1
|
Zhou J, Li D, Duan X, Zhang X, Chen C, Chen Y. Biological VFAs production from proteinaceous wastewater varied with protein type: The role of protein exposed enzyme cleavage sites and hydrolysates biotransformation capacity. WATER RESEARCH 2025; 275:123201. [PMID: 39884052 DOI: 10.1016/j.watres.2025.123201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Proteinaceous wastewater contains various proteins, which can be valorized to biobased volatile fatty acids (VFAs), important substrates for the synthesis of biodegradable plastics, biodiesel, bioelectricity, etc., but the influence of protein type on VFAs has never been documented. It was found that among the five proteinaceous wastewater proteins investigated, ovalbumin and casein produced the most and the least VFAs, respectively. The mechanism investigation shows that proteins with higher VFAs production had higher functional microorganism abundance and key enzyme activity in the reaction system due to their more enzyme cleavage sites and looser secondary structure, which made it easier for more hydrolase to bind, causing more protein hydrolysis. Also, metaproteomics and amino acid composition analyses revealed that the hydrolysates of proteins with higher VFAs had more isoleucine and proline, which were needed for the synthesis of recognizing and binding proteins (oligopeptide permease subunit A (OppA) and dipeptide permease (Dpp)) of acidogens and beneficial for transporters (Dpp subunit F/Opp subunit F), more hydrolysates (amino acids) were therefore transported into the cell. Further investigation indicates that more electron acceptor and electron donor paired amino acids were in the hydrolysates, facilitating the Stickland reaction and promoting intracellular amino acids bio-transformation to VFAs.
Collapse
Affiliation(s)
- Jing Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Dapeng Li
- School of Environment Science and Engineering, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou 215009, PR China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Chuang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
2
|
Li X, Liu X, Yang M, Wang B, Tan Y, Liao XP, Shi B. Enhanced undecylprodigiosin production using collagen hydrolysate: a cost-effective and high-efficiency synthesis strategy. J Mater Chem B 2025; 13:1653-1665. [PMID: 39749654 DOI: 10.1039/d4tb02171a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Undecylprodigiosin (UDP), a desirable pyrrole-based biomaterial, holds significant promise in pharmaceutical and medical applications due to its diverse biological activities. However, its application is usually hampered by low synthesis efficiency and high production costs. Here, we developed a high-efficiency and cost-effective strategy for UDP synthesis using collagen hydrolysate (COH) as a readily available and abundant precursor source in conjunction with Streptomyces sp. SLL-523. COH obviously accelerated the proliferation of Streptomyces sp. SLL-523. Replacing muscle hydrolysate with COH resulted in a 7-fold increase in UDP yield and a 10-fold reduction in fermentation time, indicating that COH significantly enhanced the synthesis efficiency of UDP. Besides, COH remarkably increased the intracellular levels of UDP precursor amino acids (AAs). Whole-genome analysis of Streptomyces sp. SLL-523 revealed the gene clusters responsible for UDP synthesis and COH utilization. COH markedly stimulated the expression of genes involved in the metabolism pathways of energy, transporters, peptides, and AAs, ultimately promoting the UDP synthesis. Significantly, COH efficiently triggered and boosted the expression of key genes in the UDP biosynthesis pathway, including redQ, redM, redN, and redL, leading to highly efficient UDP synthesis. Thus, this innovative approach provides a novel framework for the high-efficiency synthesis of natural pyrrole biomedical materials based on renewable nitrogen-contained biomass.
Collapse
Affiliation(s)
- Xia Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China.
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Xian Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ming Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Bo Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yin Tan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xue-Pin Liao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China.
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Bi Shi
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China.
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Lee KL, Lee JH, Kim YH, Roe JH. Functional Characterization of RseC in the SoxR Reducing System and Its Role in Oxidative Stress Response in Escherichia coli. J Microbiol Biotechnol 2024; 34:2547-2554. [PMID: 39631780 PMCID: PMC11729352 DOI: 10.4014/jmb.2410.10007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 12/28/2024]
Abstract
The reducing system of SoxR consists of a putative electron transfer system encoded by the rsxABCDGE operon, RseC encoded from the unlinked rpoE-rseABC operon, and ApbE. RseC is composed of two transmembrane helices, with both the N-terminal and C-terminal domains located in the cytoplasm. The N-terminal domain has a four-cysteine motif, CX5CX2CX5C, in the cytoplasm, with the latter three cysteines highly conserved in RseC homologs, allowing the SoxR reducer complex to function in Escherichia coli. These three cysteines can form an oxygen-sensitive Fe-S cluster when only the N-terminal domain is expressed in a truncated form. Without the C-terminal domain, RseC shows no significant difference in interaction with the SoxR reducer complex, but its ability to complement the function of an rseC mutant is greatly reduced. Additionally, the rseC mutant exhibits weak resistance to cumene hydrogen peroxide in the stationary phase and increased sensitivity to hydrogen peroxide in the exponential phase, independent of the SoxR regulon. This suggests that the full-length sequence of RseC is essential for its function and that it may have SoxR-independent additional roles.
Collapse
Affiliation(s)
- Kang-Lok Lee
- Department of Biology Education, IALS, Gyeongsang National University, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Joon-Hee Lee
- College of Pharmacy, Pusan National University, Pusan 46241, Republic of Korea
| | - Yun-Hee Kim
- Department of Biology Education, IALS, Gyeongsang National University, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jung-Hye Roe
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Dawkins JJ, Gerber GK. MMETHANE: interpretable AI for predicting host status from microbial composition and metabolomics data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628441. [PMID: 39713330 PMCID: PMC11661223 DOI: 10.1101/2024.12.13.628441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Metabolite production, consumption, and exchange are intimately involved with host health and disease, as well as being key drivers of host-microbiome interactions. Despite the increasing prevalence of datasets that jointly measure microbiome composition and metabolites, computational tools for linking these data to the status of the host remain limited. To address these limitations, we developed MMETHANE, an open-source software package that implements a purpose-built deep learning model for predicting host status from paired microbial sequencing and metabolomic data. MMETHANE incorporates prior biological knowledge, including phylogenetic and chemical relationships, and is intrinsically interpretable, outputting an English-language set of rules that explains its decisions. Using a compendium of six datasets with paired microbial composition and metabolomics measurements, we showed that MMETHANE always performed at least on par with existing methods, including blackbox machine learning techniques, and outperformed other methods on >80% of the datasets evaluated. We additionally demonstrated through two cases studies analyzing inflammatory bowel disease gut microbiome datasets that MMETHANE uncovers biologically meaningful links between microbes, metabolites, and disease status.
Collapse
|
5
|
Yi B, Su K, Cai YL, Chen XL, Bao Y, Wen ZY. Liraglutide ameliorates diabetic kidney disease by modulating gut microbiota and L-5-Oxoproline. Eur J Pharmacol 2024; 983:176905. [PMID: 39154828 DOI: 10.1016/j.ejphar.2024.176905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
The gut microbiome-metabolites-kidney axis is a potential target for treating diabetic kidney disease (DKD). Our previous study found that Liraglutide attenuated DKD in rats by decreasing renal tubular ectopic lipid deposition (ELD) and serum metabolites levels, including L-5-Oxoproline (5-OP). However, the response of gut microbiome-metabolites-kidney axis to Liraglutide in DKD rats and the effect of 5-OP on ELD remain unknown. In this study, Sprague-Dawley rats were used as an animal model of DKD. They were subjected to a high fat diet, streptozotocin and uninephrectomy, followed by Liraglutide treatment (0.4 mg/kg d). Additionally, HK-2 cells were incubated with 30 mM glucose and 200 μM palmitate for 24h, and exposed to different concentrations of 5-OP. In DKD rats, Liraglutide dramatically improved the renal tubule structure. It increased the Simpson index (F = 4.487, p = 0.035) and reduced the Actinobacteria-to-Bacteroidetes ratio (F = 6.189, p = 0.014). At the genus level, Liraglutide increased the relative abundance of Clostridium, Oscillospira, Sarcina, SMB53, and 02d06 while decreasing that of Allobaculum. Meanwhile, 13 metabolites were significantly altered after Liraglutide treatment. Multi-omics analysis found that 5-OP levels were positively correlated with Clostridium abundance but negatively correlated with renal injury related indicators. In HK-2 cells, 5-OP significantly reduced the ELD in a dose-dependent manner through inhibiting the expression of SREBP1 and FAS. Overall, the renoprotective effect of Liraglutide in DKD rats is linked to the improvement of the gut microbiota composition and increased serum 5-OP levels, which may reduce ELD in renal tubular cells by lowering lipid synthesis.
Collapse
Affiliation(s)
- Bo Yi
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ke Su
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yu-Li Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiao-Ling Chen
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Bao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Zhong-Yuan Wen
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
6
|
Zahn LE, Gannon PM, Rajakovich LJ. Iron-sulfur cluster-dependent enzymes and molybdenum-dependent reductases in the anaerobic metabolism of human gut microbes. Metallomics 2024; 16:mfae049. [PMID: 39504489 PMCID: PMC11574389 DOI: 10.1093/mtomcs/mfae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Metalloenzymes play central roles in the anaerobic metabolism of human gut microbes. They facilitate redox and radical-based chemistry that enables microbial degradation and modification of various endogenous, dietary, and xenobiotic nutrients in the anoxic gut environment. In this review, we highlight major families of iron-sulfur (Fe-S) cluster-dependent enzymes and molybdenum cofactor-containing enzymes used by human gut microbes. We describe the metabolic functions of 2-hydroxyacyl-CoA dehydratases, glycyl radical enzyme activating enzymes, Fe-S cluster-dependent flavoenzymes, U32 oxidases, and molybdenum-dependent reductases and catechol dehydroxylases in the human gut microbiota. We demonstrate the widespread distribution and prevalence of these metalloenzyme families across 5000 human gut microbial genomes. Lastly, we discuss opportunities for metalloenzyme discovery in the human gut microbiota to reveal new chemistry and biology in this important community.
