1
|
Yang J. Unveiling the multifaceted roles of long non-coding RNA CTBP1-DT in human diseases: Special attention to its microprotein-encoding potential. Pathol Res Pract 2025; 268:155870. [PMID: 40020329 DOI: 10.1016/j.prp.2025.155870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/30/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
C-terminal binding protein 1 divergent transcript (CTBP1-DT) is a novel long non-coding RNA (lncRNA) located on human chromosome 4p16.3. Numerous studies have shown that CTBP1-DT plays a critical regulatory role in various human malignancies and non-malignant diseases. In several cancers, the expression of CTBP1-DT is upregulated, closely associated with the risk of 12 types of cancer, and strongly correlated with the clinical pathological features and poor prognosis of 10 of these cancers. Mechanistically, CTBP1-DT is stimulated by the transcription factors ETV5 and Sp1, or methylated by YTHDC1. By competitively inhibiting 12 microRNAs, it activates 3 signaling pathways that influence malignant behaviors of tumor cells, including proliferation, apoptosis, cell cycle arrest, migration, invasion, immune evasion, and chemoresistance. Importantly, it also encodes the microprotein DNA damage up-regulated protein (DDUP), which mediates cisplatin resistance through sustained response to DNA damage signals. Furthermore, CTBP1-DT has been implicated in the progression of non-malignant diseases such as diabetes and related conditions, cardiovascular diseases, and osteoarthritis. This review summarizes the latest research on the RNA and protein functions of CTBP1-DT in human diseases, outlines various molecular regulatory networks centered around CTBP1-DT, and discusses the opportunities and challenges of its clinical applications.
Collapse
Affiliation(s)
- Jingjie Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China.
| |
Collapse
|
2
|
Abouali H, Keyvani F, Hosseini SA, Srikant S, Poudineh M. Continuous High-Throughput Plasma Separation for Blood Biomarker Sensing Using a Hydrodynamic Microfluidic Device. Adv Healthc Mater 2025; 14:e2404193. [PMID: 39972640 PMCID: PMC11973946 DOI: 10.1002/adhm.202404193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/05/2025] [Indexed: 02/21/2025]
Abstract
Continuous, cost-effective, high-throughput with admissible yield and purity of blood plasma separation is widely needed for biomarker detection in the clinic. The existing gold standard technique (centrifugation) and microfluidic technologies fall short of meeting these criteria. In this study, a microfluidic device design is demonstrated based on passive hydrodynamic principles to achieve admissible yield and purity plasma samples. Through computational and experimental assessments, it is shown that side channels with varying lengths are required to improve the plasma extraction rate. The optimized side channels in this device design use the formed cell-free layer regions in the expanded areas to extract plasma consistently and efficiently. These Hydrodynamic Continuous, High-Throughput Plasma Separator (HCHPS) microfluidic devices achieve a purity in the range of 47% to 64% with whole blood and maintaining a yield of 10% to 18%, with half hemolysis compared to gold standard centrifugation. These devices also separate the plasma from diluted blood with a purity in the range of 62% to 97% with a similar yield range. Additionally, whole human blood spiked with lactate was processed through the HCHPS device, and the separated plasma is collected and analyzed using two biosensing approaches, a bead-based fluorescence, and an electrochemical aptamer biosensing, confirming the quality of plasma for downstream biomarker detection.
Collapse
Affiliation(s)
- Hesam Abouali
- Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Fatemeh Keyvani
- Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Seied Ali Hosseini
- Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Sanjana Srikant
- Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Mahla Poudineh
- Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| |
Collapse
|
3
|
Mohamed Abdelgawwad El-Sehrawy AA, Mohammed MH, Salahldin OD, Uthirapathy S, Ballal S, Kalia R, Arya R, Joshi KK, Kadim AS, Kadhim AJ. Crosstalk between microRNA and inflammation; critical regulator of diabetes. Exp Cell Res 2025; 447:114507. [PMID: 40058448 DOI: 10.1016/j.yexcr.2025.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
A growing body of evidence indicates that microRNAs (miRNAs may be used as biomarkers for the diagnosis, prognosis, and treatment of diabetes, given their changed expression profile as the disease progresses. There is growing interest in using individual miRNAs or whole miRNA clusters linked to diabetes as therapeutic targets because of their abnormal expression and functioning. In diabetes, miRNAs are also involved in inflammatory and immunological responses. Additionally, the inflammatory response controls the generation, processing, and stability of pre- or mature miRNAs and miRNA biogenesis. With a comprehensive grasp of molecular biological activities and the signaling axis, this review emphasizes the critical functions of miRNAs in inflammatory and immunological processes in diabetes. We further emphasized the potential role of these miRNAs in controlling inflammation associated with diabetes. This assessment will direct the shift from many studies to practical applications for tailored diabetes treatment and assist in identifying new therapeutic targets and approaches.
Collapse
Affiliation(s)
| | - Mohammed Hashim Mohammed
- Medical Laboratory Techniques Department, College of Health and Medical Technology, Al-maarif University, Anbar, Iraq.
| | | | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq.
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India.
| | - Rishiv Kalia
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Renu Arya
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India.
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, 248002, Uttarakhand, India; Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India.
| | - Arshed Shakir Kadim
- Radiological Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, Babylon, 51001, Iraq.
| | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq.
| |
Collapse
|
4
|
Su L, Dreyfuss JM, Ferraz Bannitz R, Wolfs D, Hansbury G, Richardson L, Charmant C, Patel J, Ginsburg ES, Racowsky C, Fore R, Efthymiou V, Desmond J, Goldfine A, Ferguson-Smith A, Pan H, Hivert MF, Isganaitis E, Patti ME. Type 2 diabetes impacts DNA methylation in human sperm. Clin Epigenetics 2025; 17:49. [PMID: 40108650 PMCID: PMC11924665 DOI: 10.1186/s13148-025-01853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
AIMS/HYPOTHESIS Disorders of the reproductive system, including hypogonadism and reduced fertility, are an under-recognized complication of diabetes. Based on experimental data in mice, hyperglycemia and obesity may modify epigenetic marks in sperm and impact health and development of offspring, but data are more limited in humans. Thus, we sought to study the impact of type 2 diabetes and glycemic control on sperm quality and DNA methylation. METHODS In this prospective cohort study, we recruited 40 men with BMI greater than 25 kg/m2 including 18 with type 2 diabetes, 6 with prediabetes, and 16 normoglycemic controls. Assessments were repeated after 3 months in 9 men with type 2 diabetes and 7 controls. We analyzed reproductive hormones, sperm concentration and motility, and sperm DNA methylation (MethylationEPIC BeadChip). RESULTS Men with type 2 diabetes had higher levels of follicle-stimulating hormone (FSH), but similar testosterone levels and sperm quality as controls. Sperm DNA methylation was stable with repeat sampling at 3 months in men with and without type 2 diabetes. We identified differential methylation at 655 of 745,804 CpG sites in men with type 2 diabetes versus controls (FDR < 0.05). Of these, 96.5% showed higher methylation in type 2 diabetes, with a mean difference in DNA methylation (beta value, β) of 0.16 ± 0.004 (16 ± 0.4%). Ontology analysis of differentially methylated loci revealed annotation to genes regulating synaptic signaling, actin, cAMP-dependent pathways, and G protein-coupled receptor pathways. 24% of probes differentially regulated in men with type 2 diabetes versus control overlapped with probes associated with HbA1c, suggesting additional factors beyond glycemic control contributed to diabetes-associated differences in DNA methylation. CONCLUSIONS/INTERPRETATION Men with type 2 diabetes showed higher DNA methylation levels in sperm relative to normoglycemic controls with similar BMI. Whether these differences are reversible with glucose-lowering treatment or may contribute to post-fertilization transcriptional regulation warrants further investigation. TRIAL REGISTRATION NCT03860558.
Collapse
Affiliation(s)
- Lei Su
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Research Division, Harvard Medical School, Joslin Diabetes Center, Boston, MA, USA
| | - Rafael Ferraz Bannitz
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
| | - Danielle Wolfs
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
| | - Georgia Hansbury
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
| | - Lauren Richardson
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
| | - Charnice Charmant
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
| | - Jay Patel
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Elizabeth S Ginsburg
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Catherine Racowsky
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Ruby Fore
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School , Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Vissarion Efthymiou
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
| | - Jessica Desmond
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
| | - Allison Goldfine
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
- Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Hui Pan
- Bioinformatics and Biostatistics Core, Research Division, Harvard Medical School, Joslin Diabetes Center, Boston, MA, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School , Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Elvira Isganaitis
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA.
| | - Mary Elizabeth Patti
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA.
| |
Collapse
|
5
|
Mihalikova D, Stamm P, Kvandova M, Pednekar C, Strohm L, Ubbens H, Oelze M, Kuntic M, Witzler C, Bayo Jimenez MT, Rajlic S, Frenis K, Tang Q, Ruan Y, Karbach S, Kleinert H, Hahad O, von Kriegsheim A, Xia N, Grune T, Li H, Kröller-Schön S, Gericke A, Ruf W, Wild PS, Lurz P, Münzel T, Daiber A, Jansen T. Exposure to aircraft noise exacerbates cardiovascular and oxidative damage in three mouse models of diabetes. Eur J Prev Cardiol 2025; 32:301-314. [PMID: 39351780 DOI: 10.1093/eurjpc/zwae320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/12/2024] [Accepted: 09/27/2024] [Indexed: 03/06/2025]
Abstract
AIMS Epidemiology links noise to increased risk of metabolic diseases like diabetes and obesity. Translational studies in humans and experimental animals showed that noise causes reactive oxygen species (ROS)-mediated cardiovascular damage. The interaction between noise and diabetes, specifically potential additive adverse effects, remains to be determined. METHODS AND RESULTS C57BL/6 mice were treated with streptozotocin (i.p. injections, 50 mg/kg/day for 5 days) to induce type 1 diabetes mellitus, with S961 (subcutaneous osmotic mini-pumps, 0.57 mg/kg/day for 7 days) or fed a high-fat diet (HFD, 20 weeks) to induce type 2 diabetes mellitus. Control and diabetic mice were exposed to aircraft noise to an average sound pressure level of 72 dB(A) for 4 days. While body weight was unaffected, noise reduced insulin production in all diabetes models. The oral glucose tolerance test showed only an additive aggravation by noise in the HFD model. Noise increased blood pressure and aggravated diabetes-induced aortic, mesenteric, and cerebral arterioles' endothelial dysfunction. ROS formation in cerebral arterioles, the aorta, the heart, and isolated mitochondria was consistently increased by noise in all models of diabetes. Mitochondrial respiration was impaired by diabetes and noise, however without additive effects. Noise increased ROS and caused inflammation in adipose tissue in the HFD model. RNA-sequencing data and alteration of gene pathway clusters also supported additive damage by noise in the setting of diabetes. CONCLUSION In all three models of diabetes, aircraft noise exacerbates oxidative stress, inflammation, and endothelial dysfunction in mice with pre-existing diabetes. Thus, noise may potentiate the already increased cardiovascular risk in diabetic patients.
Collapse
Affiliation(s)
- Dominika Mihalikova
- Department for Cardiology, Cardiology 1, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Paul Stamm
- Department for Cardiology, Cardiology 1, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Miroslava Kvandova
- Department for Cardiology, Cardiology 1, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy ofSciences, Bratislava, Slovakia
| | | | - Lea Strohm
- Department for Cardiology, Cardiology 1, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Henning Ubbens
- Department for Cardiology, Cardiology 1, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Matthias Oelze
- Department for Cardiology, Cardiology 1, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Marin Kuntic
- Department for Cardiology, Cardiology 1, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Claudius Witzler
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Maria Teresa Bayo Jimenez
- Department for Cardiology, Cardiology 1, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina 'López-Neyra' (CSIC), Granada, Spain
| | - Sanela Rajlic
- Department for Cardiology, Cardiology 1, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Katie Frenis
- Department for Cardiology, Cardiology 1, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
- Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Qi Tang
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Yue Ruan
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Susanne Karbach
- Department for Cardiology, Cardiology 1, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Omar Hahad
- Department for Cardiology, Cardiology 1, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
| | | | - Ning Xia
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Huige Li
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Swenja Kröller-Schön
- Department for Cardiology, Cardiology 1, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Wolfram Ruf
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Philipp S Wild
- Department for Cardiology, Cardiology 1, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Molecular Biology (IMB), Johannes Gutenberg University, Mainz, Germany
| | - Philipp Lurz
- Department for Cardiology, Cardiology 1, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Thomas Münzel
- Department for Cardiology, Cardiology 1, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Andreas Daiber
- Department for Cardiology, Cardiology 1, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Thomas Jansen
- Department for Cardiology, Cardiology 1, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
- Department of Cardiology, KVB Hospital, Königstein, Germany
| |
Collapse
|
6
|
Rivera-Alvarez I, Vázquez-Lizárraga R, Mendoza-Viveros L, Sotelo-Rivera I, Viveros-Ruiz TL, Morales-Maza J, Orozco L, Romano MC, Noriega LG, Tovar AR, Aguilar-Arnal L, Cruz-Bautista I, Aguilar-Salinas C, Orozco-Solis R. Transcriptional dynamics in type 2 diabetes progression is linked with circadian, thermogenic, and cellular stress in human adipose tissue. Commun Biol 2025; 8:398. [PMID: 40057615 PMCID: PMC11890630 DOI: 10.1038/s42003-025-07709-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/10/2025] [Indexed: 04/03/2025] Open
Abstract
The prevalence of type 2 diabetes (T2D) has increased significantly over the past three decades, with an estimated 30-40% of cases remaining undiagnosed. Brown and beige adipose tissues are known for their remarkable catabolic capacity, and their ability to diminish blood glucose plasma concentration. Beige adipose tissue can be differentiated from adipose-derived stem cells or through transdifferentiation from white adipocytes. However, the impact of T2D progression on beige adipocytes' functional capacity remains unclear. Transcriptomic profiling of subcutaneous adipose tissue biopsies from healthy normal-weight, obese, prediabetic obese, and obese subjects diagnosed with T2D, reveals a progressive alteration in cellular processes associated with catabolic metabolism, circadian rhythms, thermogenesis-related signaling pathways, cellular stress, and inflammation. MAX is a potential transcription factor that links inflammation with the circadian clock and thermogenesis during the progression of T2D. This study unveils an unrecognized transcriptional circuit that increasingly disrupts subcutaneous adipose tissue oxidative capacity during the progression of T2D. These findings could open new research venues for developing chrono-pharmaceutical strategies to treat and prevent T2D.
