1
|
Lee DSM, Cardone KM, Zhang DY, Tsao NL, Abramowitz S, Sharma P, DePaolo JS, Conery M, Aragam KG, Biddinger K, Dilitikas O, Hoffman-Andrews L, Judy RL, Khan A, Kulo I, Puckelwartz MJ, Reza N, Satterfield BA, Singhal P, Arany ZP, Cappola TP, Carruth E, Day SM, Do R, Haggarty CM, Joseph J, McNally EM, Nadkarni G, Owens AT, Rader DJ, Ritchie MD, Sun YV, Voight BF, Levin MG, Damrauer SM. Common- and rare-variant genetic architecture of heart failure across the allele frequency spectrum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.07.16.23292724. [PMID: 37503172 PMCID: PMC10371173 DOI: 10.1101/2023.07.16.23292724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Heart failure (HF) is a complex trait, influenced by environmental and genetic factors, which affects over 30 million individuals worldwide. Historically, the genetics of HF have been studied in Mendelian forms of disease, where rare genetic variants have been linked to familial cardiomyopathies. More recently, genome-wide association studies (GWAS) have successfully identified common genetic variants associated with risk of HF. However, the relative importance of genetic variants across the allele-frequency spectrum remains incompletely characterized. Here, we report the results of common- and rare-variant association studies of all-cause heart failure, applying recently developed methods to quantify the heritability of HF attributable to different classes of genetic variation. We combine GWAS data across multiple populations including 207,346 individuals with HF and 2,151,210 without, identifying 176 risk loci at genome-wide significance (P-value < 5×10-8). Signals at newly identified common-variant loci include coding variants in Mendelian cardiomyopathy genes (MYBPC3, BAG3) and in regulators of lipoprotein (LPL) and glucose metabolism (GIPR, GLP1R). These signals are enriched in myocyte and adipocyte cell types and can be clustered into 5 broad modules based on pleiotropic associations with anthropomorphic traits/obesity, blood pressure/renal function, atherosclerosis/lipids, immune activity, and arrhythmias. Gene burden studies across three biobanks (PMBB, UKB, AOU), including 27,208 individuals with HF and 349,126 without, uncover exome-wide significant (P-value < 1.57×10-6) associations for HF and rare predicted loss-of-function (pLoF) variants in TTN, MYBPC3, FLNC, and BAG3. Total burden heritability of rare coding variants (2.2%, 95% CI 0.99-3.5%) is highly concentrated in a small set of Mendelian cardiomyopathy genes, while common variant heritability (4.3%, 95% CI 3.9-4.7%) is more diffusely spread throughout the genome. Finally, we show that common-variant background, in the form of a polygenic risk score (PRS), significantly modifies the risk of HF among carriers of pathogenic truncating variants in the Mendelian cardiomyopathy gene TTN. Together, these findings provide a genetic link between dysregulated metabolism and HF, and suggest a significant polygenic component to HF exists that is not captured by current clinical genetic testing.
Collapse
Affiliation(s)
- David S M Lee
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Kathleen M Cardone
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - David Y Zhang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Noah L Tsao
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Sarah Abramowitz
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Pranav Sharma
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - John S DePaolo
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Mitchell Conery
- Genomics and Computational Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Krishna G Aragam
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Kiran Biddinger
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Ozan Dilitikas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Lily Hoffman-Andrews
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Renae L Judy
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Atlas Khan
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Iftikhar Kulo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Megan J Puckelwartz
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Nosheen Reza
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | | | - Pankhuri Singhal
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Zoltan P Arany
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Thomas P Cappola
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Eric Carruth
- Department of Translational Data Science and Informatics, Geisinger, Danville, PA
| | - Sharlene M Day
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Mount Sinai Icahn School of Medicine, New York, NY
- Biome Phenomics Center, Mount Sinai Icahn School of Medicine, New York, NY
- Department of Genetics and Genomic Sciences, Mount Sinai Icahn School of Medicine, New York, NY
| | | | - Jacob Joseph
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Girish Nadkarni
- Division of Nephrology, Department of Medicine, Mount Sinai Icahn School of Medicine, New York, NY
| | - Anjali T Owens
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Daniel J Rader
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA
- Atlanta VA Health Care System, Decatur, GA
| | - Benjamin F Voight
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Michael G Levin
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Scott M Damrauer
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| |
Collapse
|
2
|
Yang XH, Wang R, Li Y, Zhou HL, Zhou L, Sun M. Characteristics and factors associated with psychotic-like experiences in remission: a cross-sectional study of 4208 college students in China. BMJ Open 2024; 14:e084141. [PMID: 39353694 PMCID: PMC11448162 DOI: 10.1136/bmjopen-2024-084141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
OBJECTIVES Previous research has extensively explored the factors associated with psychotic-like experiences (PLEs). However, the characteristics and associated factors of remitted PLEs, which refer to the absence of current PLEs following previous PLEs, remain unclear. Therefore, this study aims to describe the characteristics of adolescents who reported remitted PLEs. DESIGN Cross-sectional study. SETTING The survey was conducted from October to December 2020 in three colleges located in Guangzhou, China. PARTICIPANTS A total of 4208 college freshmen aged from 15 to 24 participated in our survey. PRIMARY AND SECONDARY OUTCOME MEASURES The 15-item positive subscale of the Community Assessment of the Psychic Experience was used to assess both lifetime and current PLEs. Multivariate logistic regression models were used to examine the associations between remitted PLEs and a range of demographic factors, lifestyle, psychosocial factors, lifetime affective symptoms and sleep problems. RESULTS Three groups of PLEs were observed: non-PLEs (47.27% of the sample), remitted PLEs (40.42%) and current PLEs (12.31%). Several factors have been identified as shared correlates of remission and absence of PLEs, including fewer recent adverse life events, greater resilience, fewer symptoms of depression and anxiety, and early waking. Furthermore, higher levels of social support (OR 1.48, 95% CI 1.01 to 2.17; OR 1.53, 95% CI 1.18 to 1.97) was a specific factor associated with the remission of PLEs. Compared with individuals without PLEs, those with remitted PLEs were more likely to be female (OR 1.50, 95% CI 1.28 to 1.75), less likely to be younger (OR 0.88, 95% CI 0.81 to 0.95) and prone to have more chronic physical illness (OR 1.67, 95% CI 1.29 to 2.16), habitual alcohol intake (OR 1.85, 95% CI 1.19 to 2.88), more childhood trauma (OR for low vs high=0.72, 95% CI 0.57 to 0.91) and the sleep problems of waking up easily (OR 1.36, 95% CI 1.12 to 1.65). CONCLUSION These findings suggest that remitted PLEs play a vital, unique role among three groups and provide preliminary targets for the intervention for adolescents at risk of mental health problems. Further investigation may shed light on the causality of the relationship between remitted PLEs and associated factors.
Collapse
Affiliation(s)
- Xin-Hu Yang
- Department of Social Psychiatry, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Rui Wang
- Department of Social Psychiatry, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yue Li
- Department of Social Psychiatry, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hong-Ling Zhou
- Department of Social Psychiatry, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liang Zhou
- Department of Social Psychiatry, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meng Sun
- Department of Social Psychiatry, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Shi X, Li M, Yao J, Li MD, Yang Z. Alcohol drinking, DNA methylation and psychiatric disorders: A multi-omics Mendelian randomization study to investigate causal pathways. Addiction 2024; 119:1226-1237. [PMID: 38523595 DOI: 10.1111/add.16465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/05/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND AND AIMS Whether alcohol-related DNA methylation has a causal effect on psychiatric disorders has not been investigated. Furthermore, a comprehensive investigation into the causal relationship and underlying mechanisms linking alcohol consumption and psychiatric disorders has been lacking. This study aimed to evaluate the causal effect of general alcohol intake and pathological drinking behaviors on psychiatric disorders, alcohol-associated DNA methylation on gene expression and psychiatric disorders, and gene expression on psychiatric disorders. DESIGN Two-sample design Mendelian randomization (MR) analysis. Various sensitivity and validation analyses, including colocalization analysis, were conducted to test the robustness of the results. SETTING Genome-wide association study (GWAS) data mainly from GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN), Genetics of DNA Methylation Consortium (GoDMC) and Psychiatric Genomics Consortium (PGC) with European ancestry. PARTICIPANTS The GWAS summary data on general alcohol intake (drinks per week, n = 941 280), pathological drinking behaviors (including alcohol use disorder [AUD, n = 313 959] and problematic alcohol use [PAU, n = 435 563]) and psychiatric disorders (including schizophrenia, major depressive disorder and bipolar disorder, n = 51 710-500 199) were included. Alcohol-related DNA methylation CpG sites (n = 9643) and mQTL data from blood (n = 27 750) and brain (n = 1160), BrainMeta v2 and GTEx V8 eQTL summary data (n = 73-2865) were also included. MEASUREMENTS Genetic variants were selected as instrumental variables for exposures, including drinks per week, AUD, PAU, alcohol-related DNA methylation CpG sites (mQTL) and genes selected (eQTL). FINDINGS Pathological drinking behaviors were associated with an increased risk of psychiatric disorders after removing outliers or controlling for alcohol consumption. MR analysis identified 10 alcohol-related CpG sites with colocalization evidence that were causally associated with psychiatric disorders (P = 1.65 × 10-4-7.52 × 10-22). Furthermore, the expression of genes (RERE, PTK6, GATAD2B, COG8, PDF and GAS5) mapped to these CpG sites in the brain, led by the cortex, were significantly associated with psychiatric disorders (P = 1.19 × 10-2-3.51 × 10-7). CONCLUSIONS Pathological drinking behavior and alcohol-related DNA methylation appear to have a causal effect on psychiatric disorders. The expression of genes regulated by the alcohol-related DNA methylation sites may underpin this association.
Collapse
Affiliation(s)
- Xiaoqiang Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Joint Institute of Tobacco and Health, Kunming, Yunnan, China
| | - Meng Li
- Joint Institute of Tobacco and Health, Kunming, Yunnan, China
| | - Jianhua Yao
- Joint Institute of Tobacco and Health, Kunming, Yunnan, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Thorpe HHA, Fontanillas P, Meredith JJ, Jennings MV, Cupertino RB, Pakala S, Elson SL, Khokhar JY, Davis LK, Johnson EC, Palmer AA, Sanchez-Roige S. Genome-wide association studies of lifetime and frequency cannabis use in 131,895 individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.14.24308946. [PMID: 38947071 PMCID: PMC11213095 DOI: 10.1101/2024.06.14.24308946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cannabis is one of the most widely used drugs globally. Decriminalization of cannabis is further increasing cannabis consumption. We performed genome-wide association studies (GWASs) of lifetime (N=131,895) and frequency (N=73,374) of cannabis use. Lifetime cannabis use GWAS identified two loci, one near CADM2 (rs11922956, p=2.40E-11) and another near GRM3 (rs12673181, p=6.90E-09). Frequency of use GWAS identified one locus near CADM2 (rs4856591, p=8.10E-09; r2 =0.76 with rs11922956). Both traits were heritable and genetically correlated with previous GWASs of lifetime use and cannabis use disorder (CUD), as well as other substance use and cognitive traits. Polygenic scores (PGSs) for lifetime and frequency of cannabis use associated cannabis use phenotypes in AllofUs participants. Phenome-wide association study of lifetime cannabis use PGS in a hospital cohort replicated associations with substance use and mood disorders, and uncovered associations with celiac and infectious diseases. This work demonstrates the value of GWASs of CUD transition risk factors.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - John J Meredith
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Renata B Cupertino
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Shreya Pakala
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | | | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lea K Davis
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Simistiras A, Georgiopoulos G, Delialis D, Mavraganis G, Oikonomou E, Maneta E, Loutos C, Evangelou E, Stamatelopoulos K. Association of Lipoprotein(a) with arterial stiffness: A Mendelian randomization study. Eur J Clin Invest 2024; 54:e14168. [PMID: 38239089 DOI: 10.1111/eci.14168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/09/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND In this study we used Mendelian randomization (MR) to investigate the potential causal association of lipoprotein (a) [Lp(a)] levels with pulse wave velocity (PWV). METHODS Genetic variants associated with Lp(a) were retrieved from the UK Biobank GWAS (N = 290,497). A non- overlapping GWAS based on a European cohort (N = 7,000) was used to obtain genetic associations with PWV (outcome) and utilized two different measures for the same trait, brachial-ankle (baPWV) and carotid-femoral (cfPWV) PWV. We applied a two-sample MR using the inverse variance weighting method (IVW) and a series of sensitivity analyses for 170 SNPs that were selected as instrumental variables (IVs). RESULTS Our analyses do not support a causal association between Lp(a) and PWV for neither measurement [βiwv(baPWV) = -.0005, p = .8 and βiwv(cfPWV) = -.006, p = .16]. The above findings were consistent across sensitivity analyses including weighted median, mode-based estimation, MR-Egger regression and MR-PRESSO. CONCLUSION We did not find evidence indicating that Lp(a) is causally associated with PWV, the gold standard marker of arterial stiffness.
