1
|
Cho IW, Kim GY, Kim S, Lee YJ, Oh J, Ryu MY, Lee J, Lee MS, Jang SY, Lee K, Kang H. Naphthalene Diimide-Modified SnO 2 Enabling Low-Temperature Processing for Efficient ITO-Free Flexible Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402425. [PMID: 39007453 DOI: 10.1002/smll.202402425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/22/2024] [Indexed: 07/16/2024]
Abstract
A low-cost and indium-tin-oxide (ITO)-free electrode-based flexible perovskite solar cell (PSC) that can be fabricated by roll-to-roll processing shall be developed for successful commercialization. High processing temperatures present a challenge for the PSC fabrication on flexible substrates. The most efficient planar n-i-p PSC structures, which utilize a metal oxide as an electron transport layer (ETL), necessitate high annealing temperatures. In addition, the device performance deteriorates owing to the migration of halogen ions, which causes the oxidation of the metal electrodes. These drawbacks conflict with the development of highly efficient flexible PSCs fabricated on ITO-free transparent electrodes. Herein, an efficient ETL material that enables low-temperature processing is presented. Tin dioxide (SnO2) is modified by (sulfobetaine-N,N-dimethylamino)propyl naphthalene diimide (NDI-B) and used as an ETL. The NDI-B effectively reduces the interfacial nonradiative recombination between the ETL and perovskite and suppresses the ion migration by passivating oxygen-vacancy defects in SnO2 and strongly interacting with halogen ions, respectively. Based on the NDI-B-blended SnO2 ETL, a record PCE of 17.48% is achieved in the ITO-free flexible PSC fabricated at low temperature.
Collapse
Affiliation(s)
- Il-Wook Cho
- Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology (GIST), 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
- Department of Physics, Kangwon National University, 1, Gangwondaehak-gil, Chuncheon-si, 24341, Republic of Korea
| | - Ga Yeon Kim
- Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology (GIST), 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Sangcho Kim
- Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology (GIST), 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Yu-Jun Lee
- Heeger Center for Advanced Materials, Gwangju Institute of Science and Technology (GIST), 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jaewon Oh
- Department of Physics, Kangwon National University, 1, Gangwondaehak-gil, Chuncheon-si, 24341, Republic of Korea
| | - Mee-Yi Ryu
- Department of Physics, Kangwon National University, 1, Gangwondaehak-gil, Chuncheon-si, 24341, Republic of Korea
| | - Jinho Lee
- Department of Physics, Incheon National University, 119 Academy-ro, Incheon, 22012, Republic of Korea
| | - Min Soo Lee
- MSWAY CO, LTD., 801-1, 30, Digital-ro 32-gil, Guro-gu, Seoul, 08390, Republic of Korea
| | - Soo-Young Jang
- Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology (GIST), 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Kwanghee Lee
- Heeger Center for Advanced Materials, Gwangju Institute of Science and Technology (GIST), 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Hongkyu Kang
- Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology (GIST), 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| |
Collapse
|
2
|
Kim T, Chun DH, Roe DG, Kim W, Lee J, Kim J, Choi D, Choi DG, Cho JH, Park JH, Kim D. Sculpting the Electronic Nano-Terrain on a Perovskite Film for Efficient Charge Transport. ACS NANO 2024; 18:25337-25348. [PMID: 39206533 DOI: 10.1021/acsnano.4c09605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Nanopatterned halide perovskites have emerged to improve the performance of optoelectronic devices by controlling the crystallographic and optical properties via morphological modification. However, the correlation between the photophysical property and morphology transformation in nanopatterned perovskite films remains elusive, which hinders the rational design of nanopatterned halide perovskites for optoelectronic devices. In this study, we employed nanoimprinting lithography on a perovskite film to exert a precise control over grain growth and manipulate electronic structures at the level of individual grains. Surface-selective fluorescence lifetime imaging microscopy (FLIM) analyzes the spatiotemporally disentangled geometrical variations in carrier recombination rate and band structure modulation according to different pattern morphologies. Consequently, the stereoscopic mechanism of confined grain growth was unveiled, highlighting the quantitative grain size-based parameters that are crucial for nanoscale material engineering. Notably, the pattern-induced reduction of effective charge mass enabled exclusive control over the subdiffusive carrier transport dynamics on perovskite surfaces, ultimately realizing the surface-selective perovskite photodetectors. The implications of this study are expected to provide valuable guidelines, inspiring innovative design protocols for advancing the next-generation optoelectronic technologies.
Collapse
Affiliation(s)
- Taehee Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Do Hyung Chun
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| | - Dong Gue Roe
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| | - Wook Kim
- Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiyeon Lee
- School of Integrated Technology, College of Computing, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Jiwon Kim
- School of Integrated Technology, College of Computing, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
- Integrated Science and Engineering Division, Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Dukhyun Choi
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Future Energy Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- SKKU Institute of Energy Science & Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dae-Geun Choi
- Nano Lithography and Manufacturing Research Center, Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| | - Jong Hyeok Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| | - Dongho Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Roe J, Son JG, Park S, Seo J, Song T, Kim J, Oh SO, Jo Y, Lee Y, Shin YS, Jang H, Lee D, Yuk D, Seol JG, Kim YS, Cho S, Kim DS, Kim JY. Synergistic Buried Interface Regulation of Tin-Lead Perovskite Solar Cells via Co-Self-Assembled Monolayers. ACS NANO 2024; 18:24306-24316. [PMID: 39172688 DOI: 10.1021/acsnano.4c06396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Tin-lead (Sn-Pb) perovskite solar cells (PSCs) hold considerable potential for achieving efficiencies near the Shockley-Queisser (S-Q) limit. Notably, the inverted structure stands as the preferred fabrication method for the most efficient Sn-Pb PSCs. In this regard, it is imperative to implement a strategic customization of the hole selective layer to facilitate carrier extraction and refine the quality of perovskite films, which requires effective hole selectivity and favorable interactions with Sn-Pb perovskites. Herein, we propose the development of Co-Self-Assembled Monolayers (Co-SAM) by integrating both [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz) and glycine at the buried contacts. The one-step deposition process employed in the fabrication of the Co-SAM ensures uniform coverage, resulting in a homogeneous surface potential. This is attributed to the molecular interactions occurring between 2PACz and glycine in the processing solution. Furthermore, the amine (-NH2) and ammonium (-NH3+) groups in glycine effectively passivate Sn4+ defects at the buried interface of Sn-Pb perovskite films, even under thermal stress. Consequently, the synergistic buried interface regulation of Co-SAM leads to a power conversion efficiency (PCE) of 23.46%, which outperforms devices modified with 2PACz or glycine alone. The Co-SAM-modified Sn-Pb PSC demonstrates enhanced thermal stability, maintaining 88% of its initial PCE under 65 °C thermal stress for 590 h.
Collapse
Affiliation(s)
- Jina Roe
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jung Geon Son
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sujung Park
- Department of Semiconductor Physics and EHSRC, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Jongdeuk Seo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Taehee Song
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaehyeong Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Si On Oh
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yeowon Jo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yeonjeong Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yun Seop Shin
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyungsu Jang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dongmin Lee
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dohun Yuk
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin Gyu Seol
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yung Sam Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Shinuk Cho
- Department of Semiconductor Physics and EHSRC, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Dong Suk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin Young Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
4
|
Jiang W, Li H, Liu D, Ren J, Zhao Y, Wu J, Chen J, Zhou L, Wang F, Zhao Y. Synergetic Electrostatic and Steric Effects in α-FAPbI 3 Single Crystals For X-Ray Detection and Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402277. [PMID: 38773868 DOI: 10.1002/smll.202402277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/23/2024] [Indexed: 05/24/2024]
Abstract
It is still challenging to stabilize α-FAPbI3 perovskite for high performance optoelectrical devices. Herein, a novel strategy is proposed utilizing the synergetic electrostatic and steric effect to stabilize the α-FAPbI3 phase and suppress the ion migration. Dimethylamine (DMA+) cations are chosen as the dopant to fabricate FA0.96DMA0.04PbI3 single crystals (SCs). DFT calculations reveal that DMA+ cations can improve the stability of α-FAPbI3 phase in both thermodynamics (lower Gibbs free energy) and kinetics (higher defect formation and migration energy). The resulting SCs exhibit an environmental stability over 100 days and an extraordinary low dark current drift of 3.7 × 10-7 nA cm-1 s-1 V-1, comparable to 2D perovskite SCs. The X-ray detectors have also achieved the-state-of-the-art performance in X-ray detection and imaging. This work demonstrates the significance of electrostatic and steric effects in improving the phase and operational stability of perovskites.
Collapse
Affiliation(s)
- Wei Jiang
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621908, China
| | - Haibin Li
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621908, China
| | - Dan Liu
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621908, China
| | - Jiwei Ren
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621908, China
| | - Yingying Zhao
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621908, China
| | - Jiarui Wu
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jun Chen
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621908, China
| | - Linsen Zhou
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621908, China
| | - Feng Wang
- Department Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
| | - Yiying Zhao
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621908, China
| |
Collapse
|
5
|
Zhang S, Jin L, Lu Y, Zhang L, Yang J, Zhao Q, Sun D, Thompson JJP, Yuan B, Ma K, Akriti, Park JY, Lee YH, Wei Z, Finkenauer BP, Blach DD, Kumar S, Peng H, Mannodi-Kanakkithodi A, Yu Y, Malic E, Lu G, Dou L, Huang L. Moiré superlattices in twisted two-dimensional halide perovskites. NATURE MATERIALS 2024; 23:1222-1229. [PMID: 38906993 DOI: 10.1038/s41563-024-01921-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Moiré superlattices have emerged as a new platform for studying strongly correlated quantum phenomena, but these systems have been largely limited to van der Waals layer two-dimensional materials. Here we introduce moiré superlattices leveraging ultrathin, ligand-free halide perovskites, facilitated by ionic interactions. Square moiré superlattices with varying periodic lengths are clearly visualized through high-resolution transmission electron microscopy. Twist-angle-dependent transient photoluminescence microscopy and electrical characterizations indicate the emergence of localized bright excitons and trapped charge carriers near a twist angle of ~10°. The localized excitons are accompanied by enhanced exciton emission, attributed to an increased oscillator strength by a theoretically predicted flat band. This research showcases the promise of two-dimensional perovskites as unique room-temperature moiré materials.
Collapse
Affiliation(s)
- Shuchen Zhang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
- Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Linrui Jin
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Yuan Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Linghai Zhang
- School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Jiaqi Yang
- School of Materials Engineering, Purdue University, West Lafayette, IN, USA
| | - Qiuchen Zhao
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Dewei Sun
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | | - Biao Yuan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ke Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Akriti
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jee Yung Park
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yoon Ho Lee
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Zitang Wei
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Blake P Finkenauer
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Daria D Blach
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Sarath Kumar
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ermin Malic
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA, USA
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
6
|
Xu D, Wang D, Liu J, Qi J, Chen K, Zhu W, Tao Y, Zhang Z, Mei A, Zhang J. Dual Defect Passivation at the Buried Interface for Printable Mesoscopic Perovskite Solar Cells with Reduced Open-Circuit Voltage Loss. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311755. [PMID: 38676347 DOI: 10.1002/smll.202311755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/24/2024] [Indexed: 04/28/2024]
Abstract
Numerous defects exist at the buried interface between the perovskite and adjacent electron transport layers in perovskite solar cells, resulting in severe non-radiative recombination and excessive open-circuit voltage (VOC) loss. Herein, a dual defect passivation strategy utilizing guanidine sulfate (GUA2SO4) as an interface modifier is first reported. On the one hand, the SO4 2- preferentially interacts with Pb-related defects, generating water-insoluble lead oxysalts complexes. Additionally, GUA+ diffuses into the perovskite and induces the formation of low-dimensional perovskite. These reactions effectively suppress trap states at the buried interface and perovskite boundaries in printable mesoscopic perovskite solar cells (p-MPSCs), thus increasing the carrier lifetime. Meanwhile, GUA2SO4 optimizes the interface energy band alignment, thus accelerating the charge extraction and transfer at the buried interface. This synergistic effect of trap passivation and interface energy band alignment modulation is strongly demonstrated by an increase in average VOC of 70 mV and the power conversion efficiency improvement from 17.51% to 18.70%. This work provides a novel approach to efficiently improve the performance of p-MPSCs through dual-targeted defect passivation at the buried interface.
