1
|
Getahun MN, Baleba SBS, Ngiela J, Ahuya P, Masiga D. Multimodal interactions in Stomoxys navigation reveal synergy between olfaction and vision. Sci Rep 2024; 14:17724. [PMID: 39085483 PMCID: PMC11291998 DOI: 10.1038/s41598-024-68726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Stomoxys flies exhibit an attraction toward objects that offer no rewards, such as traps and targets devoid of blood or nectar incentives. This behavior provides an opportunity to develop effective tools for vector control and monitoring. However, for these systems to be sustainable and eco-friendly, the visual cues used must be specific to target vector(s). In this study, we modified the existing blue Vavoua trap, which was originally designed to attract biting flies, to create a deceptive host attraction system specifically biased toward attracting Stomoxys. Our research revealed that Stomoxys flies are attracted to various colors, with red proving to be the most attractive and selective color for Stomoxys compared to the other colors tested. Interestingly, our investigation of the cattle-Stomoxys interaction demonstrated that Stomoxys flies do not prefer a specific livestock fur color phenotype, despite variation in the spectrum. To create a realistic sensory impression of the trap in the Stomoxys nervous system, we incorporated olfactory cues from livestock host odors that significantly increased trap catches. The optimized novel polymer bead dispenser is capable of effectively releasing the attractive odor carvone + p-cresol, with strong plume strands and longevity. Overall, red trap baited with polymer bead dispenser is environmentally preferred.
Collapse
Affiliation(s)
- Merid N Getahun
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya.
| | - Steve B S Baleba
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - John Ngiela
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Peter Ahuya
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| |
Collapse
|
2
|
Vaudo AD, Dyer LA, Leonard AS. Pollen nutrition structures bee and plant community interactions. Proc Natl Acad Sci U S A 2024; 121:e2317228120. [PMID: 38190523 PMCID: PMC10801918 DOI: 10.1073/pnas.2317228120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/19/2023] [Indexed: 01/10/2024] Open
Abstract
As bees' main source of protein and lipids, pollen is critical for their development, reproduction, and health. Plant species vary considerably in the macronutrient content of their pollen, and research in bee model systems has established that this variation both modulates performance and guides floral choice. Yet, how variation in pollen chemistry shapes interactions between plants and bees in natural communities is an open question, essential for both understanding the nutritional dynamics of plant-pollinator mutualisms and informing their conservation. To fill this gap, we asked how pollen nutrition (relative protein and lipid content) sampled from 109 co-flowering plant species structured visitation patterns observed among 75 subgenera of pollen-collecting bees in the Great Basin/Eastern Sierra region (USA). We found that the degree of similarity in co-flowering plant species' pollen nutrition predicted similarity among their visitor communities, even after accounting for floral morphology and phylogeny. Consideration of pollen nutrition also shed light on the structure of this interaction network: Bee subgenera and plant genera were arranged into distinct, interconnected groups, delineated by differences in pollen macronutrient values, revealing potential nutritional niches. Importantly, variation in pollen nutrition alone (high in protein, high in lipid, or balanced) did not predict the diversity of bee visitors, indicating that plant species offering complementary pollen nutrition may be equally valuable in supporting bee diversity. Nutritional diversity should thus be a key consideration when selecting plants for habitat restoration, and a nutritionally explicit perspective is needed when considering reward systems involved in the community ecology of pollination.
Collapse
Affiliation(s)
- Anthony D. Vaudo
- Department of Biology, University of Nevada, Reno, NV89557
- Rocky Mountain Research Station, United States Department of Agriculture Forest Service, Moscow, ID83843
| | - Lee A. Dyer
- Department of Biology, University of Nevada, Reno, NV89557
| | | |
Collapse
|
3
|
Bao T, Kimani S, Li Y, Li H, Yang S, Zhang J, Wang Q, Wang Z, Ning G, Wang L, Gao X. Allelic variation of terpene synthases drives terpene diversity in the wild species of the Freesia genus. PLANT PHYSIOLOGY 2023; 192:2419-2435. [PMID: 36932696 PMCID: PMC10315281 DOI: 10.1093/plphys/kiad172] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Terpene synthases (TPSs) play pivotal roles in conferring the structural diversity of terpenoids, which are mainly emitted from flowers, whereas the genetic basis of the release of floral volatile terpenes remains largely elusive. Though quite similar in sequence, TPS allelic variants still function divergently, and how they drive floral terpene diversity in closely related species remains unknown. Here, TPSs responsible for the floral scent of wild Freesia species were characterized, and the functions of their natural allelic variants, as well as the causal amino acid residues, were investigated in depth. Besides the 8 TPSs previously reported in modern cultivars, 7 additional TPSs were functionally evaluated to contribute to the major volatiles emitted from wild Freesia species. Functional characterization of allelic natural variants demonstrated that allelic TPS2 and TPS10 variants changed the enzymatic capacity while allelic TPS6 variants drove the diversity of floral terpene products. Further residue substitution analysis revealed the minor residues determining the enzyme catalytic activity and product specificity. The clarification of TPSs in wild Freesia species reveals that allelic TPS variants evolved differently to determine the interspecific floral volatile terpenes in the genus and might be used for modern cultivar improvement.
Collapse
Affiliation(s)
- Tingting Bao
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Shadrack Kimani
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
- School of Pure and Applied Sciences, Karatina University, Karatina 10101, Kenya
| | - Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Hongjie Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Song Yang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Jia Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Qiuyue Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Zhaoxuan Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Guogui Ning
- Key laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
4
|
Abid MA, Zhou Q, Abbas M, He H, Meng Z, Wang Y, Wei Y, Guo S, Zhang R, Liang C. Natural variation in Beauty Mark is associated with UV-based geographical adaptation in Gossypium species. BMC Biol 2023; 21:106. [PMID: 37173786 PMCID: PMC10176956 DOI: 10.1186/s12915-023-01591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Anthocyanins, a class of specialized metabolites that are ubiquitous among plant species, have attracted a great deal of attention from plant biologists due to their chemical diversity. They confer purple, pink, and blue colors that attract pollinators, protect plants from ultraviolet (UV) radiation, and scavenge reactive oxygen species (ROS) to facilitate plant survival during abiotic stress. In a previous study, we identified Beauty Mark (BM) in Gossypium barbadense as an activator of the anthocyanin biosynthesis pathway; this gene also directly led to the formation of a pollinator-attracting purple spot. RESULTS Here, we found that a single nucleotide polymorphism (SNP) (C/T) within the BM coding sequence was responsible for variations in this trait. Transient expression assays of BM from G. barbadense and G. hirsutum in Nicotiana benthamiana using luciferase reporter gene also suggested that SNPs in the coding sequence could be responsible for the absent beauty mark phenotype observed in G. hirsutum. We next demonstrated that the beauty mark and UV floral patterns are associated phenotypes and that UV exposure resulted in increased ROS generation in floral tissues; BM thus contributed to ROS scavenging in G. barbadense and wild cotton plants with flowers containing the beauty mark. Furthermore, a nucleotide diversity analysis and Tajima's D Test suggested that there have been strong selective sweeps in the GhBM locus during G. hirsutum domestication. CONCLUSIONS Taken together, these results suggest that cotton species differ in their approaches to absorbing or reflecting UV light and thus exhibit variations in floral anthocyanin biosynthesis to scavenge reactive ROS; furthermore, these traits are related to the geographic distribution of cotton species.
Collapse
Affiliation(s)
- Muhammad Ali Abid
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qi Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mubashir Abbas
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haiyan He
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunxiao Wei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
5
|
Doré M, Willmott K, Lavergne S, Chazot N, Freitas AVL, Fontaine C, Elias M. Mutualistic interactions shape global spatial congruence and climatic niche evolution in Neotropical mimetic butterflies. Ecol Lett 2023; 26:843-857. [PMID: 36929564 DOI: 10.1111/ele.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 03/18/2023]
Abstract
Understanding the mechanisms underlying species distributions and coexistence is both a priority and a challenge for biodiversity hotspots such as the Neotropics. Here, we highlight that Müllerian mimicry, where defended prey species display similar warning signals, is key to the maintenance of biodiversity in the c. 400 species of the Neotropical butterfly tribe Ithomiini (Nymphalidae: Danainae). We show that mimicry drives large-scale spatial association among phenotypically similar species, providing new empirical evidence for the validity of Müller's model at a macroecological scale. Additionally, we show that mimetic interactions drive the evolutionary convergence of species climatic niche, thereby strengthening the co-occurrence of co-mimetic species. This study provides new insights into the importance of mutualistic interactions in shaping both niche evolution and species assemblages at large spatial scales. Critically, in the context of climate change, our results highlight the vulnerability to extinction cascades of such adaptively assembled communities tied by positive interactions.
Collapse
Affiliation(s)
- Maël Doré
- Institut de Systématique, Evolution, Biodiversité, MNHN-CNRS-Sorbonne Université-EPHE-Université des Antilles, Muséum national d'Histoire naturelle, Paris, France.,Centre d'Ecologie et des Sciences de la Conservation, UMR 7204 MNHN-CNRS-Sorbonne Université, Muséum national d'Histoire naturelle, Paris, France
| | - Keith Willmott
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Sebastien Lavergne
- Laboratoire d'Ecologie Alpine, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble, France
| | - Nicolas Chazot
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - André V L Freitas
- Departamento de Biologia Animal and Museu de Diversidade Biológica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Colin Fontaine
- Centre d'Ecologie et des Sciences de la Conservation, UMR 7204 MNHN-CNRS-Sorbonne Université, Muséum national d'Histoire naturelle, Paris, France
| | - Marianne Elias
- Institut de Systématique, Evolution, Biodiversité, MNHN-CNRS-Sorbonne Université-EPHE-Université des Antilles, Muséum national d'Histoire naturelle, Paris, France.,Smithsonian Tropical Research Institute, Panama, Panama
| |
Collapse
|
6
|
Dexheimer AF, Outomuro D, Dunlap AS, Morehouse NI. Spectral sensitivities of the orchid bee Euglossa dilemma. JOURNAL OF INSECT PHYSIOLOGY 2023; 144:104464. [PMID: 36481409 DOI: 10.1016/j.jinsphys.2022.104464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Diurnal pollinators often rely on color cues to make decisions when visiting flowers. Orchid bees are major tropical pollinators, with most studies of their pollination behavior to date focusing on scent collection and chemical ecology. The objective of this study was to measure their spectral sensitivities to preliminarily characterize color vision in the orchid bee Euglossa dilemma and compare it to the known spectral sensitivity of other closely related bees. We compared E. dilemma's spectral sensitivities and opsin protein sequences to four closely related corbiculate bees. E. dilemma appears to have trichromatic vision, with spectral sensitivity peaks in the ultraviolet, blue, and green wavelengths (347 ± 0.957 (SE) nm, 429 ± 6.570 nm, and 537 ± 1.183 nm, respectively), similar to other measured bees. We found no differences between male and female E. dilemma visual systems despite neuroanatomical and behavioral differences reported in the literature. The lambda maxes of the ultraviolet-sensitive photoreceptors appeared to be the most conserved among the bees we compared. Meanwhile, both the lambda maxes of the blue photoreceptors and the blue opsin proteins sequences were the least conserved. Our results open up new possibilities for the study of color vision and color-mediated pollination behaviors in orchid bees.