Collapse
Affiliation(s)
- Alexandros Simistiras
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| | - Dimitrios Delialis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Georgios Mavraganis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Ermioni Oikonomou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Eleni Maneta
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Christos Loutos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| |
Collapse
|
6
|
Patel K, Xie Z, Yuan H, Islam SMS, Xie Y, He W, Zhang W, Gottlieb A, Chen H, Giancardo L, Knaack A, Fletcher E, Fornage M, Ji S, Zhi D. Unsupervised deep representation learning enables phenotype discovery for genetic association studies of brain imaging. Commun Biol 2024; 7:414. [PMID: 38580839 PMCID: PMC10997628 DOI: 10.1038/s42003-024-06096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024] Open
Abstract
Understanding the genetic architecture of brain structure is challenging, partly due to difficulties in designing robust, non-biased descriptors of brain morphology. Until recently, brain measures for genome-wide association studies (GWAS) consisted of traditionally expert-defined or software-derived image-derived phenotypes (IDPs) that are often based on theoretical preconceptions or computed from limited amounts of data. Here, we present an approach to derive brain imaging phenotypes using unsupervised deep representation learning. We train a 3-D convolutional autoencoder model with reconstruction loss on 6130 UK Biobank (UKBB) participants' T1 or T2-FLAIR (T2) brain MRIs to create a 128-dimensional representation known as Unsupervised Deep learning derived Imaging Phenotypes (UDIPs). GWAS of these UDIPs in held-out UKBB subjects (n = 22,880 discovery and n = 12,359/11,265 replication cohorts for T1/T2) identified 9457 significant SNPs organized into 97 independent genetic loci of which 60 loci were replicated. Twenty-six loci were not reported in earlier T1 and T2 IDP-based UK Biobank GWAS. We developed a perturbation-based decoder interpretation approach to show that these loci are associated with UDIPs mapped to multiple relevant brain regions. Our results established unsupervised deep learning can derive robust, unbiased, heritable, and interpretable brain imaging phenotypes.
Collapse
Affiliation(s)
- Khush Patel
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Ziqian Xie
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Hao Yuan
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | | | - Yaochen Xie
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Wei He
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Wanheng Zhang
- School of Public Health, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Assaf Gottlieb
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Han Chen
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA
- School of Public Health, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Luca Giancardo
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Alexander Knaack
- Department of Neurology and Imaging of Dementia and Aging (IDeA) Laboratory, University of California at Davis, Davis, CA, 95618, USA
| | - Evan Fletcher
- Department of Neurology and Imaging of Dementia and Aging (IDeA) Laboratory, University of California at Davis, Davis, CA, 95618, USA
| | - Myriam Fornage
- School of Public Health, University of Texas Health Science Center, Houston, TX, 77030, USA
- McGovern Medical School, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Shuiwang Ji
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Degui Zhi
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Waller C, Ho A, Batzler A, Geske J, Karpyak V, Biernacka J, Winham S. Genetic correlations of alcohol consumption and alcohol use disorder with sex hormone levels in females and males. RESEARCH SQUARE 2024:rs.3.rs-3944066. [PMID: 38464231 PMCID: PMC10925434 DOI: 10.21203/rs.3.rs-3944066/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Alcohol consumption behaviors and alcohol use disorder risk and presentation differ by sex, and these complex traits are associated with blood concentrations of the steroid sex hormones, testosterone and estradiol, and their regulatory binding proteins, sex hormone binding globulin (SHBG) and albumin. Genetic variation is associated with alcohol consumption and alcohol use disorder, as well as levels of steroid sex hormones and their binding proteins. Methods To assess the contribution of genetic factors to previously described phenotypic associations between alcohol-use traits and sex-hormone levels, we estimated genetic correlations (rg) using summary statistics from prior published, large sample size genome-wide association studies (GWAS) of alcohol consumption, alcohol dependence, testosterone, estradiol, SHBG, and albumin. Results For alcohol consumption, we observed positive genetic correlation (i.e. genetic effects in the same direction) with total testosterone in males (rg = 0.084, p = 0.007) and trends toward positive genetic correlation with bioavailable testosterone (rg = 0.060, p = 0.084) and SHBG in males (rg = 0.056, p = 0.086) and with albumin in a sex-combined cohort (rg = 0.082, p = 0.015); however in females, we observed positive genetic correlation with SHBG (rg = 0.089, p = 0.004) and a trend toward negative genetic correlation (i.e. genetic effects in opposite directions) with bioavailable testosterone (rg = -0.064, p = 0.032). For alcohol dependence, we observed a trend toward negative genetic correlation with total testosterone in females (rg = -0.106, p = 0.024) and positive genetic correlation with BMI-adjusted SHBG in males (rg = 0.119, p = 0.017). Several of these genetic correlations differed between females and males and were not in the same direction as the corresponding phenotypic associations. Conclusions Findings suggest that shared genetic effects may contribute to positive associations of alcohol consumption with albumin in both sexes, as well as positive associations between alcohol consumption and bioavailable testosterone and between alcohol dependence and SHBG in males. However, relative contributions of heritable and environmental factors to associations between alcohol-use traits and sex-hormone levels may differ by sex, with genetic factors contributing more in males and environmental factors contributing more in females.
Collapse
|
8
|
Chu Z, Yi M, Yan C, Li B, Zhang H, Guo K, Geng S. The impact of smoking and alcohol consumption on rosacea: a multivariable Mendelian randomization study. Front Public Health 2024; 12:1320932. [PMID: 38439759 PMCID: PMC10909955 DOI: 10.3389/fpubh.2024.1320932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Backgrounds Observational studies have shown that cigarette smoking is inversely associated with risk of rosacea, However, it remains uncertain whether this association is causal or it is a result of reverse causation, and whether this association is affected by drinking behaviors. Methods This study utilized the summary-level data from the largest genome-wide association study (GWAS) for smoking, alcohol consumption, and rosacea. The objective was to investigate the effect of genetically predicted exposures to smoking and alcohol consumption on the risk of developing rosacea. Two-sample bidirectional Mendelian randomization (MR) was applied, accompanied by sensitive analyses to validate the robustness of findings. Furthermore, multivariable MR was conducted to evaluate the direct impact of smoking on rosacea. Results A decreased risk of rosacea was observed in individuals with genetically predicted lifetime smoking [odds ratio (OR)MR - IVW = 0.53; 95% confidence interval (CI), 0.318-0.897; P = 0.017], and number of cigarettes per day (ORMR - IVW = 0.55; 95% CI, 0.358-0.845; P = 0.006). However, no significant associations were found between initiation of regular smoking, smoking cessation, smoking initiation, alcohol consumption and rosacea. Reverse MR analysis did not show any associations between genetic liability toward rosacea and smoking or alcohol drinking. Importantly, the effect of lifetime smoking and the number of cigarettes per day on rosacea remained significant even after adjusting for alcohol consumption in multivariable MR analysis. Conclusion Smoking was causally related to a lower risk of rosacea, while alcohol consumption does not appear to be associated with risk of rosacea.
Collapse
Affiliation(s)
| | | | | | | | | | - Kun Guo
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
9
|
Chen AB, Yu X, Thapa KS, Gao H, Reiter JL, Xuei X, Tsai AP, Landreth GE, Lai D, Wang Y, Foroud TM, Tischfield JA, Edenberg HJ, Liu Y. Functional 3'-UTR Variants Identify Regulatory Mechanisms Impacting Alcohol Use Disorder and Related Traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578270. [PMID: 38370821 PMCID: PMC10871301 DOI: 10.1101/2024.01.31.578270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Although genome-wide association studies (GWAS) have identified loci associated with alcohol consumption and alcohol use disorder (AUD), they do not identify which variants are functional. To approach this, we evaluated the impact of variants in 3' untranslated regions (3'-UTRs) of genes in loci associated with substance use and neurological disorders using a massively parallel reporter assay (MPRA) in neuroblastoma and microglia cells. Functionally impactful variants explained a higher proportion of heritability of alcohol traits than non-functional variants. We identified genes whose 3'UTR activities are associated with AUD and alcohol consumption by combining variant effects from MPRA with GWAS results. We examined their effects by evaluating gene expression after CRISPR inhibition of neuronal cells and stratifying brain tissue samples by MPRA-derived 3'-UTR activity. A pathway analysis of differentially expressed genes identified inflammation response pathways. These analyses suggest that variation in response to inflammation contributes to the propensity to increase alcohol consumption.
Collapse
Affiliation(s)
- Andy B. Chen
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xuhong Yu
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kriti S. Thapa
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hongyu Gao
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jill L Reiter
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xiaoling Xuei
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andy P. Tsai
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gary E. Landreth
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Dongbing Lai
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yue Wang
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tatiana M. Foroud
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Howard J. Edenberg
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yunlong Liu
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
10
|
Kim B, Zhao W, Tang SY, Levin MG, Ibrahim A, Yang Y, Roberts E, Lai L, Li J, Assoian RK, FitzGerald GA, Arany Z. Endothelial lipid droplets suppress eNOS to link high fat consumption to blood pressure elevation. J Clin Invest 2023; 133:e173160. [PMID: 37824206 PMCID: PMC10721151 DOI: 10.1172/jci173160] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023] Open
Abstract
Metabolic syndrome, today affecting more than 20% of the US population, is a group of 5 conditions that often coexist and that strongly predispose to cardiovascular disease. How these conditions are linked mechanistically remains unclear, especially two of these: obesity and elevated blood pressure. Here, we show that high fat consumption in mice leads to the accumulation of lipid droplets in endothelial cells throughout the organism and that lipid droplet accumulation in endothelium suppresses endothelial nitric oxide synthase (eNOS), reduces NO production, elevates blood pressure, and accelerates atherosclerosis. Mechanistically, the accumulation of lipid droplets destabilizes eNOS mRNA and activates an endothelial inflammatory signaling cascade that suppresses eNOS and NO production. Pharmacological prevention of lipid droplet formation reverses the suppression of NO production in cell culture and in vivo and blunts blood pressure elevation in response to a high-fat diet. These results highlight lipid droplets as a critical and unappreciated component of endothelial cell biology, explain how lipids increase blood pressure acutely, and provide a mechanistic account for the epidemiological link between obesity and elevated blood pressure.
Collapse
Affiliation(s)
- Boa Kim
- Department of Pathology and Lab Medicine, McAllister Heart Institute, Nutrition Obesity Research Center, and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine, Cardiovascular Institute, and Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine
| | - Wencao Zhao
- Department of Medicine, Cardiovascular Institute, and Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine
| | - Soon Y. Tang
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and
| | - Michael G. Levin
- Department of Medicine, Cardiovascular Institute, and Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine
| | - Ayon Ibrahim
- Department of Medicine, Cardiovascular Institute, and Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine
| | - Yifan Yang
- Department of Medicine, Cardiovascular Institute, and Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine
| | - Emilia Roberts
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ling Lai
- Department of Medicine, Cardiovascular Institute, and Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine
| | - Jian Li
- Department of Medicine, Cardiovascular Institute, and Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine
| | - Richard K. Assoian
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Garret A. FitzGerald
- Department of Medicine, Cardiovascular Institute, and Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and
| | - Zoltan Arany
- Department of Medicine, Cardiovascular Institute, and Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine
| |
Collapse
|
11
|
O'Farrell F, Aleyakpo B, Mustafa R, Jiang X, Pinto RC, Elliott P, Tzoulaki I, Dehghan A, Loh SHY, Barclay JW, Martins LM, Pazoki R. Evidence for involvement of the alcohol consumption WDPCP gene in lipid metabolism, and liver cirrhosis. Sci Rep 2023; 13:20616. [PMID: 37996473 PMCID: PMC10667215 DOI: 10.1038/s41598-023-47371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Biological pathways between alcohol consumption and alcohol liver disease (ALD) are not fully understood. We selected genes with known effect on (1) alcohol consumption, (2) liver function, and (3) gene expression. Expression of the orthologs of these genes in Caenorhabditis elegans and Drosophila melanogaster was suppressed using mutations and/or RNA interference (RNAi). In humans, association analysis, pathway analysis, and Mendelian randomization analysis were performed to identify metabolic changes due to alcohol consumption. In C. elegans, we found a reduction in locomotion rate after exposure to ethanol for RNAi knockdown of ACTR1B and MAPT. In Drosophila, we observed (1) a change in sedative effect of ethanol for RNAi knockdown of WDPCP, TENM2, GPN1, ARPC1B, and SCN8A, (2) a reduction in ethanol consumption for RNAi knockdown of TENM2, (3) a reduction in triradylglycerols (TAG) levels for RNAi knockdown of WDPCP, TENM2, and GPN1. In human, we observed (1) a link between alcohol consumption and several metabolites including TAG, (2) an enrichment of the candidate (alcohol-associated) metabolites within the linoleic acid (LNA) and alpha-linolenic acid (ALA) metabolism pathways, (3) a causal link between gene expression of WDPCP to liver fibrosis and liver cirrhosis. Our results imply that WDPCP might be involved in ALD.
Collapse
Affiliation(s)
- Felix O'Farrell
- Cardiovascular and Metabolic Research Group, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University, London, UB8 3PH, UK
| | | | - Rima Mustafa
- Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG, UK
- UK Dementia Research Institute, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Xiyun Jiang
- Cardiovascular and Metabolic Research Group, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University, London, UB8 3PH, UK
| | - Rui Climaco Pinto
- Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG, UK
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG, UK
- UK Dementia Research Institute, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG, UK
- British Heart Foundation Centre of Research Excellence, Imperial College London, Du Cane Road, W12 0NN, UK
- National Institute for Health Research, Imperial Biomedical Research Centre, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- Health Data Research UK at Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG, UK
- Centre for Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG, UK
- UK Dementia Research Institute, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Samantha H Y Loh
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Jeff W Barclay
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - L Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Raha Pazoki
- Cardiovascular and Metabolic Research Group, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University, London, UB8 3PH, UK.
- Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG, UK.
