1
|
Wang X, Wang Z, Liu Z, Huang F, Pan Z, Zhang Z, Liu T. Nutritional strategies in oncology: The role of dietary patterns in modulating tumor progression and treatment response. Biochim Biophys Acta Rev Cancer 2025; 1880:189322. [PMID: 40228747 DOI: 10.1016/j.bbcan.2025.189322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Dietary interventions can influence tumor growth by restricting tumor-specific nutritional requirements, altering the nutrient availability in the tumor microenvironment, or enhancing the cytotoxicity of anticancer drugs. Metabolic reprogramming of tumor cells, as a significant hallmark of tumor progression, has a profound impact on immune regulation, severely hindering tumor eradication. Dietary interventions can modify tumor metabolic processes to some extent, thereby further improving the efficacy of tumor treatment. In this review, we emphasize the impact of dietary patterns on tumor progression. By exploring the metabolic differences of nutrients in normal cells versus cancer cells, we further clarify how dietary patterns influence cancer treatment. We also discuss the effects of dietary patterns on traditional treatments such as immunotherapy, chemotherapy, radiotherapy, and the gut microbiome, thereby underscoring the importance of precision nutrition.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zeyao Wang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zihan Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Fanxuan Huang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zhaoyu Pan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
| | - Zhiren Zhang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China; Departments of Cardiology and Pharmacy and Breast Cancer surgery, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China.
| | - Tong Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China; Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China.
| |
Collapse
|
2
|
Hansen B, Sánchez-Castro M, Schintgen L, Khakdan A, Schneider JG, Wilmes P. The impact of fasting and caloric restriction on rheumatoid arthritis in humans: A narrative review. Clin Nutr 2025; 49:178-186. [PMID: 40328175 PMCID: PMC12081321 DOI: 10.1016/j.clnu.2025.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease affecting approximately 1 % of the global population. It is characterized by swollen and painful joints eventually evolving into bone erosion, cartilage degradation and systemic inflammation, that significantly reduce patients' quality of life. While modern pharmacological treatments often lead to symptom improvement, they are also accompanied by substantial side effects, which can further impair patient wellbeing. Dietary interventions, particularly fasting and caloric restriction (CR), have gained increasing attention as adjunctive strategies for RA prevention and treatment. Their anti-inflammatory potential and ability to modulate the gut microbiome render them an attractive option to accompany or modify medical treatment. However, high-quality research on fasting and CR interventions in humans with RA remains limited, and the underlying mechanisms are not yet fully understood. The present narrative review reflects our current knowledge regarding fasting and CR, emphasising their impact on clinical outcomes, potential underlying mechanism and the sustainability of their effects. Evidence suggests that fasting and CR may lead to short-term improvements in RA disease activity, including reductions in inflammatory markers such as C-reactive protein (CRP) and interleukin-6 (IL-6). However, their long-term efficacy remains uncertain due to the limited duration of most studies. Future research should focus on identifying optimal fasting and CR protocols and their feasibility in long-term disease management, along with investigating patient adherence and potential risks associated with fasting interventions.
Collapse
Affiliation(s)
- Bérénice Hansen
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marta Sánchez-Castro
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Lynn Schintgen
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Arefeh Khakdan
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jochen G Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Department of Internal Medicine II, Saarland University Hospital and Saarland University Faculty of Medicine, Homburg, Germany.
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
3
|
Ma J, Zhao J, Zhang C, Tan J, Cheng A, Niu Z, Lin Z, Pan G, Chen C, Ding Y, Zhong M, Zhuang Y, Xiong Y, Zhou H, Zhou S, Xu M, Ye W, Li F, Song Y, Wang Z, Hong X. Cleavage of CAD by caspase-3 determines the cancer cell fate during chemotherapy. Nat Commun 2025; 16:5006. [PMID: 40442064 PMCID: PMC12123037 DOI: 10.1038/s41467-025-60144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 05/16/2025] [Indexed: 06/02/2025] Open
Abstract
Metabolic heterogeneity resulting from the intra-tumoral heterogeneity mediates massive adverse outcomes of tumor therapy, including chemotherapeutic resistance, but the mechanisms inside remain largely unknown. Here, we find that the de novo pyrimidine synthesis pathway determines the chemosensitivity. Chemotherapeutic drugs promote the degradation of cytosolic Carbamoyl-phosphate synthetase II, Aspartate transcarbamylase, and Dihydroorotase (CAD), an enzyme that is rate-limiting for pyrimidine synthesis, leading to apoptosis. We also find that CAD needs to be cleaved by caspase-3 on its Asp1371 residue, before its degradation. Overexpressing CAD or mutating Asp1371 to block caspase-3 cleavage confers chemoresistance in xenograft and Cldn18-ATK gastric cancer models. Importantly, mutations related to Asp1371 of CAD are found in tumor samples that failed neoadjuvant chemotherapy and pharmacological targeting of CAD-Asp1371 mutations using RMY-186 ameliorates chemotherapy efficacy. Our work reveals the vulnerability of de novo pyrimidine synthesis during chemotherapy, highlighting CAD as a promising therapeutic target and biomarker.
Collapse
Affiliation(s)
- Jingsong Ma
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Jiabao Zhao
- State Key Laboratory for Cellular Stress Biology, Innovation Centre for Cell Signalling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chensong Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Centre for Cell Signalling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jinshui Tan
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Ao Cheng
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhuo Niu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zeyang Lin
- Department of Pathology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guangchao Pan
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Chao Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yang Ding
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Mengya Zhong
- Department of Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yifan Zhuang
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yubo Xiong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Huiwen Zhou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Shengyi Zhou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Meijuan Xu
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Wenjie Ye
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Funan Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Xuehui Hong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China.
| |
Collapse
|
4
|
Song K, Ming J, Tao B, Zhao F, Huang S, Wu W, Jiang C, Li X. Emerging glucose oxidase-delivering nanomedicines for enhanced tumor therapy. J Control Release 2025; 381:113580. [PMID: 40024341 DOI: 10.1016/j.jconrel.2025.02.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Abnormalities in glucose metabolism have been shown to characterize malignant tumors. Glucose depletion by glucose oxidase (GOD) has shown great potential in tumor therapy by causing tumor starvation. Since 2017, nanomedicines have been designed and utilized to deliver GOD for more precise and effective glucose modulation, which can overcome intrinsic limitations of different cancer therapeutic modalities by remodeling the tumor microenvironment to enhance antitumor therapy. To date, the topic of GOD-delivering nanomedicines for enhancing tumor therapy has not been comprehensively summarized. Herein, this review aims to provide an overview and discuss in detail recent advances in GOD delivery and directly involved starvation therapy strategies, GOD-sensitized various tumor therapy strategies, and GOD-mediated multimodal antitumor strategies. Finally, the challenges and outlooks for the future progress of the emerging tumor therapeutic nanomedicines are discussed. This review provides intuitive and specific insights to a broad audience in the fields of nanomedicines, biomaterials, and cancer therapy.
Collapse
Affiliation(s)
- Kaiyue Song
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiang Ming
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Feng Zhao
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Shaorong Huang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China.
| | - Wencheng Wu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200092, China.
| | - Xianglong Li
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
5
|
Nie P, Hu L, Feng X, Xu H. Gut Microbiota Disorders and Metabolic Syndrome: Tales of a Crosstalk Process. Nutr Rev 2025; 83:908-924. [PMID: 39504479 DOI: 10.1093/nutrit/nuae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
The microbiota in humans consists of trillions of microorganisms that are involved in the regulation of the gastrointestinal tract and immune and metabolic homeostasis. The gut microbiota (GM) has a prominent impact on the pathogenesis of metabolic syndrome (MetS). This process is reciprocal, constituting a crosstalk process between the GM and MetS. In this review, GM directly or indirectly inducing MetS via the host-microbial metabolic axis has been systematically reviewed. Additionally, the specifically altered GM in MetS are detailed in this review. Moreover, short-chain fatty acids (SCFAs), as unique gut microbial metabolites, have a remarkable effect on MetS, and the role of SCFAs in MetS-related diseases is highlighted to supplement the gaps in this area. Finally, the existing therapeutics are outlined, and the superiority and shortcomings of different therapeutic approaches are discussed, in hopes that this review can contribute to the development of potential treatment strategies.
Collapse
Affiliation(s)
- Penghui Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation Co., Ltd, Nanchang University, Nanchang 330200, China
| |
Collapse
|
6
|
Zhao H, Niu M, Guo Y, Li Q, Wang Y, Jiang Q, Song Q, Zhang Y, Wang L. A lipid starvation strategy-synergized neutrophil activation for postoperative melanoma immunotherapy. J Control Release 2025; 380:860-874. [PMID: 39952297 DOI: 10.1016/j.jconrel.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Abnormal metabolism of melanoma cells on lipids reveals that breaking their lipid addiction provides a starvation strategy to enhance immunotherapy effects and reduce resistance. Herein, we propose an extracellular matrix-inspired scaffold fabricated by multiple cross-linking of collagen and elastin encapsulated with fatty acid transporter proteins (FATP) inhibitor lipofermata (Lipo) to close the "valve" of lipid transported into both melanoma cells and pro-tumor neutrophils. Meanwhile, model TGF-β inhibitor loaded in scaffold synergized with Lipo to polarize postoperative locally enriched neutrophils towards cytotoxic N1 phenotypes after blocking their energy supply and modulate postsurgical immunosuppressive tumor microenvironment. These N1 neutrophils induced tumor pyroptosis through a reactive oxygen species (ROS)-dependent pathway under melanoma cells suffered starvation, and the intracellular contents released from dead melanoma cells stimulated macrophages into producing proinflammatory cytokines, which recruited a secondary wave of neutrophils to the tumor site. Benefiting from the N1 neutrophil induced tumor pyroptosis feedback loop in situ, adaptive and memory antitumor immunity is activated for suppressing aggressive melanoma recurrence and metastasis. Altogether, this lipid starvation strategy synergized with neutrophil activation for amplification of tumor-specific immunotherapy provides a new paradigm for pyroptosis-mediated postsurgical melanoma therapy.
Collapse
Affiliation(s)
- Hongjuan Zhao
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 science avenue, Zhengzhou 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, 100 science avenue, Zhengzhou 450001, China
| | - Mengya Niu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 science avenue, Zhengzhou 450001, China
| | - Yuxin Guo
- School of Pharmaceutical Sciences, Zhengzhou University, 100 science avenue, Zhengzhou 450001, China
| | - Qing Li
- School of Pharmaceutical Sciences, Zhengzhou University, 100 science avenue, Zhengzhou 450001, China
| | - Yinke Wang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 science avenue, Zhengzhou 450001, China
| | - Qianqian Jiang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 science avenue, Zhengzhou 450001, China
| | - Qingling Song
- School of Pharmaceutical Sciences, Zhengzhou University, 100 science avenue, Zhengzhou 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, 100 science avenue, Zhengzhou 450001, China
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 science avenue, Zhengzhou 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, 100 science avenue, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Wan S, Zhou X, Xie F, Zhou F, Zhang L. Ketogenic diet and cancer: multidimensional exploration and research. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1010-1024. [PMID: 39821829 DOI: 10.1007/s11427-023-2637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/29/2024] [Indexed: 01/19/2025]
Abstract
The ketogenic diet (KD) has attracted attention in recent years for its potential anticancer effects. KD is a dietary structure of high fat, moderate protein, and extremely low carbohydrate content. Originally introduced as a treatment for epilepsy, KD has been widely applied in weight loss programs and the management of metabolic diseases. Previous studies have shown that KD can potentially inhibit the growth and spread of cancer by limiting energy supply to tumor cells, thereby inhibiting tumor angiogenesis, reducing oxidative stress in normal cells, and affecting cancer cell signaling and other processes. Moreover, KD has been shown to influence T-cell-mediated immune responses and inflammation by modulating the gut microbiota, enhance the efficacy of standard cancer treatments, and mitigate the complications of chemotherapy. However, controversies and uncertainties remain regarding the specific mechanisms and clinical effects of KD as an adjunctive therapy for cancer. Therefore, this review summarizes the existing research and explores the intricate relationships between KD and cancer treatment.