Collapse
Affiliation(s)
- Andreia F Dexheimer
- Department of Biology, University of Missouri -St. Louis, 1 University Blvd, St. Louis, MO 63121, USA; Whitney R. Harris World Ecology Center, 1 University Blvd, St. Louis, MO 63121, USA; Center for STEM Research, Education & Outreach, Southern Illinois University Edwardsville, 1 Hairpin Dr, Edwardsville, IL 62026, USA.
| | - David Outomuro
- Department of Biological Sciences, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, USA; Department of Biological Sciences, University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH 45221, USA
| | - Aimee S Dunlap
- Department of Biology, University of Missouri -St. Louis, 1 University Blvd, St. Louis, MO 63121, USA; Whitney R. Harris World Ecology Center, 1 University Blvd, St. Louis, MO 63121, USA
| | - Nathan I Morehouse
- Department of Biological Sciences, University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH 45221, USA
| |
Collapse
|
7
|
Kantsa A, Garcia JE, Raguso RA, Dyer AG, Steen R, Tscheulin T, Petanidou T. Intrafloral patterns of color and scent in Capparis spinosa L. and the ghosts of its selection past. AMERICAN JOURNAL OF BOTANY 2023; 110:e16098. [PMID: 36371789 PMCID: PMC10108209 DOI: 10.1002/ajb2.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Capparis spinosa is a widespread charismatic plant, in which the nocturnal floral habit contrasts with the high visitation by diurnal bees and the pronounced scarcity of hawkmoths. To resolve this discrepancy and elucidate floral evolution of C. spinosa, we analyzed the intrafloral patterns of visual and olfactory cues in relation to the known sensory biases of the different visitor guilds (bees, butterflies, and hawkmoths). METHODS We measured the intrafloral variation of scent, reflectance spectra, and colorimetric properties according to three guilds of known visitors of C. spinosa. Additionally, we sampled visitation rates using a motion-activated camera. RESULTS Carpenter bees visited the flowers eight times more frequently than nocturnal hawkmoths, at dusk and in the following morning. Yet, the floral headspace of C. spinosa contained a typical sphingophilous scent with high emission rates of certain monoterpenes and amino-acid derived compounds. Visual cues included a special case of multisensory nectar guide and color patterns conspicuous to the visual systems of both hawkmoths and bees. CONCLUSIONS The intrafloral patterns of sensory stimuli suggest that hawkmoths have exerted strong historical selection on C. spinosa. Our study revealed two interesting paradoxes: (a) the flowers phenotypically biased towards the more inconsistent pollinator; and (b) floral display demands an abundance of resources that seems maladaptive in the habitats of C. spinosa. The transition to a binary pollination system accommodating large bees has not required phenotypic changes, owing to specific eco-physiological adaptations, unrelated to pollination, which make this plant an unusual case in pollination ecology.
Collapse
Affiliation(s)
- Aphrodite Kantsa
- Department of GeographyUniversity of the AegeanMytileneGreece
- Present address:
Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Jair E. Garcia
- Bio‐Inspired Digital Sensing Laboratory, School of Media and CommunicationRMIT UniversityMelbourneAustralia
| | - Robert A. Raguso
- Department of Neurobiology and BehaviorCornell University, IthacaNew YorkUSA
| | - Adrian G. Dyer
- Bio‐Inspired Digital Sensing Laboratory, School of Media and CommunicationRMIT UniversityMelbourneAustralia
- Department of PhysiologyMonash UniversityClaytonAustralia
- Present address:
Department of Developmental Biology and NeurobiologyJohannes Gutenberg UniversityMainzGermany
| | - Ronny Steen
- Department of Ecology and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | | | | |
Collapse
|
8
|
van der Kooi CJ, Spaethe J. Caution with colour calculations: spectral purity is a poor descriptor of flower colour visibility. ANNALS OF BOTANY 2022; 130:1-9. [PMID: 35726715 PMCID: PMC9295922 DOI: 10.1093/aob/mcac069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The colours of flowers are of key interest to plant and pollination biologists. An increasing number of studies have investigated the importance of saturation of flower colours (often called 'spectral purity' or 'chroma') for visibility to pollinators, but the conceptual, physiological and behavioural foundations for these metrics as well as the calculations used rest on slender foundations. METHODS We discuss the caveats of colour attributes that are derived from human perception, and in particular spectral purity and chroma, as variables in flower colour analysis. We re-analysed seven published datasets encompassing 774 measured reflectance spectra to test for correlations between colour contrast, spectral purity and chroma. MAIN FINDINGS AND CONCLUSIONS We identify several concerns with common calculation procedures in animal colour spaces. Studies on animal colour vision provide no ground to assume that any pollinator perceives (or responds to) saturation, chroma or spectral purity in the way humans do. A re-analysis of published datasets revealed that values for colour contrast between flowers and their background are highly correlated with measures for spectral purity and chroma, which invalidates treating these factors as independent variables as is currently commonplace. Strikingly, spectral purity and chroma - both of which are metrics for saturation and are often used synonymously - are not correlated at all. We conclude that alternative, behaviourally validated metrics for the visibility of flowers to pollinators, such as colour contrast and achromatic contrast, are better in understanding the role of flower colour in plant-pollinator signalling.
Collapse
Affiliation(s)
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Germany
| |
Collapse
|
9
|
Albor C, Ashman T, Stanley A, Martel C, Arceo‐Gómez G. Flower color and flowering phenology mediate plant‐pollinator interaction assembly in a diverse co‐flowering community. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cristopher Albor
- Department of Biological Sciences University of Calgary Calgary Alberta Canada
| | - Tia‐Lynn Ashman
- Department of Biological Sciences University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Amber Stanley
- Department of Biological Sciences University of Pittsburgh Pittsburgh Pennsylvania USA
- Department of Biological Sciences East Tennessee State University Johnson City Tennessee USA
| | - Carlos Martel
- Department of Biological Sciences East Tennessee State University Johnson City Tennessee USA
- Current address: Royal Botanical Gardens at Kew London United Kingdom
| | - Gerardo Arceo‐Gómez
- Department of Biological Sciences East Tennessee State University Johnson City Tennessee USA
| |
Collapse
|
10
|
Saavedra S, Bartomeus I, Godoy O, Rohr RP, Zu P. Towards a system-level causative knowledge of pollinator communities. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210159. [PMID: 35491588 PMCID: PMC9058529 DOI: 10.1098/rstb.2021.0159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Pollination plays a central role in both crop production and maintaining biodiversity. However, habitat loss, pesticides, invasive species and larger environmental fluctuations are contributing to a dramatic decline of pollinators worldwide. Different management solutions require knowledge of how ecological communities will respond following interventions. Yet, anticipating the response of these systems to interventions remains extremely challenging due to the unpredictable nature of ecological communities, whose nonlinear behaviour depends on the specific details of species interactions and the various unknown or unmeasured confounding factors. Here, we propose that this knowledge can be derived by following a probabilistic systems analysis rooted on non-parametric causal inference. The main outcome of this analysis is to estimate the extent to which a hypothesized cause can increase or decrease the probability that a given effect happens without making assumptions about the form of the cause-effect relationship. We discuss a road map for how this analysis can be accomplished with the aim of increasing our system-level causative knowledge of natural communities. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Serguei Saavedra
- Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Av., Cambridge, MA 02139, USA
| | - Ignasi Bartomeus
- Estación Biológica de Doñana (EBD-CSIC), 41092, Isla de la Cartuja, Seville, Spain
| | - Oscar Godoy
- Departamento de Biología, Instituto Universitario de Ciencias del Mar (INMAR), Universidad de Cádiz, Royal Port E-11510, Spain
| | - Rudolf P. Rohr
- Department of Biology - Ecology and Evolution, University of Fribourg, Chemin du Musée 10, Fribourg CH-1700, Switzerland
| | - Penguan Zu
- Department of Environmental Systems Science, ETH Zurich, Schmelzbergstrasse 9, Zurich CH-8092, Switzerland
- Department Fish Ecology and Evolution, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Seestrasse 79, Kastanienbaum CH-6047, Switzerland
| |
Collapse
|
11
|
Garcia JE, Dyer AG. Why do animals want what they like? Science 2022; 376:456-457. [PMID: 35482878 DOI: 10.1126/science.abp8609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
As in mammals, honey bee motivation for wanting rewards is modulated by dopamine.
Collapse
Affiliation(s)
- Jair E Garcia
- BIDs Lab, School of Media and Communication, RMIT University, Melbourne, VIC, Australia
| | - Adrian G Dyer
- BIDs Lab, School of Media and Communication, RMIT University, Melbourne, VIC, Australia.,Department of Physiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
12
|
Tunes P, Dötterl S, Guimarães E. Florivory and Pollination Intersection: Changes in Floral Trait Expression Do Not Discourage Hummingbird Pollination. FRONTIERS IN PLANT SCIENCE 2022; 13:813418. [PMID: 35432434 PMCID: PMC9006511 DOI: 10.3389/fpls.2022.813418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Many flowers are fed on by florivores, but we know little about if and how feeding on flowers affects their visual and chemical advertisement and nectar resource, which could disrupt pollination. Here, we investigated if damages caused by florivores compromise a Neotropical hummingbird pollination system, by modifying the floral advertisements and the nectar resource. We surveyed natural florivory levels and patterns, examined short-term local effects of floral damages caused by the most common florivore, a caterpillar, on floral outline, intra-floral colour pattern and floral scent, as well as on the amount of nectar. Following, we experimentally tested if the most severe florivory pattern affected hummingbird pollination. The feeding activity of the most common florivore did not alter the intra-floral colour pattern, floral scent, and nectar volume, but changed the corolla outline. However, this change did not affect hummingbird pollination. Despite visual floral cues being important for foraging in hummingbirds, our results emphasise that changes in the corolla outline had a neutral effect on pollination, allowing the maintenance of florivore-plant-pollinator systems without detriment to any partner.
