1
|
Martinez P, Sabatier JM. Malignant tumors in vagal-innervated organs: Exploring its homeostatic role. Cancer Lett 2025; 617:217539. [PMID: 39954934 DOI: 10.1016/j.canlet.2025.217539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
Cancer remains a significant global health challenge, with its progression shaped by complex and multifactorial mechanisms. Recent research suggests that the vagus nerve could play a critical role in mediating communication between the tumor microenvironment and the central nervous system (CNS). This review highlights the diversity of vagal afferent receptors, which could position the vagus nerve as a unique pathway for transmitting immune, metabolic, mechanical, and chemical signals from tumors to the CNS. Such signaling could influence systemic disease progression and tumor-related responses. Additionally, the vagus nerve's interactions with the microbiome and the renin-angiotensin system (RAS)-both implicated in cancer biology-further underscore its potential central role in modulating tumor-related processes. Contradictions in the literature, particularly concerning vagal fibers, illustrate the complexity of its involvement in tumor progression, with both tumor-promoting and tumor-suppressive effects reported depending on cancer type and context. These contradictions often overlook certain experimental biases, such as the failure to distinguish between vagal afferent and efferent fibers during vagotomies or the localized parasympathetic effects that cannot always be extrapolated to the systemic level. By focusing on the homeostatic role of the vagus nerve, understanding these mechanisms could open the door to new perspectives in cancer research related to the vagus nerve and lead to potential therapeutic innovations.
Collapse
Affiliation(s)
| | - Jean-Marc Sabatier
- Institut de NeuroPhysiopathologie (INP), CNRS UMR 7051, 27 Bd Jean Moulin, 13005, Marseille, France
| |
Collapse
|
2
|
Kim H, Girardi G, Pickle A, Kim TS, Seker E. Microfluidic tools to model, monitor, and modulate the gut-brain axis. BIOMICROFLUIDICS 2025; 19:021301. [PMID: 40060273 PMCID: PMC11890156 DOI: 10.1063/5.0253041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/12/2025] [Indexed: 03/24/2025]
Abstract
The gut-brain axis (GBA) connects the gastrointestinal tract and the central nervous system (CNS) via the peripheral nervous system and humoral (e.g., circulatory and lymphatic system) routes. The GBA comprises a sophisticated interaction between various mammalian cells, gut microbiota, and systemic factors. This interaction shapes homeostatic and pathophysiological processes and plays an important role in the etiology of many disorders including neuropsychiatric conditions. However, studying the underlying processes of GBA in vivo, where numerous confounding factors exist, is challenging. Furthermore, conventional in vitro models fall short of capturing the GBA anatomy and physiology. Microfluidic platforms with integrated sensors and actuators are uniquely positioned to enhance in vitro models by representing the anatomical layout of cells and allowing to monitor and modulate the biological processes with high spatiotemporal resolution. Here, we first briefly describe microfluidic technologies and their utility in modeling the CNS, vagus nerve, gut epithelial barrier, blood-brain barrier, and their interactions. We then discuss the challenges and opportunities for each model, including the use of induced pluripotent stem cells and incorporation of sensors and actuator modalities to enhance the capabilities of these models. We conclude by envisioning research directions that can help in making the microfluidics-based GBA models better-suited to provide mechanistic insight into pathophysiological processes and screening therapeutics.
Collapse
Affiliation(s)
- Hyehyun Kim
- Department of Biomedical Engineering, University of California—Davis, Davis, California 95616, USA
| | | | - Allison Pickle
- Department of Biomedical Engineering, University of California—Davis, Davis, California 95616, USA
| | - Testaverde S. Kim
- Department of Biomedical Engineering, University of California—Davis, Davis, California 95616, USA
| | - Erkin Seker
- Department of Electrical and Computer Engineering, University of California—Davis, Davis, California 95616, USA
| |
Collapse
|
3
|
Romaní-Pérez M, Líebana-García R, Flor-Duro A, Bonillo-Jiménez D, Bullich-Vilarrubias C, Olivares M, Sanz Y. Obesity and the gut microbiota: implications of neuroendocrine and immune signaling. FEBS J 2025; 292:1397-1420. [PMID: 39159270 PMCID: PMC11927058 DOI: 10.1111/febs.17249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/29/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Obesity is a major health challenge due to its high prevalence and associated comorbidities. The excessive intake of a diet rich in fat and sugars leads to a persistent imbalance between energy intake and energy expenditure, which increases adiposity. Here, we provide an update on relevant diet-microbe-host interactions contributing to or protecting from obesity. In particular, we focus on how unhealthy diets shape the gut microbiota and thus impact crucial intestinal neuroendocrine and immune system functions. We describe how these interactions promote dysfunction in gut-to-brain neuroendocrine pathways involved in food intake control and postprandial metabolism and elevate the intestinal proinflammatory tone, promoting obesity and metabolic complications. In addition, we provide examples of how this knowledge may inspire microbiome-based interventions, such as fecal microbiota transplants, probiotics, and biotherapeutics, to effectively combat obesity-related disorders. We also discuss the current limitations and gaps in knowledge of gut microbiota research in obesity.
