1
|
Theodorou A, Karagiannakis DS, Stefanaki K, Kassi E, Peppa M, Vryonidou A, Paschou SA. Female-specific risk factors for cardiovascular disease: an update. Hormones (Athens) 2024; 23:637-653. [PMID: 38922384 DOI: 10.1007/s42000-024-00576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. While it was previously believed that men have greater susceptibility to CVD, recent research suggests that women face an increased risk of CVD after the onset of menopause, primarily due to the loss of the protective effects of estrogens. Premature ovarian insufficiency (POI), polycystic ovarian syndrome (PCOS), and gestational factors, such as gestational diabetes mellitus (GDM), recurrent pregnancy loss, preterm delivery, and preeclampsia, are specific reproductive disorders that may contribute to an elevated risk of CVD at earlier ages, i.e., before the onset of menopause. This suggests that women with these conditions should be closely monitored for CVD risk factors even before reaching menopause. Such early intervention may help reduce the incidence of CVD and improve overall cardiovascular health in this population. The precise pathophysiological mechanism underlying the development of CVD in women with menopause, premature POI, PCOS, and gestational factors remains elusive. This review article seeks to elucidate the latest research on the relationship between these conditions and CVD in women, aiming to explore the underlying pathogenic mechanisms contributing to this association.
Collapse
Affiliation(s)
- Angeliki Theodorou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, School of Medicine, Alexandra Hospital, National and Kapodistrian University of Athens, 80 Vasilisis Sophias Avenue, Athens, PC, 11528, Greece
| | - Dimitrios S Karagiannakis
- Academic Department of Gastroenterology, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Stefanaki
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, School of Medicine, Alexandra Hospital, National and Kapodistrian University of Athens, 80 Vasilisis Sophias Avenue, Athens, PC, 11528, Greece
| | - Evanthia Kassi
- Endocrine Unit, First Department of Propaedeutic and Internal Medicine, Laiko Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Melpomeni Peppa
- Endocrine Unit and Diabetes Center, Second Department of Internal Medicine, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Andromachi Vryonidou
- Department of Endocrinology and Diabetes Center, Hellenic Red Cross Hospital, Athens, Greece
| | - Stavroula A Paschou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, School of Medicine, Alexandra Hospital, National and Kapodistrian University of Athens, 80 Vasilisis Sophias Avenue, Athens, PC, 11528, Greece.
| |
Collapse
|
2
|
Zhang R, Ren S, Mi H, Wang M, He T, Zhang R, Jiang W, Su C. Fatty liver index as an independent predictor of all-cause and disease-specific mortality. Eur J Gastroenterol Hepatol 2024; 36:1453-1463. [PMID: 39400538 PMCID: PMC11527378 DOI: 10.1097/meg.0000000000002865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE This study aims to assess the prognostic value of the fatty liver index (FLI), a noninvasive tool for hepatic steatosis assessment, in predicting all-cause and disease-specific mortality. METHODS We linked data from the National Health and Nutrition Examination Survey III (1988-1994) with Public-Use Mortality Files, forming a cohort of 11 297 participants with a median follow-up period of 26.25 years. Cox proportional hazards models were used to evaluate the association between FLI and all-cause mortality, while Fine and Gray's models assessed the relationship between FLI and disease-specific mortality. RESULTS The FLI ≥ 60 was independently associated with an increased risk of all-cause mortality (hazard ratio = 1.24, P < 0.001), as well as mortality from malignant neoplasms (hazard ratio = 1.18, P = 0.048), diabetes (hazard ratio = 2.62, P = 0.001), and cardiovascular diseases (CVDs) (hazard ratio = 1.18, P = 0.018), compared to FLI < 30. No significant associations were found with Alzheimer's disease, influenza and pneumonia, chronic lower respiratory diseases, or renal disorders. Subgroup analyses indicated that individuals who were females aged 40-60 (hazard ratio = 1.67, P = 0.003), non-overweight (hazard ratio = 1.75, P = 0.007), or without abdominal obesity (hazard ratio = 1.75, P = 0.007) exhibited a stronger association between FLI ≥ 60 and all-cause mortality. CONCLUSION These findings support the prognostic value of the FLI for predicting mortality from all causes, malignant neoplasms, diabetes, and CVDs. Targeted attention is needed in postmenopausal women, non-overweight, and non-abdominally obese populations.
Collapse
Affiliation(s)
| | - Shuhao Ren
- School of Public Health, Xiamen University
| | - Hongfei Mi
- Department of Public Health, Zhongshan Hospital, Fudan University (Xiamen Branch)
- Department of Public Health, Xiamen Clinical Research Center for Cancer Therapy
| | | | - Tingjuan He
- Department of Public Health, Zhongshan Hospital, Fudan University (Xiamen Branch)
- Department of Public Health, Xiamen Clinical Research Center for Cancer Therapy
| | | | - Wei Jiang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, Fujian, China
| | - Chenghao Su
- Department of Public Health, Zhongshan Hospital, Fudan University (Xiamen Branch)
- Department of Public Health, Xiamen Clinical Research Center for Cancer Therapy
| |
Collapse
|
3
|
Perone F, Spadafora L, Pratesi A, Nicolaio G, Pala B, Franco G, Ruzzolini M, Ambrosetti M. Obesity and cardiovascular disease: Risk assessment, physical activity, and management of complications. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2024; 23:200331. [PMID: 39346126 PMCID: PMC11439555 DOI: 10.1016/j.ijcrp.2024.200331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/31/2024] [Indexed: 10/01/2024]
Abstract
The patient with obesity is at risk of developing cardiovascular disease and risk factors. Obesity negatively impacts prognosis and increases cardiovascular morbidity and mortality. Therefore, a comprehensive risk assessment is needed to define the cardiovascular risk of the patient and, thus, a tailored management and treatment. Chronic and successful management of these patients involves the evaluation of the various therapeutic strategies available (comprehensive lifestyle intervention, weight-loss medications, and bariatric surgery) and the diagnosis and treatment of cardiovascular complications (coronary artery disease, heart failure, and atrial fibrillation). Cardiac rehabilitation in patients with obesity is showing beneficial effect and a positive impact on weight loss, cardiovascular risk factors, mental health, functional capacity, and adherence to lifestyle interventions and pharmacological treatment. Long-term weight loss and maintenance represent a key objective during the management of the patient with obesity to reduce the risk of future adverse events. Multidisciplinary management and interventions are necessary to prevent and reduce overall cardiovascular risk and mortality. The aim of our review is to propose a comprehensive, critical and updated overview regarding risk assessment, physical activity, and the management of cardiovascular complications in patient with obesity.
Collapse
Affiliation(s)
- Francesco Perone
- Cardiac Rehabilitation Unit, Rehabilitation Clinic "Villa delle Magnolie", 81020, Castel Morrone, Caserta, Italy
| | - Luigi Spadafora
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | | | - Giulia Nicolaio
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Barbara Pala
- Division of Cardiology, Department of Clinical and Molecular Medicine, University of Rome Sapienza, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Giulia Franco
- Cardiac Rehabilitation Unit, Cardiovascular Department, University and Hospital of Trieste, 34122, Trieste, Italy
| | - Matteo Ruzzolini
- Cardiology Department, Isola Tiberina-Gemelli Isola Hospital, Rome, Italy
| | - Marco Ambrosetti
- Cardiovascular Rehabilitation Unit, ASST Crema, Santa Marta Hospital, Rivolta D'Adda, Italy
| |
Collapse
|
4
|
Lv D, Han N, Yuan M, Huang W, Yan L, Tang H. Depression and the risk of non-alcohol fatty liver disease: Results from a cross-sectional study and a Mendelian randomization analysis. J Affect Disord 2024; 366:300-307. [PMID: 39216642 DOI: 10.1016/j.jad.2024.08.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Previous studies have suggested that psychiatric factors may be pathogenic for NAFLD. However, the association between depression and NAFLD is not been consistent, and whether depression plays a causal role in the development of NAFLD remains unclear. METHODS We extracted data from the National Health and Nutrition Examination Survey (NHANES) 2017-2018 to assess the correlation between depression and NAFLD risk. Based on previous genome-wide association studies (GWAS) meta-analyses on NAFLD and depression, we performed a Mendelian randomization (MR) analysis to explore the causal effect of depression on NAFLD. The primary analysis method used in the MR analysis was inverse variance weighted. RESULTS We ultimately extracted the data from 3878 individuals in the NHANES database to perform the cross-sectional study. Multivariable-adjusted logistic regression showed that depressed individuals had a higher risk of NAFLD than controls (odds ratio [OR] 1.33, 95 % CI 1.03-1.72, p = 0.027) among women. Based on GWAS data, we included 36 genetic variants as instrumental variables to estimate the causal effect of depression on NAFLD risk. The MR analysis revealed a causal association between genetically predicted depression and an increased risk of NAFLD (OR = 1.504, 95 % CI 1.13-2.00, p = 0.005). LIMITATIONS The consistency of these findings in Eastern populations requires further longitudinal studies. CONCLUSIONS This cross-sectional study suggested that depression might increase the risk of NAFLD in women. The MR analysis demonstrated that there exists a causal association between genetically predicated depression and NAFLD risk.
Collapse
Affiliation(s)
- Duoduo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan Province 610041, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Ning Han
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan Province 610041, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Man Yuan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Wei Huang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan Province 610041, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Libo Yan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan Province 610041, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan Province 610041, China.
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan Province 610041, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan Province 610041, China.
| |
Collapse
|
5
|
Masrouri S, Tamehri Zadeh SS, Tohidi M, Azizi F, Hadaegh F. Linking extent of return to fasting state after oral glucose tolerance test to future risk of prediabetes and type 2 diabetes: Insights from the TLGS. J Diabetes Investig 2024; 15:1743-1752. [PMID: 39344286 PMCID: PMC11615687 DOI: 10.1111/jdi.14308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
AIMS To assess the risk of difference between 2 h post-load plasma glucose (2 h-PG) and fasting plasma glucose (FPG) on incident prediabetes/type 2 diabetes (T2DM) among normoglycemic individuals. METHODS Among 4,971 individuals aged ≥20 years, the associations of the difference between 2 h-PG and FPG with outcomes were examined using multivariable-adjusted Cox regression analysis. Participants were categorized into three groups: a low post-load group (2 h-PG ≤ FPG, as the reference group); a high post-load group (2 h-PG > FPG and ≥75th percentile of the difference); and a medium post-load group (2 h-PG > FPG and <75th percentile of the difference), which was further categorized into three groups by equal ranges. RESULTS Over a median of 11.5 years of follow-up, 2,331 new cases of prediabetes/type 2 diabetes and 360 cases of type 2 diabetes occurred. Greater risks of incident prediabetes/type 2 diabetes in second (9-16 mg/dL) and third (17-24 mg/dL) medium post-load, as well as high post-load (≥25 mg/dL) categories, were found, with hazard ratios (95% confidence intervals) of 1.26 (1.11-1.44), 1.32 (1.15-1.51), and 1.69 (1.51-1.90), respectively; the issue was more prominent among women (P for interaction = 0.005). The risk of incident type 2 diabetes was also higher for these categories. After further adjustment for the homeostasis model assessment of insulin resistance, result remained essentially unchanged. Even among individuals with low normal FPG (i.e., <90 mg/dL), ≥9 mg/dL difference between 2 h-PG and FPG increased the risk of composite prediabetes/ type 2 diabetes. CONCLUSIONS Greater levels of 2 h-PG as low as 9 mg/dL than FPG among normoglycemic individuals is a harbinger of prediabetes/type 2 diabetes development.
Collapse
Affiliation(s)
- Soroush Masrouri
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Seyed Saeed Tamehri Zadeh
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Maryam Tohidi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Farzad Hadaegh
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
6
|
Muscogiuri G, Caporusso M, Caruso P, Poggi CD, Vitale M, Zurru A, Colao A. Current evidence on gender-related risk factors for type 1 diabetes, type 2 diabetes and prediabetes: a reappraisal of the Italian study group on gender difference in endocrine diseases. J Endocrinol Invest 2024:10.1007/s40618-024-02491-3. [PMID: 39570488 DOI: 10.1007/s40618-024-02491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE Diabetes is a chronic disease with a significant socio-economic burden. Recognizing its risk factors and gender differences within its physio-pathological mechanisms may allow early diagnosis. This review aims to summarize the current evidence on gender differences in terms of prevalence, risk factors and pathogenesis for Type 1 Diabetes (T1D), Type 2 Diabetes (T2D) and prediabetes. METHODS A comprehensive search of English-language articles was conducted in PubMed, EMBASE and Cochrane Library until July 2024. We selected all studies that assessed gender differences on risk factors for diabetes and prediabetes. RESULTS T1D is an autoimmune disease, with a multifactorial pathogenesis. Contrary to most autoimmune diseases, it has a male gender bias, with a male predominance incidence after puberty, for which the involvement of hormones has been hypothesized in addition to genetic predisposition. In T2D, the accumulation of visceral adipose tissue is recognized as the main predisposing factor for insulin resistance and consequent β-cells loss and dysfunction. Sex hormones influence fat disposition resulting in different body composition between males and females and different metabolic impact. Gender differences in dietary patterns and socio-cultural determinants also influence the risk of T2D. Also, a gender-related risk factor has been detected in prediabetes; indeed, females are at greater risk of impaired glucose tolerance than males. CONCLUSIONS Evidence shows the existence of gender differences in risk factors for T1D, T2D and prediabetes. This suggests that gender should be considered in prevention and screening programs, with the goal of reducing incidence or making an early diagnosis.
Collapse
Affiliation(s)
- Giovanna Muscogiuri
- Dipartimento Di Medicina Clinica E Chirurgia, Unità Di Endocrinologia, Diabetologia E Andrologia, Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy.
- Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), Unità Di Endocrinologia, Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy.
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, Naples, Italy.
| | - Mariangela Caporusso
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Paola Caruso
- Division of Endocrinology and Metabolic Diseases, University Hospital of Campania "Luigi Vanvitelli", Naples, Italy
| | - Chiara Delli Poggi
- Department of Experimental and Clinical Biomedical Science, Diabetes Unit, University of Florence, Florence, Italy
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Annalisa Zurru
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Annamaria Colao
- Dipartimento Di Medicina Clinica E Chirurgia, Unità Di Endocrinologia, Diabetologia E Andrologia, Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
- Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), Unità Di Endocrinologia, Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, Naples, Italy
| |
Collapse
|
7
|
Lempesis IG, Hoebers N, Essers Y, Jocken JWE, Dubois LJ, Blaak EE, Manolopoulos KN, Goossens GH. Impaired Mitochondrial Respiration in Upper Compared to Lower Body Differentiated Human Adipocytes and Adipose Tissue. J Clin Endocrinol Metab 2024; 109:e2291-e2301. [PMID: 38375937 PMCID: PMC11570378 DOI: 10.1210/clinem/dgae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
CONTEXT Abdominal obesity is associated with increased cardiometabolic disease risk, while lower body fat seems to confer protection against obesity-related complications. The functional differences between upper and lower body adipose tissue (AT) remain poorly understood. OBJECTIVE We aimed to examine whether mitochondrial respiration is impaired in abdominal as compared to femoral differentiated human multipotent adipose-derived stem cells (hMADS; primary outcome) and AT in postmenopausal women. DESIGN In this cross-sectional study, 23 postmenopausal women with normal weight or obesity were recruited at the University of Birmingham/Queen Elizabeth Hospital Birmingham (Birmingham, UK). We collected abdominal and femoral subcutaneous AT biopsies to determine mitochondrial oxygen consumption rates in differentiated abdominal and femoral hMADS. Furthermore, we assessed oxidative phosphorylation (OXPHOS) protein expression and mitochondrial DNA (mtDNA) content in abdominal and femoral AT as well as hMADS. Finally, we explored in vivo fractional oxygen extraction and carbon dioxide release across abdominal and femoral subcutaneous AT in a subgroup of the same individuals with normal weight or obesity. RESULTS We found lower basal and maximal uncoupled mitochondrial oxygen consumption rates in abdominal compared to femoral hMADS. In line, in vivo fractional oxygen extraction and carbon dioxide release were lower across abdominal than femoral AT. OXPHOS protein expression and mtDNA content did not significantly differ between abdominal and femoral differentiated hMADS and AT. CONCLUSION The present findings demonstrate that in vitro mitochondrial respiration and in vivo oxygen fractional extraction are less in upper compared to lower body differentiated hMADS and AT, respectively, in postmenopausal women.
Collapse
Affiliation(s)
- Ioannis G Lempesis
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
| | - Nicole Hoebers
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
| | - Yvonne Essers
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
| | - Johan W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
| | - Konstantinos N Manolopoulos
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
8
|
Raeisi-Dehkordi H, Thorand B, Beigrezaei S, Peters A, Rathman W, Adamski J, Chatelan A, van der Schouw YT, Franco OH, Muka T, Nano J. The mediatory role of androgens on sex differences in glucose homeostasis and incidence of type 2 diabetes: the KORA study. Cardiovasc Diabetol 2024; 23:411. [PMID: 39548547 PMCID: PMC11568628 DOI: 10.1186/s12933-024-02494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Sex differences exist in type 2 diabetes (T2D), and androgens have been implicated in the etiology of T2D in a sex-specific manner. We therefore aimed to investigate whether androgens play a role in explaining sex differences in glucose homeostasis and incidence of T2D. METHODS We used observational data from the German population-based KORA F4 study (n = 1975, mean age: 54 years, 41% women) and its follow-up examination KORA FF4 (median follow-up 6.5 years, n = 1412). T2D was determined through self-reporting and confirmed by contacting the physicians and/or reviewing the medical charts. Multivariable linear and logistic regression models were employed to explore associations. Mediation analyses were performed to assess direct effects (DE) and indirect effects (IE), and the mediating role of androgens (total testosterone (TT), dehydroepiandrosterone (DHEA), dehydroepiandrosterone-sulfate (DHEAs)) in the association between sex (women vs. men) and glucose- and insulin-related traits (cross-sectional analysis) and incidence of T2D (longitudinal analysis). RESULTS After adjustment for confounders, (model 1: adjusted for age; model 2: model 1 + smoking + alcohol consumption + physical activity), women had lower levels of TT, DHEAs, fasting glucose levels, fasting insulin levels, 2 h-glucose levels and HOMA-IR, compared to men. An inverse association was observed for TT and glucose- and insulin-related traits in men, while a positive association was observed for TT and fasting glucose levels in women. We found a mediatory role of TT on the association of sex with fasting glucose levels (IE: β = 3.08, 95% CI: 2.04, 4.30), fasting insulin levels (IE: β = 0.39, 95% CI:0.30, 0.47), 2 h-glucose levels (IE: β = 12.77, 95% CI: 9.01, 16.03) and HOMA-IR (IE: β = 0.41, 95% CI: 0.33, 0.50). Also, the inconsistent mediatory role of TT was seen on the association of sex with incidence of T2D (DE: 0.12, 95% CI: 0.06, 0.20 and IE: OR = 7.60, 95% CI: 3.43, 24.54). The opposing DE and IE estimates suggest that the association between sex and either glucose homeostasis or the incidence of T2D may differ when TT is considered as a potential mediator, with higher TT levels being beneficial for glucose metabolism or incidence of T2D in men, while in women, detrimental. No mediatory role was observed for either DHEA or DHEAs on glucose homeostasis or the incidence of T2D. CONCLUSIONS The dimorphic mediatory role of TT highlights its complex role in metabolic health, contributing differently to the glucose dysregulation and risk of T2D in men and women.