Collapse
Affiliation(s)
- Dang Xu
- Engineering Research Center of Electronic Information Materials and Devices of Ministry of Education, Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, P. R. China
| | - Dongjie Wang
- Engineering Research Center of Electronic Information Materials and Devices of Ministry of Education, Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, P. R. China
| | - Jiale Liu
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jianhang Qi
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Kai Chen
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Wending Zhu
- Engineering Research Center of Electronic Information Materials and Devices of Ministry of Education, Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, P. R. China
| | - Ying Tao
- Engineering Research Center of Electronic Information Materials and Devices of Ministry of Education, Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, P. R. China
| | - Zheling Zhang
- Engineering Research Center of Electronic Information Materials and Devices of Ministry of Education, Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, P. R. China
| | - Anyi Mei
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jian Zhang
- Engineering Research Center of Electronic Information Materials and Devices of Ministry of Education, Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, P. R. China
| |
Collapse
|
7
|
Ni Z, Zhao L, Shi Z, Singh A, Wiktor J, Liedke MO, Wagner A, Dong Y, Beard MC, Keeble DJ, Huang J. Identification and Suppression of Point Defects in Bromide Perovskite Single Crystals Enabling Gamma-Ray Spectroscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406193. [PMID: 39003617 DOI: 10.1002/adma.202406193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Methylammonium lead tribromide (MAPbBr3) stands out as the most easily grown wide-band-gap metal halide perovskite. It is a promising semiconductor for room-temperature gamma-ray (γ-ray) spectroscopic detectors, but no operational devices are realized. This can be largely attributed to a lack of understanding of point defects and their influence on detector performance. Here, through a combination of crystal growth design and defect characterization, including positron annihilation and impedance spectroscopy, the presence of specific point defects are identified and correlated to detector performance. Methylammonium (MA) vacancies, MA interstitials, and Pb vacancies are identified as the dominant charge-trapping defects in MAPbBr3 crystals, while Br vacancies caused doping. The addition of excess MABr reduces the MA and Br defects and so enables the detection of energy-resolved γ-ray spectra using a MAPbBr3 single-crystal device. Interestingly, the addition of formamidinium (FA) cations, which converted to methylformamidinium (MFA) cations by reaction with MA+ during crystal growth further reduced MA defects. This enabled an energy resolution of 3.9% for the 662 keV 137Cs line using a low bias of 100 V. The work provides direction toward enabling further improvements in wide-bandgap perovskite-based device performance by reducing detrimental defects.
Collapse
Affiliation(s)
- Zhenyi Ni
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Liang Zhao
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zhifang Shi
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Aryaveer Singh
- Physics, SUPA, School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK
| | - Julia Wiktor
- Department of Physics, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
| | - Maciej O Liedke
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Andreas Wagner
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Yifan Dong
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Matthew C Beard
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - David J Keeble
- Physics, SUPA, School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK
| | - Jinsong Huang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, United States
| |
Collapse
|
8
|
Othman M, Jeangros Q, Jacobs DA, Futscher MH, Zeiske S, Armin A, Jaffrès A, Kuba AG, Chernyshov D, Jenatsch S, Züfle S, Ruhstaller B, Tabean S, Wirtz T, Eswara S, Zhao J, Savenije TJ, Ballif C, Wolff CM, Hessler-Wyser A. Alleviating nanostructural phase impurities enhances the optoelectronic properties, device performance and stability of cesium-formamidinium metal-halide perovskites. ENERGY & ENVIRONMENTAL SCIENCE 2024; 17:3832-3847. [PMID: 38841317 PMCID: PMC11149396 DOI: 10.1039/d4ee00901k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024]
Abstract
The technique of alloying FA+ with Cs+ is often used to promote structural stabilization of the desirable α-FAPbI3 phase in halide perovskite devices. However, the precise mechanisms by which these alloying approaches improve the optoelectronic quality and enhance the stability have remained elusive. In this study, we advance that understanding by investigating the effect of cationic alloying in CsxFA1-xPbI3 perovskite thin-films and solar-cell devices. Selected-area electron diffraction patterns combined with microwave conductivity measurements reveal that fine Cs+ tuning (Cs0.15FA0.85PbI3) leads to a minimization of stacking faults and an increase in the photoconductivity of the perovskite films. Ultra-sensitive external quantum efficiency, kelvin-probe force microscopy and photoluminescence quantum yield measurements demonstrate similar Urbach energy values, comparable surface potential fluctuations and marginal impact on radiative emission yields, respectively, irrespective of Cs content. Despite this, these nanoscopic defects appear to have a detrimental impact on inter-grains'/domains' carrier transport, as evidenced by conductive-atomic force microscopy and corroborated by drastically reduced solar cell performance. Importantly, encapsulated Cs0.15FA0.85PbI3 devices show robust operational stability retaining 85% of the initial steady-state power conversion efficiency for 1400 hours under continuous 1 sun illumination at 35 °C, in open-circuit conditions. Our findings provide nuance to the famous defect tolerance of halide perovskites while providing solid evidence about the detrimental impact of these subtle structural imperfections on the long-term operational stability.
Collapse
Affiliation(s)
- Mostafa Othman
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM) Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab) Neuchâtel Switzerland
| | - Quentin Jeangros
- Centre d'Electronique et de Microtechnique (CSEM) Rue Jaquet-Droz 1 2000 Neuchâtel Switzerland
| | - Daniel A Jacobs
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM) Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab) Neuchâtel Switzerland
| | - Moritz H Futscher
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland
| | - Stefan Zeiske
- Sustainable Advanced Materials (Ser-SAM), Department of Physics, Swansea University Swansea SA2 8PP UK
| | - Ardalan Armin
- Sustainable Advanced Materials (Ser-SAM), Department of Physics, Swansea University Swansea SA2 8PP UK
| | - Anaël Jaffrès
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM) Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab) Neuchâtel Switzerland
| | - Austin G Kuba
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM) Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab) Neuchâtel Switzerland
| | - Dmitry Chernyshov
- Swiss-Norwegian Beamlines at the European Synchrotron Radiation Facility 71 Avenue des Martyrs F-38000 Grenoble France
| | - Sandra Jenatsch
- Fluxim AG Katharina-Sulzer-Platz 2 Winterthur 8400 Switzerland
| | - Simon Züfle
- Fluxim AG Katharina-Sulzer-Platz 2 Winterthur 8400 Switzerland
| | - Beat Ruhstaller
- Fluxim AG Katharina-Sulzer-Platz 2 Winterthur 8400 Switzerland
| | - Saba Tabean
- Advanced Instrumentation for Nano-Analytics (AINA), Luxembourg Institute of Science and Technology (LIST), Materials Research and Technology Department 41 Rue du Brill Belvaux L-4422 Luxembourg
- University of Luxembourg 2 Avenue de l'Université Esch-sur-Alzette L-4365 Luxembourg
| | - Tom Wirtz
- Advanced Instrumentation for Nano-Analytics (AINA), Luxembourg Institute of Science and Technology (LIST), Materials Research and Technology Department 41 Rue du Brill Belvaux L-4422 Luxembourg
- University of Luxembourg 2 Avenue de l'Université Esch-sur-Alzette L-4365 Luxembourg
| | - Santhana Eswara
- Advanced Instrumentation for Nano-Analytics (AINA), Luxembourg Institute of Science and Technology (LIST), Materials Research and Technology Department 41 Rue du Brill Belvaux L-4422 Luxembourg
- University of Luxembourg 2 Avenue de l'Université Esch-sur-Alzette L-4365 Luxembourg
| | - Jiashang Zhao
- Department of Chemical Engineering, Delft University of Technology Delft The Netherlands
| | - Tom J Savenije
- Department of Chemical Engineering, Delft University of Technology Delft The Netherlands
| | - Christophe Ballif
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM) Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab) Neuchâtel Switzerland
- Centre d'Electronique et de Microtechnique (CSEM) Rue Jaquet-Droz 1 2000 Neuchâtel Switzerland
| | - Christian M Wolff
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM) Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab) Neuchâtel Switzerland
| | - Aïcha Hessler-Wyser
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM) Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab) Neuchâtel Switzerland
| |
Collapse
|
9
|
Pasanen H, Khan R, Odutola JA, Tkachenko NV. Transient Absorption Spectroscopy of Films: Impact of Refractive Index. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:6167-6179. [PMID: 38655057 PMCID: PMC11037419 DOI: 10.1021/acs.jpcc.4c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Transient absorption spectroscopy is a powerful technique to study the photoinduced phenomena in a wide range of states from solutions to solid film samples. It was designed and developed based on photoinduced absorption changes or that photoexcitation triggers a chain of reactions with intermediate states or reaction steps with presumably different absorption spectra. However, according to general electromagnetic theory, any change in the absorption properties of a medium is accompanied by a change in the refractive properties. Although this photoinduced change in refractive index has a negligible effect on solution measurements, it may significantly affect the measured response of thin films. In this Perspective paper, we examine why and how the measured responses of films differ from their expected "pure" absorption responses. The effect of photoinduced refractive index change can be concluded and studied by comparing the transmitted and reflected probe light responses. Another discussed aspect is the effect of light interference on thin films. Finally, new opportunities of monitoring the photocarrier migration in films and studying nontransparent samples using the reflected probe light response are discussed. Most of the examples provided in this article focus on studies involving perovskite, TiO2, and graphene-based films, but the general discussion and conclusions can be applicable to a wide range of semiconductor and thin metallic films.
Collapse
Affiliation(s)
- Hannu
P. Pasanen
- Ultrafast
Dynamics Group Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 4700, Kingdom of Saudi Arabia
| | - Ramsha Khan
- Chemistry
and Advanced Materials Group Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Jokotadeola A. Odutola
- Chemistry
and Advanced Materials Group Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Nikolai V. Tkachenko
- Chemistry
and Advanced Materials Group Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| |
Collapse
|
10
|
Thiebes JJ, Grumstrup EM. Quantifying noise effects in optical measures of excited state transport. J Chem Phys 2024; 160:124201. [PMID: 38516971 DOI: 10.1063/5.0190347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/03/2024] [Indexed: 03/23/2024] Open
Abstract
Time-resolved microscopy is a widely used approach for imaging and quantifying charge and energy transport in functional materials. While it is generally recognized that resolving small diffusion lengths is limited by measurement noise, the impacts of noise have not been systematically assessed or quantified. This article reports modeling efforts to elucidate the impact of noise on optical probes of transport. Excited state population distributions, modeled as Gaussians with additive white noise typical of experimental conditions, are subject to decay and diffusive evolution. Using a conventional composite least-squares fitting algorithm, the resulting diffusion constant estimates are compared with the model input parameter. The results show that heteroscedasticity (i.e., time-varying noise levels), insufficient spatial and/or temporal resolution, and small diffusion lengths relative to the magnitude of noise lead to a surprising degree of imprecision under moderate experimental parameters. Moreover, the compounding influence of low initial contrast and small diffusion length leads to systematic overestimation of diffusion coefficients. Each of these issues is quantitatively analyzed herein, and experimental approaches to mitigate them are proposed. General guidelines for experimentalists to rapidly assess measurement precision are provided, as is an open-source tool for customizable evaluation of noise effects on time-resolved microscopy transport measurements.
Collapse
Affiliation(s)
- Joseph J Thiebes
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| | - Erik M Grumstrup
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
- Montana Materials Science Program, Montana State University, Bozeman, Montana 59717, USA
| |
Collapse
|
11
|
Jin L, Mora Perez C, Gao Y, Ma K, Park JY, Li S, Guo P, Dou L, Prezhdo O, Huang L. Superior Phonon-Limited Exciton Mobility in Lead-Free Two-Dimensional Perovskites. NANO LETTERS 2024; 24:3638-3646. [PMID: 38498912 DOI: 10.1021/acs.nanolett.3c04895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Tin-based two-dimensional (2D) perovskites are emerging as lead-free alternatives in halide perovskite materials, yet their exciton dynamics and transport remain less understood due to defect scattering. Addressing this, we employed temperature-dependent transient photoluminescence (PL) microscopy to investigate intrinsic exciton transport in three structurally analogous Sn- and Pb-based 2D perovskites. Employing conjugated ligands, we synthesized high-quality crystals with enhanced phase stability at various temperatures. Our results revealed phonon-limited exciton transport in Sn perovskites, with diffusion constants increasing from 0.2 cm2 s-1 at room temperature to 0.6 cm2 s-1 at 40 K, and a narrowing PL line width. Notably, Sn-based perovskites exhibited greater exciton mobility than their Pb-based equivalents, which is attributed to lighter effective masses. Thermally activated optical phonon scattering was observed in Sn-based compounds but was absent in Pb-based materials. These findings, supported by molecular dynamics simulations, demonstrate that the phonon scattering mechanism in Sn-based halide perovskites can be distinct from their Pb counterparts.
