Hall Philadelphia PA 19104 USA
- Translational Musculoskeletal Research Center Corporal Michael J Crescenz VA Medical Center 3900 Woodland Avenue Philadelphia PA 19104 USA
| | - Brian C. Wise
- McKay Orthopaedic Research Laboratory Department of Orthopaedic Surgery University of Pennsylvania 3450 Hamilton Walk, 371 Stemmler Hall Philadelphia PA 19104 USA
| | - Edward D. Bonnevie
- McKay Orthopaedic Research Laboratory Department of Orthopaedic Surgery University of Pennsylvania 3450 Hamilton Walk, 371 Stemmler Hall Philadelphia PA 19104 USA
- Translational Musculoskeletal Research Center Corporal Michael J Crescenz VA Medical Center 3900 Woodland Avenue Philadelphia PA 19104 USA
| | - Liane M. Miller
- McKay Orthopaedic Research Laboratory Department of Orthopaedic Surgery University of Pennsylvania 3450 Hamilton Walk, 371 Stemmler Hall Philadelphia PA 19104 USA
| | - James L. Carey
- McKay Orthopaedic Research Laboratory Department of Orthopaedic Surgery University of Pennsylvania 3450 Hamilton Walk, 371 Stemmler Hall Philadelphia PA 19104 USA
| | - Jason A. Burdick
- McKay Orthopaedic Research Laboratory Department of Orthopaedic Surgery University of Pennsylvania 3450 Hamilton Walk, 371 Stemmler Hall Philadelphia PA 19104 USA
- Translational Musculoskeletal Research Center Corporal Michael J Crescenz VA Medical Center 3900 Woodland Avenue Philadelphia PA 19104 USA
- Department of Bioengineering University of Pennsylvania 210 South 33 Street, Suite 240 Skirkanich Hall Philadelphia PA 19104‐6321 USA
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory Department of Orthopaedic Surgery University of Pennsylvania 3450 Hamilton Walk, 371 Stemmler Hall Philadelphia PA 19104 USA
- Translational Musculoskeletal Research Center Corporal Michael J Crescenz VA Medical Center 3900 Woodland Avenue Philadelphia PA 19104 USA
- Department of Bioengineering University of Pennsylvania 210 South 33 Street, Suite 240 Skirkanich Hall Philadelphia PA 19104‐6321 USA
| |
Collapse
|
40
|
Cell morphology and mechanosensing can be decoupled in fibrous microenvironments and identified using artificial neural networks. Sci Rep 2021; 11:5950. [PMID: 33723274 PMCID: PMC7961147 DOI: 10.1038/s41598-021-85276-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Cells interpret cues from and interact with fibrous microenvironments through the body based on the mechanics and organization of these environments and the phenotypic state of the cell. This in turn regulates mechanoactive pathways, such as the localization of mechanosensitive factors. Here, we leverage the microscale heterogeneity inherent to engineered fiber microenvironments to produce a large morphologic data set, across multiple cells types, while simultaneously measuring mechanobiological response (YAP/TAZ nuclear localization) at the single cell level. This dataset describing a large dynamic range of cell morphologies and responses was coupled with a machine learning approach to predict the mechanobiological state of individual cells from multiple lineages. We also noted that certain cells (e.g., invasive cancer cells) or biochemical perturbations (e.g., modulating contractility) can limit the predictability of cells in a universal context. Leveraging this finding, we developed further models that incorporate biochemical cues for single cell prediction or identify individual cells that do not follow the established rules. The models developed here provide a tool for connecting cell morphology and signaling, incorporating biochemical cues in predictive models, and identifying aberrant cell behavior at the single cell level.
Collapse
|
41
|
Peredo AP, Gullbrand SE, Mauck RL, Smith HE. A challenging playing field: Identifying the endogenous impediments to annulus fibrosus repair. JOR Spine 2021; 4:e1133. [PMID: 33778407 PMCID: PMC7984000 DOI: 10.1002/jsp2.1133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/31/2022] Open
Abstract
Intervertebral disc (IVD) herniations, caused by annulus fibrosus (AF) tears that enable disc tissue extrusion beyond the disc space, are very prevalent, especially among adults in the third to fifth decade of life. Symptomatic herniations, in which the extruded tissue compresses surrounding nerves, are characterized by back pain, numbness, and tingling and can cause extreme physical disability. Patients whose symptoms persist after nonoperative intervention may undergo surgical removal of the herniated tissue via microdiscectomy surgery. The AF, however, which has a poor endogenous healing ability, is left unrepaired increasing the risk for re-herniation and pre-disposing the IVD to degenerative disc disease. The lack of understanding of the mechanisms involved in native AF repair limits the design of repair systems that overcome the impediments to successful AF restoration. Moreover, the complexity of the AF structure and the challenging anatomy of the repair environment represents a significant challenge for the design of new repair devices. While progress has been made towards the development of an effective AF repair technique, these methods have yet to demonstrate long-term repair and recovery of IVD biomechanics. In this review, the limitations of endogenous AF healing are discussed and key cellular events and factors involved are highlighted to identify potential therapeutic targets that can be integrated into AF repair methods. Clinical repair strategies and their limitations are described to further guide the design of repair approaches that effectively restore native tissue structure and function.