Collapse
Affiliation(s)
- Leah E Zahn
- Department of Chemistry, University of Washington, Seattle, United States
| | - Paige M Gannon
- Department of Chemistry, University of Washington, Seattle, United States
| | | |
Collapse
|
7
|
Romero-Rodríguez A, Ruíz-Villafán B, Sánchez S, Paredes-Sabja D. Is there a role for intestinal sporobiota in the antimicrobial resistance crisis? Microbiol Res 2024; 288:127870. [PMID: 39173554 DOI: 10.1016/j.micres.2024.127870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
Antimicrobial resistance (AMR) is a complex issue requiring specific, multi-sectoral measures to slow its spread. When people are exposed to antimicrobial agents, it can cause resistant bacteria to increase. This means that the use, misuse, and excessive use of antimicrobial agents exert selective pressure on bacteria, which can lead to the development of "silent" reservoirs of antimicrobial resistance genes. These genes can later be mobilized into pathogenic bacteria and contribute to the spread of AMR. Many socioeconomic and environmental factors influence the transmission and dissemination of resistance genes, such as the quality of healthcare systems, water sanitation, hygiene infrastructure, and pollution. The sporobiota is an essential part of the gut microbiota that plays a role in maintaining gut homeostasis. However, because spores are highly transmissible and can spread easily, they can be a vector for AMR. The sporobiota resistome, particularly the mobile resistome, is important for tracking, managing, and limiting the spread of antimicrobial resistance genes among pathogenic and commensal bacterial species.
Collapse
Affiliation(s)
- A Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Ciudad de México 04510, Mexico.
| | - B Ruíz-Villafán
- Laboratorio de Microbiología Industrial. Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - S Sánchez
- Laboratorio de Microbiología Industrial. Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - D Paredes-Sabja
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Culp EJ, Nelson NT, Verdegaal AA, Goodman AL. Microbial transformation of dietary xenobiotics shapes gut microbiome composition. Cell 2024; 187:6327-6345.e20. [PMID: 39321800 PMCID: PMC11531382 DOI: 10.1016/j.cell.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/23/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
Diet is a major determinant of gut microbiome composition, and variation in diet-microbiome interactions may contribute to variation in their health consequences. To mechanistically understand these relationships, here we map interactions between ∼150 small-molecule dietary xenobiotics and the gut microbiome, including the impacts of these compounds on community composition, the metabolic activities of human gut microbes on dietary xenobiotics, and interindividual variation in these traits. Microbial metabolism can toxify and detoxify these compounds, producing emergent interactions that explain community-specific remodeling by dietary xenobiotics. We identify the gene and enzyme responsible for detoxification of one such dietary xenobiotic, resveratrol, and demonstrate that this enzyme contributes to interindividual variation in community remodeling by resveratrol. Together, these results systematically map interactions between dietary xenobiotics and the gut microbiome and connect toxification and detoxification to interpersonal differences in microbiome response to diet.
Collapse
Affiliation(s)
- Elizabeth J Culp
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Nora T Nelson
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew A Verdegaal
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
9
|
Du L, Wang J, Qiu X, Wang Q, Peng H, Huang J, Yang F, Liu Z, Qi R. Clostridium sporogenes increases fat accumulation in mice by enhancing energy absorption and adipogenesis. Microbiol Spectr 2024; 12:e0411623. [PMID: 38916334 PMCID: PMC11302664 DOI: 10.1128/spectrum.04116-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/09/2024] [Indexed: 06/26/2024] Open
Abstract
Gut bacteria belonging to the Clostridium family play a pivotal role in regulating host energy balance and metabolic homeostasis. As a commensal bacterium, Clostridium sporogenes has been implicated in modulating host energy homeostasis, albeit the underlying mechanism remains elusive. Therefore, this study aimed to investigate the impact of C. sporogenes supplementation on various physiological parameters, intestinal morphology, particularly adipose tissue accumulation, and glucolipid metabolism in mice. The findings reveal that mice supplemented with C. sporogenes for 6 weeks exhibited a notable increase in body weight, fat mass, adipocyte size, and serum triglyceride (TG) levels. Notably, the increased fat accumulation is observed despite consistent feed intake in treated mice. Mechanistically, C. sporogenes supplementation significantly improved the structure integrity of intestinal villi and enhanced energy absorption efficiency while reducing excretion of carbohydrates and fatty acids in feces. This was accompanied by upregulation of glucose and fatty acid transporter expression. Furthermore, supplementation with C. sporogenes promoted adipogenesis in both liver and adipose tissues, as evidenced by increased levels of hepatic pyruvate, acetyl-CoA, and TG, along with elevated expression levels of genes associated with lipid synthesis. Regarding the microbiological aspect, C. sporogenes supplementation correlated with an increased abundance of Clostridium genus bacteria and enhanced carbohydrate enzyme activity. In summary, C. sporogenes supplementation significantly promotes fat accumulation in mice by augmenting energy absorption and adipogenesis, possibly mediated by the expansion of Clostridium bacteria population with robust glycolipid metabolic ability. IMPORTANCE The Clostridia clusters have been implicated in energy metabolism, the specific species and underlying mechanisms remain unclear. This present study is the first to report Clostridium sporogenes is able to affect fat accumulation and glycolipid metabolism. We indicated that gavage of C. sporogenes promoted the adipogenesis and fat accumulation in mice by not only increasing the abundance of Clostridium bacteria but by also enhancing the metabolic absorption of carbohydrates and fatty acids significantly. Obviously, changes of gut microbiota caused by the C. sporogenes, especially the significant increase of Clostridium bacteria, contributed to the fat accumulation of mice. In addition, the enhancement of Clostridium genus bacteria remarkably improved the synthesis of hepatic pyruvate, acetyl-CoA, and triglyceride levels, as well as reduced the excretion of fecal carbohydrates, short-chain fatty acids, and free fatty acids remarkably. These findings will help us to understand the relationship of specific bacteria and host energy homeostasis.
Collapse
Affiliation(s)
- Lei Du
- Chongqing Academy of Animal Science, Chongqing, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Jing Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Science, Chongqing, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Han Peng
- Sichuan Animal Science Academy, Chengdu, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Feiyun Yang
- Chongqing Academy of Animal Science, Chongqing, China
- National Pig Technology Innovation Center, Chongqing, China
| | - Zuohua Liu
- Chongqing Academy of Animal Science, Chongqing, China
- National Pig Technology Innovation Center, Chongqing, China
| | - Renli Qi
- Chongqing Academy of Animal Science, Chongqing, China
- National Pig Technology Innovation Center, Chongqing, China
| |
Collapse
|
10
|
Sinha AK, Laursen MF, Licht TR. Regulation of microbial gene expression: the key to understanding our gut microbiome. Trends Microbiol 2024:S0966-842X(24)00175-6. [PMID: 39095208 DOI: 10.1016/j.tim.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
During the past two decades, gut microbiome studies have established the significant impact of the gut microbiota and its metabolites on host health. However, the molecular mechanisms governing the production of microbial metabolites in the gut environment remain insufficiently investigated and thus are poorly understood. Here, we propose that an enhanced understanding of gut microbial gene regulation, which is responsive to dietary components and gut environmental conditions, is needed in the research field and essential for our ability to effectively promote host health and prevent diseases through interventions targeting the gut microbiome.
Collapse
Affiliation(s)
- Anurag Kumar Sinha
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
11
|
Sinha AK, Laursen MF, Brinck JE, Rybtke ML, Hjørne AP, Procházková N, Pedersen M, Roager HM, Licht TR. Dietary fibre directs microbial tryptophan metabolism via metabolic interactions in the gut microbiota. Nat Microbiol 2024; 9:1964-1978. [PMID: 38918470 PMCID: PMC11306097 DOI: 10.1038/s41564-024-01737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
Tryptophan is catabolized by gut microorganisms resulting in a wide range of metabolites implicated in both beneficial and adverse host effects. How gut microbial tryptophan metabolism is directed towards indole, associated with chronic kidney disease, or towards protective indolelactic acid (ILA) and indolepropionic acid (IPA) is unclear. Here we used in vitro culturing and animal experiments to assess gut microbial competition for tryptophan and the resulting metabolites in a controlled three-species defined community and in complex undefined human faecal communities. The generation of specific tryptophan-derived metabolites was not predominantly determined by the abundance of tryptophan-metabolizing bacteria, but rather by substrate-dependent regulation of specific metabolic pathways. Indole-producing Escherichia coli and ILA- and IPA-producing Clostridium sporogenes competed for tryptophan within the three-species community in vitro and in vivo. Importantly, fibre-degrading Bacteroides thetaiotaomicron affected this competition by cross-feeding monosaccharides to E. coli. This inhibited indole production through catabolite repression, thus making more tryptophan available to C. sporogenes, resulting in increased ILA and IPA production. The fibre-dependent reduction in indole was confirmed using human faecal cultures and faecal-microbiota-transplanted gnotobiotic mice. Our findings explain why consumption of fermentable fibres suppresses indole production but promotes the generation of other tryptophan metabolites associated with health benefits.
Collapse
Affiliation(s)
- Anurag K Sinha
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Martin F Laursen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Julius E Brinck
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Morten L Rybtke
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Pii Hjørne
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nicola Procházková
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Pedersen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Henrik M Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Tine R Licht
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
12
|
Pennington T, Eshima J, Smith BS. Identification of volatile metabolites produced from levodopa metabolism by different bacteria strains of the gut microbiome. BMC Microbiol 2024; 24:260. [PMID: 38997651 PMCID: PMC11245815 DOI: 10.1186/s12866-024-03373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Interspecies pathways in the gut microbiome have been shown to metabolize levodopa, the primary treatment for Parkinson's disease, and reduce its bioavailability. While the enzymatic reactions have been identified, the ability to establish the resulting macromolecules as biomarkers of microbial metabolism remains technically challenging. In this study, we leveraged an untargeted mass spectrometry-based approach to investigate volatile organic compounds (VOCs) produced during levodopa metabolism by Enterococcus faecalis, Clostridium sporogenes, and Eggerthella lenta. We cultured these organisms with and without their respective bioactive metabolites and detected levodopa-induced shifts in VOC profiles. We then utilized bioinformatics to identify significant differences in 2,6-dimethylpyrazine, 4,6-dimethylpyrimidine, and 4,5-dimethylpyrimidine associated with its biotransformation. Supplementing cultures with inhibitors of levodopa-metabolizing enzymes revealed specific modulation of levodopa-associated diazines, verifying their relationship to its metabolism. Furthermore, functional group analysis depicts strain-specific VOC profiles that reflect interspecies differences in metabolic activity that can be leveraged to assess microbiome functionality in individual patients. Collectively, this work identifies previously uncharacterized metabolites of microbe-mediated levodopa metabolism to determine potential indicators of this activity and further elucidate the metabolic capabilities of different gut bacteria.