Collapse
Affiliation(s)
- Shiyun Wan
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| | - Long Zhang
- Life Sciences Institute and State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- Cancer Center Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Altea-Manzano P, Decker-Farrell A, Janowitz T, Erez A. Metabolic interplays between the tumour and the host shape the tumour macroenvironment. Nat Rev Cancer 2025; 25:274-292. [PMID: 39833533 DOI: 10.1038/s41568-024-00786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Metabolic reprogramming of cancer cells and the tumour microenvironment are pivotal characteristics of cancers, and studying these processes offer insights and avenues for cancer diagnostics and therapeutics. Recent advancements have underscored the impact of host systemic features, termed macroenvironment, on facilitating cancer progression. During tumorigenesis, these inherent features of the host, such as germline genetics, immune profile and the metabolic status, influence how the body responds to cancer. In parallel, as cancer grows, it induces systemic effects beyond the primary tumour site and affects the macroenvironment, for example, through inflammation, the metabolic end-stage syndrome of cachexia, and metabolic dysregulation. Therefore, understanding the intricate metabolic interplay between the tumour and the host is a growing frontier in advancing cancer diagnosis and therapy. In this Review, we explore the specific contribution of the metabolic fitness of the host to cancer initiation, progression and response to therapy. We then delineate the complex metabolic crosstalk between the tumour, the microenvironment and the host, which promotes disease progression to metastasis and cachexia. The metabolic relationships among the host, cancer pathogenesis and the consequent responsive systemic manifestations during cancer progression provide new perspectives for mechanistic cancer therapy and improved management of patients with cancer.
Collapse
Affiliation(s)
| | | | | | - Ayelet Erez
- Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Wang YY, Chen PY, Meitei NJ, Lin YR, Lu TT, Nguyen HDH, Hsu SCN, Yuan SSF. Copper-nitrite complexes release nitric oxide and selectively induce oral precancer and cancer cell apoptosis. J Inorg Biochem 2025; 265:112833. [PMID: 39854980 DOI: 10.1016/j.jinorgbio.2025.112833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/24/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Nitric oxide (NO) is a small, short-lived gas molecule that influences various critical functions in living organisms. It involves multiple physiological processes, including cardiovascular function, metabolism, neurotransmission, immunity, and aberrant NO signaling leads to various disorders such as cardiovascular diseases, diabetes, and cancers. In this study, we explored the potential application of copper-nitrite complexes in treating oral precancer and cancer. The copper-nitrite complexes, L1Cu(NO2) and L2Cu(NO2), were shown to release NO into cells and selectively induce cytotoxicity to oral precancer and cancer cells. Notably, L1Cu(NO2) inhibited oral cancer cell proliferation by causing G0/G1 phase cell cycle arrest. Furthermore, L1Cu(NO2) induced cell apoptosis and upregulated the expression of p-PRAS40 (proline-rich Akt substrate of 40 kDa) in oral cancer cells. All these results reveal the therapeutic potential of copper-nitrite complexes, especially L1Cu(NO2), to be developed as a targeted therapy against oral precancer and cancer.
Collapse
Affiliation(s)
- Yen-Yun Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Pang-Yu Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Naorem Jemes Meitei
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yu-Ren Lin
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Hieu D H Nguyen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sodio C N Hsu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Shyng-Shiou F Yuan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Biodevices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu, Taiwan.
| |
Collapse
|
10
|
Martinez P, Sabatier JM. Rethinking corticosteroids use in oncology. Front Pharmacol 2025; 16:1551111. [PMID: 40206059 PMCID: PMC11979161 DOI: 10.3389/fphar.2025.1551111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Corticosteroids (CSs), widely used in oncology for their anti-inflammatory and immunosuppressive properties, help manage cancer-related symptoms and side effects. However, their long-term use may negatively affect patient survival and exacerbate tumor progression. Elevated glucose and glutamine metabolism, disruption of vitamin D levels, and alterations in the microbiome are some of the key factors contributing to these adverse outcomes. Approaches such as ketogenic diets, fasting, sartans, and vitamin D supplementation have shown promise in providing similar benefits to CSs while mitigating the risks associated with the mechanisms identified as contributing to tumor progression. This perspective underscores the necessity for a reevaluation of CSs use in cancer care and advocates for further research into safer, more effective therapeutic strategies.
Collapse
Affiliation(s)
| | - Jean-Marc Sabatier
- Institut de NeuroPhysiopathologie (INP), CNRS UMR 7051, Marseille, France
| |
Collapse
|
11
|
Fatima G, Mehdi AA, Fedacko J, Hadi N, Magomedova A, Mehdi A. Fasting as Cancer Treatment: Myth or Breakthrough in Oncology. Cureus 2025; 17:e81395. [PMID: 40296920 PMCID: PMC12035504 DOI: 10.7759/cureus.81395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
The concept of fasting as a potential cancer treatment has garnered increasing interest, particularly in light of emerging evidence linking dietary interventions to cancer progression and therapy outcomes. This article explores whether fasting, either intermittent or prolonged, can be a viable standalone treatment for cancer or if its therapeutic potential lies in its adjunctive role. Current research suggests that fasting induces a metabolic shift, which may inhibit cancer cell proliferation by depriving them of essential nutrients. Additionally, fasting has been shown to enhance the body's stress resistance, promote autophagy, and possibly make cancer cells more vulnerable to standard treatments such as chemotherapy and radiotherapy. However, the application of fasting as a sole treatment for cancer remains controversial and lacks substantial clinical validation. While animal models and in vitro studies indicate promising results, the translation to human trials is complex, with various types of cancer responding differently to dietary interventions. Moreover, concerns about malnutrition, loss of muscle mass, and the overall health of cancer patients undergoing fasting without supervision must be addressed. The paper critically examines the myth and reality surrounding fasting as a cancer treatment, reviewing key studies and clinical trials to provide a comprehensive understanding of its efficacy and safety. While fasting may hold promise as a supportive therapy, particularly in combination with traditional treatments, there is currently insufficient evidence to support its use as a primary treatment modality. Further research is needed to establish the parameters in which fasting might be beneficial, such as specific cancer types, patient populations, and optimal fasting regimens. Thus, while the idea of fasting as a cancer breakthrough is compelling, it remains a complementary approach rather than a standalone solution in oncology.
Collapse
Affiliation(s)
- Ghizal Fatima
- Department of Public Health, Era's Lucknow Medical College and Hospital, Era University, Lucknow, IND
| | - Abbas A Mehdi
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, IND
| | - Jan Fedacko
- Department of Cardiology, Pavol Jozef Safarik University, Kosice, Kosice, SVK
| | - Najah Hadi
- Department of Medicine, University of Kufa, Najaf, IRQ
| | | | - Ammar Mehdi
- Department of Pediatric Dentistry, Career Post Graduate Institute of Dental Sciences and Hospital, Lucknow, IND
| |
Collapse
|
12
|
Ceccarelli Ceccarelli D, Solerte SB. Unravelling Shared Pathways Linking Metabolic Syndrome, Mild Cognitive Impairment, Dementia, and Sarcopenia. Metabolites 2025; 15:159. [PMID: 40137124 PMCID: PMC11943464 DOI: 10.3390/metabo15030159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Aging is characterized by shared cellular and molecular processes, and aging-related diseases might co-exist in a cluster of comorbidities, particularly in vulnerable individuals whose phenotype meets the criteria for frailty. Whilst the multidimensional definition of frailty is still controversial, there is an increasing understanding of the common pathways linking metabolic syndrome, cognitive decline, and sarcopenia, frequent conditions in frail elderly patients. Methods: We performed a systematic search in the electronic databases Cochrane Library and PubMed and included preclinical studies, cohort and observational studies, and trials. Discussion: Metabolic syndrome markers, such as insulin resistance and the triglyceride/HDL C ratio, correlate with early cognitive impairment. Insulin resistance is a cause of synaptic dysfunction and neurodegeneration. Conversely, fasting and fasting-mimicking agents promote neuronal resilience by enhancing mitochondrial efficiency, autophagy, and neurogenesis. Proteins acting as cellular metabolic sensors, such as SIRT1, play a pivotal role in aging, neuroprotection, and metabolic health. In AD, β-amyloid accumulation and hyperphosphorylated tau in neurofibrillary tangles can cause metabolic reprogramming in brain cells, shifting from oxidative phosphorylation to aerobic glycolysis, similar to the Warburg effect in cancer. The interrelation of metabolic syndrome, sarcopenia, and cognitive decline suggests that targeting these shared metabolic pathways could mitigate all the conditions. Pharmacological interventions, including GLP-1 receptor agonists, metformin, and SIRT 1 inducers, demonstrated neuroprotective effects in animals and some preliminary clinical models. Conclusions: These findings encourage further research on the prevention and treatment of neurodegenerative diseases as well as the drug-repurposing potential of molecules currently approved for diabetes, dyslipidemia, and metabolic syndrome.
Collapse
Affiliation(s)
| | - Sebastiano Bruno Solerte
- Geriatric and Diabetology Unit, Department of Internal Medicine, University of Pavia, Corso Strada Nuova 63, 27100 Pavia, Italy;
| |
Collapse
|
13
|
Popa AD, Gherasim A, Mihalache L, Arhire LI, Graur M, Niță O. Fasting Mimicking Diet for Metabolic Syndrome: A Narrative Review of Human Studies. Metabolites 2025; 15:150. [PMID: 40137116 PMCID: PMC11943686 DOI: 10.3390/metabo15030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic syndrome (MetS) is an association of risk factors that share insulin resistance (IR), exerting a super cumulative effect on the risk of developing cardiometabolic diseases. Lifestyle optimization is a key element in the prevention and non-pharmacological therapy of MetS. Certain studies have concluded that some dietary patterns could be more beneficial as an adjunctive treatment for MetS. Fasting mimicking diet (FMD) is a form of periodic fasting in which caloric intake is restricted for 5 days each month. It has been studied for its beneficial effects not only in patients with neoplasia and neurodegenerative diseases but also for its effects on IR and metabolism. In this narrative review, the effects of FMD in patients with MetS were analyzed, focusing on its impact on key metabolic components and summarizing findings from human studies. FMD has demonstrated beneficial effects on MetS by reducing BMI and waist circumference, preserving lean mass, and improving the metabolic profile. Moreover, individuals with a higher BMI or a greater number of MetS components appear to derive greater benefits from this intervention. However, limitations such as high dropout rates, small sample sizes, and methodological constraints restrict the generalizability of current findings. Further large-scale studies are needed to confirm these effects and establish FMD as a viable non-pharmacological strategy for managing MetS.
Collapse
Affiliation(s)
- Alina Delia Popa
- Internal Medicine II Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.D.P.); (L.M.); (L.I.A.); (O.N.)
| | - Andreea Gherasim
- Internal Medicine II Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.D.P.); (L.M.); (L.I.A.); (O.N.)
| | - Laura Mihalache
- Internal Medicine II Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.D.P.); (L.M.); (L.I.A.); (O.N.)
| | - Lidia Iuliana Arhire
- Internal Medicine II Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.D.P.); (L.M.); (L.I.A.); (O.N.)
| | - Mariana Graur
- Faculty of Medicine and Biological Sciences, University “Ștefan cel Mare” of Suceava, 720229 Suceava, Romania;
| | - Otilia Niță
- Internal Medicine II Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.D.P.); (L.M.); (L.I.A.); (O.N.)
| |
Collapse
|
14
|
Golpour-Hamedani S, Askari G, Khorvash F, Kesharwani P, Bagherniya M, Sahebkar A. The potential protective effects and mechanisms of fasting on neurodegenerative disorders: A narrative review. Brain Res 2025; 1849:149348. [PMID: 39581525 DOI: 10.1016/j.brainres.2024.149348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
This study aimed to review the potential neuroprotective effects and underlying mechanisms of fasting in neurodegenerative disorders by synthesizing the existing literature. Research indicates that fasting may induce substantial modifications in both brain structure and function through diverse metabolic and cellular pathways. Preclinical studies utilizing animal models have elucidated several key mechanisms mediating these effects. The other significant proposed mechanism involves the modulation of gut microbiota during fasting periods. The intestinal microbiome functions as a crucial intermediary in the complex interplay between feeding patterns, circadian rhythms, and immune responses. These microbiome alterations may subsequently exert considerable influence on central nervous system functionality. Moreover, by reducing glucose availability, fasting has been shown to enhance the survival and resistance of healthy cells to adjuvant treatments in central nervous system tumors. Fasting presents a promising non-pharmacological intervention for neurodegenerative disorders, potentially offering both preventive and therapeutic benefits. However, the current evidence base remains preliminary, warranting extensive further investigation to validate these initial findings and establish robust clinical protocols for both efficacy and safety.