Collapse
Affiliation(s)
- Ana P. Peredo
- Department of BioengineeringSchool of Engineering and Applied Science, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Sarah E. Gullbrand
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Robert L. Mauck
- Department of BioengineeringSchool of Engineering and Applied Science, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Harvey E. Smith
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
42
|
Tavana S, Masouros SD, Baxan N, Freedman BA, Hansen UN, Newell N. The Effect of Degeneration on Internal Strains and the Mechanism of Failure in Human Intervertebral Discs Analyzed Using Digital Volume Correlation (DVC) and Ultra-High Field MRI. Front Bioeng Biotechnol 2021; 8:610907. [PMID: 33553116 PMCID: PMC7859352 DOI: 10.3389/fbioe.2020.610907] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/29/2020] [Indexed: 01/04/2023] Open
Abstract
The intervertebral disc (IVD) plays a main role in absorbing and transmitting loads within the spinal column. Degeneration alters the structural integrity of the IVDs and causes pain, especially in the lumbar region. The objective of this study was to investigate non-invasively the effect of degeneration on human 3D lumbar IVD strains (n = 8) and the mechanism of spinal failure (n = 10) under pure axial compression using digital volume correlation (DVC) and 9.4 Tesla magnetic resonance imaging (MRI). Degenerate IVDs had higher (p < 0.05) axial strains (58% higher), maximum 3D compressive strains (43% higher), and maximum 3D shear strains (41% higher), in comparison to the non-degenerate IVDs, particularly in the lateral and posterior annulus. In both degenerate and non-degenerate IVDs, peak tensile and shear strains were observed close to the endplates. Inward bulging of the inner annulus was observed in all degenerate IVDs causing an increase in the AF compressive, tensile, and shear strains at the site of inward bulge, which may predispose it to circumferential tears (delamination). The endplate is the spine's “weak link” in pure axial compression, and the mechanism of human vertebral fracture is associated with disc degeneration. In non-degenerate IVDs the locations of failure were close to the endplate centroid, whereas in degenerate IVDs they were in peripheral regions. These findings advance the state of knowledge on mechanical changes during degeneration of the IVD, which help reduce the risk of injury, optimize treatments, and improve spinal implant designs. Additionally, these new data can be used to validate computational models.
Collapse
Affiliation(s)
- Saman Tavana
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Spyros D Masouros
- Royal British Legion Centre for Blast Injuries Studies, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Nicoleta Baxan
- Biological Imaging Centre, Central Biomedical Services, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Brett A Freedman
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Ulrich N Hansen
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Nicolas Newell
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
43
|
Fu F, Bao R, Yao S, Zhou C, Luo H, Zhang Z, Zhang H, Li Y, Yan S, Yu H, Du W, Yang Y, Jin H, Tong P, Sun ZT, Yue M, Chen D, Wu C, Ruan H. Aberrant spinal mechanical loading stress triggers intervertebral disc degeneration by inducing pyroptosis and nerve ingrowth. Sci Rep 2021; 11:772. [PMID: 33437038 PMCID: PMC7804398 DOI: 10.1038/s41598-020-80756-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/28/2020] [Indexed: 01/08/2023] Open
Abstract
Aberrant mechanical factor is one of the etiologies of the intervertebral disc (IVD) degeneration (IVDD). However, the exact molecular mechanism of spinal mechanical loading stress-induced IVDD has yet to be elucidated due to a lack of an ideal and stable IVDD animal model. The present study aimed to establish a stable IVDD mouse model and evaluated the effect of aberrant spinal mechanical loading on the pathogenesis of IVDD. Eight-week-old male mice were treated with lumbar spine instability (LSI) surgery to induce IVDD. The progression of IVDD was evaluated by μCT and Safranin O/Fast green staining analysis. The metabolism of extracellular matrix, ingrowth of sensory nerves, pyroptosis in IVDs tissues were determined by immunohistological or real-time PCR analysis. The apoptosis of IVD cells was tested by TUNEL assay. IVDD modeling was successfully produced by LSI surgery, with substantial reductions in IVD height, BS/TV, Tb.N. and lower IVD score. LSI administration led to the histologic change of disc degeneration, disruption of the matrix metabolism, promotion of apoptosis of IVD cells and invasion of sensory nerves into annulus fibrosus, as well as induction of pyroptosis. Moreover, LSI surgery activated Wnt signaling in IVD tissues. Mechanical instability caused by LSI surgery accelerates the disc matrix degradation, nerve invasion, pyroptosis, and eventually lead to IVDD, which provided an alternative mouse IVDD model.