Collapse
Affiliation(s)
- Priscila Tunes
- Postgraduate Program in Biological Sciences (Botany), Institute of Biosciences, São Paulo State University, Botucatu, Brazil
- Laboratory of Ecology and Evolution of Plant-Animal Interactions, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Stefan Dötterl
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Elza Guimarães
- Laboratory of Ecology and Evolution of Plant-Animal Interactions, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| |
Collapse
|
13
|
Multimodal Information Processing and Associative Learning in the Insect Brain. INSECTS 2022; 13:insects13040332. [PMID: 35447774 PMCID: PMC9033018 DOI: 10.3390/insects13040332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Insect behaviors are a great indicator of evolution and provide useful information about the complexity of organisms. The realistic sensory scene of an environment is complex and replete with multisensory inputs, making the study of sensory integration that leads to behavior highly relevant. We summarize the recent findings on multimodal sensory integration and the behaviors that originate from them in our review. Abstract The study of sensory systems in insects has a long-spanning history of almost an entire century. Olfaction, vision, and gustation are thoroughly researched in several robust insect models and new discoveries are made every day on the more elusive thermo- and mechano-sensory systems. Few specialized senses such as hygro- and magneto-reception are also identified in some insects. In light of recent advancements in the scientific investigation of insect behavior, it is not only important to study sensory modalities individually, but also as a combination of multimodal inputs. This is of particular significance, as a combinatorial approach to study sensory behaviors mimics the real-time environment of an insect with a wide spectrum of information available to it. As a fascinating field that is recently gaining new insight, multimodal integration in insects serves as a fundamental basis to understand complex insect behaviors including, but not limited to navigation, foraging, learning, and memory. In this review, we have summarized various studies that investigated sensory integration across modalities, with emphasis on three insect models (honeybees, ants and flies), their behaviors, and the corresponding neuronal underpinnings.
Collapse
|
14
|
Latinovic A, Nichols DS, Adams VM, McQuillan PB. Grouped SPME Comparison of Floral Scent as a Method of Unlocking Phylogenetic Patterns in Volatiles. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.795122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Global crop production rate has exceeded the availability of pollination services provided by managed honeybees, and habitat loss remains a key factor in the loss of wild pollinators. Revegetation of agricultural land and wild pollination may provide a solution; however, the collection of floral trait data that are correlated to pollinator preferences remains an under studied and complex process. Here, we demonstrate a method for scent analysis, ordination [non-metric dimensional scaling (NMDS)], and clustering outputs that provides a fast and reproducible procedure for a broad grouping of flora based on scent and unlocking characteristic inter-floral patterns. We report the floral profiles of 15 unstudied native Australian plant species and the extent to which they match the commonly cultivated seed crops of Daucus carota L and Brassica rapa L. Through solid-phase microextraction (SPME) paired with gas chromatography–mass spectrometry (GC-MS), we identify a set of inter-family shared, common floral volatiles from these plant species as well as unique and characteristic patterns.
Collapse
|
15
|
Garcia JE, Hannah L, Shrestha M, Burd M, Dyer AG. Fly pollination drives convergence of flower coloration. THE NEW PHYTOLOGIST 2022; 233:52-61. [PMID: 34460949 DOI: 10.1111/nph.17696] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Plant-pollinator interactions provide a natural experiment in signal evolution. Flowers are known to have evolved colour signals that maximise their ease of detection by the visual systems of important pollinators such as bees. Whilst most angiosperms are bee pollinated, our understanding on how the second largest group of pollinating insects, flies, may influence flower colour evolution is limited to the use of categorical models of colour discrimination that do not reflect the small colour differences commonly observed between and within flower species. Here we show by comparing flower signals that occur in different environments including total absence of bees, a mixture of bee and fly pollination within one plant family (Orchidaceae) from a single community, and typical flowers from a broad taxonomic sampling of the same geographic region, that perceptually different colours, empirically measured, do evolve in response to different types of insect pollinators. We show evidence of both convergence among fly-pollinated floral colours but also of divergence and displacement of colour signals in the absence of bee pollinators. Our findings give an insight into how both ecological and agricultural systems may be affected by changes in pollinator distributions around the world.
Collapse
Affiliation(s)
- Jair E Garcia
- Bio-Inspired Digital Sensing Laboratory, School of Media and Communication, RMIT University, Melbourne, Vic., 3000, Australia
| | - Lea Hannah
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2750, Australia
| | - Mani Shrestha
- Department of Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, 95447, Germany
- School of Information Technology, Monash University, Clayton, Vic., 3168, Australia
| | - Martin Burd
- School of Biological Sciences, Monash University, Clayton, Vic., 3168, Australia
| | - Adrian G Dyer
- Bio-Inspired Digital Sensing Laboratory, School of Media and Communication, RMIT University, Melbourne, Vic., 3000, Australia
| |
Collapse
|
16
|
Koethe S, Reinartz L, Heard TA, Garcia JE, Dyer AG, Lunau K. Comparative psychophysics of Western honey bee (Apis mellifera) and stingless bee (Tetragonula carbonaria) colour purity and intensity perception. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:641-652. [PMID: 36269403 PMCID: PMC9734212 DOI: 10.1007/s00359-022-01581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
Bees play a vital role as pollinators worldwide and have influenced how flower colour signals have evolved. The Western honey bee, Apis mellifera (Apini), and the Buff-tailed bumble bee, Bombus terrestris (Bombini) are well-studied model species with regard to their sensory physiology and pollination capacity, although currently far less is known about stingless bees (Meliponini) that are common in pantropical regions. We conducted comparative experiments with two highly eusocial bee species, the Western honey bee, A. mellifera, and the Australian stingless bee, Tetragonula carbonaria, to understand their colour preferences considering fine-scaled stimuli specifically designed for testing bee colour vision. We employed stimuli made of pigment powders to allow manipulation of single colour parameters including spectral purity (saturation) or colour intensity (brightness) of a blue colour (hue) for which both species have previously shown innate preferences. Both A. mellifera and T. carbonaria demonstrated a significant preference for spectrally purer colour stimuli, although this preference is more pronounced in honey bees than in stingless bees. When all other colour cues were tightly controlled, honey bees receiving absolute conditioning demonstrated a capacity to learn a high-intensity stimulus significant from chance expectation demonstrating some capacity of plasticity for this dimension of colour perception. However, honey bees failed to learn low-intensity stimuli, and T. carbonaria was insensitive to stimulus intensity as a cue. These comparative findings suggest that there may be some common roots underpinning colour perception in bee pollinators and how they interact with flowers, although species-specific differences do exist.
Collapse
Affiliation(s)
- Sebastian Koethe
- Institute of Sensory Ecology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lara Reinartz
- Institute of Sensory Ecology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | | | - Jair E. Garcia
- School of Media and Communication, RMIT University, Building 5.2.36, City Campus, GPO Box 2476, Melbourne, VIC 3001 Australia
| | - Adrian G. Dyer
- School of Media and Communication, RMIT University, Building 5.2.36, City Campus, GPO Box 2476, Melbourne, VIC 3001 Australia ,Department of Physiology, Monash University, Melbourne, 3800 Australia ,Institute of Developmental Biology and Neurobiology, Johannes Gutenberg Universität, Mainz, Germany
| | - Klaus Lunau
- Institute of Sensory Ecology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
17
|
Manincor N, Andreu B, Buatois B, Lou Chao H, Hautekèete N, Massol F, Piquot Y, Schatz B, Schmitt E, Dufay M. Geographical variation of floral scents in generalist entomophilous species with variable pollinator communities. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Benjamin Andreu
- CEFE Univ. Montpellier CNRS EPHE IRD Univ. Paul Valéry Montpellier 3 Montpellier France
| | - Bruno Buatois
- CEFE Univ. Montpellier CNRS EPHE IRD Univ. Paul Valéry Montpellier 3 Montpellier France
| | | | | | - François Massol
- Univ. Lille CNRS UMR 8198—Evo‐Eco‐Paleo Lille France
- Univ. Lille CNRS Inserm CHU Lille Institut Pasteur de Lille U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille Lille France
| | - Yves Piquot
- Univ. Lille CNRS UMR 8198—Evo‐Eco‐Paleo Lille France
| | - Bertrand Schatz
- CEFE Univ. Montpellier CNRS EPHE IRD Univ. Paul Valéry Montpellier 3 Montpellier France
| | - Eric Schmitt
- Univ. Lille CNRS UMR 8198—Evo‐Eco‐Paleo Lille France
| | - Mathilde Dufay
- Univ. Lille CNRS UMR 8198—Evo‐Eco‐Paleo Lille France
- CEFE Univ. Montpellier CNRS EPHE IRD Univ. Paul Valéry Montpellier 3 Montpellier France
| |
Collapse
|
18
|
Streinzer M, Neumayer J, Spaethe J. Flower Color as Predictor for Nectar Reward Quantity in an Alpine Flower Community. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.721241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Entomophilous plants have evolved colorful floral displays to attract flower visitors to achieve pollination. Although many insects possess innate preferences for certain colors, the underlying proximate and ultimate causes for this behavior are still not well understood. It has been hypothesized that the floral rewards, e.g., sugar content, of plants belonging to a particular color category correlate with the preference of the flower visitors. However, this hypothesis has been tested only for a subset of plant communities worldwide. Bumble bees are the most important pollinators in alpine environments and show a strong innate preference for (bee) “UV-blue” and “blue” colors. We surveyed plants visited by bumble bees in the subalpine and alpine zones (>1,400 m a.s.l.) of the Austrian Alps and measured nectar reward and spectral reflectance of the flowers. We found that the majority of the 105 plant samples visited by bumble bees fall into the color categories “blue” and “blue-green” of a bee-specific color space. Our study shows that color category is only a weak indicator for nectar reward quantity; and due to the high reward variance within and between categories, we do not consider floral color as a reliable signal for bumble bees in the surveyed habitat. Nevertheless, since mean floral reward quantity differs between categories, naïve bumble bees may benefit from visiting flowers that fall into the innately preferred color category during their first foraging flights.
Collapse
|
19
|
Narbona E, del Valle JC, Arista M, Buide ML, Ortiz PL. Major Flower Pigments Originate Different Colour Signals to Pollinators. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.743850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Flower colour is mainly due to the presence and type of pigments. Pollinator preferences impose selection on flower colour that ultimately acts on flower pigments. Knowing how pollinators perceive flowers with different pigments becomes crucial for a comprehensive understanding of plant-pollinator communication and flower colour evolution. Based on colour space models, we studied whether main groups of pollinators, specifically hymenopterans, dipterans, lepidopterans and birds, differentially perceive flower colours generated by major pigment groups. We obtain reflectance data and conspicuousness to pollinators of flowers containing one of the pigment groups more frequent in flowers: chlorophylls, carotenoids and flavonoids. Flavonoids were subsequently classified in UV-absorbing flavonoids, aurones-chalcones and the anthocyanins cyanidin, pelargonidin, delphinidin, and malvidin derivatives. We found that flower colour loci of chlorophylls, carotenoids, UV-absorbing flavonoids, aurones-chalcones, and anthocyanins occupied different regions of the colour space models of these pollinators. The four groups of anthocyanins produced a unique cluster of colour loci. Interestingly, differences in colour conspicuousness among the pigment groups were almost similar in the bee, fly, butterfly, and bird visual space models. Aurones-chalcones showed the highest chromatic contrast values, carotenoids displayed intermediate values, and chlorophylls, UV-absorbing flavonoids and anthocyanins presented the lowest values. In the visual model of bees, flowers with UV-absorbing flavonoids (i.e., white flowers) generated the highest achromatic contrasts. Ours findings suggest that in spite of the almost omnipresence of floral anthocyanins in angiosperms, carotenoids and aurones-chalcones generates higher colour conspicuousness for main functional groups of pollinators.