Collapse
Affiliation(s)
| | - Rosa Vázquez-Lizárraga
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), México City, México
| | - Lucía Mendoza-Viveros
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosi, S.L.P., México
| | | | - Tannia L Viveros-Ruiz
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Jesús Morales-Maza
- Departamento de Cirugía Endocrina, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Lorena Orozco
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
| | - Marta C Romano
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y Estudios Avanzados (CINVESTAV), México City, México
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Lorena Aguilar-Arnal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Ivette Cruz-Bautista
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Carlos Aguilar-Salinas
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, México City, México
| | - Ricardo Orozco-Solis
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México.
- Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), México City, México.
| |
Collapse
|
7
|
Ren T, Fan X, Wu Q, Wu Y, Sun X, Tong H. Structural insights and therapeutic potential of plant-based pectin as novel therapeutic for type 2 diabetes mellitus: A review. Int J Biol Macromol 2025; 307:141876. [PMID: 40064270 DOI: 10.1016/j.ijbiomac.2025.141876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is a global health challenge with limited efficacy of current treatments, necessitating alternative therapies. Plant-derived pectin, composed of galacturonic acid and structural domains such as homogalacturonan, has shown promise as an anti-diabetic agent. Pectin exerts its therapeutic effects through multiple mechanisms, including enhancing β-cell function, regulating glucose metabolism, improving insulin sensitivity, inhibiting digestive enzymes, and restoring gut microbiota balance. Its bioactivity is influenced by physicochemical properties like molecular weight, degree of methylation, and structural complexity. This review explores the anti-diabetic potential of pectin, its structure-activity relationships, and mechanisms of action, providing insights for its development as a novel therapeutic agent in T2DM management.
Collapse
Affiliation(s)
- Ting Ren
- School of Pharmaceutical Sciences, Jilin Medical University, Jilin 132013, China
| | - Xinrong Fan
- Department of Durg Preparation, Lishui Hospital of Traditional Chinese Medicine, Lishui 323000, China
| | - Qifang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xin Sun
- School of Pharmaceutical Sciences, Jilin Medical University, Jilin 132013, China.
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.
| |
Collapse
|
8
|
Li B, Ming H, Qin S, Nice EC, Dong J, Du Z, Huang C. Redox regulation: mechanisms, biology and therapeutic targets in diseases. Signal Transduct Target Ther 2025; 10:72. [PMID: 40050273 PMCID: PMC11885647 DOI: 10.1038/s41392-024-02095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/21/2024] [Indexed: 03/09/2025] Open
Abstract
Redox signaling acts as a critical mediator in the dynamic interactions between organisms and their external environment, profoundly influencing both the onset and progression of various diseases. Under physiological conditions, oxidative free radicals generated by the mitochondrial oxidative respiratory chain, endoplasmic reticulum, and NADPH oxidases can be effectively neutralized by NRF2-mediated antioxidant responses. These responses elevate the synthesis of superoxide dismutase (SOD), catalase, as well as key molecules like nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), thereby maintaining cellular redox homeostasis. Disruption of this finely tuned equilibrium is closely linked to the pathogenesis of a wide range of diseases. Recent advances have broadened our understanding of the molecular mechanisms underpinning this dysregulation, highlighting the pivotal roles of genomic instability, epigenetic modifications, protein degradation, and metabolic reprogramming. These findings provide a foundation for exploring redox regulation as a mechanistic basis for improving therapeutic strategies. While antioxidant-based therapies have shown early promise in conditions where oxidative stress plays a primary pathological role, their efficacy in diseases characterized by complex, multifactorial etiologies remains controversial. A deeper, context-specific understanding of redox signaling, particularly the roles of redox-sensitive proteins, is critical for designing targeted therapies aimed at re-establishing redox balance. Emerging small molecule inhibitors that target specific cysteine residues in redox-sensitive proteins have demonstrated promising preclinical outcomes, setting the stage for forthcoming clinical trials. In this review, we summarize our current understanding of the intricate relationship between oxidative stress and disease pathogenesis and also discuss how these insights can be leveraged to optimize therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Siyuan Qin
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jingsi Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou, China.
| | - Canhua Huang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China.
| |
Collapse
|
9
|
Verma SS, Sen CK, Srivastava R, Gnyawali SC, Katiyar P, Sahi AK, Kumar M, Rustagi Y, Liu S, Pandey D, Abouhashem AS, Fehme LNW, Kacar S, Mohanty SK, Faden-McCormack J, Murphy MP, Roy S, Wan J, Yoder MC, Singh K. Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing rescues perfusion and diabetic ischemic wound healing. Mol Ther 2025; 33:950-969. [PMID: 39863930 PMCID: PMC11897775 DOI: 10.1016/j.ymthe.2025.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/16/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025] Open
Abstract
Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb. In this work, guided by single-cell RNA sequencing of human wound edge, we test the efficacy of gene-targeted therapeutic demethylation intending to improve VEGF-mediated neovascularization. PLCγ2 expression was diminished in all five identified diabetic wound-edge endothelial subclusters encompassing arterial, venous, and capillary cells. Such low expression was associated with hypermethylated PLCγ2 promoter. PLCγ2 promoter was also hypermethylated at murine diabetic ischemic wound edge. To specifically demethylate endothelial PLCγ2 promoter during VEGF therapy, a CRISPR-dCas9-based demethylation cocktail was delivered to the ischemic wound edge using tissue nanotransfection (TNT) technology. Demethylation-based upregulation of PLCγ2 during VEGF therapy improved wound tissue blood flow with an increased abundance of von Willebrand factor (vWF)+/PLCγ2+ vascular tissue elements by activating p44/p42-mitogen-activated protein kinase (MAPK) → hypoxia-inducible factor [HIF]-1α pathway. Taken together, TNT-based delivery of plasmids to demethylate the PLCγ2 gene promoter activity led to significant improvements in VEGF therapy for cutaneous diabetic wounds, resulting in better perfusion and accelerated wound closure.
Collapse
Affiliation(s)
- Sumit S Verma
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chandan K Sen
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rajneesh Srivastava
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Surya C Gnyawali
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Parul Katiyar
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ajay K Sahi
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Manishekhar Kumar
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yashika Rustagi
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Center for Computational Biology and Bioinformatics (CCBB), Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Diksha Pandey
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ahmed S Abouhashem
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Leila N W Fehme
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sedat Kacar
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sujit K Mohanty
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Julie Faden-McCormack
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Michael P Murphy
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sashwati Roy
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Center for Computational Biology and Bioinformatics (CCBB), Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mervin C Yoder
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kanhaiya Singh
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
10
|
Tian X, Wang L, Zhong L, Zhang K, Ge X, Luo Z, Zhai X, Liu S. The research progress and future directions in the pathophysiological mechanisms of type 2 diabetes mellitus from the perspective of precision medicine. Front Med (Lausanne) 2025; 12:1555077. [PMID: 40109716 PMCID: PMC11919862 DOI: 10.3389/fmed.2025.1555077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/11/2025] [Indexed: 03/22/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder characterized by pathophysiological mechanisms such as insulin resistance and β-cell dysfunction. Recent advancements in T2DM research have unveiled intricate multi-level regulatory networks and contributing factors underlying this disease. The emergence of precision medicine has introduced new perspectives and methodologies for understanding T2DM pathophysiology. A recent study found that personalized treatment based on genetic, metabolic, and microbiome data can improve the management of T2DM by more than 30%. This perspective aims to summarize the progress in T2DM pathophysiological research from the past 5 years and to outline potential directions for future studies within the framework of precision medicine. T2DM develops through the interplay of factors such as gut microbiota, genetic and epigenetic modifications, metabolic processes, mitophagy, NK cell activity, and environmental influences. Future research should focus on understanding insulin resistance, β-cell dysfunction, interactions between gut microbiota and their metabolites, and the regulatory roles of miRNA and genes. By leveraging artificial intelligence and integrating data from genomics, epigenomics, metabolomics, and microbiomics, researchers can gain deeper insights into the pathophysiological mechanisms and heterogeneity of T2DM. Additionally, exploring the combined effects and interactions of these factors may pave the way for more effective prevention strategies and personalized treatments for T2DM.
Collapse
Affiliation(s)
- Xinyi Tian
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liuqing Wang
- Institute of Chinese Medical History and Literatures, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liuting Zhong
- First School of Clinical Medicine, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Kaiqi Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolei Ge
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhengrong Luo
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Zhai
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shaoyan Liu
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Marchiori M, Maguolo A, Perfilyev A, Maziarz M, Martinell M, Gomez MF, Ahlqvist E, García-Calzón S, Ling C. Blood-Based Epigenetic Biomarkers Associated With Incident Chronic Kidney Disease in Individuals With Type 2 Diabetes. Diabetes 2025; 74:439-450. [PMID: 39715581 PMCID: PMC11842608 DOI: 10.2337/db24-0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
There is an increasing need for new biomarkers to improve prediction of chronic kidney disease (CKD) in individuals with type 2 diabetes (T2D). We aimed to identify blood-based epigenetic biomarkers associated with incident CKD and develop a methylation risk score (MRS) predicting CKD in individuals with newly diagnosed T2D. DNA methylation was analyzed epigenome wide in blood from 487 individuals with newly diagnosed T2D, of whom 88 developed CKD during an 11.5-year follow-up. Weighted Cox regression was used to associate methylation with incident CKD. Weighted logistic models and cross-validation (k = 5) were performed to test whether the MRS could predict CKD. Methylation at 37 sites was associated with CKD development based on a false discovery rate of <5% and absolute methylation differences of ≥5% between individuals with incident CKD and those free of CKD during follow-up. Notably, 15 genes annotated to these sites, e.g., TGFBI, SHISA3, and SLC43A2 (encoding LAT4), have been linked to CKD or related risk factors, including blood pressure, BMI, and estimated glomerular filtration rate. Using an MRS including 37 sites and cross-validation for prediction of CKD, we generated receiver operating characteristic (ROC) curves with an area under the curve (AUC) of 0.82 for the MRS and AUC of 0.87 for the combination of MRS and clinical factors. Importantly, ROC curves including the MRS had significantly better AUCs versus the one only including clinical factors (AUC = 0.72). The combined epigenetic biomarker had high accuracy in identifying individuals free of future CKD (negative predictive value of 94.6%). We discovered a high-performance epigenetic biomarker for predicting CKD, encouraging its potential role in precision medicine, risk stratification, and targeted prevention in T2D. ARTICLE HIGHLIGHTS There is an increasing need for new biomarkers to improve the prediction and prevention of chronic kidney disease (CKD) in individuals with type 2 diabetes (T2D), a leading cause of morbidity and mortality in this population. We investigated whether new blood-based epigenetic biomarkers predict incident CKD in individuals with newly diagnosed T2D. We discovered a novel blood-based epigenetic biomarker, composed of a combination of a methylation risk score and clinical factors, capable of predicting CKD during an 11.5-year follow-up (area under the curve of 0.87, negative predictive value of 94.6%) in individuals with newly diagnosed T2D. The epigenetic biomarker could provide a valuable tool for early risk stratification and prevention of CKD in individuals with newly diagnosed T2D, supporting its future use for precision medicine.
Collapse
Affiliation(s)
- Marian Marchiori
- Epigenetics and Diabetes Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
- Active Living Unit, Department of Sports Science and Clinical Biomechanics, Faculty of Health, University of Southern Denmark, Odense, Denmark
| | - Alice Maguolo
- Epigenetics and Diabetes Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| | - Marlena Maziarz
- Bioinformatics Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Malmö, Sweden
| | - Mats Martinell
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Maria F. Gomez
- Diabetic Complications Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Emma Ahlqvist
- Genetics and Diabetes Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| | - Sonia García-Calzón
- Epigenetics and Diabetes Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
- Department of Food Sciences and Physiology, Centre for Nutrition Research, University of Navarra and Navarra Institute for Health Research (IdISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
12
|
Bonnefond A, Florez JC, Loos RJF, Froguel P. Dissection of type 2 diabetes: a genetic perspective. Lancet Diabetes Endocrinol 2025; 13:149-164. [PMID: 39818223 DOI: 10.1016/s2213-8587(24)00339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/11/2024] [Accepted: 10/30/2024] [Indexed: 01/18/2025]
Abstract
Diabetes is a leading cause of global mortality and disability, and its economic burden is substantial. This Review focuses on type 2 diabetes, which makes up 90-95% of all diabetes cases. Type 2 diabetes involves a progressive loss of insulin secretion often alongside insulin resistance and metabolic syndrome. Although obesity and a sedentary lifestyle are considerable contributors, research over the last 25 years has shown that type 2 diabetes develops on a predisposing genetic background, with family and twin studies indicating considerable heritability (ie, 31-72%). This Review explores type 2 diabetes from a genetic perspective, highlighting insights into its pathophysiology and the implications for precision medicine. More specifically, the traditional understanding of type 2 diabetes genetics has focused on a dichotomy between monogenic and polygenic forms. However, emerging evidence suggests a continuum that includes monogenic, oligogenic, and polygenic contributions, revealing their complementary roles in type 2 diabetes pathophysiology. Recent genetic studies provide deeper insights into disease mechanisms and pave the way for precision medicine approaches that could transform type 2 diabetes management. Additionally, the effect of environmental factors on type 2 diabetes, particularly from epigenetic modifications, adds another layer of complexity to understanding and addressing this multifaceted disease.