Collapse
Affiliation(s)
- Taylor Pennington
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Jarrett Eshima
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Barbara S Smith
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
13
|
Dell'Olio A, Rubert J, Capozzi V, Tonezzer M, Betta E, Fogliano V, Biasioli F. Non-invasive VOCs detection to monitor the gut microbiota metabolism in-vitro. Sci Rep 2024; 14:15842. [PMID: 38982163 PMCID: PMC11233675 DOI: 10.1038/s41598-024-66303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
This work implemented a non-invasive volatile organic compounds (VOCs) monitoring approach to study how food components are metabolised by the gut microbiota in-vitro. The fermentability of a model food matrix rich in dietary fibre (oat bran), and a pure prebiotic (inulin), added to a minimal gut medium was compared by looking at global changes in the volatilome. The substrates were incubated with a stabilised human faecal inoculum over a 24-h period, and VOCs were monitored without interfering with biological processes. The fermentation was performed in nitrogen-filled vials, with controlled temperature, and tracked by automated headspace-solid-phase microextraction coupled with gas chromatography-mass spectrometry. To understand the molecular patterns over time, we applied a multivariate longitudinal statistical framework: repeated measurements-ANOVA simultaneous component analysis. The methodology was able to discriminate the studied groups by looking at VOCs temporal profiles. The volatilome showed a time-dependency that was more distinct after 12 h. Short to medium-chain fatty acids showed increased peak intensities, mainly for oat bran and for inulin, but with different kinetics. At the same time, alcohols, aldehydes, and esters showed distinct trends with discriminatory power. The proposed approach can be applied to study the intertwined pathways of gut microbiota food components interaction in-vitro.
Collapse
Affiliation(s)
- Andrea Dell'Olio
- Food Quality and Design, Wageningen University & Research, 6708 WG, Wageningen, Netherlands
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy
| | - Josep Rubert
- Food Quality and Design, Wageningen University & Research, 6708 WG, Wageningen, Netherlands
| | - Vittorio Capozzi
- Institute of Food Production Sciences, National Research Council, 71121, Foggia, Italy
| | - Matteo Tonezzer
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy
- Department of Chemical and Geological Sciences, University of Cagliari, 09042, Monserrato , Italy
| | - Emanuela Betta
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy
| | - Vincenzo Fogliano
- Food Quality and Design, Wageningen University & Research, 6708 WG, Wageningen, Netherlands
| | - Franco Biasioli
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy.
| |
Collapse
|
14
|
Behlendorf C, Diwo M, Neumann-Schaal M, Fuchs M, Körner D, Jänsch L, Faber F, Blankenfeldt W. Formation of the pyruvoyl-dependent proline reductase Prd from Clostridioides difficile requires the maturation enzyme PrdH. PNAS NEXUS 2024; 3:pgae249. [PMID: 38979079 PMCID: PMC11229817 DOI: 10.1093/pnasnexus/pgae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/09/2024] [Indexed: 07/10/2024]
Abstract
Stickland fermentation, the coupled oxidation and reduction of amino acid pairs, is a major pathway for obtaining energy in the nosocomial bacterium Clostridioides difficile. D-proline is the preferred substrate for the reductive path, making it not only a key component of the general metabolism but also impacting on the expression of the clostridial toxins TcdA and TcdB. D-proline reduction is catalyzed by the proline reductase Prd, which belongs to the pyruvoyl-dependent enzymes. These enzymes are translated as inactive proenzymes and require subsequent processing to install the covalently bound pyruvate. Whereas pyruvoyl formation by intramolecular serinolysis has been studied in unrelated enzymes, details about pyruvoyl generation by cysteinolysis as in Prd are lacking. Here, we show that Prd maturation requires a small dimeric protein that we have named PrdH. PrdH (CD630_32430) is co-encoded with the PrdA and PrdB subunits of Prd and also found in species producing similar reductases. By producing stable variants of PrdA and PrdB, we demonstrate that PrdH-mediated cleavage and pyruvoyl formation in the PrdA subunit requires PrdB, which can be harnessed to produce active recombinant Prd for subsequent analyses. We further created PrdA- and PrdH-mutants to get insight into the interaction of the components and into the processing reaction itself. Finally, we show that deletion of prdH renders C. difficile insensitive to proline concentrations in culture media, suggesting that this processing factor is essential for proline utilization. Due to the link between Stickland fermentation and pathogenesis, we suggest PrdH may be an attractive target for drug development.
Collapse
Affiliation(s)
- Christian Behlendorf
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Maurice Diwo
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, 38124 Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Manuela Fuchs
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), Julius-Maximilians-University of Würzburg (JMU), 97080 Würzburg, Germany
| | - Dominik Körner
- Cellular Proteomics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Lothar Jänsch
- Cellular Proteomics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Franziska Faber
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), Julius-Maximilians-University of Würzburg (JMU), 97080 Würzburg, Germany
| | - Wulf Blankenfeldt
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
15
|
Noecker C, Turnbaugh PJ. Emerging tools and best practices for studying gut microbial community metabolism. Nat Metab 2024; 6:1225-1236. [PMID: 38961185 DOI: 10.1038/s42255-024-01074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
The human gut microbiome vastly extends the set of metabolic reactions catalysed by our own cells, with far-reaching consequences for host health and disease. However, our knowledge of gut microbial metabolism relies on a handful of model organisms, limiting our ability to interpret and predict the metabolism of complex microbial communities. In this Perspective, we discuss emerging tools for analysing and modelling the metabolism of gut microorganisms and for linking microorganisms, pathways and metabolites at the ecosystem level, highlighting promising best practices for researchers. Continued progress in this area will also require infrastructure development to facilitate cross-disciplinary synthesis of scientific findings. Collectively, these efforts can enable a broader and deeper understanding of the workings of the gut ecosystem and open new possibilities for microbiome manipulation and therapy.
Collapse
Affiliation(s)
- Cecilia Noecker
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN, USA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
16
|
Hackmann TJ. The vast landscape of carbohydrate fermentation in prokaryotes. FEMS Microbiol Rev 2024; 48:fuae016. [PMID: 38821505 PMCID: PMC11187502 DOI: 10.1093/femsre/fuae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024] Open
Abstract
Fermentation is a type of metabolism carried out by organisms in environments without oxygen. Despite being studied for over 185 years, the diversity and complexity of this metabolism are just now becoming clear. Our review starts with the definition of fermentation, which has evolved over the years and which we help further refine. We then examine the range of organisms that carry out fermentation and their traits. Over one-fourth of all prokaryotes are fermentative, use more than 40 substrates, and release more than 50 metabolic end products. These insights come from studies analyzing records of thousands of organisms. Next, our review examines the complexity of fermentation at the biochemical level. We map out pathways of glucose fermentation in unprecedented detail, covering over 120 biochemical reactions. We also review recent studies coupling genomics and enzymology to reveal new pathways and enzymes. Our review concludes with practical applications for agriculture, human health, and industry. All these areas depend on fermentation and could be improved through manipulating fermentative microbes and enzymes. We discuss potential approaches for manipulation, including genetic engineering, electrofermentation, probiotics, and enzyme inhibitors. We hope our review underscores the importance of fermentation research and stimulates the next 185 years of study.
Collapse
Affiliation(s)
- Timothy J Hackmann
- Department of Animal Science, University of California, Davis, CA 95616, United States
| |
Collapse
|
17
|
Muramatsu MK, Winter SE. Nutrient acquisition strategies by gut microbes. Cell Host Microbe 2024; 32:863-874. [PMID: 38870902 PMCID: PMC11178278 DOI: 10.1016/j.chom.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
The composition and function of the gut microbiota are intimately tied to nutrient acquisition strategies and metabolism, with significant implications for host health. Both dietary and host-intrinsic factors influence community structure and the basic modes of bacterial energy metabolism. The intestinal tract is rich in carbon and nitrogen sources; however, limited access to oxygen restricts energy-generating reactions to fermentation. By contrast, increased availability of electron acceptors during episodes of intestinal inflammation results in phylum-level changes in gut microbiota composition, suggesting that bacterial energy metabolism is a key driver of gut microbiota function. In this review article, we will illustrate diverse examples of microbial nutrient acquisition strategies in the context of habitat filters and anatomical location and the central role of energy metabolism in shaping metabolic strategies to support bacterial growth in the mammalian gut.