Collapse
Affiliation(s)
- Linrui Jin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carlos Mora Perez
- Departments of Chemistry and Physics and Astronomy, University of Southern California, Los Angeles, California 90007, United States
| | - Yao Gao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ke Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jee Yung Park
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shunran Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Letian Dou
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Oleg Prezhdo
- Departments of Chemistry and Physics and Astronomy, University of Southern California, Los Angeles, California 90007, United States
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
12
|
Shcherbakov-Wu W, Saris S, Sheehan TJ, Wong NN, Powers ER, Krieg F, Kovalenko MV, Willard AP, Tisdale WA. Persistent enhancement of exciton diffusivity in CsPbBr 3 nanocrystal solids. SCIENCE ADVANCES 2024; 10:eadj2630. [PMID: 38381813 PMCID: PMC10881049 DOI: 10.1126/sciadv.adj2630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
In semiconductors, exciton or charge carrier diffusivity is typically described as an inherent material property. Here, we show that the transport of excitons among CsPbBr3 perovskite nanocrystals (NCs) depends markedly on how recently those NCs were occupied by a previous exciton. Using transient photoluminescence microscopy, we observe a striking dependence of the apparent exciton diffusivity on excitation laser power that does not arise from nonlinear exciton-exciton interactions or thermal heating. We interpret our observations with a model in which excitons cause NCs to transition to a long-lived metastable configuration that markedly increases exciton transport. The exciton diffusivity observed here (>0.15 square centimeters per second) is considerably higher than that observed in other NC systems, revealing unusually strong excitonic coupling between NCs. The finding of a persistent enhancement in excitonic coupling may help explain other photophysical behaviors observed in CsPbBr3 NCs, such as superfluorescence, and inform the design of optoelectronic devices.
Collapse
Affiliation(s)
- Wenbi Shcherbakov-Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Seryio Saris
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Thomas John Sheehan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Narumi Nagaya Wong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric R. Powers
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Franziska Krieg
- Department of Chemistry and Applied Bioscience, ETH Zürich, Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Laboratory for Transport at Nanoscale Interfaces, Empa – Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Department of Chemistry and Applied Bioscience, ETH Zürich, Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Laboratory for Transport at Nanoscale Interfaces, Empa – Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Adam P. Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William A. Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
13
|
Gao Z, Leng C, Zhao H, Wei X, Shi H, Xiao Z. The Electrical Behaviors of Grain Boundaries in Polycrystalline Optoelectronic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304855. [PMID: 37572037 DOI: 10.1002/adma.202304855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/18/2023] [Indexed: 08/14/2023]
Abstract
Polycrystalline optoelectronic materials are widely used for photoelectric signal conversion and energy harvesting and play an irreplaceable role in the semiconductor field. As an important factor in determining the optoelectronic properties of polycrystalline materials, grain boundaries (GBs) are the focus of research. Particular emphases are placed on the generation and height of GB barriers, how carriers move at GBs, whether GBs act as carrier transport channels or recombination sites, and how to change the device performance by altering the electrical behaviors of GBs. This review introduces the evolution of GB theory and experimental observation history, classifies GB electrical behaviors from the perspective of carrier dynamics, and summarizes carrier transport state under external conditions such as bias and illumination and the related band bending. Then the carrier scattering at GBs and the electrical differences between GBs and twin boundaries are discussed. Last, the review describes how the electrical behaviors of GBs can be influenced and modified by treatments such as passivation or by consciously adjusting the distribution of grain boundary elements. By studying the carrier dynamics and the relevant electrical behaviors of GBs in polycrystalline materials, researchers can develop optoelectronics with higher performance.
Collapse
Affiliation(s)
- Zheng Gao
- Research Center for Quantum Information, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Research Center for Nanofabrication and System Integration, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Chongqian Leng
- Research Center for Nanofabrication and System Integration, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Hongquan Zhao
- Research Center for Quantum Information, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xingzhan Wei
- Research Center for Nanofabrication and System Integration, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Haofei Shi
- Research Center for Nanofabrication and System Integration, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Zeyun Xiao
- Research Center for Quantum Information, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
- Research Center for Thin Film Solar Cells, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| |
Collapse
|
14
|
Guan H, Zhou S, Fu S, Pu D, Chen X, Ge Y, Wang S, Wang C, Cui H, Liang J, Hu X, Meng W, Fang G, Ke W. Regulating Crystal Orientation via Ligand Anchoring Enables Efficient Wide-Bandgap Perovskite Solar Cells and Tandems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307987. [PMID: 37956304 DOI: 10.1002/adma.202307987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Indexed: 11/15/2023]
Abstract
Wide-bandgap (WBG) perovskite solar cells have attracted considerable interest for their potential applications in tandem solar cells. However, the predominant obstacles impeding their widespread adoption are substantial open-circuit voltage (VOC ) deficit and severe photo-induced halide segregation. To tackle these challenges, a crystal orientation regulation strategy by introducing dodecyl-benzene-sulfonic-acid as an additive in perovskite precursors is proposed. This method significantly promotes the desired crystal orientation, passivates defects, and mitigates photo-induced halide phase segregation in perovskite films, leading to substantially reduced nonradiative recombination, minimized VOC deficits, and enhanced operational stability of the devices. The resulting 1.66 eV bandgap methylamine-free perovskite solar cells achieve a remarkable power conversion efficiency (PCE) of 22.40% (certified at 21.97%), with the smallest VOC deficit recorded at 0.39 V. Furthermore, the fabricated semitransparent WBG devices exhibit a competitive PCE of 20.13%. Consequently, four-terminal tandem cells comprising WBG perovskite top cells and 1.25 eV bandgap perovskite bottom cells showcase an impressive PCE of 28.06% (stabilized 27.92%), demonstrating great potential for efficient multijunction tandem solar cell applications.
Collapse
Affiliation(s)
- Hongling Guan
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
- Shenzhen Institute, Wuhan University, Shenzhen, 518055, P. R. China
| | - Shun Zhou
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Shiqiang Fu
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Dexin Pu
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Xuepeng Chen
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Yansong Ge
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Shuxin Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Chen Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Hongsen Cui
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Jiwei Liang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Xuzhi Hu
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Weiwei Meng
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Guojia Fang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Weijun Ke
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
- Shenzhen Institute, Wuhan University, Shenzhen, 518055, P. R. China
| |
Collapse
|
15
|
Cai W, Yang T, Liu C, Wang Y, Wang S, Du Y, Wu N, Huang W, Wang S, Wang Z, Chen X, Feng J, Zhao G, Ding Z, Pan X, Zou P, Yao J, Liu SF, Zhao K. Interfacial Engineering for Efficient Low-Temperature Flexible Perovskite Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202309398. [PMID: 37624069 DOI: 10.1002/anie.202309398] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
Photovoltaic technology with low weight, high specific power in cold environments, and compatibility with flexible fabrication is highly desired for near-space vehicles and polar region applications. Herein, we demonstrate efficient low-temperature flexible perovskite solar cells by improving the interfacial contact between electron-transport layer (ETL) and perovskite layer. We find that the adsorbed oxygen active sites and oxygen vacancies of flexible tin oxide (SnO2 ) ETL layer can be effectively decreased by incorporating a trace amount of titanium tetrachloride (TiCl4 ). The effective defects elimination at the interfacial increases the electron mobility of flexible SnO2 layer, regulates band alignment at the perovskite/SnO2 interface, induces larger perovskite crystal growth, and improves charge collection efficiency in a complete solar cell. Correspondingly, the improved interfacial contact transforms into high-performance solar cells under one-sun illumination (AM 1.5G) with efficiencies up to 23.7 % at 218 K, which might open up a new era of application of this emerging flexible photovoltaic technology to low-temperature environments such as near-space and polar regions.
Collapse
Affiliation(s)
- Weilun Cai
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Tinghuan Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Chou Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yajie Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shiqiang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yachao Du
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Nan Wu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenliang Huang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shumei Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhichao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xin Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jiangshan Feng
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Guangtao Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zicheng Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xu Pan
- Key Laboratory of Novel Thin-Film Solar Cells Institute of Plasma Physics Chinese Academy of Sciences, Hefei, 230031, China
| | - Pengchen Zou
- Shaanxi State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing, 102206, P. R. China
| | - Jianxi Yao
- Shaanxi State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing, 102206, P. R. China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
16
|
Magdaleno AJ, Cutler MM, Suurmond JJ, Meléndez M, Delgado-Buscalioni R, Seitz M, Prins F. Boosting the efficiency of transient photoluminescence microscopy using cylindrical lenses. NANOSCALE 2023; 15:14831-14836. [PMID: 37664969 DOI: 10.1039/d3nr03587e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Transient Photoluminescence Microscopy (TPLM) allows for the direct visualization of carrier transport in semiconductor materials with sub nanosecond and few nanometer resolution. The technique is based on measuring changes in the spatial distribution of a diffraction limited population of carriers using spatiotemporal detection of the radiative decay of the carriers. The spatial resolution of TPLM is therefore primarily determined by the signal-to-noise-ratio (SNR). Here we present a method using cylindrical lenses to boost the signal acquisition in TPLM experiments. The resulting asymmetric magnification of the photoluminescence emission of the diffraction limited spot can increase the collection efficiency by more than a factor of 10, significantly reducing acquisition times and further boosting spatial resolution.
Collapse
Affiliation(s)
- Alvaro J Magdaleno
- Condensed Matter Physics Center (IFIMAC) and Department of Condensed Matter Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Mercy M Cutler
- Condensed Matter Physics Center (IFIMAC) and Department of Condensed Matter Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Jesse J Suurmond
- Condensed Matter Physics Center (IFIMAC) and Department of Condensed Matter Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Marc Meléndez
- Condensed Matter Physics Center (IFIMAC) and Department of Theoretical Condensed Matter Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Rafael Delgado-Buscalioni
- Condensed Matter Physics Center (IFIMAC) and Department of Theoretical Condensed Matter Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Michael Seitz
- Condensed Matter Physics Center (IFIMAC) and Department of Condensed Matter Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Ferry Prins
- Condensed Matter Physics Center (IFIMAC) and Department of Condensed Matter Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
17
|
Chai W, Li L, Zhu W, Chen D, Zhou L, Xi H, Zhang J, Zhang C, Hao Y. Graded Heterojunction Improves Wide-Bandgap Perovskite for Highly Efficient 4-Terminal Perovskite/Silicon Tandem Solar Cells. RESEARCH (WASHINGTON, D.C.) 2023; 6:0196. [PMID: 37465160 PMCID: PMC10351391 DOI: 10.34133/research.0196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/25/2023] [Indexed: 07/20/2023]
Abstract
Wide-bandgap (WBG) perovskite solar cells (PSCs) are essential for highly efficient and stable silicon/perovskite tandem solar cells. In this study, we adopted a synthetic strategy with lead thiocyanate (Pb(SCN)2) additive and methylammonium chloride (MACl) posttreatment to enhance the crystallinity and improve the interface of WBG perovskite films with a bandgap of 1.68 eV. The excessive PbI2 was formed at grain boundaries and converted into MAPbI3-xClx perovskites, which are utilized to form the graded heterojunction (GHJ) and compressive strain. This is beneficial for passivating nonradiative recombination defects, suppressing halide phase segregation, and facilitating carrier extraction. Subsequently, the device with GHJ delivered a champion efficiency of 20.30% and superior stability in ambient air and under 85 °C. Finally, we achieved a recorded efficiency of 30.91% for 4-terminal WBG perovskite/TOPCon tandem silicon solar cells. Our findings demonstrate a promising approach for fabricating efficient and stable WBG PSCs through the formation of GHJ.