Collapse
|
20
|
Howard SR, Prendergast K, Symonds MRE, Shrestha M, Dyer AG. Spontaneous choices for insect-pollinated flower shapes by wild non-eusocial halictid bees. J Exp Biol 2021; 224:271069. [PMID: 34318316 DOI: 10.1242/jeb.242457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/22/2021] [Indexed: 11/20/2022]
Abstract
The majority of angiosperms require animal pollination for reproduction, and insects are the dominant group of animal pollinators. Bees are considered one of the most important and abundant insect pollinators. Research into bee behaviour and foraging decisions has typically centred on managed eusocial bee species, including Apis mellifera and Bombus terrestris. Non-eusocial bees are understudied with respect to foraging strategies and decision making, such as flower preferences. Understanding whether there are fundamental foraging strategies and preferences that are features of insect groups can provide key insights into the evolution of flower-pollinator co-evolution. In the current study, Lasioglossum (Chilalictus) lanarium and Lasioglossum (Parasphecodes) sp., two native Australian generalist halictid bees, were tested for flower shape preferences between native insect-pollinated and bird-pollinated flowers. Each bee was presented with achromatic images of either insect-pollinated or bird-pollinated flowers in a circular arena. Both native bee species demonstrated a significant preference for images of insect-pollinated flowers. These preferences are similar to those found in A. mellifera, suggesting that flower shape preference may be a deep-rooted evolutionary occurrence within bees. With growing interest in the sensory capabilities of non-eusocial bees as alternative pollinators, the current study also provides a valuable framework for further behavioural testing of such species.
Collapse
Affiliation(s)
- Scarlett R Howard
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Kit Prendergast
- School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Matthew R E Symonds
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Mani Shrestha
- Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany.,Faculty of Information Technology, Monash University, Clayton, VIC 3800, Australia
| | - Adrian G Dyer
- School of Media and Communication, RMIT University, Melbourne, VIC 3000, Australia.,Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
21
|
Cna'ani A, Dener E, Ben-Zeev E, Günther J, Köllner TG, Tzin V, Seifan M. Phylogeny and abiotic conditions shape the diel floral emission patterns of desert Brassicaceae species. PLANT, CELL & ENVIRONMENT 2021; 44:2656-2671. [PMID: 33715174 DOI: 10.1111/pce.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
A key facet of floral scent is diel fluctuations in emission, often studied in the context of plant-pollinator interactions, while contributions of environment and phylogeny remain overlooked. Here, we ask if these factors are involved in shaping temporal variations in scent emission. To that end, we coupled light/dark floral emission measurements of 17 desert Brassicaceae species with environmental and phylogenetic data to explore the individual/combined impacts of these predictors on diel emission patterns. We further investigated these patterns by conducting high-resolution emission measurements in a subset of genetically distant species with contrasting temporal dynamics. While diel shifts in magnitude and richness of emission were strongly affected by genetic relatedness, they also reflect the environmental conditions under which the species grow. Specifically, light/dark emission ratios were negatively affected by an increase in winter temperatures, known to impact both plant physiology and insect locomotion, and sandy soil fractions, previously shown to exert stress that tempers with diel metabolic rhythms. Additionally, the biosynthetic origins of the compounds were associated with their corresponding production patterns, possibly to maximize emission efficacy. Using a multidisciplinary chemical/ecological approach, we uncover and differentiate the main factors shaping floral scent diel fluctuations, highlighting their consequences under changing global climate.
Collapse
Affiliation(s)
- Alon Cna'ani
- Jacob Blaustein Center for Scientific Cooperation, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| | - Efrat Dener
- The Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| | - Efrat Ben-Zeev
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Jan Günther
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
- Section of Plant Biochemistry, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark
| | - Tobias G Köllner
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| | - Merav Seifan
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| |
Collapse
|
22
|
Moré M, Soteras F, Ibañez AC, Dötterl S, Cocucci AA, Raguso RA. Floral Scent Evolution in the Genus Jaborosa (Solanaceae): Influence of Ecological and Environmental Factors. PLANTS (BASEL, SWITZERLAND) 2021; 10:1512. [PMID: 34451557 PMCID: PMC8398055 DOI: 10.3390/plants10081512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Floral scent is a key communication channel between plants and pollinators. However, the contributions of environment and phylogeny to floral scent composition remain poorly understood. In this study, we characterized interspecific variation of floral scent composition in the genus Jaborosa Juss. (Solanaceae) and, using an ecological niche modelling approach (ENM), we assessed the environmental variables that exerted the strongest influence on floral scent variation, taking into account pollination mode and phylogenetic relationships. Our results indicate that two major evolutionary themes have emerged: (i) a 'warm Lowland Subtropical nectar-rewarding clade' with large white hawkmoth pollinated flowers that emit fragrances dominated by oxygenated aromatic or sesquiterpenoid volatiles, and (ii) a 'cool-temperate brood-deceptive clade' of largely fly-pollinated species found at high altitudes (Andes) or latitudes (Patagonian Steppe) that emit foul odors including cresol, indole and sulfuric volatiles. The joint consideration of floral scent profiles, pollination mode, and geoclimatic context helped us to disentangle the factors that shaped floral scent evolution across "pollinator climates" (geographic differences in pollinator abundance or preference). Our findings suggest that the ability of plants in the genus Jaborosa to colonize newly formed habitats during Andean orogeny was associated with striking transitions in flower scent composition that trigger specific odor-driven behaviors in nocturnal hawkmoths and saprophilous fly pollinators.
Collapse
Affiliation(s)
- Marcela Moré
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Florencia Soteras
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Ana C. Ibañez
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Stefan Dötterl
- Department of Biosciences, Paris-Lodron-University of Salzburg, 5020 Salzburg, Austria;
| | - Andrea A. Cocucci
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Robert A. Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
23
|
Comparative psychophysics of colour preferences in two species of non-eusocial Australian native halictid bees. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:657-666. [PMID: 34241711 DOI: 10.1007/s00359-021-01504-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 10/20/2022]
Abstract
Colour signalling by flowers appears to be the main plant-pollinator communication system observed across many diverse species and locations worldwide. Bees are considered one of the most important insect pollinators; however, native non-eusocial bees are often understudied compared to managed eusocial species, such as honeybees and bumblebees. Here, we tested two species of native Australian non-eusocial halictid bees on their colour preferences for seven different broadband colours with bee-colour-space dominant wavelengths ranging from 385 to 560 nm and a neutral grey control. Lasioglossum (Chilalictus) lanarium demonstrated preferences for a UV-absorbing white (455 nm) and a yellow (560 nm) stimulus. Lasioglossum (Parasphecodes) sp. showed no colour preferences. Subsequent analyses showed that green contrast and spectral purity had a significant positive relationship with the number of visits by L. lanarium to stimuli. Colour preferences were consistent with other bee species and may be phylogenetically conserved and linked to how trichromatic bees processes visual information, although the relative dearth of empirical evidence on different bee species currently makes it difficult to dissect mechanisms. Past studies and our current results suggest that both innate and environmental factors might both be at play in mediating bee colour preferences.
Collapse
|
24
|
Kikuchi DW, Herberstein ME, Barfield M, Holt RD, Mappes J. Why aren't warning signals everywhere? On the prevalence of aposematism and mimicry in communities. Biol Rev Camb Philos Soc 2021; 96:2446-2460. [PMID: 34128583 DOI: 10.1111/brv.12760] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
Warning signals are a striking example of natural selection present in almost every ecological community - from Nordic meadows to tropical rainforests, defended prey species and their mimics ward off potential predators before they attack. Yet despite the wide distribution of warning signals, they are relatively scarce as a proportion of the total prey available, and more so in some biomes than others. Classically, warning signals are thought to be governed by positive density-dependent selection, i.e. they succeed better when they are more common. Therefore, after surmounting this initial barrier to their evolution, it is puzzling that they remain uncommon on the scale of the community. Here, we explore factors likely to determine the prevalence of warning signals in prey assemblages. These factors include the nature of prey defences and any constraints upon them, the behavioural interactions of predators with different prey defences, the numerical responses of predators governed by movement and reproduction, the diversity and abundance of undefended alternative prey and Batesian mimics in the community, and variability in other ecological circumstances. We also discuss the macroevolution of warning signals. Our review finds that we have a basic understanding of how many species in some taxonomic groups have warning signals, but very little information on the interrelationships among population abundances across prey communities, the diversity of signal phenotypes, and prey defences. We also have detailed knowledge of how a few generalist predator species forage in artificial laboratory environments, but we know much less about how predators forage in complex natural communities with variable prey defences. We describe how empirical work to address each of these knowledge gaps can test specific hypotheses for why warning signals exhibit their particular patterns of distribution. This will help us to understand how behavioural interactions shape ecological communities.
Collapse
Affiliation(s)
- David W Kikuchi
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, Germany.,Evolutionary Biology, Universität Bielefeld, Konsequez 45, Bielefeld, 33615, Germany
| | - Marie E Herberstein
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, Germany.,Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, 2109, Australia
| | - Michael Barfield
- Department of Biology, University of Florida, Gainesville, FL, 32611-8525, U.S.A
| | - Robert D Holt
- Department of Biology, University of Florida, Gainesville, FL, 32611-8525, U.S.A
| | - Johanna Mappes
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, Germany.,Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University, Helsinki, Finland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| |
Collapse
|
25
|
Skeels A, Dinnage R, Medina I, Cardillo M. Ecological interactions shape the evolution of flower color in communities across a temperate biodiversity hotspot. Evol Lett 2021; 5:277-289. [PMID: 34136275 PMCID: PMC8190448 DOI: 10.1002/evl3.225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023] Open
Abstract
Processes driving the divergence of floral traits may be integral to the extraordinary richness of flowering plants and the assembly of diverse plant communities. Several models of pollinator-mediated floral evolution have been proposed; floral divergence may (i) be directly involved in driving speciation or may occur after speciation driven by (ii) drift or local adaptation in allopatry or (iii) negative interactions between species in sympatry. Here, we generate predictions for patterns of trait divergence and community assembly expected under these three models, and test these predictions in Hakea (Proteaceae), a diverse genus in the Southwest Australian biodiversity hotspot. We quantified functional richness for two key floral traits (pistil length and flower color), as well as phylogenetic distances between species, across ecological communities, and compared these to patterns generated from null models of community assembly. We also estimated the statistical relationship between rates of trait evolution and lineage diversification across the phylogeny. Patterns of community assembly suggest that flower color, but not floral phenology or morphology, or phylogenetic relatedness, is more divergent in communities than expected. Rates of lineage diversification and flower color evolution were negatively correlated across the phylogeny and rates of flower colour evolution were positively related to branching times. These results support a role for diversity-dependent species interactions driving floral divergence during the Hakea radiation, contributing to the development of the extraordinary species richness of southwest Australia.