Collapse
Affiliation(s)
- Sahar Golpour-Hamedani
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Wang K, Li X, Guo S, Chen J, Lv Y, Guo Z, Liu H. Metabolic reprogramming of glucose: the metabolic basis for the occurrence and development of hepatocellular carcinoma. Front Oncol 2025; 15:1545086. [PMID: 39980550 PMCID: PMC11839411 DOI: 10.3389/fonc.2025.1545086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Primary liver cancer is a common malignant tumor of the digestive system, with hepatocellular carcinoma (HCC) being the most prevalent type. It is characterized by high malignancy, insidious onset, and a lack of specific early diagnostic and therapeutic markers, posing a serious threat to human health. The occurrence and development of HCC are closely related to its metabolic processes. Similar to other malignant tumors, metabolic reprogramming occurs extensively in tumor cells, with glucose metabolism reprogramming being particularly prominent. This is characterized by abnormal activation of glycolysis and inhibition of oxidative phosphorylation and gluconeogenesis, among other changes. Glucose metabolism reprogramming provides intermediates and energy for HCC to meet its demands for rapid growth, proliferation, and metastasis. Additionally, various enzymes and signaling molecules involved in glucose metabolism reprogramming play irreplaceable roles. Therefore, regulating key metabolic enzymes and pathways in these processes is considered an important target for the diagnosis and treatment of HCC. This paper reviews the current status and progress of glucose metabolism reprogramming in HCC, aiming to provide new insights for the diagnosis, detection, and comprehensive treatment strategies of HCC involving combined glucose metabolism intervention in clinical settings.
Collapse
Affiliation(s)
- Kai Wang
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Xiaodan Li
- Department of Pediatric Health Care, Zhangzi County Maternal and Child Health Family Planning Service Center, Changzhi, Shanxi, China
| | - Shuwei Guo
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Junsheng Chen
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Yandong Lv
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Zhiqiang Guo
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Hongzhou Liu
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
16
|
Silvestris N, Aprile G, Tessitore D, Mentrasti G, Cristina Petrella M, Speranza D, Casirati A, Caccialanza R, Cinieri S, Pedrazzoli P. Harnessing tumor metabolism during cancer treatment: A narrative review of emerging dietary approaches. Crit Rev Oncol Hematol 2025; 206:104571. [PMID: 39581244 DOI: 10.1016/j.critrevonc.2024.104571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024] Open
Abstract
Cancer is currently one of the biggest public health challenges worldwide, ranking as the second leading cause of death globally. To date, strong epidemiological associations have been demonstrated between unhealthy lifestyles and eating habits, i.e. obesity, and an increased risk of developing cancer. However, there is limited evidence regarding the impact of specific dietary regimes on cancer outcomes during conventional cancer treatments. This paper systematically reviews and evaluates preclinical and clinical evidence regarding the effects of fasting, fast-mimicking diet, ketogenic diet, vegan diet, alkaline diet, paleolithic diet, the Gerson regimen, and macrobiotic diet in the context of cancer treatments. Clinical trials on dietary regimes as complementary cancer therapy are limited by significant differences in trial design, patient characteristics, and cancer type, making it difficult to draw conclusions. In the future, more uniformly controlled clinical trials should help to better define the role of diets in cancer management.
Collapse
Affiliation(s)
- Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Giuseppe Aprile
- Department of Oncology, San Bortolo General Hospital, Vicenza, Italy
| | - Dalila Tessitore
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Giulia Mentrasti
- Medical Oncology, University Hospital-Marche Polytechnic University, Ancona, Italy
| | | | - Desirèe Speranza
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Amanda Casirati
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Riccardo Caccialanza
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Saverio Cinieri
- Medical Oncology Division and Breast Unit, Senatore Antonio Perrino Hospital, ASL Brindisi, Brindisi, Italy.
| | - Paolo Pedrazzoli
- Department of Internal Medicine, University of Pavia, Pavia, Italy; Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
17
|
Cencioni C, Malatesta S, Vigiano Benedetti V, Licursi V, Perfetto L, Conte F, Ranieri D, Bartolazzi A, Kunkl M, Tuosto L, Larghi A, Piro G, Agostini A, Tortora G, Corbo V, Carbone C, Spallotta F. The GLP-1R agonist semaglutide reshapes pancreatic cancer associated fibroblasts reducing collagen proline hydroxylation and favoring T lymphocyte infiltration. J Exp Clin Cancer Res 2025; 44:18. [PMID: 39828692 PMCID: PMC11744909 DOI: 10.1186/s13046-024-03263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Metabolic syndrome represents a pancreatic ductal adenocarcinoma (PDAC) risk factor. Metabolic alterations favor PDAC onset, which occurs early upon dysmetabolism. Pancreatic neoplastic lesions evolve within a dense desmoplastic stroma, consisting in abundant extracellular matrix settled by cancer associated fibroblasts (CAFs). Hereby, dysmetabolism and PDAC association was analyzed focusing on CAF functions. METHODS PDAC development upon dysmetabolic conditions was investigated in: 1) high fat diet fed wild type immunocompetent syngeneic mice by orthotopic transplantation of pancreatic intraepithelial neoplasia (PanIN) organoids; and 2) primary pancreatic CAFs isolated from chemotherapy naïve PDAC patients with/without an history of metabolic syndrome. RESULTS The dysmetabolic-associated higher PDAC aggressiveness was paralleled by collagen fibril enrichment due to prolyl 4-hydroxylase subunit alpha 1 (P4HA1) increased function. Upon dysmetabolism, P4HA1 boosts collagen proline hydroxylation, intensifies collagen contraction strength, precluding PDAC infiltration. Noteworthy, semaglutide, an incretin agonist, prevents the higher dysmetabolism-dependent PDAC stromal deposition and allows T lymphocyte infiltration, reducing tumor development. CONCLUSIONS These results shed light on novel therapeutic options for PDAC patients with metabolic syndrome aimed at PDAC stroma reshape.
Collapse
Affiliation(s)
- Chiara Cencioni
- Institute of System Analysis and Informatics "Antonio Ruberti", National Research Council (IASI-CNR), 00185, Rome, Italy
| | - Silvia Malatesta
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, 00185, Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185, Rome, Italy
| | | | - Valerio Licursi
- Institute of Molecular Biology and Pathology, National Research Council (IBPM-CNR), 00185, Rome, Italy
| | - Livia Perfetto
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, 00185, Rome, Italy
| | - Federica Conte
- Institute of System Analysis and Informatics "Antonio Ruberti", National Research Council (IASI-CNR), 00185, Rome, Italy
| | - Danilo Ranieri
- Dipartimento Di Scienze Della Vita, Della Salute E Delle Professioni Sanitarie. Università Degli Studi "Link Campus University", 00165, Rome, Italy
| | - Armando Bartolazzi
- Pathology Research Laboratory, Sant' Andrea University Hospital, 00189, Rome, Italy
| | - Martina Kunkl
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, 00185, Rome, Italy
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00179, Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, 00185, Rome, Italy
| | - Alberto Larghi
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
- Center for Endoscopic Research Therapeutics and Training (CERTT), Catholic University, 00168, Rome, Italy
| | - Geny Piro
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Antonio Agostini
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Giampaolo Tortora
- Department of Translational Medicine, Catholic University of the Sacred Heart, 00168, Rome, Italy
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine (DIMI), University and Hospital Trust of Verona, 37100, Verona, Italy
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, 00185, Rome, Italy.
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185, Rome, Italy.
| |
Collapse
|
18
|
Tal O, Zahavi T, Sinberger LA, Salmon-Divon M. Unlocking prognostic potential: A genomic signature of caloric restriction in patients with epithelial ovarian cancer. PLoS One 2025; 20:e0317502. [PMID: 39821197 PMCID: PMC11737700 DOI: 10.1371/journal.pone.0317502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025] Open
Abstract
OBJECTIVES Epithelial ovarian cancer is a significant contributor to cancer-related mortality in women, frequently recurring post-treatment, often accompanied by chemotherapy resistance. Dietary interventions have demonstrated influence on cancer progression; for instance, caloric restriction has exhibited tumor growth reduction and enhanced survival in animal cancer models. In this study, we calculated a transcriptomic signature based on caloric-restriction for ovarian cancer patients and explored its correlation with ovarian cancer progression. METHODS We conducted a literature search to identify proteins modulated by fasting, intermittent fasting or prolonged caloric restriction in human females. Based on the gene expression of these proteins, we calculated a Non-Fasting Genomic Signature score for each ovarian cancer sample sourced from the Cancer Genome Atlas (TCGA) database. Subsequently, we examined the association between this genomic profile and various clinical characteristics. RESULTS The non-fasting genomic signature, comprising eight genes, demonstrated higher prevalence in primary ovarian tumors compared to normal tissue. Patients with elevated signature expression exhibited reduced overall survival and increased lymphatic invasion. The mesenchymal subtype, associated with chemotherapy resistance, displayed the highest signature expression. Multivariate analysis suggested the non-fasting genomic signature as a potential independent prognostic factor. CONCLUSIONS Ovarian cancer tumors expressing a "non-fasting" transcriptional profile correlate with poorer outcomes, emphasizing the potential impact of caloric restriction in improving patient survival and treatment response. Further investigations, including clinical trials, are warranted to validate these findings and explore the broader applicability of non-fasting genomic signatures in other cancer types.
Collapse
Affiliation(s)
- Ori Tal
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Edith Wolfson Medical Center, Holon, Israel
- Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Tamar Zahavi
- Faculty of Natural Sciences, Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Liat Anabel Sinberger
- Faculty of Natural Sciences, Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Mali Salmon-Divon
- Faculty of Natural Sciences, Department of Molecular Biology, Ariel University, Ariel, Israel
- Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
19
|
Li N, Sun YJ, Huang LY, Li RR, Zhang JS, Qiu AH, Wang J, Yang L. Fasting-mimicking diet potentiates anti-tumor effects of CDK4/6 inhibitors against breast cancer by suppressing NRAS- and IGF1-mediated mTORC1 signaling. Drug Resist Updat 2025; 78:101161. [PMID: 39499997 DOI: 10.1016/j.drup.2024.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/13/2024] [Indexed: 12/18/2024]
Abstract
AIMS Acquired resistance to cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) frequently emerges, and CDK4/6i-containing therapies in triple-negative breast cancer (TNBC) remain to be determined. METHODS RNA-sequencing, cell viability analysis, immunoblotting, siRNA transfection et al. were used to investigate and verify the resistance mechanism. BALB/c nude mice xenograft models and spontaneous MMTV-PyMT models were used to explore in vivo efficacy. RESULTS The mTOR pathway was activated in acquired CDK4/6i-resistant cells and inhibition of mTORC1 restored the sensitivity. While fasting-mimicking diet (FMD) enhances the activity of anticancer agents by inhibiting the mTORC1 signaling, we assessed FMD and found that FMD restored the sensitivity of CDK4/6i-resistant cells to abemaciclib and potentiated the anti-tumor activity of CDK4/6i in TNBC. The anti-tumor effects of FMD and/or CDK4/6i were accompanied by the downregulation of S6 phosphorylation. FMD cooperated with CDK4/6i to suppress the levels of IGF1 and RAS. The combination of FMD and abemaciclib also led to a potent inhibition of tumor growth in spontaneous transgenic MMTV-PyMT mouse models. CONCLUSIONS Our data demonstrate that FMD overcomes resistance and potentiates the anti-tumor effect of CDK4/6i by inhibiting mTORC1 signaling via lowering the levels of IGF1 and RAS, providing the rationale for clinical investigation of a potential FMD-CDK4/6i strategy in breast cancer.
Collapse
Affiliation(s)
- Ning Li
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ya-Jie Sun
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Li-Yun Huang
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rong-Rong Li
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Shantou University Medical College, Shantou University, Shantou, Guangdong 515000, China
| | - Jun-Sheng Zhang
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ai-Hua Qiu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Lu Yang
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Shantou University Medical College, Shantou University, Shantou, Guangdong 515000, China.
| |
Collapse
|
20
|
Schulz M, Ding L, Feng S, Chen A, Chen PP, Bojikian KD. The Association Between Intermittent Fasting and Glaucoma. J Glaucoma 2025; 34:1-6. [PMID: 39445885 PMCID: PMC11634075 DOI: 10.1097/ijg.0000000000002515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
PRCIS Intermittent fasting was not associated with a decreased risk of glaucoma diagnosis overall. OBJECTIVE To examine the association between intermittent fasting ("breakfast skipping") and glaucoma in the National Health and Nutrition Examination Survey (NHANES). PATIENTS AND METHODS Retrospective, cross-sectional study of adult participants of the 2005-2008 NHANES aged 40 years and older. Intermittent fasting was defined as skipping breakfast on both days of the NHANES dietary interview. Glaucoma was defined by (1) self-reported glaucoma diagnosis, (2) cup-to-disc (CDR) ≥0.6 in at least one eye, and (3) possible, probable, or definite glaucoma based on clinical judgment of retinal imaging of individuals with CDR ≥0.6 in at least one eye. Covariates included age, sex, race/ethnicity, body mass index, blood pressure, and waist circumference. χ 2 and Fisher exact test were used for categorical variables and the t test for continuous variables. All data were weighted based on the NHANES multistage sampling design. RESULTS The population included 7081 individuals 40 years or older, of whom 946 (13.4%) reported skipping breakfast on both interview days; 482 (6.8%) individuals self-reported glaucoma diagnosis, 549 (7.8%) individuals had glaucoma based on CDR ≥0.6, and 343 (6.0%) individuals had glaucoma based on clinical judgment. Diagnosis of glaucoma by all definitions was associated with older age and black or Latinx/Hispanic ethnicity ( P = 0.004) but was not associated with intermittent fasting status ( P = 0.151). CONCLUSIONS In the 2005-2008 NHANES population, intermittent fasting, defined as breakfast skipping, was not associated with decreased risk of glaucoma diagnosis overall. Further studies are needed to examine the potential effects of intermittent fasting on glaucoma risk.