Collapse
Affiliation(s)
- Wenming Chai
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi'an, Shaanxi 710071, China
| | - Lindong Li
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi'an, Shaanxi 710071, China
| | - Weidong Zhu
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi'an, Shaanxi 710071, China
- Xi'an Baoxin Solar Technology Co., Ltd., Xi'an, 710071, China
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi'an, Shaanxi 710071, China
| | - Dazheng Chen
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi'an, Shaanxi 710071, China
- Xi'an Baoxin Solar Technology Co., Ltd., Xi'an, 710071, China
| | - Long Zhou
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi'an, Shaanxi 710071, China
- Xi'an Baoxin Solar Technology Co., Ltd., Xi'an, 710071, China
| | - He Xi
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi'an, Shaanxi 710071, China
| | - Jincheng Zhang
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi'an, Shaanxi 710071, China
| | - Chunfu Zhang
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi'an, Shaanxi 710071, China
- Xi'an Baoxin Solar Technology Co., Ltd., Xi'an, 710071, China
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yue Hao
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi'an, Shaanxi 710071, China
| |
Collapse
|
18
|
Liu Y, Yang J, Lawrie BJ, Kelley KP, Ziatdinov M, Kalinin SV, Ahmadi M. Disentangling Electronic Transport and Hysteresis at Individual Grain Boundaries in Hybrid Perovskites via Automated Scanning Probe Microscopy. ACS NANO 2023; 17:9647-9657. [PMID: 37155579 DOI: 10.1021/acsnano.3c03363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Underlying the rapidly increasing photovoltaic efficiency and stability of metal halide perovskites (MHPs) is the advancement in the understanding of the microstructure of polycrystalline MHP thin film. Over the past decade, intense efforts have been aimed at understanding the effect of microstructures on MHP properties, including chemical heterogeneity, strain disorder, phase impurity, etc. It has been found that grain and grain boundary (GB) are tightly related to lots of microscale and nanoscale behavior in MHP thin films. Atomic force microscopy (AFM) is widely used to observe grain and boundary structures in topography and subsequently to study the correlative surface potential and conductivity of these structures. For now, most AFM measurements have been performed in imaging mode to study the static behavior; in contrast, AFM spectroscopy mode allows us to investigate the dynamic behavior of materials, e.g., conductivity under sweeping voltage. However, a major limitation of AFM spectroscopy measurements is that they require manual operation by human operators, and as such only limited data can be obtained, hindering systematic investigations of these microstructures. In this work, we designed a workflow combining the conductive AFM measurement with a machine learning (ML) algorithm to systematically investigate grain boundaries in MHPs. The trained ML model can extract GBs locations from the topography image, and the workflow drives the AFM probe to each GB location to perform a current-voltage (IV) curve automatically. Then, we are able to have IV curves at all GB locations, allowing us to systematically understand the property of GBs. Using this method, we discovered that the GB junction points are less conductive, potentially more photoactive, and can play critical roles in MHP stability, while most previous works only focused on the difference between GB and grains.
Collapse
Affiliation(s)
- Yongtao Liu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jonghee Yang
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Benjamin J Lawrie
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Kyle P Kelley
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Maxim Ziatdinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Sergei V Kalinin
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Mahshid Ahmadi
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
19
|
Cai X, Yang L, Deng J, Wei K, Du G, Luo Z, Zhang C, Zhang J. Unveiling and Modulating the Interfacial Reaction at the Metal-Hole Conductor Heterojunction toward Reliable Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21252-21260. [PMID: 37073888 DOI: 10.1021/acsami.3c02062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Interfaces between functional layers in perovskite solar cells (PSCs) are of paramount importance in determining their efficiency and stability, but the interaction and stability of metal-hole conductor (HC) interfaces have received less attention. Here, we discover an intriguing transient behavior in devices which induces a profound efficiency fluctuation from 9 to 20% during the initial performance testing. Air exposure (e.g., oxygen and moisture) can significantly accelerate this nonequilibrium process and simultaneously enhance the device maximal efficiency. Structural analysis reveals that the chemical reaction between Ag and HC occurred during the metal deposition by thermal evaporation, leading to the formation of an insulating barrier layer at their interfaces, which results in a high charge-transport barrier and poor device performance. Accordingly, we propose a metal diffusion-associated barrier evolution mechanism to understand the metal/HC interfaces. To mitigate these detrimental effects, we strategically develop an interlayer strategy by introducing an ultrathin layer of molybdenum oxide (MoO3) between Ag and HC, which is found to effectively suppress the interfacial reaction, yielding highly reliable PSCs with instant high efficiency. This work provides new insights into understanding the metal-organic interfaces, and the developed interlayer strategy can be generally applicable to engineer other interfaces in realizing efficient and stable contacts.
Collapse
Affiliation(s)
- Xuanyi Cai
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Li Yang
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Jidong Deng
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Kun Wei
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Guozheng Du
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Zhide Luo
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Cuiping Zhang
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Jinbao Zhang
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
20
|
Chen H, Maxwell A, Li C, Teale S, Chen B, Zhu T, Ugur E, Harrison G, Grater L, Wang J, Wang Z, Zeng L, Park SM, Chen L, Serles P, Awni RA, Subedi B, Zheng X, Xiao C, Podraza NJ, Filleter T, Liu C, Yang Y, Luther JM, De Wolf S, Kanatzidis MG, Yan Y, Sargent EH. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 2023; 613:676-681. [PMID: 36379225 DOI: 10.1038/s41586-022-05541-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
The open-circuit voltage (VOC) deficit in perovskite solar cells is greater in wide-bandgap (over 1.7 eV) cells than in perovskites of roughly 1.5 eV (refs. 1,2). Quasi-Fermi-level-splitting measurements show VOC-limiting recombination at the electron-transport-layer contact3-5. This, we find, stems from inhomogeneous surface potential and poor perovskite-electron transport layer energetic alignment. Common monoammonium surface treatments fail to address this; as an alternative, we introduce diammonium molecules to modify perovskite surface states and achieve a more uniform spatial distribution of surface potential. Using 1,3-propane diammonium, quasi-Fermi-level splitting increases by 90 meV, enabling 1.79 eV perovskite solar cells with a certified 1.33 V VOC and over 19% power conversion efficiency (PCE). Incorporating this layer into a monolithic all-perovskite tandem, we report a record VOC of 2.19 V (89% of the detailed balance VOC limit) and over 27% PCE (26.3% certified quasi-steady state). These tandems retained more than 86% of their initial PCE after 500 h of operation.
Collapse
Affiliation(s)
- Hao Chen
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Aidan Maxwell
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Chongwen Li
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.,Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH, USA
| | - Sam Teale
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Bin Chen
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.,Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Tong Zhu
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Esma Ugur
- KAUST Solar Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - George Harrison
- KAUST Solar Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Luke Grater
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Junke Wang
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Zaiwei Wang
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Lewei Zeng
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - So Min Park
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Lei Chen
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH, USA
| | - Peter Serles
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Rasha Abbas Awni
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH, USA
| | - Biwas Subedi
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH, USA
| | | | | | - Nikolas J Podraza
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH, USA
| | - Tobin Filleter
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Cheng Liu
- Department of Chemistry, Northwestern University, Evanston, IL, USA.,Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| | - Yi Yang
- Department of Chemistry, Northwestern University, Evanston, IL, USA.,Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| | | | - Stefaan De Wolf
- KAUST Solar Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | | | - Yanfa Yan
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH, USA.
| | - Edward H Sargent
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada. .,Department of Chemistry, Northwestern University, Evanston, IL, USA. .,Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
21
|
Jiang Q, Tong J, Scheidt RA, Wang X, Louks AE, Xian Y, Tirawat R, Palmstrom AF, Hautzinger MP, Harvey SP, Johnston S, Schelhas LT, Larson BW, Warren EL, Beard MC, Berry JJ, Yan Y, Zhu K. Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science 2022; 378:1295-1300. [PMID: 36548423 DOI: 10.1126/science.adf0194] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of highly stable and efficient wide-bandgap (WBG) perovskite solar cells (PSCs) based on bromine-iodine (Br-I) mixed-halide perovskite (with Br greater than 20%) is critical to create tandem solar cells. However, issues with Br-I phase segregation under solar cell operational conditions (such as light and heat) limit the device voltage and operational stability. This challenge is often exacerbated by the ready defect formation associated with the rapid crystallization of Br-rich perovskite chemistry with antisolvent processes. We combined the rapid Br crystallization with a gentle gas-quench method to prepare highly textured columnar 1.75-electron volt Br-I mixed WBG perovskite films with reduced defect density. With this approach, we obtained 1.75-electron volt WBG PSCs with greater than 20% power conversion efficiency, approximately 1.33-volt open-circuit voltage (Voc), and excellent operational stability (less than 5% degradation over 1100 hours of operation under 1.2 sun at 65°C). When further integrated with 1.25-electron volt narrow-bandgap PSC, we obtained a 27.1% efficient, all-perovskite, two-terminal tandem device with a high Voc of 2.2 volts.
Collapse
Affiliation(s)
- Qi Jiang
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Jinhui Tong
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Rebecca A Scheidt
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Xiaoming Wang
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA.,Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, OH 43606, USA
| | - Amy E Louks
- Materials Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Yeming Xian
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA.,Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, OH 43606, USA
| | - Robert Tirawat
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Axel F Palmstrom
- Materials Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Matthew P Hautzinger
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Steven P Harvey
- Materials Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Steve Johnston
- Materials Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Laura T Schelhas
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Bryon W Larson
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Emily L Warren
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Matthew C Beard
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.,Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Joseph J Berry
- Materials Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.,Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO 80309, USA.,Department of Physics, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Yanfa Yan
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA.,Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, OH 43606, USA
| | - Kai Zhu
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| |
Collapse
|
22
|
Kirchartz T. Picturing charge carrier diffusion. NATURE MATERIALS 2022; 21:1344-1345. [PMID: 36396959 DOI: 10.1038/s41563-022-01389-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Thomas Kirchartz
- IEK5-Photovoltaik, Forschungszentrum Jülich, Jülich, Germany.
- Faculty of Engineering and CENIDE, University of Duisburg-Essen, Duisburg, Germany.
| |
Collapse
|
23
|
Cho C, Feldmann S, Yeom KM, Jang YW, Kahmann S, Huang JY, Yang TCJ, Khayyat MNT, Wu YR, Choi M, Noh JH, Stranks SD, Greenham NC. Efficient vertical charge transport in polycrystalline halide perovskites revealed by four-dimensional tracking of charge carriers. NATURE MATERIALS 2022; 21:1388-1395. [PMID: 36396960 DOI: 10.1038/s41563-022-01395-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Fast diffusion of charge carriers is crucial for efficient charge collection in perovskite solar cells. While lateral transient photoluminescence microscopies have been popularly used to characterize charge diffusion in perovskites, there exists a discrepancy between low diffusion coefficients measured and near-unity charge collection efficiencies achieved in practical solar cells. Here, we reveal hidden microscopic dynamics in halide perovskites through four-dimensional (directions x, y and z and time t) tracking of charge carriers by characterizing out-of-plane diffusion of charge carriers. By combining this approach with confocal microscopy, we discover a strong local heterogeneity of vertical charge diffusivities in a three-dimensional perovskite film, arising from the difference between intragrain and intergrain diffusion. We visualize that most charge carriers are efficiently transported through the direct intragrain pathways or via indirect detours through nearby areas with fast diffusion. The observed anisotropy and heterogeneity of charge carrier diffusion in perovskites rationalize their high performance as shown in real devices. Our work also foresees that further control of polycrystal growth will enable solar cells with micrometres-thick perovskites to achieve both long optical path length and efficient charge collection simultaneously.