- Division of Biomedical Sciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University, London, UB8 3PH, UK.
| |
Collapse
|
12
|
Du X, Yan Y, Yu J, Zhu T, Huang CC, Zhang L, Shan X, Li R, Dai Y, Lv H, Zhang XY, Feng J, Li WG, Luo Q, Li F. SH2B1 Tunes Hippocampal ERK Signaling to Influence Fluid Intelligence in Humans and Mice. RESEARCH (WASHINGTON, D.C.) 2023; 6:0269. [PMID: 38434247 PMCID: PMC10907025 DOI: 10.34133/research.0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/19/2023] [Indexed: 03/05/2024]
Abstract
Fluid intelligence is a cognitive domain that encompasses general reasoning, pattern recognition, and problem-solving abilities independent of task-specific experience. Understanding its genetic and neural underpinnings is critical yet challenging for predicting human development, lifelong health, and well-being. One approach to address this challenge is to map the network of correlations between intelligence and other constructs. In the current study, we performed a genome-wide association study using fluid intelligence quotient scores from the UK Biobank to explore the genetic architecture of the associations between obesity risk and fluid intelligence. Our results revealed novel common genetic loci (SH2B1, TUFM, ATP2A1, and FOXO3) underlying the association between fluid intelligence and body metabolism. Surprisingly, we demonstrated that SH2B1 variation influenced fluid intelligence independently of its effects on metabolism but partially mediated its association with bilateral hippocampal volume. Consistently, selective genetic ablation of Sh2b1 in the mouse hippocampus, particularly in inhibitory neurons, but not in excitatory neurons, significantly impaired working memory, short-term novel object recognition memory, and behavioral flexibility, but not spatial learning and memory, mirroring the human intellectual performance. Single-cell genetic profiling of Sh2B1-regulated molecular pathways revealed that Sh2b1 deletion resulted in aberrantly enhanced extracellular signal-regulated kinase (ERK) signaling, whereas pharmacological inhibition of ERK signaling reversed the associated behavioral impairment. Our cross-species study thus provides unprecedented insight into the role of SH2B1 in fluid intelligence and has implications for understanding the genetic and neural underpinnings of lifelong mental health and well-being.
Collapse
Affiliation(s)
- Xiujuan Du
- Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children’s Environmental Health,
Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Developmental and Behavioral Pediatric Department,
Shanghai Xinhua Children’s Hospital, Shanghai 200092, China
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence,
Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Human Phenom Institute,
Fudan University, Shanghai 200032, China
| | - Yuhua Yan
- Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children’s Environmental Health,
Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Developmental and Behavioral Pediatric Department,
Shanghai Xinhua Children’s Hospital, Shanghai 200092, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education),
School of Life Sciences, East China Normal University, Shanghai 200062, China
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science,
Fudan University, Shanghai 200032, China
| | - Juehua Yu
- Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children’s Environmental Health,
Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Developmental and Behavioral Pediatric Department,
Shanghai Xinhua Children’s Hospital, Shanghai 200092, China
- Center for Experimental Studies and Research,
The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Tailin Zhu
- Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children’s Environmental Health,
Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Developmental and Behavioral Pediatric Department,
Shanghai Xinhua Children’s Hospital, Shanghai 200092, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education),
School of Life Sciences, East China Normal University, Shanghai 200062, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| | - Chu-Chung Huang
- Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science,
East China Normal University, Shanghai 200062, China
| | - Lingli Zhang
- Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children’s Environmental Health,
Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Developmental and Behavioral Pediatric Department,
Shanghai Xinhua Children’s Hospital, Shanghai 200092, China
| | - Xingyue Shan
- Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children’s Environmental Health,
Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Developmental and Behavioral Pediatric Department,
Shanghai Xinhua Children’s Hospital, Shanghai 200092, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education),
School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Ren Li
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence,
Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Human Phenom Institute,
Fudan University, Shanghai 200032, China
| | - Yuan Dai
- Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children’s Environmental Health,
Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Developmental and Behavioral Pediatric Department,
Shanghai Xinhua Children’s Hospital, Shanghai 200092, China
| | - Hui Lv
- Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children’s Environmental Health,
Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Developmental and Behavioral Pediatric Department,
Shanghai Xinhua Children’s Hospital, Shanghai 200092, China
| | - Xiao-Yong Zhang
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence,
Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Human Phenom Institute,
Fudan University, Shanghai 200032, China
| | - Jianfeng Feng
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence,
Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Human Phenom Institute,
Fudan University, Shanghai 200032, China
| | - Wei-Guang Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science,
Fudan University, Shanghai 200032, China
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence,
Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Human Phenom Institute,
Fudan University, Shanghai 200032, China
| | - Fei Li
- Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children’s Environmental Health,
Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Developmental and Behavioral Pediatric Department,
Shanghai Xinhua Children’s Hospital, Shanghai 200092, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| |
Collapse
|
13
|
Chvilicek MM, Seguin A, Lathen DR, Titos I, Cummins-Beebe PN, Pabon MA, Miscevic M, Nickel EA, Merrill CB, Rodan AR, Rothenfluh A. Large genetic analysis of alcohol resistance and tolerance reveals an inverse correlation and suggests 'true' tolerance mutants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561599. [PMID: 37873285 PMCID: PMC10592763 DOI: 10.1101/2023.10.09.561599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Tolerance occurs when, following an initial experience with a substance, more of the substance is required subsequently to induce the same behavioral effects. Tolerance is historically not well-understood, and numerous researchers have turned to model organisms, particularly Drosophila melanogaster, to unravel its mechanisms. Flies have high translational relevance for human alcohol responses, and there is substantial overlap in disease-causing genes between flies and humans, including those associated with Alcohol Use Disorder. Numerous Drosophila tolerance mutants have been described; however, approaches used to identify and characterize these mutants have varied across time and between labs and have mostly disregarded any impact of initial resistance/sensitivity to ethanol on subsequent tolerance development. Here, we have analyzed a large amount of data - our own published and unpublished data and data published by other labs - to uncover an inverse correlation between initial ethanol resistance and tolerance phenotypes. This inverse correlation suggests that initial resistance phenotypes can explain many 'perceived' tolerance phenotypes. Additionally, we show that tolerance should be measured as a relative increase in time to sedation between an initial and second exposure rather than an absolute change in time to sedation. Finally, based on our analysis, we provide a method for using a linear regression equation to assess the residuals of potential tolerance mutants. We show that these residuals provide predictive insight into the likelihood of a mutant being a 'true' tolerance mutant, and we offer a framework for understanding the relationship between initial resistance and tolerance.
Collapse
Affiliation(s)
- Maggie M. Chvilicek
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, USA
| | - Alexandra Seguin
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
| | - Daniel R. Lathen
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, USA
| | - Iris Titos
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
| | - Pearl N Cummins-Beebe
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, USA
| | - Miguel A. Pabon
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
| | - Masa Miscevic
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
| | - Emily A. Nickel
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
| | - Collin B Merrill
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
| | - Aylin R. Rodan
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
- Division of Nephrology, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, USA
- Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, USA
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, USA
| | - Adrian Rothenfluh
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, USA
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, USA
- Department of Neurobiology, School of Medicine, University of Utah, Salt Lake City, USA
| |
Collapse
|
14
|
Szrok-Jurga S, Czumaj A, Turyn J, Hebanowska A, Swierczynski J, Sledzinski T, Stelmanska E. The Physiological and Pathological Role of Acyl-CoA Oxidation. Int J Mol Sci 2023; 24:14857. [PMID: 37834305 PMCID: PMC10573383 DOI: 10.3390/ijms241914857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Fatty acid metabolism, including β-oxidation (βOX), plays an important role in human physiology and pathology. βOX is an essential process in the energy metabolism of most human cells. Moreover, βOX is also the source of acetyl-CoA, the substrate for (a) ketone bodies synthesis, (b) cholesterol synthesis, (c) phase II detoxication, (d) protein acetylation, and (d) the synthesis of many other compounds, including N-acetylglutamate-an important regulator of urea synthesis. This review describes the current knowledge on the importance of the mitochondrial and peroxisomal βOX in various organs, including the liver, heart, kidney, lung, gastrointestinal tract, peripheral white blood cells, and other cells. In addition, the diseases associated with a disturbance of fatty acid oxidation (FAO) in the liver, heart, kidney, lung, alimentary tract, and other organs or cells are presented. Special attention was paid to abnormalities of FAO in cancer cells and the diseases caused by mutations in gene-encoding enzymes involved in FAO. Finally, issues related to α- and ω- fatty acid oxidation are discussed.
Collapse
Affiliation(s)
- Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Julian Swierczynski
- Institue of Nursing and Medical Rescue, State University of Applied Sciences in Koszalin, 75-582 Koszalin, Poland;
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| |
Collapse
|
15
|
Thijssen AB, Dick DM, Posthuma D, Savage JE. Investigating genetically stratified subgroups to better understand the etiology of alcohol misuse. Mol Psychiatry 2023; 28:4225-4233. [PMID: 37488169 PMCID: PMC10827662 DOI: 10.1038/s41380-023-02174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023]
Abstract
Alcohol misuse (AM) is highly prevalent and harmful, with theorized subgroups differing on internalizing and externalizing dimensions. Despite known heterogeneity, genome-wide association studies (GWAS) are usually conducted on unidimensional phenotypes. These approaches have identified important genes related to AM but fail to capture a large part of the heritability, even with recent increases in sample sizes. This study aimed to address phenotypic heterogeneity in GWAS to aid gene finding and to uncover the etiology of different types of AM. Genetic and phenotypic data from 410,414 unrelated individuals of multiple ancestry groups (primarily European) in the UK Biobank were obtained. Mixture modeling was applied to measures of alcohol misuse and internalizing/externalizing psychopathology to uncover phenotypically homogenous subclasses, which were carried forward to GWAS and functional annotation. A four-class model emerged with "low risk", "internalizing-light/non-drinkers", "heavy alcohol use-low impairment", and "broad high risk" classes. SNP heritability ranged from 3 to 18% and both known AM signals and novel signals were captured by genomic risk loci. Class comparisons showed distinct patterns of regional brain tissue enrichment and genetic correlations with internalizing and externalizing phenotypes. Despite some limitations, this study demonstrated the utility of genetic research on homogenous subclasses. Not only were novel genetic signals identified that might be used for follow-up studies, but addressing phenotypic heterogeneity allows for the discovery and investigation of differential genetic vulnerabilities in the development of AM, which is an important step towards the goal of personalized medicine.
Collapse
Affiliation(s)
- Anaïs B Thijssen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Danielle M Dick
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers-The State University of New Jersey, Piscataway, NJ, USA
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Clinical Genetics, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Jeanne E Savage
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Georgiou A, Georgiopoulos G, Delialis D, Maneta E, Masci PG, Neophytou O, Tsiachris D, Evangelou E. Causal Relationship Between Average Alcohol Consumption and Risk of Atrial Fibrillation: A Mendelian Randomization Study. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:406-408. [PMID: 37191011 DOI: 10.1161/circgen.122.003766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Andrea Georgiou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School (A.G., E.E.)
| | - Georgios Georgiopoulos
- Clinical Therapeutics, National & Kapodistrian University of Athens School of Medicine, Athens, Greece (G.G., D.D., E.M., O.N.)
- School of Biomedical Engineering and Imaging Sciences, Kings College London, United Kingdom (G.G., P.G.M.)
| | - Dimitrios Delialis
- Clinical Therapeutics, National & Kapodistrian University of Athens School of Medicine, Athens, Greece (G.G., D.D., E.M., O.N.)
| | - Eleni Maneta
- Clinical Therapeutics, National & Kapodistrian University of Athens School of Medicine, Athens, Greece (G.G., D.D., E.M., O.N.)
| | - Pier Giorgio Masci
- School of Biomedical Engineering and Imaging Sciences, Kings College London, United Kingdom (G.G., P.G.M.)
| | - Onisiphoros Neophytou
- Clinical Therapeutics, National & Kapodistrian University of Athens School of Medicine, Athens, Greece (G.G., D.D., E.M., O.N.)
| | | | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School (A.G., E.E.)
- Department of Epidemiology & Biostatistics, School of Public Health, Imperial College London, United Kingdom (E.E.)
| |
Collapse
|
17
|
Cummins-Beebee PN, Chvilicek MM, Rothenfluh A. The Stage-Based Model of Addiction-Using Drosophila to Investigate Alcohol and Psychostimulant Responses. Int J Mol Sci 2023; 24:10909. [PMID: 37446084 PMCID: PMC10341944 DOI: 10.3390/ijms241310909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Addiction is a progressive and complex disease that encompasses a wide range of disorders and symptoms, including substance use disorder (SUD), for which there are few therapeutic treatments. SUD is the uncontrolled and chronic use of substances despite the negative consequences resulting from this use. The progressive nature of addiction is organized into a testable framework, the neurobiological stage-based model, that includes three behavioral stages: (1) binge/intoxication, (2) withdrawal/negative affect, and (3) preoccupation/anticipation. Human studies offer limited opportunities for mechanistic insights into these; therefore, model organisms, like Drosophila melanogaster, are necessary for understanding SUD. Drosophila is a powerful model organism that displays a variety of SUD-like behaviors consistent with human and mammalian substance use, making flies a great candidate to study mechanisms of behavior. Additionally, there are an abundance of genetic tools like the GAL4/UAS and CRISPR/Cas9 systems that can be used to gain insight into the molecular mechanisms underlying the endophenotypes of the three-stage model. This review uses the three-stage framework and discusses how easily testable endophenotypes have been examined with experiments using Drosophila, and it outlines their potential for investigating other endophenotypes.