Collapse
Affiliation(s)
- Fangda Fu
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Ronghua Bao
- Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, 311400, Zhejiang, China
| | - Sai Yao
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Chengcong Zhou
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Huan Luo
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Zhiguo Zhang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Huihao Zhang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Yan Li
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Shuxin Yan
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Huan Yu
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Weibin Du
- Research Institute of Orthopedics, the Affiliated JiangNan Hospital of Zhejiang Chinese Medical University, Hangzhou, 311200, Zhejiang, China
| | - Yanping Yang
- Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Zhi-Tao Sun
- Department of Orthopedics, Shenzhen Traditional Chinese Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518055, China
| | - Ming Yue
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China. .,Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
44
|
Baumgartner L, Wuertz-Kozak K, Le Maitre CL, Wignall F, Richardson SM, Hoyland J, Ruiz Wills C, González Ballester MA, Neidlin M, Alexopoulos LG, Noailly J. Multiscale Regulation of the Intervertebral Disc: Achievements in Experimental, In Silico, and Regenerative Research. Int J Mol Sci 2021; 22:E703. [PMID: 33445782 PMCID: PMC7828304 DOI: 10.3390/ijms22020703] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a major risk factor of low back pain. It is defined by a progressive loss of the IVD structure and functionality, leading to severe impairments with restricted treatment options due to the highly demanding mechanical exposure of the IVD. Degenerative changes in the IVD usually increase with age but at an accelerated rate in some individuals. To understand the initiation and progression of this disease, it is crucial to identify key top-down and bottom-up regulations' processes, across the cell, tissue, and organ levels, in health and disease. Owing to unremitting investigation of experimental research, the comprehension of detailed cell signaling pathways and their effect on matrix turnover significantly rose. Likewise, in silico research substantially contributed to a holistic understanding of spatiotemporal effects and complex, multifactorial interactions within the IVD. Together with important achievements in the research of biomaterials, manifold promising approaches for regenerative treatment options were presented over the last years. This review provides an integrative analysis of the current knowledge about (1) the multiscale function and regulation of the IVD in health and disease, (2) the possible regenerative strategies, and (3) the in silico models that shall eventually support the development of advanced therapies.
Collapse
Affiliation(s)
- Laura Baumgartner
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY 14623, USA;
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), 81547 Munich, Germany
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Francis Wignall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Carlos Ruiz Wills
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Miguel A. González Ballester
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Michael Neidlin
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Leonidas G. Alexopoulos
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Jérôme Noailly
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| |
Collapse
|
45
|
Dewle A, Rakshasmare P, Srivastava A. A Polycaprolactone (PCL)-Supported Electrocompacted Aligned Collagen Type-I Patch for Annulus Fibrosus Repair and Regeneration. ACS APPLIED BIO MATERIALS 2021; 4:1238-1251. [DOI: 10.1021/acsabm.0c01084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ankush Dewle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Opp. Airforce
Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Prakash Rakshasmare
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Opp. Airforce
Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Opp. Airforce
Station, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
46
|
Zheng Q, Shen H, Tong Z, Cheng L, Xu Y, Feng Z, Liao S, Hu X, Pan Z, Mao Z, Wang Y. A thermosensitive, reactive oxygen species-responsive, MR409-encapsulated hydrogel ameliorates disc degeneration in rats by inhibiting the secretory autophagy pathway. Theranostics 2021; 11:147-163. [PMID: 33391467 PMCID: PMC7681093 DOI: 10.7150/thno.47723] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Lumbar disc degeneration is a common cause of chronic low back pain and an important contributor to various degenerative lumbar spinal disorders. However, currently there is currently no effective therapeutic strategy for treating disc degeneration. The pro-inflammatory cytokine interleukin-1β (IL-1β) mediates disc degeneration by inducing apoptotic death of nucleus pulposus (NP) cells and degradation of the NP extracellular matrix. Here, we confirmed that extracellular secretion of IL-1β via secretory autophagy contributes to disc degeneration, and demonstrate that a thermosensitive reactive oxygen species (ROS)-responsive hydrogel loaded with a synthetic growth hormone-releasing hormone analog (MR409) can protect against needle puncture-induced disc degeneration in rats. Methods: The expression levels of proteins related