Collapse
Affiliation(s)
- Changsoon Cho
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Sascha Feldmann
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- Rowland Institute, Harvard University, Cambridge, MA, USA
| | - Kyung Mun Yeom
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, Republic of Korea
| | - Yeoun-Woo Jang
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Simon Kahmann
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Jun-Yu Huang
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Terry Chien-Jen Yang
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | - Yuh-Renn Wu
- Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Mansoo Choi
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jun Hong Noh
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, Republic of Korea
- Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, Republic of Korea
| | - Samuel D Stranks
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Neil C Greenham
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
24
|
Li Z, Wu H, Cao H, Liang L, Han Y, Yang J, Song Y, Burda C. Improved Ultrafast Carrier Relaxation and Charge Transfer Dynamics in CuI Films and Their Heterojunctions via Sn Doping. J Phys Chem Lett 2022; 13:9072-9078. [PMID: 36154177 DOI: 10.1021/acs.jpclett.2c02354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
CuI is one of the promising hole transport materials for perovskite solar cells. However, its tendency to form defects is currently limiting its use for device applications. Here, we report the successful improvement of CuI through Sn doping and the direct measurement of the carrier relaxation and interfacial charge-transfer processes in Sn-doped CuI films and their heterostructures. Femtosecond-transient absorption (fs-TA) measurements reveal that Sn doping effectively passivates the trap states within the bandgap of CuI. The I-V characteristics of heterostructures demonstrate drastic improvement in transport characteristics upon Sn doping. Fs-TA measurements further confirm that the CuSnI/ZnO heterojunction has a type-II configuration with ultrafast charge transfer (<280 fs). The charge transfer time of a CuI/ZnO heterostructure is ∼2.8 times slower than that of the CuSnI/ZnO heterostructure, indicating that Sn doping suppresses the interfacial states that retard the charge transfer. These results elucidate the effect of Sn doping on the performance of CuI-based heterostructures.
Collapse
Affiliation(s)
- Zhongguo Li
- School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Haijuan Wu
- Laboratory of Advanced Nano Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Hongtao Cao
- Laboratory of Advanced Nano Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Lingyan Liang
- Laboratory of Advanced Nano Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yanbing Han
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Junyi Yang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yinglin Song
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Clemens Burda
- Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
25
|
Kim JH, Kim YR, Kim J, Oh CM, Hwang IW, Kim J, Zeiske S, Ki T, Kwon S, Kim H, Armin A, Suh H, Lee K. Efficient and Stable Perovskite Solar Cells with a High Open-Circuit Voltage Over 1.2 V Achieved by a Dual-Side Passivation Layer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205268. [PMID: 36030364 DOI: 10.1002/adma.202205268] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Suppressing nonradiative recombination at the interface between the organometal halide perovskite (PVK) and the charge-transport layer (CTL) is crucial for improving the efficiency and stability of PVK-based solar cells (PSCs). Here, a new bathocuproine (BCP)-based nonconjugated polyelectrolyte (poly-BCP) is synthesized and this is introduced as a "dual-side passivation layer" between the tin oxide (SnO2 ) CTL and the PVK absorber. Poly-BCP significantly suppresses both bulk and interfacial nonradiative recombination by passivating oxygen-vacancy defects from the SnO2 side and simultaneously scavenges ionic defects from the other (PVK) side. Therefore, PSCs with poly-BCP exhibits a high power conversion efficiency (PCE) of 24.4% and a high open-circuit voltage of 1.21 V with a reduced voltage loss (PVK bandgap of 1.56 eV). The non-encapsulated PSCs also show excellent long-term stability by retaining 93% of the initial PCE after 700 h under continuous 1-sun irradiation in nitrogen atmosphere conditions.
Collapse
Affiliation(s)
- Ju-Hyeon Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Heeger Center for Advanced Materials (HCAM) and Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yong Ryun Kim
- Sustainable Advanced Materials (Sêr-SAM), Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Juae Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University (PNU), Busan, 46241, Republic of Korea
| | - Chang-Mok Oh
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - In-Wook Hwang
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jehan Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Stefan Zeiske
- Sustainable Advanced Materials (Sêr-SAM), Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Taeyoon Ki
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Heeger Center for Advanced Materials (HCAM) and Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Sooncheol Kwon
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Heejoo Kim
- Heeger Center for Advanced Materials (HCAM) and Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Ardalan Armin
- Sustainable Advanced Materials (Sêr-SAM), Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Hongsuk Suh
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University (PNU), Busan, 46241, Republic of Korea
| | - Kwanghee Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Heeger Center for Advanced Materials (HCAM) and Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| |
Collapse
|
26
|
Nagaya Wong N, Ha SK, Williams K, Shcherbakov-Wu W, Swan JW, Tisdale WA. Robust estimation of charge carrier diffusivity using transient photoluminescence microscopy. J Chem Phys 2022; 157:104201. [DOI: 10.1063/5.0100075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transient microscopy has emerged as a powerful tool for imaging the diffusion of excitons and free charge carriers in optoelectronic materials. In many excitonic materials, extraction of diffusion coefficients can be simplified because of the linear relationship between signal intensity and local excited state population. However, in materials where transport is dominated by free charge carriers, extracting diffusivities accurately from multidimensional data is complicated by the nonlinear dependence of the measured signal on the local charge carrier density. To obtain accurate estimates of charge carrier diffusivity from transient microscopy data, statistically robust fitting algorithms coupled to efficient 3D numerical solvers that faithfully relate local carrier dynamics to raw experimental measurables are sometimes needed. Here, we provide a detailed numerical framework for modeling the spatiotemporal dynamics of free charge carriers in bulk semiconductors with significant solving speed reduction and for simulating the corresponding transient photoluminescence microscopy data. To demonstrate the utility of this approach, we apply a fitting algorithm using a Markov chain Monte Carlo sampler to experimental data on bulk CdS and methylammonium lead bromide (MAPbBr3) crystals. Parameter analyses reveal that transient photoluminescence microscopy can be used to obtain robust estimates of charge carrier diffusivities in optoelectronic materials of interest, but that other experimental approaches should be used for obtaining carrier recombination constants. Additionally, simplifications can be made to the fitting model depending on the experimental conditions and material systems studied. Our open-source simulation code and fitting algorithm are made freely available to the scientific community.
Collapse
Affiliation(s)
- Narumi Nagaya Wong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Seung Kyun Ha
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Kristopher Williams
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Wenbi Shcherbakov-Wu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - James W. Swan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - William A. Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
27
|
Ni Z, Xu S, Jiao H, Gu H, Fei C, Huang J. High grain boundary recombination velocity in polycrystalline metal halide perovskites. SCIENCE ADVANCES 2022; 8:eabq8345. [PMID: 36070394 PMCID: PMC9451161 DOI: 10.1126/sciadv.abq8345] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/21/2022] [Indexed: 05/25/2023]
Abstract
Understanding carrier recombination processes in metal halide perovskites is fundamentally important to further improving the efficiency of perovskite solar cells, yet the accurate recombination velocity at grain boundaries (GBs) has not been determined. Here, we report the determination of carrier recombination velocities at GBs (SGB) of polycrystalline perovskites by mapping the transient photoluminescence pattern change induced by the nonradiative recombination of carriers at GBs. Charge recombination at GBs is revealed to be even stronger than at surfaces of unpassivated films, with average SGB reaching 2200 to 3300 cm/s. Regular surface treatments do not passivate GBs because of the absence of contact at GBs. We find a surface treatment using tributyl(methyl)phosphonium dimethyl phosphate that can penetrate into GBs by partially dissolving GBs and converting it into one-dimensional perovskites. It reduces the average SGB by four times, with the lowest SGB of 410 cm/s, which is comparable to surface recombination velocities after passivation.
Collapse
Affiliation(s)
- Zhenyi Ni
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Shuang Xu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Haoyang Jiao
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hangyu Gu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chengbin Fei
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jinsong Huang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
28
|
Lin CC, Liu TR, Lin SR, Boopathi KM, Chiang CH, Tzeng WY, Chien WHC, Hsu HS, Luo CW, Tsai HY, Chen HA, Kuo PC, Shiue J, Chiou JW, Pong WF, Chen CC, Chen CW. Spin-Polarized Photocatalytic CO 2 Reduction of Mn-Doped Perovskite Nanoplates. J Am Chem Soc 2022; 144:15718-15726. [PMID: 35975916 DOI: 10.1021/jacs.2c06060] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
"Spin" has been recently reported as an important degree of electronic freedom to improve the performance of electrocatalysts and photocatalysts. This work demonstrates the manipulations of spin-polarized electrons in CsPbBr3 halide perovskite nanoplates (NPLs) to boost the photocatalytic CO2 reduction reaction (CO2RR) efficiencies by doping manganese cations (Mn2+) and applying an external magnetic field. Mn-doped CsPbBr3 (Mn-CsPbBr3) NPLs exhibit an outstanding photocatalytic CO2RR compared to pristine CsPbBr3 NPLs due to creating spin-polarized electrons after Mn doping. Notably, the photocatalytic CO2RR of Mn-CsPbBr3 NPLs is significantly enhanced by applying an external magnetic field. Mn-CsPbBr3 NPLs exhibit 5.7 times improved performance of photocatalytic CO2RR under a magnetic field of 300 mT with a permanent magnet compared to pristine CsPbBr3 NPLs. The corresponding mechanism is systematically investigated by magnetic circular dichroism spectroscopy, ultrafast transient absorption spectroscopy, and density functional theory simulation. The origin of enhanced photocatalytic CO2RR efficiencies of Mn-CsPbBr3 NPLs is due to the increased number of spin-polarized photoexcited carriers by synergistic doping of the magnetic elements and applying a magnetic field, resulting in prolonged carrier lifetime and suppressed charge recombination. Our result shows that manipulating spin-polarized electrons in photocatalytic semiconductors provides an effective strategy to boost photocatalytic CO2RR efficiencies.
Collapse
Affiliation(s)
- Cheng-Chieh Lin
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan.,Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 11529, Taiwan
| | - Ting-Ran Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Sin-Rong Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | | | - Chun-Hao Chiang
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Yen Tzeng
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Wan-Hsiu Chang Chien
- Department of Applied Physics, National Pingtung University, Pingtung 90044, Taiwan
| | - Hua-Shu Hsu
- Department of Applied Physics, National Pingtung University, Pingtung 90044, Taiwan
| | - Chih-Wei Luo
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.,Institute of Physics and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.,National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan.,Taiwan Consortium of Emergent Crystalline Materials (TCECM), Ministry of Science and Technology, Taipei 10622, Taiwan
| | - Hui-Ying Tsai
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Hsin-An Chen
- Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Pai-Chia Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Jessie Shiue
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.,Institute of Physics, Academia Sinica, Taipei 11520, Taiwan
| | - Jau-Wern Chiou
- Department of Applied Physics, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Way-Faung Pong
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Chia-Chun Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan.,Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Chun-Wei Chen
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan.,Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.,Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University (NTU), Taipei 10617, Taiwan.,Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
29
|
Fiorentino F, Albaqami MD, Poli I, Petrozza A. Thermal- and Light-Induced Evolution of the 2D/3D Interface in Lead-Halide Perovskite Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34180-34188. [PMID: 34585916 PMCID: PMC9354011 DOI: 10.1021/acsami.1c09695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The instability of halide perovskites toward moisture is one of the main challenges in the field that needs to be overcome to successfully integrate these materials in commercially viable technologies. One of the most popular ways to ensure device stability is to form 2D/3D interfaces by using bulky organic molecules on top of the 3D perovskite thin film. Despite its promise, it is unclear whether this approach is able to avoid 3D bulk degradation under accelerated aging conditions, i.e., thermal stress and light soaking. In this regard, it is crucial to know whether the interface is structurally and electronically stable or not. In this work, we use the bulky phenethylammonium cation (PEA+) to form 2D layers on top of 3D single- and triple-cation halide perovskite films. The dynamical change of the 2D/3D interface is monitored under thermal stress and light soaking by in situ photoluminescence. We find that under pristine conditions the large organic cation diffuses only in 3D perovskite thin films of poor structural stability, i.e., single-cation MAPbI3. The same diffusion and a dynamical change of the crystalline structure of the 2D/3D interface are observed even on high-quality 3D films, i.e., triple-cation MAFACsPbI3, upon thermal stress at 85 °C and light soaking. Importantly, under such conditions, the resistance of the thin film to moisture is lost.