Collapse
Affiliation(s)
- Matthew K Muramatsu
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis, Davis, CA 95616, USA
| | - Sebastian E Winter
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis, Davis, CA 95616, USA.
| |
Collapse
|
18
|
Zhou Q, Feng L. Identification of avaC from Human Gut Microbial Isolates that Converts 5AVA to 2-Piperidone. J Microbiol 2024; 62:367-379. [PMID: 38884693 PMCID: PMC11196342 DOI: 10.1007/s12275-024-00141-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 06/18/2024]
Abstract
2-piperidone is a crucial industrial raw material of high-value nylon-5 and nylon-6,5. Currently, a major bottleneck in the biosynthesis of 2-piperidone is the identification of highly efficient 2-piperidone synthases. In this study, we aimed to identify specific strains among 51 human gut bacterial strains capable of producing 2-piperidone and to elucidate its synthetic mechanism. Our findings revealed that four gut bacterial strains, namely Collinsella aerofaciens LFYP39, Collinsella intestinalis LFYP54, Clostridium bolteae LFYP116, and Clostridium hathewayi LFYP18, could produce 2-piperidone from 5-aminovaleric acid (5AVA). Additionally, we observed that 2-piperidone could be synthesized from proline through cross-feeding between Clostridium difficile LFYP43 and one of the four 2-piperidone producing strains, respectively. To identify the enzyme responsible for catalyzing the conversion of 5AVA to 2-piperidone, we utilized a gain-of-function library and identified avaC (5-aminovaleric acid cyclase) in C. intestinalis LFYP54. Moreover, homologous genes of avaC were validated in the other three bacterial strains. Notably, avaC were found to be widely distributed among environmental bacteria. Overall, our research delineated the gut bacterial strains and genes involved in 2-piperidone production, holding promise for enhancing the efficiency of industrial biosynthesis of this compound.
Collapse
Affiliation(s)
- Qiudi Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Lihui Feng
- Institute of Pediatrics, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
19
|
Pi Z, Liu W, Mao W. One size might fit all: Indole-3-propionic acid potentiates pan-cancer immunotherapy. Cell Host Microbe 2024; 32:627-630. [PMID: 38723599 DOI: 10.1016/j.chom.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
|
20
|
Caffrey EB, Sonnenburg JL, Devkota S. Our extended microbiome: The human-relevant metabolites and biology of fermented foods. Cell Metab 2024; 36:684-701. [PMID: 38569469 DOI: 10.1016/j.cmet.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
One of the key modes of microbial metabolism occurring in the gut microbiome is fermentation. This energy-yielding process transforms common macromolecules like polysaccharides and amino acids into a wide variety of chemicals, many of which are relevant to microbe-microbe and microbe-host interactions. Analogous transformations occur during the production of fermented foods, resulting in an abundance of bioactive metabolites. In foods, the products of fermentation can influence food safety and preservation, nutrient availability, and palatability and, once consumed, may impact immune and metabolic status, disease expression, and severity. Human signaling pathways perceive and respond to many of the currently known fermented food metabolites, though expansive chemical novelty remains to be defined. Here we discuss several aspects of fermented food-associated microbes and metabolites, including a condensed history, current understanding of their interactions with hosts and host-resident microbes, connections with commercial probiotics, and opportunities for future research on human health and disease and food sustainability.
Collapse
Affiliation(s)
- Elisa B Caffrey
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA, USA.
| | - Suzanne Devkota
- F. Widjaja Foundation Inflammatory Bowel Diseases Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Human Microbiome Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Verma A, Bhagchandani T, Rai A, Nikita, Sardarni UK, Bhavesh NS, Gulati S, Malik R, Tandon R. Short-Chain Fatty Acid (SCFA) as a Connecting Link between Microbiota and Gut-Lung Axis-A Potential Therapeutic Intervention to Improve Lung Health. ACS OMEGA 2024; 9:14648-14671. [PMID: 38585101 PMCID: PMC10993281 DOI: 10.1021/acsomega.3c05846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 04/09/2024]
Abstract
The microbiome is an integral part of the human gut, and it plays a crucial role in the development of the immune system and homeostasis. Apart from the gut microbiome, the airway microbial community also forms a distinct and crucial part of the human microbiota. Furthermore, several studies indicate the existence of communication between the gut microbiome and their metabolites with the lung airways, called "gut-lung axis". Perturbations in gut microbiota composition, termed dysbiosis, can have acute and chronic effects on the pathophysiology of lung diseases. Microbes and their metabolites in lung stimulate various innate immune pathways, which modulate the expression of the inflammatory genes in pulmonary leukocytes. For instance, gut microbiota-derived metabolites such as short-chain fatty acids can suppress lung inflammation through the activation of G protein-coupled receptors (free fatty acid receptors) and can also inhibit histone deacetylase, which in turn influences the severity of acute and chronic respiratory diseases. Thus, modulation of the gut microbiome composition through probiotic/prebiotic usage and fecal microbiota transplantation can lead to alterations in lung homeostasis and immunity. The resulting manipulation of immune cells function through microbiota and their key metabolites paves the way for the development of novel therapeutic strategies in improving the lung health of individuals affected with various lung diseases including SARS-CoV-2. This review will shed light upon the mechanistic aspect of immune system programming through gut and lung microbiota and exploration of the relationship between gut-lung microbiome and also highlight the therapeutic potential of gut microbiota-derived metabolites in the management of respiratory diseases.
Collapse
Affiliation(s)
- Anjali Verma
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Tannu Bhagchandani
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ankita Rai
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nikita
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Urvinder Kaur Sardarni
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Neel Sarovar Bhavesh
- Transcription
Regulation Group, International Centre for
Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Sameer Gulati
- Department
of Medicine, Lady Hardinge Medical College
(LHMC), New Delhi 110058, India
| | - Rupali Malik
- Department
of Medicine, Vardhman Mahavir Medical College
and Safdarjung Hospital, New Delhi 110029, India
| | - Ravi Tandon
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
22
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Jia D, Wang Q, Qi Y, Jiang Y, He J, Lin Y, Sun Y, Xu J, Chen W, Fan L, Yan R, Zhang W, Ren G, Xu C, Ge Q, Wang L, Liu W, Xu F, Wu P, Wang Y, Chen S, Wang L. Microbial metabolite enhances immunotherapy efficacy by modulating T cell stemness in pan-cancer. Cell 2024; 187:1651-1665.e21. [PMID: 38490195 DOI: 10.1016/j.cell.2024.02.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/31/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024]
Abstract
The immune checkpoint blockade (ICB) response in human cancers is closely linked to the gut microbiota. Here, we report that the abundance of commensal Lactobacillus johnsonii is positively correlated with the responsiveness of ICB. Supplementation with Lactobacillus johnsonii or tryptophan-derived metabolite indole-3-propionic acid (IPA) enhances the efficacy of CD8+ T cell-mediated αPD-1 immunotherapy. Mechanistically, Lactobacillus johnsonii collaborates with Clostridium sporogenes to produce IPA. IPA modulates the stemness program of CD8+ T cells and facilitates the generation of progenitor exhausted CD8+ T cells (Tpex) by increasing H3K27 acetylation at the super-enhancer region of Tcf7. IPA improves ICB responsiveness at the pan-cancer level, including melanoma, breast cancer, and colorectal cancer. Collectively, our findings identify a microbial metabolite-immune regulatory pathway and suggest a potential microbial-based adjuvant approach to improve the responsiveness of immunotherapy.
Collapse
Affiliation(s)
- Dingjiacheng Jia
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Qiwen Wang
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Yadong Qi
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Yao Jiang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Jiamin He
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Yifeng Lin
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Yong Sun
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Jilei Xu
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Wenwen Chen
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Lina Fan
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Ruochen Yan
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Wang Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Guohong Ren
- Department of Breast Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Chaochao Xu
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Qiwei Ge
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Lan Wang
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou, Zhejiang Province 310021, China
| | - Fei Xu
- Institute of Pharmaceutical Biotechnology and Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Pin Wu
- Department of Thoracic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Yuhao Wang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China
| | - Shujie Chen
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang Province 310001, China.
| | - Liangjing Wang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang Province 310001, China.
| |
Collapse
|
24
|
Hecht AL, Harling LC, Friedman ES, Tanes C, Lee J, Firrman J, Hao F, Tu V, Liu L, Patterson AD, Bittinger K, Goulian M, Wu GD. Dietary carbohydrates regulate intestinal colonization and dissemination of Klebsiella pneumoniae. J Clin Invest 2024; 134:e174726. [PMID: 38512401 PMCID: PMC11060737 DOI: 10.1172/jci174726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Bacterial translocation from the gut microbiota is a source of sepsis in susceptible patients. Previous work suggests that overgrowth of gut pathobionts, including Klebsiella pneumoniae, increases the risk of disseminated infection. Our data from a human dietary intervention study found that, in the absence of fiber, K. pneumoniae bloomed during microbiota recovery from antibiotic treatment. We thus hypothesized that dietary nutrients directly support or suppress colonization of this gut pathobiont in the microbiota. Consistent with our study in humans, complex carbohydrates in dietary fiber suppressed the colonization of K. pneumoniae and allowed for recovery of competing commensals in mouse models. In contrast, through ex vivo and in vivo modeling, we identified simple carbohydrates as a limiting resource for K. pneumoniae in the gut. As proof of principle, supplementation with lactulose, a nonabsorbed simple carbohydrate and an FDA-approved therapy, increased colonization of K. pneumoniae. Disruption of the intestinal epithelium led to dissemination of K. pneumoniae into the bloodstream and liver, which was prevented by dietary fiber. Our results show that dietary simple and complex carbohydrates were critical not only in the regulation of pathobiont colonization but also disseminated infection, suggesting that targeted dietary interventions may offer a preventative strategy in high-risk patients.