Collapse
Affiliation(s)
- Amélie Bonnefond
- Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Department of Metabolism, Imperial College London, London, UK.
| | - Jose C Florez
- Center for Genomic Medicine and Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ruth J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philippe Froguel
- Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Department of Metabolism, Imperial College London, London, UK.
| |
Collapse
|
13
|
Jönsson J, Perfilyev A, Kugelberg U, Skog S, Lindström A, Ruhrmann S, Ofori JK, Bacos K, Rönn T, Öst A, Ling C. Impact of excess sugar on the whole genome DNA methylation pattern in human sperm. Epigenomics 2025; 17:89-104. [PMID: 39707713 PMCID: PMC11792836 DOI: 10.1080/17501911.2024.2439782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
AIMS, PATIENTS & METHODS Dietary factors may regulate the epigenome. We aimed to explore whether a diet intervention, including excess sugar, affects the methylome in human sperm, and to describe the sperm methylome. We used Whole Genome Bisulfite Sequencing (WGBS) to analyze DNA methylation in sperm taken at three time points from 15 males during a diet intervention; i) at baseline, ii) after one week on a standardized diet, and iii) after an additional week on a high-sugar diet providing 150% of their estimated total energy expenditure. RESULTS We identified seven nominal diet-associated differentially methylated regions in sperm (p < 0.05). The diet was nominally associated with methylation of 143 sites linked to fertility (e.g. AHRR, GNAS, and HDAC4), 313 sites in imprinted genes (e.g. GLIS3, PEG10, PEG3, and SNURF), and 42 sites in top 1%-expressed genes (e.g. CHD2) (p < 0.05). In sperm, 3'UTRs and introns had the highest levels of methylation, while 5'UTRs and CpG islands had the lowest levels. Non-expressed genes in human sperm were hypomethylated in exons compared with transcribed genes. CONCLUSIONS In human sperm, DNA methylation levels were linked to gene expression, and excess sugar had modest effects on methylation on imprinted and highly expressed genes, and genes affecting fertility.
Collapse
Affiliation(s)
- Josefine Jönsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Unn Kugelberg
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Signe Skog
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Axel Lindström
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Sabrina Ruhrmann
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Jones K. Ofori
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Anita Öst
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
14
|
Li J, Li Y, Lu Y, Li S, Zhu Y, Sun C, Rai P, Jia X. The Relationship Between LRP-5 and LRP-6 Gene Mutations and Postmenopausal Type 2 Diabetes and Obesity. Clin Med Insights Endocrinol Diabetes 2025; 18:11795514241307180. [PMID: 39902284 PMCID: PMC11789129 DOI: 10.1177/11795514241307180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/26/2024] [Indexed: 02/05/2025] Open
Abstract
Background Single nucleotide polymorphisms (SNPs) in the low-density lipoprotein receptor-related protein 5 (LRP5) and the low-density lipoprotein receptor-related protein 5 (LRP6) genes have been implicated in the pathogenesis of type 2 diabetes mellitus (T2DM) and obesity (OB). This study aimed to evaluate the polymorphisms in LRP5 and LRP6 genes in postmenopausal patients with T2DM and OB. Methods Participants were categorized into the Non-T2DM group (n = 53) and the T2DM group (n = 89) based on glycemic levels. Baseline data and biochemical indices were collected, Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry, and SNPs at the LRP5 and LRP6 loci were assessed by time-of-flight mass spectrometry. Results 1. There was a statistical difference in the distribution of genotypes (CC/CT) at locus rs4988331 (χ2 = 67.940, P = .000) and in the distribution of alleles (C/T) between the T2DM and non-T2DM groups (χ2 = 50.506, P = .000). Additionally, there were significant differences in the allele (G/A) at locus rs11054704, and both allele (G/T) and genotype (GG/GT) distributions at locus rs1181334 between the OB group and the normal weight group (P < .05). 2. OB was identified as a risk factor for T2DM in individuals with the wild-type at locus rs1181334, and the interaction between wild-type and mutant was significant (P < .05). 3. Multifactorial logistic regression analysis revealed that BMD (OR 3.755; 95% CI, 1.215-11.608) and triglyceride-glucose (TyG) index (OR 2.855; 95% CI, 1.361-5.986) were risk factors for T2DM in postmenopausal women, whereas alkaline phosphatase (ALP; OR 0.970; 95% CI, 0.945-0.995) and rs4988331 mutation (OR 0.018; 95% CI, 0.006-0.060) were protective factors. Conclusion Mutations at the LRP5-rs4988331 locus, as well as the LRP6-rs11054704 and rs1181334 loci, may be associated with the development of T2DM and OB in postmenopausal women.
Collapse
Affiliation(s)
- Jun Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Shihezi University, Shihezi, Xinjiang, China
| | - Ya Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Shihezi University, Shihezi, Xinjiang, China
| | - Yunqiu Lu
- Medical School of Shihezi University, Shihezi, China
| | - Siyuan Li
- Medical School of Shihezi University, Shihezi, China
| | - Yecheng Zhu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Shihezi University, Shihezi, Xinjiang, China
| | - Chuanbing Sun
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Shihezi University, Shihezi, Xinjiang, China
| | | | - Xuehai Jia
- West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Ahmed S, Adnan H, Khawaja MA, Butler AE. Novel Micro-Ribonucleic Acid Biomarkers for Early Detection of Type 2 Diabetes Mellitus and Associated Complications-A Literature Review. Int J Mol Sci 2025; 26:753. [PMID: 39859467 PMCID: PMC11765584 DOI: 10.3390/ijms26020753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most widespread chronic diseases globally, with its prevalence expected to rise significantly in the years ahead. Previous studies on risk stratification for T2DM identify certain biomarkers, including glycated hemoglobin (HbA1c), oral glucose tolerance testing (OGTT), fructosamine, and glycated albumin, as key indicators for predicting the onset and progression of T2DM. However, these traditional markers have been shown to lack sensitivity and specificity and their results are difficult to analyze due to non-standardized interpretation criteria, posing significant challenges to an accurate and definitive diagnosis. The strict measures of these traditional markers may not catch gradual increases in blood sugar levels during the early stages of diabetes evolution, as these might still fall within acceptable glycemic parameters. Recent advancements in research have suggested novel micro ribonucleic acid (miRNA) as circulatory molecules that can facilitate the early detection of prediabetic conditions in high-risk groups and potentially enable prevention of the progression to T2DM. This capability makes them a very powerful tool for potentially improving population health, enhancing outcomes for many patients, and reducing the overall burden of T2DM. These promising biomarkers are small, noncoding RNA involved in the regulation of many cellular functions that have a hand in the metabolic activities of cells, making them a very useful and relevant biomarker to explore for the diagnosis and risk stratification of T2DM. This review analyzes the current literature, outlining the occurrence of miRNAs in prediabetic and diabetic individuals and their implications in predicting dysglycemic disorders.
Collapse
Affiliation(s)
- Sara Ahmed
- School of Medicine, Royal College of Surgeons in Ireland-Bahrain, Busaiteen 15503, Bahrain; (S.A.); (H.A.); (M.A.K.)
| | - Haroon Adnan
- School of Medicine, Royal College of Surgeons in Ireland-Bahrain, Busaiteen 15503, Bahrain; (S.A.); (H.A.); (M.A.K.)
| | - Maryam A. Khawaja
- School of Medicine, Royal College of Surgeons in Ireland-Bahrain, Busaiteen 15503, Bahrain; (S.A.); (H.A.); (M.A.K.)
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland-Bahrain, Busaiteen 15503, Bahrain
| |
Collapse
|
16
|
Webster AK, Phillips PC. Epigenetics and individuality: from concepts to causality across timescales. Nat Rev Genet 2025:10.1038/s41576-024-00804-z. [PMID: 39789149 DOI: 10.1038/s41576-024-00804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 01/12/2025]
Abstract
Traditionally, differences among individuals have been divided into genetic and environmental causes. However, both types of variation can underlie regulatory changes in gene expression - that is, epigenetic changes - that persist across cell divisions (developmental differentiation) and even across generations (transgenerational inheritance). Increasingly, epigenetic variation among individuals is recognized as an important factor in human diseases and ageing. Moreover, non-genetic inheritance can lead to evolutionary changes within populations that differ from those expected by genetic inheritance alone. Despite its importance, causally linking epigenetic variation to phenotypic differences across individuals has proven difficult, particularly when epigenetic variation operates independently of genetic variation. New genomic approaches are providing unprecedented opportunity to measure and perturb epigenetic variation, helping to elucidate the role of epigenetic variation in mediating the genotype-phenotype map. Here, we review studies that have advanced our understanding of how epigenetic variation contributes to phenotypic differences between individuals within and across generations, and provide a unifying framework that allows historical and mechanistic perspectives to more fully inform one another.
Collapse
Affiliation(s)
- Amy K Webster
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
17
|
Kampmann U, Suder LB, Nygaard M, Geiker NRW, Nielsen HS, Almstrup K, Bruun JM, Magkos F, Ovesen P, Catalano P. Prepregnancy and Gestational Interventions to Prevent Childhood Obesity. J Clin Endocrinol Metab 2024; 110:e8-e18. [PMID: 39401333 DOI: 10.1210/clinem/dgae724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Indexed: 12/19/2024]
Abstract
Childhood obesity is a significant global health issue with complex and multifactorial origins, often beginning before conception and influenced by both maternal and paternal health. The increased prevalence of prepregnancy obesity and gestational diabetes mellitus in women of reproductive age contributes to a heightened risk of metabolic dysfunction in offspring. Current clinical practices often implement lifestyle interventions after the first trimester and have limited success, implying that they miss a critical window for effective metabolic adjustments. This review examines the limitations of lifestyle interventions during pregnancy in improving perinatal outcomes and highlights the importance of initiating such interventions before conception to positively impact parental health and fetal development. A re-evaluation of strategies is needed to enhance the metabolic health of prospective parents as a preventive measure against childhood obesity.
Collapse
Affiliation(s)
- Ulla Kampmann
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, DK-8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, DK-8200, Denmark
| | - Louise Birk Suder
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, DK-8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, DK-8200, Denmark
| | - Malene Nygaard
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, DK-1958, Denmark
| | | | - Henriette Svarre Nielsen
- Department of Gynecology and Obstetrics, Copenhagen University Hospital Hvidovre, Hvidovre, DK 2650, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Kristian Almstrup
- Department of Growth and reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, DK-2100, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Jens Meldgaard Bruun
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, DK-8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, DK-8200, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, DK-1958, Denmark
| | - Per Ovesen
- Department of Clinical Medicine, Aarhus University, Aarhus N, DK-8200, Denmark
- Department of Gynecology and Obstetrics, Aarhus University Hospital, Aarhus N, DK-8200, Denmark
| | - Patrick Catalano
- Division of Reproductive Endocrinology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
18
|
Ewen AM. The Influence of Racial Discrimination as a Chronic Stressor on Type 2 Diabetes Risk and Self-Management Behaviors among Black Adults: A Scoping Review. Curr Diab Rep 2024; 25:12. [PMID: 39680244 DOI: 10.1007/s11892-024-01570-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
PURPOSE OF REVIEW This literature review highlights the behavioral and biological mechanisms that link racial discrimination to type 2 diabetes (T2D) risk, self-management, and related complications in the Black population in the United States. Next steps are discussed and include recommendations for disease mitigation. RECENT FINDINGS Black Americans are exposed to high levels of stress, with many stressors rooted in racial discrimination, a psychosocial factor that inhibits positive behavior change and disrupts bodily systems and functioning. T2D is a largely preventable disease, yet Black Americans experience known structural and systemic barriers (i.e., structural racism) that profoundly impact diabetes onset and progression. While causal mechanisms that link racial discrimination and T2D have become a more recent focus of study, a dearth of research on racial discrimination-related stress, and the role it plays in the onset and self-management of T2D, remains. Identifying the structural and contextual factors, specifically racial discrimination, that influence diabetes risk and self-management among Black adults is important in closing the gap in health disparities. Findings on coping strategies adopted across the African diaspora are also warranted as policy makers, researchers, and clinicians work together to create an actionable path forward.
Collapse
Affiliation(s)
- Alana M Ewen
- Department of Behavioral and Community Health, School of Public Health, University of Maryland, 4200 Valley Dr., Suite 1234, 20742, College Park, MD, United States of America.