Collapse
Affiliation(s)
- Hamidreza Raeisi-Dehkordi
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München- German Research Center for Enviromental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), partner site Munich-Neuherberg, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Pettenkofer School of Public Health, Munich, Germany
| | - Sara Beigrezaei
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München- German Research Center for Enviromental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), partner site Munich-Neuherberg, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Chair of Epidemiology, Medical Faculty, IBE, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Rathman
- Institute for Biometrics and Epidemiology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, 1000, Slovenia
| | - Angeline Chatelan
- Department of Nutrition and Dietetics, Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Yvonne T van der Schouw
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Oscar H Franco
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Jana Nano
- Institute of Epidemiology, Helmholtz Zentrum München- German Research Center for Enviromental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Pettenkofer School of Public Health, Munich, Germany.
| |
Collapse
|
9
|
Fan Y, Ding L, Li W, Li W, Sun L, Li X, Chang L, He Q, Hu G, Wang B, Liu M. The association between android-to-gynoid lean mass ratio and all-cause and specific-cause mortality in US adults: A prospective study. Diabetes Obes Metab 2024. [PMID: 39511849 DOI: 10.1111/dom.16051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVE The associations of lean mass distribution with mortality risk are not fully elucidated. We aimed to evaluate the effects of a new lean mass distribution indicator-android/gynoid lean mass ratio (AGLR) evaluated by dual-energy x-ray absorptiometry (DXA) on the risk of all-cause and specific-cause mortality in a NHANES cohort. METHODS This was a population-based cohort study, which included 18 542 subjects aged 20 years and older from the US National Health and Nutrition Examination Survey (US NHANES, 2003-2006 and 2011-2018). The primary outcomes of our study were all-cause mortality, cardiovascular (CVD) mortality and cancer mortality, which were obtained from the linkage to registries. Cox proportional hazard regression models were used to investigate the association between lean mass distribution and mortality risk among the US NHANES general population. Restricted cubic spline nested in Cox regression was also used to test whether there was a non-linear association of AGLR as a continuous variable with the risk of mortality. RESULTS During a median follow-up of 6.9 years, 1412 participants died, of whom 435 were due to CVD and 340 were due to cancer. The multivariable-adjusted (Model 4) hazard ratios (HRs) for each SD increase in AGLR were 1.53 (95% confidence interval [CI] 1.40-1.67) for all-cause mortality, 1.56 (95% CI 1.30-1.87) for cancer mortality and 1.64 (95% CI 1.47-1.84) for CVD mortality. The associations were robust in sensitivity analyses and present in most subgroups. CONCLUSIONS AGLR evaluated by DXA was associated with a higher risk of all-cause and specific-cause mortality among the general population from the US NHANES cohort.
Collapse
Affiliation(s)
- Yuxin Fan
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Li Ding
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Department of Endocrinology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Longhao Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Lina Chang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing He
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Bo Wang
- Department of Neurosurgery, Tianjin University Huanhu Hospital, Tianjin, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
10
|
Nokoff NJ, Nemkov T, Bothwell S, Cree MG, Fuller KNZ, Keller AC, Kelsey MM, Nadeau KJ, Moreau KL. Differences in cardiorespiratory fitness by gonadotropin-releasing hormone agonist treatment before and after testosterone in transgender adolescents. J Appl Physiol (1985) 2024; 137:1470-1483. [PMID: 39417821 PMCID: PMC11573275 DOI: 10.1152/japplphysiol.00629.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
There are known sex differences in cardiorespiratory fitness (CRF). Little is known about the impact of pubertal blockade with a gonadotropin-releasing hormone agonist (GnRHa) followed by hormone therapy on CRF for transgender adolescents. We aimed to 1) determine the effect of GnRHa monotherapy on CRF and mitochondrial function and associations with metabolomic profiles and 2) evaluate changes after 1 and 12 mo of testosterone therapy among transgender adolescents. Participants assigned female at birth (n = 19, baseline age of 15.0 ± 1.0 yr) from two groups: GnRHa+ (n = 8) and GnRHa- (n = 11) were examined at baseline and 1- and 12-mo post-testosterone therapy in a longitudinal observational study to assess cardiorespiratory fitness, mitochondrial respiration, and metabolic profile. Fasted morning labs included assessment of metabolomics and peripheral blood mononuclear cell mitochondrial respiration and degree of mitochondrial coupling (respiratory control ratio, RCR). A graded cycle ergometer test was performed. Baseline differences were evaluated between groups. Changes were compared with mixed linear regression models evaluating time (baseline, 1 mo, and 12 mo), group (GnRHa treatment yes/no), and their interaction. At baseline GnRHa+ individuals had higher relative V̇o2peak (30.1 ± 4.83 vs. 25.24 ± 4.47 mL/kg/min, P = 0.042) than GnRHa- individuals. In regression models, GnRHa+ individuals had a significant increase in peak watts (P = 0.011) and total exercise time (P = 0.005) after 12 mo of testosterone (P = 0.012) but not GnRHa- individuals. GnRHa+ individuals have significantly higher RCR under carbohydrate (P = 0.0007) and lipid (P = 0.0002) conditions than GnRHa+ individuals. Pretreatment with GnRHa positively influences peak CRF and mitochondrial respiration in adolescent transgender males undergoing testosterone therapy.NEW & NOTEWORTHY This study demonstrates differences in exercise capacity and mitochondrial respiration at baseline based on whether or not individuals had feminizing puberty blocked. Individuals who had puberty blocked had greater improvements in cardiopulmonary exercise testing parameters after 12 mo of testosterone than those who went through feminizing puberty.
Collapse
Affiliation(s)
- Natalie J Nokoff
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Ludeman Family Center for Women's Health, Aurora, Colorado, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Samantha Bothwell
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Melanie G Cree
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Ludeman Family Center for Women's Health, Aurora, Colorado, United States
| | - Kelly N Z Fuller
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Amy C Keller
- Division of Endocrinology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Geriatric Research Education and Clinical Center, Veterans Affairs Eastern Colorado, Aurora, Colorado, United States
| | - Megan M Kelsey
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Ludeman Family Center for Women's Health, Aurora, Colorado, United States
| | - Kristen J Nadeau
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Ludeman Family Center for Women's Health, Aurora, Colorado, United States
| | - Kerrie L Moreau
- Ludeman Family Center for Women's Health, Aurora, Colorado, United States
- Division of Geriatrics, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
11
|
Goulet N, Marcoux C, Bourgon V, Morin R, Mauger JF, Amaratunga R, Imbeault P. Biological sex-related differences in the postprandial triglyceride response to intermittent hypoxaemia in young adults: a randomized crossover trial. J Physiol 2024; 602:5817-5834. [PMID: 38285004 DOI: 10.1113/jp285430] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024] Open
Abstract
Obstructive sleep apnoea is characterized by chronic intermittent hypoxaemia and is independently associated with an increased risk of metabolic comorbidities (e.g. type II diabetes and ischaemic heart disease). These comorbidities could be attributable to hypoxaemia-induced alterations in blood lipid profiles. However, it remains unclear whether intermittent hypoxaemia alters triglyceridaemia differently between biological sexes. Therefore, we used a randomized crossover design to examine whether 6 h of moderate intermittent hypoxaemia (15 hypoxaemic cycles/h, 85% oxyhaemoglobin saturation) alters plasma triglyceride levels differently between men and women after a high-fat meal. Relative to men, women displayed lower levels of total triglycerides, in addition to denser triglyceride-rich lipoprotein triglycerides (TRL-TG; mainly very low-density lipoprotein triglycerides and chylomicron remnant triglycerides) and buoyant TRL-TG (mainly chylomicron triglycerides) during normoxia (ambient air) and intermittent hypoxaemia (sex × time: all P ≤ 0.008). Intermittent hypoxaemia led to higher triglyceride levels (condition: all P ≤ 0.016); however, this effect was observed only in men (sex × condition: all P ≤ 0.002). Compared with normoxia, glucose levels were higher in men and lower in women during intermittent hypoxaemia (sex × condition: P < 0.001). The different postprandial responses between biological sexes occurred despite similar reductions in mean oxyhaemoglobin saturation and similar elevations in insulin levels, non-esterified fatty acid levels and mean heart rate (sex × condition: all P ≥ 0.185). These results support growing evidence showing that intermittent hypoxaemia impacts men and women differently, and they might help to explain biological sex-related discrepancies in the rate of certain comorbidities associated with intermittent hypoxaemia. KEY POINTS: Intermittent hypoxaemia is a key characteristic of obstructive sleep apnoea and alters lipid metabolism in multiple tissues, resulting in increased circulating triglyceride levels, an important risk factor for cardiometabolic diseases. Circulating triglyceride levels are regulated differently between biological sexes, with women typically displaying much lower fasting and postprandial triglyceride levels than men, partly explaining why women of all ages experience lower mortality rates from cardiometabolic diseases. In this study, healthy young men and women consumed a high-fat meal and were then exposed to 6 h of intermittent hypoxaemia or ambient air. We show that postprandial triglyceride levels are significantly lower in women compared with men and that intermittent hypoxaemia leads to higher postprandial triglyceride levels in men only. These results might help us to understand better why women living with obstructive sleep apnoea experience lower rates of cardiometabolic diseases (e.g. type II diabetes and ischaemic heart disease) than men living with obstructive sleep apnoea.
Collapse
Affiliation(s)
- Nicholas Goulet
- Behavioural and Metabolic Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Caroline Marcoux
- Behavioural and Metabolic Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Vincent Bourgon
- Laboratoire du Sommeil, Département de psychoéducation et de psychologie, Université du Québec en Outaouais, Gatineau, QC, Canada
| | - Renée Morin
- Behavioural and Metabolic Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Jean-François Mauger
- Behavioural and Metabolic Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Ruwan Amaratunga
- Institut du Savoir Montfort, Montfort Hospital, Ottawa, ON, Canada
| | - Pascal Imbeault
- Behavioural and Metabolic Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Institut du Savoir Montfort, Montfort Hospital, Ottawa, ON, Canada
| |
Collapse
|
12
|
Yang J, Zhao ML, Jiang LH, Zhang YW, Ma TT, Lou CR, Lu WF, Zhao Y, Lu Q. Association between single and multiple cardiometabolic diseases and all-cause mortality among Chinese older adults: A prospective, nationwide cohort study. Nutr Metab Cardiovasc Dis 2024; 34:2570-2578. [PMID: 39098378 DOI: 10.1016/j.numecd.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND AND AIM Cardiometabolic diseases (CMDs) are leading causes of death and disability, but little is known about the additive mortality effects of multiple CMDs. This study aimed to examine the association between single and multiple CMDs and all-cause mortality among older Chinese population. METHODS AND RESULTS Using the Chinese Longitudinal Healthy Longevity Survey (CLHLS) database, we analyzed data from 2008 to 2018 to assess the relationship between CMDs and mortality. Cox regression models estimated hazard ratios (HRs) and 95% confidence intervals (CIs) for single and multiple CMDs. At baseline, 11,351 participants (56.9% female) aged 60 years or older were included. 11.91% of participants had a single CMD, 1.51% had two CMDs, and 0.22% had three CMDs. Over a decade follow-up, 8992 deaths (79.2%) were recorded. A dose-response relationship was observed, with the mortality risk increasing by 17% for each additional disease. The fully-adjusted HRs for all-cause mortality were 1.16, 1.36, and 2.03 for one, two, and three CMDs, respectively. Larger effects of single and multiple CMDs were observed in the male group (P = 0.015) and the younger senior group (P < 0.001). CONCLUSIONS This large-scale study found that CMDs multiply mortality risks, especially in younger seniors and males. The risk is highest when heart disease and stroke coexist, and diabetes further increases it. Public health efforts should prioritize evidence-based management and prevention of CMDs.
Collapse
Affiliation(s)
- Jin Yang
- School of Nursing, Tianjin Medical University, Tianjin, 300070, China
| | - Mei-Li Zhao
- Neurology Department, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Li-Hong Jiang
- Neurology Department, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Yan-Wen Zhang
- Cardiology Department, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Ting-Ting Ma
- School of Nursing, Tianjin Medical University, Tianjin, 300070, China
| | - Chun-Rui Lou
- School of Nursing, Tianjin Medical University, Tianjin, 300070, China
| | - Wen-Feng Lu
- School of Nursing, Tianjin Medical University, Tianjin, 300070, China
| | - Yue Zhao
- School of Nursing, Tianjin Medical University, Tianjin, 300070, China; Joint Research Centre for Primary Health Care, The Hong Kong Polytechnic University, Hong Kong, 100872, China.
| | - Qi Lu
- School of Nursing, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
13
|
Lake JE, Hyatt AN, Feng H, Miao H, Somasunderam A, Utay NS, Corey KE. Transgender Women with HIV Demonstrate Unique Non-Alcoholic Fatty Liver Disease Profiles. Transgend Health 2024; 9:413-420. [PMID: 39449788 PMCID: PMC11496901 DOI: 10.1089/trgh.2022.0182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Purpose Non-alcoholic fatty liver disease (NAFLD) prevalence and severity may be higher in people with human immunodeficiency virus (HIV) than the general population, and vary with sex and age. We explored NAFLD characteristics by gender. Methods Adult transgender women (TW), cisgender women (CW), and cisgender men (CM) with HIV on antiretroviral therapy and without other known causes of liver disease underwent screening for NAFLD (2017-2020). Circulating factors associated with NAFLD were measured. Hepatic steatosis and fibrosis were assessed using transient elastography by controlled attenuation parameter (CAP) and liver stiffness measurement (LSM), respectively. Analysis of variance/Wilcoxon testing compared normally/non-normally distributed variables, respectively. Logistic regression evaluated factors associated with CAP and LSM. Results Participants (n=194) had median age 48 years and body mass index 28.3 kg/m2; 42% were CM, 37% TW, and 21% CW; 95% were non-white; and 16% had diabetes, 40% dyslipidemia, and 49% hypertension. NAFLD prevalence was 59% using CAP ≥248 dB/m (≥S1 steatosis), 48% using CAP ≥260 dB/m (≥S2 steatosis), and 32% using CAP ≥285 dB/m (≥S3 steatosis). Compared to CM and CW, TW had the highest median CAP scores, were more likely to have ≥S2 steatosis, and had the highest insulin resistance, interleukin-6, and fetuin-A values. TW off versus on gender-affirming hormone therapy (GAHT) had slightly higher median CAP scores. Conclusion TW on GAHT had less hepatic steatosis than TW not on GAHT, although overall NAFLD severity was greater than expected for TW compared to CM and CW. The effects of estrogen supplementation and androgen deprivation on liver health in TW require further study.
Collapse
Affiliation(s)
- Jordan E. Lake
- Department of Medicine, Division of Infectious Diseases, UTHealth McGovern School of Medicine, Houston, Texas, USA
| | - Ana N. Hyatt
- Department of Medicine, Division of Infectious Diseases, UTHealth McGovern School of Medicine, Houston, Texas, USA
| | - Han Feng
- UTHealth School of Public Health, Houston, Texas, USA
| | - Hongyu Miao
- UTHealth School of Public Health, Houston, Texas, USA
| | - Anoma Somasunderam
- Department of Medicine, Division of Infectious Diseases, UTHealth McGovern School of Medicine, Houston, Texas, USA
| | - Netanya S. Utay
- Department of Medicine, Division of Infectious Diseases, UTHealth McGovern School of Medicine, Houston, Texas, USA
| | - Kathleen E. Corey
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Wueest S, Scaffidi C, van Krieken PP, Konrad NK, Koch C, Wiedemann MSF, Goergen A, Borsigova M, Lempesis IG, Fullin J, Manolopoulos KN, Böttcher S, Goossens GH, Blüher M, Konrad D. Fas (CD95) expression in adipocytes contributes to diet-induced obesity. Obesity (Silver Spring) 2024; 32:1812-1818. [PMID: 39020501 DOI: 10.1002/oby.24092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 07/19/2024]
Abstract
OBJECTIVE Induction of browning in white adipose tissue (WAT) increases energy expenditure and may be an attractive target for the treatment of obesity. Since activation of Fas (CD95) induces pathways known to blunt expression of uncoupling protein 1 (UCP1), we hypothesized that Fas expression in adipocytes inhibits WAT browning and thus contributes to the development of obesity. METHODS Adipocyte-specific Fas knockout (FasΔadipo) and control littermate (FasF/F) mice were fed a regular chow diet or a high-fat diet (HFD) for 20 weeks. Energy expenditure was assessed by indirect calorimetry, and browning was determined in subcutaneous WAT. In vitro, UCP1 was analyzed in subcutaneous murine adipocytes treated with or without Fas ligand. Moreover, FAS expression in WAT was correlated to UCP1 and percentage of body fat in human individuals. RESULTS HFD-fed FasΔadipo mice displayed reduced body weight gain and blunted adiposity compared to control littermates. Concomitantly, whole-body energy expenditure and WAT browning were elevated. In cultured adipocytes, Fas ligand treatment blunted isoproterenol-induced UCP1 protein levels. In support of these findings in rodents, FAS expression in WAT correlated negatively with UCP1 but positively with adiposity in human individuals. CONCLUSIONS Fas activation in adipocytes contributes to HFD-associated adiposity in rodents and may be a therapeutic target to reduce obesity and associated diseases.