Collapse
Affiliation(s)
- Aaron L. Hecht
- Division of Gastroenterology and Hepatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lisa C. Harling
- Division of Gastroenterology and Hepatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elliot S. Friedman
- Division of Gastroenterology and Hepatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ceylan Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Junhee Lee
- Division of Gastroenterology and Hepatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, Pennsylvania, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Vincent Tu
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, Pennsylvania, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary D. Wu
- Division of Gastroenterology and Hepatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
25
|
Wang YC, Chin Koay Y, Pan C, Zhou Z, Wilson Tang WH, Wilcox J, Li XS, Zagouras A, Marques F, Allayee H, Rey FE, Kaye DM, O’Sullivan JF, Hazen SL, Cao Y, Lusis AJ. Indole-3-Propionic Acid Protects Against Heart Failure With Preserved Ejection Fraction. Circ Res 2024; 134:371-389. [PMID: 38264909 PMCID: PMC10923103 DOI: 10.1161/circresaha.123.322381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a common but poorly understood form of heart failure, characterized by impaired diastolic function. It is highly heterogeneous with multiple comorbidities, including obesity and diabetes, making human studies difficult. METHODS Metabolomic analyses in a mouse model of HFpEF showed that levels of indole-3-propionic acid (IPA), a metabolite produced by gut bacteria from tryptophan, were reduced in the plasma and heart tissue of HFpEF mice as compared with controls. We then examined the role of IPA in mouse models of HFpEF as well as 2 human HFpEF cohorts. RESULTS The protective role and therapeutic effects of IPA were confirmed in mouse models of HFpEF using IPA dietary supplementation. IPA attenuated diastolic dysfunction, metabolic remodeling, oxidative stress, inflammation, gut microbiota dysbiosis, and intestinal epithelial barrier damage. In the heart, IPA suppressed the expression of NNMT (nicotinamide N-methyl transferase), restored nicotinamide, NAD+/NADH, and SIRT3 (sirtuin 3) levels. IPA mediates the protective effects on diastolic dysfunction, at least in part, by promoting the expression of SIRT3. SIRT3 regulation was mediated by IPA binding to the aryl hydrocarbon receptor, as Sirt3 knockdown diminished the effects of IPA on diastolic dysfunction in vivo. The role of the nicotinamide adenine dinucleotide circuit in HFpEF was further confirmed by nicotinamide supplementation, Nnmt knockdown, and Nnmt overexpression in vivo. IPA levels were significantly reduced in patients with HFpEF in 2 independent human cohorts, consistent with a protective function in humans, as well as mice. CONCLUSIONS Our findings reveal that IPA protects against diastolic dysfunction in HFpEF by enhancing the nicotinamide adenine dinucleotide salvage pathway, suggesting the possibility of therapeutic management by either altering the gut microbiome composition or supplementing the diet with IPA.
Collapse
Affiliation(s)
- Yu-Chen Wang
- Department of Medicine, Division of Cardiology, Department of Microbiology, Immunology and Molecular Genetics, and Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Yen Chin Koay
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
- Charles Perkins Centre, Sydney, New South Wales, Australia
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, Department of Microbiology, Immunology and Molecular Genetics, and Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Zhiqiang Zhou
- Department of Medicine, Division of Cardiology, Department of Microbiology, Immunology and Molecular Genetics, and Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - W. H. Wilson Tang
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland OH
| | - Jennifer Wilcox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland OH
| | - Xinmin S. Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland OH
| | | | - Francine Marques
- School of Biological Sciences, Faculty of Medicine, Monash University, Clayton, VIC, Australia
| | - Hooman Allayee
- Department of Preventive Medicine and Institute for Genetic Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90089-9075, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - David M. Kaye
- Baker Heart & Diabetes Institute, Melbourne, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, Australia
| | - John F. O’Sullivan
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
- Charles Perkins Centre, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, New South Wales, Australia
- Faculty of Medicine, TU Dresden, Germany
| | - Stanley L. Hazen
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland OH
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland OH
| | - Yang Cao
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Aldons J. Lusis
- Department of Medicine, Division of Cardiology, Department of Microbiology, Immunology and Molecular Genetics, and Department of Human Genetics, University of California, Los Angeles, CA, USA
| |
Collapse
|
26
|
Britton TA, Wu C, Chen YW, Franklin D, Chen Y, Camacho MI, Luong TT, Das A, Ton-That H. The respiratory enzyme complex Rnf is vital for metabolic adaptation and virulence in Fusobacterium nucleatum. mBio 2024; 15:e0175123. [PMID: 38059640 PMCID: PMC10790702 DOI: 10.1128/mbio.01751-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/20/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE This paper illuminates the significant question of how the oral commensal Fusobacterium nucleatum adapts to the metabolically changing environments of several extra-oral sites such as placenta and colon to promote various diseases as an opportunistic pathogen. We demonstrate here that the highly conserved Rhodobacter nitrogen-fixation complex, commonly known as Rnf complex, is key to fusobacterial metabolic adaptation and virulence. Genetic disruption of this Rnf complex causes global defects in polymicrobial interaction, biofilm formation, cell growth and morphology, hydrogen sulfide production, and ATP synthesis. Targeted metabolomic profiling demonstrates that the loss of this respiratory enzyme significantly diminishes catabolism of numerous amino acids, which negatively impacts fusobacterial virulence as tested in a preterm birth model in mice.
Collapse
Affiliation(s)
- Timmie A. Britton
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Chenggang Wu
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Yi-Wei Chen
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Dana Franklin
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Yimin Chen
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Martha I. Camacho
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Truc T. Luong
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Hung Ton-That
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
27
|
Krause FF, Mangold KI, Ruppert AL, Leister H, Hellhund-Zingel A, Lopez Krol A, Pesek J, Watzer B, Winterberg S, Raifer H, Binder K, Kinscherf R, Walker A, Nockher WA, Taudte RV, Bertrams W, Schmeck B, Kühl AA, Siegmund B, Romero R, Luu M, Göttig S, Bekeredjian-Ding I, Steinhoff U, Schütz B, Visekruna A. Clostridium sporogenes-derived metabolites protect mice against colonic inflammation. Gut Microbes 2024; 16:2412669. [PMID: 39397690 PMCID: PMC11485882 DOI: 10.1080/19490976.2024.2412669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Gut microbiota-derived metabolites play a pivotal role in the maintenance of intestinal immune homeostasis. Here, we demonstrate that the human commensal Clostridium sporogenes possesses a specific metabolic fingerprint, consisting predominantly of the tryptophan catabolite indole-3-propionic acid (IPA), the branched-chain acids (BCFAs) isobutyrate and isovalerate and the short-chain fatty acids (SCFAs) acetate and propionate. Mono-colonization of germ-free mice with C. sporogenes (CS mice) affected colonic mucosal immune cell phenotypes, including up-regulation of Il22 gene expression, and increased abundance of transcriptionally active colonic tuft cells and Foxp3+ regulatory T cells (Tregs). In DSS-induced colitis, conventional mice suffered severe inflammation accompanied by loss of colonic crypts. These symptoms were absent in CS mice. In conventional, but not CS mice, bulk RNAseq analysis of the colon revealed an increase in inflammatory and Th17-related gene signatures. C. sporogenes-derived IPA reduced IL-17A protein expression by suppressing mTOR activity and by altering ribosome-related pathways in Th17 cells. Additionally, BCFAs and SCFAs generated by C. sporogenes enhanced the activity of Tregs and increased the production of IL-22, which led to protection from colitis. Collectively, we identified C. sporogenes as a therapeutically relevant probiotic bacterium that might be employed in patients with inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Felix F. Krause
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Kira I. Mangold
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Anna-Lena Ruppert
- Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Hanna Leister
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Anne Hellhund-Zingel
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Aleksandra Lopez Krol
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Jelena Pesek
- Core Facility for Metabolomics, Department of Medicine, Philipps-University, Marburg, Germany
| | - Bernhard Watzer
- Core Facility for Metabolomics, Department of Medicine, Philipps-University, Marburg, Germany
| | - Sarah Winterberg
- Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Hartmann Raifer
- Flow Cytometry Core Facility, Philipps-University, Marburg, Germany
| | - Kai Binder
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Ralf Kinscherf
- Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum, München, Germany
| | - Wolfgang A. Nockher
- Core Facility for Metabolomics, Department of Medicine, Philipps-University, Marburg, Germany
| | - R. Verena Taudte
- Core Facility for Metabolomics, Department of Medicine, Philipps-University, Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Philipps-University, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Philipps-University, Marburg, Germany
- Department for Respiratory and Critical Care Medicine, Philipps-University, Marburg, Germany
- Member of the German Center for Lung Research (DZL/UGMLC, ) and German Center for Infectious Disease Research (DZIF), Marburg, Germany
| | - Anja A. Kühl
- iPATH.Berlin, Core Unit of Charité-Universitätsmedizin Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rossana Romero
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Maik Luu
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Stephan Göttig
- Institute of Medical Microbiology and Infection Control, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | | | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Burkhard Schütz
- Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| |
Collapse
|
28
|
Hoover RL, Keffer JL, Polson SW, Chan CS. Gallionellaceae pangenomic analysis reveals insight into phylogeny, metabolic flexibility, and iron oxidation mechanisms. mSystems 2023; 8:e0003823. [PMID: 37882557 PMCID: PMC10734462 DOI: 10.1128/msystems.00038-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Neutrophilic iron-oxidizing bacteria (FeOB) produce copious iron (oxyhydr)oxides that can profoundly influence biogeochemical cycles, notably the fate of carbon and many metals. To fully understand environmental microbial iron oxidation, we need a thorough accounting of iron oxidation mechanisms. In this study, we show the Gallionellaceae FeOB genomes encode both characterized iron oxidases as well as uncharacterized multiheme cytochromes (MHCs). MHCs are predicted to transfer electrons from extracellular substrates and likely confer metabolic capabilities that help Gallionellaceae occupy a range of different iron- and mineral-rich niches. Gallionellaceae appear to specialize in iron oxidation, so it would be advantageous for them to have multiple mechanisms to oxidize various forms of iron, given the many iron minerals on Earth, as well as the physiological and kinetic challenges faced by FeOB. The multiple iron/mineral oxidation mechanisms may help drive the widespread ecological success of Gallionellaceae.