to secretory autophagy such as tripartite motif-containing 16 (TRIM16) and microtubule-associated protein light chain 3B (LC3B) were examined in human and rat disc tissues by histology and immunofluorescence. The effects of TRIM16 expression level on IL-1β secretion were examined in THP-1 cells transfected with TRIM16 plasmid or siRNA using ELISA, immunofluorescence, and immunoblotting. The in vitro effects of MR409 on IL-1β were examined in THP-1 cells and primary rat NP cells using ELISA, immunofluorescence, immunoblotting, and qRT-PCR. Further, MR409 was subcutaneously administered to aged mice to test its efficacy against disc degeneration using immunofluorescence, X-ray, micro-CT, and histology. To achieve controllable MR409 release for intradiscal use, MR409 was encapsulated in an injectable ROS-responsive thermosensitive hydrogel. Viscosity, rheological properties, release profile, and biocompatibility were evaluated. Thereafter, therapeutic efficacy was assessed in a needle puncture-induced rat model of disc degeneration at 8 and 12 weeks post-operation using X-ray, magnetic resonance (MR) imaging, histological analysis, and immunofluorescence. Results: Secretory autophagy-related proteins TRIM16 and LC3B were robustly upregulated in degenerated discs of both human and rat. Moreover, while upregulation of TRIM16 facilitated, and knockdown of TRIM16 suppressed, secretory autophagy-mediated IL-1β secretion from THP-1 cells under oxidative stress, MR409 inhibited ROS-induced secretory autophagy and IL-1β secretion by THP-1 cells as well as IL-1β-induced pro-inflammatory and pro-catabolic effects in rat NP cells. Daily subcutaneous injection of MR409 inhibited secretory autophagy and ameliorated age-related disc degeneration in mice. The newly developed ROS-responsive MR409-encapsulated hydrogel provided a reliable delivery system for controlled MR409 release, and intradiscal application effectively suppressed secretory autophagy and needle puncture-induced disc degeneration in rats. Conclusion: Secretory autophagy and associated IL-1β secretion contribute to the pathogenesis of disc degeneration, and MR409 can effectively inhibit this pathway. The ROS-responsive thermosensitive hydrogel encapsulated with MR409 is a potentially efficacious treatment for disc degeneration.
Collapse
Affiliation(s)
- Qiangqiang Zheng
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Haotian Shen
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zongrui Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Linxiang Cheng
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuzi Xu
- Department of Oral Implantology and Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, P.R. China
| | - Zhiyun Feng
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shiyao Liao
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou 310003, China
| | - Xiaojian Hu
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zongyou Pan
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, And Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yue Wang
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
47
|
Leucht P, Einhorn TA. What's New in Musculoskeletal Basic Science. J Bone Joint Surg Am 2020; 102:2017-2021. [PMID: 33079894 DOI: 10.2106/jbjs.20.01701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Philipp Leucht
- Departments of Orthopaedic Surgery (P.L. and T.A.E.) and Cell Biology (P.L.), NYU Grossman School of Medicine, New York, NY
| | | |
Collapse
|
48
|
Fearing BV, Speer JE, Jing L, Kalathil A, P. Kelly M, M. Buchowski J, P. Zebala L, Luhmann S, C. Gupta M, A. Setton L. Verteporfin treatment controls morphology, phenotype, and global gene expression for cells of the human nucleus pulposus. JOR Spine 2020; 3:e1111. [PMID: 33392449 PMCID: PMC7770208 DOI: 10.1002/jsp2.1111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Cells of the nucleus pulposus (NP) are essential contributors to extracellular matrix synthesis and function of the intervertebral disc. With age and degeneration, the NP becomes stiffer and more dehydrated, which is associated with a loss of phenotype and biosynthetic function for its resident NP cells. Also, with aging, the NP cell undergoes substantial morphological changes from a rounded shape with pronounced vacuoles in the neonate and juvenile, to one that is more flattened and spread with a loss of vacuoles. Here, we make use of the clinically relevant pharmacological treatment verteporfin (VP), previously identified as a disruptor of yes-associated protein-TEA domain family member-binding domain (TEAD) signaling, to promote morphological changes in adult human NP cells in order to study variations in gene expression related to differences in cell shape. Treatment of adult, degenerative human NP cells with VP caused a shift in morphology from a spread, fibroblastic-like shape to a rounded, clustered morphology with decreased transcriptional activity of TEAD and serum-response factor. These changes were accompanied by an increased expression of vacuoles, NP-specific gene markers, and biosynthetic activity. The contemporaneous observation of VP-induced changes in cell shape and prominent, time-dependent changes within the transcriptome of NP cells occurred over all timepoints in culture. Enriched gene sets with the transition to VP-induced cell rounding suggest a major role for cell adhesion, cytoskeletal remodeling, vacuolar lumen, and MAPK activity in the NP phenotypic and functional response to changes in cell shape.