Collapse
Affiliation(s)
- Alexander Skeels
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraACT 0200Australia
- Landscape Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems ScienceETH ZürichZürichCH‐8092Switzerland
- Unit of Land Change Science, Swiss Federal Research Institute for ForestSnow and Landscape WSLBirmensdorfCH‐8903Switzerland
| | - Russell Dinnage
- Institute for Applied EcologyUniversity of CanberraCanberraACT 2617Australia
| | - Iliana Medina
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraACT 0200Australia
- School of BioSciencesUniversity of MelbourneMelbourneVIC 3010Australia
| | - Marcel Cardillo
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraACT 0200Australia
| |
Collapse
|
26
|
Seo H, Lee JW, Giannone RJ, Dunlap NJ, Trinh CT. Engineering promiscuity of chloramphenicol acetyltransferase for microbial designer ester biosynthesis. Metab Eng 2021; 66:179-190. [PMID: 33872779 DOI: 10.1016/j.ymben.2021.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023]
Abstract
Robust and efficient enzymes are essential modules for metabolic engineering and synthetic biology strategies across biological systems to engineer whole-cell biocatalysts. By condensing an acyl-CoA and an alcohol, alcohol acyltransferases (AATs) can serve as interchangeable metabolic modules for microbial biosynthesis of a diverse class of ester molecules with broad applications as flavors, fragrances, solvents, and drop-in biofuels. However, the current lack of robust and efficient AATs significantly limits their compatibility with heterologous precursor pathways and microbial hosts. Through bioprospecting and rational protein engineering, we identified and engineered promiscuity of chloramphenicol acetyltransferases (CATs) from mesophilic prokaryotes to function as robust and efficient AATs compatible with at least 21 alcohol and 8 acyl-CoA substrates for microbial biosynthesis of linear, branched, saturated, unsaturated and/or aromatic esters. By plugging the best engineered CAT (CATec3 Y20F) into the gram-negative mesophilic bacterium Escherichia coli, we demonstrated that the recombinant strain could effectively convert various alcohols into desirable esters, for instance, achieving a titer of 13.9 g/L isoamyl acetate with 95% conversion by fed-batch fermentation. The recombinant E. coli was also capable of simulating the ester profile of roses with high conversion (>97%) and titer (>1 g/L) from fermentable sugars at 37 °C. Likewise, a recombinant gram-positive, cellulolytic, thermophilic bacterium Clostridium thermocellum harboring CATec3 Y20F could produce many of these esters from recalcitrant cellulosic biomass at elevated temperatures (>50 °C) due to the engineered enzyme's remarkable thermostability. Overall, the engineered CATs can serve as a robust and efficient platform for designer ester biosynthesis from renewable and sustainable feedstocks.
Collapse
Affiliation(s)
- Hyeongmin Seo
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA; Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jong-Won Lee
- Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN, USA; Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Richard J Giannone
- Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Noah J Dunlap
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA; Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN, USA; Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
27
|
Rabeschini G, Joaquim Bergamo P, Nunes CEP. Meaningful Words in Crowd Noise: Searching for Volatiles Relevant to Carpenter Bees among the Diverse Scent Blends of Bee Flowers. J Chem Ecol 2021; 47:444-454. [PMID: 33683547 DOI: 10.1007/s10886-021-01257-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
Olfactory cues constitute one of the most important plant-pollinator communication channels. Specific chemical components can be associated with specific pollinator functional groups due to pollinator-mediated selection on flower volatile (FV) emission. Here, we used multivariate analyses of FV data to detect an association between FVs and the worldwide distributed pollinator group of the carpenter bees (Xylocopa spp.). We compiled FVs of 29 plant species: 9 pollinated by carpenter bees, 20 pollinated by other bee pollinator functional groups. We tested whether FV emission differed between these groups. To rule out any phylogenetic bias in our dataset, we tested FV emission for phylogenetic signal. Finally, using field assays, we tested the attractive function of two FVs found to be associated with carpenter bees. We found no significant multivariate difference between the two plant groups FVs. However, seven FVs (five apocarotenoid terpenoids, one long-chain alkane and one benzenoid) were significantly associated with carpenter bee pollination, thus being "predictor" compounds of pollination by this pollinator functional group. From those, β-ionone and (E)-methyl cinnamate presented the highest indicator values and had their behavioural function assessed in field assays. Phylogenetic signal for FVs emission was weak, suggesting that their emission could result from pollinator-mediated selection. In field assays, the apocarotenoid β-ionone attracted carpenter bees, but also bees from other functional groups. The benzenoid (E)-methyl cinnamate did not attract significant numbers of pollinators. Thus, β-ionone functions as a non-specific bee attractant, while apocarotenoid FVs emerge as consistent indicators of pollination by large food-foraging bees among bee-pollinated flowers.
Collapse
Affiliation(s)
- Gabriela Rabeschini
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Pedro Joaquim Bergamo
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.,Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Carlos E P Nunes
- Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.,Department of Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| |
Collapse
|
28
|
Aguiar JMRBV, Ferreira GDS, Sanches PA, Bento JMS, Sazima M. What pollinators see does not match what they smell: Absence of color-fragrance association in the deceptive orchid Ionopsis utricularioides. PHYTOCHEMISTRY 2021; 182:112591. [PMID: 33333335 DOI: 10.1016/j.phytochem.2020.112591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Many deceptive orchids present variation in floral color and fragrance. This might be advantageous for the plant, as it can disturb the associative avoidance learning of pollinators, promoting more visits to the flowers. Some studies have shown that color and fragrance can be correlated in polymorphic deceptive orchids, but these studies employed color traits based on the human visual system and not the visual perception of pollinators. Thus, we investigated the composition of the floral fragrance of Ionopsis utricularioides (Sw.) Lindl., a polymorphic deceptive orchid, and analyzed possible correlations with the floral color as seen by bees, Apis mellifera L. and Melipona quadrifasciata Lepeletier, using the color hexagon model. We found high color and fragrance intraspecific variation, as expected for deceptive species. However, we found no color-fragrance association in individuals, either by comparing fragrance profiles with the color variable saturation or by comparing them with the placement of individuals in the color hexagon for both bee species. This lack of correlation contradicts the biochemical pathway hypothesis, which proposes that associations between floral color and scent in polymorphic flowers arise from shared biochemical pathways. However, a complete absence of correlation between floral signals is consistent with selection arising through pollinator cognitive ecology. Lack of correlation would increase the floral variability perceived by bees, given their multimodal learning, and this variability could disrupt avoidance learning of deceptive flowers, thus enhancing the efficacy of the plant's deceptive pollination mechanism.
Collapse
Affiliation(s)
| | - Gabriel de Souza Ferreira
- Senckenberg Centre for Human Evolution and Palaeoenvironment (HEP) at the Eberhard Karls Universität Tübingen, Sigwartstr. 10, 72076, Tübingen, Germany
| | - Patricia Alessandra Sanches
- Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Departamento de Entomologia e Acarologia, Piracicaba, SP, 13418-900, Brazil; Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH Zürich), 8092, Zürich, Switzerland
| | - José Mauricio Simões Bento
- Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Departamento de Entomologia e Acarologia, Piracicaba, SP, 13418-900, Brazil
| | - Marlies Sazima
- Departamento de Botânica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, 13083-865, Brazil
| |
Collapse
|
29
|
Dyer AG, Jentsch A, Burd M, Garcia JE, Giejsztowt J, Camargo MGG, Tjørve E, Tjørve KMC, White P, Shrestha M. Fragmentary Blue: Resolving the Rarity Paradox in Flower Colors. FRONTIERS IN PLANT SCIENCE 2021; 11:618203. [PMID: 33552110 PMCID: PMC7859648 DOI: 10.3389/fpls.2020.618203] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/17/2020] [Indexed: 05/05/2023]
Abstract
Blue is a favored color of many humans. While blue skies and oceans are a common visual experience, this color is less frequently observed in flowers. We first review how blue has been important in human culture, and thus how our perception of blue has likely influenced the way of scientifically evaluating signals produced in nature, including approaches as disparate as Goethe's Farbenlehre, Linneaus' plant taxonomy, and current studies of plant-pollinator networks. We discuss the fact that most animals, however, have different vision to humans; for example, bee pollinators have trichromatic vision based on UV-, Blue-, and Green-sensitive photoreceptors with innate preferences for predominantly short-wavelength reflecting colors, including what we perceive as blue. The subsequent evolution of blue flowers may be driven by increased competition for pollinators, both because of a harsher environment (as at high altitude) or from high diversity and density of flowering plants (as in nutrient-rich meadows). The adaptive value of blue flowers should also be reinforced by nutrient richness or other factors, abiotic and biotic, that may reduce extra costs of blue-pigments synthesis. We thus provide new perspectives emphasizing that, while humans view blue as a less frequently evolved color in nature, to understand signaling, it is essential to employ models of biologically relevant observers. By doing so, we conclude that short wavelength reflecting blue flowers are indeed frequent in nature when considering the color vision and preferences of bees.