- School of Social Work, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
19
|
Ling C, Vavakova M, Ahmad Mir B, Säll J, Perfilyev A, Martin M, Jansson PA, Davegårdh C, Asplund O, Hansson O, Vaag A, Nilsson E. Multiomics profiling of DNA methylation, microRNA, and mRNA in skeletal muscle from monozygotic twin pairs discordant for type 2 diabetes identifies dysregulated genes controlling metabolism. BMC Med 2024; 22:572. [PMID: 39623445 PMCID: PMC11613913 DOI: 10.1186/s12916-024-03789-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND A large proportion of skeletal muscle insulin resistance in type 2 diabetes (T2D) is caused by environmental factors. METHODS By applying multiomics mRNA, microRNA (miRNA), and DNA methylation platforms in biopsies from 20 monozygotic twin pairs discordant for T2D, we aimed to delineate the epigenetic and transcriptional machinery underlying non-genetic muscle insulin resistance in T2D. RESULTS Using gene set enrichment analysis (GSEA), we found decreased mRNA expression of genes involved in extracellular matrix organization, branched-chain amino acid catabolism, metabolism of vitamins and cofactors, lipid metabolism, muscle contraction, signaling by receptor tyrosine kinases pathways, and translocation of glucose transporter 4 (GLUT4) to the plasma membrane in muscle from twins with T2D. Differential expression levels of one or more predicted target relevant miRNA(s) were identified for approximately 35% of the dysregulated GSEA pathways. These include miRNAs with a significant overrepresentation of targets involved in GLUT4 translocation (miR-4643 and miR-548z), signaling by receptor tyrosine kinases pathways (miR-607), and muscle contraction (miR-4658). Acquired DNA methylation changes in skeletal muscle were quantitatively small in twins with T2D compared with the co-twins without T2D. Key methylation and expression results were validated in muscle, myotubes, and/or myoblasts from unrelated subjects with T2D and controls. Finally, mimicking T2D-associated changes by overexpressing miR-548 and miR-607 in cultured myotubes decreased expression of target genes, GLUT4 and FGFR4, respectively, and impaired insulin-stimulated phosphorylation of Akt (Ser473) and TBC1D4. CONCLUSIONS Together, we show that T2D is associated with non- and epigenetically determined differential transcriptional regulation of pathways regulating skeletal muscle metabolism and contraction.
Collapse
Affiliation(s)
- Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden.
| | - Magdalena Vavakova
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bilal Ahmad Mir
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - Johanna Säll
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden
| | - Melina Martin
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden
| | - Per-Anders Jansson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, Bruna Straket 16, Level 2/3, Gothenburg, 413 45, Sweden
| | - Cajsa Davegårdh
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden
| | - Olof Asplund
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - Ola Hansson
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
- Institute for Molecular Medicine Finland (FIMM), Helsinki University, Helsinki, Finland
| | - Allan Vaag
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Lund University Diabetes Centre, Lund University, Malmö, 205 02, Sweden
- Department of Endocrinology, Scania University Hospital, Malmö, 205 02, Sweden
| | - Emma Nilsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden
| |
Collapse
|
20
|
Cancello R, Vigna L, DI Maggio A, Capodaglio P, Bertoli S, Brunani A. Obesity prevention across the lifespan: assessing the efficacy of intervention studies and discussing future challenges. Minerva Endocrinol (Torino) 2024; 49:457-478. [PMID: 39382548 DOI: 10.23736/s2724-6507.24.04077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
INTRODUCTION Obesity is intricately linked with metabolic conditions that disrupt hormones and metabolism, often resulting in weight-related challenges. Given the heightened mortality rates associated with cardiovascular and metabolic disorders linked to obesity, there is a pressing call to mobilize medical professionals, researchers, and policymakers towards advocating for healthy lifestyles and preventing obesity. Traditionally, obesity prevention and treatment have been viewed as separate endeavors, with prevention primarily falling under public health initiatives and treatment within the purview of clinicians. However, this division has led to significant healthcare costs without a substantial reduction in obesity rates. EVIDENCE ACQUISITION Our search encompassed published articles focused on prevention, excluding any mention of "treatment". Data was gathered from diverse sources including academic databases, government health agency websites like the CDC, research organizations, clinical trials registries, and public health campaigns. EVIDENCE SYNTHESIS Due to the diverse range of interventions (encompassing dietary modifications, physical activity promotion, policy initiatives, education, and community-based programs, either independently or in combination), and the variability in study design and population demographics, we conducted a narrative review to systematically present and critically analyze evidence on preventing overweight and obesity across different age groups. CONCLUSIONS Effectively addressing obesity prevention necessitates a comprehensive, multidisciplinary approach that establishes an environment where healthier choices are accessible and viable for all. This requires collaborative efforts between individuals, communities, healthcare providers, policymakers, and industries to institute enduring change. Furthermore, there remains a critical need for national and international guidelines tailored to age-related risk factors, paving the way for innovative precision medicine approaches centered on salutogenesis rather than pathogenesis.
Collapse
Affiliation(s)
- Raffaella Cancello
- Obesity Unit and Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luisella Vigna
- Obesity and Work Center, Occupational Medicine Unit-Clinica del Lavoro L. Devoto, Fondazione IRCCS Ca' Granda Maggiore Polyclinic Hospital, Milan, Italy
| | - Antonella DI Maggio
- Obesity and Work Center, Occupational Medicine Unit-Clinica del Lavoro L. Devoto, Fondazione IRCCS Ca' Granda Maggiore Polyclinic Hospital, Milan, Italy
| | - Paolo Capodaglio
- Laboratory of Biomechanics, Rehabilitation and Ergonomics, IRCCS Istituto Auxologico Italiano, Piancavallo, Verbania, Italy
- Department of Surgical Sciences, Physical Medicine and Rehabilitation, University of Turin, Turin, Italy
| | - Simona Bertoli
- Obesity Unit and Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Amelia Brunani
- Laboratory of Biomechanics, Rehabilitation and Ergonomics, IRCCS Istituto Auxologico Italiano, Piancavallo, Verbania, Italy -
| |
Collapse
|
21
|
Khajeh M, Hassanizadeh S, Pourteymour Fard Tabrizi F, Hassanizadeh R, Vajdi M, Askari G. Effect of Zinc Supplementation on Lipid Profile and Body Composition in Patients with Type 2 Diabetes Mellitus: A GRADE-Assessed Systematic Review and Dose-Response Meta-analysis. Biol Trace Elem Res 2024; 202:4877-4892. [PMID: 38224402 DOI: 10.1007/s12011-024-04059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
The aim of this systematic review and meta-analysis of randomized controlled trials (RCTs) is to investigate the overall effects of zinc supplementation on lipid profile and body composition such as body weight (BW), body mass index (BMI), triglycerides (TG), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), and high-density lipoprotein-cholesterol (HDL-C) in patients with type 2 diabetes mellitus (T2DM). Scopus, Web of Science, PubMed, and Embase databases were searched from inception through October, 2023. The I2 and Cochran's Q tests were used to assess heterogeneity between studies. Nineteen RCTs (n = 1357 participants) were included in the meta-analysis. Zinc supplementation significantly reduced TG (WMD = - 17.41 mg/dL; 95% CI: - 22.60, - 12.22; P < 0.001), TC (WMD: - 19.60 mg/dL; 95% CI: - 28.46, - 10.73, P < 0.001), LDL-C (WMD = - 8.80 mg/dL; 95% CI: - 14.80, - 2.81; P = 0.004), and BMI (WMD = - 0.53 kg/m2; 95% CI: - 1.05, - 0.01; P = 0.046) but not BW (WMD: - 0.51 kg, 95 % CI: - 1.99, 0.97, P = 0.498). Moreover, zinc supplementation increased HDL-C (WMD = 4.82 mg/dL; 95% CI: 0.88, 8.76; P = 0.016) in patients with T2DM. Our results propose that zinc supplementation may be an effective strategy for improving lipid profile and body composition in patients with T2DM.
Collapse
Affiliation(s)
- Mahsa Khajeh
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Hassanizadeh
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Reza Hassanizadeh
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Mahdi Vajdi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
22
|
Fang L, Kong F, Ou K, Hong L, Wang C, Tong X. Induction of insulin resistance in female mice due to prolonged phenanthrene exposure: Unveiling the low-dose effect and potential mechanisms. ENVIRONMENTAL RESEARCH 2024; 260:119597. [PMID: 39002631 DOI: 10.1016/j.envres.2024.119597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Phenanthrene (Phe) is a commonly occurring polycyclic aromatic hydrocarbon (PAH) found in various food sources and drinking water. Previous studies have shown that long-term exposure to Phe in male mice leads to insulin resistance in a dose-dependent manner. However, the effect of Phe on glucose homeostasis in female mice remains unknown. To address this knowledge gap, female Kunming mice were exposed to Phe through their drinking water at concentrations of 0.05, 0.5, and 5 ng/mL. After 270 d of exposure, we surprisingly discovered a low-dose effect of Phe on insulin resistance in female mice, which differed from the effect observed in male mice and showed sexual dimorphism. Specifically, insulin resistance was only observed in the 0.05 ng/mL treatment, and this low-dose effect was also reflected in the concentration of Phe in white adipose tissue (WAT). Differences in metabolic enzyme activities in the liver may potentially explain this effect. The observed sexual dimorphism in Phe exposure could be attributed to variations in estrogen (E2) level and estrogen receptor beta (ERβ) expression in WAT. These findings highlight the association between environmental factors and the development of insulin resistance, emphasizing the pathogenic effect of even low doses of Phe. Moreover, sex dependent-effect should be given more attention when studying the toxic effects of environmental pollutants.
Collapse
Affiliation(s)
- Lu Fang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Feifei Kong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Luning Hong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China.
| |
Collapse
|
23
|
Mukherjee A, Debbarman T, Banerjee BD, Siddiqi SS. The Impact of Epigenetics on the Pathophysiology of Type 2 Diabetes and Associated Nephropathic Complications. Indian J Endocrinol Metab 2024; 28:569-578. [PMID: 39881775 PMCID: PMC11774419 DOI: 10.4103/ijem.ijem_43_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 10/13/2024] [Accepted: 11/11/2024] [Indexed: 01/31/2025] Open
Abstract
Type 2 diabetes (T2D) is a long-term metabolic condition that presents considerable health challenges globally. As the disease progresses, the interplay between genetic, environmental, and lifestyle factors becomes increasingly evident, leading to complications. Epigenetics has emerged as a critical area of research, providing insights into how these factors can modify the expression and cellular behavior without altering the underlying DNA sequence. Various epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA regulation, drive cell dysfunction, inflammation, and fibrosis, aggravating diabetes and its complications. Amongst all the complications diabetic kidney disease (DKD) also known as diabetic nephropathy (DN), is a significant microvascular complication often regarded as a silent killer, as early diagnosis remains highly complicated. This review investigates various epigenetic modifications associated with T2D and DKD, employing a database search strategy incorporating the PICO framework method to ensure comprehensive coverage of relevant literature. Advancements in epigenome profiling provide valuable insights into the functional outcomes and chromatin states of cells impacted by T2D. Understanding epigenetics thus emphasizes its crucial role in the development and progression of T2D and transition to DKD, while also highlighting the potential reversibility of epigenetic modifications and potency as a biomarker for predicting DKD. More extensive research is needed to identify specific epigenetic mechanisms involved in DKD to further refine predictive models and therapeutic strategies. This unified exploration of significant epigenetic modifications offers a focused analysis of how these alterations influence the trajectory of disease and presents new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Amit Mukherjee
- Rajiv Gandhi Centre for Diabetes and Endocrinology, J N Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Tanusree Debbarman
- Rajiv Gandhi Centre for Diabetes and Endocrinology, J N Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Basu D. Banerjee
- Department of Elementology and Toxicology, Hamdard University, New Delhi, India
| | - Sheelu S. Siddiqi
- Rajiv Gandhi Centre for Diabetes and Endocrinology, J N Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
24
|
García Padilla MA, Vásquez-Garibay EM, Chávez-Palencia C, Romero Velarde E, Larrosa Haro A, Sánchez-Aldana Robles MDL, Sánchez Michel BL. Type 2 diabetes mellitus, obesity, cesarean section delivery, and lack of exclusive breastfeeding exposure in patients from the Guadalajara Metropolitan Area, Mexico. NUTR HOSP 2024; 41:963-967. [PMID: 39268556 DOI: 10.20960/nh.05087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024] Open
Abstract
Introduction Introduction: the combination of cesarean section delivery and limited exposure to full breastfeeding (FBF) in the first six months of life may increase the risk of obesity and diabetes mellitus. This study aimed to establish an association between type 2 diabetes mellitus (T2DM) in adulthood, cesarean section delivery and incomplete full breastfeeding (FBF) in individuals from the metropolitan area of Guadalajara, Mexico. Methodology: this analytical cross-sectional study included patients over 18 years of age with T2DM and normal weight, overweight or obesity, regardless of sex. Informed consent was obtained. Variables encompassed T2DM, type of delivery method, first-year diet, family history, demographic, socioeconomic, and educational characteristics, and anthropometric measurements. For statistical analysis, Student's t test, chi-square tests and odds ratios were employed. Results: the study evaluated 218 patients with an average age of 57.8 years (± 12.7) and an average age at T2DM diagnosis of 46.2 years (± 12.5). FBF (65.6 %) and partial breastfeeding (PBF) (23.8 %) prevailed in the first six months. The average age at T2DM diagnosis was 46.7 years (± 12.1) for vaginally born patients and 30.7 years (± 15.5) for cesarean-born patients (p = 0.001). Cesarean delivery increased obesity risk by nine times in patients with T2DM [OR = 8.9 (CI, 1.05, 75.2), p = 0.02]. Conclusion: prioritizing the limitation of nonmedically justified cesarean section deliveries is crucial to mitigate the risk of obesity and T2DM in adulthood. .