Collapse
Affiliation(s)
- Pearl N. Cummins-Beebee
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Maggie M. Chvilicek
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
18
|
Miller AP, Gizer IR. Neurogenetic and multi-omic sources of overlap among sensation seeking, alcohol consumption, and alcohol use disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.30.23290733. [PMID: 37333128 PMCID: PMC10274973 DOI: 10.1101/2023.05.30.23290733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Sensation seeking is bidirectionally associated with levels of alcohol consumption in both adult and adolescent samples and shared neurobiological and genetic influences may in part explain this association. Links between sensation seeking and alcohol use disorder (AUD) may primarily manifest via increased alcohol consumption rather than through direct effects on increasing problems and consequences. Here the overlap between sensation seeking, alcohol consumption, and AUD was examined using multivariate modeling approaches for genome-wide association study (GWAS) summary statistics in conjunction with neurobiologically-informed analyses at multiple levels of investigation. Meta-analytic and genomic structural equation modeling (GenomicSEM) approaches were used to conduct GWAS of sensation seeking, alcohol consumption, and AUD. Resulting summary statistics were used in downstream analyses to examine shared brain tissue enrichment of heritability and genome-wide evidence of overlap (e.g., stratified GenomicSEM, RRHO, genetic correlations with neuroimaging phenotypes) and to identify genomic regions likely contributing to observed genetic overlap across traits (e.g., HMAGMA, LAVA). Across approaches, results supported shared neurogenetic architecture between sensation seeking and alcohol consumption characterized by overlapping enrichment of genes expressed in midbrain and striatal tissues and variants associated with increased cortical surface area. Alcohol consumption and AUD evidenced overlap in relation to variants associated with decreased frontocortical thickness. Finally, genetic mediation models provided evidence of alcohol consumption mediating associations between sensation seeking and AUD. This study extends previous research by examining critical sources of neurogenetic and multi-omic overlap among sensation seeking, alcohol consumption, and AUD which may underlie observed phenotypic associations.
Collapse
Affiliation(s)
- Alex P. Miller
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Ian R. Gizer
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
19
|
Sanchez-Roige S, Jennings MV, Thorpe HHA, Mallari JE, van der Werf LC, Bianchi SB, Huang Y, Lee C, Mallard TT, Barnes SA, Wu JY, Barkley-Levenson AM, Boussaty EC, Snethlage CE, Schafer D, Babic Z, Winters BD, Watters KE, Biederer T, Mackillop J, Stephens DN, Elson SL, Fontanillas P, Khokhar JY, Young JW, Palmer AA. CADM2 is implicated in impulsive personality and numerous other traits by genome- and phenome-wide association studies in humans and mice. Transl Psychiatry 2023; 13:167. [PMID: 37173343 PMCID: PMC10182097 DOI: 10.1038/s41398-023-02453-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Impulsivity is a multidimensional heritable phenotype that broadly refers to the tendency to act prematurely and is associated with multiple forms of psychopathology, including substance use disorders. We performed genome-wide association studies (GWAS) of eight impulsive personality traits from the Barratt Impulsiveness Scale and the short UPPS-P Impulsive Personality Scale (N = 123,509-133,517 23andMe research participants of European ancestry), and a measure of Drug Experimentation (N = 130,684). Because these GWAS implicated the gene CADM2, we next performed single-SNP phenome-wide studies (PheWAS) of several of the implicated variants in CADM2 in a multi-ancestral 23andMe cohort (N = 3,229,317, European; N = 579,623, Latin American; N = 199,663, African American). Finally, we produced Cadm2 mutant mice and used them to perform a Mouse-PheWAS ("MouseWAS") by testing them with a battery of relevant behavioral tasks. In humans, impulsive personality traits showed modest chip-heritability (~6-11%), and moderate genetic correlations (rg = 0.20-0.50) with other personality traits, and various psychiatric and medical traits. We identified significant associations proximal to genes such as TCF4 and PTPRF, and also identified nominal associations proximal to DRD2 and CRHR1. PheWAS for CADM2 variants identified associations with 378 traits in European participants, and 47 traits in Latin American participants, replicating associations with risky behaviors, cognition and BMI, and revealing novel associations including allergies, anxiety, irritable bowel syndrome, and migraine. Our MouseWAS recapitulated some of the associations found in humans, including impulsivity, cognition, and BMI. Our results further delineate the role of CADM2 in impulsivity and numerous other psychiatric and somatic traits across ancestries and species.
Collapse
Affiliation(s)
- Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Hayley H A Thorpe
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jazlene E Mallari
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Sevim B Bianchi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Yuye Huang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Calvin Lee
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Travis T Mallard
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Samuel A Barnes
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jin Yi Wu
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Ely C Boussaty
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Cedric E Snethlage
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Danielle Schafer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Zeljana Babic
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Boyer D Winters
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - Katherine E Watters
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - James Mackillop
- Peter Boris Centre for Addictions Research, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada and Homewood Research Institute, Guelph, ON, Canada
| | - David N Stephens
- Laboratory of Behavioural and Clinical Neuroscience, School of Psychology, University of Sussex, Brighton, UK
| | | | | | - Jibran Y Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
Verma A, Kommaddi RP, Gnanabharathi B, Hirsch EC, Ravindranath V. Genes critical for development and differentiation of dopaminergic neurons are downregulated in Parkinson's disease. J Neural Transm (Vienna) 2023; 130:495-512. [PMID: 36820885 DOI: 10.1007/s00702-023-02604-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
We performed transcriptome analysis using RNA sequencing on substantia nigra pars compacta (SNpc) from mice after acute and chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment and from Parkinson's disease (PD) patients. Acute and chronic exposure to MPTP resulted in decreased expression of genes involved in sodium channel regulation. However, upregulation of pro-inflammatory pathways was seen after single dose but not after chronic MPTP treatment. Dopamine biosynthesis and synaptic vesicle recycling pathways were downregulated in PD patients and after chronic MPTP treatment in mice. Genes essential for midbrain development and determination of dopaminergic phenotype such as, LMX1B, FOXA1, RSPO2, KLHL1, EBF3, PITX3, RGS4, ALDH1A1, RET, FOXA2, EN1, DLK1, GFRA1, LMX1A, NR4A2, GAP43, SNCA, PBX1, and GRB10 were downregulated in human PD and overexpression of GFP tagged LMX1B rescued MPP+ induced death in SH-SY5Y neurons. Downregulation of gene ensemble involved in development and differentiation of dopaminergic neurons indicate their potential involvement in pathogenesis and progression of human PD.
Collapse
Affiliation(s)
- Aditi Verma
- Centre for Neuroscience, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - Reddy Peera Kommaddi
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
| | | | - Etienne C Hirsch
- Sorbonne Université, Institut du Cerveau - ICM, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
| | - Vijayalakshmi Ravindranath
- Centre for Neuroscience, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India. .,Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
21
|
Desai R, John A, Saunders R, Marchant NL, Buckman JEJ, Charlesworth G, Zuber V, Stott J. Examining the Lancet Commission risk factors for dementia using Mendelian randomisation. BMJ MENTAL HEALTH 2023; 26:e300555. [PMID: 36789917 PMCID: PMC10035779 DOI: 10.1136/bmjment-2022-300555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/30/2022] [Indexed: 02/09/2023]
Abstract
BACKGROUND Dementia incidence is increasing across the globe and currently there are no disease-modifying pharmaceutical treatments. The Lancet Commission on dementia identified 12 modifiable risk factors which explain 40% of dementia incidence. However, whether these associations are causal in nature is unclear. OBJECTIVE To examine the modifiable risk factors for dementia as identified in the Lancet Commission review using Mendelian randomisation (MR) to establish if, based on genetic evidence, these associations with different dementia subtypes are causal in nature. METHODS Publicly available genome-wide association study data were used for 10 risk factors and Alzheimer's disease (AD), frontotemporal dementia and dementia with Lewy bodies. Two-sample MR using the inverse varianceweighted method was conducted to test for causal relationships. Weighted median MR and MR-Egger were used to test for pleiotropic effects. RESULTS Genetic proxied risk for higher levels of smoking (OR: 0.80 (95% CI: 0.69; 0.92), p=0.002), obesity (OR: 0.87 (95% CI: 0.82; 0.92), p<0.001) and blood pressure (OR: 0.90 (95% CI: 0.82; 0.99), p=0.035) appeared to be protective against the risk of AD. Post hoc analyses indicated these associations had pleiotropic effects with the risk of coronary artery disease. Genetic proxied risk of educational attainment was found to be inconsistently associated with the risk of AD. CONCLUSIONS AND IMPLICATIONS Post hoc analysis indicated that the apparent protective effects of smoking, obesity and blood pressure were a result of survivor bias. The findings from this study did not support those presented by the Lancet Commission. Evidence from causal inference studies should be considered alongside evidence from epidemiological studies and incorporated into reviews of the literature.
Collapse
Affiliation(s)
- Roopal Desai
- ADAPT Lab, Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Amber John
- ADAPT Lab, Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Rob Saunders
- Centre for Outcomes Research and Effectiveness, Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | | | - Joshua E J Buckman
- Centre for Outcomes Research and Effectiveness, Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Georgina Charlesworth
- ADAPT Lab, Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Verena Zuber
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- MRC Centre for Environment and Health at Imperial College, Imperial College London, London, UK
| | - Joshua Stott
- ADAPT Lab, Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| |
Collapse
|
22
|
Ma J, Huang A, Yan K, Li Y, Sun X, Joehanes R, Huan T, Levy D, Liu C. Blood transcriptomic biomarkers of alcohol consumption and cardiovascular disease risk factors: the Framingham Heart Study. Hum Mol Genet 2023; 32:649-658. [PMID: 36130209 PMCID: PMC9896471 DOI: 10.1093/hmg/ddac237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/19/2022] [Accepted: 09/15/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The relations of alcohol consumption and gene expression remain to be elucidated. MATERIALS AND METHODS We examined cross-sectional associations between alcohol consumption and whole blood derived gene expression levels and between alcohol-associated genes and obesity, hypertension, and diabetes in 5531 Framingham Heart Study (FHS) participants. RESULTS We identified 25 alcohol-associated genes. We further showed cross-sectional associations of 16 alcohol-associated genes with obesity, nine genes with hypertension, and eight genes with diabetes at P < 0.002. For example, we observed decreased expression of PROK2 (β = -0.0018; 95%CI: -0.0021, -0.0007; P = 6.5e - 5) and PAX5 (β = -0.0014; 95%CI: -0.0021, -0.0007; P = 6.5e - 5) per 1 g/day increase in alcohol consumption. Consistent with our previous observation on the inverse association of alcohol consumption with obesity and positive association of alcohol consumption with hypertension, we found that PROK2 was positively associated with obesity (OR = 1.42; 95%CI: 1.17, 1.72; P = 4.5e - 4) and PAX5 was negatively associated with hypertension (OR = 0.73; 95%CI: 0.59, 0.89; P = 1.6e - 3). We also observed that alcohol consumption was positively associated with expression of ABCA13 (β = 0.0012; 95%CI: 0.0007, 0.0017; P = 1.3e - 6) and ABCA13 was positively associated with diabetes (OR = 2.57; 95%CI: 1.73, 3.84; P = 3.5e - 06); this finding, however, was inconsistent with our observation of an inverse association between alcohol consumption and diabetes. CONCLUSIONS We showed strong cross-sectional associations between alcohol consumption and expression levels of 25 genes in FHS participants. Nonetheless, complex relationships exist between alcohol-associated genes and CVD risk factors.
Collapse
Affiliation(s)
- Jiantao Ma
- Division of Nutrition Epidemiology and Data Science, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Allen Huang
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02142, USA
| | - Kaiyu Yan
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - Yi Li
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - Xianbang Sun
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - Roby Joehanes
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tianxiao Huan
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Boston University’s and National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA 01702, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
- Boston University’s and National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA 01702, USA
| |
Collapse
|
23
|
Macedo GC, Kreifeldt M, Goulding SP, Okhuarobo A, Sidhu H, Contet C. Chronic MAP4343 reverses escalated alcohol drinking in a mouse model of alcohol use disorder. Neuropsychopharmacology 2023; 48:821-830. [PMID: 36670228 PMCID: PMC10066354 DOI: 10.1038/s41386-023-01529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/22/2023]
Abstract
Alcohol use disorders can be driven by negative reinforcement. Alterations of the microtubule cytoskeleton have been associated with mood regulation in the context of depression. Notably, MAP4343, a pregnenolone derivative known to promote tubulin assembly, has antidepressant properties. In the present study, we tested the hypothesis that MAP4343 may reduce excessive alcohol drinking in a mouse model of alcohol dependence by normalizing affect during withdrawal. Adult male C57BL/6J mice were given limited access to voluntary alcohol drinking and ethanol intake escalation was induced by chronic intermittent ethanol (CIE) vapor inhalation. Chronic, but not acute, administration of MAP4343 reduced ethanol intake and this effect was more pronounced in CIE-exposed mice. There was a complex interaction between the effects of MAP4343 and alcohol on affective behaviors. In the elevated plus maze, chronic MAP4343 tended to increase open-arm exploration in alcohol-naive mice but reduced it in alcohol-withdrawn mice. In the tail suspension test, chronic MAP4343 reduced immobility selectively in Air-exposed alcohol-drinking mice. Finally, chronic MAP4343 countered the plasma corticosterone reduction induced by CIE. Parallel analysis of tubulin post-translational modifications revealed lower α-tubulin acetylation in the medial prefrontal cortex of CIE-withdrawn mice. Altogether, these data support the relevance of microtubules as a therapeutic target for the treatment of AUD.