Collapse
Affiliation(s)
- Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Chiara Scaffidi
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Pim P van Krieken
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Nils K Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Christian Koch
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Michael S F Wiedemann
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Anne Goergen
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Marcela Borsigova
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Ioannis G Lempesis
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Jonas Fullin
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Konstantinos N Manolopoulos
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Steffen Böttcher
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Cha M, Lee S, Han K. Dietary Nutritional Supplements Are Associated with the Deterioration of Hepatic Fibrosis in Women and Individuals without Underlying Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1298. [PMID: 39457270 PMCID: PMC11506959 DOI: 10.3390/ijerph21101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Despite the growing societal interest in the health benefits of dietary nutritional supplements, their safety and efficacy remain unclear. We aimed to investigate the correlation between hepatic fibrosis and the consumption of dietary nutritional supplements. This study utilized data from the Korea National Health and Nutrition Examination Survey spanning the period from 2014 to 2022. Significant fibrosis was defined as a fibrosis index based on four factors (FIB-4) ≥1.45 and an aspartate aminotransferase-to-platelet ratio index (APRI) ≥0.30. Adjusted odds ratios (AORs) and 95% confidence intervals (CIs) were calculated. In a study involving 30,639 participants (supplement consumers [n = 17,772] and non-consumers [n = 12,867]), dietary nutritional supplement consumption was associated with alanine aminotransferase (ALT) elevation and increased hepatic fibrosis biomarkers (APRI and FIB-4). Dietary nutritional supplement consumption was independently linked to ALT elevation (AOR, 1.11; 95% CI, 1.04-1.18), FIB-4 (AOR, 1.07; 95% CI, 1.00-1.15), and APRI (AOR, 1.14; 95% CI, 1.07-1.21). This association was particularly significant in women and subgroups of people who were not diabetic or hypertriglyceridemic. In our comprehensive analysis, the consumption of dietary nutritional supplements was possibly associated with hepatic fibrosis, particularly in specific subgroups. Given the limitations of this study, these findings are not considered definitive conclusions; however, they serve as valuable preliminary data for future research.
Collapse
Affiliation(s)
- Minsu Cha
- Department of Emergency Medicine, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon 22711, Republic of Korea;
- Institute of Health and Medical Convergence Research, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon 22711, Republic of Korea
| | - Sangheun Lee
- Institute of Health and Medical Convergence Research, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon 22711, Republic of Korea
- Department of Internal Medicine, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon 22711, Republic of Korea;
- Division of Hepatology, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon 22711, Republic of Korea
| | - Kijun Han
- Department of Internal Medicine, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon 22711, Republic of Korea;
- Division of Hepatology, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon 22711, Republic of Korea
| |
Collapse
|
16
|
Shin S, Chang Y, Ryu S. Sex-specific association between carbohydrate antigen 19-9 and incident type 2 diabetes. Sci Rep 2024; 14:22506. [PMID: 39341838 PMCID: PMC11439046 DOI: 10.1038/s41598-024-73404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Carbohydrate antigen 19-9 (CA19-9) levels are associated with glycemic control, insulin resistance, and chronic complications in patients with type 2 diabetes (T2D). Women generally show higher CA19-9 levels despite a greater T2D prevalence in men. We evaluated the sex-specific longitudinal associations between CA19-9 levels and T2D incidence. Korean adults (n = 329,380) without previous cancer or T2D were categorized into four groups based on their CA19-9 levels. The study end point was the development of incident T2D during follow-up. Cox proportional hazards models were used to estimate hazard ratios (HR) according to CA19-9 levels. During a median follow-up of 6.1 years (3.3-9.3 years), the incidence rates of T2D were 9.9 per 1,000 person-years in men and 3.6 per 1,000 person-years in women. In the time-dependent analysis, adjusted HRs (95% confidence intervals) for incident T2D comparing CA19-9 levels of 10.0-19.9, 20.0-29.9, and ≥ 30 U/mL to the reference (< 10 U/mL) were 1.08 (1.04-1.13), 1.18 (1.07-1.30), and 1.64 (1.35-1.99), respectively, among men. However, this association was not observed in women. The association between CA19-9 category and incident T2D significantly differed by sex (Pinteraction = 0.006). Among young and middle-aged Korean adults, elevated CA19-9 levels were significantly associated with increased risk of type 2 diabetes in men but not in women. Elevated CA19-9 levels in men could be a useful marker for identifying individuals at high risk of developing T2D. Evaluation approaches for individuals with elevated CA19-9 levels should be sex-specific.
Collapse
Affiliation(s)
- Sujeong Shin
- Department of Family Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yoosoo Chang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Samsung Main Building B2, 250, Taepyung-ro 2ga, Seoul, Jung-gu, 04514, South Korea.
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Samsung Main Building B2, 250, Taepyung-ro 2ga, Seoul, Jung-gu, 04514, South Korea.
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|
17
|
Ghazy F, Ebrahimi N, Ebadinejad A, Barzin M, Mahdavi M, Valizadeh M, Azizi F, Hosseinpanah F. Association of obesity severity and duration with incidence of chronic kidney disease. BMC Nephrol 2024; 25:320. [PMID: 39333911 PMCID: PMC11429187 DOI: 10.1186/s12882-024-03757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Obesity is a known risk factor for chronic kidney disease (CKD), but the impact of obesity severity and duration on CKD incidence is unclear. METHODS Cumulative Excess Weight (CEW) and Cumulative Excess Waist Circumference (CEWC) scores were calculated, which represent the accumulation of deviations from expected body mass index and waist circumference values over time until the development of CKD or the end of the follow-up period. Time-dependent Cox models were used to investigate the sex-stratified association of CEW and CEWC with CKD incidence while controlling for confounding variables. RESULTS Out of the 8697 participants who were evaluated in this study, 56% (4865) were women and the mean age was 40 ± 14. During the 15-year follow-up period, 41.7% (3629) of the participants developed CKD. Among the CKD patients, 65.4% (829) of men and 77.9% (1839) of women had a BMI higher than 25, and high WC was found to be 73.7% (934) and 55.3% (1306) for men and women, respectively. We found a significant association between one standard deviation change of CEW and the development of CKD in both sexes (fully adjusted hazard ratios and 95% CI of CEW in men and women were 1.155 [1.081-1.232) and 1.105 (1.047-1.167)]. However, the association between CEWC and CKD development was only significant among men participants [HR = 1.074 (1.006-1.147)]. CONCLUSION Over a 15-year follow-up, the accumulation of general and central obesity was associated with an increased incidence of CKD development.
Collapse
Affiliation(s)
- Faranak Ghazy
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-476, Tehran, Iran
| | - Navid Ebrahimi
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-476, Tehran, Iran
| | - Amir Ebadinejad
- Department of Surgery, Hartford Hospital/HealthCare, Hartford, CT, 06106, USA
| | - Maryam Barzin
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-476, Tehran, Iran
| | - Maryam Mahdavi
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-476, Tehran, Iran
| | - Majid Valizadeh
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-476, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhad Hosseinpanah
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-476, Tehran, Iran.
| |
Collapse
|
18
|
Denova-Gutiérrez E, Rivera-Paredez B, Quezada-Sánchez AD, Armenta-Guirado BI, Muñoz-Aguirre P, Flores YN, Velázquez-Cruz R, Salmerón J. Soft drink consumption and increased risk of nonalcoholic fatty liver disease: Results from the health workers cohort study. Ann Hepatol 2024; 30:101566. [PMID: 39276986 DOI: 10.1016/j.aohep.2024.101566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/27/2024] [Accepted: 07/17/2024] [Indexed: 09/17/2024]
Abstract
INTRODUCTION AND OBJECTIVES Nonalcoholic fatty liver disease (NAFLD) is a common clinical condition and an important public health problem. Some epidemiological studies have suggested that soft drinks (SD) intake is associated with NAFLD. However, the evidence is inconsistent. Our objective was to assess the association between SD consumption and the risk of NAFLD in a Mexican adult population. MATERIALS AND METHODS A total of 1,759 participants from the Health Workers Cohort Study (HWCS) were included in the analyses. SD intake was measured using a validated food frequency questionnaire. We classified SD consumption as follows: a) less than 1 serving per week, b) 1 to less than 3.5 servings per week, and c) 3.5 or more servings per week. Hepatic steatosis index (HSI) was calculated based on sex, BMI, and blood transaminase levels, and was categorized as NAFLD ≥ 36. To assess the relation between SD and NAFLD, we followed two approaches: fixed effects logistic regression and generalized estimating equations. RESULTS After adjusting for demographic characteristics, lifestyle factors, and dietary intake, the odds ratio (OR) and 95 % confidence interval (95 % CI) for NAFLD were 1.26 (95 % CI: 1.08, 1.48) for 1 to less than 3.5 servings per week and 1.42 (95 % CI: 1.19, 1.69) for ≥3.5 servings/week category in both sexes. When stratifying the analysis by sex, we observed that the association tended to be greater in men than in women. CONCLUSIONS The results from our prospective study indicate that SD consumption is associated with an increased risk of NAFLD.
Collapse
Affiliation(s)
- Edgar Denova-Gutiérrez
- Center for Research in Nutrition and Health, Mexican National Institute of Public Health, Cuernavaca, Mexico.
| | - Berenice Rivera-Paredez
- Center for Research in Policies, Population and Health, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| | - Amado D Quezada-Sánchez
- Center for Evaluation and Surveys Research, National Institute of Public Health, Cuernavaca, Mexico
| | | | - Paloma Muñoz-Aguirre
- Consejo Nacional de Humanidades, Ciencias y Tecnologías and Center for Population Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Yvonne N Flores
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Instituto Mexicano del Seguro Social, Cuernavaca, Mexico; UCLA Department of Health Policy and Management, Center for Cancer Prevention and Control Research, and UCLA Kaiser Permanente Center for Health Equity, Fielding School of Public Health and Jonsson Comprehensive Cancer Center, Los Angeles, USA
| | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Jorge Salmerón
- Center for Research in Policies, Population and Health, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico; Unidad de Investigación Epidemiológica y en Servicios de Salud, Instituto Mexicano del Seguro Social, Cuernavaca, Mexico
| |
Collapse
|
19
|
Basri NI, Murthi P, Abd Rahman R. Hydroxychloroquine as an Adjunct Therapy for Diabetes in Pregnancy. Int J Mol Sci 2024; 25:9681. [PMID: 39273629 PMCID: PMC11395545 DOI: 10.3390/ijms25179681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
This review discusses the pathophysiology of diabetes in pregnancy in relation to the placental function. We review the potential use of hydroxychloroquine in improving pregnancy outcomes affected by diabetes. The review focuses on the mechanism of action of hydroxychloroquine and its potential effects on diabetes. There are several pathways in which hydroxychloroquine mediates its effects: through the inflammasome complex, inflammatory cytokines, oxidative stress, modulatory effects, and antihyperglycemic effects. As a safe drug to be used in pregnancy, it is worth exploring the possible use hydroxychloroquine as an adjunct treatment to the current therapy of diabetes in pregnancy.
Collapse
Affiliation(s)
- Nurul Iftida Basri
- Department of Obstetrics and Gynecology, Faculty of Medicine, National University of Malaysia, Kuala Lumpur 56000, Malaysia
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Padma Murthi
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Rahana Abd Rahman
- Department of Obstetrics and Gynecology, Faculty of Medicine, National University of Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
20
|
Liwinski T, Auer MK, Schröder J, Pieknik I, Casar C, Schwinge D, Henze L, Stalla GK, Lang UE, von Klitzing A, Briken P, Hildebrandt T, Desbuleux JC, Biedermann SV, Holterhus PM, Bang C, Schramm C, Fuss J. Gender-affirming hormonal therapy induces a gender-concordant fecal metagenome transition in transgender individuals. BMC Med 2024; 22:346. [PMID: 39218875 PMCID: PMC11367877 DOI: 10.1186/s12916-024-03548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Limited data exists regarding gender-specific microbial alterations during gender-affirming hormonal therapy (GAHT) in transgender individuals. This study aimed to investigate the nuanced impact of sex steroids on gut microbiota taxonomy and function, addressing this gap. We prospectively analyzed gut metagenome changes associated with 12 weeks of GAHT in trans women and trans men, examining both taxonomic and functional shifts. METHODS Thirty-six transgender individuals (17 trans women, 19 trans men) provided pre- and post-GAHT stool samples. Shotgun metagenomic sequencing was used to assess the changes in gut microbiota structure and potential function following GAHT. RESULTS While alpha and beta diversity remained unchanged during transition, specific species, including Parabacteroides goldsteinii and Escherichia coli, exhibited significant abundance shifts aligned with affirmed gender. Overall functional metagenome analysis showed a statistically significant effect of gender and transition (R2 = 4.1%, P = 0.0115), emphasizing transitions aligned with affirmed gender, particularly in fatty acid-related metabolism. CONCLUSIONS This study provides compelling evidence of distinct taxonomic and functional profiles in the gut microbiota between trans men and women. GAHT induces androgenization in trans men and feminization in trans women, potentially impacting physiological and health-related outcomes. TRIAL REGISTRATION Clinicaltrials.gov NCT02185274.
Collapse
Affiliation(s)
- Timur Liwinski
- Clinic for Adult Psychiatry, University Psychiatric Clinics, University of Basel, Wilhelm Klein-Strasse 27, Basel, CH-4002, Switzerland
| | - Matthias K Auer
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
- Institute of Forensic Psychiatry and Sex Research, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Alfredstr. 68-72, Essen, 45130, Germany
| | - Johanna Schröder
- Department of Psychology, Institute for Clinical Psychology and Psychotherapy, Medical School Hamburg, Hamburg, Germany
| | - Ina Pieknik
- Institute of Forensic Psychiatry and Sex Research, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Alfredstr. 68-72, Essen, 45130, Germany
| | - Christian Casar
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Dorothee Schwinge
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Lara Henze
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Günter K Stalla
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
- Medicover Neuroendocrinology, Munich, Germany
| | - Undine E Lang
- Clinic for Adult Psychiatry, University Psychiatric Clinics, University of Basel, Wilhelm Klein-Strasse 27, Basel, CH-4002, Switzerland
| | - Alina von Klitzing
- Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peer Briken
- Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Hildebrandt
- Department of Gynecology and Obstetrics, CCC Erlangen EMN, Friedrich Alexander University, Erlangen, Germany
| | - Jeanne C Desbuleux
- Institute of Forensic Psychiatry and Sex Research, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Alfredstr. 68-72, Essen, 45130, Germany
| | - Sarah V Biedermann
- Department of Psychiatry and Psychotherapy, Social and Emotional Neuroscience Group, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul-Martin Holterhus
- Division of Pediatric Endocrinology and Diabetes, Department of Children and Adolescent Medicine I, University Hospital of Schleswig-Holstein, Campus Kiel/Christian-Albrechts University of Kiel, Kiel, D-24105, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig-Holstein, Rosalind-Franklin-Str. 12, Kiel, 24105, Germany
| | - Christoph Schramm
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Centre for Translational Immunology (HCTI), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Fuss
- Institute of Forensic Psychiatry and Sex Research, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Alfredstr. 68-72, Essen, 45130, Germany
| |
Collapse
|
21
|
Amini-Salehi E, Letafatkar N, Norouzi N, Joukar F, Habibi A, Javid M, Sattari N, Khorasani M, Farahmand A, Tavakoli S, Masoumzadeh B, Abbaspour E, Karimzad S, Ghadiri A, Maddineni G, Khosousi MJ, Faraji N, Keivanlou MH, Mahapatro A, Gaskarei MAK, Okhovat P, Bahrampourian A, Aleali MS, Mirdamadi A, Eslami N, Javid M, Javaheri N, Pra SV, Bakhsi A, Shafipour M, Vakilpour A, Ansar MM, Kanagala SG, Hashemi M, Ghazalgoo A, Kheirandish M, Porteghali P, Heidarzad F, Zeinali T, Ghanaei FM, Hassanipour S, Ulrich MT, Melson JE, Patel D, Nayak SS. Global Prevalence of Nonalcoholic Fatty Liver Disease: An Updated Review Meta-Analysis comprising a Population of 78 million from 38 Countries. Arch Med Res 2024; 55:103043. [PMID: 39094335 DOI: 10.1016/j.arcmed.2024.103043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/09/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a global health challenge, with a rising rate in line with other metabolic diseases. We aimed to assess the global prevalence of NAFLD in adult and pediatric populations. METHODS PubMed, Scopus and Web of Science databases were systematically searched up to May 2023. Heterogeneity was assessed using Cochran's Q test and I2 statistics, and random-effects model was used for meta-analysis. Analyses were performed using STATA version 18. RESULTS A total of 479 studies with 78,001,755 participants from 38 countries were finally included. The global prevalence of NAFLD was estimated to be 30.2% (95% CI: 28.7-31.7%). Regionally, the prevalence of NAFLD was as follows: Asia 30.9% (95% CI: 29.2-32.6%), Australia 16.1% (95% CI: 9.0-24.8%), Europe 30.2% (95% CI: 25.6-35.0%), North America 29% (95% CI: 25.8-32.3%), and South America 34% (95% CI: 16.9-53.5%). Countries with a higher human development index (HDI) had significantly lower prevalence of NAFLD (coefficient = -0.523, p = 0.005). Globally, the prevalence of NAFLD in men and women was 36.6% (95% CI: 34.7-38.4%) and 25.5% (95% CI: 23.9-27.1%), respectively. The prevalence of NAFLD in adults, adults with obesity, children, and children with obesity was 30.2% (95% CI: 28.8-31.7%), 57.5% (95% CI: 43.6-70.9%), 14.3% (95% CI: 10.3-18.8%), and 38.0% (95% CI: 31.5-44.7%), respectively. CONCLUSION The prevalence of NAFLD is remarkably high, particularly in countries with lower HDI. This substantial prevalence in both adults and children underscores the need for disease management protocols to reduce the burden.