Collapse
|
21
|
Moore HN, Goncalves MD, Johnston AM, Mayer EL, Rugo HS, Gradishar WJ, Zylla DM, Bergenstal RM. Effective Strategies for the Prevention and Mitigation of Phosphatidylinositol-3-Kinase Inhibitor-Associated Hyperglycemia: Optimizing Patient Care. Clin Breast Cancer 2025; 25:1-11. [PMID: 39462728 DOI: 10.1016/j.clbc.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024]
Abstract
Hyperglycemia is a common adverse event (AE) associated with phosphatidylinositol-3-kinase inhibitors (PI3Kis) and considered an on-target effect. Presence of hyperglycemia is associated with poor outcomes in patients with cancer, and there is need for further refinement of hyperglycemia prevention and mitigation strategies in patients receiving PI3Kis. In this review, the authors highlight effective strategies for preventing PI3Ki-induced hyperglycemia before and during treatment as well as hyperglycemia management. Prior to initiating treatment with PI3Ki, identify baseline risk factors of patients at increased risk for developing hyperglycemia, which include older age, obesity, and glycosylated hemoglobin (HbA1c) 5.7%-6.4% (prediabetes or Type 2 diabetes). To prevent new-onset hyperglycemia, optimize blood glucose, and recommend a low-carbohydrate (60-130 g/day) diet along with regular exercise to all patients prior to initiating the PI3Ki. Prophylactic metformin may be considered in all patients starting a PI3Ki with HbA1c ≤6.4%. Although existing recommendations support monitoring fasting blood glucose (FBG) once weekly (twice-weekly for intermediate-risk, daily for high-risk patients) and HbA1c every 3 months upon initiation of PI3Ki, more frequent FBG monitoring may be considered for prompt detection of hyperglycemia. Experts also recommend considering postprandial glucose monitoring because it is an early indicator of glucose intolerance. If hyperglycemia develops, metformin (first-line) and/or sodium glucose co-transporter 2 inhibitors or thiazolidinediones (second-/third-line) are the preferred agents; consider early referral to an endocrinologist. In conclusion, hyperglycemia is a common but manageable AE associated with PI3Kis. Multidisciplinary approach to the prevention, monitoring, and management of hyperglycemia optimizes patient care and allows patients to maintain therapy on PI3Ki.
Collapse
Affiliation(s)
| | | | | | - Erica L Mayer
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Hope S Rugo
- Department of Medicine (Hematology/Oncology), University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | | | - Dylan M Zylla
- The Cancer Research Center, HealthPartners Institute, Minneapolis, MN
| | | |
Collapse
|
22
|
Cortellino S, D'Angelo M, Quintiliani M, Giordano A. Cancer knocks you out by fasting: Cachexia as a consequence of metabolic alterations in cancer. J Cell Physiol 2025; 240:e31417. [PMID: 39245862 DOI: 10.1002/jcp.31417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/18/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024]
Abstract
Neoplastic transformation reprograms tumor and surrounding host cell metabolism, increasing nutrient consumption and depletion in the tumor microenvironment. Tumors uptake nutrients from neighboring normal tissues or the bloodstream to meet energy and anabolic demands. Tumor-induced chronic inflammation, a high-energy process, also consumes nutrients to sustain its dysfunctional activities. These tumor-related metabolic and physiological changes, including chronic inflammation, negatively impact systemic metabolism and physiology. Furthermore, the adverse effects of antitumor therapy and tumor obstruction impair the endocrine, neural, and gastrointestinal systems, thereby confounding the systemic status of patients. These alterations result in decreased appetite, impaired nutrient absorption, inflammation, and shift from anabolic to catabolic metabolism. Consequently, cancer patients often suffer from malnutrition, which worsens prognosis and increases susceptibility to secondary adverse events. This review explores how neoplastic transformation affects tumor and microenvironment metabolism and inflammation, leading to poor prognosis, and discusses potential strategies and clinical interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Salvatore Cortellino
- Laboratory of Molecular Oncology, Responsible Research Hospital, Campobasso, Italy
- Scuola Superiore Meridionale (SSM), School for Advanced Studies, Federico II University, Naples, Italy
- SHRO Italia Foundation ETS, Candiolo, Turin, Italy
| | - Margherita D'Angelo
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
23
|
Kaur R, Gupta S, Kulshrestha S, Khandelwal V, Pandey S, Kumar A, Sharma G, Kumar U, Parashar D, Das K. Metabolomics-Driven Biomarker Discovery for Breast Cancer Prognosis and Diagnosis. Cells 2024; 14:5. [PMID: 39791706 PMCID: PMC11720085 DOI: 10.3390/cells14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Breast cancer is a cancer with global prevalence and a surge in the number of cases with each passing year. With the advancement in science and technology, significant progress has been achieved in the prevention and treatment of breast cancer to make ends meet. The scientific intradisciplinary subject of "metabolomics" examines every metabolite found in a cell, tissue, system, or organism from different sources of samples. In the case of breast cancer, little is known about the regulatory pathways that could be resolved through metabolic reprogramming. Evidence related to the significant changes taking place during the onset and prognosis of breast cancer can be obtained using metabolomics. Innovative metabolomics approaches identify metabolites that lead to the discovery of biomarkers for breast cancer therapy, diagnosis, and early detection. The use of diverse analytical methods and instruments for metabolomics includes Magnetic Resonance Spectroscopy, LC/MS, UPLC/MS, etc., which, along with their high-throughput analysis, give insights into the metabolites and the molecular pathways involved. For instance, metabolome research has led to the discovery of the glutamate-to-glutamate ratio and aerobic glycolysis as biomarkers in breast cancer. The present review comprehends the updates in metabolomic research and its processes that contribute to breast cancer prognosis and metastasis. The metabolome holds a future, and this review is an attempt to amalgamate the present relevant literature that might yield crucial insights for creating innovative therapeutic strategies aimed at addressing metastatic breast cancer.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; (R.K.); (S.K.); (V.K.); (S.P.)
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; (R.K.); (S.K.); (V.K.); (S.P.)
| | - Sunanda Kulshrestha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; (R.K.); (S.K.); (V.K.); (S.P.)
| | - Vishal Khandelwal
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; (R.K.); (S.K.); (V.K.); (S.P.)
| | - Swadha Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; (R.K.); (S.K.); (V.K.); (S.P.)
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Anil Kumar
- National Institute of Immunology, New Delhi 110067, India;
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Advanced Imaging Research Center (AIRC), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Umesh Kumar
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Ghaziabad 201015, Uttar Pradesh, India;
| | - Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India
| |
Collapse
|
24
|
Chiang ST, Chen Q, Han T, Qian C, Shen X, Lin Y, Xu R, Cao Z, Zhou C, Lu H, Li R, Ai X. Biomimetic Nanovesicles Synergize with Short-Term Fasting for Enhanced Chemotherapy of Triple-Negative Breast Cancer. ACS NANO 2024; 18:33875-33889. [PMID: 39629661 DOI: 10.1021/acsnano.4c07074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and lethal subtype of breast cancer among women. Chemotherapy acts as the standard regimen for TNBC treatment but suffers from limited drug accumulation in tumor regions and undesired side effects. Herein, we developed a synergistic strategy by combining a red blood cell (RBC) membrane-liposome hybrid nanovesicle with short-term fasting (STF) for improved chemotherapy of TNBC. The biomimetic nanovesicles exhibited reduced phagocytosis by macrophages while displaying a significant increase in tumor cell uptake through caveolae/raft-mediated endocytosis under nutrient-deprivation conditions. Importantly, drug-loaded nanovesicles and STF treatment synergistically increased the cytotoxicity of tumor cells by inhibiting their cell cycles and aerobic glycolysis as well as amplifying the reactive oxygen species (ROS) and autophagosomes generation. In the STF-treated mice, biomimetic nanovesicles greatly improved the antitumor efficacy at a lower drug dosage and inhibited the undesired metastasis of TNBC. Overall, we demonstrated that biomimetic nanovesicles synergizing with STF therapy serve as a promising therapeutic strategy for enhanced chemotherapy of malignant TNBC.
Collapse
Affiliation(s)
- Seok Theng Chiang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Chen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tianzhen Han
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunxi Qian
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoshuai Shen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yijing Lin
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rong Xu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongyu Cao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Zhou
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Haijiao Lu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Rongxiu Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangzhao Ai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
25
|
Duraj T, Kalamian M, Zuccoli G, Maroon JC, D'Agostino DP, Scheck AC, Poff A, Winter SF, Hu J, Klement RJ, Hickson A, Lee DC, Cooper I, Kofler B, Schwartz KA, Phillips MCL, Champ CE, Zupec-Kania B, Tan-Shalaby J, Serfaty FM, Omene E, Arismendi-Morillo G, Kiebish M, Cheng R, El-Sakka AM, Pflueger A, Mathews EH, Worden D, Shi H, Cincione RI, Spinosa JP, Slocum AK, Iyikesici MS, Yanagisawa A, Pilkington GJ, Chaffee A, Abdel-Hadi W, Elsamman AK, Klein P, Hagihara K, Clemens Z, Yu GW, Evangeliou AE, Nathan JK, Smith K, Fortin D, Dietrich J, Mukherjee P, Seyfried TN. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med 2024; 22:578. [PMID: 39639257 PMCID: PMC11622503 DOI: 10.1186/s12916-024-03775-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a universally lethal prognosis despite maximal standard therapies. Here, we present a consensus treatment protocol based on the metabolic requirements of GBM cells for the two major fermentable fuels: glucose and glutamine. Glucose is a source of carbon and ATP synthesis for tumor growth through glycolysis, while glutamine provides nitrogen, carbon, and ATP synthesis through glutaminolysis. As no tumor can grow without anabolic substrates or energy, the simultaneous targeting of glycolysis and glutaminolysis is expected to reduce the proliferation of most if not all GBM cells. Ketogenic metabolic therapy (KMT) leverages diet-drug combinations that inhibit glycolysis, glutaminolysis, and growth signaling while shifting energy metabolism to therapeutic ketosis. The glucose-ketone index (GKI) is a standardized biomarker for assessing biological compliance, ideally via real-time monitoring. KMT aims to increase substrate competition and normalize the tumor microenvironment through GKI-adjusted ketogenic diets, calorie restriction, and fasting, while also targeting glycolytic and glutaminolytic flux using specific metabolic inhibitors. Non-fermentable fuels, such as ketone bodies, fatty acids, or lactate, are comparatively less efficient in supporting the long-term bioenergetic and biosynthetic demands of cancer cell proliferation. The proposed strategy may be implemented as a synergistic metabolic priming baseline in GBM as well as other tumors driven by glycolysis and glutaminolysis, regardless of their residual mitochondrial function. Suggested best practices are provided to guide future KMT research in metabolic oncology, offering a shared, evidence-driven framework for observational and interventional studies.