Collapse
Affiliation(s)
- Bailey V. Fearing
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
- Department of Orthopaedic SurgeryAtrium Health Musculoskeletal InstituteCharlotteNorth CarolinaUSA
| | - Julie E. Speer
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Liufang Jing
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Aravind Kalathil
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Michael P. Kelly
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Jacob M. Buchowski
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Lukas P. Zebala
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Scott Luhmann
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Munish C. Gupta
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Lori A. Setton
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| |
Collapse
|
49
|
Zhang W, Huang G, Xu F. Engineering Biomaterials and Approaches for Mechanical Stretching of Cells in Three Dimensions. Front Bioeng Biotechnol 2020; 8:589590. [PMID: 33154967 PMCID: PMC7591716 DOI: 10.3389/fbioe.2020.589590] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
Mechanical stretch is widely experienced by cells of different tissues in the human body and plays critical roles in regulating their behaviors. Numerous studies have been devoted to investigating the responses of cells to mechanical stretch, providing us with fruitful findings. However, these findings have been mostly observed from two-dimensional studies and increasing evidence suggests that cells in three dimensions may behave more closely to their in vivo behaviors. While significant efforts and progresses have been made in the engineering of biomaterials and approaches for mechanical stretching of cells in three dimensions, much work remains to be done. Here, we briefly review the state-of-the-art researches in this area, with focus on discussing biomaterial considerations and stretching approaches. We envision that with the development of advanced biomaterials, actuators and microengineering technologies, more versatile and predictive three-dimensional cell stretching models would be available soon for extensive applications in such fields as mechanobiology, tissue engineering, and drug screening.
Collapse
Affiliation(s)
- Weiwei Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Guoyou Huang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Chongqing, China
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center, Xi’an Jiaotong University, Xi’an, China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
50
|
Zhang T, Du L, Zhao J, Ding J, Zhang P, Wang L, Xu B. Biomimetic angle-ply multi-lamellar scaffold for annulus fibrosus tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:67. [PMID: 32705351 DOI: 10.1007/s10856-020-06404-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/21/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Constructing a biomimetic scaffold that replicates the complex architecture of intervertebral disc annulus fibrosus (AF) remains a major goal in AF tissue engineering. In this study, a biomimetic angle-ply multi-lamellar polycaprolactone/silk fibroin (PCL/SF) AF scaffold was fabricated. Wet-spinning was used to obtain aligned PCL/SF microfiber sheets, and these were excised into strips with microfibers aligned at +30° or -30° relative to the strip long axis. This was followed by stacking two strips with opposing fiber alignment and wrapping them concentrically around a mandrel. Our results demonstrated that the scaffold possessed spatial structure and mechanical properties comparable to natural AF. The scaffold supported rabbit AF cells adhesion, proliferation, infiltration and guided oriented growth and extracellular matrix deposition. In conclusion, our angle-ply multi-lamellar scaffold offers a potential solution for AF replacement therapy and warrants further attention in future investigations.
Collapse
Affiliation(s)
- Tongxing Zhang
- Tianjin Medical University, Tianjin, PR China
- Department of Spine Surgery, Tianjin Hospital, Tianjin, PR China
| | - Lilong Du
- Tianjin Medical University, Tianjin, PR China
- Department of Spine Surgery, Tianjin Hospital, Tianjin, PR China
| | | | - Ji Ding
- Tianjin Medical University, Tianjin, PR China
- Department of Spine Surgery, Tianjin Hospital, Tianjin, PR China
| | - Peng Zhang
- Tianjin Medical University, Tianjin, PR China
| | - Lianyong Wang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Baoshan Xu
- Tianjin Medical University, Tianjin, PR China.
- Department of Spine Surgery, Tianjin Hospital, Tianjin, PR China.
| |
Collapse
|