Collapse
Affiliation(s)
- Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Negin Letafatkar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Naeim Norouzi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Habibi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mona Javid
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Nazila Sattari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehrdad Khorasani
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Farahmand
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Shervin Tavakoli
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Behnaz Masoumzadeh
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Elaheh Abbaspour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Department of Radiology, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Sahand Karimzad
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghadiri
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Gautam Maddineni
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Mohammad Javad Khosousi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Niloofar Faraji
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Abinash Mahapatro
- Department of Internal Medicine, Hi-Tech Medical College and Hospital, Rourkela, Odisha, India
| | | | - Paria Okhovat
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Bahrampourian
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Maryam Sadat Aleali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arian Mirdamadi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Narges Eslami
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohamadreza Javid
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Naz Javaheri
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Arash Bakhsi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shafipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Azin Vakilpour
- Department of Internal Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Malek Moein Ansar
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Biochemistry and Medical Physics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Mohamad Hashemi
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Arezoo Ghazalgoo
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Masoumeh Kheirandish
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parham Porteghali
- Department of Internal Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Forough Heidarzad
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Taraneh Zeinali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariborz Mansour Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Michael T Ulrich
- Department of Internal Medicine, Riverside University Health System Medical Center, Moreno Valley, CA, USA
| | - Joshua E Melson
- Division of Gastroenterology, Department of Medicine, University of Arizona Medical Center-Banner Health, Tucson, AZ, USA
| | - Dhruvan Patel
- Division of Gastroenterology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
22
|
Engreitz JM, Lawson HA, Singh H, Starita LM, Hon GC, Carter H, Sahni N, Reddy TE, Lin X, Li Y, Munshi NV, Chahrour MH, Boyle AP, Hitz BC, Mortazavi A, Craven M, Mohlke KL, Pinello L, Wang T, Kundaje A, Yue F, Cody S, Farrell NP, Love MI, Muffley LA, Pazin MJ, Reese F, Van Buren E, Dey KK, Kircher M, Ma J, Radivojac P, Balliu B, Williams BA, Huangfu D, Park CY, Quertermous T, Das J, Calderwood MA, Fowler DM, Vidal M, Ferreira L, Mooney SD, Pejaver V, Zhao J, Gazal S, Koch E, Reilly SK, Sunyaev S, Carpenter AE, Buenrostro JD, Leslie CS, Savage RE, Giric S, Luo C, Plath K, Barrera A, Schubach M, Gschwind AR, Moore JE, Ahituv N, Yi SS, Hallgrimsdottir I, Gaulton KJ, Sakaue S, Booeshaghi S, Mattei E, Nair S, Pachter L, Wang AT, Shendure J, Agarwal V, Blair A, Chalkiadakis T, Chardon FM, Dash PM, Deng C, Hamazaki N, Keukeleire P, Kubo C, Lalanne JB, Maass T, Martin B, McDiarmid TA, Nobuhara M, Page NF, Regalado S, Sims J, Ushiki A, Best SM, Boyle G, Camp N, Casadei S, Da EY, Dawood M, Dawson SC, Fayer S, Hamm A, James RG, Jarvik GP, McEwen AE, Moore N, Pendyala S, Popp NA, Post M, Rubin AF, Smith NT, Stone J, Tejura M, Wang ZR, Wheelock MK, Woo I, Zapp BD, Amgalan D, Aradhana A, Arana SM, Bassik MC, Bauman JR, Bhattacharya A, Cai XS, Chen Z, Conley S, Deshpande S, Doughty BR, Du PP, Galante JA, Gifford C, Greenleaf WJ, Guo K, Gupta R, Isobe S, Jagoda E, Jain N, Jones H, Kang HY, Kim SH, Kim Y, Klemm S, Kundu R, Kundu S, Lago-Docampo M, Lee-Yow YC, Levin-Konigsberg R, Li DY, Lindenhofer D, Ma XR, Marinov GK, Martyn GE, McCreery CV, Metzl-Raz E, Monteiro JP, Montgomery MT, Mualim KS, Munger C, Munson G, Nguyen TC, Nguyen T, Palmisano BT, Pampari A, Rabinovitch M, Ramste M, Ray J, Roy KR, Rubio OM, Schaepe JM, Schnitzler G, Schreiber J, Sharma D, Sheth MU, Shi H, Singh V, Sinha R, Steinmetz LM, Tan J, Tan A, Tycko J, Valbuena RC, Amiri VVP, van Kooten MJFM, Vaughan-Jackson A, Venida A, Weldy CS, Worssam MD, Xia F, Yao D, Zeng T, Zhao Q, Zhou R, Chen ZS, Cimini BA, Coppin G, Coté AG, Haghighi M, Hao T, Hill DE, Lacoste J, Laval F, Reno C, Roth FP, Singh S, Spirohn-Fitzgerald K, Taipale M, Teelucksingh T, Tixhon M, Yadav A, Yang Z, Kraus WL, Armendariz DA, Dederich AE, Gogate A, El Hayek L, Goetsch SC, Kaur K, Kim HB, McCoy MK, Nzima MZ, Pinzón-Arteaga CA, Posner BA, Schmitz DA, Sivakumar S, Sundarrajan A, Wang L, Wang Y, Wu J, Xu L, Xu J, Yu L, Zhang Y, Zhao H, Zhou Q, Won H, Bell JL, Broadaway KA, Degner KN, Etheridge AS, Koller BH, Mah W, Mu W, Ritola KD, Rosen JD, Schoenrock SA, Sharp RA, Bauer D, Lettre G, Sherwood R, Becerra B, Blaine LJ, Che E, Francoeur MJ, Gibbs EN, Kim N, King EM, Kleinstiver BP, Lecluze E, Li Z, Patel ZM, Phan QV, Ryu J, Starr ML, Wu T, Gersbach CA, Crawford GE, Allen AS, Majoros WH, Iglesias N, Rai R, Venukuttan R, Li B, Anglen T, Bounds LR, Hamilton MC, Liu S, McCutcheon SR, McRoberts Amador CD, Reisman SJ, ter Weele MA, Bodle JC, Streff HL, Siklenka K, Strouse K, Bernstein BE, Babu J, Corona GB, Dong K, Duarte FM, Durand NC, Epstein CB, Fan K, Gaskell E, Hall AW, Ham AM, Knudson MK, Shoresh N, Wekhande S, White CM, Xi W, Satpathy AT, Corces MR, Chang SH, Chin IM, Gardner JM, Gardell ZA, Gutierrez JC, Johnson AW, Kampman L, Kasowski M, Lareau CA, Liu V, Ludwig LS, McGinnis CS, Menon S, Qualls A, Sandor K, Turner AW, Ye CJ, Yin Y, Zhang W, Wold BJ, Carilli M, Cheong D, Filibam G, Green K, Kawauchi S, Kim C, Liang H, Loving R, Luebbert L, MacGregor G, Merchan AG, Rebboah E, Rezaie N, Sakr J, Sullivan DK, Swarna N, Trout D, Upchurch S, Weber R, Castro CP, Chou E, Feng F, Guerra A, Huang Y, Jiang L, Liu J, Mills RE, Qian W, Qin T, Sartor MA, Sherpa RN, Wang J, Wang Y, Welch JD, Zhang Z, Zhao N, Mukherjee S, Page CD, Clarke S, Doty RW, Duan Y, Gordan R, Ko KY, Li S, Li B, Thomson A, Raychaudhuri S, Price A, Ali TA, Dey KK, Durvasula A, Kellis M, Iakoucheva LM, Kakati T, Chen Y, Benazouz M, Jain S, Zeiberg D, De Paolis Kaluza MC, Velyunskiy M, Gasch A, Huang K, Jin Y, Lu Q, Miao J, Ohtake M, Scopel E, Steiner RD, Sverchkov Y, Weng Z, Garber M, Fu Y, Haas N, Li X, Phalke N, Shan SC, Shedd N, Yu T, Zhang Y, Zhou H, Battle A, Jerby L, Kotler E, Kundu S, Marderstein AR, Montgomery SB, Nigam A, Padhi EM, Patel A, Pritchard J, Raine I, Ramalingam V, Rodrigues KB, Schreiber JM, Singhal A, Sinha R, Wang AT, Abundis M, Bisht D, Chakraborty T, Fan J, Hall DR, Rarani ZH, Jain AK, Kaundal B, Keshari S, McGrail D, Pease NA, Yi VF, Wu H, Kannan S, Song H, Cai J, Gao Z, Kurzion R, Leu JI, Li F, Liang D, Ming GL, Musunuru K, Qiu Q, Shi J, Su Y, Tishkoff S, Xie N, Yang Q, Yang W, Zhang H, Zhang Z, Beer MA, Hadjantonakis AK, Adeniyi S, Cho H, Cutler R, Glenn RA, Godovich D, Hu N, Jovanic S, Luo R, Oh JW, Razavi-Mohseni M, Shigaki D, Sidoli S, Vierbuchen T, Wang X, Williams B, Yan J, Yang D, Yang Y, Sander M, Gaulton KJ, Ren B, Bartosik W, Indralingam HS, Klie A, Mummey H, Okino ML, Wang G, Zemke NR, Zhang K, Zhu H, Zaitlen N, Ernst J, Langerman J, Li T, Sun Y, Rudensky AY, Periyakoil PK, Gao VR, Smith MH, Thomas NM, Donlin LT, Lakhanpal A, Southard KM, Ardy RC, Cherry JM, Gerstein MB, Andreeva K, Assis PR, Borsari B, Douglass E, Dong S, Gabdank I, Graham K, Jolanki O, Jou J, Kagda MS, Lee JW, Li M, Lin K, Miyasato SR, Rozowsky J, Small C, Spragins E, Tanaka FY, Whaling IM, Youngworth IA, Sloan CA, Belter E, Chen X, Chisholm RL, Dickson P, Fan C, Fulton L, Li D, Lindsay T, Luan Y, Luo Y, Lyu H, Ma X, Macias-Velasco J, Miga KH, Quaid K, Stitziel N, Stranger BE, Tomlinson C, Wang J, Zhang W, Zhang B, Zhao G, Zhuo X, Brennand K, Ciccia A, Hayward SB, Huang JW, Leuzzi G, Taglialatela A, Thakar T, Vaitsiankova A, Dey KK, Ali TA, Kim A, Grimes HL, Salomonis N, Gupta R, Fang S, Lee-Kim V, Heinig M, Losert C, Jones TR, Donnard E, Murphy M, Roberts E, Song S, Mostafavi S, Sasse A, Spiro A, Pennacchio LA, Kato M, Kosicki M, Mannion B, Slaven N, Visel A, Pollard KS, Drusinsky S, Whalen S, Ray J, Harten IA, Ho CH, Sanjana NE, Caragine C, Morris JA, Seruggia D, Kutschat AP, Wittibschlager S, Xu H, Fu R, He W, Zhang L, Osorio D, Bly Z, Calluori S, Gilchrist DA, Hutter CM, Morris SA, Samer EK. Deciphering the impact of genomic variation on function. Nature 2024; 633:47-57. [PMID: 39232149 DOI: 10.1038/s41586-024-07510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/02/2024] [Indexed: 09/06/2024]
Abstract
Our genomes influence nearly every aspect of human biology-from molecular and cellular functions to phenotypes in health and disease. Studying the differences in DNA sequence between individuals (genomic variation) could reveal previously unknown mechanisms of human biology, uncover the basis of genetic predispositions to diseases, and guide the development of new diagnostic tools and therapeutic agents. Yet, understanding how genomic variation alters genome function to influence phenotype has proved challenging. To unlock these insights, we need a systematic and comprehensive catalogue of genome function and the molecular and cellular effects of genomic variants. Towards this goal, the Impact of Genomic Variation on Function (IGVF) Consortium will combine approaches in single-cell mapping, genomic perturbations and predictive modelling to investigate the relationships among genomic variation, genome function and phenotypes. IGVF will create maps across hundreds of cell types and states describing how coding variants alter protein activity, how noncoding variants change the regulation of gene expression, and how such effects connect through gene-regulatory and protein-interaction networks. These experimental data, computational predictions and accompanying standards and pipelines will be integrated into an open resource that will catalyse community efforts to explore how our genomes influence biology and disease across populations.
Collapse
|
23
|
McLamb F, Feng Z, Vu JP, Griffin L, Vasquez MF, Bozinovic G. Lagging Brain Gene Expression Patterns of Drosophila melanogaster Young Adult Males Confound Comparisons Between Sexes. Mol Neurobiol 2024:10.1007/s12035-024-04427-7. [PMID: 39196495 DOI: 10.1007/s12035-024-04427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Many species, including fruit flies (Drosophila melanogaster), are sexually dimorphic. Phenotypic variation in morphology, physiology, and behavior can affect development, reproduction, health, and aging. Therefore, designating sex as a variable and sex-blocking should be considered when designing experiments. The brain regulates phenotypes throughout the lifespan by balancing survival and reproduction, and sex-specific development at each life stage is likely. Changes in morphology and physiology are governed by differential gene expression, a quantifiable molecular marker for age- and sex-specific variations. We assessed the fruit fly brain transcriptome at three adult ages for gene expression signatures of sex, age, and sex-by-age: 6698 genes were differentially expressed between sexes, with the most divergence at 3 days. Between ages, 31.1% of 6084 differentially expressed genes (1890 genes) share similar expression patterns from 3 to 7 days in females, and from 7 to 14 days in males. Most of these genes (90.5%, 1712) were upregulated and enriched for chemical stimulus detection and/or cilium regulation. Our data highlight an important delay in male brain gene regulation compared to females. Because significant delays in expression could confound comparisons between sexes, studies of sexual dimorphism at phenotypically comparable life stages rather than chronological age should be more biologically relevant.
Collapse
Affiliation(s)
- Flannery McLamb
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, USA
| | - Zuying Feng
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
| | - Jeanne P Vu
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- Graduate School of Public Health, San Diego State University, San Diego, CA, USA
| | - Lindsey Griffin
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, USA
| | - Miguel F Vasquez
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Goran Bozinovic
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA.
- Graduate School of Public Health, San Diego State University, San Diego, CA, USA.
- Center for Life in Extreme Environments, Portland State University, Portland, OR, USA.
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
24
|
Siewert-Markus U, Ittermann T, Klinger-König J, Grabe HJ, Stracke S, Völzke H, Targher G, Dörr M, Markus MRP, Töpfer P. Childhood maltreatment and risk of metabolic dysfunction-associated steatotic liver disease - Evidence of sex-specific associations in the general population. J Psychosom Res 2024; 183:111829. [PMID: 38896985 DOI: 10.1016/j.jpsychores.2024.111829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND AND AIMS Childhood maltreatment (CM) is linked to self-reported liver disease in adulthood. However, specific diagnostic entities, e.g., metabolic dysfunction-associated steatotic liver disease (MASLD) as the most frequent chronic liver disease, and sex-differences have previously not been considered. METHODS Cross-sectional analyses were conducted in 4188 adults from a population-based cohort in Northeastern Germany after excluding individuals with excessive alcohol consumption, cirrhosis, or chronic viral hepatitis. CM-exposure was assessed using the Childhood Trauma Questionnaire (CTQ). Liver-related outcomes included serologic liver enzymes, fibrosis-4 score (FIB-4) and, in 1863 subjects who underwent magnetic resonance imaging examination, liver fat content. Sex-stratified linear regression and logistic regression models predicting liver-related outcomes and risk for MASLD, respectively, from overall CTQ scores were adjusted for age, school education, alcohol consumption, and waist circumference. Exploratory analyses investigated effects of CTQ-subscales on liver-related outcomes and risk for MASLD. RESULTS In both sexes, overall CM-exposure was associated with higher levels of serum aspartate aminotransferase and FIB-4 score. In men, effects were mainly driven by physical abuse, and in women by emotional neglect. Only in men, overall CM-exposure (β = 0.70, 95%-CI 0.26-1.13, p = 0.002) and four CTQ-subscales were associated with greater liver fat content, and physical abuse (aOR = 1.22, 95%-CI 1.02-1.46, p = 0.034) and physical neglect (aOR = 1.25, 95%-CI 1.04-1.49, p = 0.015) were associated with higher risk for MASLD. CONCLUSIONS These results suggest sex differences in the association between CM and objective serum and imaging markers of MASLD in adulthood. For men especially, a history of CM-exposure may increase risk of developing MASLD in adulthood.
Collapse
Affiliation(s)
- Ulrike Siewert-Markus
- Clinic and Polyclinic for Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Till Ittermann
- Department of Study of Health in Pomerania/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Johanna Klinger-König
- Clinic and Polyclinic for Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Clinic and Polyclinic for Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Germany
| | - Sylvia Stracke
- Clinic and Polyclinic for Internal Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Department of Study of Health in Pomerania/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy; Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Marcus Dörr
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany; Clinic and Polyclinic for Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Marcello R P Markus
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany; Clinic and Polyclinic for Internal Medicine B, University Medicine Greifswald, Greifswald, Germany; German Center for Diabetes Research (DZD) Partner Site Greifswald, Greifswald, Germany
| | - Philipp Töpfer
- Clinic and Polyclinic for Internal Medicine A, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
25
|
Huttasch M, Roden M, Kahl S. Obesity and MASLD: Is weight loss the (only) key to treat metabolic liver disease? Metabolism 2024; 157:155937. [PMID: 38782182 DOI: 10.1016/j.metabol.2024.155937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) closely associates with obesity and type 2 diabetes. Lifestyle intervention and bariatric surgery aiming at substantial weight loss are cornerstones of MASLD treatment by improving histological outcomes and reducing risks of comorbidities. Originally developed as antihyperglycemic drugs, incretin (co-)agonists and SGLT2 inhibitors also reduce steatosis and cardiorenovascular events. Certain incretin agonists effectively improve histological features of MASLD, but not fibrosis. Of note, beneficial effects on MASLD may not necessarily require weight loss. Despite moderate weight gain, one PPARγ agonist improved adipose tissue and MASLD with certain benefit on fibrosis in post-hoc analyses. Likewise, the first THRβ-agonist was recently provisionally approved because of significant improvements of MASLD and fibrosis. We here discuss liver-related and metabolic effects induced by different MASLD treatments and their association with weight loss. Therefore, we compare results from clinical trials on drugs acting via weight loss (incretin (co)agonists, SGLT2 inhibitors) with those exerting no weight loss (pioglitazone; resmetirom). Furthermore, other drugs in development directly targeting hepatic lipid metabolism (lipogenesis inhibitors, FGF21 analogs) are addressed. Although THRβ-agonism may effectively improve hepatic outcomes, MASLD treatment concepts should consider all cardiometabolic risk factors for effective reduction of morbidity and mortality in the affected people.
Collapse
Affiliation(s)
- Maximilian Huttasch
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany.
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany.
| |
Collapse
|
26
|
Chang Y, Yoon SH, Kwon R, Kang J, Kim YH, Kim JM, Chung HJ, Choi J, Jung HS, Lim GY, Ahn J, Wild SH, Byrne CD, Ryu S. Automated Comprehensive CT Assessment of the Risk of Diabetes and Associated Cardiometabolic Conditions. Radiology 2024; 312:e233410. [PMID: 39105639 DOI: 10.1148/radiol.233410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Background CT performed for various clinical indications has the potential to predict cardiometabolic diseases. However, the predictive ability of individual CT parameters remains underexplored. Purpose To evaluate the ability of automated CT-derived markers to predict diabetes and associated cardiometabolic comorbidities. Materials and Methods This retrospective study included Korean adults (age ≥ 25 years) who underwent health screening with fluorine 18 fluorodeoxyglucose PET/CT between January 2012 and December 2015. Fully automated CT markers included visceral and subcutaneous fat, muscle, bone density, liver fat, all normalized to height (in meters squared), and aortic calcification. Predictive performance was assessed with area under the receiver operating characteristic curve (AUC) and Harrell C-index in the cross-sectional and survival analyses, respectively. Results The cross-sectional and cohort analyses included 32166 (mean age, 45 years ± 6 [SD], 28833 men) and 27 298 adults (mean age, 44 years ± 5 [SD], 24 820 men), respectively. Diabetes prevalence and incidence was 6% at baseline and 9% during the 7.3-year median follow-up, respectively. Visceral fat index showed the highest predictive performance for prevalent and incident diabetes, yielding AUC of 0.70 (95% CI: 0.68, 0.71) for men and 0.82 (95% CI: 0.78, 0.85) for women and C-index of 0.68 (95% CI: 0.67, 0.69) for men and 0.82 (95% CI: 0.77, 0.86) for women, respectively. Combining visceral fat, muscle area, liver fat fraction, and aortic calcification improved predictive performance, yielding C-indexes of 0.69 (95% CI: 0.68, 0.71) for men and 0.83 (95% CI: 0.78, 0.87) for women. The AUC for visceral fat index in identifying metabolic syndrome was 0.81 (95% CI: 0.80, 0.81) for men and 0.90 (95% CI: 0.88, 0.91) for women. CT-derived markers also identified US-diagnosed fatty liver, coronary artery calcium scores greater than 100, sarcopenia, and osteoporosis, with AUCs ranging from 0.80 to 0.95. Conclusion Automated multiorgan CT analysis identified individuals at high risk of diabetes and other cardiometabolic comorbidities. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Pickhardt in this issue.