Collapse
Affiliation(s)
- Adrian G. Dyer
- School of Media and Communication, RMIT University, Melbourne, VIC, Australia
| | - Anke Jentsch
- Department of Disturbance Ecology, Bayreuth Center for Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Martin Burd
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Jair E. Garcia
- School of Media and Communication, RMIT University, Melbourne, VIC, Australia
| | - Justyna Giejsztowt
- Department of Disturbance Ecology, Bayreuth Center for Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Maria G. G. Camargo
- Phenology Lab, Biosciences Institute, Department of Biodiversity, UNESP – São Paulo State University, São Paulo, Brazil
| | - Even Tjørve
- Inland Norway University of Applied Sciences, Lillehammer, Norway
| | | | - Peter White
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mani Shrestha
- School of Media and Communication, RMIT University, Melbourne, VIC, Australia
- Faculty of Information Technology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Rodríguez-Castañeda NL, Ortiz PL, Arista M, Narbona E, Buide ML. Indirect Selection on Flower Color in Silene littorea. FRONTIERS IN PLANT SCIENCE 2020; 11:588383. [PMID: 33424884 PMCID: PMC7785944 DOI: 10.3389/fpls.2020.588383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/25/2020] [Indexed: 05/07/2023]
Abstract
Flower color, as other floral traits, may suffer conflicting selective pressures mediated by both mutualists and antagonists. The maintenance of intraspecific flower color variability has been usually explained as a result of direct selection by biotic agents. However, flower color might also be under indirect selection through correlated traits, since correlations among flower traits are frequent. In this study, we aimed to find out how flower color variability is maintained in two nearby populations of Silene littorea that consistently differ in the proportions of white-flowered plants. To do that, we assessed natural selection on floral color and correlated traits by means of phenotypic selection analysis and path analysis. Strong directional selection on floral display and flower production was found in both populations through either male or female fitness. Flower color had a negative indirect effect on the total male and female fitness in Melide population, as plants with lighter corollas produced more flowers. In contrast, in Barra population, plants with darker corollas produced more flowers and have darker calices, which in turn were selected. Our results suggest that the prevalence of white-flowered plants in Melide and pink-flowered plants in Barra is a result of indirect selection through correlated flower traits and not a result of direct selection of either pollinators or herbivores on color.
Collapse
Affiliation(s)
| | - Pedro L. Ortiz
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Montserrat Arista
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Eduardo Narbona
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain
| | - Mª Luisa Buide
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
31
|
Tai KC, Shrestha M, Dyer AG, Yang EC, Wang CN. Floral Color Diversity: How Are Signals Shaped by Elevational Gradient on the Tropical-Subtropical Mountainous Island of Taiwan? FRONTIERS IN PLANT SCIENCE 2020; 11:582784. [PMID: 33391297 DOI: 10.5061/dryad.63xsj3v08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/25/2020] [Indexed: 05/27/2023]
Abstract
Pollinators with different vision are a key driver of flower coloration. Islands provide important insights into evolutionary processes, and previous work suggests islands may have restricted flower colors. Due to both species richness with high endemism in tropical-subtropical environments, and potentially changing pollinator distributions with altitude, we evaluated flower color diversity across the mountainous island of Taiwan in a comparative framework to understand the cause of color diversity. We sampled flower color signaling on the tropical-subtropical island of Taiwan considering altitudes from sea level to 3300 m to inform how over-dispersion, random processes or clustering may influence flower signaling. We employed a model of bee color space to plot loci from 727 species to enable direct comparisons to data sets from continental studies representing Northern and Southern Hemispheres, and also a continental mountain region. We observed that flower color diversity was similar to flowers that exist in mainland continental studies, and also showed evidence that flowers predominantly had evolved color signals that closely matched bee color preferences. At high altitudes floras tend to be phylogenetically clustered rather than over-dispersed, and their floral colors exhibited weak phylogenetic signal which is consistent with character displacement that facilitated the co-existence of related species. Overall flower color signaling on a tropical-subtropical island is mainly influenced by color preferences of key bee pollinators, a pattern consistent with continental studies.
Collapse
Affiliation(s)
- King-Chun Tai
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Mani Shrestha
- School of Media and Communication, RMIT University, Melbourne, VIC, Australia
| | - Adrian G Dyer
- School of Media and Communication, RMIT University, Melbourne, VIC, Australia
| | - En-Cheng Yang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Chun-Neng Wang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
32
|
Seitz N, vanEngelsdorp D, Leonhardt SD. Are native and non-native pollinator friendly plants equally valuable for native wild bee communities? Ecol Evol 2020; 10:12838-12850. [PMID: 33304497 PMCID: PMC7713930 DOI: 10.1002/ece3.6826] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/11/2022] Open
Abstract
Bees rely on floral pollen and nectar for food. Therefore, pollinator friendly plantings are often used to enrich habitats in bee conservation efforts. As part of these plantings, non-native plants may provide valuable floral resources, but their effects on native bee communities have not been assessed in direct comparison with native pollinator friendly plantings. In this study, we performed a common garden experiment by seeding mixes of 20 native and 20 non-native pollinator friendly plant species at separate neighboring plots at three sites in Maryland, USA, and recorded flower visitors for 2 years. A total of 3,744 bees (120 species) were collected. Bee abundance and species richness were either similar across plant types (midseason and for abundance also late season) or lower at native than at non-native plots (early season and for richness also late season). The overall bee community composition differed significantly between native and non-native plots, with 11 and 23 bee species being found exclusively at one plot type or the other, respectively. Additionally, some species were more abundant at native plant plots, while others were more abundant at non-natives. Native plants hosted more specialized plant-bee visitation networks than non-native plants. Three species out of the five most abundant bee species were more specialized when foraging on native plants than on non-native plants. Overall, visitation networks were more specialized in the early season than in late seasons. Our findings suggest that non-native plants can benefit native pollinators, but may alter foraging patterns, bee community assemblage, and bee-plant network structures.
Collapse
Affiliation(s)
- Nicola Seitz
- Department of Animal Ecology and Tropical BiologyUniversity of WürzburgWürzburgGermany
- Department of EntomologyUniversity of MarylandCollege ParkMDUSA
| | | | - Sara D. Leonhardt
- Department of Animal Ecology and Tropical BiologyUniversity of WürzburgWürzburgGermany
- Present address:
Department of Ecology & Ecosystem ManagementTechnical University of MunichFreisingGermany
| |
Collapse
|
33
|
Dalrymple RL, Kemp DJ, Flores-Moreno H, Laffan SW, White TE, Hemmings FA, Moles AT. Macroecological patterns in flower colour are shaped by both biotic and abiotic factors. THE NEW PHYTOLOGIST 2020; 228:1972-1985. [PMID: 32533864 DOI: 10.1111/nph.16737] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/24/2020] [Indexed: 05/22/2023]
Abstract
There is a wealth of research on the way interactions with pollinators shape flower traits. However, we have much more to learn about influences of the abiotic environment on flower colour. We combine quantitative flower colour data for 339 species from a broad spatial range covering tropical, temperate, arid, montane and coastal environments from 9.25ºS to 43.75ºS with 11 environmental variables to test hypotheses about how macroecological patterns in flower colouration relate to biotic and abiotic conditions. Both biotic community and abiotic conditions are important in explaining variation of flower colour traits on a broad scale. The diversity of pollinating insects and the plant community have the highest predictive power for flower colouration, followed by mean annual precipitation and solar radiation. On average, flower colours are more chromatic where there are fewer pollinators, solar radiation is high, precipitation and net primary production are low, and growing seasons are short, providing support for the hypothesis that higher chromatic contrast of flower colours may be related to stressful conditions. To fully understand the ecology and evolution of flower colour, we should incorporate the broad selective context that plants experience into research, rather than focusing primarily on effects of plant-pollinator interactions.
Collapse
Affiliation(s)
- Rhiannon L Dalrymple
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Darrell J Kemp
- Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Habacuc Flores-Moreno
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| | - Shawn W Laffan
- School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Thomas E White
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2109, Australia
| | - Frank A Hemmings
- John T. Waterhouse Herbarium, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Angela T Moles
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
34
|
Ortiz PL, Fernández‐Díaz P, Pareja D, Escudero M, Arista M. Do visual traits honestly signal floral rewards at community level? Funct Ecol 2020. [DOI: 10.1111/1365-2435.13709] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Pedro L. Ortiz
- Departamento de Biología Vegetal y Ecología Universidad de Sevilla Sevilla Spain
| | - Pilar Fernández‐Díaz
- Departamento de Biología Vegetal y Ecología Universidad de Sevilla Sevilla Spain
| | - Daniel Pareja
- Departamento de Biología Vegetal y Ecología Universidad de Sevilla Sevilla Spain
| | - Marcial Escudero
- Departamento de Biología Vegetal y Ecología Universidad de Sevilla Sevilla Spain
| | - Montserrat Arista
- Departamento de Biología Vegetal y Ecología Universidad de Sevilla Sevilla Spain
| |
Collapse
|
35
|
Light intensity regulates flower visitation in Neotropical nocturnal bees. Sci Rep 2020; 10:15333. [PMID: 32948798 PMCID: PMC7501267 DOI: 10.1038/s41598-020-72047-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/12/2020] [Indexed: 11/30/2022] Open
Abstract
The foraging activity of diurnal bees often relies on flower availability, light intensity and temperature. We do not know how nocturnal bees, which fly at night and twilight, cope with these factors, especially as light levels vary considerably from night to day and from night to night due to moon phase and cloud cover. Given that bee apposition compound eyes function at their limits in dim light, we expect a strong dependence of foraging activity on light intensity in nocturnal bees. Besides being limited by minimum light levels to forage, nocturnal bees should also avoid foraging at brighter intensities, which bring increased competition with other bees. We investigated how five factors (light intensity, flower availability, temperature, humidity, and wind) affect flower visitation by Neotropical nocturnal bees in cambuci (Campomanesia phaea, Myrtaceae). We counted visits per minute over 30 nights in 33 cambuci trees. Light intensity was the main variable explaining flower visitation of nocturnal bees, which peaked at intermediate light levels occurring 25 min before sunrise. The minimum light intensity threshold to visit flowers was 0.00024 cd/m2. Our results highlight the dependence of these nocturnal insects on adequate light levels to explore resources.
Collapse
|
36
|
Ng L, Garcia JE, Dyer AG. Use of temporal and colour cueing in a symbolic delayed matching task by honey bees. J Exp Biol 2020; 223:jeb224220. [PMID: 32611791 DOI: 10.1242/jeb.224220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/26/2020] [Indexed: 11/20/2022]
Abstract
Honey bees (Apis mellifera) are known for their capacity to learn arbitrary relationships between colours, odours and even numbers. However, it is not known whether bees can use temporal signals as cueing stimuli in a similar way during symbolic delayed matching-to-sample tasks. Honey bees potentially process temporal signals during foraging activities, but the extent to which they can use such information is unclear. Here, we investigated whether free-flying honey bees could use either illumination colour or illumination duration as potential context-setting cues to enable their subsequent decisions for a symbolic delayed matching-to-sample task. We found that bees could use the changing colour context of the illumination to complete the subsequent spatial vision task at a level significantly different from chance expectation, but could not use the duration of either a 1 or 3 s light as a cueing stimulus. These findings suggest that bees cannot use temporal information as a cueing stimulus as efficiently as other signals such as colour, and are consistent with previous field observations suggesting a limited interval timing capacity in honey bees.