Collapse
Affiliation(s)
- Giovana C Macedo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Max Kreifeldt
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Scott P Goulding
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Agbonlahor Okhuarobo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.,Faculty of Pharmacy, Department of Pharmacology & Toxicology, University of Benin, Benin City, Nigeria
| | - Harpreet Sidhu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Candice Contet
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
24
|
Zhang F, Baranova A. Smoking quantitatively increases risk for COVID-19. Eur Respir J 2022; 60:2101273. [PMID: 34326191 PMCID: PMC8340618 DOI: 10.1183/13993003.01273-2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/10/2021] [Indexed: 12/27/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has raised concern about the influence of smoking and alcohol drinking behaviour on the susceptibility to coronavirus infection and its severity. Widely debated, the connection remains highly controversial. Conclusions derived from observational studies commonly suffer from limited ability to discern causes and effects. A one standard deviation increase in cigarettes smoked per day is associated with 2.5-fold increased risk for very severe COVID-19 and 2-fold increased risk for hospitalisation with COVID-19 https://bit.ly/2UuVO1o
Collapse
Affiliation(s)
- Fuquan Zhang
- Dept of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, VA, USA
- Research Center for Medical Genetics, Moscow, Russia
| |
Collapse
|
25
|
A Genome-Wide Association Study Reveals a BDNF-Centered Molecular Network Associated with Alcohol Dependence and Related Clinical Measures. Biomedicines 2022; 10:biomedicines10123007. [PMID: 36551763 PMCID: PMC9775455 DOI: 10.3390/biomedicines10123007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
At least 50% of factors predisposing to alcohol dependence (AD) are genetic and women affected with this disorder present with more psychiatric comorbidities, probably indicating different genetic factors involved. We aimed to run a genome-wide association study (GWAS) followed by a bioinformatic functional annotation of associated genomic regions in patients with AD and eight related clinical measures. A genome-wide significant association of rs220677 with AD (p-value = 1.33 × 10-8 calculated with the Yates-corrected χ2 test under the assumption of dominant inheritance) was discovered in female patients. Associations of AD and related clinical measures with seven other single nucleotide polymorphisms listed in previous GWASs of psychiatric and addiction traits were differently replicated in male and female patients. The bioinformatic analysis showed that regulatory elements in the eight associated linkage disequilibrium blocks define the expression of 80 protein-coding genes. Nearly 68% of these and of 120 previously published coding genes associated with alcohol phenotypes directly interact in a single network, where BDNF is the most significant hub gene. This study indicates that several genes behind the pathogenesis of AD are different in male and female patients, but implicated molecular mechanisms are functionally connected. The study also reveals a central role of BDNF in the pathogenesis of AD.
Collapse
|
26
|
Ferguson LB, Mayfield RD, Messing RO. RNA biomarkers for alcohol use disorder. Front Mol Neurosci 2022; 15:1032362. [PMID: 36407766 PMCID: PMC9673015 DOI: 10.3389/fnmol.2022.1032362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Alcohol use disorder (AUD) is highly prevalent and one of the leading causes of disability in the US and around the world. There are some molecular biomarkers of heavy alcohol use and liver damage which can suggest AUD, but these are lacking in sensitivity and specificity. AUD treatment involves psychosocial interventions and medications for managing alcohol withdrawal, assisting in abstinence and reduced drinking (naltrexone, acamprosate, disulfiram, and some off-label medications), and treating comorbid psychiatric conditions (e.g., depression and anxiety). It has been suggested that various patient groups within the heterogeneous AUD population would respond more favorably to specific treatment approaches. For example, there is some evidence that so-called reward-drinkers respond better to naltrexone than acamprosate. However, there are currently no objective molecular markers to separate patients into optimal treatment groups or any markers of treatment response. Objective molecular biomarkers could aid in AUD diagnosis and patient stratification, which could personalize treatment and improve outcomes through more targeted interventions. Biomarkers of treatment response could also improve AUD management and treatment development. Systems biology considers complex diseases and emergent behaviors as the outcome of interactions and crosstalk between biomolecular networks. A systems approach that uses transcriptomic (or other -omic data, e.g., methylome, proteome, metabolome) can capture genetic and environmental factors associated with AUD and potentially provide sensitive, specific, and objective biomarkers to guide patient stratification, prognosis of treatment response or relapse, and predict optimal treatments. This Review describes and highlights state-of-the-art research on employing transcriptomic data and artificial intelligence (AI) methods to serve as molecular biomarkers with the goal of improving the clinical management of AUD. Considerations about future directions are also discussed.
Collapse
Affiliation(s)
- Laura B. Ferguson
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, United States,Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States,Department of Neuroscience, University of Texas at Austin, Austin, TX, United States,*Correspondence: Laura B. Ferguson,
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, United States,Department of Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Robert O. Messing
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, United States,Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States,Department of Neuroscience, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
27
|
Chang XW, Sun Y, Muhai JN, Li YY, Chen Y, Lu L, Chang SH, Shi J. Common and distinguishing genetic factors for substance use behavior and disorder: an integrated analysis of genomic and transcriptomic studies from both human and animal studies. Addiction 2022; 117:2515-2529. [PMID: 35491750 DOI: 10.1111/add.15908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 04/04/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIMS Genomic and transcriptomic findings greatly broaden the biological knowledge regarding substance use. However, systematic convergence and comparison evidence of genome-wide findings is lacking for substance use. Here, we combined all the genome-wide findings from both substance use behavior and disorder (SUBD) and identified common and distinguishing genetic factors for different SUBDs. METHODS Systemic literature search for genome-wide association (GWAS) and RNA-seq studies of alcohol/nicotine/drug use behavior (partially meets or not reported diagnostic criteria) and alcohol use behavior and disorder (AUBD), nicotine use behavior and disorder (NUBD) and drug use behavior and disorder (DUBD) was performed using PubMed and the GWAS catalog. Drug use was focused upon cannabis, opioid, cocaine and methamphetamine use. GWAS studies required case-control or case/cohort samples. RNA-seq studies were based on brain tissues. The genes which contained significant single nucleotide polymorphism (P ≤ 1 × 10-6 ) in GWAS and reported as significant in RNA-seq studies were extracted. Pathway enrichment was performed by using Metascape. Gene interaction networks were identified by using the Protein Interaction Network Analysis database. RESULTS Total SUBD-related 2910 genes were extracted from 75 GWAS studies (2 773 889 participants) and 17 RNA-seq studies. By overlapping the genes and pathways of AUBD, NUBD and DUBD, four shared genes (CACNB2, GRIN2B, PLXDC2 and PKNOX2), four shared pathways [two Gene Ontology (GO) terms of 'modulation of chemical synaptic transmission', 'regulation of trans-synaptic signaling', two Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of 'dopaminergic synapse', 'cocaine addiction'] were identified (significantly higher than random, P < 1 × 10-5 ). The top shared KEGG pathways (Benjamini-Hochberg-corrected P-value < 0.05) in the pairwise comparison of AUBD versus DUBD, NUBD versus DUBD, AUBD versus NUBD were 'Epstein-Barr virus infection', 'protein processing in endoplasmic reticulum' and 'neuroactive ligand-receptor interaction', respectively. We also identified substance-specific genetic factors: i.e. ADH1B and ALDH2 were unique for AUBD, while CHRNA3 and CHRNA4 were unique for NUBD. CONCLUSIONS This systematic review identifies the shared and unique genes and pathways for alcohol, nicotine and drug use behaviors and disorders at the genome-wide level and highlights critical biological processes for the common and distinguishing vulnerability of substance use behaviors and disorders.
Collapse
Affiliation(s)
- Xiang-Wen Chang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,National Institute on Drug Dependence, Peking University, Beijing, China
| | - Yan Sun
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,National Institute on Drug Dependence, Peking University, Beijing, China
| | - Jia-Na Muhai
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yang-Yang Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,National Institute on Drug Dependence, Peking University, Beijing, China
| | - Yun Chen
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,National Institute on Drug Dependence, Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, Beijing, China.,Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Su-Hua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, Beijing, China.,Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China.,The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing, China
| |
Collapse
|
28
|
Fitzgerald T, Birney E. CNest: A novel copy number association discovery method uncovers 862 new associations from 200,629 whole-exome sequence datasets in the UK Biobank. CELL GENOMICS 2022; 2:100167. [PMID: 36779085 PMCID: PMC9903682 DOI: 10.1016/j.xgen.2022.100167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/11/2022] [Accepted: 07/13/2022] [Indexed: 10/15/2022]
Abstract
Copy number variation (CNV) is known to influence human traits, having a rich history of research into common and rare genetic disease, and although CNV is accepted as an important class of genomic variation, progress on copy-number-based genome-wide association studies (GWASs) from next-generation sequencing (NGS) data has been limited. Here we present a novel method for large-scale copy number analysis from NGS data generating robust copy number estimates and allowing copy number GWASs (CN-GWASs) to be performed genome-wide in discovery mode. We provide a detailed analysis in the UK Biobank resource and a specifically designed software package. We use these methods to perform CN-GWAS analysis across 78 human traits, discovering over 800 genetic associations that are likely to contribute strongly to trait distributions. Finally, we compare CNV and SNP association signals across the same traits and samples, defining specific CNV association classes.
Collapse
Affiliation(s)
- Tomas Fitzgerald
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| |
Collapse
|
29
|
Novel biological insights into the common heritable liability to substance involvement: a multivariate genome-wide association study. Biol Psychiatry 2022. [DOI: 10.1016/j.biopsych.2022.07.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Urinary Sodium Excretion Enhances the Effect of Alcohol on Blood Pressure. Healthcare (Basel) 2022; 10:healthcare10071296. [PMID: 35885821 PMCID: PMC9319523 DOI: 10.3390/healthcare10071296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Alcohol consumption is linked to urinary sodium excretion and both of these traits are linked to hypertension and cardiovascular diseases (CVDs). The interplay between alcohol consumption and sodium on hypertension, and cardiovascular diseases (CVDs) is not well-described. Here, we used genetically predicted alcohol consumption and explored the relationships between alcohol consumption, urinary sodium, hypertension, and CVDs. METHODS We performed a comparative analysis among 295,189 participants from the prospective cohort of the UK Biobank (baseline data collected between 2006 and 2010). We created a genetic risk score (GRS) using 105 published genetic variants in Europeans that were associated with alcohol consumption. We explored the relationships between GRS, alcohol consumption, urinary sodium, blood pressure traits, and incident CVD. We used linear and logistic regression and Cox proportional hazards (PH) models and Mendelian randomization in our analysis. RESULTS The median follow-up time for composite CVD and stroke were 6.1 years and 7.1 years respectively. Our analyses showed that high alcohol consumption is linked to low urinary sodium excretion. Our results showed that high alcohol GRS was associated with high blood pressure and higher risk of stroke and supported an interaction effect between alcohol GRS and urinary sodium on stage 2 hypertension (Pinteraction = 0.03) and CVD (Pinteraction = 0.03), i.e., in the presence of high urinary sodium excretion, the effect of alcohol GRS on blood pressure may be enhanced. CONCLUSIONS Our results show that urinary sodium excretion may offset the risk posed by genetic risk of alcohol consumption.
Collapse
|
31
|
Smoking, alcohol consumption, and age at onset of Huntington's disease: a Mendelian randomization study. Parkinsonism Relat Disord 2022; 97:34-38. [PMID: 35299068 DOI: 10.1016/j.parkreldis.2022.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Smoking and alcohol consumption have been associated with earlier age at onset (AAO) of Huntington's disease (HD) in observational studies. We conducted this Mendelian randomization (MR) study to evaluate whether these associations are causal. METHODS We selected genetic instruments for lifetime smoking (n = 462,690) and alcohol consumption (n = 941,280) based on two large genome-wide association studies (GWAS). The summary-level data for residual AAO of HD were derived from a GWAS meta-analysis carried out by the Genetic Modifiers of Huntington's disease Consortium (n = 9,064 HD patients). We conducted univariable and multivariable MR analyses to evaluate the independent impact of smoking and alcohol consumption on AAO of HD. RESULTS Genetically predicted lifetime smoking was causally related to an earlier AAO of HD in the univariable MR analyses (β = -2.16 years per standard deviation (SD) increase in lifetime smoking index, 95% confidence interval (CI) = -3.70 to -0.63, P = 0.006). This association persisted significant in the multivariable MR analyses after adjusting for alcohol consumption (β = -2.04 years per SD increase in lifetime smoking index, 95% CI = -3.85 to -0.22, P = 0.028). However, no significant association was found between alcohol consumption and AAO of HD. CONCLUSIONS This study suggests that genetically predicted smoking is causally related to an earlier AAO of HD.
Collapse
|
32
|
Wiström ED, O'Connell KS, Karadag N, Bahrami S, Hindley GFL, Lin A, Cheng W, Steen NE, Shadrin A, Frei O, Djurovic S, Dale AM, Andreassen OA, Smeland OB. Genome-wide analysis reveals genetic overlap between alcohol use behaviours, schizophrenia and bipolar disorder and identifies novel shared risk loci. Addiction 2022; 117:600-610. [PMID: 34472679 DOI: 10.1111/add.15680] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Schizophrenia (SCZ) and bipolar disorder (BD) have a high comorbidity of alcohol use disorder (AUD), and both comorbid AUD and excessive alcohol consumption (AC) have been linked to greater illness severity. We aimed to identify genomic loci jointly associated with SCZ, BD, AUD and AC to gain further insights into their shared genetic architecture. DESIGN We analysed summary data (P values and Z scores) from genome-wide association studies (GWAS) using conjunctional false discovery rate (conjFDR) analysis, which increases power to discover shared genomic loci. We functionally characterized the identified loci using publicly available biological resources. SETTING AUD and AC data provided by the Million Veteran Program, derived from the United States Department of Veterans Affairs Healthcare System. SCZ and BD data provided by the Psychiatric Genomics Consortium, based on cohorts from countries in Europe, North America and Australia. PARTICIPANTS AUD (34 658 cases, 167 346 controls), AC (n = 200 680), SCZ (31 013 cases and 38 918 controls), BD (20 352 cases and 31 358 controls). All participants were of European ancestry. MEASUREMENTS Genomic loci shared between alcohol traits, SCZ and BD at conjFDR <0.05. FINDINGS Conditional Q-Q plots showed single-nucleotide polymorphism (SNP) enrichment for both alcohol traits across different levels of significance with SCZ and BD, and vice versa. Using conjFDR analysis we leveraged this genetic enrichment and identified several loci shared between SCZ and AUD (n = 28) and AC (n = 24), BD and AUD (n = 2) and AC (n = 8) at conjFDR <0.05. Among these loci, 24 are novel for AUD, 15 are novel for AC, three are novel for SCZ and one is novel for BD. There was a mixture of same and opposite effect directions among the shared loci. CONCLUSIONS Alcohol use disorder and alcohol consumption share genomic loci with the psychiatric disorders schizophrenia and bipolar disorder with a mixed pattern of effect directions, indicating a complex genetic relationship between the phenotypes.