Collapse
Affiliation(s)
- Yoosoo Chang
- From the Center for Cohort Studies (Y.C., R.K., J.K., J.H.C., H.S.J., G.Y.L., J.A., S.R.) and Department of Occupational and Environmental Medicine (Y.C., S.R.), Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea; Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea (Y.C., S.R.); Department of Radiology, Seoul National University Hospital, Seoul National College of Medicine, Seoul, Republic of Korea (S.H.Y.); Research & Science Division, MEDICAL IP, Seoul, Republic of Korea (J.M.K., H.J.C.); Institute of Medical Research, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea (R.K., G.Y.L.); Department of Nuclear Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Y.H.K.); Usher Institute, University of Edinburgh, Edinburgh, United Kingdom (S.H.W.); Department of Nutrition and Metabolism, University of Southampton Faculty of Medicine, Southampton, United Kingdom (C.D.B.); and National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom (C.D.B.)
| | - Soon Ho Yoon
- From the Center for Cohort Studies (Y.C., R.K., J.K., J.H.C., H.S.J., G.Y.L., J.A., S.R.) and Department of Occupational and Environmental Medicine (Y.C., S.R.), Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea; Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea (Y.C., S.R.); Department of Radiology, Seoul National University Hospital, Seoul National College of Medicine, Seoul, Republic of Korea (S.H.Y.); Research & Science Division, MEDICAL IP, Seoul, Republic of Korea (J.M.K., H.J.C.); Institute of Medical Research, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea (R.K., G.Y.L.); Department of Nuclear Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Y.H.K.); Usher Institute, University of Edinburgh, Edinburgh, United Kingdom (S.H.W.); Department of Nutrition and Metabolism, University of Southampton Faculty of Medicine, Southampton, United Kingdom (C.D.B.); and National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom (C.D.B.)
| | - Ria Kwon
- From the Center for Cohort Studies (Y.C., R.K., J.K., J.H.C., H.S.J., G.Y.L., J.A., S.R.) and Department of Occupational and Environmental Medicine (Y.C., S.R.), Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea; Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea (Y.C., S.R.); Department of Radiology, Seoul National University Hospital, Seoul National College of Medicine, Seoul, Republic of Korea (S.H.Y.); Research & Science Division, MEDICAL IP, Seoul, Republic of Korea (J.M.K., H.J.C.); Institute of Medical Research, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea (R.K., G.Y.L.); Department of Nuclear Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Y.H.K.); Usher Institute, University of Edinburgh, Edinburgh, United Kingdom (S.H.W.); Department of Nutrition and Metabolism, University of Southampton Faculty of Medicine, Southampton, United Kingdom (C.D.B.); and National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom (C.D.B.)
| | - Jeonggyu Kang
- From the Center for Cohort Studies (Y.C., R.K., J.K., J.H.C., H.S.J., G.Y.L., J.A., S.R.) and Department of Occupational and Environmental Medicine (Y.C., S.R.), Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea; Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea (Y.C., S.R.); Department of Radiology, Seoul National University Hospital, Seoul National College of Medicine, Seoul, Republic of Korea (S.H.Y.); Research & Science Division, MEDICAL IP, Seoul, Republic of Korea (J.M.K., H.J.C.); Institute of Medical Research, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea (R.K., G.Y.L.); Department of Nuclear Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Y.H.K.); Usher Institute, University of Edinburgh, Edinburgh, United Kingdom (S.H.W.); Department of Nutrition and Metabolism, University of Southampton Faculty of Medicine, Southampton, United Kingdom (C.D.B.); and National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom (C.D.B.)
| | - Young Hwan Kim
- From the Center for Cohort Studies (Y.C., R.K., J.K., J.H.C., H.S.J., G.Y.L., J.A., S.R.) and Department of Occupational and Environmental Medicine (Y.C., S.R.), Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea; Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea (Y.C., S.R.); Department of Radiology, Seoul National University Hospital, Seoul National College of Medicine, Seoul, Republic of Korea (S.H.Y.); Research & Science Division, MEDICAL IP, Seoul, Republic of Korea (J.M.K., H.J.C.); Institute of Medical Research, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea (R.K., G.Y.L.); Department of Nuclear Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Y.H.K.); Usher Institute, University of Edinburgh, Edinburgh, United Kingdom (S.H.W.); Department of Nutrition and Metabolism, University of Southampton Faculty of Medicine, Southampton, United Kingdom (C.D.B.); and National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom (C.D.B.)
| | - Jong-Min Kim
- From the Center for Cohort Studies (Y.C., R.K., J.K., J.H.C., H.S.J., G.Y.L., J.A., S.R.) and Department of Occupational and Environmental Medicine (Y.C., S.R.), Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea; Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea (Y.C., S.R.); Department of Radiology, Seoul National University Hospital, Seoul National College of Medicine, Seoul, Republic of Korea (S.H.Y.); Research & Science Division, MEDICAL IP, Seoul, Republic of Korea (J.M.K., H.J.C.); Institute of Medical Research, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea (R.K., G.Y.L.); Department of Nuclear Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Y.H.K.); Usher Institute, University of Edinburgh, Edinburgh, United Kingdom (S.H.W.); Department of Nutrition and Metabolism, University of Southampton Faculty of Medicine, Southampton, United Kingdom (C.D.B.); and National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom (C.D.B.)
| | - Han-Jae Chung
- From the Center for Cohort Studies (Y.C., R.K., J.K., J.H.C., H.S.J., G.Y.L., J.A., S.R.) and Department of Occupational and Environmental Medicine (Y.C., S.R.), Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea; Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea (Y.C., S.R.); Department of Radiology, Seoul National University Hospital, Seoul National College of Medicine, Seoul, Republic of Korea (S.H.Y.); Research & Science Division, MEDICAL IP, Seoul, Republic of Korea (J.M.K., H.J.C.); Institute of Medical Research, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea (R.K., G.Y.L.); Department of Nuclear Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Y.H.K.); Usher Institute, University of Edinburgh, Edinburgh, United Kingdom (S.H.W.); Department of Nutrition and Metabolism, University of Southampton Faculty of Medicine, Southampton, United Kingdom (C.D.B.); and National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom (C.D.B.)
| | - JunHyeok Choi
- From the Center for Cohort Studies (Y.C., R.K., J.K., J.H.C., H.S.J., G.Y.L., J.A., S.R.) and Department of Occupational and Environmental Medicine (Y.C., S.R.), Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea; Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea (Y.C., S.R.); Department of Radiology, Seoul National University Hospital, Seoul National College of Medicine, Seoul, Republic of Korea (S.H.Y.); Research & Science Division, MEDICAL IP, Seoul, Republic of Korea (J.M.K., H.J.C.); Institute of Medical Research, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea (R.K., G.Y.L.); Department of Nuclear Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Y.H.K.); Usher Institute, University of Edinburgh, Edinburgh, United Kingdom (S.H.W.); Department of Nutrition and Metabolism, University of Southampton Faculty of Medicine, Southampton, United Kingdom (C.D.B.); and National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom (C.D.B.)
| | - Hyun-Suk Jung
- From the Center for Cohort Studies (Y.C., R.K., J.K., J.H.C., H.S.J., G.Y.L., J.A., S.R.) and Department of Occupational and Environmental Medicine (Y.C., S.R.), Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea; Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea (Y.C., S.R.); Department of Radiology, Seoul National University Hospital, Seoul National College of Medicine, Seoul, Republic of Korea (S.H.Y.); Research & Science Division, MEDICAL IP, Seoul, Republic of Korea (J.M.K., H.J.C.); Institute of Medical Research, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea (R.K., G.Y.L.); Department of Nuclear Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Y.H.K.); Usher Institute, University of Edinburgh, Edinburgh, United Kingdom (S.H.W.); Department of Nutrition and Metabolism, University of Southampton Faculty of Medicine, Southampton, United Kingdom (C.D.B.); and National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom (C.D.B.)
| | - Ga-Young Lim
- From the Center for Cohort Studies (Y.C., R.K., J.K., J.H.C., H.S.J., G.Y.L., J.A., S.R.) and Department of Occupational and Environmental Medicine (Y.C., S.R.), Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea; Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea (Y.C., S.R.); Department of Radiology, Seoul National University Hospital, Seoul National College of Medicine, Seoul, Republic of Korea (S.H.Y.); Research & Science Division, MEDICAL IP, Seoul, Republic of Korea (J.M.K., H.J.C.); Institute of Medical Research, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea (R.K., G.Y.L.); Department of Nuclear Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Y.H.K.); Usher Institute, University of Edinburgh, Edinburgh, United Kingdom (S.H.W.); Department of Nutrition and Metabolism, University of Southampton Faculty of Medicine, Southampton, United Kingdom (C.D.B.); and National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom (C.D.B.)
| | - Jiin Ahn
- From the Center for Cohort Studies (Y.C., R.K., J.K., J.H.C., H.S.J., G.Y.L., J.A., S.R.) and Department of Occupational and Environmental Medicine (Y.C., S.R.), Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea; Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea (Y.C., S.R.); Department of Radiology, Seoul National University Hospital, Seoul National College of Medicine, Seoul, Republic of Korea (S.H.Y.); Research & Science Division, MEDICAL IP, Seoul, Republic of Korea (J.M.K., H.J.C.); Institute of Medical Research, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea (R.K., G.Y.L.); Department of Nuclear Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Y.H.K.); Usher Institute, University of Edinburgh, Edinburgh, United Kingdom (S.H.W.); Department of Nutrition and Metabolism, University of Southampton Faculty of Medicine, Southampton, United Kingdom (C.D.B.); and National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom (C.D.B.)
| | - Sarah H Wild
- From the Center for Cohort Studies (Y.C., R.K., J.K., J.H.C., H.S.J., G.Y.L., J.A., S.R.) and Department of Occupational and Environmental Medicine (Y.C., S.R.), Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea; Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea (Y.C., S.R.); Department of Radiology, Seoul National University Hospital, Seoul National College of Medicine, Seoul, Republic of Korea (S.H.Y.); Research & Science Division, MEDICAL IP, Seoul, Republic of Korea (J.M.K., H.J.C.); Institute of Medical Research, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea (R.K., G.Y.L.); Department of Nuclear Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Y.H.K.); Usher Institute, University of Edinburgh, Edinburgh, United Kingdom (S.H.W.); Department of Nutrition and Metabolism, University of Southampton Faculty of Medicine, Southampton, United Kingdom (C.D.B.); and National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom (C.D.B.)
| | - Christopher D Byrne
- From the Center for Cohort Studies (Y.C., R.K., J.K., J.H.C., H.S.J., G.Y.L., J.A., S.R.) and Department of Occupational and Environmental Medicine (Y.C., S.R.), Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea; Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea (Y.C., S.R.); Department of Radiology, Seoul National University Hospital, Seoul National College of Medicine, Seoul, Republic of Korea (S.H.Y.); Research & Science Division, MEDICAL IP, Seoul, Republic of Korea (J.M.K., H.J.C.); Institute of Medical Research, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea (R.K., G.Y.L.); Department of Nuclear Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Y.H.K.); Usher Institute, University of Edinburgh, Edinburgh, United Kingdom (S.H.W.); Department of Nutrition and Metabolism, University of Southampton Faculty of Medicine, Southampton, United Kingdom (C.D.B.); and National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom (C.D.B.)
| | - Seungho Ryu
- From the Center for Cohort Studies (Y.C., R.K., J.K., J.H.C., H.S.J., G.Y.L., J.A., S.R.) and Department of Occupational and Environmental Medicine (Y.C., S.R.), Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea; Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea (Y.C., S.R.); Department of Radiology, Seoul National University Hospital, Seoul National College of Medicine, Seoul, Republic of Korea (S.H.Y.); Research & Science Division, MEDICAL IP, Seoul, Republic of Korea (J.M.K., H.J.C.); Institute of Medical Research, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea (R.K., G.Y.L.); Department of Nuclear Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Y.H.K.); Usher Institute, University of Edinburgh, Edinburgh, United Kingdom (S.H.W.); Department of Nutrition and Metabolism, University of Southampton Faculty of Medicine, Southampton, United Kingdom (C.D.B.); and National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom (C.D.B.)
| |
Collapse
|
27
|
Flores-Sierra JDJ, Muciño-Arellano MDR, Romo-Morales GDC, Sánchez-Palafox JE, Correa-Navarro VA, Colín-Castelán D, Pérez-Vázquez V, Rangel-Salazar R, Rivera-Bustamante R, de la Rocha C, Rodríguez-Ríos D, Trejo-Saavedra DL, Molina-Torres J, Ramírez-Chávez E, García-Rojas NS, Winkler R, Lund G, Zaina S. The DNA methyltransferase inhibitor decitabine blunts the response to a high-animal fat and protein diet in mice. J Lipid Res 2024; 65:100586. [PMID: 38942113 PMCID: PMC11325794 DOI: 10.1016/j.jlr.2024.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024] Open
Abstract
Increasing evidence hints that DNA hypermethylation may mediate the pathogenic response to cardiovascular risk factors. Here, we tested a corollary of that hypothesis, that is, that the DNA methyltransferase inhibitor decitabine (Dec) ameliorates the metabolic profile of mice fed a moderately high-animal fat and protein diet (HAFPD), a proxy of cardiovascular risk-associated Western-type diet. HAFPD-fed mice were exposed to Dec or vehicle for eight weeks (8W set, 4-32/group). To assess any memory of past exposure to Dec, we surveyed a second mice set treated as 8W but HAFPD-fed for further eight weeks without any Dec (16W set, 4-20/group). In 8W, Dec markedly reduced HAFPD-induced body weight gain in females, but marginally in males. Characterization of females revealed that Dec augmented skeletal muscle lipid content, while decreasing liver fat content and increasing plasma nonesterified fatty acids, adipose insulin resistance, and-although marginally-whole blood acylcarnitines, compared to HAFPD alone. Skeletal muscle mitochondrial DNA copy number was higher in 8W mice exposed to HAFPD and Dec, or in 16W mice fed HAFPD only, relative to 8W mice fed HAFPD only, but Dec induced a transcriptional profile indicative of ameliorated mitochondrial function. Memory of past Dec exposure was tissue-specific and sensitive to both duration of exposure to HAFPD and age. In conclusion, Dec redirected HAFPD-induced lipid accumulation toward the skeletal muscle, likely due to augmented mitochondrial functionality and increased lipid demand. As caveat, Dec induced adipose insulin resistance. Our findings may help identifying strategies for prevention and treatment of lipid dysmetabolism.
Collapse
Affiliation(s)
- José de Jesús Flores-Sierra
- Division of Health Sciences, Department of Medical Sciences, Leon Campus, University of Guanajuato, Leon, Mexico; Tecnológico Nacional de México/ITS de Purísima del Rincón, Purísima del Rincón, Guanajuato, Mexico
| | | | | | | | | | - Dannia Colín-Castelán
- Division of Health Sciences, Department of Medical Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
| | - Victoriano Pérez-Vázquez
- Division of Health Sciences, Department of Medical Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
| | - Rubén Rangel-Salazar
- Division of Health Sciences, Department of Medical Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
| | | | - Carmen de la Rocha
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
| | | | | | - Jorge Molina-Torres
- Department of Biotechnology and Biochemistry, CINVESTAV Irapuato Unit, Irapuato, Mexico
| | | | | | | | - Gertrud Lund
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico.
| | - Silvio Zaina
- Division of Health Sciences, Department of Medical Sciences, Leon Campus, University of Guanajuato, Leon, Mexico.
| |
Collapse
|
28
|
Goulis DG. "We're only as needy as our unmet needs". Maturitas 2024; 186:108025. [PMID: 38760253 DOI: 10.1016/j.maturitas.2024.108025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024]
Affiliation(s)
- Dimitrios G Goulis
- Unit of Reproductive Endocrinology, First of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Greece.
| |
Collapse
|
29
|
Fermín-Martínez CA, Ramírez-García D, Antonio-Villa NE, Espinosa JP, Aguilar-Ramírez D, García-Peña C, Gutiérrez-Robledo LM, Seiglie JA, Bello-Chavolla OY. Multinational evaluation of anthropometric age (AnthropoAge) as a measure of biological age in the USA, England, Mexico, Costa Rica, and China: a population-based longitudinal study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.09.24310149. [PMID: 39040174 PMCID: PMC11261952 DOI: 10.1101/2024.07.09.24310149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
OBJECTIVE To validate AnthropoAge, a new metric of biological age (BA), for prediction of all-cause mortality and age-related outcomes and characterize population-specific aging patterns using multinational longitudinal cohorts. METHODS We analyzed harmonized multinational data from the Gateway to Global Aging, including studies from the US, England, Mexico, Costa Rica, and China. We used body mass index and waist-to-height ratio to estimate AnthropoAge and AnthropoAgeAccel in participants aged 50-90 years old as proxies of BA and age acceleration, respectively. We compared the predictive capacity for all-cause mortality of AnthropoAge and chronological age (CA) using Cox models, described aging trends in all countries and explored the utility of longitudinal assessments of AnthropoAgeAccel to predict new-onset functional decline and age-related diseases using generalized estimating equations (GEE). FINDINGS Using data from 55,628 participants, we found AnthropoAge (c-statistic 0.772) outperformed CA (0.76) for prediction of mortality independently of comorbidities, sex, race/ethnicity, education, and lifestyle; this result was replicated in most countries individually except for Mexico. Individuals with accelerated aging had a ~39% higher risk of death, and AnthropoAge also identified trends of faster biological aging per year. In longitudinal analyses, higher AnthropoAgeAccel values were independently predictive of self-reported health deterioration and new-onset deficits in basic/instrumental activities of daily living (ADL/IADL), diabetes, hypertension, cancer, chronic lung disease, myocardial infarction, and stroke. CONCLUSIONS AnthropoAge is a robust and reproducible BA metric associated with age-related outcomes. Its implementation could facilitate modeling trends of biological aging acceleration in different populations, although recalibration may enhance its utility in underrepresented populations such as individuals from Latin America.