Collapse
Affiliation(s)
- Marina Romaní-Pérez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Rebeca Líebana-García
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Alejandra Flor-Duro
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Daniel Bonillo-Jiménez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Clara Bullich-Vilarrubias
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Marta Olivares
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
4
|
Lansbury EL, Vana V, Lund ML, Ludwig MQ, Mamedova E, Gautron L, Arnold M, Egerod KL, Kuhre RE, Holst JJ, Rekling J, Schwartz TW, Pankratova S, Dmytriyeva O. Neurons Co-Expressing GLP-1, CCK, and PYY Receptors Particularly in Right Nodose Ganglion and Innervating Entire GI Tract in Mice. Int J Mol Sci 2025; 26:2053. [PMID: 40076675 PMCID: PMC11899847 DOI: 10.3390/ijms26052053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Afferent vagal neurons convey gut-brain signals related to the mechanical and chemical sensing of nutrients, with the latter also mediated by gut hormones secreted from enteroendocrine cells. Cell bodies of these neurons are located in the nodose ganglia (NG), with the right NG playing a key role in metabolic regulation. Notably, glucagon-like peptide-1 receptor (GLP1R) neurons primarily innervate the muscle layer of the stomach, distant from glucagon-like peptide-1 (GLP-1)-secreting gut cells. However, the co-expression of gut hormone receptors in these NG neurons remains unclear. Using RNAscope combined with immunohistochemistry, we confirmed GLP1R expression in a large population of NG neurons, with Glp1r, cholecystokinin A receptor (Cckar), and Neuropeptide Y Y2 Receptor (Npy2r) being more highly expressed in the right NG, while neurotensin receptor 1 (Ntsr), G protein-coupled receptor (Gpr65), and 5-hydroxytryptamine receptor 3A (5ht3a) showed equal expressions in the left and right NG. Co-expression analysis demonstrated the following: (i) most Glp1r, Cckar, and Npy2r neurons co-expressed all three receptors; (ii) nearly all Ntsr1- and Gpr65-positive neurons co-expressed both receptors; and (iii) 5ht3a was expressed in subpopulations of all peptide-hormone-receptor-positive neurons. Retrograde labeling demonstrated that the anterior part of the stomach was preferentially innervated by the left NG, while the right NG innervated the posterior part. The entire gastrointestinal (GI) tract, including the distal colon, was strongly innervated by NG neurons. Most importantly, dual retrograde labeling with two distinct tracers identified a population of neurons co-expressing Glp1r, Cckar, and Npy2r that innervated both the stomach and the colon. Thus, neurons co-expressing GLP-1, cholecystokinin (CCK), and peptide YY (PYY) receptors, predominantly found in the right NG, sample chemical, nutrient-induced signals along the entire GI tract and likely integrate these with mechanical signals from the stomach.
Collapse
Affiliation(s)
- Elizabeth Laura Lansbury
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (E.L.L.); (V.V.); (M.L.L.); (M.Q.L.); (K.L.E.); (R.E.K.); (J.J.H.); (T.W.S.); (S.P.)
| | - Vasiliki Vana
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (E.L.L.); (V.V.); (M.L.L.); (M.Q.L.); (K.L.E.); (R.E.K.); (J.J.H.); (T.W.S.); (S.P.)
| | - Mari Lilith Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (E.L.L.); (V.V.); (M.L.L.); (M.Q.L.); (K.L.E.); (R.E.K.); (J.J.H.); (T.W.S.); (S.P.)
| | - Mette Q. Ludwig
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (E.L.L.); (V.V.); (M.L.L.); (M.Q.L.); (K.L.E.); (R.E.K.); (J.J.H.); (T.W.S.); (S.P.)
| | - Esmira Mamedova
- Institute of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (E.M.); (J.R.)
| | - Laurent Gautron
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Myrtha Arnold
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland;
| | - Kristoffer Lihme Egerod
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (E.L.L.); (V.V.); (M.L.L.); (M.Q.L.); (K.L.E.); (R.E.K.); (J.J.H.); (T.W.S.); (S.P.)
| | - Rune Ehrenreich Kuhre
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (E.L.L.); (V.V.); (M.L.L.); (M.Q.L.); (K.L.E.); (R.E.K.); (J.J.H.); (T.W.S.); (S.P.)
- Department for Biomedical Research, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (E.L.L.); (V.V.); (M.L.L.); (M.Q.L.); (K.L.E.); (R.E.K.); (J.J.H.); (T.W.S.); (S.P.)
- Department for Biomedical Research, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jens Rekling
- Institute of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (E.M.); (J.R.)
| | - Thue W. Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (E.L.L.); (V.V.); (M.L.L.); (M.Q.L.); (K.L.E.); (R.E.K.); (J.J.H.); (T.W.S.); (S.P.)
| | - Stanislava Pankratova
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (E.L.L.); (V.V.); (M.L.L.); (M.Q.L.); (K.L.E.); (R.E.K.); (J.J.H.); (T.W.S.); (S.P.)