Collapse
Affiliation(s)
- Erik D Wiström
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,NORMENT, Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kevin S O'Connell
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,NORMENT, Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Naz Karadag
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,NORMENT, Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Shahram Bahrami
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,NORMENT, Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Guy F L Hindley
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,NORMENT, Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Aihua Lin
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,NORMENT, Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Weiqiu Cheng
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,NORMENT, Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,NORMENT, Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexey Shadrin
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,NORMENT, Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,NORMENT, Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anders M Dale
- Department of Radiology, University of California San Diego, La Jolla, CA, USA.,Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA, USA.,Department of Psychiatry, University of California, La Jolla, CA, USA.,Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Ole A Andreassen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,NORMENT, Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Olav B Smeland
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,NORMENT, Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
33
|
Reith MEA, Kortagere S, Wiers CE, Sun H, Kurian MA, Galli A, Volkow ND, Lin Z. The dopamine transporter gene SLC6A3: multidisease risks. Mol Psychiatry 2022; 27:1031-1046. [PMID: 34650206 PMCID: PMC9008071 DOI: 10.1038/s41380-021-01341-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 02/02/2023]
Abstract
The human dopamine transporter gene SLC6A3 has been consistently implicated in several neuropsychiatric diseases but the disease mechanism remains elusive. In this risk synthesis, we have concluded that SLC6A3 represents an increasingly recognized risk with a growing number of familial mutants associated with neuropsychiatric and neurological disorders. At least five loci were related to common and severe diseases including alcohol use disorder (high activity variant), attention-deficit/hyperactivity disorder (low activity variant), autism (familial proteins with mutated networking) and movement disorders (both regulatory variants and familial mutations). Association signals depended on genetic markers used as well as ethnicity examined. Strong haplotype selection and gene-wide epistases support multimarker assessment of functional variations and phenotype associations. Inclusion of its promoter region's functional markers such as DNPi (rs67175440) and 5'VNTR (rs70957367) may help delineate condensate-based risk action, testing a locus-pathway-phenotype hypothesis for one gene-multidisease etiology.
Collapse
Affiliation(s)
- Maarten E A Reith
- Department of Psychiatry, New York University School of Medicine, New York City, NY, 10016, USA
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Corinde E Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20817, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hui Sun
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20817, USA
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Diseases in Children, UCL Great Ormond Street Institute of Child Health, and Department of Neurology, Great Ormond Street Hospital, London, WC1N 1EH, UK
| | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20817, USA
- National Institute on Drug Abuse, Bethesda, MD, 20817, USA
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, and Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
34
|
Moe JS, Bolstad I, Mørland JG, Bramness JG. GABA A subunit single nucleotide polymorphisms show sex-specific association to alcohol consumption and mental distress in a Norwegian population-based sample. Psychiatry Res 2022; 307:114257. [PMID: 34852975 DOI: 10.1016/j.psychres.2021.114257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/11/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
Little is known about genetic influences on the relationship between alcohol consumption and mental distress in the general population, where the majority report consumption and distress far below diagnostic thresholds. This study investigated single nucleotide polymorphisms (SNPs) from candidate gene studies on alcohol use disorder and depressive disorders, for association with alcohol consumption and with mental distress in a population-based sample from the Cohort of Norway (n = 1978, 49% women). The relationship between alcohol consumption and mental distress was further examined for genotype modification. There was a positive correlation between mental distress and alcohol consumption in men, as well as an association between SNPs and mental distress in men (GABRG1, GABRA2, DRD2, ANKK1, MTHFR) and women (CHRM2, MTHFR) and between SNPs and alcohol consumption in women (GABRA2, MTHFR). No modification by SNP genotype was found on the relationship between alcohol consumption and mental distress. The association between mental distress and GABRG1 in men remained significant after correcting for multiple comparisons. The results indicate that alcohol consumption and mental distress are associated in the general population even at levels below clinical thresholds and point to SNPs in genes related to GABAergic signalling for level of mental distress in men.
Collapse
Affiliation(s)
- Jenny Skumsnes Moe
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Disorders, Innlandet Hospital Trust, Brumunddal, Norway; Institute of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Ingeborg Bolstad
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Disorders, Innlandet Hospital Trust, Brumunddal, Norway; Blue Cross East, Norway
| | - Jørg Gustav Mørland
- Division of Health Data and Organization, Norwegian Institute of Public Health, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| | - Jørgen Gustav Bramness
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Disorders, Innlandet Hospital Trust, Brumunddal, Norway; Institute of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway; Department of Alcohol, Tobacco and Drugs, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
35
|
Yin B, Wang X, Huang T, Jia J. Shared Genetics and Causality Between Decaffeinated Coffee Consumption and Neuropsychiatric Diseases: A Large-Scale Genome-Wide Cross-Trait Analysis and Mendelian Randomization Analysis. Front Psychiatry 2022; 13:910432. [PMID: 35898629 PMCID: PMC9309364 DOI: 10.3389/fpsyt.2022.910432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Coffee or caffeine consumption has been associated with neuropsychiatric disorders, implying a shared etiology. However, whether these associations reflect causality remains largely unknown. To understand the genetic structure of the association between decaffeinated coffee consumption (DCC) and neuropsychiatric traits, we examined the genetic correlation, causality, and shared genetic structure between DCC and neuropsychiatric traits using linkage disequilibrium score regression, bidirectional Mendelian randomization (MR), and genome-wide cross-trait meta-analysis in large GWAS Consortia for coffee consumption (N = 329,671) and 13 neuropsychiatric traits (sample size ranges from 36,052 to 500,199). We found strong positive genetic correlations between DCC and lifetime cannabis use (LCU; Rg = 0.48, P = 8.40 × 10-19), alcohol use disorder identification test (AUDIT) total score (AUDIT_T; Rg = 0.40, P = 4.63 × 10-13), AUDIT_C score (alcohol consumption component of the AUDIT; Rg = 0.40, P = 5.26 × 10-11), AUDIT_P score (dependence and hazardous-use component of the AUDIT; Rg = 0.28, P = 1.36 × 10-05), and strong negative genetic correlations between DCC and neuroticism (Rg = -0.15, P = 7.27 × 10-05), major depressed diseases (MDD; Rg = -0.15, P = 0.0010), and insomnia (Rg= -0.15, P = 0.0007). In the cross-trait meta-analysis, we identified 6, 5, 1, 1, 2, 31, and 27 shared loci between DCC and Insomnia, LCU, AUDIT_T, AUDIT_C, AUDIT_P, neuroticism, and MDD, respectively, which were mainly enriched in bone marrow, lymph node, cervix, uterine, lung, and thyroid gland tissues, T cell receptor signaling pathway, antigen receptor-mediated signaling pathway, and epigenetic pathways. A large of TWAS-significant associations were identified in tissues that are part of the nervous system, digestive system, and exo-/endocrine system. Our findings further indicated a causal influence of liability to DCC on LCU and low risk of MDD (odds ratio: 0.90, P = 9.06 × 10-5 and 1.27, P = 7.63 × 10-4 respectively). We also observed that AUDIT_T and AUDIT_C were causally related to DCC (odds ratio: 1.83 per 1-SD increase in AUDIT_T, P = 1.67 × 10-05, 1.80 per 1-SD increase in AUDIT_C, P = 5.09 × 10-04). Meanwhile, insomnia and MDD had a causal negative influence on DCC (OR: 0.91, 95% CI: 0.86-0.95, P = 1.51 × 10-04 for Insomnia; OR: 0.93, 95% CI: 0.89-0.99, P = 6.02 × 10-04 for MDD). These findings provided evidence for the shared genetic basis and causality between DCC and neuropsychiatric diseases, and advance our understanding of the shared genetic mechanisms underlying their associations, as well as assisting with making recommendations for clinical works or health education.
Collapse
Affiliation(s)
- Bian Yin
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xinpei Wang
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Tao Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China.,Center for Intelligent Public Health, Academy for Artificial Intelligence, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China
| | - Jinzhu Jia
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China.,Center for Statistical Science, Peking University, Beijing, China
| |
Collapse
|
36
|
Mallard TT, Savage JE, Johnson EC, Huang Y, Edwards AC, Hottenga JJ, Grotzinger AD, Gustavson DE, Jennings MV, Anokhin A, Dick DM, Edenberg HJ, Kramer JR, Lai D, Meyers JL, Pandey AK, Paige Harden K, Nivard MG, de Geus EJC, Boomsma DI, Agrawal A, Davis LK, Clarke TK, Palmer AA, Sanchez-Roige S. Item-Level Genome-Wide Association Study of the Alcohol Use Disorders Identification Test in Three Population-Based Cohorts. Am J Psychiatry 2022; 179:58-70. [PMID: 33985350 PMCID: PMC9272895 DOI: 10.1176/appi.ajp.2020.20091390] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Genome-wide association studies (GWASs) of the Alcohol Use Disorders Identification Test (AUDIT), a 10-item screen for alcohol use disorder (AUD), have elucidated novel loci for alcohol consumption and misuse. However, these studies also revealed that GWASs can be influenced by numerous biases (e.g., measurement error, selection bias), which may have led to inconsistent genetic correlations between alcohol involvement and AUD, as well as paradoxically negative genetic correlations between alcohol involvement and psychiatric disorders and/or medical conditions. The authors used genomic structural equation modeling to elucidate the genetics of alcohol consumption and problematic consequences of alcohol use as measured by AUDIT. METHODS To explore these unexpected differences in genetic correlations, the authors conducted the first item-level and the largest GWAS of AUDIT items (N=160,824) and applied a multivariate framework to mitigate previous biases. RESULTS The authors identified novel patterns of similarity (and dissimilarity) among the AUDIT items and found evidence of a correlated two-factor structure at the genetic level ("consumption" and "problems," rg=0.80). Moreover, by applying empirically derived weights to each of the AUDIT items, the authors constructed an aggregate measure of alcohol consumption that was strongly associated with alcohol dependence (rg=0.67), moderately associated with several other psychiatric disorders, and no longer positively associated with health and positive socioeconomic outcomes. Lastly, by conducting polygenic analyses in three independent cohorts that differed in their ascertainment and prevalence of AUD, the authors identified novel genetic associations between alcohol consumption, alcohol misuse, and health. CONCLUSIONS This work further emphasizes the value of AUDIT for both clinical and genetic studies of AUD and the importance of using multivariate methods to study genetic associations that are more closely related to AUD.
Collapse
Affiliation(s)
- Travis T Mallard
- Department of Psychology, University of Texas at Austin, Austin, TX, 78712
| | - Jeanne E Savage
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Netherlands, 1081HV
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
| | - Yuye Huang
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
| | - Alexis C Edwards
- Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA 23298
| | - Jouke J Hottenga
- Dept of Biological Psychology & EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, NL
| | | | - Daniel E Gustavson
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
| | - Andrey Anokhin
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
| | - Danielle M Dick
- Department of Psychology, Virginia Commonwealth University, Richmond, VA 23220
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - John R Kramer
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 4622
| | - Jacquelyn L Meyers
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY 11203
| | - Ashwini K Pandey
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY 11203
| | | | - Michel G Nivard
- Dept of Biological Psychology & EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, NL
| | - Eco JC de Geus
- Dept of Biological Psychology & EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, NL
| | - Dorret I Boomsma
- Dept of Biological Psychology & EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, NL
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
| | - Lea K Davis
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Toni-Kim Clarke
- Division of Psychiatry, University of Edinburgh, Scotland, UK, EH8 9YL
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
37
|
Mallard TT, Sanchez-Roige S. Dimensional Phenotypes in Psychiatric Genetics: Lessons from Genome-Wide Association Studies of Alcohol Use Phenotypes. Complex Psychiatry 2021; 7:45-48. [PMID: 35083441 PMCID: PMC8739983 DOI: 10.1159/000518863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- Travis T. Mallard
- Department of Psychology, University of Texas at Austin, Austin, Texas, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
38
|
Wang ZT, Li KY, Tan CC, Xu W, Shen XN, Cao XP, Wang P, Bi YL, Dong Q, Tan L, Yu JT. Associations of Alcohol Consumption with Cerebrospinal Fluid Biomarkers of Alzheimer's Disease Pathology in Cognitively Intact Older Adults: The CABLE Study. J Alzheimers Dis 2021; 82:1045-1054. [PMID: 34151793 DOI: 10.3233/jad-210140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The relationship between alcohol consumption and Alzheimer's disease (AD) pathology is unclear. Amyloid-β (Aβ) and tau biomarkers in cerebrospinal fluid (CSF) have been proven valuable in establishing prognosis in pre-clinical AD. OBJECTIVE We sought to examine the associations between alcohol consumption and CSF AD biomarkers in cognitive intact subjects. METHODS A total of 806 cognitively intact participants who had measurements of CSF Aβ, pTau, and total Tau proteins and drinking characteristics were included from the Chinese Alzheimer's Biomarker and Lifestyle (CABLE) study. Linear and logistic regression analyses were utilized to explore the associations of alcohol consumption with CSF AD biomarkers. We examined the interaction effects of age, gender, and apolipoprotein epsilon (APOE) ɛ4 status on the relationships between the frequency of drinking and CSF biomarkers. RESULTS The multiple linear regression analyses revealed significant differences in CSF AD biomarkers between infrequent drinking (< 1 times/week) and frequent drinking groups (≥1 times/week). Participants in frequent drinking group had higher CSF p-tau/Aβ42 and tTau/Aβ42. Frequent drinking was significantly associated with greater pTau and tTau abnormalities compared to the infrequent drinking group in older (> 65 years) participants. CONCLUSION The present study showed significant associations between drinking frequency and CSF AD biomarkers in cognitively intact older adults. Alcohol consumption may have an influence on AD by modulating amyloid deposition and tau phosphorylation in the preclinical stage.