Collapse
Affiliation(s)
- Carlos A. Fermín-Martínez
- Research Division, Instituto Nacional de Geriatría, Mexico City, Mexico
- MD/PhD (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel Ramírez-García
- Research Division, Instituto Nacional de Geriatría, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Jerónimo Perezalonso Espinosa
- Research Division, Instituto Nacional de Geriatría, Mexico City, Mexico
- MD/PhD (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diego Aguilar-Ramírez
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | | | - Jacqueline A. Seiglie
- Department of Medicine, Harvard Medical School, Boston, MA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA
| | | |
Collapse
|
30
|
Arner P, Viguerie N, Massier L, Rydén M, Astrup A, Blaak E, Langin D, Andersson DP. Sex differences in adipose insulin resistance are linked to obesity, lipolysis and insulin receptor substrate 1. Int J Obes (Lond) 2024; 48:934-940. [PMID: 38491191 PMCID: PMC11217000 DOI: 10.1038/s41366-024-01501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND/OBJECTIVE Insulin resistance is more prominent in men than women. If this involves adipose tissue is unknown and was presently examined. SUBJECTS/METHODS AdipoIR (in vivo adipose insulin resistance index) was measured in 2344 women and 787 men. In 259 of the women and 54 of the men, insulin induced inhibition of lipolysis (acylglycerol breakdown) and stimulation of lipogenesis (glucose conversion to acylglycerols) were determined in subcutaneous adipocytes; in addition, basal (spontaneous) lipolysis was also determined in the fat cells. In 234 women and 115 men, RNAseq expression of canonical insulin signal genes were measured in subcutaneous adipose tissue. Messenger RNA transcripts of the most discriminant genes were quantified in 175 women and 109 men. RESULTS Men had higher AdipoIR values than women but only when obesity (body mass index 30 kg/m2 or more) was present (p < 0.0001). The latter sex dimorphism was found among physically active and sedentary people, in those with and without cardiometabolic disease and in people using nicotine or not (p = 0.0003 or less). In obesity, adipocyte insulin sensitivity (half maximum effective hormone concentration) and maximal antilipolytic effect were tenfold and 10% lower, respectively, in men than women (p = 0.005 or less). Basal rate of lipolysis was two times higher in men than women (p > 0.0001). Sensitivity and maximum effect of insulin on lipogenesis were similar in both sexes (p = 0.26 and p = 0.18, respectively). When corrected for multiple comparison only RNAseq expression of insulin receptor substrate 1 (IRS1) was lower in men than women (p < 0.0001). The mRNA transcript for IRS1 was 60% higher in women than men (p < 0.0001). CONCLUSIONS In obesity, adipose tissue insulin resistance is more pronounced in men than in women. The mechanism involves less efficient insulin-mediated inhibition of adipocyte lipolysis, increased basal rate of lipolysis and decreased adipose expression of a key element of insulin signaling, IRS1.
Collapse
Affiliation(s)
- Peter Arner
- Department of Medicine H7, Karolinska Institutet, Stockholm, Sweden.
| | - Nathalie Viguerie
- Institute of Metabolic and Cardiovascular Diseases, I2MC, University of Toulouse, Inserm, Toulouse III University - Paul Sabatier (UPS), Toulouse, France
| | - Lucas Massier
- Department of Medicine H7, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine H7, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology and Metabolism, Karolinska University Hospital, Stockholm, Sweden
| | - Arne Astrup
- Department of Obesity and Nutritional Sciences, Novo Nordisk Foundation, 2900, Hellerup, Denmark
| | - Ellen Blaak
- Department of Human Biology, NUTRIM, School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Science, Maastricht University, 6200, MD, Maastricht, The Netherlands
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases, I2MC, University of Toulouse, Inserm, Toulouse III University - Paul Sabatier (UPS), Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Institut Universitaire de France (IUF), Paris, France
| | - Daniel Peter Andersson
- Department of Medicine H7, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology and Metabolism, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
31
|
Maloney A, Kanaley JA. Short Sleep Duration Disrupts Glucose Metabolism: Can Exercise Turn Back the Clock? Exerc Sport Sci Rev 2024; 52:77-86. [PMID: 38608214 PMCID: PMC11168896 DOI: 10.1249/jes.0000000000000339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Short sleep duration is prevalent in modern society and may be contributing to type 2 diabetes prevalence. This review will explore the effects of sleep restriction on glycemic control, the mechanisms causing insulin resistance, and whether exercise can offset changes in glycemic control. Chronic sleep restriction may also contribute to a decrease in physical activity leading to further health complications.
Collapse
Affiliation(s)
- Alan Maloney
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| | | |
Collapse
|
32
|
van Ede ES, Nienhuijs SW, Goossens GH, Bouwman RA, Buise MP. The impact of duration and severity of obesity exposure on cardiometabolic health. Obes Surg 2024; 34:2587-2595. [PMID: 38833133 PMCID: PMC11217088 DOI: 10.1007/s11695-024-07331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE Duration and severity of exposure to excess adipose tissue are important risk factors for complications, but are generally not examined in conjunction. We developed a metric considering both factors to examine the relationship between obesity-related complications and parameters of cardiometabolic health in patients undergoing a metabolic bariatric procedure (MBS). MATERIALS & METHODS Data from patients screened for primary MBS between 2017 and 2021 were analyzed. The Obesity Exposure score (OBES), based on self-reported years of life with a BMI ≥ 25 kg/m2, was calculated with increased weighting applied for higher BMI categories. Multivariate logistic regression analysis was performed, adjusting for multiple potential confounders. RESULTS In total, 2441 patients were included (76% female, age 42.1 ± 11.9 years, BMI 42.0 ± 4.9 kg/m2). OBES was positively related to myocardial infarction, atrial fibrillation and renal function loss (per 10 OBES-units: OR 1.31, 95%CI [1.11-1.52], p = 0.002; OR 1.23, 95% CI [1.06-1.44], p = 0.008; and OR 1.26, 95% CI [1.04-1.51], p = 0.02). OBES was negatively associated with obstructive sleep apnea syndrome (OSAS) (OR 0.90, 95% CI [0.83-0.98], p = 0.02). In patients without obesity-related complications, OBES was related to lower HbA1c and higher HDL-cholesterol levels (ß -0.5 95% CI [-0.08-.0.02] p < 0.001 and ß 0.02 [0.00-0.04] p = 0.01). CONCLUSION OBES was related to myocardial infarction, atrial fibrillation and renal function loss in patients applying for MBS. OBES was negatively related to OSAS, possibly because undiagnosed years were not taken into account. In the absence of obesity-related complications, OBES was not related to metabolic blood markers. Our data may aid in improving perioperative risk assessments.
Collapse
Affiliation(s)
- Elisabeth S van Ede
- Department of Anesthesiology, Catharina Hospital, 5623 EJ, Eindhoven, the Netherlands.
- Department of Electrical Engineering, Signal Processing Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
| | - Simon W Nienhuijs
- Department of Surgery, Catharina Hospital, 5623 EJ, Eindhoven, the Netherlands
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6200 MD, Maastricht, the Netherlands
| | - R Arthur Bouwman
- Department of Anesthesiology, Catharina Hospital, 5623 EJ, Eindhoven, the Netherlands
- Department of Electrical Engineering, Signal Processing Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Marc P Buise
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Center, 6229 HX, Maastricht, the Netherlands
| |
Collapse
|
33
|
Liu C, Hua L, Xin Z. Greater upper limb muscle mass associated with reduced cardiovascular mortality compared with other muscle groups in diabetics. Nutrition 2024; 122:112386. [PMID: 38442653 DOI: 10.1016/j.nut.2024.112386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVES Although muscle mass and its distribution have been shown to affect prognosis, the association between regional muscle mass and cardiovascular mortality risk in diabetic patients remains unclear. METHODS This prospective cohort study analyzed data from 2166 individuals with diabetes who participated in the National Health and Nutrition Survey conducted in the United States between 2003 to 2006 and 2011 to 2018, linked to the National Death Index. Weighted Kaplan-Meier analysis and multivariable Cox proportional hazards models were used to explore the association between different regional lean mass and cardiovascular mortality. RESULTS The weighted Kaplan-Meier analysis revealed statistically significant differences in survival probabilities across lean upper limbs, lean lower limbs, lean gynoid, and lean trunk mass levels in diabetic participants (P < 0.05). In the multivariate adjusted Cox proportional hazards models, higher levels of upper limb lean mass were found to be associated with decreased cardiovascular mortality (hazard ratio, 0.589; 95% confidence interval, 0.332-0.976; P = 0.041). Notably, this correlation was more significant in men (hazard ratio, 0.378; 95% confidence interval, 0.171-0.834; P = 0.016), which was indicated by the results of the Cox regression and nonlinear regression analysis. CONCLUSIONS Higher upper limb lean mass is associated with lower cardiovascular mortality compared with other regional lean mass in patients with diabetes, especially for men. Further research is needed to elucidate the mechanisms involved in muscle metabolic differentiation.
Collapse
Affiliation(s)
- Chang Liu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lin Hua
- Department of Mathematics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Zhong Xin
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
34
|
Chang ML, Le PH, Chen WT, Chen TD, Chien RN. Hepatic and Extrahepatic Characteristics of Autoimmune Hepatitis: A 23-year Hospital-Based Cohort Study. Dig Dis Sci 2024; 69:2193-2203. [PMID: 38653947 DOI: 10.1007/s10620-024-08439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND The characteristics of autoimmune hepatitis (AIH) in Asia mostly remain elusive. METHODS A cohort study of liver biopsy-proven AIH patients was conducted in a tertiary care cancer of Taiwan. RESULTS From 1999 to 2022, of 13,766 patients who underwent liver biopsy, 150 patients with AIH were enrolled. The female-to-male ratio was 2.26. At baseline, the mean age was 51.09 years, mean alanine aminotransferase level was 494.11 U/L, and 17 (11.3%) had cirrhosis. All except one patient had AIH type 1. The females were older and had higher baseline cirrhosis rates than did the males. The 23-year cumulative incidences of cirrhosis, hepatocellular carcinoma (HCC), mortality/liver transplantation, autoimmune diseases and extrahepatic cancer were 64.2%, 13.3%, 23.4%, 30.7% and 21.2%, respectively. The 1-year, 2-year, 3-year, 5-year, 10-year and 20-year postimmunosuppressive therapy relapse rates were 60%, 78.2%, 81.8%, 89.1%, 94.5% and 100%, respectively. Baseline associations were as follows: alkaline phosphatase (Alk-p) levels with postimmunosuppressive therapy flare [hazard ratio (HR): 1.003; 95% CI HR: 1.000-1.005]; age with HCC (1.072; 1.010-1.138) and all-cause cancer (1.041;1.005-1.079); cirrhosis with mortality/liver transplantation (11.933;1.984-71.787); and antinuclear antibody (ANA) titers with mortality/liver transplantation (1.001;1.000-1.003), cirrhosis (1.001;1.000-1.002), and autoimmune diseases (1.001; 1.000-1.002). CONCLUSION In an Asian country endemic for viral hepatitis, the female-to-male and baseline cirrhosis rates of AIH patients were lower than expected, while over 60% of the patients eventually developed cirrhosis. The high posttherapy relapse rate warrants cautious monitoring, particularly for patients with high baseline Alk-p levels. Baseline age, cirrhosis status and ANA titers are crucial for outcomes.
Collapse
Affiliation(s)
- Ming-Ling Chang
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, No. 5, Fu Hsing Street, Kuei Shan, Taoyuan, Taiwan.
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Puo-Hsien Le
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, No. 5, Fu Hsing Street, Kuei Shan, Taoyuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Ting Chen
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, No. 5, Fu Hsing Street, Kuei Shan, Taoyuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tai-Di Chen
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Rong-Nan Chien
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, No. 5, Fu Hsing Street, Kuei Shan, Taoyuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
35
|
Nokoff NJ, Bothwell S, Rice JD, Cree MG, Kelsey MM, Moreau KL, Zeitler P, Nadeau KJ. Insulin sensitivity, body composition and bone mineral density after testosterone treatment in transgender youth with and without prior GnRH agonist therapy. J Clin Transl Endocrinol 2024; 36:100356. [PMID: 38948245 PMCID: PMC11214195 DOI: 10.1016/j.jcte.2024.100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Background 1.8% of youth identify as transgender; a growing proportion are transgender male (female sex, male gender identity). Many receive gonadotropin releasing hormone agonist (GnRHa) therapy to suppress endogenous puberty and/or will start testosterone to induce secondary sex characteristics that align with gender identity. Objectives To determine the effects of 12 months of testosterone on cardiometabolic health among transgender youth, including insulin sensitivity, body composition, and bone mineral density and whether changes in outcomes differ based on prior GnRHa treatment. Methods Participants (n = 19, baseline age 15.0 ± 1.0 years) were examined prior to and 12 months after testosterone therapy in a longitudinal observational study. Fasted morning blood draw, a 2-hour 75-gram oral glucose tolerance test, body composition and bone mineral density (dual-energy X-ray absorptiometry) were assessed at baseline and 12 months. Insulin sensitivity was estimated by HOMA-IR and Matsuda index. Changes were compared with mixed linear regression models evaluating time (baseline, 12 months), group (GnRHa treatment yes/no), and their interaction. Results In the entire cohort, fasted insulin decreased (median [25,75 %ile]: -3 [-5, 0] mIU/L, p = 0.044) and 2-hour glucose increased (mean ± standard deviation): +18.5 ± 28.9 mg/dL, p = 0.013 from baseline after 12 months of testosterone therapy. There were no significant changes in HOMA-IR (p = 0.062) or Matsuda index (p = 0.096), nor by GnRHa status. Absolute (+6.2 [4.7, 7.5] kg, p = 0.016) and percent fat-free mass increased (+7.3 [5.4, 9.1] %, p = 0.003) and percent fat mass declined (-7.4 [-9.3, 5.3]%, p = 0.005) for the entire cohort. There were time*group interactions for absolute (p = 0.0007) and percent fat-free mass (p = 0.033). There were time*group interactions for bone mineral content (p = 0.006). Conclusions Twelve months of testosterone in transgender adolescents resulted in changes in body composition and bone mineral density, with baseline differences between the +/-GnRHa group and convergence after 12 months. There were no changes in insulin sensitivity over time or between groups.
Collapse
Affiliation(s)
- Natalie J. Nokoff
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, 13123 E 16 Ave, Aurora, CO 80045, USA
- Ludeman Family Center for Women’s Health Research, USA
| | - Samantha Bothwell
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, 13123 E 16 Ave, Aurora, CO 80045, USA
| | - John D. Rice
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, 13123 E 16 Ave, Aurora, CO 80045, USA
- University of Michigan, Department of Biostatistics, USA
| | - Melanie G. Cree
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, 13123 E 16 Ave, Aurora, CO 80045, USA
- Ludeman Family Center for Women’s Health Research, USA
| | - Megan M. Kelsey
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, 13123 E 16 Ave, Aurora, CO 80045, USA
- Ludeman Family Center for Women’s Health Research, USA
| | - Kerrie L. Moreau
- Ludeman Family Center for Women’s Health Research, USA
- University of Colorado Anschutz Medical Campus, Department of Medicine, USA
| | - Philip Zeitler
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, 13123 E 16 Ave, Aurora, CO 80045, USA
| | - Kristen J. Nadeau
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, 13123 E 16 Ave, Aurora, CO 80045, USA
- Ludeman Family Center for Women’s Health Research, USA
| |
Collapse
|
36
|
Poursalehi D, Lotfi K, Shahdadian F, Hajhashemy Z, Rouhani P, Saneei P. Dietary intake of methyl donor nutrients in relation to metabolic health status, serum levels of brain-derived neurotrophic factor and adropin. Clin Nutr 2024; 43:1353-1362. [PMID: 38677046 DOI: 10.1016/j.clnu.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/23/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND AND AIMS There is a lack of evidence on dietary intake of methyl donor nutrients with metabolic health status and related biomarkers. Thus, this study aimed to assess the relation between methyl donor nutrients intake and metabolic health status with regarding the interactive roles of brain-derived neurotrophic factor (BDNF) and adropin in Iranian adults. METHODS This cross-sectional survey was conducted among 527 Iranian adults (45.7% female) selected by multistage cluster random-sampling method. A validated food frequency questionnaire was used to evaluate participants' dietary intake. Metabolic unhealthy status was defined by Wildman criteria as having ≥ 2 of hyperglycemia, hypertriglyceridemia, hypo-HDL-cholesterolemia, hypertension, chronic inflammation, and insulin resistance. Concentrations of metabolic parameters, BDNF and adropin were determined using fasting blood samples. RESULTS An inverse association was found between methyl donor nutrients intake and metabolically unhealthy status in multivariable-adjusted model (ORT3 vs. T1 = 0.30; 95%CI: 0.12-0.75). This association was especially significant among overweight/obese adults and was stronger in women. Additionally, consumption of vitamin B6 and choline was separately related to reduced odds of metabolically unhealthy status. Methyl donor intake was not significantly related to low BDNF (ORT3 vs. T1 = 0.93; 95%CI: 0.60-1.44) and adropin (ORT3 vs. T1 = 0.71; 95%CI: 0.44-1.15). However, the interaction between high methyl donor nutrients intake and high BDNF was related to lower odds of metabolically unhealthy status in multivariable-adjusted model (ORMDNS∗BDNF = 0.27; 95%CI: 0.11-0.67). CONCLUSION Higher intake of methyl donor nutrients, alone and in interaction with BDNF levels, was associated with decreased odds of metabolically unhealthy status in Iranian adults.