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (E.L.L.); (V.V.); (M.L.L.); (M.Q.L.); (K.L.E.); (R.E.K.); (J.J.H.); (T.W.S.); (S.P.)
| |
Collapse
|
5
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Hwang J, Lee S, Okada J, Liu L, Pessin JE, Chua SC, Schwartz GJ, Jo YH. Liver-innervating vagal sensory neurons are indispensable for the development of hepatic steatosis and anxiety-like behavior in diet-induced obese mice. Nat Commun 2025; 16:991. [PMID: 39856118 PMCID: PMC11759694 DOI: 10.1038/s41467-025-56328-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The visceral organ-brain axis, mediated by vagal sensory neurons, is essential for maintaining various physiological functions. Here, we investigate the impact of liver-projecting vagal sensory neurons on energy balance, hepatic steatosis, and anxiety-like behavior in mice under obesogenic conditions. A small subset of vagal sensory neurons innervate the liver and project centrally to the nucleus of the tractus solitarius, area postrema, and dorsal motor nucleus of the vagus, and peripherally to the periportal areas in the liver. The loss of these neurons prevents diet-induced obesity, and these outcomes are associated with increased energy expenditure. Although males and females exhibit improved glucose homeostasis following disruption of liver-projecting vagal sensory neurons, only male mice display increased insulin sensitivity. Furthermore, the loss of liver-projecting vagal sensory neurons limits the progression of hepatic steatosis. Intriguingly, mice lacking liver-innervating vagal sensory neurons also exhibit less anxiety-like behavior compared to control mice. Modulation of the liver-brain axis may aid in designing effective treatments for both psychiatric and metabolic disorders associated with obesity and MAFLD.
Collapse
Affiliation(s)
- Jiyeon Hwang
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA
| | - Sangbhin Lee
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA
| | - Junichi Okada
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA
| | - Li Liu
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA
| | - Jeffrey E Pessin
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, USA
| | - Streamson C Chua
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, USA
| | - Gary J Schwartz
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, USA
| | - Young-Hwan Jo
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA.
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA.
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, USA.
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, USA.
| |
Collapse
|
7
|
Uno K, Uchino T, Suzuki T, Sayama Y, Edo N, Uno-Eder K, Morita K, Ishikawa T, Koizumi M, Honda H, Katagiri H, Tsukamoto K. Rspo3-mediated metabolic liver zonation regulates systemic glucose metabolism and body mass in mice. PLoS Biol 2025; 23:e3002955. [PMID: 39854351 PMCID: PMC11759367 DOI: 10.1371/journal.pbio.3002955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/27/2024] [Indexed: 01/26/2025] Open
Abstract
The unique architecture of the liver consists of hepatic lobules, dividing the hepatic features of metabolism into 2 distinct zones, namely the pericentral and periportal zones, the spatial characteristics of which are broadly defined as metabolic zonation. R-spondin3 (Rspo3), a bioactive protein promoting the Wnt signaling pathway, regulates metabolic features especially around hepatic central veins. However, the functional impact of hepatic metabolic zonation, regulated by the Rspo3/Wnt signaling pathway, on whole-body metabolism homeostasis remains poorly understood. In this study, we analyze the local functions of Rspo3 in the liver and the remote actions of hepatic Rspo3 on other organs of the body by using murine models. Rspo3 expression analysis shows that Rspo3 expression patterns are spatiotemporally controlled in the murine liver such that it locates in the pericentral zones and converges after feeding, and the dynamics of these processes are disturbed in obesity. We find that viral-mediated induction of Rspo3 in hepatic tissue of obesity improves insulin resistance and prevents body weight gain by restoring attenuated organ insulin sensitivities, reducing adipose tissue enlargement and reversing overstimulated adaptive thermogenesis. Denervation of the hepatic vagus suppresses these remote effects, derived from hepatic Rspo3 induction, toward adipose tissues and skeletal muscle, suggesting that signals are transduced via the neuronal communication consisting of afferent vagal and efferent sympathetic nerves. Furthermore, the non-neuronal inter-organ communication up-regulating muscle lipid utilization is partially responsible for the ameliorations of both fatty liver development and reduced skeletal muscle quality in obesity. In contrast, hepatic Rspo3 suppression through Cre-LoxP-mediated recombination system exacerbates diabetes due to glucose intolerance and insulin resistance, promotes fatty liver development and decreases skeletal muscle quality, resulting in obesity. Taken together, our study results reveal that modulation of hepatic Rspo3 contributes to maintaining systemic glucose metabolism and body composition via a newly identified inter-organ communication mechanism.