Collapse
Affiliation(s)
- Rene L. Hoover
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
| | - Jessica L. Keffer
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
| | - Shawn W. Polson
- Department of Computer and Information Sciences, University of Delaware, Newark, Delaware, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Clara S. Chan
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
29
|
Tan Y, Liang J, Lai M, Wan S, Luo X, Li F. Advances in synthetic biology toolboxes paving the way for mechanistic understanding and strain engineering of gut commensal Bacteroides spp. and Clostridium spp. Biotechnol Adv 2023; 69:108272. [PMID: 37844770 DOI: 10.1016/j.biotechadv.2023.108272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
The gut microbiota plays a significant role in influencing human immunity, metabolism, development, and behavior by producing a wide range of metabolites. While there is accumulating data on several microbiota-derived small molecules that contribute to host health and disease, our knowledge regarding the molecular mechanisms underlying metabolite-mediated microbe-host interactions remains limited. This is primarily due to the lack of efficient genetic tools for most commensal bacteria, especially those belonging to the dominant phyla Bacteroides spp. and Clostridium spp., which hinders the application of synthetic biology to these gut commensal bacteria. In this review, we provide an overview of recent advances in synthetic biology tools developed for the two dominant genera, as well as their applications in deciphering the mechanisms of microbe-host interactions mediated by microbiota-derived small molecules. We also discuss the potential biomedical applications of engineering commensal bacteria using these toolboxes. Finally, we share our perspective on the future development of synthetic biology tools for a better understanding of small molecule-mediated microbe-host interactions and their engineering for biomedical purposes.
Collapse
Affiliation(s)
- Yang Tan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| | - Jing Liang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mingchi Lai
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Sai Wan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fuli Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| |
Collapse
|
30
|
Pascal Andreu V, Augustijn HE, Chen L, Zhernakova A, Fu J, Fischbach MA, Dodd D, Medema MH. gutSMASH predicts specialized primary metabolic pathways from the human gut microbiota. Nat Biotechnol 2023; 41:1416-1423. [PMID: 36782070 PMCID: PMC10423304 DOI: 10.1038/s41587-023-01675-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/10/2023] [Indexed: 02/15/2023]
Abstract
The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes for secondary metabolites, the chemical output of the gut microbiome consists predominantly of primary metabolites. Here we introduce the gutSMASH algorithm for identification of primary metabolic gene clusters, and we used it to systematically profile gut microbiome metabolism, identifying 19,890 gene clusters in 4,240 high-quality microbial genomes. We found marked differences in pathway distribution among phyla, reflecting distinct strategies for energy capture. These data explain taxonomic differences in short-chain fatty acid production and suggest a characteristic metabolic niche for each taxon. Analysis of 1,135 individuals from a Dutch population-based cohort shows that the level of microbiome-derived metabolites in plasma and feces is almost completely uncorrelated with the metagenomic abundance of corresponding metabolic genes, indicating a crucial role for pathway-specific gene regulation and metabolite flux. This work is a starting point for understanding differences in how bacterial taxa contribute to the chemistry of the microbiome.
Collapse
Affiliation(s)
| | - Hannah E Augustijn
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lianmin Chen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
- Department of Cardiology, Nanjing Medical University, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jingyuan Fu
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michael A Fischbach
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Dylan Dodd
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
31
|
Liu Y, Jarman JB, Low YS, Augustijn HE, Huang S, Chen H, DeFeo ME, Sekiba K, Hou BH, Meng X, Weakley AM, Cabrera AV, Zhou Z, van Wezel G, Medema MH, Ganesan C, Pao AC, Gombar S, Dodd D. A widely distributed gene cluster compensates for uricase loss in hominids. Cell 2023; 186:3400-3413.e20. [PMID: 37541197 PMCID: PMC10421625 DOI: 10.1016/j.cell.2023.06.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 03/22/2023] [Accepted: 06/19/2023] [Indexed: 08/06/2023]
Abstract
Approximately 15% of US adults have circulating levels of uric acid above its solubility limit, which is causally linked to the disease gout. In most mammals, uric acid elimination is facilitated by the enzyme uricase. However, human uricase is a pseudogene, having been inactivated early in hominid evolution. Though it has long been known that uric acid is eliminated in the gut, the role of the gut microbiota in hyperuricemia has not been studied. Here, we identify a widely distributed bacterial gene cluster that encodes a pathway for uric acid degradation. Stable isotope tracing demonstrates that gut bacteria metabolize uric acid to xanthine or short chain fatty acids. Ablation of the microbiota in uricase-deficient mice causes severe hyperuricemia, and anaerobe-targeted antibiotics increase the risk of gout in humans. These data reveal a role for the gut microbiota in uric acid excretion and highlight the potential for microbiome-targeted therapeutics in hyperuricemia.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - J Bryce Jarman
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Hannah E Augustijn
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands; Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Steven Huang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Haoqing Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mary E DeFeo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kazuma Sekiba
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bi-Huei Hou
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xiandong Meng
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | | | | | - Zhiwei Zhou
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gilles van Wezel
- Institute of Biology, Leiden University, Leiden, the Netherlands; Netherlands Institute of Ecology, Wageningen, the Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands; Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Calyani Ganesan
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan C Pao
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Saurabh Gombar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Atropos Health, Palo Alto, CA, USA
| | - Dylan Dodd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
32
|
Boulangé CL, Pedersen HK, Martin FP, Siegwald L, Pallejà Caro A, Eklund AC, Jia W, Zhang H, Berger B, Sprenger N, Heine RG, Cinnamon Study Investigator Group. An Extensively Hydrolyzed Formula Supplemented with Two Human Milk Oligosaccharides Modifies the Fecal Microbiome and Metabolome in Infants with Cow's Milk Protein Allergy. Int J Mol Sci 2023; 24:11422. [PMID: 37511184 PMCID: PMC10379726 DOI: 10.3390/ijms241411422] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Cow's milk protein allergy (CMPA) is a prevalent food allergy among infants and young children. We conducted a randomized, multicenter intervention study involving 194 non-breastfed infants with CMPA until 12 months of age (clinical trial registration: NCT03085134). One exploratory objective was to assess the effects of a whey-based extensively hydrolyzed formula (EHF) supplemented with 2'-fucosyllactose (2'-FL) and lacto-N-neotetraose (LNnT) on the fecal microbiome and metabolome in this population. Thus, fecal samples were collected at baseline, 1 and 3 months from enrollment, as well as at 12 months of age. Human milk oligosaccharides (HMO) supplementation led to the enrichment of bifidobacteria in the gut microbiome and delayed the shift of the microbiome composition toward an adult-like pattern. We identified specific HMO-mediated changes in fecal amino acid degradation and bile acid conjugation, particularly in infants commencing the HMO-supplemented formula before the age of three months. Thus, HMO supplementation partially corrected the dysbiosis commonly observed in infants with CMPA. Further investigation is necessary to determine the clinical significance of these findings in terms of a reduced incidence of respiratory infections and other potential health benefits.
Collapse
Affiliation(s)
- Claire L Boulangé
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1000 Lausanne, Switzerland
| | | | - Francois-Pierre Martin
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1000 Lausanne, Switzerland
| | - Léa Siegwald
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1000 Lausanne, Switzerland
| | | | | | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Huizhen Zhang
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Bernard Berger
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1000 Lausanne, Switzerland
| | - Norbert Sprenger
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1000 Lausanne, Switzerland
| | | | | |
Collapse
|
33
|
Britton TA, Wu C, Chen YW, Franklin D, Chen Y, Camacho MI, Luong TT, Das A, Ton-That H. The respiratory enzyme complex Rnf is vital for metabolic adaptation and virulence in Fusobacterium nucleatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544113. [PMID: 37398403 PMCID: PMC10312631 DOI: 10.1101/2023.06.13.544113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A prominent oral commensal and opportunistic pathogen, Fusobacterium nucleatum can traverse to extra-oral sites such as placenta and colon, promoting adverse pregnancy outcomes and colorectal cancer, respectively. How this anaerobe sustains many metabolically changing environments enabling its virulence potential remains unclear. Informed by our genome-wide transposon mutagenesis, we report here that the highly conserved Rnf complex, encoded by the rnfCDGEAB gene cluster, is key to fusobacterial metabolic adaptation and virulence. Genetic disruption of the Rnf complex via non-polar, in-frame deletion of rnfC (Δ rnfC ) abrogates polymicrobial interaction (or coaggregation) associated with adhesin RadD and biofilm formation. The defect in coaggregation is not due to reduced cell surface of RadD, but rather an increased level of extracellular lysine, which binds RadD and inhibits coaggregation. Indeed, removal of extracellular lysine via washing Δ rnfC cells restores coaggregation, while addition of lysine inhibits this process. These phenotypes mirror that of a mutant (Δ kamAΔ ) that fails to metabolize extracellular lysine. Strikingly, the Δ rnfC mutant is defective in ATP production, cell growth, cell morphology, and expression of the enzyme MegL that produces hydrogen sulfide from cysteine. Targeted metabolic profiling demonstrated that catabolism of many amino acids, including histidine and lysine, is altered in Δ rnfC cells, thereby reducing production of ATP and metabolites including H2S and butyrate. Most importantly, we show that the Δ rnfC mutant is severely attenuated in a mouse model of preterm birth. The indispensable function of Rnf complex in fusobacterial pathogenesis via modulation of bacterial metabolism makes it an attractive target for developing therapeutic intervention.
Collapse
|
34
|
Wang M, Osborn LJ, Jain S, Meng X, Weakley A, Yan J, Massey WJ, Varadharajan V, Horak A, Banerjee R, Allende DS, Chan ER, Hajjar AM, Wang Z, Dimas A, Zhao A, Nagashima K, Cheng AG, Higginbottom S, Hazen SL, Brown JM, Fischbach MA. Strain dropouts reveal interactions that govern the metabolic output of the gut microbiome. Cell 2023; 186:2839-2852.e21. [PMID: 37352836 PMCID: PMC10299816 DOI: 10.1016/j.cell.2023.05.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/10/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
The gut microbiome is complex, raising questions about the role of individual strains in the community. Here, we address this question by constructing variants of a complex defined community in which we eliminate strains that occupy the bile acid 7α-dehydroxylation niche. Omitting Clostridium scindens (Cs) and Clostridium hylemonae (Ch) eliminates secondary bile acid production and reshapes the community in a highly specific manner: eight strains change in relative abundance by >100-fold. In single-strain dropout communities, Cs and Ch reach the same relative abundance and dehydroxylate bile acids to a similar extent. However, Clostridium sporogenes increases >1,000-fold in the ΔCs but not ΔCh dropout, reshaping the pool of microbiome-derived phenylalanine metabolites. Thus, strains that are functionally redundant within a niche can have widely varying impacts outside the niche, and a strain swap can ripple through the community in an unpredictable manner, resulting in a large impact on an unrelated community-level phenotype.