Collapse
Affiliation(s)
- Tomás Duraj
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| | | | - Giulio Zuccoli
- Neuroradiology, Private Practice, Philadelphia, PA, 19103, USA
| | - Joseph C Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Adrienne C Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, 85004, USA
| | - Angela Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Sebastian F Winter
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Jethro Hu
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422, Schweinfurt, Germany
| | | | - Derek C Lee
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Isabella Cooper
- Ageing Biology and Age-Related Diseases Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Kenneth A Schwartz
- Department of Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand
| | - Colin E Champ
- Exercise Oncology & Resiliency Center and Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | | | - Jocelyn Tan-Shalaby
- School of Medicine, University of Pittsburgh, Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Fabiano M Serfaty
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
- Serfaty Clínicas, Rio de Janeiro, RJ, 22440-040, Brazil
| | - Egiroh Omene
- Department of Oncology, Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada
| | - Gabriel Arismendi-Morillo
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao (Bizkaia), Spain
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, 4005, Venezuela
| | | | - Richard Cheng
- Cheng Integrative Health Center, Columbia, SC, 29212, USA
| | - Ahmed M El-Sakka
- Metabolic Terrain Institute of Health, East Congress Street, Tucson, AZ, 85701, USA
| | - Axel Pflueger
- Pflueger Medical Nephrologyand , Internal Medicine Services P.L.L.C, 6 Nelson Road, Monsey, NY, 10952, USA
| | - Edward H Mathews
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Puglia, Italy
| | - Jean Pierre Spinosa
- Integrative Oncology, Breast and Gynecologic Oncology Surgery, Private Practice, Rue Des Terreaux 2, 1002, Lausanne, Switzerland
| | | | - Mehmet Salih Iyikesici
- Department of Medical Oncology, Altınbaş University Bahçelievler Medical Park Hospital, Istanbul, 34180, Turkey
| | - Atsuo Yanagisawa
- The Japanese College of Intravenous Therapy, Tokyo, 150-0013, Japan
| | | | - Anthony Chaffee
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Perth, 6009, Australia
| | - Wafaa Abdel-Hadi
- Clinical Oncology Department, Cairo University, Giza, 12613, Egypt
| | - Amr K Elsamman
- Neurosurgery Department, Cairo University, Giza, 12613, Egypt
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Zsófia Clemens
- International Center for Medical Nutritional Intervention, Budapest, 1137, Hungary
| | - George W Yu
- George W, Yu Foundation For Nutrition & Health and Aegis Medical & Research Associates, Annapolis, MD, 21401, USA
| | - Athanasios E Evangeliou
- Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Papageorgiou Hospital, Efkarpia, 56403, Thessaloniki, Greece
| | - Janak K Nathan
- Dr. DY Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, 411018, India
| | - Kris Smith
- Barrow Neurological Institute, Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - David Fortin
- Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | | | | |
Collapse
|
26
|
Meng Y, Sun J, Zhang G, Yu T, Piao H. Fasting: A Complex, Double-Edged Blade in the Battle Against Doxorubicin-Induced Cardiotoxicity. Cardiovasc Toxicol 2024; 24:1395-1409. [PMID: 39354217 DOI: 10.1007/s12012-024-09925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
In recent years, there has been a surge in the popularity of fasting as a method to enhance one's health and overall well-being. Fasting is a customary practice characterized by voluntary refraining from consuming food and beverages for a specified duration, ranging from a few hours to several days. The potential advantages of fasting, including enhanced insulin sensitivity, decreased inflammation, and better cellular repair mechanisms, have been well documented. However, the effects of fasting on cancer therapy have been the focus of recent scholarly investigations. Doxorubicin (Dox) is one of the most widely used chemotherapy medications for cancer treatment. Unfortunately, cardiotoxicity, which may lead to heart failure and other cardiovascular issues, has been linked to Dox usage. This study aims to comprehensively examine the possible advantages and disadvantages of fasting concerning Dox-induced cardiotoxicity. Researchers have investigated the potential benefits of fasting in lowering the risk of Dox-induced cardiac damage to solve this problem. Nevertheless, new studies indicate that prolonged alternate-day fasting may adversely affect the heart's capacity to manage the cardiotoxic properties of Dox. Though fasting may benefit overall health, it is essential to proceed cautiously and consider the potential risks in certain circumstances.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Tao Yu
- Department of Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Liaoning Province Cancer Hospital, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| | - Haozhe Piao
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Liaoning Province Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
27
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
28
|
Li H, Li C, Ren M, Zhang F, Cao L, Ren K, Ren H. Fasting-Mimicking Diet Prevents Pancreatic Carcinogenesis via Gut Microbiota and Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25638-25647. [PMID: 39514436 DOI: 10.1021/acs.jafc.4c06475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The incidence of pancreatic cancer has been increasing globally in recent years and dietary is a well-defined factor contributing to its carcinogenesis. In this study, we showed that in a cerulein-induced KC (Pdx1-cre; LSL-Kras G12D/+) mouse model, a fasting-mimicking diet (FMD)─comprising fasting for 3 days followed by 4 days of refeeding, repeated over three 1-week cycles─significantly retards the progression of pancreatic carcinogenesis. FMD treatment altered gut microbiota, notably boosting butyrate-producing bacteria and elevating butyric acid levels in pancreatic tissues. Furthermore, lysine pan-crotonylation (pan-Kcr) expression was markedly upregulated in pancreatic intraepithelial neoplasia (PanIN) tissues from FMD-treated mice. Treatment of normal pancreatic duct and pancreatic cancer cells with sodium butyrate also upregulated pan-Kcr expression while reducing cell proliferation. Our findings reveal the pivotal role of dietary factors in the carcinogenesis of the pancreas and support further clinical studies of FMD as an antineoplastic therapeutic measure.
Collapse
Affiliation(s)
- Huaxin Li
- Gastrointestinal Cancer Institute/Pancreatic Disease Institute, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chao Li
- Department of Orthopedics, The Affiliated Hospital of Qingdao Binhai University, Qingdao 266404, China
| | - Minghan Ren
- Gastrointestinal Cancer Institute/Pancreatic Disease Institute, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Fang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Lianjing Cao
- Gastrointestinal Cancer Institute/Pancreatic Disease Institute, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Keyu Ren
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - He Ren
- Gastrointestinal Cancer Institute/Pancreatic Disease Institute, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
29
|
Michenthaler H, Duszka K, Reinisch I, Galhuber M, Moyschewitz E, Stryeck S, Madl T, Prokesch A, Krstic J. Systemic and transcriptional response to intermittent fasting and fasting-mimicking diet in mice. BMC Biol 2024; 22:268. [PMID: 39567986 PMCID: PMC11580389 DOI: 10.1186/s12915-024-02061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Dietary restriction (DR) has multiple beneficial effects on health and longevity and can also improve the efficacy of certain therapies. Diets used to instigate DR are diverse and the corresponding response is not uniformly measured. We compared the systemic and liver-specific transcriptional response to intermittent fasting (IF) and commercially available fasting-mimicking diet (FMD) after short- and long-term use in C57BL/6 J mice. RESULTS We show that neither DR regimen causes observable adverse effects in mice. The weight loss was limited to 20% and was quickly compensated during refeeding days. The slightly higher weight loss upon FMD versus IF correlated with stronger fasting response assessed by lower glucose levels and higher ketone body, free fatty acids and especially FGF21 concentrations in blood. RNA sequencing demonstrated similar transcriptional programs in the liver after both regimens, with PPARα signalling as top enriched pathway, while on individual gene level FMD more potently increased gluconeogenesis-related, and PPARα and p53 target gene expression compared to IF. Repeated IF induced similar transcriptional responses as acute IF. However, repeated cycles of FMD resulted in blunted expression of genes involved in ketogenesis and fatty acid oxidation. CONCLUSIONS Short-term FMD causes more pronounced changes in blood parameters and slightly higher weight loss than IF, while both activate similar pathways (particularly PPARα signalling) in the liver. On individual gene level FMD induces a stronger transcriptional response, whereas cyclic application blunts transcriptional upregulation of fatty acid oxidation and ketogenesis only in FMD. Hence, our comparative characterization of IF and FMD protocols renders both as effective DR regimens and serves as resource in the fasting research field.
Collapse
Affiliation(s)
- Helene Michenthaler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Isabel Reinisch
- Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | - Markus Galhuber
- Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria
| | - Elisabeth Moyschewitz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria
| | - Sarah Stryeck
- Research Centre Pharmaceutical Engineering, Graz University of Technology, Graz, Austria
| | - Tobias Madl
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
30
|
Oswald BM, DeCamp LM, Longo J, Dahabieh MS, Bunda N, Ma S, Watson MJ, Sheldon RD, Vincent MP, Johnson BK, Ellis AE, Soper-Hopper MT, Isaguirre CN, Shen H, Williams KS, Crawford PA, Kaech S, Jang HJ, Krawczyk CM, Jones RG. Dietary Restriction Enhances CD8 + T Cell Ketolysis to Limit Exhaustion and Boost Anti-Tumor Immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.621733. [PMID: 39605550 PMCID: PMC11601469 DOI: 10.1101/2024.11.14.621733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Reducing calorie intake without malnutrition limits tumor progression but the underlying mechanisms are poorly understood. Here we show that dietary restriction (DR) suppresses tumor growth by enhancing CD8+ T cell-mediated anti-tumor immunity. DR reshapes CD8+ T cell differentiation within the tumor microenvironment (TME), promoting the development of effector T cell subsets while limiting the accumulation of exhausted T (Tex) cells, and synergizes with anti-PD1 immunotherapy to restrict tumor growth. Mechanistically, DR enhances CD8+ T cell metabolic fitness through increased ketone body oxidation (ketolysis), which boosts mitochondrial membrane potential and fuels tricarboxylic acid (TCA) cycle-dependent pathways essential for T cell function. T cells deficient for ketolysis exhibit reduced mitochondrial function, increased exhaustion, and fail to control tumor growth under DR conditions. Our findings reveal a critical role for the immune system in mediating the anti-tumor effects of DR, highlighting nutritional modulation of CD8+ T cell fate in the TME as a critical determinant of anti-tumor immunity.
Collapse
Affiliation(s)
- Brandon M. Oswald
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Lisa M. DeCamp
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Joseph Longo
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Michael S. Dahabieh
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Nicholas Bunda
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | | | - McLane J Watson
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Ryan D. Sheldon
- Mass Spectrometry Core Facility, Van Andel Institute, Grand Rapids, MI, USA
| | - Michael P. Vincent
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
- Mass Spectrometry Core Facility, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Abigail E Ellis
- Mass Spectrometry Core Facility, Van Andel Institute, Grand Rapids, MI, USA
| | | | | | - Hui Shen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Kelsey S. Williams
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Peter A. Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - H. Josh Jang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Connie M. Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Russell G. Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
31
|
Xie Y, Ye H, Liu Z, Liang Z, Zhu J, Zhang R, Li Y. Fasting as an Adjuvant Therapy for Cancer: Mechanism of Action and Clinical Practice. Biomolecules 2024; 14:1437. [PMID: 39595613 PMCID: PMC11591922 DOI: 10.3390/biom14111437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The fundamental biological characteristics of tumor cells are characterized by irregularities in signaling and metabolic pathways, which are evident through increased glucose uptake, altered mitochondrial function, and the ability to evade growth signals. Interventions such as fasting or fasting-mimicking diets represent a promising strategy that can elicit distinct responses in normal cells compared to tumor cells. These dietary strategies can alter the circulating levels of various hormones and metabolites, including blood glucose, insulin, glucagon, growth hormone, insulin-like growth factor, glucocorticoids, and epinephrine, thereby potentially exerting an anticancer effect. Additionally, elevated levels of insulin-like growth factor-binding proteins and ketone bodies may increase tumor cells' dependence on their own metabolites, ultimately leading to their apoptosis. The combination of fasting or fasting-mimicking diets with radiotherapy or chemotherapeutic agents has demonstrated enhanced anticancer efficacy. This paper aims to classify fasting, elucidate the mechanisms that underlie its effects, assess its impact on various cancer types, and discuss its clinical applications. We will underscore the differential effects of fasting on normal and cancer cells, the mechanisms responsible for these effects, and the imperative for clinical implementation.
Collapse
Affiliation(s)
| | | | | | | | | | - Rongxin Zhang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.X.); (H.Y.); (Z.L.); (Z.L.); (J.Z.)
| | - Yan Li
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.X.); (H.Y.); (Z.L.); (Z.L.); (J.Z.)
| |
Collapse
|
32
|
Ye F, Huang Y, Zeng L, Li N, Hao L, Yue J, Li S, Deng J, Yu F, Hu X. The genetically predicted causal associations between circulating 3-hydroxybutyrate levels and malignant neoplasms: A pan-cancer Mendelian randomization study. Clin Nutr 2024; 43:137-152. [PMID: 39378563 DOI: 10.1016/j.clnu.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/15/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
OBJECTIVE The ketogenic diet or exogenous supplementation with 3-hydroxybutyrate (3HB) is progressively gaining recognition as a valuable therapeutic or health intervention strategy. However, the effects of 3HB on cancers have been inconsistent in previous studies. This study aimed to comprehensively investigate the causal effects of circulating 3HB levels on 120 cancer phenotypes, and explore the 3HB mediation effect between liver fat accumulation and cancers. METHODS Univariate Mendelian randomization (UVMR) was used in this study to investigate the causal impact of circulating 3HB levels on cancers. We conducted meta-analyses for 3HB-cancer associations sourced from different exposure data. In multivariate MR(MVMR), the body mass index, alcohol frequency and diabetes were included as covariates to investigate the independent effect of 3HB on cancer risk. Additionally, utilizing mediation MR analysis, we checked the potential mediating role of 3HB in the association between liver fat and cancer. RESULTS Integrating findings from UVMR and MVMR, we observed that elevated circulating 3HB levels were associated with reduced risk of developing diffuse large B-cell lymphoma(DLBCL) (OR[95%CI] = 0.28[0.14-0.57] p = 3.92e-04), biliary malignancies (OR[95%CI] = 0.30[0.15-0.60], p = 7.67e-04), hepatocellular carcinoma(HCC) (OR[95%CI] = 0.25[0.09-0.71], p = 9.33e-03), primary lymphoid and hematopoietic malignancies (OR[95%CI] = 0.76[0.58-0.99], p = 0.045). Further UVMR analysis revealed that an increase in the percent liver fat was associated with reduced 3HB levels (Beta[95%CI] = -0.073[-0.122∼-0.024], p = 0.0034) and enhanced susceptibility to HCC (OR[95%CI] = 13.9[9.76-19.79], p = 3.14e-48), biliary malignancies (OR[95%CI] = 4.04[3.22-5.07], p = 1.64e-33), nasopharyngeal cancer (OR[95%CI] = 3.26[1.10-9.67], p = 0.03), and primary lymphoid and hematopoietic malignancies (OR[95%CI] = 1.27[1.13-1.44], p = 1.04e-4). Furthermore, 3HB fully mediated the effect of liver fat on susceptibility to DLBCL (OR[95%CI] = 1.076[1.01-1.15], p = 0.034). CONCLUSIONS Circulating 3HB is associated with a reduced susceptibility to developing DLBCL, HCC, biliary malignancies, and primary lymphoid and hematopoietic malignancies. The impaired ketogenesis induced by metabolic-dysfunction associated fatty liver disease (MAFLD) contributes to risk of DLBCL.