Collapse
Affiliation(s)
- Kenji Uno
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Takuya Uchino
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Takashi Suzuki
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yohei Sayama
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Naoki Edo
- Teikyo Academic Research Center, Tokyo, Japan
| | | | - Koji Morita
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Toshio Ishikawa
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Miho Koizumi
- Field of Human Disease Models, Tokyo Women’s Medical University, Tokyo, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Tokyo Women’s Medical University, Tokyo, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhisa Tsukamoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Hwang J, Lee S, Okada J, Liu L, Pessin JE, Chua SC, Schwartz GJ, Jo YH. Liver-innervating vagal sensory neurons are indispensable for the development of hepatic steatosis and anxiety-like behavior in diet-induced obese mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.20.581228. [PMID: 38659949 PMCID: PMC11042226 DOI: 10.1101/2024.02.20.581228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The visceral organ-brain axis, mediated by vagal sensory neurons, is essential for maintaining various physiological functions. Here, we investigate the impact of liver-projecting vagal sensory neurons on energy balance, hepatic steatosis, and anxiety-like behavior in mice under obesogenic conditions. A small subset of vagal sensory neurons in both the left and right ganglia innervate the liver and project centrally to the nucleus of the tractus solitarius, area postrema, and dorsal motor nucleus of the vagus, and peripherally to the periportal areas in the liver. Surprisingly, the loss of liver-projecting vagal sensory neurons via caspase-induced selective destruction of advillin-positive neurons prevents diet-induced obesity, and these outcomes are associated with increased energy expenditure. Although males and females exhibit improved glucose homeostasis following disruption of liver-projecting vagal sensory neurons, only male mice display increased insulin sensitivity. Furthermore, the loss of liver-projecting vagal sensory neurons limits the progression of hepatic steatosis in mice fed a steatogenic diet. Intriguingly, mice lacking liver-innervating vagal sensory neurons also exhibit less anxiety-like behavior compared to control mice. Therefore, modulation of the liver-brain axis may aid in designing effective treatments for both psychiatric and metabolic disorders associated with obesity and MAFLD.
Collapse
|
9
|
Thakur P, Baraskar K, Shrivastava VK, Medhi B. Cross-talk between adipose tissue and microbiota-gut-brain-axis in brain development and neurological disorder. Brain Res 2024; 1844:149176. [PMID: 39182900 DOI: 10.1016/j.brainres.2024.149176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The gut microbiota is an important factor responsible for the physiological processes as well as pathogenesis of host. The communication between central nervous system (CNS) and microbiota occurs by different pathways i.e., chemical, neural, immune, and endocrine. Alteration in gut microbiota i.e., gut dysbiosis causes alteration in the bidirectional communication between CNS and gut microbiota and linked to the pathogenesis of neurological and neurodevelopmental disorder. Therefore, now-a-days microbiota-gut-brain-axis (MGBA) has emerged as therapeutic target for the treatment of metabolic disorder. But, experimental data available on MGBA from basic research has limited application in clinical study. In present study we first summarized molecular mechanism of microbiota interaction with brain physiology and pathogenesis via collecting data from different sources i.e., PubMed, Scopus, Web of Science. Furthermore, evidence shows that adipose tissue (AT) is active during metabolic activities and may also interact with MGBA. Hence, in present study we have focused on the relationship among MGBA, brown adipose tissue, and white adipose tissue. Along with this, we have also studied functional specificity of AT, and understanding heterogeneity among MGBA and different types of AT. Therefore, molecular interaction among them may provide therapeutic target for the treatment of neurological disorder.
Collapse
Affiliation(s)
- Pratibha Thakur
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India.
| | - Kirti Baraskar
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Vinoy K Shrivastava
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab 160012, India.
| |
Collapse
|
10
|
López M, Gualillo O. Rheumatic diseases and metabolism: where centre and periphery meet. Nat Rev Rheumatol 2024; 20:783-794. [PMID: 39478099 DOI: 10.1038/s41584-024-01178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/26/2024]
Abstract
Over the past few decades, the connection between metabolism and various inflammatory and rheumatic diseases has been an area of active investigation. Nonetheless, the precise mechanisms underlying these relationships remain a topic of ongoing debate, owing in part to conflicting data. This discrepancy can be attributed to the predominant focus on peripheral mechanisms in research into the metabolic consequences of rheumatic diseases. However, a wealth of evidence supports the notion that the central nervous system, specifically the hypothalamus, has an important influence on metabolic homeostasis. Notably, links have been established between crucial hypothalamic mechanisms responsible for regulating energy balance (including food intake, thermogenesis, and glucose and lipid metabolism), such as AMP-activated protein kinase, and the pathophysiology of rheumatoid arthritis. This Review aims to comprehensively examine the current understanding of central metabolic control in rheumatic diseases and explore potential therapeutic options that target this pathophysiological mechanism.
Collapse
Affiliation(s)
- Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain.
| | - Oreste Gualillo
- Servizo Galego de Saude (SERGAS)-Instituto de Investigación Sanitaria de Santiago (IDIS), the Neuroendocrine Interactions in Rheumatology and Inflammatory Disease (NEIRID) Lab, Santiago University Clinical Hospital, Santiago de Compostela, Spain.
| |
Collapse
|
11
|
Martinez-Sanchez N, Ray D. Rhythmic liver drives feeding behavior. Science 2024; 386:622-623. [PMID: 39509522 DOI: 10.1126/science.adt0743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The hepatic vagal nerve mediates the impact of circadian disruption on food intake in mice.