Collapse
Affiliation(s)
- Min Wang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Lucas J Osborn
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sunit Jain
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Xiandong Meng
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Allison Weakley
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Jia Yan
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - William J Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anthony Horak
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rakhee Banerjee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniela S Allende
- Department of Anatomical Pathology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - E Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Adeline M Hajjar
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alejandra Dimas
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Aishan Zhao
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Kazuki Nagashima
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Alice G Cheng
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Steven Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael A Fischbach
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
35
|
Hecht AL, Harling LC, Friedman ES, Tanes C, Lee J, Firrman J, Tu V, Liu L, Bittinger K, Goulian M, Wu GD. Colonization and Dissemination of Klebsiella pneumoniae is Dependent on Dietary Carbohydrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542283. [PMID: 37292978 PMCID: PMC10245944 DOI: 10.1101/2023.05.25.542283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dysbiosis of the gut microbiota is increasingly appreciated as both a consequence and precipitant of human disease. The outgrowth of the bacterial family Enterobacteriaceae is a common feature of dysbiosis, including the human pathogen Klebsiella pneumoniae . Dietary interventions have proven efficacious in the resolution of dysbiosis, though the specific dietary components involved remain poorly defined. Based on a previous human diet study, we hypothesized that dietary nutrients serve as a key resource for the growth of bacteria found in dysbiosis. Through human sample testing, and ex-vivo , and in vivo modeling, we find that nitrogen is not a limiting resource for the growth of Enterobacteriaceae in the gut, contrary to previous studies. Instead, we identify dietary simple carbohydrates as critical in colonization of K. pneumoniae . We additionally find that dietary fiber is necessary for colonization resistance against K. pneumoniae , mediated by recovery of the commensal microbiota, and protecting the host against dissemination from the gut microbiota during colitis. Targeted dietary therapies based on these findings may offer a therapeutic strategy in susceptible patients with dysbiosis.
Collapse
|
36
|
Noecker C, Sanchez J, Bisanz JE, Escalante V, Alexander M, Trepka K, Heinken A, Liu Y, Dodd D, Thiele I, DeFelice BC, Turnbaugh PJ. Systems biology elucidates the distinctive metabolic niche filled by the human gut microbe Eggerthella lenta. PLoS Biol 2023; 21:e3002125. [PMID: 37205710 PMCID: PMC10234575 DOI: 10.1371/journal.pbio.3002125] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 06/01/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Human gut bacteria perform diverse metabolic functions with consequences for host health. The prevalent and disease-linked Actinobacterium Eggerthella lenta performs several unusual chemical transformations, but it does not metabolize sugars and its core growth strategy remains unclear. To obtain a comprehensive view of the metabolic network of E. lenta, we generated several complementary resources: defined culture media, metabolomics profiles of strain isolates, and a curated genome-scale metabolic reconstruction. Stable isotope-resolved metabolomics revealed that E. lenta uses acetate as a key carbon source while catabolizing arginine to generate ATP, traits which could be recapitulated in silico by our updated metabolic model. We compared these in vitro findings with metabolite shifts observed in E. lenta-colonized gnotobiotic mice, identifying shared signatures across environments and highlighting catabolism of the host signaling metabolite agmatine as an alternative energy pathway. Together, our results elucidate a distinctive metabolic niche filled by E. lenta in the gut ecosystem. Our culture media formulations, atlas of metabolomics data, and genome-scale metabolic reconstructions form a freely available collection of resources to support further study of the biology of this prevalent gut bacterium.
Collapse
Affiliation(s)
- Cecilia Noecker
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Juan Sanchez
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| | - Jordan E. Bisanz
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Veronica Escalante
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Margaret Alexander
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Kai Trepka
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Almut Heinken
- School of Medicine, National University of Ireland, Galway, Ireland
| | - Yuanyuan Liu
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Dylan Dodd
- Department of Pathology, Stanford University, Stanford, California, United States of America
- Department of Microbiology & Immunology, Stanford University, Stanford, California, United States of America
| | - Ines Thiele
- School of Medicine, National University of Ireland, Galway, Ireland
- Ryan Institute, University of Galway, Galway, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Brian C. DeFelice
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| | - Peter J. Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, California, United States of America
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
37
|
Hoover RL, Keffer JL, Polson SW, Chan CS. Gallionellaceae pangenomic analysis reveals insight into phylogeny, metabolic flexibility, and iron oxidation mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525709. [PMID: 36747706 PMCID: PMC9900912 DOI: 10.1101/2023.01.26.525709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The iron-oxidizing Gallionellaceae drive a wide variety of biogeochemical cycles through their metabolisms and biominerals. To better understand the environmental impacts of Gallionellaceae, we need to improve our knowledge of their diversity and metabolisms, especially any novel iron oxidation mechanisms. Here, we used a pangenomic analysis of 103 genomes to resolve Gallionellaceae phylogeny and explore the range of genomic potential. Using a concatenated ribosomal protein tree and key gene patterns, we determined Gallionellaceae has four genera, divided into two groups-iron-oxidizing bacteria (FeOB) Gallionella, Sideroxydans, and Ferriphaselus with known iron oxidases (Cyc2, MtoA) and nitrite-oxidizing bacteria (NOB) Candidatus Nitrotoga with nitrite oxidase (Nxr). The FeOB and NOB have similar electron transport chains, including genes for reverse electron transport and carbon fixation. Auxiliary energy metabolisms including S oxidation, denitrification, and organotrophy were scattered throughout the Gallionellaceae FeOB. Within FeOB, we found genes that may represent adaptations for iron oxidation, including a variety of extracellular electron uptake (EEU) mechanisms. FeOB genomes encoded more predicted c-type cytochromes overall, notably more multiheme c-type cytochromes (MHCs) with >10 CXXCH motifs. These include homologs of several predicted outer membrane porin-MHC complexes, including MtoAB and Uet. MHCs are known to efficiently conduct electrons across longer distances and function across a wide range of redox potentials that overlap with mineral redox potentials, which can help expand the range of usable iron substrates. Overall, the results of pangenome analyses suggest that the Gallionellaceae genera Gallionella, Sideroxydans, and Ferriphaselus are primarily iron oxidizers, capable of oxidizing dissolved Fe2+ as well as a range of solid iron or other mineral substrates.
Collapse
Affiliation(s)
- Rene L Hoover
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
| | - Jessica L Keffer
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
| | - Shawn W Polson
- Department of Computer and Information Sciences, University of Delaware, Newark, Delaware, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Clara S Chan
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
38
|
Pruss KM, Chen H, Liu Y, Van Treuren W, Higginbottom SK, Jarman JB, Fischer CR, Mak J, Wong B, Cowan TM, Fischbach MA, Sonnenburg JL, Dodd D. Host-microbe co-metabolism via MCAD generates circulating metabolites including hippuric acid. Nat Commun 2023; 14:512. [PMID: 36720857 PMCID: PMC9889317 DOI: 10.1038/s41467-023-36138-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
The human gut microbiota produces dozens of small molecules that circulate in blood, accumulate to comparable levels as pharmaceutical drugs, and influence host physiology. Despite the importance of these metabolites to human health and disease, the origin of most microbially-produced molecules and their fate in the host remains largely unknown. Here, we uncover a host-microbe co-metabolic pathway for generation of hippuric acid, one of the most abundant organic acids in mammalian urine. Combining stable isotope tracing with bacterial and host genetics, we demonstrate reduction of phenylalanine to phenylpropionic acid by gut bacteria; the host re-oxidizes phenylpropionic acid involving medium-chain acyl-CoA dehydrogenase (MCAD). Generation of germ-free male and female MCAD-/- mice enabled gnotobiotic colonization combined with untargeted metabolomics to identify additional microbial metabolites processed by MCAD in host circulation. Our findings uncover a host-microbe pathway for the abundant, non-toxic phenylalanine metabolite hippurate and identify β-oxidation via MCAD as a novel mechanism by which mammals metabolize microbiota-derived metabolites.