Collapse
Affiliation(s)
- Leslie Ng
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC 3001, Australia
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jair E Garcia
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC 3001, Australia
| | - Adrian G Dyer
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC 3001, Australia
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
37
|
Chudzinska M, Dupont YL, Nabe-Nielsen J, Maia KP, Henriksen MV, Rasmussen C, Kissling WD, Hagen M, Trøjelsgaard K. Combining the strengths of agent-based modelling and network statistics to understand animal movement and interactions with resources: example from within-patch foraging decisions of bumblebees. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Farré-Armengol G, Fernández-Martínez M, Filella I, Junker RR, Peñuelas J. Deciphering the Biotic and Climatic Factors That Influence Floral Scents: A Systematic Review of Floral Volatile Emissions. FRONTIERS IN PLANT SCIENCE 2020; 11:1154. [PMID: 32849712 PMCID: PMC7412988 DOI: 10.3389/fpls.2020.01154] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/15/2020] [Indexed: 06/02/2023]
Abstract
Currently, a global analysis of the information available on the relative composition of the floral scents of a very diverse variety of plant species is missing. Such analysis may reveal general patterns on the distribution and dominance of the volatile compounds that form these mixtures, and may also allow measuring the effects of factors such as the phylogeny, pollination vectors, and climatic conditions on the floral scents of the species. To fill this gap, we compiled published data on the relative compositions and emission rates of volatile organic compounds (VOCs) in the floral scents of 305 plant species from 66 families. We also gathered information on the groups of pollinators that visited the flowers and the climatic conditions in the areas of distribution of these species. This information allowed us to characterize the occurrence and relative abundances of individual volatiles in floral scents and the effects of biotic and climatic factors on floral scent. The monoterpenes trans-β-ocimene and linalool and the benzenoid benzaldehyde were the most abundant floral VOCs, in both ubiquity and predominance in the floral blends. Floral VOC richness and relative composition were moderately preserved traits across the phylogeny. The reliance on different pollinator groups and the climate also had important effects on floral VOC richness, composition, and emission rates of the species. Our results support the hypothesis that key compounds or compounds originating from specific biosynthetic pathways mediate the attraction of the main pollinators. Our results also indicate a prevalence of monoterpenes in the floral blends of plants that grow in drier conditions, which could link with the fact that monoterpene emissions protect plants against oxidative stresses throughout drought periods and their emissions are enhanced under moderate drought stress. Sesquiterpenes, in turn, were positively correlated with mean annual temperature, supporting that sesquiterpene emissions are dominated mainly by ambient temperature. This study is the first to quantitatively summarise data on floral-scent emissions and provides new insights into the biotic and climatic factors that influence floral scents.
Collapse
Affiliation(s)
- Gerard Farré-Armengol
- Department of Biosciences, University of Salzburg, Salzburg, Austria
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | | | - Iolanda Filella
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Robert R. Junker
- Department of Biosciences, University of Salzburg, Salzburg, Austria
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| |
Collapse
|
39
|
Dani KGS, Fineschi S, Michelozzi M, Trivellini A, Pollastri S, Loreto F. Diversification of petal monoterpene profiles during floral development and senescence in wild roses: relationships among geraniol content, petal colour, and floral lifespan. Oecologia 2020; 197:957-969. [PMID: 32712874 PMCID: PMC8591013 DOI: 10.1007/s00442-020-04710-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 06/23/2020] [Indexed: 01/01/2023]
Abstract
Wild roses store and emit a large array of fragrant monoterpenes from their petals. Maximisation of fragrance coincides with floral maturation in many angiosperms, which enhances pollination efficiency, reduces floral predation, and improves plant fitness. We hypothesized that petal monoterpenes serve additional lifelong functions such as limiting metabolic damage from reactive oxygen species (ROS), and altering isoprenoid hormonal abundance to increase floral lifespan. Petal monoterpenes were quantified at three floral life-stages (unopened bud, open mature, and senescent) in 57 rose species and 16 subspecies originating from Asia, America, and Europe, and relationships among monoterpene richness, petal colour, ROS, hormones, and floral lifespan were analysed within a phylogenetic context. Three distinct types of petal monoterpene profiles, revealing significant developmental and functional differences, were identified: Type A, species where monoterpene abundance peaked in open mature flowers depleting thereafter; Type B, where monoterpenes peaked in senescing flowers increasing from bud stage, and a rare Type C (8 species) where monoterpenes depleted from bud stage to senescence. Cyclic monoterpenes peaked during early floral development, whereas acyclic monoterpenes (dominated by geraniol and its derivatives, often 100-fold more abundant than other monoterpenes) peaked during floral maturation in Type A and B roses. Early-diverging roses were geraniol-poor (often Type C) and white-petalled. Lifetime changes in hydrogen peroxide (H2O2) revealed a significant negative regression with the levels of petal geraniol at all floral life-stages. Geraniol-poor Type C roses also showed higher cytokinins (in buds) and abscisic acid (in mature petals), and significantly shorter floral lifespan compared with geraniol-rich Type A and B roses. We conclude that geraniol enrichment, intensification of petal colour, and lower potential for H2O2-related oxidative damage characterise and likely contribute to longer floral lifespan in monoterpene-rich wild roses.
Collapse
Affiliation(s)
- K G Srikanta Dani
- Institute for Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy. .,Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Piazzale Aldo Moro 7, 00185, Rome, Italy.
| | - Silvia Fineschi
- Institute of Heritage Science, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| | - Marco Michelozzi
- Laboratory for the Analysis and Research in Environmental Chemistry, Institute of Biosciences and Bioresources, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| | - Alice Trivellini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124, Pisa, Italy
| | - Susanna Pollastri
- Institute for Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Piazzale Aldo Moro 7, 00185, Rome, Italy.
| |
Collapse
|
40
|
Zu P, Boege K, Del-Val E, Schuman MC, Stevenson PC, Zaldivar-Riverón A, Saavedra S. Information arms race explains plant-herbivore chemical communication in ecological communities. Science 2020; 368:1377-1381. [PMID: 32554595 DOI: 10.1126/science.aba2965] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/25/2020] [Accepted: 04/15/2020] [Indexed: 01/10/2023]
Abstract
Plants emit an extraordinary diversity of chemicals that provide information about their identity and mediate their interactions with insects. However, most studies of this have focused on a few model species in controlled environments, limiting our capacity to understand plant-insect chemical communication in ecological communities. Here, by integrating information theory with ecological and evolutionary theories, we show that a stable information structure of plant volatile organic compounds (VOCs) can emerge from a conflicting information process between plants and herbivores. We corroborate this information "arms race" theory with field data recording plant-VOC associations and plant-herbivore interactions in a tropical dry forest. We reveal that plant VOC redundancy and herbivore specialization can be explained by a conflicting information transfer. Information-based communication approaches can increase our understanding of species interactions across trophic levels.
Collapse
Affiliation(s)
- Pengjuan Zu
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Karina Boege
- Instituto de Ecología, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Ek Del-Val
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Unidad Morelia Universidad Nacional Autónoma de México, 58190 Morelia, Michoacán, México
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, DE-07745, Germany.,Departments of Chemistry and Geography, University of Zurich, CH-8057 Zurich, Switzerland
| | - Philip C Stevenson
- Royal Botanic Gardens, Kew Richmond, Surrey TW9 3AB, UK.,Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK
| | | | - Serguei Saavedra
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
41
|
Balamurali GS, Rose S, Somanathan H, Kodandaramaiah U. Complex multi-modal sensory integration and context specificity in colour preferences of a pierid butterfly. J Exp Biol 2020; 223:jeb223271. [PMID: 32414875 DOI: 10.1242/jeb.223271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/11/2020] [Indexed: 11/20/2022]
Abstract
Innate colour preferences in insects were long considered to be a non-flexible representation of a floral 'search image' guiding them to flowers during initial foraging trips. However, these colour preferences have recently been shown to be modulated by multi-sensory integration of information. Using experiments on the butterfly Catopsilia pomona (common emigrant), we demonstrate that cross-modal integration of information not only affects colour preferences but also colour learning, and in a sex-specific manner. We show that spontaneous colour preference in this species is sexually dimorphic, with males preferring both blue and yellow while females prefer yellow. With minimal training (two training sessions), both males and females learned to associate blue with reward, but females did not learn green. This suggests that the aversion to green, in the context of foraging, is stronger in females than in males, probably because green is used as a cue to find oviposition sites in butterflies. However, females learned green after extensive training (five training sessions). Intriguingly, when a floral odour was present along with green during training, female colour preference during the subsequent choice tests resembled their innate preference (preference for yellow). Our results show that multi-sensory integration of information can influence preference, sensory bias, learning and memory in butterflies, thus modulating their behaviour in a context-specific manner.
Collapse
Affiliation(s)
- G S Balamurali
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Saloni Rose
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Hema Somanathan
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Ullasa Kodandaramaiah
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
42
|
Shrestha M, Garcia JE, Burd M, Dyer AG. Australian native flower colours: Does nectar reward drive bee pollinator flower preferences? PLoS One 2020; 15:e0226469. [PMID: 32525873 PMCID: PMC7289428 DOI: 10.1371/journal.pone.0226469] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/18/2020] [Indexed: 11/18/2022] Open
Abstract
Colour is an important signal that flowering plants use to attract insect pollinators like bees. Previous research in Germany has shown that nectar volume is higher for flower colours that are innately preferred by European bees, suggesting an important link between colour signals, bee preferences and floral rewards. In Australia, flower colour signals have evolved in parallel to the Northern hemisphere to enable easy discrimination and detection by the phylogenetically ancient trichromatic visual system of bees, and native Australian bees also possess similar innate colour preferences to European bees. We measured 59 spectral signatures from flowers present at two preserved native habitats in South Eastern Australia and tested whether there were any significant differences in the frequency of flowers presenting higher nectar rewards depending upon the colour category of the flower signals, as perceived by bees. We also tested if there was a significant correlation between chromatic contrast and the frequency of flowers presenting higher nectar rewards. For the entire sample, and for subsets excluding species in the Asteraceae and Orchidaceae, we found no significant difference among colour categories in the frequency of high nectar reward. This suggests that whilst such relationships between flower colour signals and nectar volume rewards have been observed at a field site in Germany, the effect is likely to be specific at a community level rather than a broad general principle that has resulted in the common signalling of bee flower colours around the world.