Collapse
Affiliation(s)
| | | | | | - Enrique Romero Velarde
- Instituto de Nutrición Humana. Universidad de Guadalajara. Hospital Civil de Guadalajara Dr. Juan I. Menchaca
| | | | | | | |
Collapse
|
25
|
Toledano A, Rodríguez-Casado A, Älvarez MI, Toledano-Díaz A. Alzheimer's Disease, Obesity, and Type 2 Diabetes: Focus on Common Neuroglial Dysfunctions (Critical Review and New Data on Human Brain and Models). Brain Sci 2024; 14:1101. [PMID: 39595866 PMCID: PMC11591712 DOI: 10.3390/brainsci14111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity, type 2 diabetes (T2D), and Alzheimer's disease (AD) are pathologies that affect millions of people worldwide. They have no effective therapy and are difficult to prevent and control when they develop. It has been known for many years that these diseases have many pathogenic aspects in common. We highlight in this review that neuroglial cells (astroglia, oligodendroglia, and microglia) play a vital role in the origin, clinical-pathological development, and course of brain neurodegeneration. Moreover, we include the new results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we are investigating. METHODS Critical bibliographic revision and biochemical neuropathological study of neuroglia in a T2D-AD model. RESULTS T2D and AD are not only "connected" by producing complex pathologies in the same individual (obesity, T2D, and AD), but they also have many common pathogenic mechanisms. These include insulin resistance, hyperinsulinemia, hyperglycemia, oxidative stress, mitochondrial dysfunction, and inflammation (both peripheral and central-or neuroinflammation). Cognitive impairment and AD are the maximum exponents of brain neurodegeneration in these pathological processes. both due to the dysfunctions induced by metabolic changes in peripheral tissues and inadequate neurotoxic responses to changes in the brain. In this review, we first analyze the common pathogenic mechanisms of obesity, T2D, and AD (and/or cerebral vascular dementia) that induce transcendental changes and responses in neuroglia. The relationships between T2D and AD discussed mainly focus on neuroglial responses. Next, we present neuroglial changes within their neuropathological context in diverse scenarios: (a) aging involution and neurodegenerative disorders, (b) human obesity and diabetes and obesity/diabetes models, (c) human AD and in AD models, and (d) human AD-T2D and AD-T2D models. An important part of the data presented comes from our own studies on humans and experimental models over the past few years. In the T2D-AD section, we included the results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we investigated, which showed that neuroglial dysfunctions (astrocytosis and microgliosis) manifest before the appearance of amyloid neuropathology, and that the amyloid pathology is greater than that presented by mice fed a normal, non-high-caloric diet A broad review is finally included on pharmacological, cellular, genic, and non-pharmacological (especially diet and lifestyle) neuroglial-related treatments, as well as clinical trials in a comparative way between T2D and AD. These neuroglial treatments need to be included in the multimodal/integral treatments of T2D and AD to achieve greater therapeutic efficacy in many millions of patients. CONCLUSIONS Neuroglial alterations (especially in astroglia and microglia, cornerstones of neuroinflammation) are markedly defining brain neurodegeneration in T2D and A, although there are some not significant differences between each of the studied pathologies. Neuroglial therapies are a very important and p. promising tool that are being developed to prevent and/or treat brain dysfunction in T2D-AD. The need for further research in two very different directions is evident: (a) characterization of the phenotypic changes of astrocytes and microglial cells in each region of the brain and in each phase of development of each isolated and associated pathology (single-cell studies are mandatory) to better understand the pathologies and define new therapeutic targets; (b) studying new therapeutic avenues to normalize the function of neuroglial cells (preventing neurotoxic responses and/or reversing them) in these pathologies, as well as the phenotypic characteristics in each moment of the course and place of the neurodegenerative process.
Collapse
Affiliation(s)
- Adolfo Toledano
- Instituto Cajal, CSIC, 28002 Madrid, Spain; (A.R.-C.); (M.I.Ä.)
| | | | | | | |
Collapse
|
26
|
Wang Y, Yan F, Chen Q, Liu F, Xu B, Liu Y, Huo G, Xu J, Li B, Wang S. High-fat diet promotes type 2 diabetes mellitus by disrupting gut microbial rhythms and short-chain fatty acid synthesis. Food Funct 2024; 15:10838-10852. [PMID: 39405046 DOI: 10.1039/d4fo02957g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Diabetes ranks among the top 10 causes of death globally, with over 90% of individuals diagnosed with diabetes having type 2 diabetes mellitus (T2DM). It is acknowledged that a high-fat diet (HFD) poses a serious risk for T2DM. The imbalance of intestinal flora, mediated by HFD, can potentially exacerbate the onset and progression of T2DM. However, the impact of HFD on pathological indicators and the intestinal microbiome in the development of T2DM has not been systematically investigated. Therefore, a HFD mouse model and a T2DM mouse model were established, respectively, in this study. The role of HFD as a driving factor in the development of T2DM was assessed using various measures, including basic pathological indicators of T2DM, lipid metabolism, liver oxidative stress, intestinal permeability, levels of inflammatory factors, gut microbiota, and short-chain fatty acids (SCFAs). The findings indicated that HFD could influence the aforementioned measures to align with T2DM changes, but the contribution of HFD varied across different pathological metrics of T2DM. The impact of HFD on low-density lipoprotein cholesterol, glutathione peroxidase, malondialdehyde, and tumor necrosis factor-α did not show a statistically significant difference from those observed in T2DM during its development. In addition, regarding gut microbes, HFD primarily influenced the alterations in bacteria capable of synthesizing SCFAs. The notable decrease in SCFA content in both serum and cecal matter further underscored the effect of HFD on SCFA-synthesising bacteria in mice. Hence, this research provided a systematic assessment of HFD's propelling role in T2DM's progression. It was inferred that gut microbes, particularly those capable of synthesizing SCFAs, could serve as potential targets for the future prevention and treatment of T2DM instigated by HFD.
Collapse
Affiliation(s)
- Yangrui Wang
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Fenfen Yan
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Qingxue Chen
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Fei Liu
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Baofeng Xu
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yuanyuan Liu
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Guicheng Huo
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jinsheng Xu
- Shanghai Binhan International Trade Co., Ltd, Shanghai, 200000, China
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Song Wang
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Shandong Yuwang Ecological Food Industry Co., Ltd, Dezhou, Shandong, 251200, China
| |
Collapse
|
27
|
Taikeff N, Achkar A, Naous E, Mitri J. Unspoken Consequences of Structural Racism in the USA: Diabetes and COVID-19. J Racial Ethn Health Disparities 2024; 11:2575-2582. [PMID: 37460920 DOI: 10.1007/s40615-023-01722-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 10/16/2024]
Abstract
OBJECTIVES Black, Indigenous, and People of Color (BIPOC) are disproportionately impacted by the diabetes epidemic. This health inequity, aggravated by environmental, lifestyle, and genetic factors, has been further exacerbated by the COVID-19 pandemic. The increased risk of severe complications due to COVID-19 in BIPOC communities speaks to the importance of understanding the impacts of social and structural factors on health. This report aims to outline the connection between diabetes and vulnerability to COVID-19 through the lens of racism. STUDY DESIGN Review of original report and subsequent modeling and interpretations. METHODS We reviewed and analyzed original data in relation to health inequity, diabetes, COVID-19, and BIPOC. RESULTS This holistic approach framed the disproportionate prevalence of diabetes and vulnerability to COVID-19 not just as a health disparity, but as a health inequity. CONCLUSION Defining the relationship between diabetes, vulnerability to COVID-19, and systems of advantage, such as racism, can further support the design of health interventions and policies that reduce the disproportionate impact of these diseases on the health of BIPOC communities.
Collapse
Affiliation(s)
- Nicole Taikeff
- Division of Clinical Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Angela Achkar
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Elie Naous
- Division of Internal Medicine, St. Elizabeth's Medical center, Tufts Medical School and Boston University Medical School, Brighton, MA, 02135, USA
| | - Joanna Mitri
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
28
|
Wu J, Guo J. Is weight-adjusted waist index more strongly associated with diabetes than body mass index and waist circumference?: Results from the database large community sample study. PLoS One 2024; 19:e0309150. [PMID: 39325793 PMCID: PMC11426486 DOI: 10.1371/journal.pone.0309150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/06/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND The uncertainty regarding the correlation between the weight-adjusted waist index (WWI) and diabetes within the National Health and Nutrition Examination Survey (NHANES) necessitates further exploration. As indicators of obesity, the differences in the intensity of association between WWI, body mass index (BMI), and waist circumference (WC) with diabetes are worth exploring. This investigation is undertaken to elucidate the association between WWI and diabetes in the NHANES dataset and to compare the extent to which BMI, WC, and WWI were closely associated with diabetes. Then, choose an obesity index that is more strongly associated with diabetes. METHODS A comprehensive cross-sectional stratified survey of 7,973 participants from the 2017-2020 NHANES was conducted. WWI is an anthropometric measure based on WC and weight. The formula is WWI (cm/√kg) = WC/√weight. The association between WWI and diabetes was investigated using weighted multiple logistic regression, smooth curve fitting, stratified analysis, and interaction testing. RESULTS The participants' average age was 50.84±17.34 years, and 50.68% of them were female. The detection rate of diabetes was 15.11%. This positive association was particularly notable among non-diabetic patients. For each unit increase in BMI and WC as continuous variables, the likelihood of developing diabetes in the fully adjusted model increased by 5% (OR = 1.05; 95%CI, 1.03-1.07) and 3% (OR = 1.03; 95%CI, 1.02-1.04), respectively, but for each one-unit increase in WWI, the likelihood of developing diabetes increased by 111% (OR = 2.11; 95% CI, 1.68-2.65). Tests of interactions revealed that in various subgroups, the association between diabetes and WWI remained steady. CONCLUSIONS We analyzed 2017-2020 NHANES data to explore the link between WWI and diabetes, finding a consistent positive correlation. The correlation between WWI and diabetes was stronger than that between WC and BMI. WWI seems to offer better potential aid in disease prevention and diagnosis.
Collapse
Affiliation(s)
- Jiabei Wu
- Shanxi Medical University, Taiyuan, China
| | - Jinli Guo
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
29
|
Chen Z, Malek V, Natarajan R. Update: the role of epigenetics in the metabolic memory of diabetic complications. Am J Physiol Renal Physiol 2024; 327:F327-F339. [PMID: 38961840 PMCID: PMC11460341 DOI: 10.1152/ajprenal.00115.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
Diabetes, a chronic disease characterized by hyperglycemia, is associated with significantly accelerated complications, including diabetic kidney disease (DKD), which increases morbidity and mortality. Hyperglycemia and other diabetes-related environmental factors such as overnutrition, sedentary lifestyles, and hyperlipidemia can induce epigenetic changes. Working alone or with genetic factors, these epigenetic changes that occur without alterations in the underlying DNA sequence, can alter the expression of pathophysiological genes and impair functions of associated target cells/organs, leading to diabetic complications like DKD. Notably, some hyperglycemia-induced epigenetic changes persist in target cells/tissues even after glucose normalization, leading to sustained complications despite glycemic control, so-called metabolic memory. Emerging evidence from in vitro and in vivo animal models and clinical trials with subjects with diabetes identified clear associations between metabolic memory and epigenetic changes including DNA methylation, histone modifications, chromatin structure, and noncoding RNAs at key loci. Targeting such persistent epigenetic changes and/or molecules regulated by them can serve as valuable opportunities to attenuate, or erase metabolic memory, which is crucial to prevent complication progression. Here, we review these cell/tissue-specific epigenetic changes identified to-date as related to diabetic complications, especially DKD, and the current status on targeting epigenetics to tackle metabolic memory. We also discuss limitations in current studies, including the need for more (epi)genome-wide studies, integrative analysis using multiple epigenetic marks and Omics datasets, and mechanistic evaluation of metabolic memory. Considering the tremendous technological advances in epigenomics, genetics, sequencing, and availability of genomic datasets from clinical cohorts, this field is likely to see considerable progress in the upcoming years.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
| | - Vajir Malek
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
| |
Collapse
|
30
|
Mao Z, Zheng P, Zhu X, Wang L, Zhang F, Liu H, Li H, Zhou L, Liu W. Obstructive sleep apnea hypopnea syndrome and vascular lesions: An update on what we currently know. Sleep Med 2024; 119:296-311. [PMID: 38723575 DOI: 10.1016/j.sleep.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 06/18/2024]
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is the most prevalent sleep and respiratory disorder. This syndrome can induce severe cardiovascular and cerebrovascular complications, and intermittent hypoxia is a pivotal contributor to this damage. Vascular pathology is closely associated with the impairment of target organs, marking a focal point in current research. Vascular lesions are the fundamental pathophysiological basis of multiorgan ailments and indicate a shared pathogenic mechanism among common cardiovascular and cerebrovascular conditions, suggesting their importance as a public health concern. Increasing evidence shows a strong correlation between OSAHS and vascular lesions. Previous studies predominantly focused on the pathophysiological alterations in OSAHS itself, such as intermittent hypoxia and fragmented sleep, leading to vascular disruptions. This review aims to delve deeper into the vascular lesions affected by OSAHS by examining the microscopic pathophysiological mechanisms involved. Emphasis has been placed on examining how OSAHS induces vascular lesions through disruptions in the endothelial barrier, metabolic dysregulation, cellular phenotype alterations, neuroendocrine irregularities, programmed cell death, vascular inflammation, oxidative stress and epigenetic modifications. This review examines the epidemiology and associated risk factors for OSAHS and vascular diseases and subsequently describes the existing evidence on vascular lesions induced by OSAHS in the cardiovascular, cerebrovascular, retinal, renal and reproductive systems. A detailed account of the current research on the pathophysiological mechanisms mediating vascular lesions caused by OSAHS is provided, culminating in a discussion of research advancements in therapeutic modalities to mitigate OSAHS-related vascular lesions and the implications of these treatment strategies.