Collapse
Affiliation(s)
- Noelia Martinez-Sanchez
- National Institute for Health and Care Research Oxford Health Biomedical Research Centre and John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism and Oxford Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - David Ray
- National Institute for Health and Care Research Oxford Health Biomedical Research Centre and John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism and Oxford Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Riedinger CJ, Sakach J, Maples JM, Fulton J, Chippior J, O'Donnell B, O'Malley DM, Chambers LM. Glucagon-like peptide-1 (GLP-1) receptor agonists for weight management: A review for the gynecologic oncologist. Gynecol Oncol 2024; 190:1-10. [PMID: 39116625 DOI: 10.1016/j.ygyno.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024]
Abstract
The use of glucagon-like peptide-1 receptor agonists (GLP-1RA) has experienced rapid growth amidst the obesity epidemic in the United States. While originally developed for glucose control in Type 2 Diabetes Mellitus, the scope of these agents now extends to encompass weight loss and cardiovascular risk reduction. GLP-1RAs have the potential to induce significant weight loss, in combination with lifestyle modifications, among adults who are overweight or obese. Furthermore, these agents demonstrate efficacy in ameliorating hyperglycemia, enhancing insulin sensitivity, regulating blood pressure, improving cardiometabolic parameters, mitigating kidney dysfunction, and potentially reducing the risk of several obesity-related cancers. Drug-related toxicity is primarily gastrointestinal and active management can prevent drug discontinuation. Obesity is associated both with an increased incidence of malignancy but also with decreased survival. More research is needed to evaluate the potential use of GLP-1RA to modify the endocrine function of adipocytes, regulate the chronic inflammatory state associated with obesity, and prospective applications in oncology. These agents can impact patients with gynecologic malignancies both through their direct mechanism of action as well as potential drug toxicity.
Collapse
Affiliation(s)
- Courtney J Riedinger
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center/James Cancer Hospital, Columbus, OH, USA
| | - Julia Sakach
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jill M Maples
- Department of Obstetrics and Gynecology, The University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Jessica Fulton
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center/James Cancer Hospital, Columbus, OH, USA
| | - Jessica Chippior
- Department of Internal Medicine, Division of Endocrinology Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Benjamin O'Donnell
- Department of Internal Medicine, Division of Endocrinology Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| | - David M O'Malley
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center/James Cancer Hospital, Columbus, OH, USA
| | - Laura M Chambers
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center/James Cancer Hospital, Columbus, OH, USA.
| |
Collapse
|
13
|
Barros DR, Hegele RA. Fibroblast growth factor 21: update on genetics and molecular biology. Curr Opin Lipidol 2024; 36:00041433-990000000-00094. [PMID: 39450972 PMCID: PMC11888835 DOI: 10.1097/mol.0000000000000960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
PURPOSE OF REVIEW Since its discovery, most research on fibroblast growth factor 21 (FGF21) has focused on its antihyperglycemia properties. However, attention has recently shifted towards elucidating the ability of FGF21 to lower circulating lipid levels and ameliorate liver inflammation and steatosis. We here discuss the physiology of FGF21 and its role in lipid metabolism, with a focus on genetics, which has up until now not been fully appreciated. RECENT FINDINGS New developments have uncovered associations of common small-effect variants of the FGF21 gene, such as the single nucleotide polymorphisms rs2548957 and rs838133, with numerous physiological, biochemical and behavioural phenotypes linked to energy metabolism and liver function. In addition, rare loss-of-function variants of the cellular receptors for FGF21 have been recently associated with severe endocrine and metabolic phenotypes. These associations corroborate the findings from basic studies and preliminary clinical investigations into the therapeutic potential of FGF21 for the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD) and hypertriglyceridemia. Furthermore, recent breakthrough research has begun to dissect mechanisms of a potential FGF21 brain-adipose axis. Such inter-organ communication would be comparable to that seen with other potent metabolic hormones. A deeper understanding of FGF21 could prove to be further beneficial for drug development. SUMMARY FGF21 is a potent regulator of lipid and energy homeostasis and its physiology is currently at the centre of investigative efforts to develop agents targeting hypertriglyceridemia and MASLD.
Collapse
Affiliation(s)
- Daniel R Barros
- Departments of Medicine and Biochemistry, and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | |
Collapse
|
14
|
Clarke GS, Page AJ, Eldeghaidy S. The gut-brain axis in appetite, satiety, food intake, and eating behavior: Insights from animal models and human studies. Pharmacol Res Perspect 2024; 12:e70027. [PMID: 39417406 PMCID: PMC11483575 DOI: 10.1002/prp2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The gut-brain axis plays a pivotal role in the finely tuned orchestration of food intake, where both homeostatic and hedonic processes collaboratively control our dietary decisions. This interplay involves the transmission of mechanical and chemical signals from the gastrointestinal tract to the appetite centers in the brain, conveying information on meal arrival, quantity, and chemical composition. These signals are processed in the brain eventually leading to the sensation of satiety and the termination of a meal. However, the regulation of food intake and appetite extends beyond the realms of pure physiological need. Hedonic mechanisms, including sensory perception (i.e., through sight, smell, and taste), habitual behaviors, and psychological factors, exert profound influences on food intake. Drawing from studies in animal models and human research, this comprehensive review summarizes the physiological mechanisms that underlie the gut-brain axis and its interplay with the reward network in the regulation of appetite and satiety. The recent advancements in neuroimaging techniques, with a focus on human studies that enable investigation of the neural mechanisms underpinning appetite regulation are discussed. Furthermore, this review explores therapeutic/pharmacological strategies that hold the potential for controlling food intake.