Collapse
Affiliation(s)
- Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| | - Kun-Yan Li
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ping Wang
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China.,Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Rao S, Baranova A, Cao H, Chen J, Zhang X, Zhang F. Genetic mechanisms of COVID-19 and its association with smoking and alcohol consumption. Brief Bioinform 2021; 22:6326524. [PMID: 34308962 DOI: 10.1093/bib/bbab284] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 11/14/2022] Open
Abstract
We aimed to investigate the genetic mechanisms associated with coronavirus disease of 2019 (COVID-19) outcomes in the host and to evaluate the possible associations between smoking and drinking behavior and three COVID-19 outcomes: severe COVID-19, hospitalized COVID-19 and COVID-19 infection. We described the genomic loci and risk genes associated with the COVID-19 outcomes, followed by functional analyses of the risk genes. Then, a summary data-based Mendelian randomization (SMR) analysis, and a transcriptome-wide association study (TWAS) were performed for the severe COVID-19 dataset. A two-sample Mendelian randomization (MR) analysis was used to evaluate the causal associations between various measures of smoking and alcohol consumption and the COVID-19 outcomes. A total of 26 protein-coding genes, enriched in chemokine binding, cytokine binding and senescence-related functions, were associated with either severe COVID-19 or hospitalized COVID-19. The SMR and the TWAS analyses highlighted functional implications of some GWAS hits and identified seven novel genes for severe COVID-19, including CCR5, CCR5AS, IL10RB, TAC4, RMI1 and TNFSF15, some of which are targets of approved or experimental drugs. According to our studies, increasing consumption of cigarettes per day by 1 standard deviation is related to a 2.3-fold increase in susceptibility to severe COVID-19 and a 1.6-fold increase in COVID-19-induced hospitalization. Contrarily, no significant links were found between alcohol consumption or binary smoking status and COVID-19 outcomes. Our study revealed some novel COVID-19 related genes and suggested that genetic liability to smoking may quantitatively contribute to an increased risk for a severe course of COVID-19.
Collapse
Affiliation(s)
- Shuquan Rao
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, China
| | - Hongbao Cao
- School of Systems Biology, George Mason University, China
| | - Jiu Chen
- Affiliated Brain Hospital of Nanjing Medical University, China
| | - Xiangrong Zhang
- Affiliated Brain Hospital of Nanjing Medical University, China
| | - Fuquan Zhang
- Affiliated Brain Hospital of Nanjing Medical University, China
| |
Collapse
|
40
|
Sun X, Ho JE, Gao H, Evangelou E, Yao C, Huan T, Hwang SJ, Courchesne P, Larson MG, Levy D, Ma J, Liu C. Associations of Alcohol Consumption with Cardiovascular Disease-Related Proteomic Biomarkers: The Framingham Heart Study. J Nutr 2021; 151:2574-2582. [PMID: 34159370 PMCID: PMC8417922 DOI: 10.1093/jn/nxab186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 05/17/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Alcohol consumption and cardiovascular disease (CVD) have a complex relation. OBJECTIVES We examined the associations between alcohol consumption, fasting plasma proteins, and CVD risk. METHODS We performed cross-sectional association analyses of alcohol consumption with 71 CVD-related plasma proteins, and also performed prospective association analyses of alcohol consumption and protein concentrations with 3 CVD risk factors (obesity, hypertension, and diabetes) in 6745 Framingham Heart Study (FHS) participants (mean age 49 y; 53% women). RESULTS A unit increase in log10 transformed alcohol consumption (g/d) was associated with an increased risk of hypertension (HR = 1.14; 95% CI: 1.04, 1.26; P = 0.007), and decreased risks of obesity (HR = 0.80; 95% CI: 0.71, 0.91; P = 4.6 × 10-4) and diabetes (HR: 0.68; 95% CI: 0.58, 0.80; P = 5.1 × 10-6) in a median of 13-y (interquartile = 7, 14) of follow-up. We identified 43 alcohol-associated proteins in a discovery sample (n = 4348, false discovery rate <0.05) and 20 of them were significant (P <0.05/43) in an independent validation sample (n = 2397). Eighteen of the 20 proteins were inversely associated with alcohol consumption. Four of the 20 proteins demonstrated 3-way associations, as expected, with alcohol consumption and CVD risk factors. For example, a greater concentration of APOA1 was associated with higher alcohol consumption (P = 1.2 × 10-65), and it was also associated with a lower risk of diabetes (P = 8.5 × 10-6). However, several others showed unexpected 3-way associations. CONCLUSIONS We identified 20 alcohol-associated proteins in 6745 FHS samples. These alcohol-associated proteins demonstrated complex relations with the 3 CVD risk factors. Future studies with integration of more proteomic markers and larger sample size are warranted to unravel the complex relation between alcohol consumption and CVD risk.
Collapse
Affiliation(s)
- Xianbang Sun
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Jennifer E Ho
- Division of Cardiology, Department of Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - He Gao
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom,Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Chen Yao
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA, USA,Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Tianxiao Huan
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA, USA,Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Shih-Jen Hwang
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA, USA,Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Paul Courchesne
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA, USA,Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Martin G Larson
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA,Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA, USA
| | - Daniel Levy
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA, USA,Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
41
|
Evangelou E, Suzuki H, Bai W, Pazoki R, Gao H, Matthews PM, Elliott P. Alcohol consumption in the general population is associated with structural changes in multiple organ systems. eLife 2021; 10:65325. [PMID: 34059199 PMCID: PMC8192119 DOI: 10.7554/elife.65325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Excessive alcohol consumption is associated with damage to various organs, but its multi-organ effects have not been characterised across the usual range of alcohol drinking in a large general population sample. Methods: We assessed global effect sizes of alcohol consumption on quantitative magnetic resonance imaging phenotypic measures of the brain, heart, aorta, and liver of UK Biobank participants who reported drinking alcohol. Results: We found a monotonic association of higher alcohol consumption with lower normalised brain volume across the range of alcohol intakes (–1.7 × 10−3 ± 0.76 × 10−3 per doubling of alcohol consumption, p=3.0 × 10−14). Alcohol consumption was also associated directly with measures of left ventricular mass index and left ventricular and atrial volume indices. Liver fat increased by a mean of 0.15% per doubling of alcohol consumption. Conclusions: Our results imply that there is not a ‘safe threshold’ below which there are no toxic effects of alcohol. Current public health guidelines concerning alcohol consumption may need to be revisited. Funding: See acknowledgements.
Collapse
Affiliation(s)
- Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom.,Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Hideaki Suzuki
- Department of Cardiovascular Medicine, Tohoku University Hospital, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Wenjia Bai
- Department of Brain Sciences, Imperial College London, London, United Kingdom.,Data Science Institute, Imperial College London, London, United Kingdom
| | - Raha Pazoki
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom.,Division of Biomedical Sciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom
| | - He Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom.,MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, United Kingdom.,UK Dementia Research Institute at Imperial College London, London, United Kingdom.,National Institute for Health Research Imperial College Biomedical Research Centre, Imperial College London, London, United Kingdom
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom.,MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom.,UK Dementia Research Institute at Imperial College London, London, United Kingdom.,National Institute for Health Research Imperial College Biomedical Research Centre, Imperial College London, London, United Kingdom.,British Heart Foundation Centre for Research Excellence, Imperial College London, London, United Kingdom
| |
Collapse
|
42
|
Iob E, Schoeler T, Cecil CM, Walton E, McQuillin A, Pingault J. Identifying risk factors involved in the common versus specific liabilities to substance use: A genetically informed approach. Addict Biol 2021; 26:e12944. [PMID: 32705754 PMCID: PMC8427469 DOI: 10.1111/adb.12944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/09/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022]
Abstract
Individuals most often use several rather than one substance among alcohol, cigarettes or cannabis. This widespread co-occurring use of multiple substances is thought to stem from a common liability that is partly genetic in origin. Genetic risk may indirectly contribute to a common liability to substance use through genetically influenced mental health vulnerabilities and individual traits. To test this possibility, we used polygenic scores indexing mental health and individual traits and examined their association with the common versus specific liabilities to substance use. We used data from the Avon Longitudinal Study of Parents and Children (N = 4218) and applied trait-state-occasion models to delineate the common and substance-specific factors based on four classes of substances (alcohol, cigarettes, cannabis and other illicit substances) assessed over time (ages 17, 20 and 22). We generated 18 polygenic scores indexing genetically influenced mental health vulnerabilities and individual traits. In multivariable regression, we then tested the independent contribution of selected polygenic scores to the common and substance-specific factors. Our results implicated several genetically influenced traits and vulnerabilities in the common liability to substance use, most notably risk taking (bstandardised = 0.14; 95% confidence interval [CI] [0.10, 0.17]), followed by extraversion (bstandardised = -0.10; 95% CI [-0.13, -0.06]), and schizophrenia risk (bstandardised = 0.06; 95% CI [0.02, 0.09]). Educational attainment (EA) and body mass index (BMI) had opposite effects on substance-specific liabilities such as cigarette use (bstandardised-EA = -0.15; 95% CI [-0.19, -0.12]; bstandardised-BMI = 0.05; 95% CI [0.02, 0.09]) and alcohol use (bstandardised-EA = 0.07; 95% CI [0.03, 0.11]; bstandardised-BMI = -0.06; 95% CI [-0.10, -0.02]). These findings point towards largely distinct sets of genetic influences on the common versus specific liabilities.
Collapse
Affiliation(s)
- Eleonora Iob
- Department of Behavioral Science and HealthUniversity College LondonLondonUK
| | - Tabea Schoeler
- Department of Clinical, Educational and Health Psychology, Division of Psychology and Language SciencesUniversity College LondonLondonUK
| | - Charlotte M. Cecil
- Department of Child and Adolescent PsychiatryErasmus University Medical CenterRotterdamThe Netherlands
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Esther Walton
- MRC Integrative Epidemiology Unit, Bristol Medical School, Population Health SciencesUniversity of BristolBristolUK
- Department of PsychologyUniversity of BathBathUK
| | | | - Jean‐Baptiste Pingault
- Department of Clinical, Educational and Health Psychology, Division of Psychology and Language SciencesUniversity College LondonLondonUK
- Social, Genetic and Developmental Psychiatry CentreKing's College LondonLondonUK
| |
Collapse
|
43
|
Looking for Sunshine: Genetic Predisposition to Sun Seeking in 265,000 Individuals of European Ancestry. J Invest Dermatol 2021; 141:779-786. [DOI: 10.1016/j.jid.2020.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/04/2020] [Accepted: 08/05/2020] [Indexed: 11/23/2022]
|
44
|
The Effect of FGF21 and Its Genetic Variants on Food and Drug Cravings, Adipokines and Metabolic Traits. Biomedicines 2021; 9:biomedicines9040345. [PMID: 33805553 PMCID: PMC8065804 DOI: 10.3390/biomedicines9040345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/27/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a regulator of addictive behavior. Increasing evidence suggests an impact of FGF21 on eating behavior, food and drug cravings and on other adipokines like insulin-like growth factor 1 (IGF-1) or adiponectin. We investigated the association of serum FGF21 and genetic variants with aspects of food and drug craving and obesity related metabolic parameters including serum adipokine levels. Standardized questionnaires, blood samples and anthropometric data of the Sorbs cohort (n = 1046) were analyzed using SPSS. For genetic analyses, the FGF21-locus ±10 kb was genotyped and analyzed using PLINK. Validation was conducted in a second independent cohort (n = 704). FGF21 was significantly associated with alcohol and coffee consumption, smoking and eating behavior (disinhibition). We confirmed correlations of FGF21 serum levels with IGF-1, adiponectin, pro-enkephalin, adipocyte fatty-acid-binding protein, chemerin and progranulin. FGF21 genetic variants were associated with anthropometric and metabolic parameters, adipokines, food and drug craving while strongest evidence was seen with low-density lipoprotein cholesterol (LDL-C). We highlight the potential role of FGF21 in food and drug cravings and provide new insights regarding the link of FGF21 with other adipokines as well as with metabolic traits, in particular those related to lipid metabolism (LDL-C).