Collapse
Affiliation(s)
- Zhenyu Mao
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Zhu
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengqin Zhang
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai Li
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
31
|
Aguas-Ayesa M, Yárnoz-Esquiroz P, Perdomo CM, Olazarán L, Vegas-Aguilar IM, García-Almeida JM, Gómez-Ambrosi J, Frühbeck G. Revisiting the beyond BMI paradigm in excess weight diagnosis and management: A call to action. Eur J Clin Invest 2024; 54:e14218. [PMID: 38629697 DOI: 10.1111/eci.14218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 06/06/2024]
Abstract
Adolphe Quételet, a 19th-century Belgian sociologist and statistician, pioneered the incorporation of statistics into social sciences. He initiated the development of anthropometry since he was interested in identifying the proportions of the 'ideal man'. He devised a ratio between weight and height, originally termed the Quételet Index, and today widely known and used as the body mass index or BMI. In 1835, he demonstrated that a normal curve accommodates the distribution of human traits articulating his reasoning on human variance around the average. Quételet's long-lasting legacy of the establishment of a simple measure to classify people's weight relative to an ideal for their height endures today with minor variations having dramatically influenced public health agendas. While being very useful, the limitations of the BMI are well known. Thus, revisiting the beyond BMI paradigm is a necessity in the era of precision medicine with morphofunctional assessment representing the way forward via incorporation of body composition and functionality appraisal. While healthcare systems were originally designed to address acute illnesses, today's demands require a radical rethinking together with an original reappraisal of our diagnosis and treatment approaches from a multidimensional perspective. Embracing new methodologies is the way forward to advance the field, gain a closer look at the underlying pathophysiology of excess weight, keep the spotlight on improving diagnostic performance and demonstrate its clinical validity. In order to provide every patient with the most accurate diagnosis together with the most appropriate management, a high degree of standardization and personalization is needed.
Collapse
Affiliation(s)
- Maite Aguas-Ayesa
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Pamplona, Spain
| | - Patricia Yárnoz-Esquiroz
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Carolina M Perdomo
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Pamplona, Spain
| | - Laura Olazarán
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Isabel M Vegas-Aguilar
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain
- Institute of Biomedical Research in Malaga (IBIMA)-Bionand Platform, Málaga, Spain
| | - José Manuel García-Almeida
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Pamplona, Spain
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain
- Institute of Biomedical Research in Malaga (IBIMA)-Bionand Platform, Málaga, Spain
- Department of Endocrinology and Nutrition, Quironsalud Málaga Hospital, Málaga, Spain
- Department of Medicine and Dermatology, Faculty of Medicine, University of Malaga, Málaga, Spain
| | - Javier Gómez-Ambrosi
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
32
|
Vatier C, Christin-Maitre S. Epigenetic/circadian clocks and PCOS. Hum Reprod 2024; 39:1167-1175. [PMID: 38600622 DOI: 10.1093/humrep/deae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Indexed: 04/12/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) affects 6-20% of reproductive-aged women. It is associated with increased risks of metabolic syndrome, Type 2 diabetes, cardiovascular diseases, mood disorders, endometrial cancer and non-alcoholic fatty liver disease. Although various susceptibility loci have been identified through genetic studies, they account for ∼10% of PCOS heritability. Therefore, the etiology of PCOS remains unclear. This review explores the role of epigenetic changes and modifications in circadian clock genes as potential contributors to PCOS pathogenesis. Epigenetic alterations, such as DNA methylation, histone modifications, and non-coding RNA changes, have been described in diseases related to PCOS, such as diabetes, cardiovascular diseases, and obesity. Furthermore, several animal models have illustrated a link between prenatal exposure to androgens or anti-Müllerian hormone and PCOS-like phenotypes in subsequent generations, illustrating an epigenetic programming in PCOS. In humans, epigenetic changes have been reported in peripheral blood mononuclear cells (PBMC), adipose tissue, granulosa cells (GC), and liver from women with PCOS. The genome of women with PCOS is globally hypomethylated compared to healthy controls. However, specific hypomethylated or hypermethylated genes have been reported in the different tissues of these women. They are mainly involved in hormonal regulation and inflammatory pathways, as well as lipid and glucose metabolism. Additionally, sleep disorders are present in women with PCOS and disruptions in clock genes' expression patterns have been observed in their PBMC or GCs. While epigenetic changes hold promise as diagnostic biomarkers, the current challenge lies in distinguishing whether these changes are causes or consequences of PCOS. Targeting epigenetic modifications potentially opens avenues for precision medicine in PCOS, including lifestyle interventions and drug therapies. However, data are still lacking in large cohorts of well-characterized PCOS phenotypes. In conclusion, understanding the interplay between genetics, epigenetics, and circadian rhythms may provide valuable insights for early diagnosis and therapeutic strategies in PCOS in the future.
Collapse
Affiliation(s)
- Camille Vatier
- Department of Endocrine and Reproductive Medicine, Center of Endocrine Rare Diseases of Growth and Development (CRESCENDO), FIRENDO, Endo-ERN, Hôpital Saint-Antoine, Assistance-Publique-Hôpitaux de Paris, Sorbonne University, Paris, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) UMR 938, Centre de Recherche Saint-Antoine et Institut de Cardio-Métabolisme et Nutrition (ICAN), Paris, France
| | - Sophie Christin-Maitre
- Department of Endocrine and Reproductive Medicine, Center of Endocrine Rare Diseases of Growth and Development (CRESCENDO), FIRENDO, Endo-ERN, Hôpital Saint-Antoine, Assistance-Publique-Hôpitaux de Paris, Sorbonne University, Paris, France
- INSERM UMR U933, Paris, France
| |
Collapse
|
33
|
Cheng H, Jia Z, Li YT, Yu X, Wang JJ, Xie YJ, Hernandez J, Wang HHX. Metabolic Score for Insulin Resistance and New-Onset Type 2 Diabetes in a Middle-Aged and Older Adult Population: Nationwide Prospective Cohort Study and Implications for Primary Care. JMIR Public Health Surveill 2024; 10:e49617. [PMID: 38569189 PMCID: PMC11184265 DOI: 10.2196/49617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 02/29/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND The metabolic score for insulin resistance (METS-IR) has emerged as a noninsulin-based index for the approximation of insulin resistance (IR), yet longitudinal evidence supporting the utility of METS-IR in the primary prevention of type 2 diabetes mellitus (T2DM) remains limited. OBJECTIVE We aimed to investigate the longitudinal association between METS-IR, which combines fasting plasma glucose (FPG), lipid profiles, and anthropometrics that can be routinely obtained in resource-limited primary care settings, and the incidence of new-onset T2DM. METHODS We conducted a closed-cohort analysis of a nationwide, prospective cohort of 7583 Chinese middle-aged and older adults who were free of T2DM at baseline, sampled from 28 out of 31 provinces in China. We examined the characteristics of participants stratified by elevated blood pressure (BP) at baseline and new-onset T2DM at follow-up. We performed Cox proportional hazard regression analysis to explore associations of baseline METS-IR with incident T2DM in participants overall and in participants stratified by baseline BP. We also applied net reclassification improvement and integrated discrimination improvement to examine the incremental value of METS-IR. RESULTS During a mean follow-up period of 6.3 years, T2DM occurred in 527 participants, among which two-thirds (332/527, 62.9%; 95% CI 58.7%-67.1%) had baseline FPG<110 mg/dL. A SD unit increase in baseline METS-IR was associated with the first incidence of T2DM (adjusted hazard ratio [aHR] 1.33, 95% CI 1.22-1.45; P<.001) in all participants. We obtained similar results in participants with normal baseline BP (aHR 1.41, 95% CI 1.22-1.62; P<.001) and elevated baseline BP (aHR 1.29, 95% CI 1.16-1.44; P<.001). The predictive capability for incident T2DM was improved by adding METS-IR to FPG. In study participants with new-onset T2DM whose baseline FPG was <126 mg/dL and <110 mg/dL, 62.9% (332/527; 95% CI 60%-65.9%) and 58.1% (193/332; 95% CI 54.3%-61.9%) of participants had baseline METS-IR above the cutoff values, respectively. CONCLUSIONS METS-IR was significantly associated with new-onset T2DM, regardless of baseline BP level. Regular monitoring of METS-IR on top of routine blood glucose in clinical practice may add to the ability to enhance the early identification of primary care populations at risk for T2DM.
Collapse
Affiliation(s)
- Hui Cheng
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Zhihui Jia
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Yu Ting Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Yu
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jia Ji Wang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Yao Jie Xie
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, China (Hong Kong)
| | - Jose Hernandez
- Faculty of Medicine and Health, EDU, Digital Education Holdings Ltd, Kalkara, Malta
- Green Templeton College, University of Oxford, Oxford, United Kingdom
| | - Harry H X Wang
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, China (Hong Kong)
- Usher Institute, Deanery of Molecular, Genetic & Population Health Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
34
|
Singh S, Kriti M, K.S. A, Sarma DK, Verma V, Nagpal R, Mohania D, Tiwari R, Kumar M. Deciphering the complex interplay of risk factors in type 2 diabetes mellitus: A comprehensive review. Metabol Open 2024; 22:100287. [PMID: 38818227 PMCID: PMC11137529 DOI: 10.1016/j.metop.2024.100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024] Open
Abstract
The complex and multidimensional landscape of type 2 diabetes mellitus (T2D) is a major global concern. Despite several years of extensive research, the precise underlying causes of T2D remain elusive, but evidence suggests that it is influenced by a myriad of interconnected risk factors such as epigenetics, genetics, gut microbiome, environmental factors, organelle stress, and dietary habits. The number of factors influencing the pathogenesis is increasing day by day which worsens the scenario; meanwhile, the interconnections shoot up the frame. By gaining deeper insights into the contributing factors, we may pave the way for the development of personalized medicine, which could unlock more precise and impactful treatment pathways for individuals with T2D. This review summarizes the state of knowledge about T2D pathogenesis, focusing on the interplay between various risk factors and their implications for future therapeutic strategies. Understanding these factors could lead to tailored treatments targeting specific risk factors and inform prevention efforts on a population level, ultimately improving outcomes for individuals with T2D and reducing its burden globally.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Mona Kriti
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Anamika K.S.
- Christ Deemed to Be University Bangalore, Karnataka, India
| | - Devojit Kumar Sarma
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, College of Health & Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Dheeraj Mohania
- Dr. R. P. Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Rajnarayan Tiwari
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Manoj Kumar
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| |
Collapse
|
35
|
Gerra MC, Dallabona C, Cecchi R. Epigenetic analyses in forensic medicine: future and challenges. Int J Legal Med 2024; 138:701-719. [PMID: 38242965 PMCID: PMC11003920 DOI: 10.1007/s00414-024-03165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
The possibility of using epigenetics in forensic investigation has gradually risen over the last few years. Epigenetic changes with their dynamic nature can either be inherited or accumulated throughout a lifetime and be reversible, prompting investigation of their use across various fields. In forensic sciences, multiple applications have been proposed, such as the discrimination of monozygotic twins, identifying the source of a biological trace left at a crime scene, age prediction, determination of body fluids and tissues, human behavior association, wound healing progression, and determination of the post-mortem interval (PMI). Despite all these applications, not all the studies considered the impact of PMI and post-sampling effects on the epigenetic modifications and the tissue-specificity of the epigenetic marks.This review aims to highlight the substantial forensic significance that epigenetics could support in various forensic investigations. First, basic concepts in epigenetics, describing the main epigenetic modifications and their functions, in particular, DNA methylation, histone modifications, and non-coding RNA, with a particular focus on forensic applications, were covered. For each epigenetic marker, post-mortem stability and tissue-specificity, factors that should be carefully considered in the study of epigenetic biomarkers in the forensic context, have been discussed. The advantages and limitations of using post-mortem tissues have been also addressed, proposing directions for these innovative strategies to analyze forensic specimens.
Collapse
Affiliation(s)
- Maria Carla Gerra
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11a, Viale Delle Scienze 11a, 43124, Parma, PR, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11a, Viale Delle Scienze 11a, 43124, Parma, PR, Italy.
| | - Rossana Cecchi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, PR, Italy
| |
Collapse
|
36
|
Li Y, Li Y, Wang C, Mao Z, Huo W, Xing W, Li J, Yang TY, Li L. Association of low-carbohydrate diet scores and type 2 diabetes in Chinese rural adults: The Henan Rural Cohort Study. Endocrine 2024; 84:459-469. [PMID: 38324107 DOI: 10.1007/s12020-023-03602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/07/2023] [Indexed: 02/08/2024]
Abstract
PURPOSE To investigate the association between low-carbohydrate diet scores (LCDs) and the risk of type 2 diabetes in rural China. METHODS A total of 38,100 adults were included in the Henan Rural Cohort Study. Macronutrient intake was assessed via a validated food-frequency questionnaire to create low-carbohydrate diet (LCD) scores. Multivariate logistic regression models and subgroup analysis were performed to estimate the odds ratio (OR) and 95% confidence interval (95% CI). RESULTS After multivariable adjustment, participants with a high total low-carbohydrate diet score have a high risk of T2D (extreme-quartile OR = 1.23, 95% CI: 1.04-1.41; P = 0.007), whereas plant-based LCD score is not related to T2D risk. Among individuals with a BMI < 24 (extreme-quartile OR = 1.22, 95% CI: 1.01-1.47; P < 0.001) or high levels of physical activity (extreme-quartile OR = 1.42, 95% CI: 1.17-1.72; P < 0.001), the animal-based LCD score is positively correlated with the risk of T2D. CONCLUSION Among Chinese rural populations, high-fat-low carbohydrate diet is associated with an increased risk of type 2 diabetes. High intake of animal protein and fat also increases T2D risk in those who are overweight or have high physical activity.