Collapse
Affiliation(s)
- Georgia S. Clarke
- School of BiomedicineThe University of AdelaideAdelaideSouth AustraliaAustralia
- Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
- Nutrition, Diabetes and Gut Health, Lifelong Health ThemeSouth Australian Health and Medical Research Institute, SAHMRIAdelaideSouth AustraliaAustralia
| | - Amanda J. Page
- School of BiomedicineThe University of AdelaideAdelaideSouth AustraliaAustralia
- Nutrition, Diabetes and Gut Health, Lifelong Health ThemeSouth Australian Health and Medical Research Institute, SAHMRIAdelaideSouth AustraliaAustralia
| | - Sally Eldeghaidy
- Division of Food, Nutrition and DieteticsSchool of Biosciences, University of NottinghamNottinghamUK
- Sir Peter Mansfield Imaging CentreSchool of Physics and Astronomy, University of NottinghamNottinghamUK
| |
Collapse
|
15
|
Lu S, Zhao Q, Guan Y, Sun Z, Li W, Guo S, Zhang A. The communication mechanism of the gut-brain axis and its effect on central nervous system diseases: A systematic review. Biomed Pharmacother 2024; 178:117207. [PMID: 39067168 DOI: 10.1016/j.biopha.2024.117207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Gut microbiota is involved in intricate and active metabolic processes the host's brain function, especially its role in immune responses, secondary metabolism, and symbiotic connections with the host. Gut microbiota can promote the production of essential metabolites, neurotransmitters, and other neuroactive chemicals that affect the development and treatment of central nervous system diseases. This article introduces the relevant pathways and manners of the communication between the brain and gut, summarizes a comprehensive overview of the current research status of key gut microbiota metabolites that affect the functions of the nervous system, revealing those adverse factors that affect typical communication between the brain-gut axis, and outlining the efforts made by researchers to alleviate these neurological diseases through targeted microbial interventions. The relevant pathways and manners of communication between the brain and gut contribute to the experimental design of new treatment plans and drug development. The factors that may cause changes in gut microbiota and affect metabolites, as well as current intervention methods are summarized, which helps improve gut microbiota brain dialogue, prevent adverse triggering factors from interfering with the gut microbiota system, and minimize neuropathological changes.
Collapse
Affiliation(s)
- Shengwen Lu
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Qiqi Zhao
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Yu Guan
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Zhiwen Sun
- Department of Gastroenterology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Wenhao Li
- School of Basic Medical Science of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Sifan Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China; INTI International University, Nilai 71800, Malaysia.
| |
Collapse
|
16
|
Bruce K, Garrido AN, Zhang SY, Lam TKT. Regulation of Energy and Glucose Homeostasis by the Nucleus of the Solitary Tract and the Area Postrema. Endocrinol Metab (Seoul) 2024; 39:559-568. [PMID: 39086274 PMCID: PMC11377841 DOI: 10.3803/enm.2024.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/07/2024] [Indexed: 08/02/2024] Open
Abstract
The central nervous system regulates feeding, weight and glucose homeostasis in rodents and humans, but the site-specific mechanisms remain unclear. The dorsal vagal complex in the brainstem that contains the nucleus of the solitary tract (NTS) and area postrema (AP) emerges as a regulatory center that impacts energy and glucose balance by monitoring hormonal and nutrient changes. However, the specific mechanistic metabolic roles of the NTS and AP remain elusive. This mini-review highlights methods to study their distinct roles and recent findings on their metabolic differences and similarities of growth differentiation factor 15 (GDF15) action and glucose sensing in the NTS and AP. In summary, future research aims to characterize hormonal and glucose sensing mechanisms in the AP and/or NTS carries potential to unveil novel targets that lower weight and glucose levels in obesity and diabetes.