Collapse
Affiliation(s)
- Fanghang Ye
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yucheng Huang
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Rheumatology and Immunology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Liang Zeng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Na Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Liyuan Hao
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jiayun Yue
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shenghao Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jiali Deng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fei Yu
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
33
|
Fanti M, Longo VD. Nutrition, GH/IGF-1 signaling, and cancer. Endocr Relat Cancer 2024; 31:e230048. [PMID: 39166749 PMCID: PMC11771996 DOI: 10.1530/erc-23-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Cancer is the second leading cause of death in the United States and among the most prevalent diseases globally, with an incidence expected to grow because of smoking, pollution, poor dietary habits, obesity, and the rise in the older population. Given their ability to reduce risk factors, albeit with varying efficacy, nutrition and fasting could help prevent cancer and other age-related disorders. Calorie restriction (CR), various forms of intermittent fasting (IF) or periodic fasting (PF), and fasting-mimicking diets (FMDs) have been shown to improve health span, increase lifespan, and prevent or postpone cancer in rodents. The effects of specific diets and fasting regimens on aging and cancer appear to be mediated in part by the reduction in the activity of the growth hormone (GH)/insulin-like-growth-factor-I (IGF-1) axis. Nevertheless, recent data indicate that the alternation of low and normal levels of these hormones and factors may be ideal for optimizing longevity and function. Here, we review the role of nutrition, CR, and fasting/FMD on cancer, focusing on the hypothesis that the modulation of GH, IGF-1, and insulin signaling partly mediates the effect of these dietary interventions on cancer prevention.
Collapse
Affiliation(s)
- Maura Fanti
- Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Valter D. Longo
- Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
34
|
Taranto D, Kloosterman DJ, Akkari L. Macrophages and T cells in metabolic disorder-associated cancers. Nat Rev Cancer 2024; 24:744-767. [PMID: 39354070 DOI: 10.1038/s41568-024-00743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/03/2024]
Abstract
Cancer and metabolic disorders have emerged as major global health challenges, reaching epidemic levels in recent decades. Often viewed as separate issues, metabolic disorders are shown by mounting evidence to heighten cancer risk and incidence. The intricacies underlying this connection are still being unraveled and encompass a complex interplay between metabolites, cancer cells and immune cells within the tumour microenvironment (TME). Here, we outline the interplay between metabolic and immune cell dysfunction in the context of three highly prevalent metabolic disorders, namely obesity; two associated liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH); and type 2 diabetes. We focus primarily on macrophages and T cells, the critical roles of which in dictating inflammatory response and immune surveillance in metabolic disorder-associated cancers are widely reported. Moreover, considering the ever-increasing number of patients prescribed with metabolism disorder-altering drugs and diets in recent years, we discuss how these therapies modulate systemic and local immune phenotypes, consequently impacting cancer malignancy. Collectively, unraveling the determinants of metabolic disorder-associated immune landscape and their role in fuelling cancer malignancy will provide a framework essential to therapeutically address these highly prevalent diseases.
Collapse
Affiliation(s)
- Daniel Taranto
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan J Kloosterman
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Muscogiuri G, Barrea L, Bettini S, El Ghoch M, Katsiki N, Tolvanen L, Verde L, Colao A, Busetto L, Yumuk VD, Hassapidou M, on behalf of EASO Nutrition Working Group. European Association for the Study of Obesity (EASO) Position Statement on Medical Nutrition Therapy for the Management of Individuals with Overweight or Obesity and Cancer. Obes Facts 2024; 18:86-105. [PMID: 39433024 PMCID: PMC12017763 DOI: 10.1159/000542155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
Obesity, a prevalent and multifactorial disease, is linked to a range of metabolic abnormalities, including insulin resistance, dyslipidemia, and chronic inflammation. These imbalances not only contribute to cardiometabolic diseases but also play a significant role in cancer pathogenesis. The rising prevalence of obesity underscores the need to investigate dietary strategies for effective weight management for individuals with overweight or obesity and cancer. This European Society for the Study of Obesity (EASO) position statement aimed to summarize current evidence on the role of obesity in cancer and to provide insights on the major nutritional interventions, including the Mediterranean diet (MedDiet), the ketogenic diet (KD), and the intermittent fasting (IF), that should be adopted to manage individuals with overweight or obesity and cancer. The MedDiet, characterized by high consumption of plant-based foods and moderate intake of olive oil, fish, and nuts, has been associated with a reduced cancer risk. The KD and the IF are emerging dietary interventions with potential benefits for weight loss and metabolic health. KD, by inducing ketosis, and IF, through periodic fasting cycles, may offer anticancer effects by modifying tumor metabolism and improving insulin sensitivity. Despite the promising results, current evidence on these dietary approaches in cancer management in individuals with overweight or obesity is limited and inconsistent, with challenges including variability in adherence and the need for personalized dietary plans.
Collapse
Affiliation(s)
- Giovanna Muscogiuri
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Cattedra Unesco “Educazione Alla Salute E Allo Sviluppo Sostenibile”, University Federico II, Naples, Italy
| | - Luigi Barrea
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Centro Direzionale Isola F2, Naples, Italy
| | - Silvia Bettini
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, Padova, Italy
| | - Marwan El Ghoch
- Center for the Study of Metabolism, Body Composition and Lifestyle, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Niki Katsiki
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Liisa Tolvanen
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Obesity, Academic Specialist Center, Stockholm Health Care Services, Stockholm, Sweden
- ESDN Obesity of EFAD, Naarden, The Netherlands
| | - Ludovica Verde
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Annamaria Colao
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Cattedra Unesco “Educazione Alla Salute E Allo Sviluppo Sostenibile”, University Federico II, Naples, Italy
| | - Luca Busetto
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, Padova, Italy
| | - Volkan Demirhan Yumuk
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Fatih, Istanbul, Turkey
- European Association for the Study of Obesity-Collaborating Center for Obesity Management, Istanbul, Turkey
| | - Maria Hassapidou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
- ESDN Obesity of EFAD, Naarden, The Netherlands
| | - on behalf of EASO Nutrition Working Group
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Cattedra Unesco “Educazione Alla Salute E Allo Sviluppo Sostenibile”, University Federico II, Naples, Italy
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Centro Direzionale Isola F2, Naples, Italy
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, Padova, Italy
- Center for the Study of Metabolism, Body Composition and Lifestyle, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Obesity, Academic Specialist Center, Stockholm Health Care Services, Stockholm, Sweden
- ESDN Obesity of EFAD, Naarden, The Netherlands
- Department of Public Health, University of Naples Federico II, Naples, Italy
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Fatih, Istanbul, Turkey
- European Association for the Study of Obesity-Collaborating Center for Obesity Management, Istanbul, Turkey
| |
Collapse
|
36
|
Prabhakaran R, Thamarai R, Sivasamy S, Dhandayuthapani S, Batra J, Kamaraj C, Karthik K, Shah MA, Mallik S. Epigenetic frontiers: miRNAs, long non-coding RNAs and nanomaterials are pioneering to cancer therapy. Epigenetics Chromatin 2024; 17:31. [PMID: 39415281 PMCID: PMC11484394 DOI: 10.1186/s13072-024-00554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Cancer has arisen from both genetic mutations and epigenetic changes, making epigenetics a crucial area of research for innovative cancer prevention and treatment strategies. This dual perspective has propelled epigenetics into the forefront of cancer research. This review highlights the important roles of DNA methylation, histone modifications and non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long non-coding RNAs, which are key regulators of cancer-related gene expression. It explores the potential of epigenetic-based therapies to revolutionize patient outcomes by selectively modulating specific epigenetic markers involved in tumorigenesis. The review examines promising epigenetic biomarkers for early cancer detection and prognosis. It also highlights recent progress in oligonucleotide-based therapies, including antisense oligonucleotides (ASOs) and antimiRs, to precisely modulate epigenetic processes. Furthermore, the concept of epigenetic editing is discussed, providing insight into the future role of precision medicine for cancer patients. The integration of nanomedicine into cancer therapy has been explored and offers innovative approaches to improve therapeutic efficacy. This comprehensive review of recent advances in epigenetic-based cancer therapy seeks to advance the field of precision oncology, ultimately culminating in improved patient outcomes in the fight against cancer.
Collapse
Affiliation(s)
- Rajkumar Prabhakaran
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India
| | - Rajkumar Thamarai
- UGC Dr. D.S. Kothari Postdoctoral Fellow, Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India
| | - Sivabalan Sivasamy
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India
| | | | - Jyoti Batra
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India.
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Krishnasamy Karthik
- Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Mohd Asif Shah
- Department of Economics, Kardan University, Parwane Du, 1001, Kabul, Afghanistan.
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144001, India.
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Saurav Mallik
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, Massachusetts, 02115, United States.
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
37
|
Li S, Zhu S, Yu J. The role of gut microbiota and metabolites in cancer chemotherapy. J Adv Res 2024; 64:223-235. [PMID: 38013112 PMCID: PMC11464465 DOI: 10.1016/j.jare.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The microbiota inhabits the epithelial surfaces of hosts, which influences physiological functions from helping digest food and acquiring nutrition to regulate metabolism and shaping host immunity. With the deep insight into the microbiota, an increasing amount of research reveals that it is also involved in the initiation and progression of cancer. Intriguingly, gut microbiota can mediate the biotransformation of drugs, thereby altering their bioavailability, bioactivity, or toxicity. AIM OF REVIEW The review aims to elaborate on the role of gut microbiota and microbial metabolites in the efficacy and adverse effects of chemotherapeutics. Furthermore, we discuss the clinical potential of various ways to harness gut microbiota for cancer chemotherapy. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent evidence shows that gut microbiota modulates the efficacy and toxicity of chemotherapy agents, leading to diverse host responses to chemotherapy. Thereinto, targeting the microbiota to improve efficacy and diminish the toxicity of chemotherapeutic drugs may be a promising strategy in tumor treatment.
Collapse
Affiliation(s)
- Shiyu Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
38
|
Zheng C, Yu L, Zhao L, Guo M, Feng M, Li H, Zhou X, Fan Y, Liu L, Ma Z, Jia Y, Li M, Barman I, Yu Z. Label-free Raman spectroscopy reveals tumor microenvironmental changes induced by intermittent fasting for the prevention of breast cancer in animal model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124387. [PMID: 38704999 DOI: 10.1016/j.saa.2024.124387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
The development of tools that can provide a holistic picture of the evolution of the tumor microenvironment in response to intermittent fasting on the prevention of breast cancer is highly desirable. Here, we show, for the first time, the use of label-free Raman spectroscopy to reveal biomolecular alterations induced by intermittent fasting in the tumor microenvironment of breast cancer using a dimethyl-benzanthracene induced rat model. To quantify biomolecular alterations in the tumor microenvironment, chemometric analysis of Raman spectra obtained from untreated and treated tumors was performed using multivariate curve resolution-alternative least squares and support vector machines. Raman measurements revealed remarkable and robust differences in lipid, protein, and glycogen content prior to morphological manifestations in a dynamically changing tumor microenvironment, consistent with the proteomic changes observed by quantitative mass spectrometry. Taken together with its non-invasive nature, this research provides prospective evidence for the clinical translation of Raman spectroscopy to identify biomolecular variations in the microenvironment induced by intermittent fasting for the prevention of breast cancer, providing new perspectives on the specific molecular effects in the tumorigenesis of breast cancer.
Collapse
Affiliation(s)
- Chao Zheng
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China; Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China
| | - Lixiang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China; Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China
| | - Linfeng Zhao
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China; Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China
| | - Maolin Guo
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China; Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China
| | - Man Feng
- Department of Pathology, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, Shandong 250031, China
| | - Hui Li
- Department of Pathology, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Xingchen Zhou
- Department of Pathology, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Yeye Fan
- School of Mathematics, Shandong University, Jinan, Shandong 250100, China
| | - Liyuan Liu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China; Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China
| | - Zhongbing Ma
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China; Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China
| | - Yining Jia
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China; Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA.