Collapse
Affiliation(s)
- Donya Poursalehi
- Students' Scientific Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Keyhan Lotfi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Shahdadian
- Department of Clinical Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Hajhashemy
- Isfahan University of Medical Sciences, Isfahan, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parisa Rouhani
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Parvane Saneei
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
37
|
Deutz LN, Wierzchowska-McNew RA, Deutz NE, Engelen MP. Reduced plasma glycine concentration in healthy and chronically diseased older adults: a marker of visceral adiposity? Am J Clin Nutr 2024; 119:1455-1464. [PMID: 38616018 PMCID: PMC11251212 DOI: 10.1016/j.ajcnut.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/14/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Previous studies have shown that a reduced plasma concentration of the amino acid glycine (Gly) is associated with intra-abdominal obesity, but the mechanism remains unclear. OBJECTIVES This study aimed to investigate whether lower plasma Gly concentrations in older adults are independently associated with (visceral) adiposity, age, sex, presence of chronic disease, and glucose intolerance, and whether they are caused by a reduced Gly whole-body production (WBP) and/or increased Gly disposal capacity. METHODS We studied 102 older adults (47 males/55 females, 68.5 ± standard deviation 6.4 y) without comorbidities and 125 older adults with chronic obstructive pulmonary disease (COPD) (58 males/67 females, 69.7 ± 8.6 y). We assessed body composition and visceral adipose tissue (VAT) by dual-energy x-ray absorptiometry and muscle function by dynamometry. We measured postabsorptive plasma amino acid profile and glucose, followed by pulse administration of stable isotope-labeled Gly ([2,2-2H2]), and blood sampling was performed to measure the WBP of Gly. Results are expressed as means and 95% confidence intervals (CIs). RESULTS We found a lower plasma Gly concentration in healthy males and males with COPD than in females (Healthy: 211; 95% CI: 193,230 compared with 248; 95% CI: 225,271; COPD: 200; 95% CI: 186,215 compared with 262: 95% CI: 241, 283; P < 0.0001, respectively), with no difference between healthy and COPD groups. A negative relationship was found between unadjusted plasma Gly and VAT mass (R2: 0.16; slope: -1.7; 95% CI: -2.4, -1.2; P < 0.0021), but not with total body fat or fasting glucose. The strong association between lower plasma Gly and increased VAT mass in older adults was independent of age, sex, body weight, lean mass or body mass index, and the presence of COPD. Inclusion of these covariates increased the R2 to 0.783. We found no relation between the VAT and WBP of Gly (P = 0.35) or Gly clearance (P = 0.187) when lean mass was considered. CONCLUSIONS Reduced plasma Gly in older adults can be considered a marker of visceral adiposity, independent of sex, age, body composition, presence of chronic disease, and whole-body Gly production or clearance. This study was registered on clinicaltrials.gov as NCT01787682, NCT02082418, NCT02157844, NCT02770092, NCT02780219, NCT03796455, and NCT04461236.
Collapse
Affiliation(s)
- Lars Nj Deutz
- Center for Translational Research in Aging and Longevity, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States
| | - Raven A Wierzchowska-McNew
- Center for Translational Research in Aging and Longevity, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States
| | - Nicolaas Ep Deutz
- Center for Translational Research in Aging and Longevity, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States; Department of Primary Care and Rural Medicine, Texas A&M School of Medicine, College Station, TX, United States
| | - Mariëlle Pkj Engelen
- Center for Translational Research in Aging and Longevity, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States; Department of Primary Care and Rural Medicine, Texas A&M School of Medicine, College Station, TX, United States.
| |
Collapse
|
38
|
Mazza E, Troiano E, Ferro Y, Lisso F, Tosi M, Turco E, Pujia R, Montalcini T. Obesity, Dietary Patterns, and Hormonal Balance Modulation: Gender-Specific Impacts. Nutrients 2024; 16:1629. [PMID: 38892561 PMCID: PMC11174431 DOI: 10.3390/nu16111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Understanding the intricate relationship between nutrition, hormonal balance, and gender-specific factors is crucial for developing targeted interventions to mitigate obesity-related endocrine disruptions and improve metabolic health. This narrative review examines the impact of various dietary patterns on hormonal regulation in both men and women, focusing on their effects on hormonal balance and metabolic health in the context of obesity. Calorie restriction, the Western diet, high-fat diets, low-CHO diets, plant-based diets, and the Mediterranean diet are analyzed in relation to their influence on obesity-related endocrine disruptions and metabolic health. Future research directions include investigating the specific mechanisms underlying dietary influences on hormonal regulation, addressing the gender-specific metabolic differences and body fat distribution, and exploring the dietary needs of individuals undergoing gender transition. Personalized dietary interventions tailored to individual metabolic and hormonal profiles are essential for optimizing health outcomes across the gender spectrum. By integrating gender-specific considerations into dietary recommendations, healthcare professionals can better support individuals in achieving optimal metabolic health and hormonal balance.
Collapse
Affiliation(s)
- Elisa Mazza
- Department of Clinical and Experimental Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (E.M.); (T.M.)
- Technical Scientific Association of Food, Nutrition and Dietetics (ASAND), 95128 Catania, Italy; (E.T.); (F.L.)
| | - Ersilia Troiano
- Technical Scientific Association of Food, Nutrition and Dietetics (ASAND), 95128 Catania, Italy; (E.T.); (F.L.)
- Social Educational Directorate of Rome III Montesacro Municipality, 00139 Rome, Italy
| | - Yvelise Ferro
- Department of Medical and Surgical Science, University Magna Græcia, 88100 Catanzaro, Italy; (Y.F.); (R.P.)
| | - Fabrizia Lisso
- Technical Scientific Association of Food, Nutrition and Dietetics (ASAND), 95128 Catania, Italy; (E.T.); (F.L.)
- “Sant’Anna” Hospital, San Fermo della Battaglia, 22042 Como, Italy
| | - Martina Tosi
- Technical Scientific Association of Food, Nutrition and Dietetics (ASAND), 95128 Catania, Italy; (E.T.); (F.L.)
- Department of Health Sciences, University of Milan, 20146 Milan, Italy
| | - Ettore Turco
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Roberta Pujia
- Department of Medical and Surgical Science, University Magna Græcia, 88100 Catanzaro, Italy; (Y.F.); (R.P.)
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (E.M.); (T.M.)
- Research Center for the Prevention and Treatment of Metabolic Diseases, University Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
39
|
Guglielmi V, Dalle Grave R, Leonetti F, Solini A. Female obesity: clinical and psychological assessment toward the best treatment. Front Endocrinol (Lausanne) 2024; 15:1349794. [PMID: 38765954 PMCID: PMC11099266 DOI: 10.3389/fendo.2024.1349794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
Obesity is a heterogeneous condition which results from complex interactions among sex/gender, sociocultural, environmental, and biological factors. Obesity is more prevalent in women in most developed countries, and several clinical and psychological obesity complications show sex-specific patterns. Females differ regarding fat distribution, with males tending to store more visceral fat, which is highly correlated to increased cardiovascular risk. Although women are more likely to be diagnosed with obesity and appear more motivated to lose weight, as confirmed by their greater representation in clinical trials, males show better outcomes in terms of body weight and intra-abdominal fat loss and improvements in the metabolic risk profile. However, only a few relatively recent studies have investigated gender differences in obesity, and sex/gender is rarely considered in the assessment and management of the disease. This review summarizes the evidence of gender differences in obesity prevalence, contributing factors, clinical complications, and psychological challenges. In addition, we explored gender differences in response to obesity treatments in the specific context of new anti-obesity drugs.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Unit of Internal Medicine and Obesity Center, Department of Systems Medicine, Policlinico Tor Vergata, University of Rome Tor Vergata, Rome, Italy
| | - Riccardo Dalle Grave
- Department of Eating and Weight Disorders, Villa Garda Hospital, Garda, VR, Italy
| | - Frida Leonetti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
40
|
Ahanchi NS, Khatami F, Llanaj E, Quezada-Pinedo HG, Dizdari H, Bano A, Glisic M, Eisenga MF, Vidal PM, Muka T. The complementary roles of iron and estrogen in menopausal differences in cardiometabolic outcomes. Clin Nutr 2024; 43:1136-1150. [PMID: 38593499 DOI: 10.1016/j.clnu.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/25/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Biological hormonal changes are frequently cited as an explanatory factor of sex and menopause differences in cardiometabolic diseases (CMD) and its associated risk factors. However, iron metabolism which varies between sexes and among women of different reproductive stages could also play a role. Recent evidence suggest that iron may contribute to CMD risk by modulating oxidative stress pathways and inflammatory responses, offering insights into the mechanistic interplay between iron and CMD development. In the current review, we provide a critical appraisal of the existing evidence on sex and menopausal differences in CMD, discuss the pitfall of current estrogen hypothesis as sole explanation, and the emerging role of iron in CMD as complementary pathway. Prior to menopause, body iron stores are lower in females as compared to males, but the increase during and after menopause, is tandem with an increased CMD risk. Importantly, basic science experiments show that an increased iron status is related to the development of type 2 diabetes (T2D), and different cardiovascular diseases (CVD). While epidemiological studies have consistently reported associations between heme iron intake and some iron biomarkers such as ferritin and transferrin saturation with the risk of T2D, the evidence regarding their connection to CVD remains controversial. We delve into the factors contributing to this inconsistency, and the limitation of relying on observational evidence, as it does not necessarily imply causation. In conclusion, we provide recommendations for future studies on evaluating the potential role of iron in elucidating the sex and menopausal differences observed in CMD.
Collapse
Affiliation(s)
- Noushin Sadat Ahanchi
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland; Department of Internal Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Farnaz Khatami
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland; Community Medicine Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Erand Llanaj
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hugo G Quezada-Pinedo
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics Erasmus MC-Sophia Children's Hospital University, Rotterdam, the Netherlands
| | - Helga Dizdari
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Arjola Bano
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marija Glisic
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Swiss Paraplegic Research, Nottwil, Switzerland
| | - Michele F Eisenga
- Division of Nephrology, Department of Internal Medicine, University of Groningen, Groningen, Netherlands
| | - Pedro-Marques Vidal
- Department of Internal Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
41
|
Many GM, Sanford JA, Sagendorf TJ, Hou Z, Nigro P, Whytock KL, Amar D, Caputo T, Gay NR, Gaul DA, Hirshman MF, Jimenez-Morales D, Lindholm ME, Muehlbauer MJ, Vamvini M, Bergman BC, Fernández FM, Goodyear LJ, Hevener AL, Ortlund EA, Sparks LM, Xia A, Adkins JN, Bodine SC, Newgard CB, Schenk S. Sexual dimorphism and the multi-omic response to exercise training in rat subcutaneous white adipose tissue. Nat Metab 2024; 6:963-979. [PMID: 38693320 PMCID: PMC11132991 DOI: 10.1038/s42255-023-00959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/01/2023] [Indexed: 05/03/2024]
Abstract
Subcutaneous white adipose tissue (scWAT) is a dynamic storage and secretory organ that regulates systemic homeostasis, yet the impact of endurance exercise training (ExT) and sex on its molecular landscape is not fully established. Utilizing an integrative multi-omics approach, and leveraging data generated by the Molecular Transducers of Physical Activity Consortium (MoTrPAC), we show profound sexual dimorphism in the scWAT of sedentary rats and in the dynamic response of this tissue to ExT. Specifically, the scWAT of sedentary females displays -omic signatures related to insulin signaling and adipogenesis, whereas the scWAT of sedentary males is enriched in terms related to aerobic metabolism. These sex-specific -omic signatures are preserved or amplified with ExT. Integration of multi-omic analyses with phenotypic measures identifies molecular hubs predicted to drive sexually distinct responses to training. Overall, this study underscores the powerful impact of sex on adipose tissue biology and provides a rich resource to investigate the scWAT response to ExT.
Collapse
Affiliation(s)
- Gina M Many
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - James A Sanford
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tyler J Sagendorf
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Zhenxin Hou
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Pasquale Nigro
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Katie L Whytock
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - David Amar
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Tiziana Caputo
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Nicole R Gay
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - David A Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - David Jimenez-Morales
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Malene E Lindholm
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Michael J Muehlbauer
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
| | - Maria Vamvini
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Bryan C Bergman
- Division of Endocrinology, Diabetes, and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Ashley Xia
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joshua N Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Sue C Bodine
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | - Christopher B Newgard
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA.
| | - Simon Schenk
- Department of Orthopaedic Surgery, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
42
|
Chen H, Liu Y, Liu D, Liang Y, Zhu Z, Dong K, Li H, Bao Y, Wu J, Hou X, Jia W. Sex- and age-specific associations between abdominal fat and non-alcoholic fatty liver disease: a prospective cohort study. J Mol Cell Biol 2024; 15:mjad069. [PMID: 38037475 PMCID: PMC11161703 DOI: 10.1093/jmcb/mjad069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/26/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023] Open
Abstract
Obesity is closely related to non-alcoholic fatty liver disease (NAFLD). Although sex differences in body fat distribution have been well demonstrated, little is known about the sex-specific associations between adipose tissue and the development of NAFLD. Using community-based cohort data, we evaluated the associations between magnetic resonance imaging quantified areas of abdominal adipose tissue, including visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT), and incident NAFLD in 2830 participants (1205 males and 1625 females) aged 55-70 years. During a 4.6-year median follow-up, the cumulative incidence rates of NAFLD increased with areas of VAT and SAT both in males and in females. Further analyses showed that the above-mentioned positive associations were stronger in males than in females, especially in participants under 60 years old. In contrast, these sex differences disappeared in those over 60 years old. Furthermore, the risk of developing NAFLD increased non-linearly with increasing fat area in a sex-specific pattern. Additionally, sex-specific potential mediators, such as insulin resistance, lipid metabolism, inflammation, and adipokines, may exist in the associations between adipose tissue and NAFLD. This study showed that the associations between abdominal fat and the risk of NAFLD were stratified by sex and age, highlighting the potential need for sex- and age-specific management of NAFLD.
Collapse
Affiliation(s)
- Hongli Chen
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai 200233, China
| | - Yuexing Liu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai 200233, China
| | - Dan Liu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai 200233, China
| | - Yebei Liang
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai 200233, China
| | - Zhijun Zhu
- General Practitioner Teams in Community Health Service Center of Nicheng, Pudong New Area District, Shanghai 201306, China
| | - Keqing Dong
- General Practitioner Teams in Community Health Service Center of Nicheng, Pudong New Area District, Shanghai 201306, China
| | - Huating Li
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai 200233, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai 200233, China
| | - Jiarui Wu
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuhong Hou
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai 200233, China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai 200233, China
| |
Collapse
|
43
|
Trouwborst I, Jardon KM, Gijbels A, Hul G, Feskens EJM, Afman LA, Linge J, Goossens GH, Blaak EE. Body composition and body fat distribution in tissue-specific insulin resistance and in response to a 12-week isocaloric dietary macronutrient intervention. Nutr Metab (Lond) 2024; 21:20. [PMID: 38594756 PMCID: PMC11003022 DOI: 10.1186/s12986-024-00795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Body composition and body fat distribution are important predictors of cardiometabolic diseases. The etiology of cardiometabolic diseases is heterogenous, and partly driven by inter-individual differences in tissue-specific insulin sensitivity. OBJECTIVES To investigate (1) the associations between body composition and whole-body, liver and muscle insulin sensitivity, and (2) changes in body composition and insulin sensitivity and their relationship after a 12-week isocaloric diet high in mono-unsaturated fatty acids (HMUFA) or a low-fat, high-protein, high-fiber (LFHP) diet. METHODS This subcohort analysis of the PERSON study includes 93 individuals (53% women, BMI 25-40 kg/m2, 40-75 years) who participated in this randomized intervention study. At baseline and after 12 weeks of following the LFHP, or HMUFA diet, we performed a 7-point oral glucose tolerance test to assess whole-body, liver, and muscle insulin sensitivity, and whole-body magnetic resonance imaging to determine body composition and body fat distribution. Both diets are within the guidelines of healthy nutrition. RESULTS At baseline, liver fat content was associated with worse liver insulin sensitivity (β [95%CI]; 0.12 [0.01; 0.22]). Only in women, thigh muscle fat content was inversely related to muscle insulin sensitivity (-0.27 [-0.48; -0.05]). Visceral adipose tissue (VAT) was inversely associated with whole-body, liver, and muscle insulin sensitivity. Both diets decreased VAT, abdominal subcutaneous adipose tissue (aSAT), and liver fat, but not whole-body and tissue-specific insulin sensitivity with no differences between diets. Waist circumference, however, decreased more following the LFHP diet as compared to the HMUFA diet (-3.0 vs. -0.5 cm, respectively). After the LFHP but not HMUFA diet, improvements in body composition were positively associated with improvements in whole-body and liver insulin sensitivity. CONCLUSIONS Liver and muscle insulin sensitivity are distinctly associated with liver and muscle fat accumulation. Although both LFHP and HMUFA diets improved in body fat, VAT, aSAT, and liver fat, only LFHP-induced improvements in body composition are associated with improved insulin sensitivity. TRIAL REGISTRATION NCT03708419 (clinicaltrials.gov).
Collapse
Affiliation(s)
- Inez Trouwborst
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center +, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- TI Food and Nutrition (TiFN), Wageningen, The Netherlands
| | - Kelly M Jardon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center +, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- TI Food and Nutrition (TiFN), Wageningen, The Netherlands
| | - Anouk Gijbels
- TI Food and Nutrition (TiFN), Wageningen, The Netherlands
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Gabby Hul
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center +, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Lydia A Afman
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Jennifer Linge
- AMRA Medical AB, Linköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center +, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center +, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands.
- TI Food and Nutrition (TiFN), Wageningen, The Netherlands.
| |
Collapse
|
44
|
Barbagallo F, Cucinella L, Tiranini L, Chedraui P, Calogero AE, Nappi RE. Obesity and sexual health: focus on postmenopausal women. Climacteric 2024; 27:122-136. [PMID: 38251874 DOI: 10.1080/13697137.2024.2302429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Menopause is a cardiometabolic transition with many women experiencing weight gain and redistribution of body fat. Hormonal changes may affect also several dimensions of well-being, including sexual function, with a high rate of female sexual dysfunction (FSD), which displays a multifactorial etiology. The most important biological factors range from chronic low-grade inflammation, associated with hypertrophic adipocytes that may translate into endothelial dysfunction and compromised blood flow through the genitourinary system, to insulin resistance and other neuroendocrine mechanisms targeting the sexual response. Psychosocial factors include poor body image, mood disorders, low self-esteem and life satisfaction, as well as partner's health and quality of relationship, and social stigma. Even unhealthy lifestyle, chronic conditions and putative weight-promoting medications may play a role. The aim of the present narrative review is to update and summarize the state of the art on the link between obesity and FSD in postmenopausal women, pointing to the paucity of high-quality studies and the need for further research with validated end points to assess both biomarkers of obesity and FSD. In addition, we provide general information on the diagnosis and treatment of FSD at menopause with a focus on dietary interventions, physical activity, anti-obesity drugs and bariatric surgery.