Collapse
|
45
|
Hade AC, Philips MA, Reimann E, Jagomäe T, Eskla KL, Traks T, Prans E, Kõks S, Vasar E, Väli M. Chronic Alcohol Use Induces Molecular Genetic Changes in the Dorsomedial Thalamus of People with Alcohol-Related Disorders. Brain Sci 2021; 11:435. [PMID: 33805312 PMCID: PMC8066746 DOI: 10.3390/brainsci11040435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 01/12/2023] Open
Abstract
The Mediodorsal (MD) thalamus that represents a fundamental subcortical relay has been underrepresented in the studies focusing on the molecular changes in the brains of subjects with alcohol use disorder (AUD). In the current study, MD thalamic regions from AUD subjects and controls were analyzed with Affymetrix Clariom S human microarray. Long-term alcohol use induced a significant (FDR ≤ 0.05) upregulation of 2802 transcripts and downregulation of 1893 genes in the MD thalamus of AUD subjects. A significant upregulation of GRIN1 (glutamate receptor NMDA type 1) and FTO (alpha-ketoglutarate dependent dioxygenase) was confirmed in western blot analysis. Immunohistochemical staining revealed similar heterogenous distribution of GRIN1 in the thalamic nuclei of both AUD and control subjects. The most prevalent functional categories of upregulated genes were related to glutamatergic and GABAergic neurotransmission, cellular metabolism, and neurodevelopment. The prevalent gene cluster among down-regulated genes was immune system mediators. Forty-two differentially expressed genes, including FTO, ADH1B, DRD2, CADM2, TCF4, GCKR, DPP6, MAPT and CHRH1, have been shown to have strong associations (FDR p < 10-8) with AUD or/and alcohol use phenotypes in recent GWA studies. Despite a small number of subjects, we were able to detect robust molecular changes in the mediodorsal thalamus caused by alcohol emphasizing the importance of deeper brain structures such as diencephalon, in the development of AUD-related dysregulation of neurocircuitry.
Collapse
Affiliation(s)
- Andreas-Christian Hade
- Department of Pathological Anatomy and Forensic Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (A.-C.H.); (M.V.)
- Forensic Medical Examination Department, Estonian Forensic Science Institute, 30 Tervise Street, 13419 Tallinn, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (T.J.); (K.-L.E.); (E.V.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Ene Reimann
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia;
| | - Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (T.J.); (K.-L.E.); (E.V.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Kattri-Liis Eskla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (T.J.); (K.-L.E.); (E.V.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Tanel Traks
- Department of Dermatology and Venerology, Institute of Clinical Medicine, University of Tartu, 51010 Tartu, Estonia;
| | - Ele Prans
- Department of Anaesthesiology and Intensive Care, Tartu University Hospital, 50406 Tartu, Estonia;
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (T.J.); (K.-L.E.); (E.V.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Marika Väli
- Department of Pathological Anatomy and Forensic Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (A.-C.H.); (M.V.)
- Forensic Medical Examination Department, Estonian Forensic Science Institute, 30 Tervise Street, 13419 Tallinn, Estonia
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Alcohol is gaining increased recognition as an important risk factor for dementia. This review summarises recent evidence on the relationship between alcohol use and dementia, focusing on studies published from January 2019 to August 2020. RECENT FINDINGS Epidemiological data continues to yield results consistent with protective effects of low-to-moderate alcohol consumption for dementia and cognitive function. However, recent literature highlights the methodological limitations of existing observational studies. The effects of chronic, heavy alcohol use are clearer, with excessive consumption causing alcohol-related brain damage. Several pathways to this damage have been suggested, including the neurotoxic effects of thiamine deficiency, ethanol and acetaldehyde. SUMMARY Future research would benefit from greater implementation of analytical and design-based approaches to robustly model the alcohol use-dementia relationship in the general population, and should make use of large, consortia-level data. Early intervention to prevent dementia is critical: thiamine substitution has shown potential but requires more research, and psychosocial interventions to treat harmful alcohol use have proven effective. Finally, diagnostic criteria for alcohol-related dementia require formal validation to ensure usefulness in clinical practice.
Collapse
|
47
|
Ellingjord-Dale M, Papadimitriou N, Katsoulis M, Yee C, Dimou N, Gill D, Aune D, Ong JS, MacGregor S, Elsworth B, Lewis SJ, Martin RM, Riboli E, Tsilidis KK. Coffee consumption and risk of breast cancer: A Mendelian randomization study. PLoS One 2021; 16:e0236904. [PMID: 33465101 PMCID: PMC7815134 DOI: 10.1371/journal.pone.0236904] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Observational studies have reported either null or weak protective associations for coffee consumption and risk of breast cancer. METHODS We conducted a two-sample Mendelian randomization (MR) analysis to evaluate the relationship between coffee consumption and breast cancer risk using 33 single-nucleotide polymorphisms (SNPs) associated with coffee consumption from a genome-wide association (GWA) study on 212,119 female UK Biobank participants of White British ancestry. Risk estimates for breast cancer were retrieved from publicly available GWA summary statistics from the Breast Cancer Association Consortium (BCAC) on 122,977 cases (of which 69,501 were estrogen receptor (ER)-positive, 21,468 ER-negative) and 105,974 controls of European ancestry. Random-effects inverse variance weighted (IVW) MR analyses were performed along with several sensitivity analyses to assess the impact of potential MR assumption violations. RESULTS One cup per day increase in genetically predicted coffee consumption in women was not associated with risk of total (IVW random-effects; odds ratio (OR): 0.91, 95% confidence intervals (CI): 0.80-1.02, P: 0.12, P for instrument heterogeneity: 7.17e-13), ER-positive (OR = 0.90, 95% CI: 0.79-1.02, P: 0.09) and ER-negative breast cancer (OR: 0.88, 95% CI: 0.75-1.03, P: 0.12). Null associations were also found in the sensitivity analyses using MR-Egger (total breast cancer; OR: 1.00, 95% CI: 0.80-1.25), weighted median (OR: 0.97, 95% CI: 0.89-1.05) and weighted mode (OR: 1.00, CI: 0.93-1.07). CONCLUSIONS The results of this large MR study do not support an association of genetically predicted coffee consumption on breast cancer risk, but we cannot rule out existence of a weak association.
Collapse
Affiliation(s)
- Merete Ellingjord-Dale
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Nikos Papadimitriou
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Michail Katsoulis
- Institute of Health Informatics Research, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Chew Yee
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Niki Dimou
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department of Nutrition, Bjørknes University College, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Jue-Sheng Ong
- Statistical Genetics, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Stuart MacGregor
- Statistical Genetics, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Benjamin Elsworth
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Sarah J. Lewis
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Richard M. Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, United Kingdom
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Konstantinos K. Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
48
|
Oliveira PRS, de Matos LO, Araujo NM, Sant Anna HP, da Silva E Silva DA, Damasceno AKA, Martins de Carvalho L, Horta BL, Lima-Costa MF, Barreto ML, Wiers CE, Volkow ND, Brunialti Godard AL. LRRK2 Gene Variants Associated With a Higher Risk for Alcohol Dependence in Multiethnic Populations. Front Psychiatry 2021; 12:665257. [PMID: 34135785 PMCID: PMC8202767 DOI: 10.3389/fpsyt.2021.665257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Genetics influence the vulnerability to alcohol use disorders, and among the implicated genes, three previous studies have provided evidences for the involvement of LRRK2 in alcohol dependence (AD). LRRK2 expression is broadly dysregulated in postmortem brain from AD humans, as well as in the brain of mice with alcohol dependent-like behaviors and in a zebrafish model of alcohol preference. The aim of the present study was to evaluate the association of variants in the LRRK2 gene with AD in multiethnic populations from South and North America. Methods: Alcohol-screening questionnaires [such as CAGE and Alcohol Use Disorders Identification Test (AUDIT)] were used to determine individual risk of AD. Multivariate logistic regression analyses were done in three independent populations (898 individuals from Bambuí, Brazil; 3,015 individuals from Pelotas, Brazil; and 1,316 from the United States). Linkage disequilibrium and conditional analyses, as well as in silico functional analyses, were also conducted. Results: Four LRRK2 variants were significantly associated with AD in our discovery cohort (Bambuí): rs4768231, rs4767971, rs7307310, and rs1465527. Two of these variants (rs4768231 and rs4767971) were replicated in both Pelotas and US cohorts. The consistent association signal (at the LRRK2 locus) found in populations with different genetic backgrounds reinforces the relevance of our findings. Conclusion: Taken together, these results support the notion that genetic variants in the LRRK2 locus are risk factors for AD in humans.
Collapse
Affiliation(s)
- Pablo Rafael Silveira Oliveira
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil.,Centro de Integração de Dados e Conhecimentos para Saúde, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Lorena Oliveira de Matos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nathalia Matta Araujo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Hanaísa P Sant Anna
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Andresa K Andrade Damasceno
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil.,Centro de Integração de Dados e Conhecimentos para Saúde, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Luana Martins de Carvalho
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois, Chicago, IL, United States
| | - Bernardo L Horta
- Programa de Pos-Graduação em Epidemiologia, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | - Mauricio Lima Barreto
- Centro de Integração de Dados e Conhecimentos para Saúde, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Corinde E Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Ana Lúcia Brunialti Godard
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
49
|
Vornholt E, Drake J, Mamdani M, McMichael G, Taylor ZN, Bacanu SA, Miles MF, Vladimirov VI. Network preservation reveals shared and unique biological processes associated with chronic alcohol abuse in NAc and PFC. PLoS One 2020; 15:e0243857. [PMID: 33332381 PMCID: PMC7745987 DOI: 10.1371/journal.pone.0243857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic alcohol abuse has been linked to the disruption of executive function and allostatic conditioning of reward response dysregulation in the mesocorticolimbic pathway (MCL). Here, we analyzed genome-wide mRNA and miRNA expression from matched cases with alcohol dependence (AD) and controls (n = 35) via gene network analysis to identify unique and shared biological processes dysregulated in the prefrontal cortex (PFC) and nucleus accumbens (NAc). We further investigated potential mRNA/miRNA interactions at the network and individual gene expression levels to identify the neurobiological mechanisms underlying AD in the brain. By using genotyped and imputed SNP data, we identified expression quantitative trait loci (eQTL) uncovering potential genetic regulatory elements for gene networks associated with AD. At a Bonferroni corrected p≤0.05, we identified significant mRNA (NAc = 6; PFC = 3) and miRNA (NAc = 3; PFC = 2) AD modules. The gene-set enrichment analyses revealed modules preserved between PFC and NAc to be enriched for immune response processes, whereas genes involved in cellular morphogenesis/localization and cilia-based cell projection were enriched in NAc modules only. At a Bonferroni corrected p≤0.05, we identified significant mRNA/miRNA network module correlations (NAc = 6; PFC = 4), which at an individual transcript level implicated miR-449a/b as potential regulators for cellular morphogenesis/localization in NAc. Finally, we identified eQTLs (NAc: mRNA = 37, miRNA = 9; PFC: mRNA = 17, miRNA = 16) which potentially mediate alcohol's effect in a brain region-specific manner. Our study highlights the neurotoxic effects of chronic alcohol abuse as well as brain region specific molecular changes that may impact the development of alcohol addiction.
Collapse
Affiliation(s)
- Eric Vornholt
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - John Drake
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, Texas, United States of America
| | - Mohammed Mamdani
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Gowon McMichael
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Zachary N. Taylor
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Silviu-Alin Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Michael F. Miles
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Vladimir I. Vladimirov
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, Texas, United States of America
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
50
|
Spence JP, Lai D, Reiter JL, Cao S, Bell RL, Williams KE, Liang T. Epigenetic changes on rat chromosome 4 contribute to disparate alcohol drinking behavior in alcohol-preferring and -nonpreferring rats. Alcohol 2020; 89:103-112. [PMID: 32798691 PMCID: PMC7722131 DOI: 10.1016/j.alcohol.2020.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/24/2020] [Accepted: 08/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Paternal alcohol abuse is a well-recognized risk factor for the development of an alcohol use disorder (AUD). In addition to genetic and environmental risk factors, heritable epigenetic factors also have been proposed to play a key role in the development of AUD. However, it is not clear whether epigenetic factors contribute to the genetic inheritance in families affected by AUD. We used reciprocal crosses of the alcohol-preferring (P) and -nonpreferring (NP) rat lines to test whether epigenetic factors also impacted alcohol drinking in up to two generations of offspring. METHODS F1 offspring derived by reciprocal breeding of P and NP rats were tested for differences in alcohol consumption using a free-choice protocol of 10% ethanol, 20% ethanol, and water that were available concurrently. In a separate experiment, an F2 population was tested for alcohol consumption not only due to genetic differences. These rats were generated from inbred P (iP) and iNP rat lines that were reciprocally bred to produce genetically identical F1 offspring that remained alcohol-naïve. Intercrosses of the F1 generation animals produced the F2 generation. Alcohol consumption was then assessed in the F2 generation using a standard two-bottle choice protocol, and was analyzed using genome-wide linkage analysis. Alcohol consumption measures were also analyzed for sex differences. RESULTS Average alcohol consumption was higher in the F1 offspring of P vs. NP sires and in the F2 offspring of F0 iP vs. iNP grandsires. Linkage analyses showed the maximum LOD scores for alcohol consumption in both male and female offspring were on chromosome 4 (Chr 4). The LOD score for both sexes considered together was higher when the grandsire was iP vs. iNP (5.0 vs. 3.35, respectively). Furthermore, the F2 population displayed enhanced alcohol consumption when the P alleles from the F0 sire were present. CONCLUSIONS These results demonstrate that epigenetic and/or non-genetic factors mapping to rat chromosome 4 contribute to a transgenerational paternal effect on alcohol consumption in the P and NP rat model of AUD.
Collapse
Affiliation(s)
- John Paul Spence
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jill L Reiter
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Sha Cao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Kent E Williams
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Tiebing Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States.
| |
Collapse
|