Collapse
Affiliation(s)
- Kyla Bruce
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Ameth N Garrido
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Song-Yang Zhang
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Tony K T Lam
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Medicine, University of Toronto, Toronto, ON, Canada
- Banting and Best Diabetes Center, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Bu Y, Burks J, Yang K, Prince J, Borna A, Coe CL, Simmons A, Tu XM, Baker D, Kimball D, Rao R, Shah V, Huang M, Schwindt P, Coleman TP, Lerman I. Non-invasive ventral cervical magnetoneurography as a proxy of in vivo lipopolysaccharide-induced inflammation. Commun Biol 2024; 7:893. [PMID: 39075164 PMCID: PMC11286963 DOI: 10.1038/s42003-024-06435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
Maintenance of autonomic homeostasis is continuously calibrated by sensory fibers of the vagus nerve and sympathetic chain that convey compound action potentials (CAPs) to the central nervous system. Lipopolysaccharide (LPS) intravenous challenge reliably elicits a robust inflammatory response that can resemble systemic inflammation and acute endotoxemia. Here, we administered LPS intravenously in nine healthy subjects while recording ventral cervical magnetoneurography (vcMNG)-derived CAPs at the rostral Right Nodose Ganglion (RNG) and the caudal Right Carotid Artery (RCA) with optically pumped magnetometers (OPM). We observed vcMNG RNG and RCA neural firing rates that tracked changes in TNF-α levels in the systemic circulation. Further, endotype subgroups based on high and low IL-6 responders segregate RNG CAP frequency (at 30-120 min) and based on high and low IL-10 response discriminate RCA CAP frequency (at 0-30 min). These vcMNG tools may enhance understanding and management of the neuroimmune axis that can guide personalized treatment based on an individual's distinct endophenotype.
Collapse
Affiliation(s)
- Yifeng Bu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jamison Burks
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kun Yang
- Division of Biostatistics and Bioinformatics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jacob Prince
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Amir Borna
- Quantum Information Sciences, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Christopher L Coe
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alan Simmons
- Center for Stress and Mental Health (CESAMH) VA San Diego, La Jolla, CA, 92093, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xin M Tu
- Division of Biostatistics and Bioinformatics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dewleen Baker
- Center for Stress and Mental Health (CESAMH) VA San Diego, La Jolla, CA, 92093, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Donald Kimball
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ramesh Rao
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Vishal Shah
- Quspin Laboratory Head Quarters, Boulder, CO, 80305, USA
| | - Mingxiong Huang
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Peter Schwindt
- Quantum Information Sciences, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Todd P Coleman
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Imanuel Lerman
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Center for Stress and Mental Health (CESAMH) VA San Diego, La Jolla, CA, 92093, USA.
- InflammaSense Incorporated Head Quarters, La Jolla, CA, 92093, USA.
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
18
|
Wu M, Song G, Li J, Song Z, Zhao B, Liang L, Li W, Hu H, Tu H, Li S, Li P, Zhang B, Wang W, Zhang Y, Zhang W, Zheng W, Wang J, Wen Y, Wang K, Li A, Zhou T, Zhang Y, Li H. Innervation of nociceptor neurons in the spleen promotes germinal center responses and humoral immunity. Cell 2024; 187:2935-2951.e19. [PMID: 38772371 DOI: 10.1016/j.cell.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/18/2024] [Accepted: 04/20/2024] [Indexed: 05/23/2024]
Abstract
Peripheral sensory neurons widely innervate various tissues to continuously monitor and respond to environmental stimuli. Whether peripheral sensory neurons innervate the spleen and modulate splenic immune response remains poorly defined. Here, we demonstrate that nociceptive sensory nerve fibers extensively innervate the spleen along blood vessels and reach B cell zones. The spleen-innervating nociceptors predominantly originate from left T8-T13 dorsal root ganglia (DRGs), promoting the splenic germinal center (GC) response and humoral immunity. Nociceptors can be activated by antigen-induced accumulation of splenic prostaglandin E2 (PGE2) and then release calcitonin gene-related peptide (CGRP), which further promotes the splenic GC response at the early stage. Mechanistically, CGRP directly acts on B cells through its receptor CALCRL-RAMP1 via the cyclic AMP (cAMP) signaling pathway. Activating nociceptors by ingesting capsaicin enhances the splenic GC response and anti-influenza immunity. Collectively, our study establishes a specific DRG-spleen sensory neural connection that promotes humoral immunity, suggesting a promising approach for improving host defense by targeting the nociceptive nervous system.
Collapse
Affiliation(s)
- Min Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Guangping Song
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China; School of Medicine, Tsinghua University, Beijing, China
| | - Jianing Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Zengqing Song
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Bing Zhao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Liyun Liang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China; School of Medicine, Tsinghua University, Beijing, China
| | - Wenlong Li
- Chinese Institute for Brain Research, Beijing, China
| | - Huaibin Hu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Haiqing Tu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Sen Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Peiyao Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China; School of Medicine, Tsinghua University, Beijing, China
| | - Biyu Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Wen Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Yu Zhang
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wanpeng Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Weifan Zheng
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Jiarong Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Yuqi Wen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Kai Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Ailing Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China.
| | - Yucheng Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China.
| | - Huiyan Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China.