Collapse
Affiliation(s)
- F Barbagallo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - L Cucinella
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, Pavia, Italy
| | - L Tiranini
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - P Chedraui
- Escuela de Posgrados en Salud, Universidad Espíritu Santo, Samborondón, Ecuador
| | - A E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - R E Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, Pavia, Italy
| |
Collapse
|
45
|
Tran TXM, Chang Y, Choi HR, Kwon R, Lim GY, Kim EY, Ryu S, Park B. Adiposity, Body Composition Measures, and Breast Cancer Risk in Korean Premenopausal Women. JAMA Netw Open 2024; 7:e245423. [PMID: 38578637 PMCID: PMC10998159 DOI: 10.1001/jamanetworkopen.2024.5423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/09/2024] [Indexed: 04/06/2024] Open
Abstract
Objective To investigate the association between body composition parameters and breast cancer (BC) risk in premenopausal women. Design, Setting, and Participants Prospective cohort study using data from the Kangbuk Samsung Cohort Study. Participants were women aged 20 to 54 years who were enrolled from 2011 to 2019 and followed up for BC development until December 31, 2020. Data were analyzed from June to August 2023. Exposures Trained nurses conducted anthropometric measurements and assessed body composition using segmental bioelectric impedance analysis. The analysis encompassed adiposity measures such as body mass index (BMI), waist circumference, and body composition parameters, including muscle mass, fat mass, ratio of muscle mass to weight, ratio of fat mass to weight, and fat mass index. Main outcomes and measures Adjusted hazard ratios (aHR) for BC during the follow-up period. Results Among 125 188 premenopausal women, the mean (SD) age was 34.9 (6.3) years. During a mean (range) follow-up of 6.7 (0.5-9.9) years, 1110 incident BC cases were identified. The mean (SD) BMI and waist circumference were 21.6 (3.1) and 75.3 (8.2) cm, respectively. Higher BMI and waist circumference were associated with decreased risk, with an aHR of 0.89 (95% CI, 0.84-0.95) per SD increase in BMI and 0.92 (95% CI, 0.86-0.98) per SD increase in waist circumference. A higher ratio of fat mass to weight was associated with decreased BC risk (aHR, 0.92; 95% CI, 0.86-0.99 per SD increase), whereas the opposite trend was observed for the ratio of muscle mass to weight, with an aHR of 1.08 (95% CI, 1.02-1.15) per SD increase. The results remained consistent even after additional adjustments for height in the model. The fat mass index was also inversely associated with BC risk, with an HR of 0.90 (95% CI, 0.85-0.97) per SD increase. Conclusions and Relevance In this cohort study of premenopausal women, a higher level of adiposity, represented by increased BMI, waist circumference, and fat mass, was consistently associated with decreased breast cancer risk. Conversely, muscle mass and its ratio to weight displayed opposite or inconsistent patterns. These findings suggest an inverse association between excess adiposity and the risk of BC in premenopausal women, confirming earlier findings that BMI is an indirect measure of adiposity.
Collapse
Affiliation(s)
- Thi Xuan Mai Tran
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yoosoo Chang
- Center for Cohort Studies, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hye Rin Choi
- Center for Cohort Studies, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Institute of Medical Research, Sungkyunkwan University, School of Medicine, Suwon, Republic of Korea
| | - Ria Kwon
- Center for Cohort Studies, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Institute of Medical Research, Sungkyunkwan University, School of Medicine, Suwon, Republic of Korea
| | - Ga-Young Lim
- Center for Cohort Studies, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Institute of Medical Research, Sungkyunkwan University, School of Medicine, Suwon, Republic of Korea
| | - Eun Young Kim
- Department of Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seungho Ryu
- Center for Cohort Studies, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Boyoung Park
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
46
|
Venkatesh SS, Wittemans LBL, Palmer DS, Baya NA, Ferreira T, Hill B, Lassen FH, Parker MJ, Reibe S, Elhakeem A, Banasik K, Bruun MT, Erikstrup C, Jensen BA, Juul A, Mikkelsen C, Nielsen HS, Ostrowski SR, Pedersen OB, Rohde PD, Sorensen E, Ullum H, Westergaard D, Haraldsson A, Holm H, Jonsdottir I, Olafsson I, Steingrimsdottir T, Steinthorsdottir V, Thorleifsson G, Figueredo J, Karjalainen MK, Pasanen A, Jacobs BM, Hubers N, Lippincott M, Fraser A, Lawlor DA, Timpson NJ, Nyegaard M, Stefansson K, Magi R, Laivuori H, van Heel DA, Boomsma DI, Balasubramanian R, Seminara SB, Chan YM, Laisk T, Lindgren CM. Genome-wide analyses identify 21 infertility loci and over 400 reproductive hormone loci across the allele frequency spectrum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.19.24304530. [PMID: 38562841 PMCID: PMC10984039 DOI: 10.1101/2024.03.19.24304530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Genome-wide association studies (GWASs) may help inform treatments for infertility, whose causes remain unknown in many cases. Here we present GWAS meta-analyses across six cohorts for male and female infertility in up to 41,200 cases and 687,005 controls. We identified 21 genetic risk loci for infertility (P≤5E-08), of which 12 have not been reported for any reproductive condition. We found positive genetic correlations between endometriosis and all-cause female infertility (rg=0.585, P=8.98E-14), and between polycystic ovary syndrome and anovulatory infertility (rg=0.403, P=2.16E-03). The evolutionary persistence of female infertility-risk alleles in EBAG9 may be explained by recent directional selection. We additionally identified up to 269 genetic loci associated with follicle-stimulating hormone (FSH), luteinising hormone, oestradiol, and testosterone through sex-specific GWAS meta-analyses (N=6,095-246,862). While hormone-associated variants near FSHB and ARL14EP colocalised with signals for anovulatory infertility, we found no rg between female infertility and reproductive hormones (P>0.05). Exome sequencing analyses in the UK Biobank (N=197,340) revealed that women carrying testosterone-lowering rare variants in GPC2 were at higher risk of infertility (OR=2.63, P=1.25E-03). Taken together, our results suggest that while individual genes associated with hormone regulation may be relevant for fertility, there is limited genetic evidence for correlation between reproductive hormones and infertility at the population level. We provide the first comprehensive view of the genetic architecture of infertility across multiple diagnostic criteria in men and women, and characterise its relationship to other health conditions.
Collapse
Affiliation(s)
- Samvida S Venkatesh
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Laura B L Wittemans
- Novo Nordisk Research Centre Oxford, Oxford, United Kingdom
- Nuffield Department of Women's and Reproductive Health, Medical Sciences Division, University of Oxford, United Kingdom
| | - Duncan S Palmer
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Nikolas A Baya
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Teresa Ferreira
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Barney Hill
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Frederik Heymann Lassen
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Melody J Parker
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Saskia Reibe
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Ahmed Elhakeem
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark
| | - Mie T Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Bitten A Jensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Anders Juul
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen; Copenhagen, Denmark
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Christina Mikkelsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, Copenhagen University, Copenhagen, Denmark
| | - Henriette S Nielsen
- Department of Obstetrics and Gynecology, The Fertility Clinic, Hvidovre University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole B Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Kge, Denmark
| | - Palle D Rohde
- Genomic Medicine, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Erik Sorensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - David Westergaard
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark
| | - Asgeir Haraldsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Children's Hospital Iceland, Landspitali University Hospital, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | - Ingileif Jonsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali University Hospital, Reykjavik, Iceland
| | - Thora Steingrimsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Obstetrics and Gynecology, Landspitali University Hospital, Reykjavik, Iceland
| | | | | | - Jessica Figueredo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Minna K Karjalainen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Finland
- Northern Finland Birth Cohorts, Arctic Biobank, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Anu Pasanen
- Research Unit of Clinical Medicine, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Benjamin M Jacobs
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University London, London, EC1M 6BQ, United Kingdom
| | - Nikki Hubers
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
| | - Margaret Lippincott
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Abigail Fraser
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Mette Nyegaard
- Genomic Medicine, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Kari Stefansson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | - Reedik Magi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Hannele Laivuori
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, Finland
- Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Finland
| | - David A van Heel
- Blizard Institute, Queen Mary University London, London, E1 2AT, United Kingdom
| | - Dorret I Boomsma
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
| | - Ravikumar Balasubramanian
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephanie B Seminara
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yee-Ming Chan
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Cecilia M Lindgren
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
- Nuffield Department of Women's and Reproductive Health, Medical Sciences Division, University of Oxford, United Kingdom
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
47
|
Gijbels A, Erdős B, Trouwborst I, Jardon KM, Adriaens ME, Goossens GH, Blaak EE, Feskens EJM, Afman LA. Hepatic insulin resistance and muscle insulin resistance are characterized by distinct postprandial plasma metabolite profiles: a cross-sectional study. Cardiovasc Diabetol 2024; 23:97. [PMID: 38493102 PMCID: PMC10944619 DOI: 10.1186/s12933-024-02188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Tissue-specific insulin resistance (IR) predominantly in muscle (muscle IR) or liver (liver IR) has previously been linked to distinct fasting metabolite profiles, but postprandial metabolite profiles have not been investigated in tissue-specific IR yet. Given the importance of postprandial metabolic impairments in the pathophysiology of cardiometabolic diseases, we compared postprandial plasma metabolite profiles in response to a high-fat mixed meal between individuals with predominant muscle IR or liver IR. METHODS This cross-sectional study included data from 214 women and men with BMI 25-40 kg/m2, aged 40-75 years, and with predominant muscle IR or liver IR. Tissue-specific IR was assessed using the muscle insulin sensitivity index (MISI) and hepatic insulin resistance index (HIRI), which were calculated from the glucose and insulin responses during a 7-point oral glucose tolerance test. Plasma samples were collected before (T = 0) and after (T = 30, 60, 120, 240 min) consumption of a high-fat mixed meal and 247 metabolite measures, including lipoproteins, cholesterol, triacylglycerol (TAG), ketone bodies, and amino acids, were quantified using nuclear magnetic resonance spectroscopy. Differences in postprandial plasma metabolite iAUCs between muscle and liver IR were tested using ANCOVA with adjustment for age, sex, center, BMI, and waist-to-hip ratio. P-values were adjusted for a false discovery rate (FDR) of 0.05 using the Benjamini-Hochberg method. RESULTS Sixty-eight postprandial metabolite iAUCs were significantly different between liver and muscle IR. Liver IR was characterized by greater plasma iAUCs of large VLDL (p = 0.004), very large VLDL (p = 0.002), and medium-sized LDL particles (p = 0.026), and by greater iAUCs of TAG in small VLDL (p = 0.025), large VLDL (p = 0.003), very large VLDL (p = 0.002), all LDL subclasses (all p < 0.05), and small HDL particles (p = 0.011), compared to muscle IR. In liver IR, the postprandial plasma fatty acid (FA) profile consisted of a higher percentage of saturated FA (p = 0.013), and a lower percentage of polyunsaturated FA (p = 0.008), compared to muscle IR. CONCLUSION People with muscle IR or liver IR have distinct postprandial plasma metabolite profiles, with more unfavorable postprandial metabolite responses in those with liver IR compared to muscle IR.
Collapse
Grants
- AF-16505 The project was organized by and executed under the auspices of TiFN, a public-private partnership on precompetitive research in food and nutrition. Funding for this research was obtained from the industry partners DSM Nutritional Products, FrieslandCampina, Danone Nutricia Research, AMRA Medical AB, and the Top-sector Agri&Food.
- The project was organized by and executed under the auspices of TiFN, a public-private partnership on precompetitive research in food and nutrition. Funding for this research was obtained from the industry partners DSM Nutritional Products, FrieslandCampina, Danone Nutricia Research, AMRA Medical AB, and the Top-sector Agri&Food.
Collapse
Affiliation(s)
- Anouk Gijbels
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
- TI Food and Nutrition (TiFN), Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands.
| | - Balázs Erdős
- TI Food and Nutrition (TiFN), Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Paul-Henri Spaaklaan 1, 6229 EN, Maastricht, The Netherlands
| | - Inez Trouwborst
- TI Food and Nutrition (TiFN), Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Kelly M Jardon
- TI Food and Nutrition (TiFN), Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Michiel E Adriaens
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Paul-Henri Spaaklaan 1, 6229 EN, Maastricht, The Netherlands
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Ellen E Blaak
- TI Food and Nutrition (TiFN), Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Lydia A Afman
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
48
|
Rezvani R, Shadmand Foumani Moghadam MR, Cianflone K. Acylation stimulating protein/C3adesArg in the metabolic states: role of adipocyte dysfunction in obesity complications. J Physiol 2024; 602:773-790. [PMID: 38305477 DOI: 10.1113/jp285127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/27/2023] [Indexed: 02/03/2024] Open
Abstract
Adipose tissue, as an endocrine organ, secretes several adipocyte-derived hormones named 'adipokines' that are implicated in regulating energy haemostasis. Substantial evidence shows that white adipose tissue-derived adipokines mediate the link between obesity-related exogenous factors (like diet and lifestyle) and various biological events (such as pre- and postmenopausal status) that have obesity consequences (cardiometabolic disorders). One of the critical aetiological factors for obesity-related diseases is the dysfunction of adipokine pathways. Acylation-stimulating protein (ASP) is an adipokine that stimulates triglyceride synthesis and storage in adipose tissue by enhancing glucose and fatty acid uptake. ASP acts via its receptor C5L2. The primary objective of this review is to address the existing gap in the literature regarding ASP by investigating its diverse responses and receptor interactions across multiple determinants of obesity. These determinants include diet composition, metabolic disorders, organ involvement, sex and sex hormone levels. Furthermore, this article explores the broader paradigm shift from solely focusing on adipose tissue mass, which contributes to obesity, to considering the broader implications of adipose tissue function. Additionally, we raise a critical question concerning the clinical relevance of the insights gained from this review, both in terms of potential therapeutic interventions targeting ASP and in the context of preventing obesity-related conditions, highlighting the potential of the ASP-C5L2 interaction as a pharmacological target. In conclusion, these findings validate that obesity is a low-grade inflammatory status with multiorgan involvement and sex differences, demonstrating dynamic interactions between immune and metabolic response determinants.
Collapse
Affiliation(s)
- Reza Rezvani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Katherine Cianflone
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| |
Collapse
|
49
|
Kouvari M, Valenzuela-Vallejo L, Axarloglou E, Verrastro O, Papatheodoridis G, Mingrone G, George J, Mantzoros CS. Thyroid function, adipokines and mitokines in metabolic dysfunction-associated steatohepatitis: A multi-centre biopsy-based observational study. Liver Int 2024; 44:848-864. [PMID: 38263703 DOI: 10.1111/liv.15847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/11/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND AND AIMS Thyroid axis is currently under investigation as a therapeutic target in metabolic dysfunction-associated steatotic liver disease (MASLD). Thyroid function was examined herein in the full spectrum of disease. METHODS Subjects were recruited and had liver biopsies in two Gastroenterology-Hepatology Clinics (Greece and Australia) and one Bariatric-Metabolic Surgery Clinic (Italy). The main working sample was n = 677 subjects with MASLD after excluding subjects with abnormal free thyroxine levels. Participants were classified according to thyroid-stimulating hormone (TSH) standard criteria: Subclinical hyperthyroidism (<0.4 uIU/mL); Euthyroidism with relatively low (0.4 to <2.5 uIU/mL); euthyroidism with relatively high (2.5-4.0 uIU/mL); subclinical hypothyroidism (>4 uIU/mL). RESULTS TSH as a continuous variable was positively associated with significant fibrosis (F ≥ 2), metabolic dysfunction-associated steatohepatitis (MASH) and at-risk MASH. Subclinical hypothyroidism was associated with fibrosis F ≥ 2 (odds ratio [OR] = 3.47, 95% confident interval [CI] [1.50, 8.05], p = .02), MASH (OR = 3.44, 95% CI [1.48, 7.98] p = .001) and at-risk MASH (OR = 3.88, 95% CI [1.76, 8.55], p = .001), before and after controlling for adiposity, central obesity, and insulin resistance. When leptin, adiponectin, or growth differentiation factor-15 were examined as moderators, significance was lost. Sex-specific analysis revealed a strong association between TSH and the presence of significant fibrosis among women, eliminated only when adipokines/mitokines were adjusted for. Restricted cubic spline analysis revealed associations between TSH and liver outcomes (p-values < .01) with inflection points for fibrosis F ≥ 2 being 2.49, for MASH being 2.67 and for at-risk MASH being 6.96. CONCLUSIONS These observations provide support for studies on the administration of thyroid hormone in MASLD therapeutics for subclinical hypothyroidism and liver-specific thyroid receptor agonists for subjects across the TSH continuum.
Collapse
Affiliation(s)
- Matina Kouvari
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura Valenzuela-Vallejo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Evangelos Axarloglou
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Georgios Papatheodoridis
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, General Hospital of Athens "Laiko", Athens, Greece
| | | | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Boston VA Healthcare System, Boston, Massachusetts, USA
| |
Collapse
|
50
|
Zhu P, Li A, Cai Q, Chen Y, Liu Y, Jager-Wittenaar H, E Tjakkes GH, Xu S. Sex differences in the association between dual-energy x-ray absorptiometry-measured body composition and periodontitis. J Periodontol 2024; 95:219-232. [PMID: 37505475 DOI: 10.1002/jper.23-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/26/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND A positive association between obesity based on body mass index (BMI) and periodontitis has been reported. Fat tissue-related systemic inflammation acts as the link to periodontal comorbidities of obesity. However, the BMI is unable to distinguish fat and fat-free tissues. More precise measures are required to evaluate body composition, including fat and fat-free tissues. This study aimed to determine the sex differences in the association between dual-energy x-ray absorptiometry (DXA)-measured body composition (i.e., fat mass and muscle mass) and phenotypes with periodontitis. METHODS Cross-sectional data of 3892 participants from the National Health and Nutrition Examination Survey (NHANES) study 2011‒2014 were analyzed. Adiposity indices (fat mass index [FMI] and percentage body fat [%BF]) and muscle mass index (MMI) were calculated. The participants were categorized by the quintiles of FMI, MMI, and %BF. Body composition phenotypes were categorized as: low adiposity-low muscle (LA-LM), low adiposity-high muscle (LA-HM), high adiposity-low muscle (HA-LM), or high adiposity-high muscle (HA-HM), respectively. Periodontitis was defined by the CDC/AAP (Centers for Disease Control and Prevention/American Academy of Periodontology) criteria. Multivariable logistic regression analysis was conducted, stratified by sex. We further adjusted for white blood cell (WBC) counts in the sensitivity analysis. RESULTS Restricted cubic splines revealed non-linear associations between body composition indices and periodontitis risk. Women with a higher FMI (odds ratio for Q5 vs. Q1 [ORQ5vs1] = 1.787, 95% confidence interval: 1.209-2.640) or %BF (ORQ5vs1 = 2.221, 1.509-3.268) had increased odds of periodontitis. In addition, women with HA-LM phenotype were more likely to develop periodontitis (OR = 1.528, 1.037-2.252). Interestingly, the WBC count, a systemic inflammatory biomarker, attenuated these associations. No statistically significant associations were found in men. CONCLUSIONS The association between DXA-measured body composition and phenotypes with periodontitis differs per sex. Only in women higher adiposity indices and HA-LM phenotype were associated with an increased risk of periodontitis.
Collapse
Affiliation(s)
- Peijun Zhu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - An Li
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- Department of Periodontology, Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Qingqing Cai
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center of Kidney Disease, Guangzhou, China
| | - Yuntao Chen
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Yang Liu
- Department of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Harriët Jager-Wittenaar
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Groningen, The Netherlands
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Research Unit Experimental Anatomy, Faculty of Physical Education and Human Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Geerten-Has E Tjakkes
- Department of Periodontology, Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|