Collapse
Affiliation(s)
- Francesca Fiorentino
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via G. Pascoli 70/3, 20133 Milano, Italy
- Physics
Department, Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milano, Italy
| | - Munirah D. Albaqami
- Chemistry
Department, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Isabella Poli
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via G. Pascoli 70/3, 20133 Milano, Italy
| | - Annamaria Petrozza
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via G. Pascoli 70/3, 20133 Milano, Italy
- Chemistry
Department, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
30
|
Lin CC, Yang KD, Shih MC, Huang SK, Chen TP, Hsu HC, Chuang CA, Huang CY, Wang L, Chen CC, Ho CH, Chiu YP, Chen CW. Internal Built-In Electric Fields at Organic-Inorganic Interfaces of Two-Dimensional Ruddlesden-Popper Perovskite Single Crystals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19818-19825. [PMID: 35446017 DOI: 10.1021/acsami.2c00055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) organic-inorganic hybrid Ruddlesden-Popper perovskites (OIRPPs), which consist of naturally formed "multiple quantum well (MQW)-like" structure, have received considerable interest in optoelectronic applications, owing to their outstanding optical properties and tailorable functionalities. While the quantum-confined electrons and holes at an MQW structure are under an applied electric field, the tilt of the energy bands may cause a significant influence on their optical properties. This work demonstrates the presence of internal built-in electric fields (BIEFs) at the as-synthesized 2D OIRPP single crystals. Spontaneous Franz-Keldysh oscillations, which usually act as the fingerprint to account for the presence of BIEFs in the MQW-like structures, are observed at 2D OIRPPs by the highly sensitive differential technique of modulated thermoreflectance spectroscopy. The strength of BIEFs at 2D OIRPP single crystals reduces with increased n values due to the increased width of the quantum well. The origin of the presence of BIEFs at 2D OIRPPs is further unveiled by atomically resolved scanning tunneling microscopy on their electronic band structures at organic-inorganic interfaces. Unlike the conventional III-V MQW semiconductors with the BIEFs, which are dominated by the spatial concentration gradients at heterointerfaces, the presence of BIEFs at the 2D OIRPP single crystals is attributed to the molecular dipoles within organic spacers pointing to the organic-inorganic interfaces. The discovery of internal BIEFs at the 2D OIRPPs may provide deep insight into understanding the fundamental optical properties for the future design of large-area and low-cost perovskite optoelectronic devices.
Collapse
Affiliation(s)
- Cheng-Chieh Lin
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 11529, Taiwan
| | - Kai-Di Yang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Min-Chuan Shih
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Shao-Ku Huang
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Pei Chen
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hung-Chang Hsu
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Ching-An Chuang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chih-Ying Huang
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 11529, Taiwan
| | - Lucas Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chia-Chun Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ching-Hwa Ho
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ya-Ping Chiu
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University (NTU), Taipei 10617, Taiwan
| | - Chun-Wei Chen
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University (NTU), Taipei 10617, Taiwan
| |
Collapse
|
31
|
Lin CC, Li JY, She NZ, Huang SK, Huang CY, Wang IT, Tsai FL, Wei CY, Lee TY, Wang DY, Wen CY, Li SS, Yabushita A, Luo CW, Chen CC, Chen CW. Stabilized High-Membered and Phase-Pure 2D All Inorganic Ruddlesden-Popper Halide Perovskites Nanocrystals as Photocatalysts for the CO 2 Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107881. [PMID: 35417059 DOI: 10.1002/smll.202107881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/16/2022] [Indexed: 06/14/2023]
Abstract
In contrast to the 2D organic-inorganic hybrid Ruddlesden-Popper halide perovskites (RPP), a new class of 2D all inorganic RPP (IRPP) has been recently proposed by substituting the organic spacers with an optimal inorganic alternative of cesium cations (Cs+ ). Nevertheless, the synthesis of high-membered 2D IRPPs (n > 1) has been a very challenging task because the Cs+ need to act as both spacers and A-site cations simultaneously. This work presents the successful synthesis of stable phase-pure high-membered 2D IRPPs of Csn+1 Pbn Br3n+1 nanosheets (NSs) with n = 3 and 4 by employing the strategy of using additional strong binding bidentate ligands. The structures of the 2D IRPPs (n = 3 and 4) NSs are confirmed by powder X-ray diffraction and high-resolution aberration-corrected scanning transmission electron microscope measurements. These 2D IRPPs NSs exhibit a strong quantum confinement effect with tunable absorption and emission in the visible light range by varying their n values, attributed to their inherent 2D quantum-well structure. The superior structural and optical stability of the phase-pure high-membered 2D IRPPs make them a promising candidate as photocatalysts in CO2 reduction reactions with outstanding photocatalytic performance and long-term stability.
Collapse
Affiliation(s)
- Cheng-Chieh Lin
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, No. 128, Sec. 2, Academia Rd, Taipei, 11529, Taiwan
| | - Jia-Ying Li
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Rd, Taipei, 11677, Taiwan
| | - Nian-Zu She
- Department of Electrophysics, National Yang Ming Chiao Tung University, No. 1001, University Road, Hsinchu, 30010, Taiwan
| | - Shao-Ku Huang
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Chih-Ying Huang
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, No. 128, Sec. 2, Academia Rd, Taipei, 11529, Taiwan
| | - I-Ta Wang
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, No. 128, Sec. 2, Academia Rd, Taipei, 11529, Taiwan
| | - Fu-Li Tsai
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Rd, Taipei, 11677, Taiwan
| | - Chuan-Yu Wei
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Ting-Yi Lee
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Rd, Taipei, 11677, Taiwan
| | - Di-Yan Wang
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Taichung, 407224, Taiwan
| | - Cheng-Yen Wen
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Shao-Sian Li
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhong-Xiao E. Rd, Taipei, 10608, Taiwan
| | - Atsushi Yabushita
- Department of Electrophysics, National Yang Ming Chiao Tung University, No. 1001, University Road, Hsinchu, 30010, Taiwan
| | - Chih-Wei Luo
- Department of Electrophysics, National Yang Ming Chiao Tung University, No. 1001, University Road, Hsinchu, 30010, Taiwan
| | - Chia-Chun Chen
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Rd, Taipei, 11677, Taiwan
- Institute of Atomic and Molecular Science, Academia Sinica, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Chun-Wei Chen
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| |
Collapse
|
32
|
Li Z, Li B, Wu X, Sheppard SA, Zhang S, Gao D, Long NJ, Zhu Z. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 2022; 376:416-420. [PMID: 35446656 DOI: 10.1126/science.abm8566] [Citation(s) in RCA: 218] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Further enhancing the performance and stability of inverted perovskite solar cells (PSCs) is crucial for their commercialization. We report that the functionalization of multication and halide perovskite interfaces with an organometallic compound, ferrocenyl-bis-thiophene-2-carboxylate (FcTc2), simultaneously enhanced the efficiency and stability of inverted PSCs. The resultant devices achieved a power conversion efficiency of 25.0% and maintained >98% of their initial efficiency after continuously operating at the maximum power point for 1500 hours under simulated AM1.5 illumination. Moreover, the FcTc2-functionalized devices passed the international standards for mature photovoltaics (IEC61215:2016) and have exhibited high stability under the damp heat test (85°C and 85% relative humidity).
Collapse
Affiliation(s)
- Zhen Li
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Bo Li
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Xin Wu
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | | | - Shoufeng Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Danpeng Gao
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Nicholas J Long
- Department of Chemistry, Imperial College London, White City Campus, London, UK
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong.,Hong Kong Institute of Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong
| |
Collapse
|
33
|
Cai S, Dai J, Shao Z, Rothmann MU, Jia Y, Gao C, Hao M, Pang S, Wang P, Lau SP, Zhu K, Berry JJ, Herz LM, Zeng XC, Zhou Y. Atomically Resolved Electrically Active Intragrain Interfaces in Perovskite Semiconductors. J Am Chem Soc 2022; 144:1910-1920. [PMID: 35060705 PMCID: PMC8815067 DOI: 10.1021/jacs.1c12235] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 11/29/2022]
Abstract
Deciphering the atomic and electronic structures of interfaces is key to developing state-of-the-art perovskite semiconductors. However, conventional characterization techniques have limited previous studies mainly to grain-boundary interfaces, whereas the intragrain-interface microstructures and their electronic properties have been much less revealed. Herein using scanning transmission electron microscopy, we resolved the atomic-scale structural information on three prototypical intragrain interfaces, unraveling intriguing features clearly different from those from previous observations based on standalone films or nanomaterial samples. These intragrain interfaces include composition boundaries formed by heterogeneous ion distribution, stacking faults resulted from wrongly stacked crystal planes, and symmetrical twinning boundaries. The atomic-scale imaging of these intragrain interfaces enables us to build unequivocal models for the ab initio calculation of electronic properties. Our results suggest that these structure interfaces are generally electronically benign, whereas their dynamic interaction with point defects can still evoke detrimental effects. This work paves the way toward a more complete fundamental understanding of the microscopic structure-property-performance relationship in metal halide perovskites.
Collapse
Affiliation(s)
- Songhua Cai
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Hong Kong SAR 999077, People’s Republic of China
| | - Jun Dai
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Zhipeng Shao
- Qingdao
Institute of Bioenergy & Bioprocess Technology, Chinese Academy
of Sciences, Qingdao, Shandong 458500, People’s Republic of China
| | - Mathias Uller Rothmann
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United Kingdom
| | - Yinglu Jia
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Caiyun Gao
- Qingdao
Institute of Bioenergy & Bioprocess Technology, Chinese Academy
of Sciences, Qingdao, Shandong 458500, People’s Republic of China
| | - Mingwei Hao
- Department
of Physics, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, People’s Republic
of China
| | - Shuping Pang
- Qingdao
Institute of Bioenergy & Bioprocess Technology, Chinese Academy
of Sciences, Qingdao, Shandong 458500, People’s Republic of China
| | - Peng Wang
- College of
Engineering and Applied Sciences and Collaborative Innovation Center
of Advanced Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
- Department
of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Shu Ping Lau
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Hong Kong SAR 999077, People’s Republic of China
| | - Kai Zhu
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, Golden, Colorado 80401, United States
| | - Joseph J. Berry
- Material
Science Center, National Renewable Energy
Laboratory, Golden, Colorado 80401, United States
- Renewable
and Sustainable Energy Institute and the Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Laura M. Herz
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United Kingdom
| | - Xiao Cheng Zeng
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Yuanyuan Zhou
- Department
of Physics, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, People’s Republic
of China
- Smart
Society Laboratory, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
34
|
Wang S, Wang A, Hao F. Toward stable lead halide perovskite solar cells: A knob on the A/X sites components. iScience 2022; 25:103599. [PMID: 35005546 PMCID: PMC8717592 DOI: 10.1016/j.isci.2021.103599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Hybrid lead halide ABX3 perovskite solar cells (PSCs) have emerged as a strong competitor to the traditional solar cells with a certified power conversion efficiency beyond 25% and other remarkable features such as light weight, solution processability, and low manufacturing cost. Further development on the efficiency and stability brings forth increasing attention in the component regulation, such as partial or entire substitution of A/B/X sites by alternative elements with similar size. However, the relationships between composition, property, and performance are poorly understood. Here, the instability of PSCs from the photon-, moisture-, thermal-, and mechanical-induced degradation was first summarized and discussed. In addition, the component regulation from the A/X sites is highlighted from the aspects of band level alignment, charge-carrier dynamics, ion migration, crystallization behavior, residual strain, stoichiometry, and dimensionality control. Finally, the perspectives and future outlooks are highlighted to guide the rational design and practical application of PSCs.
Collapse
Affiliation(s)
- Shurong Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Aili Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Feng Hao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
35
|
Chang Q, Wang F, Xu W, Wang A, Liu Y, Wang J, Yun Y, Gao S, Xiao K, Zhang L, Wang L, Wang J, Huang W, Qin T. Ferrocene-Induced Perpetual Recovery on All Elemental Defects in Perovskite Solar Cells. Angew Chem Int Ed Engl 2021; 60:25567-25574. [PMID: 34545991 DOI: 10.1002/anie.202112074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 11/10/2022]
Abstract
Lead halide perovskites always emerge complex interactions among different elemental ions, which lead to multiple intrinsic imperfections. Elemental defects, such as amine, Pb, and I vacancies at A-, B-, and X-sites, are main issues to deteriorate perovskite solar cells (PSCs). Unfortunately, most previous passivators can only temporarily fix partial inactive vacancies as sacrificial agents. Herein, we propose a recovery agent, ferrocene (Fc), which can form a one-dimensional perovskite with adequate steric cavities and suitable dissociation energy to recover all elemental defects back to active light-harvesting perovskites, and regenerate Fc itself meanwhile. Based on this perpetual chain-reaction cycle, corresponding PSCs maintain >10 000-hour lifetime in inert condition and >1000-hour durabilities under various extreme environments, including continuous 85 °C heating, 50 % relative humidity wetting, and 1-sun light soaking.