Collapse
Affiliation(s)
- Yan Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqian Li
- Department of Clinical Pharmacology, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Chongjian Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenxing Mao
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenqian Huo
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenguo Xing
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jia Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Tian Yu Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Linlin Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
37
|
Köhler AR, Haußer J, Harsch A, Bernhardt S, Häußermann L, Brenner LM, Lungu C, Olayioye MA, Bashtrykov P, Jeltsch A. Modular dual-color BiAD sensors for locus-specific readout of epigenome modifications in single cells. CELL REPORTS METHODS 2024; 4:100739. [PMID: 38554702 PMCID: PMC11045877 DOI: 10.1016/j.crmeth.2024.100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2024]
Abstract
Dynamic changes in the epigenome at defined genomic loci play crucial roles during cellular differentiation and disease development. Here, we developed dual-color bimolecular anchor detector (BiAD) sensors for high-sensitivity readout of locus-specific epigenome modifications by fluorescence microscopy. Our BiAD sensors comprise an sgRNA/dCas9 complex as anchor and double chromatin reader domains as detector modules, both fused to complementary parts of a split IFP2.0 fluorophore, enabling its reconstitution upon binding of both parts in close proximity. In addition, a YPet fluorophore is recruited to the sgRNA to mark the genomic locus of interest. With these dual-color BiAD sensors, we detected H3K9me2/3 and DNA methylation and their dynamic changes upon RNAi or inhibitor treatment with high sensitivity at endogenous genomic regions. Furthermore, we showcased locus-specific H3K36me2/3 readout as well as H3K27me3 and H3K9me2/3 enrichment on the inactive X chromosome, highlighting the broad applicability of our dual-color BiAD sensors for single-cell epigenome studies.
Collapse
Affiliation(s)
- Anja R Köhler
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Johannes Haußer
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Annika Harsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Steffen Bernhardt
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Lilia Häußermann
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Lisa-Marie Brenner
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Cristiana Lungu
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
38
|
Morgan AE, Mc Auley MT. Vascular dementia: From pathobiology to emerging perspectives. Ageing Res Rev 2024; 96:102278. [PMID: 38513772 DOI: 10.1016/j.arr.2024.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Vascular dementia (VaD) is the second most common type of dementia. VaD is synonymous with ageing, and its symptoms place a significant burden on the health and wellbeing of older people. Despite the identification of a substantial number of risk factors for VaD, the pathological mechanisms underpinning this disease remain to be fully elucidated. Consequently, a biogerontological imperative exists to highlight the modifiable lifestyle factors which can mitigate against the risk of developing VaD. This review will critically examine some of the factors which have been revealed to modulate VaD risk. The survey commences by providing an overview of the putative mechanisms which are associated with the pathobiology of VaD. Next, the factors which influence the risk of developing VaD are examined. Finally, emerging treatment avenues including epigenetics, the gut microbiome, and pro-longevity pharmaceuticals are discussed. By drawing this key evidence together, it is our hope that it can be used to inform future experimental investigations in this field.
Collapse
Affiliation(s)
- Amy Elizabeth Morgan
- School of Health and Sports Sciences, Hope Park, Liverpool Hope University, Liverpool L16 9JD, United Kingdom.
| | - Mark Tomás Mc Auley
- School of Science, Engineering and Environment, University of Salford Manchester, Salford M5 4NT, United Kingdom
| |
Collapse
|
39
|
Guan H, Tian J, Wang Y, Niu P, Zhang Y, Zhang Y, Fang X, Miao R, Yin R, Tong X. Advances in secondary prevention mechanisms of macrovascular complications in type 2 diabetes mellitus patients: a comprehensive review. Eur J Med Res 2024; 29:152. [PMID: 38438934 PMCID: PMC10910816 DOI: 10.1186/s40001-024-01739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) poses a significant global health burden. This is particularly due to its macrovascular complications, such as coronary artery disease, peripheral vascular disease, and cerebrovascular disease, which have emerged as leading contributors to morbidity and mortality. This review comprehensively explores the pathophysiological mechanisms underlying these complications, protective strategies, and both existing and emerging secondary preventive measures. Furthermore, we delve into the applications of experimental models and methodologies in foundational research while also highlighting current research limitations and future directions. Specifically, we focus on the literature published post-2020 concerning the secondary prevention of macrovascular complications in patients with T2DM by conducting a targeted review of studies supported by robust evidence to offer a holistic perspective.
Collapse
Affiliation(s)
- Huifang Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Ying Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ping Niu
- Rehabilitation Department, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Ruiyang Yin
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
40
|
Chen P, Wang Y, Chen F, Zhou B. Epigenetics in obesity: Mechanisms and advances in therapies based on natural products. Pharmacol Res Perspect 2024; 12:e1171. [PMID: 38293783 PMCID: PMC10828914 DOI: 10.1002/prp2.1171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Obesity is a major risk factor for morbidity and mortality because it has a close relationship to metabolic illnesses, such as diabetes, cardiovascular diseases, and some types of cancer. With no drugs available, the mainstay of obesity management remains lifestyle changes with exercise and dietary modifications. In light of the tremendous disease burden and unmet therapeutics, fresh perspectives on pathophysiology and drug discovery are needed. The development of epigenetics provides a compelling justification for how environmental, lifestyle, and other risk factors contribute to the pathogenesis of obesity. Furthermore, epigenetic dysregulations can be restored, and it has been reported that certain natural products obtained from plants, such as tea polyphenols, ellagic acid, urolithins, curcumin, genistein, isothiocyanates, and citrus isoflavonoids, were shown to inhibit weight gain. These substances have great antioxidant potential and are of great interest because they can also modify epigenetic mechanisms. Therefore, understanding epigenetic modifications to target the primary cause of obesity and the epigenetic mechanisms of anti-obesity effects with certain phytochemicals can prove rational strategies to prevent the disease and develop novel therapeutic interventions. Thus, the current review aimed to summarize the epigenetic mechanisms and advances in therapies for obesity based on natural products to provide evidence for the development of several potential anti-obesity drug targets.
Collapse
Affiliation(s)
- Peng Chen
- Department of PharmacyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Yulai Wang
- Department of Pharmacy, Huangshi Central HospitalAffiliated Hospital of Hubei Polytechnic UniversityHuangshiHubeiP.R. China
| | - Fuchao Chen
- Sinopharm Dongfeng General HospitalHubei University of MedicineShiyanHubeiP.R. China
| | - Benhong Zhou
- Department of PharmacyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| |
Collapse
|
41
|
Cando LFT, Quebral EPB, Ong EP, Catral CDM, Relador RJL, Velasco AJD, Alcazar RMU, Reyes NAL, Pilotin EJB, Ornos EDB, Paz-Pacheco E, Tantengco OAG. Current status of diabetes mellitus care and management in the Philippines. Diabetes Metab Syndr 2024; 18:102951. [PMID: 38382166 DOI: 10.1016/j.dsx.2024.102951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/15/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
AIMS In this paper, we discuss the existing data on the burden of diabetes in the Philippines and present the status of management, prevention, and control of diabetes in the country. METHODS A review of literature was conducted to synthesize the status of diabetes mellitus in the Philippines. RESULTS An estimated 4.3 million Filipinos were diagnosed with diabetes, while 2.8 million remained undiagnosed in 2021. Diabetic retinopathy is a top cause of preventable blindness in Region 3, Philippines. Diabetic nephropathy contributes to 38% of renal disease cases in the Philippines. The 2021 Philippine Guidelines on Periodic Health Examination (PhEX) advocate for the utilization of fasting blood sugar (FBS) as a screening measure for Type 2 Diabetes Mellitus (T2DM) in healthy adults aged 40 years and older or in those with specified risk factors. The alternative option of hemoglobin A1c is (HbA1c) deemed appropriate but comes with a conditional recommendation due to its uneven accessibility across different regions of the country. Treatment guidelines align between the Philippines and the US. Initial medical nutrition therapy involves healthy habits, progressing to pharmacologic treatment if necessary. Financial constraints, seen in limited insurance coverage and high out-of-pocket costs, impede care, amplifying disease impact. The complex diabetes care, encompassing pharmacotherapy, nutrition, exercise, and monitoring, faced challenges during COVID-19 quarantines. CONCLUSION In conclusion, the paper outlines diabetes care principles-screening, diagnostics, and multidisciplinary care-alongside economic implications. Local and national initiatives are discussed to mitigate diabetes trends and reduce its burden in the Philippines.
Collapse
Affiliation(s)
- Leslie Faye T Cando
- College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Elgin Paul B Quebral
- College of Medicine, University of the Philippines Manila, Manila, Philippines; Virology Laboratory, Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| | - Erika P Ong
- College of Medicine, University of the Philippines Manila, Manila, Philippines
| | | | - Ruth Joy L Relador
- College of Medicine, University of the Philippines Manila, Manila, Philippines
| | | | | | | | - Er Joshua B Pilotin
- College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Eric David B Ornos
- Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| | - Elizabeth Paz-Pacheco
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of the Philippines - Philippine General Hospital, Taft Avenue, Manila, Philippines
| | - Ourlad Alzeus G Tantengco
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila, Philippines; Department of Biology, College of Science, De La Salle University, Manila, Philippines.
| |
Collapse
|
42
|
Greenhill C. Highlights from SfE BES 2023. Nat Rev Endocrinol 2024; 20:64. [PMID: 38062119 DOI: 10.1038/s41574-023-00935-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
|
43
|
Jazieh C, Arabi TZ, Asim Z, Sabbah BN, Alsaud AW, Alkattan K, Yaqinuddin A. Unraveling the epigenetic fabric of type 2 diabetes mellitus: pathogenic mechanisms and therapeutic implications. Front Endocrinol (Lausanne) 2024; 15:1295967. [PMID: 38323108 PMCID: PMC10845351 DOI: 10.3389/fendo.2024.1295967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a rapidly escalating global health concern, with its prevalence projected to increase significantly in the near future. This review delves into the intricate role of epigenetic modifications - including DNA methylation, histone acetylation, and micro-ribonucleic acid (miRNA) expression - in the pathogenesis and progression of T2DM. We critically examine how these epigenetic changes contribute to the onset and exacerbation of T2DM by influencing key pathogenic processes such as obesity, insulin resistance, β-cell dysfunction, cellular senescence, and mitochondrial dysfunction. Furthermore, we explore the involvement of epigenetic dysregulation in T2DM-associated complications, including diabetic retinopathy, atherosclerosis, neuropathy, and cardiomyopathy. This review highlights recent studies that underscore the diagnostic and therapeutic potential of targeting epigenetic modifications in T2DM. We also provide an overview of the impact of lifestyle factors such as exercise and diet on the epigenetic landscape of T2DM, underscoring their relevance in disease management. Our synthesis of the current literature aims to illuminate the complex epigenetic underpinnings of T2DM, offering insights into novel preventative and therapeutic strategies that could revolutionize its management.
Collapse
|
44
|
Derbala D, Garnier A, Bonnet E, Deleuze JF, Tost J. Whole-Genome Bisulfite Sequencing Protocol for the Analysis of Genome-Wide DNA Methylation and Hydroxymethylation Patterns at Single-Nucleotide Resolution. Methods Mol Biol 2024; 2842:353-382. [PMID: 39012605 DOI: 10.1007/978-1-0716-4051-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The analysis of genome-wide epigenomic alterations including DNA methylation and hydroxymethylation has become a subject of intensive research for many biological and clinical questions. DNA methylation analysis bears the particular promise to supplement or replace biochemical and imaging-based tests for the next generation of personalized medicine. Whole-genome bisulfite sequencing (WGBS) using next-generation sequencing technologies is currently considered the gold standard for a comprehensive and quantitative analysis of DNA methylation throughout the genome. However, bisulfite conversion does not allow distinguishing between cytosine methylation and hydroxymethylation requiring an additional chemical or enzymatic step to identify hydroxymethylated cytosines. Here, we provide a detailed protocol based on a commercial kit for the preparation of sequencing libraries for the comprehensive whole-genome analysis of DNA methylation and/or hydroxymethylation. The protocol is based on the construction of sequencing libraries from limited amounts of input DNA by ligation of methylated adaptors to the fragmented DNA prior to bisulfite conversion. For analyses requiring a quantitative distinction between 5-methylcytosine and 5-hydroxymethylcytosines levels, an oxidation step is included in the same workflow to perform oxidative bisulfite sequencing (OxBs-Seq). In this case, two sequencing libraries will be generated and sequenced: a classic methylome following bisulfite conversion and analyzing modified cytosines (not distinguishing between methylated and hydroxymethylated cytosines) and a methylome analyzing only methylated cytosines, respectively. Hydroxymethylation levels are deduced from the differences between the two reactions. We also provide a step-by-step description of the data analysis using publicly available bioinformatic tools. The described protocol has been successfully applied to different human and plant samples and yields robust and reproducible results.