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China; Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China.
| |
Collapse
|
39
|
Imada S, Khawaled S, Shin H, Meckelmann SW, Whittaker CA, Corrêa RO, Alquati C, Lu Y, Tie G, Pradhan D, Calibasi-Kocal G, Nascentes Melo LM, Allies G, Rösler J, Wittenhofer P, Krystkiewicz J, Schmitz OJ, Roper J, Vinolo MAR, Ricciardiello L, Lien EC, Vander Heiden MG, Shivdasani RA, Cheng CW, Tasdogan A, Yilmaz ÖH. Short-term post-fast refeeding enhances intestinal stemness via polyamines. Nature 2024; 633:895-904. [PMID: 39169180 PMCID: PMC12103248 DOI: 10.1038/s41586-024-07840-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
For over a century, fasting regimens have improved health, lifespan and tissue regeneration in diverse organisms, including humans1-6. However, how fasting and post-fast refeeding affect adult stem cells and tumour formation has yet to be explored in depth. Here we demonstrate that post-fast refeeding increases intestinal stem cell (ISC) proliferation and tumour formation; post-fast refeeding augments the regenerative capacity of Lgr5+ ISCs, and loss of the tumour suppressor gene Apc in post-fast-refed ISCs leads to a higher tumour incidence in the small intestine and colon than in the fasted or ad libitum-fed states, demonstrating that post-fast refeeding is a distinct state. Mechanistically, we discovered that robust mTORC1 induction in post-fast-refed ISCs increases protein synthesis via polyamine metabolism to drive these changes, as inhibition of mTORC1, polyamine metabolite production or protein synthesis abrogates the regenerative or tumorigenic effects of post-fast refeeding. Given our findings, fast-refeeding cycles must be carefully considered and tested when planning diet-based strategies for regeneration without increasing cancer risk, as post-fast refeeding leads to a burst in stem-cell-driven regeneration and tumorigenicity.
Collapse
Affiliation(s)
- Shinya Imada
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Saleh Khawaled
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Heaji Shin
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Charles A Whittaker
- Barbara K. Ostrom (1978) Bioinformatics and Computing Core Facility, Swanson Biotechnology Center, Koch Institute at the MIT, Cambridge, MA, USA
| | - Renan Oliveira Corrêa
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, São Paulo, Brazil
| | - Chiara Alquati
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Yixin Lu
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Guodong Tie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Dikshant Pradhan
- Barbara K. Ostrom (1978) Bioinformatics and Computing Core Facility, Swanson Biotechnology Center, Koch Institute at the MIT, Cambridge, MA, USA
| | - Gizem Calibasi-Kocal
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir-Turkey, Turkey
| | | | - Gabriele Allies
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Jonas Rösler
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Pia Wittenhofer
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jonathan Krystkiewicz
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Oliver J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Marco Aurelio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, São Paulo, Brazil
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Department of Gastroenterology, Hepatology and Nutrition, MD Anderson Cancer Center, Houston, TX, USA
| | - Evan C Lien
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Matthew G Vander Heiden
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Chia-Wei Cheng
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany.
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Shimi G. Dietary approaches for controlling cancer by limiting the Warburg effect: a review. Nutr Rev 2024; 82:1281-1291. [PMID: 37903372 DOI: 10.1093/nutrit/nuad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Cancer is a mysterious disease. Among other alterations, tumor cells, importantly, have metabolic modifications. A well-known metabolic modification commonly observed in cancer cells has been termed the Warburg effect. This phenomenon is defined as a high preference for glucose uptake, and increased lactate production from that glucose, even when oxygen is readily available. Some anti-cancer drugs target the proposed Warburg effect, and some dietary regimens can function similarly. However, the most suitable dietary strategies for treating particular cancers are not yet well understood. The aim of this review was to describe findings regarding the impact of various proposed dietary regimens targeting the Warburg effect. The evidence suggests that combining routine cancer therapies with diet-based strategies may improve the outcome in treating cancer. However, designing individualized therapies must be our ultimate goal.
Collapse
Affiliation(s)
- Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Chen K, Li T, Diao H, Wang Q, Zhou X, Huang Z, Wang M, Mao Z, Yang Y, Yu W. SIRT7 knockdown promotes gemcitabine sensitivity of pancreatic cancer cell via upregulation of GLUT3 expression. Cancer Lett 2024; 598:217109. [PMID: 39002692 DOI: 10.1016/j.canlet.2024.217109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Gemcitabine serves as a first-line chemotherapeutic treatment for pancreatic cancer (PC), but it is prone to rapid drug resistance. Increasing the sensitivity of PC to gemcitabine has long been a focus of research. Fasting interventions may augment the effects of chemotherapy and present new options. SIRT7 is known to link metabolism with various cellular processes through post-translational modifications. We found upregulation of SIRT7 in PC cells is associated with poor prognosis and gemcitabine resistance. Cross-analysis of RNA-seq and ATAC-seq data suggested that GLUT3 might be a downstream target gene of SIRT7. Subsequent investigations demonstrated that SIRT7 directly interacts with the enhancer region of GLUT3 to desuccinylate H3K122. Our group's another study revealed that GLUT3 can transport gemcitabine in breast cancer cells. Here, we found GLUT3 KD reduces the sensitivity of PC cells to gemcitabine, and SIRT7 KD-associated gemcitabine-sensitizing could be reversed by GLUT3 KD. While fasting mimicking induced upregulation of SIRT7 expression in PC cells, knocking down SIRT7 enhanced sensitivity to gemcitabine through upregulating GLUT3 expression. We further confirmed the effect of SIRT7 deficiency on the sensitivity of gemcitabine under fasting conditions using a mouse xenograft model. In summary, our study demonstrates that SIRT7 can regulate GLUT3 expression by binding to its enhancer and altering H3K122 succinylation levels, thus affecting gemcitabine sensitivity in PC cells. Additionally, combining SIRT7 knockdown with fasting may improve the efficacy of gemcitabine. This unveils a novel mechanism by which SIRT7 influences gemcitabine sensitivity in PC and offer innovative strategies for clinical combination therapy with gemcitabine.
Collapse
Affiliation(s)
- Keyu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Tiane Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Honglin Diao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Qikai Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Xiaojia Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Zhihua Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Mingyue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Zebin Mao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China.
| | - Yinmo Yang
- Department of General Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Wenhua Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
42
|
Emara MH, Soliman H, Said EM, Elbatae H, Elazab M, Elhefnawy S, Zaher TI, Abdel-Razik A, Elnadry M. Intermittent fasting and the liver: Focus on the Ramadan model. World J Hepatol 2024; 16:1070-1083. [PMID: 39221099 PMCID: PMC11362902 DOI: 10.4254/wjh.v16.i8.1070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/24/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Intermittent fasting (IF) is an intervention that involves not only dietary modifications but also behavioral changes with the main core being a period of fasting alternating with a period of controlled feeding. The duration of fasting differs from one regimen to another. Ramadan fasting (RF) is a religious fasting for Muslims, it lasts for only one month every one lunar year. In this model of fasting, observers abstain from food and water for a period that extends from dawn to sunset. The period of daily fasting is variable (12-18 hours) as Ramadan rotates in all seasons of the year. Consequently, longer duration of daily fasting is observed during the summer. In fact, RF is a peculiar type of IF. It is a dry IF as no water is allowed during the fasting hours, also there are no calorie restrictions during feeding hours, and the mealtime is exclusively nighttime. These three variables of the RF model are believed to have a variable impact on different liver diseases. RF was evaluated by different observational and interventional studies among patients with non-alcoholic fatty liver disease and it was associated with improvements in anthropometric measures, metabolic profile, and liver biochemistry regardless of the calorie restriction among lean and obese patients. The situation is rather different for patients with liver cirrhosis. RF was associated with adverse events among patients with liver cirrhosis irrespective of the underlying etiology of cirrhosis. Cirrhotic patients developed new ascites, ascites were increased, had higher serum bilirubin levels after Ramadan, and frequently developed hepatic encephalopathy and acute upper gastrointestinal bleeding. These complications were higher among patients with Child class B and C cirrhosis, and some fatalities occurred due to fasting. Liver transplant recipients as a special group of patients, are vulnerable to dehydration, fluctuation in blood immunosuppressive levels, likelihood of deterioration and hence observing RF without special precautions could represent a real danger for them. Patients with Gilbert syndrome can safely observe RF despite the minor elevations in serum bilirubin reported during the early days of fasting.
Collapse
Affiliation(s)
- Mohamed H Emara
- Department of Hepatology, Gastroenterology and Infectious Diseases, Kafrelsheikh University, Kafr-Elshikh 33516, Egypt
- Department of Medicine, Alyousif Hospital, Alkhobar 34622, Saudi Arabia.
| | - Hanan Soliman
- Department of Tropical Medicine and Infectious Diseases, Tanta University, Tanta 31512, Egypt
| | - Ebada M Said
- Department of Hepatology, Gastroenterology and Infectious Diseases, Benha University, Benha 13511, Egypt
| | - Hassan Elbatae
- Department of Hepatology, Gastroenterology and Infectious Diseases, Kafrelsheikh University, Kafr-Elshikh 33516, Egypt
| | - Mostafa Elazab
- Department of Hepatology, Gastroenterology and Infectious Diseases, Kafrelsheikh University, Kafr-Elshikh 33516, Egypt
| | - Shady Elhefnawy
- Department of Hepatology, Gastroenterology and Infectious Diseases, Kafrelsheikh University, Kafr-Elshikh 33516, Egypt
| | - Tarik I Zaher
- Department of Tropical Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed Abdel-Razik
- Department of Tropical Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Elnadry
- Department of Hepato-Gastroenterology and Infectious Diseases, Al-Azhar University, Cairo 11651, Egypt
| |
Collapse
|
43
|
Vernieri C, Ligorio F, Tripathy D, Longo VD. Cyclic fasting-mimicking diet in cancer treatment: Preclinical and clinical evidence. Cell Metab 2024; 36:1644-1667. [PMID: 39059383 DOI: 10.1016/j.cmet.2024.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/03/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
In preclinical tumor models, cyclic fasting and fasting-mimicking diets (FMDs) produce antitumor effects that become synergistic when combined with a wide range of standard anticancer treatments while protecting normal tissues from treatment-induced adverse events. More recently, results of phase 1/2 clinical trials showed that cyclic FMD is safe, feasible, and associated with positive metabolic and immunomodulatory effects in patients with different tumor types, thus paving the way for larger clinical trials to investigate FMD anticancer activity in different clinical contexts. Here, we review the tumor-cell-autonomous and immune-system-mediated mechanisms of fasting/FMD antitumor effects, and we critically discuss new metabolic interventions that could synergize with nutrient starvation to boost its anticancer activity and prevent or reverse tumor resistance while minimizing toxicity to patients. Finally, we highlight potential future applications of FMD approaches in combination with standard anticancer strategies as well as strategies to implement the design and conduction of clinical trials.
Collapse
Affiliation(s)
- Claudio Vernieri
- Medical Oncology and Hematology-Oncology Department, University of Milan, 20122 Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, 20139 Milan, Italy.
| | - Francesca Ligorio
- Medical Oncology and Hematology-Oncology Department, University of Milan, 20122 Milan, Italy; Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1354, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA
| | - Valter D Longo
- IFOM ETS, the AIRC Institute of Molecular Oncology, 20139 Milan, Italy; Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
44
|
Anil A, Raheja R, Gibu D, Raj AS, Spurthi S. Uncovering the Links Between Dietary Sugar and Cancer: A Narrative Review Exploring the Impact of Dietary Sugar and Fasting on Cancer Risk and Prevention. Cureus 2024; 16:e67434. [PMID: 39310400 PMCID: PMC11415310 DOI: 10.7759/cureus.67434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Over the last several years, the scientific community has grown concerned about the relationship between dietary sugar intake and cancer development. The main causes of concern are the increasing intake of processed foods rich in sugar and the rising incidence of cancer cases. This study aims to uncover the complex relationship between sugar consumption and cancer development and its progression, with a particular focus on investigating whether fasting can protect against this condition. Our review provides a detailed discussion of the molecular aspects of the sugar-cancer relationship and an analysis of the existing literature. It explains how sugar affects cell signaling, inflammation, and hormonal pathways associated with the development of cancer. We also explored the new role of fasting in the prevention of cancer and its impact on cancer patients. This encompasses fasting-triggered autophagy, metabolic alterations, and possible health benefits, which form the major concern of this paper. Thus, by deepening the knowledge of these relations and providing the results of the analysis accompanied by concise and meaningful illustrations to facilitate the understanding of the data, we open the door to the further development of ideas to minimize the rates of cancer and improve overall well-being.