Collapse
Affiliation(s)
- Qing Chang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu, 211816, China
| | - Fangfang Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu, 211816, China
| | - Wenxin Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu, 211816, China
| | - Aifei Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu, 211816, China
| | - You Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu, 211816, China
| | - Juangan Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu, 211816, China
| | - Yikai Yun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu, 211816, China
| | - Song Gao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu, 211816, China
| | - Kang Xiao
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu, 210023, China
| | - Liangliang Zhang
- Frontiers Science Center for Flexible Electronics & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi, 710072, China
| | - Lin Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu, 211816, China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu, 211816, China
| | - Wei Huang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu, 210023, China.,Frontiers Science Center for Flexible Electronics & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi, 710072, China
| | - Tianshi Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu, 211816, China
| |
Collapse
|
36
|
Chang Q, Wang F, Xu W, Wang A, Liu Y, Wang J, Yun Y, Gao S, Xiao K, Zhang L, Wang L, Wang J, Huang W, Qin T. Ferrocene‐Induced Perpetual Recovery on All Elemental Defects in Perovskite Solar Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qing Chang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University (NanjingTech) Nanjing Jiangsu 211816 China
| | - Fangfang Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University (NanjingTech) Nanjing Jiangsu 211816 China
| | - Wenxin Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University (NanjingTech) Nanjing Jiangsu 211816 China
| | - Aifei Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University (NanjingTech) Nanjing Jiangsu 211816 China
| | - You Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University (NanjingTech) Nanjing Jiangsu 211816 China
| | - Juangan Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University (NanjingTech) Nanjing Jiangsu 211816 China
| | - Yikai Yun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University (NanjingTech) Nanjing Jiangsu 211816 China
| | - Song Gao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University (NanjingTech) Nanjing Jiangsu 211816 China
| | - Kang Xiao
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) & Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications Nanjing Jiangsu 210023 China
| | - Liangliang Zhang
- Frontiers Science Center for Flexible Electronics & Institute of Flexible Electronics (IFE) Northwestern Polytechnical University (NPU) Xi'an Shaanxi 710072 China
| | - Lin Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University (NanjingTech) Nanjing Jiangsu 211816 China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University (NanjingTech) Nanjing Jiangsu 211816 China
| | - Wei Huang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) & Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications Nanjing Jiangsu 210023 China
- Frontiers Science Center for Flexible Electronics & Institute of Flexible Electronics (IFE) Northwestern Polytechnical University (NPU) Xi'an Shaanxi 710072 China
| | - Tianshi Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University (NanjingTech) Nanjing Jiangsu 211816 China
| |
Collapse
|
37
|
Luo J, Yang L, Tan Z, Xie W, Sun Q, Li J, Du P, Xiao Q, Wang L, Zhao X, Niu G, Gao L, Jin S, Tang J. Efficient Blue Light Emitting Diodes Based On Europium Halide Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101903. [PMID: 34342910 DOI: 10.1002/adma.202101903] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Flat panel displays enjoy 100 billion-dollar markets with significant penetration in daily life, which require efficient, color-saturated blue, green, and red light-emitting diodes (LEDs). The recently emerged halide perovskites have demonstrated low-cost and outstanding performance for potential LED applications. However, the performance of blue perovskite LEDs (PeLEDs) lags far behind red and green cousins, particularly for color coordinates approaching (0.131, 0.046) that fulfill the Rec. 2020 specification for blue emitters. Here, a high-efficiency, lead-free perovskite, CsEuBr3 , is reported that exhibits bright blue exciton emission centered at 448 nm with a color coordinates of (0.15, 0.04), contributed from Eu-5d→Eu-4f/Br-4p transition with an optical band gap of 2.85 eV. Further optical characterizations reveal its short excited-state lifetime of 151 ns, excellent exciton diffusion diffusivity of 0.0227 cm2 s-1 , and high quantum yield of ≈69%. Inspired by these findings, deep-blue PeLEDs based on all-vacuum processing methods, which have been demonstrated as the most successful approach for the organic LED industry, are constructed. The devices show a maximum external quantum efficiency of 6.5% with an operating half-lifetime of 50 mins at an initial brightness of 15.9 cd m-2 . It is anticipated that this work will inspire further research on lanthanide-based perovskites for next-generation LED applications.
Collapse
Affiliation(s)
- Jiajun Luo
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Longbo Yang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Zhifang Tan
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Weiwei Xie
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Qi Sun
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jinghui Li
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Peipei Du
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Qi Xiao
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Liang Wang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Xue Zhao
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Guangda Niu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Liang Gao
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| |
Collapse
|
38
|
Extraordinary phase coherence length in epitaxial halide perovskites. iScience 2021; 24:102912. [PMID: 34401682 PMCID: PMC8358163 DOI: 10.1016/j.isci.2021.102912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022] Open
Abstract
Inorganic halide perovskites have emerged as a promising platform in a wide range of applications from solar energy harvesting to computing and light emission. The recent advent of epitaxial thin film growth of halide perovskites has made it possible to investigate low-dimensional quantum electronic devices based on this class of materials. This study leverages advances in vapor-phase epitaxy of halide perovskites to perform low-temperature magnetotransport measurements on single-domain cesium tin iodide (CsSnI3) epitaxial thin films. The low-field magnetoresistance carries signatures of coherent quantum interference effects and spin-orbit coupling. These weak anti-localization measurements reveal a micron-scale low-temperature phase coherence length for charge carriers in this system. The results indicate that epitaxial halide perovskite heterostructures are a promising platform for investigating long coherent quantum electronic effects and potential applications in spintronics and spin-orbitronics. Epitaxial halide perovskites with extraordinary quantum phase coherence Quantum transport properties with weak antilocalization observed in tetragonal CsSnI3 Demonstration of quasi-2d charge carrier behavior with of spin-orbit coupling Epitaxial halide perovskites emerging materials for quantum electronic applications
Collapse
|
39
|
Ma X, Zhang F, Chu Z, Hao J, Chen X, Quan J, Huang Z, Wang X, Li X, Yan Y, Zhu K, Lai K. Superior photo-carrier diffusion dynamics in organic-inorganic hybrid perovskites revealed by spatiotemporal conductivity imaging. Nat Commun 2021; 12:5009. [PMID: 34408145 PMCID: PMC8373981 DOI: 10.1038/s41467-021-25311-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/04/2021] [Indexed: 11/09/2022] Open
Abstract
The outstanding performance of organic-inorganic metal trihalide solar cells benefits from the exceptional photo-physical properties of both electrons and holes in the material. Here, we directly probe the free-carrier dynamics in Cs-doped FAPbI3 thin films by spatiotemporal photoconductivity imaging. Using charge transport layers to selectively quench one type of carriers, we show that the two relaxation times on the order of 1 μs and 10 μs correspond to the lifetimes of electrons and holes in FACsPbI3, respectively. Strikingly, the diffusion mapping indicates that the difference in electron/hole lifetimes is largely compensated by their disparate mobility. Consequently, the long diffusion lengths (3~5 μm) of both carriers are comparable to each other, a feature closely related to the unique charge trapping and de-trapping processes in hybrid trihalide perovskites. Our results unveil the origin of superior diffusion dynamics in this material, crucially important for solar-cell applications.
Collapse
Affiliation(s)
- Xuejian Ma
- Department of Physics, University of Texas at Austin, Austin, TX, USA
| | - Fei Zhang
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado, CO, USA
| | - Zhaodong Chu
- Department of Physics, University of Texas at Austin, Austin, TX, USA
| | - Ji Hao
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado, CO, USA
| | - Xihan Chen
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado, CO, USA
| | - Jiamin Quan
- Department of Physics, University of Texas at Austin, Austin, TX, USA
| | - Zhiyuan Huang
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado, CO, USA
| | - Xiaoming Wang
- Department of Physics and Astronomy, University of Toledo, Toledo, OH, USA
| | - Xiaoqin Li
- Department of Physics, University of Texas at Austin, Austin, TX, USA
| | - Yanfa Yan
- Department of Physics and Astronomy, University of Toledo, Toledo, OH, USA
| | - Kai Zhu
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado, CO, USA.
| | - Keji Lai
- Department of Physics, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
40
|
Li D, Xing Z, Huang L, Meng X, Hu X, Hu T, Chen Y. Spontaneous Formation of Upper Gradient 2D Structure for Efficient and Stable Quasi-2D Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101823. [PMID: 34278619 DOI: 10.1002/adma.202101823] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/06/2021] [Indexed: 06/13/2023]
Abstract
Highly efficient and stable quasi-2D hybrid perovskite solar cells (PSCs) using hydrophobic 4-(trifluoromethyl) benzylamine (4TFBZA) as the spacer cation are successfully demonstrated. It is found that the incorporation of hydrophobic 4TFBZA into MAPbI3 can effectively induce a spontaneous upper gradient 2D (SUG-2D) structure, passivate the trap states, and restrain the ion motion. Meanwhile, the strong hydrogen bonding of F···HN between 4TFBZA ions and methylamine ions can effectively suppress the decomposition of perovskite, which gives the device a better thermal stability. Besides, due to the SUG-2D structure with hydrophobic 4TFBZA, the device also exhibits a better moisture stability. The SUG-2D-structure-based device exhibits a power conversion efficiency of 17.07% with a high open-circuit voltage of 1.10 V and a notable fill factor of 71%. This work provides a new strategy for constructing efficient and stable quasi-2D PSCs, and it is an inspiration for the packaging strategy of perovskites.
Collapse
Affiliation(s)
- Dengxue Li
- School of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Zhi Xing
- Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Lu Huang
- Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xiangchuan Meng
- Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xiaotian Hu
- Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Ting Hu
- School of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yiwang Chen
- Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Institute of Advanced Scientific Research (iASR), Key Laboratory of Functional Organic Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
41
|
Discovery of temperature-induced stability reversal in perovskites using high-throughput robotic learning. Nat Commun 2021; 12:2191. [PMID: 33850155 PMCID: PMC8044090 DOI: 10.1038/s41467-021-22472-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/15/2021] [Indexed: 11/14/2022] Open
Abstract
Stability of perovskite-based photovoltaics remains a topic requiring further attention. Cation engineering influences perovskite stability, with the present-day understanding of the impact of cations based on accelerated ageing tests at higher-than-operating temperatures (e.g. 140°C). By coupling high-throughput experimentation with machine learning, we discover a weak correlation between high/low-temperature stability with a stability-reversal behavior. At high ageing temperatures, increasing organic cation (e.g. methylammonium) or decreasing inorganic cation (e.g. cesium) in multi-cation perovskites has detrimental impact on photo/thermal-stability; but below 100°C, the impact is reversed. The underlying mechanism is revealed by calculating the kinetic activation energy in perovskite decomposition. We further identify that incorporating at least 10 mol.% MA and up to 5 mol.% Cs/Rb to maximize the device stability at device-operating temperature (<100°C). We close by demonstrating the methylammonium-containing perovskite solar cells showing negligible efficiency loss compared to its initial efficiency after 1800 hours of working under illumination at 30°C. Current view of the impact of A-site cation on the stability of perovskite materials and devices is derived from accelerated ageing tests at high temperature, which is beyond normal operation range. Here, the authors reveal the great impact of ageing condition on assessing the photothermal stability of mixed-cation perovskites using high-throughput robot system coupled with machine learning.
Collapse
|
42
|
Kobbekaduwa K, Shrestha S, Adhikari P, Liu E, Coleman L, Zhang J, Shi Y, Zhou Y, Bekenstein Y, Yan F, Rao AM, Tsai H, Beard MC, Nie W, Gao J. In-situ observation of trapped carriers in organic metal halide perovskite films with ultra-fast temporal and ultra-high energetic resolutions. Nat Commun 2021; 12:1636. [PMID: 33712623 PMCID: PMC7954808 DOI: 10.1038/s41467-021-21946-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
We in-situ observe the ultrafast dynamics of trapped carriers in organic methyl ammonium lead halide perovskite thin films by ultrafast photocurrent spectroscopy with a sub-25 picosecond time resolution. Upon ultrafast laser excitation, trapped carriers follow a phonon assisted tunneling mechanism and a hopping transport mechanism along ultra-shallow to shallow trap states ranging from 1.72-11.51 millielectronvolts and is demonstrated by time-dependent and independent activation energies. Using temperature as an energetic ruler, we map trap states with ultra-high energy resolution down to < 0.01 millielectronvolt. In addition to carrier mobility of ~4 cm2V-1s-1 and lifetime of ~1 nanosecond, we validate the above transport mechanisms by highlighting trap state dynamics, including trapping rates, de-trapping rates and trap properties, such as trap density, trap levels, and capture-cross sections. In this work we establish a foundation for trap dynamics in high defect-tolerant perovskites with ultra-fast temporal and ultra-high energetic resolution.