Collapse
Affiliation(s)
- Kali M Pruss
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Haoqing Chen
- Department of Pathology Stanford University School of Medicine, Stanford, CA, USA
| | - Yuanyuan Liu
- Department of Pathology Stanford University School of Medicine, Stanford, CA, USA
| | - William Van Treuren
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven K Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - John B Jarman
- Department of Pathology Stanford University School of Medicine, Stanford, CA, USA
| | - Curt R Fischer
- ChEM-H, Stanford University, Stanford, CA, USA
- Octant Bio, Emeryville, CA, USA
| | | | | | - Tina M Cowan
- Department of Pathology Stanford University School of Medicine, Stanford, CA, USA
| | - Michael A Fischbach
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Center for Human Microbiome Studies, Stanford, CA, USA
| | - Dylan Dodd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pathology Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
39
|
Eight Unexpected Selenoprotein Families in Organometallic Biochemistry in Clostridium difficile, in ABC Transport, and in Methylmercury Biosynthesis. J Bacteriol 2023; 205:e0025922. [PMID: 36598231 PMCID: PMC9879109 DOI: 10.1128/jb.00259-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The bioinformatics of a nine-gene locus, designated selenocysteine-assisted organometallic (SAO), was investigated after identifying six new selenoprotein families and constructing hidden Markov models (HMMs) that find and annotate members of those families. Four are selenoproteins in most SAO loci, including Clostridium difficile. They include two ABC transporter subunits, namely, permease SaoP, with selenocysteine (U) at the channel-gating position, and substrate-binding subunit SaoB. Cytosolic selenoproteins include SaoL, homologous to MerB organomercurial lyases from mercury resistance loci, and SaoT, related to thioredoxins. SaoL, SaoB, and surface protein SaoC (an occasional selenoprotein) share an unusual CU dipeptide motif, which is something rare in selenoproteins but found in selenoprotein variants of mercury resistance transporter subunit MerT. A nonselenoprotein, SaoE, shares homology with Cu/Zn efflux and arsenical efflux pumps. The organization of the SAO system suggests substrate interaction with surface-exposed selenoproteins, followed by import, metabolism that may cleave a carbon-to-heavy metal bond, and finally metal efflux. A novel type of mercury resistance is possible, but SAO instead may support fermentative metabolism, with selenocysteine-mediated formation of organometallic intermediates, followed by import, degradation, and metal efflux. Phylogenetic profiling shows SOA loci consistently co-occur with Stickland fermentation markers but even more consistently with 8Fe-9S cofactor-type double-cubane proteins. Hypothesizing that the SAO system forms organometallic intermediates, we investigated the known methylmercury formation protein families HgcA and HgcB. Both families contained overlooked selenoproteins. Most HgcAs have a CU motif N terminal to their previously accepted start sites. Seeking additional rare and overlooked selenoproteins may help reveal more cryptic aspects of microbial biochemistry. IMPORTANCE This work adds 8 novel prokaryotic selenoproteins to the 80 or so families previously known. It describes the SAO (selenocysteine-assisted organometallic) locus, with the most selenoproteins of any known system. The rare CU motif recurs throughout, suggesting the formation and degradation of organometallic compounds. That suggestion triggered a reexamination of HgcA and HcgB, which are methylmercury formation proteins that can adversely impact food safety. Both are selenoproteins, once corrected, with HgcA again showing a CU motif. The SAO system is plausibly a mercury resistance locus for selenium-dependent anaerobes. But instead, it may exploit heavy metals as cofactors in organometallic intermediate-forming pathways that circumvent high activation energies and facilitate the breakdown of otherwise poorly accessible nutrients. SAO could provide an edge that helps Clostridium difficile, an important pathogen, establish disease.
Collapse
|
40
|
Bustin KA, Abbas A, Wang X, Abt MC, Zackular JP, Matthews ML. Characterizing metabolic drivers of Clostridioides difficile infection with activity-based hydrazine probes. Front Pharmacol 2023; 14:1074619. [PMID: 36778002 PMCID: PMC9908766 DOI: 10.3389/fphar.2023.1074619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Many enzymes require post-translational modifications or cofactor machinery for primary function. As these catalytically essential moieties are highly regulated, they act as dual sensors and chemical handles for context-dependent metabolic activity. Clostridioides difficile is a major nosocomial pathogen that infects the colon. Energy generating metabolism, particularly through amino acid Stickland fermentation, is central to colonization and persistence of this pathogen during infection. Here using activity-based protein profiling (ABPP), we revealed Stickland enzyme activity is a biomarker for C. difficile infection (CDI) and annotated two such cofactor-dependent Stickland reductases. We structurally characterized the cysteine-derived pyruvoyl cofactors of D-proline and glycine reductase in C. difficile cultures and showed through cofactor monitoring that their activity is regulated by their respective amino acid substrates. Proline reductase was consistently active in toxigenic C. difficile, confirming the enzyme to be a major metabolic driver of CDI. Further, activity-based hydrazine probes were shown to be active site-directed inhibitors of proline reductase. As such, this enzyme activity, via its druggable cofactor modality, is a promising therapeutic target that could allow for the repopulation of bacteria that compete with C. difficile for proline and therefore restore colonization resistance against C. difficile in the gut.
Collapse
Affiliation(s)
- Katelyn A. Bustin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Arwa Abbas
- Division of Protective Immunity, Children’s Hospital of Pennsylvania, Philadelphia, PA, United States
| | - Xie Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael C. Abt
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph P. Zackular
- Division of Protective Immunity, Children’s Hospital of Pennsylvania, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Megan L. Matthews
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
41
|
Cho S, Yang X, Won KJ, Leone VA, Chang EB, Guzman G, Ko Y, Bae ON, Lee H, Jeong H. Phenylpropionic acid produced by gut microbiota alleviates acetaminophen-induced hepatotoxicity. Gut Microbes 2023; 15:2231590. [PMID: 37431867 PMCID: PMC10337503 DOI: 10.1080/19490976.2023.2231590] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
The gut microbiota affects hepatic drug metabolism. However, gut microbial factors modulating hepatic drug metabolism are largely unknown. In this study, using a mouse model of acetaminophen (APAP)-induced hepatotoxicity, we identified a gut bacterial metabolite that controls the hepatic expression of CYP2E1 that catalyzes the conversion of APAP to a reactive, toxic metabolite. By comparing C57BL/6 substrain mice from two different vendors, Jackson (6J) and Taconic (6N), which are genetically similar but harbor different gut microbiotas, we established that the differences in the gut microbiotas result in differential susceptibility to APAP-induced hepatotoxicity. 6J mice exhibited lower susceptibility to APAP-induced hepatotoxicity than 6N mice, and such phenotypic difference was recapitulated in germ-free mice by microbiota transplantation. Comparative untargeted metabolomic analysis of portal vein sera and liver tissues between conventional and conventionalized 6J and 6N mice led to the identification of phenylpropionic acid (PPA), the levels of which were higher in 6J mice. PPA supplementation alleviated APAP-induced hepatotoxicity in 6N mice by lowering hepatic CYP2E1 levels. Moreover, PPA supplementation also reduced carbon tetrachloride-induced liver injury mediated by CYP2E1. Our data showed that previously known PPA biosynthetic pathway is responsible for PPA production. Surprisingly, while PPA in 6N mouse cecum contents is almost undetectable, 6N cecal microbiota produces PPA as well as 6J cecal microbiota in vitro, suggesting that PPA production in the 6N gut microbiota is suppressed in vivo. However, previously known gut bacteria harboring the PPA biosynthetic pathway were not detected in either 6J or 6N microbiota, suggesting the presence of as-yet-unidentified PPA-producing gut microbes. Collectively, our study reveals a novel biological function of the gut bacterial metabolite PPA in the gut-liver axis and presents a critical basis for investigating PPA as a modulator of CYP2E1-mediated liver injury and metabolic diseases.
Collapse
Affiliation(s)
- Sungjoon Cho
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaotong Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyoung-Jae Won
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Vanessa A Leone
- Department of Animal & Dairy Sciences, College of Agriculture & Life Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Eugene B Chang
- Section of Gastroenterology, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| | - Grace Guzman
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yeonju Ko
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Ok-Nam Bae
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Hyunwoo Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Hyunyoung Jeong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
- Department of Pharmacy Practice, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
42
|
Wang E, Zhou Y, Liang Y, Ling F, Xue X, He X, Zhai X, Xue Y, Zhou C, Tang G, Wang G. Rice flowering improves the muscle nutrient, intestinal microbiota diversity, and liver metabolism profiles of tilapia (Oreochromis niloticus) in rice-fish symbiosis. MICROBIOME 2022; 10:231. [PMID: 36527140 PMCID: PMC9756501 DOI: 10.1186/s40168-022-01433-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/21/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND Rice-fish symbiosis, as an ecological and green aquaculture model, is an effective measure to relieve the environmental stress from intensive aquaculture. Compared with traditional aquaculture, the altered rearing pattern and environment will make differences in muscle nutrient and quality, intestinal microbiota, body metabolism, and even disease resistance in fish. RESULTS To investigate this, we explored the differences between rice-tilapia (aRT and bRT) and tank-tilapia (aTT and bTT) models at the periods before and after rice flowering using 16S rRNA sequencing and untargeted metabolomics. The results showed that compared with tilapia reared in the tank model, the fish body length and weight, the muscle total umami amino acid, and monounsaturated fatty acid content were obviously higher in the rice-fish model, especially after rice flowering. Compared with other groups, the intestinal microbiota diversity of fish in the bRT group was significantly higher; the dominant microbiota was Bacteroidetes and Firmicutes at the phylum level, Bacteroides and Turicibacter at the genus level, and the relative abundances of Gram-negative, potentially pathogenic, and stress-tolerant bacteria were the highest, lowest, and highest, respectively. Besides, the differential metabolite analysis indicated that rice-fish symbiosis improved the metabolic profiles and modulated the metabolic pathways in tilapia. Moreover, the correlation analysis of 16S sequencing and metabolomics showed that Bacteroides showed a positive correlation with many metabolites related to amino acid, fatty acid, and lipid metabolism. Video Abstract CONCLUSIONS: In summary, rice flowering improves the tilapia muscle nutrient, intestinal microbiota diversity, and disease resistance and modulates the host metabolism to acclimatize the comprehensive environment in rice-fish symbiosis. Specifically, rice flowering alters the microbiota abundance involved in amino acid, fatty acid, and lipid metabolism, resulting in improving the muscle nutrient and quality through the crosstalk of gut microbial and host metabolism. Our study will provide not only new insight into the gut microbiota-metabolism-phenotype axis, but also strong support for the promotion and application of rice-fish symbiosis in aquaculture.
Collapse
Affiliation(s)
- Erlong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Northwest A&F University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China.
| | - Ya Zhou
- Chongqing Three Gorges Vocational College, Chongqing, 404155, China.
| | - Yue Liang
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoshu Xue
- Chongqing Three Gorges Vocational College, Chongqing, 404155, China
| | - Xianlin He
- Chongqing Three Gorges Vocational College, Chongqing, 404155, China
| | - Xuliang Zhai
- Chongqing Fisheries Technical Extension Center, Chongqing, 401121, China
| | - Yang Xue
- Chongqing Fisheries Technical Extension Center, Chongqing, 401121, China
| | - Chunlong Zhou
- Chongqing Fisheries Technical Extension Center, Chongqing, 401121, China
| | - Guo Tang
- Chongqing Three Gorges Vocational College, Chongqing, 404155, China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
43
|
Stickland metabolism in the gut. Nat Microbiol 2022; 7:603-604. [PMID: 35505246 DOI: 10.1038/s41564-022-01115-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|