Collapse
Affiliation(s)
- Ashik Anil
- Pharmacology and Therapeutics, East Point Hospital and Research Centre, Bangalore, IND
| | - Ronak Raheja
- Hematology and Medical Oncology, Manipal Hospitals, Bangalore, IND
| | - Diya Gibu
- Biotechnology, SRM Institute of Science and Technology, Chennai, IND
| | - Aravind S Raj
- General Practice, Amrita Institute of Medical Science, Kochi, IND
| | - S Spurthi
- Immuno-Oncology Research, KLE University, Bangalore, IND
| |
Collapse
|
45
|
Tizazu AM. Fasting and calorie restriction modulate age-associated immunosenescence and inflammaging. Aging Med (Milton) 2024; 7:499-509. [PMID: 39234195 PMCID: PMC11369340 DOI: 10.1002/agm2.12342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Aging is a multifaceted process impacting cells, tissues, organs, and organ systems of the body. Like other systems, aging affects both the adaptive and the innate components of the immune system, a phenomenon known as immunosenescence. The deregulation of the immune system puts elderly individuals at higher risk of infection, lower response to vaccines, and increased incidence of cancer. In the Western world, overnutrition has increased the incidence of obesity (linked with chronic inflammation) which increases the risk of metabolic syndrome, cardiovascular disease, and cancer. Aging is also associated with inflammaging a sterile chronic inflammation that predisposes individuals to age-associated disease. Genetic manipulation of the nutrient-sensing pathway, fasting, and calorie restriction (CR) has been shown to increase the lifespan of model organisms. As well in humans, fasting and CR have also been shown to improve different health parameters. Yet the direct effect of fasting and CR on the aging immune system needs to be further explored. Identifying the effect of fasting and CR on the immune system and how it modulates different parameters of immunosenescence could be important in designing pharmacological or nutritional interventions that slow or revert immunosenescence and strengthen the immune system of elderly individuals. Furthermore, clinical intervention can also be planned, by incorporating fasting or CR with medication, chemotherapy, and vaccination regimes. This review discusses age-associated changes in the immune system and how these changes are modified by fasting and CR which add information on interventions that promote healthy aging and longevity in the growing aging population.
Collapse
Affiliation(s)
- Anteneh Mehari Tizazu
- Department of Microbiology, Immunology, and Parasitology, School of MedicineSt. Paul's Hospital Millennium Medical CollegeAddis AbabaEthiopia
| |
Collapse
|
46
|
Yue C, Lu W, Fan S, Huang Z, Yang J, Dong H, Zhang X, Shang Y, Lai W, Li D, Dong T, Yuan A, Wu J, Kang L, Hu Y. Nanoparticles for inducing Gaucher disease-like damage in cancer cells. NATURE NANOTECHNOLOGY 2024; 19:1203-1215. [PMID: 38740934 DOI: 10.1038/s41565-024-01668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
Nutrient avidity is one of the most distinctive features of tumours. However, nutrient deprivation has yielded limited clinical benefits. In Gaucher disease, an inherited metabolic disorder, cells produce cholesteryl-glucoside which accumulates in lysosomes and causes cell damage. Here we develop a nanoparticle (AbCholB) to emulate natural-lipoprotein-carried cholesterol and initiate Gaucher disease-like damage in cancer cells. AbCholB is composed of a phenylboronic-acid-modified cholesterol (CholB) and albumin. Cancer cells uptake the nanoparticles into lysosomes, where CholB reacts with glucose and generates a cholesteryl-glucoside-like structure that resists degradation and aggregates into microscale crystals, causing Gaucher disease-like damage in a glucose-dependent manner. In addition, the nutrient-sensing function of mTOR is suppressed. It is observed that normal cells escape severe damage due to their inferior ability to compete for nutrients compared with cancer cells. This work provides a bioinspired strategy to selectively impede the metabolic action of cancer cells by taking advantage of their nutrient avidity.
Collapse
Affiliation(s)
- Chunyan Yue
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Wenjing Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Shuxin Fan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Zhusheng Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Jiaying Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Hong Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Xiaojun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Yuxin Shang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Wenjia Lai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, China
| | - Dandan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Tiejun Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China.
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China.
| |
Collapse
|
47
|
Nair PM, Ramalakshmi R, Devibala M, Saranya M, Sivaranjini S, Thangavelu R, Mahalingam M. Integrative Oncology for High-Grade Glioma: A Case Report on the Combined Effects of Oncothermia and Complementary Therapies. Cureus 2024; 16:e66492. [PMID: 39246981 PMCID: PMC11380757 DOI: 10.7759/cureus.66492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
High-grade gliomas are aggressive brain tumors with a poor prognosis despite conventional treatments such as surgery, radiation, and chemotherapy. Integrative oncology, combining conventional and complementary therapies, may offer additional benefits in managing these complex cases. We present a 68-year-old male farmer diagnosed with high-grade glioma in the left medial temporal lobe. The patient presented with severe headache, disturbed sleep, and anxiety, and experienced an episode of fever and seizure. He refused conventional radiation therapy due to concerns about side effects and opted for an integrative medicine protocol. This protocol included oncothermia, high-dose vitamin C therapy, hydrogen inhalation, ozone therapy, magnet therapy, fasting, acupuncture, pulsed electromagnetic field therapy, yoga therapy, hydrotherapy, biologicals, and dietary modifications. The patient underwent 12 sessions of oncothermia over 24 days, combined with other integrative therapies. MRI scans before and after treatment showed a reduction in tumor size from 3.6 x 2.9 x 2.5 cm to 3.4 x 2.7 x 2.5 cm, corresponding to a 12% decrease in volume. Hematological parameters (complete blood count, liver function test, kidney function test, C-reactive protein), cancer markers (carcinoembryonic antigen, lactate dehydrogenase), and mental health indices (quality of life, survival rate) also showed significant improvement. The patient experienced no adverse events and reported enhanced quality of life. This case report suggests that an integrative oncology approach, combining oncothermia and various complementary therapies, may be an effective treatment option for high-grade gliomas, particularly for patients intolerant to conventional therapies. Further research, including randomized controlled trials, is necessary to validate these findings and determine the specific contributions of each therapy.
Collapse
Affiliation(s)
- Pradeep Mk Nair
- Department of Integrative Oncology, Mirakle Integrated Health Centre, Pollachi, IND
| | | | - Muniappan Devibala
- Department of Integrative Oncology, Mirakle Integrated Health Centre, Pollachi, IND
| | | | - Sekar Sivaranjini
- Department of Integrative Oncology, Mirakle Integrated Health Centre, Pollachi, IND
| | - R Thangavelu
- Department of Modern Medicine, Mirakle Integrated Health Centre, Pollachi, IND
| | - Manickam Mahalingam
- Department of Integrative Oncology, Mirakle Integrated Health Centre, Pollachi, IND
| |
Collapse
|
48
|
Cela O, Scrima R, Pacelli C, Rosiello M, Piccoli C, Capitanio N. Autonomous Oscillatory Mitochondrial Respiratory Activity: Results of a Systematic Analysis Show Heterogeneity in Different In Vitro-Synchronized Cancer Cells. Int J Mol Sci 2024; 25:7797. [PMID: 39063035 PMCID: PMC11276763 DOI: 10.3390/ijms25147797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Circadian oscillations of several physiological and behavioral processes are an established process in all the organisms anticipating the geophysical changes recurring during the day. The time-keeping mechanism is controlled by a transcription translation feedback loop involving a set of well-characterized transcription factors. The synchronization of cells, controlled at the organismal level by a brain central clock, can be mimicked in vitro, pointing to the notion that all the cells are endowed with an autonomous time-keeping system. Metabolism undergoes circadian control, including the mitochondrial terminal catabolic pathways, culminating under aerobic conditions in the electron transfer to oxygen through the respiratory chain coupled to the ATP synthesis according to the oxidative phosphorylation chemiosmotic mechanism. In this study, we expanded upon previous isolated observations by utilizing multiple cell types, employing various synchronization protocols and different methodologies to measure mitochondrial oxygen consumption rates under conditions simulating various metabolic stressors. The results obtained clearly demonstrate that mitochondrial respiratory activity undergoes rhythmic oscillations in all tested cell types, regardless of their individual respiratory proficiency, indicating a phenomenon that can be generalized. However, notably, while primary cell types exhibited similar rhythmic respiratory profiles, cancer-derived cell lines displayed highly heterogeneous rhythmic changes. This observation confirms on the one hand the dysregulation of the circadian control of the oxidative metabolism observed in cancer, likely contributing to its development, and on the other hand underscores the necessity of personalized chronotherapy, which necessitates a detailed characterization of the cancer chronotype.
Collapse
Affiliation(s)
- Olga Cela
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (M.R.); (C.P.); (N.C.)
| | - Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (M.R.); (C.P.); (N.C.)
| | | | | | | | | |
Collapse
|
49
|
Oatman N, Gawali MV, Congrove S, Caceres R, Sukumaran A, Gupta N, Murugesan N, Arora P, Subramanian SV, Choi K, Abdel-Malek Z, Reisz JA, Stephenson D, Amaravadi R, Desai P, D’Alessandro A, Komurov K, Dasgupta B. A Multimodal Drug-Diet-Immunotherapy Combination Restrains Melanoma Progression and Metastasis. Cancer Res 2024; 84:2333-2351. [PMID: 38885087 PMCID: PMC11250569 DOI: 10.1158/0008-5472.can-23-1635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/12/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
The genetic landscape of cancer cells can lead to specific metabolic dependencies for tumor growth. Dietary interventions represent an attractive strategy to restrict the availability of key nutrients to tumors. In this study, we identified that growth of a subset of melanoma was severely restricted by a rationally designed combination therapy of a stearoyl-CoA desaturase (SCD) inhibitor with an isocaloric low-oleic acid diet. Despite its importance in oncogenesis, SCD underwent monoallelic codeletion along with PTEN on chromosome 10q in approximately 47.5% of melanoma, and the other SCD allele was methylated, resulting in very low-SCD expression. Although this SCD-deficient subset was refractory to SCD inhibitors, the subset of PTEN wild-type melanoma that retained SCD was sensitive. As dietary oleic acid could potentially blunt the effect of SCD inhibitors, a low oleic acid custom diet was combined with an SCD inhibitor. The combination reduced monounsaturated fatty acids and increased saturated fatty acids, inducing robust apoptosis and growth suppression and inhibiting lung metastasis with minimal toxicity in preclinical mouse models of PTEN wild-type melanoma. When combined with anti-PD1 immunotherapy, the SCD inhibitor improved T-cell functionality and further constrained melanoma growth in mice. Collectively, these results suggest that optimizing SCD inhibitors with diets low in oleic acid may offer a viable and efficacious therapeutic approach for improving melanoma treatment. Significance: Blockade of endogenous production of fatty acids essential for melanoma combined with restriction of dietary intake blocks tumor growth and enhances response to immunotherapy, providing a rational drug-diet treatment regimen for melanoma.
Collapse
Affiliation(s)
- Nicole Oatman
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Mruniya V. Gawali
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Sunny Congrove
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Roman Caceres
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Abitha Sukumaran
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Nishtha Gupta
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Narmadha Murugesan
- Divisions of Molecular and Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Priyanka Arora
- College of Pharmacy, University of Cincinnati, Cincinnati, OH
| | | | - Kwangmin Choi
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | | | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ravi Amaravadi
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Pankaj Desai
- College of Pharmacy, University of Cincinnati, Cincinnati, OH
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kakajan Komurov
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Biplab Dasgupta
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
50
|
Khalifa A, Guijarro A, Nencioni A. Advances in Diet and Physical Activity in Breast Cancer Prevention and Treatment. Nutrients 2024; 16:2262. [PMID: 39064705 PMCID: PMC11279876 DOI: 10.3390/nu16142262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
There is currently a growing interest in diets and physical activity patterns that may be beneficial in preventing and treating breast cancer (BC). Mounting evidence indicates that indeed, the so-called Mediterranean diet (MedDiet) and regular physical activity likely both help reduce the risk of developing BC. For those who have already received a BC diagnosis, these interventions may decrease the risk of tumor recurrence after treatment and improve quality of life. Studies also show the potential of other dietary interventions, including fasting or modified fasting, calorie restriction, ketogenic diets, and vegan or plant-based diets, to enhance the efficacy of BC therapies. In this review article, we discuss the biological rationale for utilizing these dietary interventions and physical activity in BC prevention and treatment. We highlight published and ongoing clinical studies that have applied these lifestyle interventions to BC patients. This review offers valuable insights into the potential application of these dietary interventions and physical activity as complimentary therapies in BC management.
Collapse
Affiliation(s)
- Amr Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Ana Guijarro
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|