Collapse
Affiliation(s)
- Kanishka Kobbekaduwa
- grid.26090.3d0000 0001 0665 0280Department of Physics and Astronomy, Ultrafast Photophysics of Quantum Devices Laboratory, Clemson University, Clemson, SC USA
| | - Shreetu Shrestha
- grid.148313.c0000 0004 0428 3079Center for Integrated Nanotechnology, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Pan Adhikari
- grid.26090.3d0000 0001 0665 0280Department of Physics and Astronomy, Ultrafast Photophysics of Quantum Devices Laboratory, Clemson University, Clemson, SC USA
| | - Exian Liu
- grid.26090.3d0000 0001 0665 0280Department of Physics and Astronomy, Ultrafast Photophysics of Quantum Devices Laboratory, Clemson University, Clemson, SC USA
| | - Lawrence Coleman
- grid.26090.3d0000 0001 0665 0280Department of Physics and Astronomy, Ultrafast Photophysics of Quantum Devices Laboratory, Clemson University, Clemson, SC USA
| | - Jianbing Zhang
- grid.33199.310000 0004 0368 7223School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ying Shi
- grid.64924.3d0000 0004 1760 5735Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun, People’s Republic of China
| | - Yuanyuan Zhou
- grid.221309.b0000 0004 1764 5980Department of Physics, Hong Kong Baptist University, Kowloon Tong Hong Kong, People’s Republic of China
| | - Yehonadav Bekenstein
- grid.6451.60000000121102151Department of Materials Science and Engineering, Technion, Haifa, Israel
| | - Feng Yan
- grid.411015.00000 0001 0727 7545Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL USA
| | - Apparao M. Rao
- grid.26090.3d0000 0001 0665 0280Department of Physics and Astronomy, Ultrafast Photophysics of Quantum Devices Laboratory, Clemson University, Clemson, SC USA
| | - Hsinhan Tsai
- grid.148313.c0000 0004 0428 3079Center for Integrated Nanotechnology, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Matthew C. Beard
- grid.419357.d0000 0001 2199 3636National Renewable Energy Laboratory, Golden, CO USA
| | - Wanyi Nie
- grid.148313.c0000 0004 0428 3079Center for Integrated Nanotechnology, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Jianbo Gao
- grid.26090.3d0000 0001 0665 0280Department of Physics and Astronomy, Ultrafast Photophysics of Quantum Devices Laboratory, Clemson University, Clemson, SC USA
| |
Collapse
|
43
|
Xue J, Wang R, Chen X, Yao C, Jin X, Wang KL, Huang W, Huang T, Zhao Y, Zhai Y, Meng D, Tan S, Liu R, Wang ZK, Zhu C, Zhu K, Beard MC, Yan Y, Yang Y. Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations. Science 2021; 371:636-640. [PMID: 33542138 DOI: 10.1126/science.abd4860] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 01/10/2023]
Abstract
The band edges of metal-halide perovskites with a general chemical structure of ABX3 (A, usually a monovalent organic cation; B, a divalent cation; and X, a halide anion) are constructed mainly of the orbitals from B and X sites. Hence, the structural and compositional varieties of the inorganic B-X framework are primarily responsible for regulating their electronic properties, whereas A-site cations are thought to only help stabilize the lattice and not to directly contribute to near-edge states. We report a π-conjugation-induced extension of electronic states of A-site cations that affects perovskite frontier orbitals. The π-conjugated pyrene-containing A-site cations electronically contribute to the surface band edges and influence the carrier dynamics, with a properly tailored intercalation distance between layers of the inorganic framework. The ethylammonium pyrene increased hole mobilities, improved power conversion efficiencies relative to that of a reference perovskite, and enhanced device stability.
Collapse
Affiliation(s)
- Jingjing Xue
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Rui Wang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xihan Chen
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Canglang Yao
- Department of Physics and Astronomy and Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
| | - Xiaoyun Jin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Kai-Li Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Wenchao Huang
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Tianyi Huang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Yepin Zhao
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Yaxin Zhai
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Dong Meng
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Shaun Tan
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Ruzhang Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zhao-Kui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kai Zhu
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Matthew C Beard
- National Renewable Energy Laboratory, Golden, CO 80401, USA.
| | - Yanfa Yan
- Department of Physics and Astronomy and Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA.
| | - Yang Yang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
44
|
Johnston A, Walters G, Saidaminov MI, Huang Z, Bertens K, Jalarvo N, Sargent EH. Bromine Incorporation and Suppressed Cation Rotation in Mixed-Halide Perovskites. ACS NANO 2020; 14:15107-15118. [PMID: 33103419 DOI: 10.1021/acsnano.0c05179] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Engineering the composition of perovskite active layers has been critical in increasing the efficiency of perovskite solar cells (PSCs) to more than 25% in the latest reports. Partial substitutions of the monovalent cation and the halogen have been adopted in the highest-performing devices, but the precise role of bromine incorporation remains incompletely explained. Here we use quasi-elastic neutron scattering (QENS) to study, as a function of the degree of bromine incorporation, the dynamics of organic cations in triple-cation lead mixed-halide perovskites. We find that the inclusion of bromine suppresses low-energy rotations of formamidinium (FA), and we find that inhibiting FA rotation correlates with a longer-lived carrier lifetime. When the fraction of bromine approaches 0.15 on the halogen site-a composition used extensively in the PSC literature-the fraction of actively rotating FA molecules is minimized: indeed, the fraction of rotating FA is suppressed by more than 25% compared to the bromine-free perovskite.
Collapse
Affiliation(s)
- Andrew Johnston
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Grant Walters
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Makhsud I Saidaminov
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
- Department of Chemistry and Electrical & Computer Engineering, Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria V8P 5C2, Canada
| | - Ziru Huang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Koen Bertens
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Niina Jalarvo
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| |
Collapse
|
45
|
Piveteau L, Morad V, Kovalenko MV. Solid-State NMR and NQR Spectroscopy of Lead-Halide Perovskite Materials. J Am Chem Soc 2020; 142:19413-19437. [PMID: 32986955 PMCID: PMC7677932 DOI: 10.1021/jacs.0c07338] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/20/2022]
Abstract
Two- and three-dimensional lead-halide perovskite (LHP) materials are novel semiconductors that have generated broad interest owing to their outstanding optical and electronic properties. Characterization and understanding of their atomic structure and structure-property relationships are often nontrivial as a result of the vast structural and compositional tunability of LHPs as well as the enhanced structure dynamics as compared with oxide perovskites or more conventional semiconductors. Nuclear magnetic resonance (NMR) spectroscopy contributes to this thrust through its unique capability of sampling chemical bonding element-specifically (1/2H, 13C, 14/15N, 35/37Cl, 39K, 79/81Br, 87Rb, 127I, 133Cs, and 207Pb nuclei) and locally and shedding light onto the connectivity, geometry, topology, and dynamics of bonding. NMR can therefore readily observe phase transitions, evaluate phase purity and compositional and structural disorder, and probe molecular dynamics and ionic motion in diverse forms of LHPs, in which they can be used practically, ranging from bulk single crystals (e.g., in gamma and X-ray detectors) to polycrystalline films (e.g., in photovoltaics, photodetectors, and light-emitting diodes) and colloidal nanocrystals (e.g., in liquid crystal displays and future quantum light sources). Herein we also outline the immense practical potential of nuclear quadrupolar resonance (NQR) spectroscopy for characterizing LHPs, owing to the strong quadrupole moments, good sensitivity, and high natural abundance of several halide nuclei (79/81Br and 127I) combined with the enhanced electric field gradients around these nuclei existing in LHPs as well as the instrumental simplicity. Strong quadrupole interactions, on one side, make 79/81Br and 127I NMR rather impractical but turn NQR into a high-resolution probe of the local structure around halide ions.
Collapse
Affiliation(s)
- Laura Piveteau
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
- CNRS,
UPR 3079, CEMHTI, Orléans, 45071 Cedex 02, France
| | - Viktoriia Morad
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Maksym V. Kovalenko
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| |
Collapse
|
46
|
Xiao X, Wu M, Ni Z, Xu S, Chen S, Hu J, Rudd PN, You W, Huang J. Ultrafast Exciton Transport with a Long Diffusion Length in Layered Perovskites with Organic Cation Functionalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004080. [PMID: 33048430 DOI: 10.1002/adma.202004080] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Layered perovskites have been employed for various optoelectronic devices including solar cells and light-emitting diodes for improved stability, which need exciton transport along both the in-plane and the out-of-plane directions. However, it is not clear yet what determines the exciton transport along the in-plane direction, which is important to understand its impact toward electronic devices. Here, by employing both steady-state and transient photoluminescence mapping, it is found that in-plane exciton diffusivities in layered perovskites are sensitive to both the number of layers and organic cations. Apart from exciton-phonon coupling, the octahedral distortion is revealed to significantly affect the exciton diffusion process, determined by temperature-dependent photoluminescence, light-intensity-dependent time-resolved photoluminescence, and density function theory calculations. A simple fluorine substitution to phenethylammonium for the organic cations to tune the structural rigidity and octahedral distortion yields a record exciton diffusivity of 1.91 cm2 s-1 and a diffusion length of 405 nm along the in-plane direction. This study provides guidance to manipulate exciton diffusion by modifying organic cations in layered perovskites.
Collapse
Affiliation(s)
- Xun Xiao
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Marvin Wu
- Department of Physics, North Carolina Central University, Durham, NC, 27707, USA
| | - Zhenyi Ni
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shuang Xu
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shangshang Chen
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jun Hu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Peter Neil Rudd
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Wei You
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jinsong Huang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
47
|
Dang J, Yang Z, Guo W, Dou J, Wang H, Wang M. Revealing Energy Loss and Nonradiative Recombination Pathway in Mixed-Ion Perovskite Solar Cells. J Phys Chem Lett 2020; 11:8100-8107. [PMID: 32878432 DOI: 10.1021/acs.jpclett.0c02232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multiple-cation lead mixed-halide perovskites (MLMPs) with tunable band gaps have been demonstrated as ideal candidates to achieve perovskite solar cells with high efficiencies. It is well-known that a large open-circuit voltage (VOC) loss caused by nonradiative recombination still limits the approach to the Shockley-Queisser limit. However, there are few comprehensive contributions regarding the origin and pathway of nonradiative recombination in n-i-p structured MLMPs. Here, we compare the performance of MLMPs containing different halides and analyze the energy loss and interface trap-assisted nonradiative recombination characterizations. It is found that Br-containing devices with a lower interface trap density of 3.2 × 1013 cm-2 obtain a high VOC of 1.12 V, a small energy loss of 0.02 eV, radiative recombination current density of 8.05 × 10-21 A m-2, and total recombination current density of 22.16 mA cm-2. This work provides an opportunity to understand the device physics and reveals the nature of nonradiative recombination based on experiment and simulation.
Collapse
Affiliation(s)
- Jialin Dang
- Electronic Materials Research Laboratory (EMRL), Key Laboratory of Education Ministry; International Center for Dielectric Research (ICDR); Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhi Yang
- Electronic Materials Research Laboratory (EMRL), Key Laboratory of Education Ministry; International Center for Dielectric Research (ICDR); Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wei Guo
- Electronic Materials Research Laboratory (EMRL), Key Laboratory of Education Ministry; International Center for Dielectric Research (ICDR); Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinjuan Dou
- Electronic Materials Research Laboratory (EMRL), Key Laboratory of Education Ministry; International Center for Dielectric Research (ICDR); Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hui Wang
- Electronic Materials Research Laboratory (EMRL), Key Laboratory of Education Ministry; International Center for Dielectric Research (ICDR); Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Minqiang Wang
- Electronic Materials Research Laboratory (EMRL), Key Laboratory of Education Ministry; International Center for Dielectric Research (ICDR); Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
48
|
Affiliation(s)
- Jin Young Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Wook Lee
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nanoengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Suk Jung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyunjung Shin
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nam-Gyu Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|