Collapse
Affiliation(s)
- David Derbala
- Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Université Paris -Saclay, Evry, France
| | - Abel Garnier
- Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Université Paris -Saclay, Evry, France
| | - Eric Bonnet
- Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Université Paris -Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Université Paris -Saclay, Evry, France
| | - Jörg Tost
- Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Université Paris -Saclay, Evry, France.
| |
Collapse
|
45
|
Yu B, Wang D, Zhou J, Huang R, Cai T, Hu Y, Zhou Y, Ma J. Diabetes Pharmacotherapy and its effects on the Skeletal Muscle Energy Metabolism. Mini Rev Med Chem 2024; 24:1470-1480. [PMID: 38549524 DOI: 10.2174/0113895575299439240216081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 08/07/2024]
Abstract
The disorders of skeletal muscle metabolism in patients with Type 2 diabetes mellitus (T2DM), such as mitochondrial defection and glucose transporters (GLUTs) translocation dysfunctions, are not uncommon. Therefore, when anti-diabetic drugs were used in various chronic diseases associated with hyperglycemia, the impact on skeletal muscle should not be ignored. However, current studies mainly focus on muscle mass rather than metabolism or functions. Anti-diabetic drugs might have a harmful or beneficial impact on skeletal muscle. In this review, we summarize the upto- date studies on the effects of anti-diabetic drugs and some natural compounds on skeletal muscle metabolism, focusing primarily on emerging data from pre-clinical to clinical studies. Given the extensive use of anti-diabetic drugs and the common sarcopenia, a better understanding of energy metabolism in skeletal muscle deserves attention in future studies.
Collapse
Affiliation(s)
- Baowen Yu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dong Wang
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Junming Zhou
- Department of Cadre Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rong Huang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tingting Cai
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yonghui Hu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yunting Zhou
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
46
|
Rönn T, Ofori JK, Perfilyev A, Hamilton A, Pircs K, Eichelmann F, Garcia-Calzon S, Karagiannopoulos A, Stenlund H, Wendt A, Volkov P, Schulze MB, Mulder H, Eliasson L, Ruhrmann S, Bacos K, Ling C. Genes with epigenetic alterations in human pancreatic islets impact mitochondrial function, insulin secretion, and type 2 diabetes. Nat Commun 2023; 14:8040. [PMID: 38086799 PMCID: PMC10716521 DOI: 10.1038/s41467-023-43719-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Epigenetic dysregulation may influence disease progression. Here we explore whether epigenetic alterations in human pancreatic islets impact insulin secretion and type 2 diabetes (T2D). In islets, 5,584 DNA methylation sites exhibit alterations in T2D cases versus controls and are associated with HbA1c in individuals not diagnosed with T2D. T2D-associated methylation changes are found in enhancers and regions bound by β-cell-specific transcription factors and associated with reduced expression of e.g. CABLES1, FOXP1, GABRA2, GLR1A, RHOT1, and TBC1D4. We find RHOT1 (MIRO1) to be a key regulator of insulin secretion in human islets. Rhot1-deficiency in β-cells leads to reduced insulin secretion, ATP/ADP ratio, mitochondrial mass, Ca2+, and respiration. Regulators of mitochondrial dynamics and metabolites, including L-proline, glycine, GABA, and carnitines, are altered in Rhot1-deficient β-cells. Islets from diabetic GK rats present Rhot1-deficiency. Finally, RHOT1methylation in blood is associated with future T2D. Together, individuals with T2D exhibit epigenetic alterations linked to mitochondrial dysfunction in pancreatic islets.
Collapse
Affiliation(s)
- Tina Rönn
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Jones K Ofori
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Alexander Hamilton
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
- Department of Biology, University of Copenhagen, København, Denmark
| | - Karolina Pircs
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
- HCEMM-Su, Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Fabian Eichelmann
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Sonia Garcia-Calzon
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
- Department of Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Alexandros Karagiannopoulos
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Hans Stenlund
- Swedish Metabolomics Centre, Umeå University, Umeå, Sweden
| | - Anna Wendt
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Petr Volkov
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Hindrik Mulder
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Lena Eliasson
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Sabrina Ruhrmann
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Karl Bacos
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Charlotte Ling
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden.
| |
Collapse
|
47
|
Tatsch JM, Furman DP, Nobre RM, Wurzer KM, da Silva LC, Picheth GF, Ramos EA, Acco A, Klassen G. Dulaglutide as a demethylating agent to improve the outcome of breast cancer. Epigenomics 2023; 15:1309-1322. [PMID: 38174426 DOI: 10.2217/epi-2023-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Background: Dulaglutide emerged as a promising therapeutic option for diabetes mellitus Type 2 (DM2). Aims: Owing to epigenetic similarities between the pathophysiology of DM2 and breast cancer (BC), we investigated the antitumor effect of dulaglutide. Materials & methods: To investigate the effect of dulaglutide, we analyzed the expression of methylated gene promoter regions in BC (ESR1, CDH1 and ADAM33). Results: Dulaglutide increased the expression of ESR1, CDH1 and ADAM33 up to fourfold in the MDA-MB-231 lineage by demethylating the gene promoter regions. This effect was translated to in vivo antitumoral activity and revealed significant tumor inhibition by combining the half-dose of methotrexate with dulaglutide. Conclusion: This therapy may mitigate the severe side effects commonly associated with chemotherapy.
Collapse
Affiliation(s)
- Júlia M Tatsch
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Diana P Furman
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Rodrigo Mb Nobre
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Karin M Wurzer
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Liziane Cm da Silva
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Guilherme F Picheth
- Department of Biochemistry Federal University of Paraná, Curitiba, PR, Brazil
| | - Edneia As Ramos
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Giseli Klassen
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
48
|
Guo YC, Cao HD, Lian XF, Wu PX, Zhang F, Zhang H, Lu DH. Molecular mechanisms of noncoding RNA and epigenetic regulation in obesity with consequent diabetes mellitus development. World J Diabetes 2023; 14:1621-1631. [DOI: 10.4239/wjd.v14.i11.1621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/26/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023] Open
Abstract
Diabetes mellitus (DM) and obesity have become two of the most prevalent and challenging diseases worldwide, with increasing incidence and serious complications. Recent studies have shown that noncoding RNA (ncRNA) and epigenetic regulation play crucial roles in the pathogenesis of DM complicated by obesity. Identification of the involvement of ncRNA and epigenetic regulation in the pathogenesis of diabetes with obesity has opened new avenues of investigation. Targeting these mechanisms with small molecules or RNA-based therapies may provide a more precise and effective approach to diabetes treatment than traditional therapies. In this review, we discuss the molecular mechanisms of ncRNA and epigenetic regulation and their potential therapeutic targets, and the research prospects for DM complicated with obesity.
Collapse
Affiliation(s)
- Yi-Chen Guo
- Department of Endo-crinology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Hao-Di Cao
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Xiao-Fen Lian
- Department of Endo-crinology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Pei-Xian Wu
- Department of Endo-crinology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Fan Zhang
- Department of Endo-crinology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Hua Zhang
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Dong-Hui Lu
- Department of Endo-crinology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| |
Collapse
|
49
|
Chen S, Zhang W, Zheng Z, Shao X, Yang P, Yang X, Nan K. Unraveling genetic causality between type 2 diabetes and pulmonary tuberculosis on the basis of Mendelian randomization. Diabetol Metab Syndr 2023; 15:228. [PMID: 37950319 PMCID: PMC10636918 DOI: 10.1186/s13098-023-01213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The comorbidity rate between type 2 diabetes mellitus (T2DM) and pulmonary tuberculosis (PTB) is high and imposes enormous strains on healthcare systems. However, whether T2DM is causally associated with PTB is unknown owing to limited evidence from prospective studies. Consequently, the present study aimed to clarify the genetic causality between T2DM and PTB on the basis of Mendelian randomization (MR) analysis. METHODS Genetic variants for T2DM and PTB were obtained from the IEU OpenGWAS project. The inverse variance weighted method was used as the main statistical analysis method and was supplemented with MR-Egger, weighted median, simple mode, and weighted mode methods. Heterogeneity was analyzed using Cochran's Q statistic. Horizontal pleiotropy was assessed using the MR-PRESSO global test and MR-Egger regression. Robustness of the results was verified using the leave-one-out method. RESULTS A total of 152 independent single-nucleotide polymorphisms (SNPs) were selected as instrumental variables (IVs) to assess the genetic causality between T2DM and PTB. Patients with T2DM had a higher risk of PTB at the genetic level (odds ratio (OR) for MR-Egger was 1.550, OR for weighted median was 1.540, OR for inverse variance weighted was 1.191, OR for simple mode was 1.629, OR for weighted mode was 1.529). There was no horizontal pleiotropy or heterogeneity among IVs. The results were stable when removing the SNPs one by one. CONCLUSIONS This is the first comprehensive MR analysis that revealed the genetic causality between T2DM and PTB in the East Asian population. The study provides convincing evidence that individuals with T2DM have a higher risk of developing PTB at the genetic level. This offers a significant basis for joint management of concurrent T2DM and PTB in clinical practice.
Collapse
Affiliation(s)
- Shengnan Chen
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, People's Republic of China
- Medical Department of Xi'an Jiaotong University, Xi'an, 710048, Shaanxi, China
| | - Weisong Zhang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, People's Republic of China
| | - Zhenquan Zheng
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, People's Republic of China
| | - Xiaolong Shao
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, People's Republic of China
| | - Peng Yang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, People's Republic of China
| | - Xiaobin Yang
- Hongdong County Hospital of Traditional Chinese Medicine, Hongdong, 041600, Shaanxi, China
| | - Kai Nan
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, People's Republic of China.
| |
Collapse
|
50
|
Pasarin L, Martu MA, Ciurcanu OE, Luca EO, Salceanu M, Anton D, Martu C, Martu S, Esanu IM. Influence of Diabetes Mellitus and Smoking on Pro- and Anti-Inflammatory Cytokine Profiles in Gingival Crevicular Fluid. Diagnostics (Basel) 2023; 13:3051. [PMID: 37835794 PMCID: PMC10572228 DOI: 10.3390/diagnostics13193051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/10/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Smoking and diabetes mellitus have been recognized as significant modifying factors of the evolution of periodontitis, being considered at the moment as descriptive factors in the periodontitis grading system. The purpose of this study was to assess the consequence of smoking, type 2 diabetes, and the combination of these two factors on clinical periodontal parameters, on the levels of gingival crevicular fluid (GCF), and also on ratios of pro-inflammatory and anti-inflammatory cytokines by using a commercially available kit-based multiplex fluorescent immunoassay. The study was carried out on 124 volunteers (control (C) group = 29, diabetes mellitus (DM) group = 32, smoking (S) group = 31, and S + DM group = 32). Total mean bleeding on probing was significantly lower in the S and S + DM groups, compared to that of the other groups (p < 0.05). Total amounts of TGF-β, MIP-1α, IL-6, IL-2, and IL-17 were significantly increased in the periodontally healthy sites of diabetes patients (p < 0.05), compared to those of the controls. Systemically healthy smoking patients had higher values of GM-CSF, TGF-β, IL-4, TNF-α, IL-5, and IL-7, while diabetic smoking patients showed higher values of IL-4, TGF-β, and MIP-1α. In smoking and systemically healthy patients, IL-23, IL-7, and IL-12 showed increased concentrations, while concentrations of TGF-β, MIP-1α, IL-2, IL-7, IL-12, IL-17, IL-21, and IL-23 were higher in smoking DM patients. In conclusion, in our study, diabetes mellitus induced a general pro-inflammatory state, while smoking mainly stimulated immunosuppression in the periodontal tissues of periodontitis subjects.
Collapse
Affiliation(s)
- Liliana Pasarin
- Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy Iasi, Str. Universitatii No. 16, 700115 Iasi, Romania; (L.P.); (E.O.L.); (M.S.); (S.M.)
| | - Maria-Alexandra Martu
- Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy Iasi, Str. Universitatii No. 16, 700115 Iasi, Romania; (L.P.); (E.O.L.); (M.S.); (S.M.)
| | - Oana Elena Ciurcanu
- Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy Iasi, Str. Universitatii No. 16, 700115 Iasi, Romania; (L.P.); (E.O.L.); (M.S.); (S.M.)
| | - Elena Odette Luca
- Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy Iasi, Str. Universitatii No. 16, 700115 Iasi, Romania; (L.P.); (E.O.L.); (M.S.); (S.M.)
| | - Mihaela Salceanu
- Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy Iasi, Str. Universitatii No. 16, 700115 Iasi, Romania; (L.P.); (E.O.L.); (M.S.); (S.M.)
| | - Diana Anton
- Faculty of Medicine and Pharmacy, University Dunarea de Jos Galati, 35 Alexandru Ioan Cuza Street, 800010 Galati, Romania;
| | - Cristian Martu
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy Iasi, Str. Universitatii No. 16, 700115 Iasi, Romania; (C.M.); (I.M.E.)
| | - Silvia Martu
- Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy Iasi, Str. Universitatii No. 16, 700115 Iasi, Romania; (L.P.); (E.O.L.); (M.S.); (S.M.)
| | - Irina Mihaela Esanu
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy Iasi, Str. Universitatii No. 16, 700115 Iasi, Romania; (C.M.); (I.M.E.)
| |
Collapse
|