Collapse
Affiliation(s)
- Mani Shrestha
- Bio-Inspired Digital Lab (BIDS-Lab), Schools of Media and Communication, RMIT University, Melbourne, Australia
| | - Jair E. Garcia
- Bio-Inspired Digital Lab (BIDS-Lab), Schools of Media and Communication, RMIT University, Melbourne, Australia
| | - Martin Burd
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Adrian G. Dyer
- Bio-Inspired Digital Lab (BIDS-Lab), Schools of Media and Communication, RMIT University, Melbourne, Australia
- * E-mail:
| |
Collapse
|
43
|
Lichtenberg EM, Heiling JM, Bronstein JL, Barker JL. Noisy communities and signal detection: why do foragers visit rewardless flowers? Philos Trans R Soc Lond B Biol Sci 2020; 375:20190486. [PMID: 32420846 DOI: 10.1098/rstb.2019.0486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Floral communities present complex and shifting resource landscapes for flower-foraging animals. Strong similarities among the floral displays of different plant species, paired with high variability in reward distributions across time and space, can weaken correlations between floral signals and reward status. As a result, it should be difficult for foragers to discriminate between rewarding and rewardless flowers. Building on signal detection theory in behavioural ecology, we use hypothetical probability density functions to examine graphically how plant signals pose challenges to forager decision-making. We argue that foraging costs associated with incorrect acceptance of rewardless flowers and incorrect rejection of rewarding ones interact with community-level reward availability to determine the extent to which rewardless and rewarding species should overlap in flowering time. We discuss the evolutionary consequences of these phenomena from both the forager and the plant perspectives. This article is part of the theme issue 'Signal detection theory in recognition systems: from evolving models to experimental tests'.
Collapse
Affiliation(s)
- Elinor M Lichtenberg
- Department of Integrative Biology, University of Texas, Austin, TX, USA.,Department of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, TX, USA
| | - Jacob M Heiling
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Judith L Bronstein
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Jessica L Barker
- The Behavioural Insights Team, UK.,Interacting Minds Centre, Aarhus University, Denmark
| |
Collapse
|
44
|
Aubier TG, Elias M. Positive and negative interactions jointly determine the structure of Müllerian mimetic communities. OIKOS 2020. [DOI: 10.1111/oik.06789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Thomas G. Aubier
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE – UMR 5175 – CNRS, Univ. de Montpellier, EPHE, Univ. Paul Valéry 1919 route de Mende FR‐34293 Montpellier 5 France
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Zurich Switzerland
| | - Marianne Elias
- Inst. de Systématique, Evolution, Biodiversité, ISYEB ‐ UMR 7205 ‐ Mus. Natl d'Hist. Nat., CNRS, Sorbonne Univ., EPHE, Univ. des Antilles Paris France
| |
Collapse
|
45
|
Tai KC, Shrestha M, Dyer AG, Yang EC, Wang CN. Floral Color Diversity: How Are Signals Shaped by Elevational Gradient on the Tropical-Subtropical Mountainous Island of Taiwan? FRONTIERS IN PLANT SCIENCE 2020; 11:582784. [PMID: 33391297 PMCID: PMC7773721 DOI: 10.3389/fpls.2020.582784] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/25/2020] [Indexed: 05/14/2023]
Abstract
Pollinators with different vision are a key driver of flower coloration. Islands provide important insights into evolutionary processes, and previous work suggests islands may have restricted flower colors. Due to both species richness with high endemism in tropical-subtropical environments, and potentially changing pollinator distributions with altitude, we evaluated flower color diversity across the mountainous island of Taiwan in a comparative framework to understand the cause of color diversity. We sampled flower color signaling on the tropical-subtropical island of Taiwan considering altitudes from sea level to 3300 m to inform how over-dispersion, random processes or clustering may influence flower signaling. We employed a model of bee color space to plot loci from 727 species to enable direct comparisons to data sets from continental studies representing Northern and Southern Hemispheres, and also a continental mountain region. We observed that flower color diversity was similar to flowers that exist in mainland continental studies, and also showed evidence that flowers predominantly had evolved color signals that closely matched bee color preferences. At high altitudes floras tend to be phylogenetically clustered rather than over-dispersed, and their floral colors exhibited weak phylogenetic signal which is consistent with character displacement that facilitated the co-existence of related species. Overall flower color signaling on a tropical-subtropical island is mainly influenced by color preferences of key bee pollinators, a pattern consistent with continental studies.
Collapse
Affiliation(s)
- King-Chun Tai
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Mani Shrestha
- School of Media and Communication, RMIT University, Melbourne, VIC, Australia
- *Correspondence: Mani Shrestha, ;
| | - Adrian G. Dyer
- School of Media and Communication, RMIT University, Melbourne, VIC, Australia
| | - En-Cheng Yang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Chun-Neng Wang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
- Chun-Neng Wang,
| |
Collapse
|
46
|
Parra-Tabla V, Angulo-Pérez D, Albor C, Campos-Navarrete MJ, Tun-Garrido J, Sosenski P, Alonso C, Ashman TL, Arceo-Gómez G. The role of alien species on plant-floral visitor network structure in invaded communities. PLoS One 2019; 14:e0218227. [PMID: 31703061 PMCID: PMC6839871 DOI: 10.1371/journal.pone.0218227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/23/2019] [Indexed: 11/18/2022] Open
Abstract
The interactions between pairs of native and alien plants via shared use of pollinators have been widely studied. Community level studies however, are necessary in order to fully understand the factors and mechanisms that facilitate successful plant invasion, but these are still scarce. Specifically, few community level studies have considered how differences in invasion level (alien flower abundance), and degree of floral trait similarity between native and invasive species, mediate effects on native plant-pollinator communities. Here, we evaluated the role of alien species on overall plant-floral visitor network structure, and on species-level network parameters, across nine invaded coastal communities distributed along 205 km in Yucatán, México that vary in alien species richness and flower abundance. We further assessed the potential the role of alien plant species on plant-floral visitor network structure and robustness via computational simulation of native and invasive plant extinction scenarios. We did not find significant differences between native and alien species in their functional floral phenotypes or in their visitation rate and pollinator community composition in these invaded sites. Variation in the proportion of alien plant species and flower abundance across sites did not influence plant-pollinator network structure. Species-level network parameters (i.e., normalized degree and nestedness contribution) did not differ between native and alien species. Furthermore, our simulation analyses revealed that alien species are functionally equivalent to native species and contribute equally to network structure and robustness. Overall, our results suggest that high levels of floral trait similarity and pollinator use overlap may help facilitate the integration of alien species into native plant-pollinator networks. As a result, alien species may also play a similar role than that of natives in the structure and stability of native plant and pollinator communities in the studied coastal sand dune ecosystem.
Collapse
Affiliation(s)
- Víctor Parra-Tabla
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán,Mérida, Yucatán, México
- * E-mail:
| | - Diego Angulo-Pérez
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán,Mérida, Yucatán, México
| | - Cristopher Albor
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán,Mérida, Yucatán, México
| | - María José Campos-Navarrete
- División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Tizimín, Tecnológico Nacional de México,Tizimín, Yucatán, México
| | - Juan Tun-Garrido
- Departamento de Botánica, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Paula Sosenski
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán,Mérida, Yucatán, México
| | - Conchita Alonso
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda, Sevilla, Spain
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Gerardo Arceo-Gómez
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States of America
| |
Collapse
|
47
|
Shrestha M, Dyer AG, Garcia JE, Burd M. Floral colour structure in two Australian herbaceous communities: it depends on who is looking. ANNALS OF BOTANY 2019; 124:221-232. [PMID: 31008511 PMCID: PMC6758583 DOI: 10.1093/aob/mcz043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/14/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Pollinator-mediated interactions between plant species may affect the composition of angiosperm communities. Floral colour signals should play a role in these interactions, but the role will arise from the visual perceptions and behavioural responses of multiple pollinators. Recent advances in the visual sciences can be used to inform our understanding of these perceptions and responses. We outline the application of appropriate visual principles to the analysis of the annual cycle of floral colour structure in two Australian herbaceous communities. METHODS We used spectrographic measurements of petal reflectance to determine the location of flowers in a model of hymenopteran colour vision. These representations of colour perception were then translated to a behaviourally relevant metric of colour differences using empirically calibrated colour discrimination functions for four hymenopteran species. We then analysed the pattern of colour similarity in terms of this metric in samples of co-flowering plants over the course of a year. We used the same method to analyse the annual pattern of phylogenetic relatedness of co-flowering plants in order to compare colour structure and phylogenetic structure. KEY RESULTS Co-flowering communities at any given date seldom had colour assemblages significantly different from random. Non-random structure, both dispersion and clustering, occurred occasionally, but depended on which bee observer is considered. The degree of colour similarity was unrelated to phylogenetic similarity within a co-flowering community. CONCLUSIONS Perceived floral colour structure varied with the sensory capabilities of the observer. The lack of colour structure at most sample dates, particularly the rarity of strong dispersion, suggests that plants do not use chromatic signals primarily to enable bees to discriminate between co-flowering species. It is more likely that colours make plants detectable in a complex landscape.
Collapse
Affiliation(s)
- Mani Shrestha
- School of Biological Sciences, Monash University, Melbourne, Australia
- School of Media and Communication, RMIT University, Melbourne, Australia
| | - Adrian G Dyer
- School of Media and Communication, RMIT University, Melbourne, Australia
- Department of Physiology, Monash University, Melbourne, Australia
- For correspondence. E-mail
| | - Jair E Garcia
- School of Media and Communication, RMIT University, Melbourne, Australia
| | - Martin Burd
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
48
|
Burkle LA, Runyon JB. Floral volatiles structure plant–pollinator interactions in a diverse community across the growing season. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13424] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura A. Burkle
- Department of Ecology Montana State University Bozeman Montana
| | - Justin B. Runyon
- Rocky Mountain Research Station USDA Forest Service Bozeman Montana
| |
Collapse
|
49
|
Paine KC, White TE, Whitney KD. Intraspecific floral color variation as perceived by pollinators and non-pollinators: evidence for pollinator-imposed constraints? Evol Ecol 2019. [DOI: 10.1007/s10682-019-09991-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Paulus HF. Speciation, pattern recognition and the maximization of pollination: general questions and answers given by the reproductive biology of the orchid genus Ophrys. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:285-300. [PMID: 31134328 PMCID: PMC6579770 DOI: 10.1007/s00359-019-01350-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 11/18/2022]
Abstract
Pollination syndromes evolved under the reciprocal selection of pollinators and plants (coevolution). Here, the two main methods are reviewed which are applied to prove such selection. (i) The indirect method is a cross-lineage approach using phylogenetical trees to understand the phylogeny. Thus, features of single origin can be distinguished from those with multiple origins. Nearly all pollination modes originate in multiple evolutionary ways. (ii) The most frequent pollinators cause the strongest selection because they are responsible for the plant's most successful reproduction. The European sexually deceptive orchid genus Ophrys provides an example of a more direct way to prove selection because the attraction of a pollinator is species specific. Most members of the genus have remarkably variable flowers. The variability of the signals given off by the flowers enables the deceived pollinator males to learn individual flower patterns. They thus avoid already visited Ophrys flowers, interpreting them as females rejecting them. As the males will not return to these individually recognizable flowers, the pollinators´ learning behavior causes cross-pollination and prevents the orchid's self-pollination.
Collapse
Affiliation(s)
- Hannes F Paulus
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstr.14, 1090, Vienna, Austria.
| |
Collapse
|