| |
Collapse
|
19
|
Jo YH. Differential transcriptional profiles of vagal sensory neurons in female and male mice. Front Neurosci 2024; 18:1393196. [PMID: 38808032 PMCID: PMC11131592 DOI: 10.3389/fnins.2024.1393196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/24/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction Differences in metabolic homeostasis, diabetes, and obesity between males and females are evident in rodents and humans. Vagal sensory neurons in the vagus nerve ganglia innervate a variety of visceral organs and use specialized nerve endings to sense interoceptive signals. This visceral organ-brain axis plays a role in relaying interoceptive signals to higher brain centers, as well as in regulating the vago-vagal reflex. I hypothesized that molecularly distinct populations of vagal sensory neurons would play a role in causing differences in metabolic homeostasis between the sexes. Methods SnRNA-Seq was conducted on dissociated cells from the vagus nerve ganglia using the 10X Genomics Chromium platform. Results Single-nucleus RNA sequencing analysis of vagal sensory neurons from female and male mice revealed differences in the transcriptional profiles of cells in the vagus nerve ganglia. These differences are linked to the expression of sex-specific genes such as Xist, Tsix, and Ddx3y. Among the 13 neuronal clusters, one-fourth of the neurons in male mice were located in the Ddx3y-enriched VN1 and VN8 clusters, which displayed higher enrichment of Trpv1, Piezo2, Htr3a, and Vip genes. In contrast, 70% of the neurons in females were found in Xist-enriched clusters VN4, 6, 7, 10, 11, and 13, which showed enriched genes such as Fgfr1, Lpar1, Cpe, Esr1, Nrg1, Egfr, and Oprm1. Two clusters of satellite cells were identified, one of which contained oligodendrocyte precursor cells in male mice. A small population of cells expressed Ucp1 and Plin1, indicating that they are epineural adipocytes. Discussion Understanding the physiological implications of distinct transcriptomic profiles in vagal sensory neurons on energy balance and metabolic homeostasis would help develop sex-specific treatments for obesity and metabolic dysregulation.
Collapse
Affiliation(s)
- Young-Hwan Jo
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, NY, United States
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
20
|
Wang K, Fu Y, Li L, Zhang L, Huang M, Yan W, Shan X, Yan Z, Lu Y. Gut Microbiota Moderates Multimodal Brain Structure-Function Integration and Behavioral Cognition in Growth Hormone Deficient Children. Neuroendocrinology 2024; 114:698-708. [PMID: 38679006 DOI: 10.1159/000539097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION Previous brain studies of growth hormone deficiency (GHD) often used single-modal neuroimaging, missing the complexity captured by multimodal data. Growth hormone affects gut microbiota and metabolism in GHD. However, from a gut-brain axis (GBA) perspective, the relationship between abnormal GHD brain development and microbiota alterations remains unclear. The ultimate goal is to uncover the manifestations underlying GBA abnormalities in GHD and idiopathic short stature (ISS). METHODS Participants included 23 GHD and 25 ISS children. The fusion independent component analysis was applied to integrate multimodal brain data (high-resolution structural, diffusion tensor, and resting-state functional MRI) covering regional homogeneity (ReHo), amplitude of low frequency fluctuations (ALFF), and white matter fractional anisotropy (FA). Gut microbiome diversity and metabolites were analyzed using 16S sequencing and proton nuclear magnetic resonance (1H-NMR). Associations between multimodal neuroimaging and cognition were assessed using moderation analysis. RESULTS Six independent components (IC) of ReHo, ALFF, and FA differed significantly between GHD and ISS patients, with three functional components linked to the processing speed index. GHD individuals showed higher levels of acetate, nicotinate, and lysine in microbiota metabolism. Higher alpha diversity in GHD strengthened connections between ReHo-IC1, ReHo-IC5, ALFF-IC1, and the processing speed index, while increasing agathobacter levels in ISS weakened the link between ALFF-IC1 and the speech comprehension index. CONCLUSIONS Our findings uncover differing brain structure and functional fusion in GHD, alongside microbiota metabolism of short-chain fatty acids. Additionally, microbiome influences connections between neuroimaging and cognition, offering insight into diverse GBA patterns in GHD and ISS, enhancing our understanding of the disease's pathophysiology and interventions.
Collapse
Affiliation(s)
- Keren Wang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuchuan Fu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lan Li
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lingfeng Zhang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mei Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weihao Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoou Shan
- Department of Pediatric Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China
- Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou, China
| | - Yi Lu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China
- Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou, China
| |
Collapse
|
21
|
Yang D, Xu J, Xu K, Xu P. Skeletal interoception in osteoarthritis. Bone Res 2024; 12:22. [PMID: 38561376 PMCID: PMC10985098 DOI: 10.1038/s41413-024-00328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/02/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
The interoception maintains proper physiological conditions and metabolic homeostasis by releasing regulatory signals after perceving changes in the internal state of the organism. Among its various forms, skeletal interoception specifically regulates the metabolic homeostasis of bones. Osteoarthritis (OA) is a complex joint disorder involving cartilage, subchondral bone, and synovium. The subchondral bone undergoes continuous remodeling to adapt to dynamic joint loads. Recent findings highlight that skeletal interoception mediated by aberrant mechanical loads contributes to pathological remodeling of the subchondral bone, resulting in subchondral bone sclerosis in OA. The skeletal interoception is also a potential mechanism for chronic synovial inflammation in OA. In this review, we offer a general overview of interoception, specifically skeletal interoception, subchondral bone microenviroment and the aberrant subchondral remedeling. We also discuss the role of skeletal interoception in abnormal subchondral bone remodeling and synovial inflammation in OA, as well as the potential prospects and challenges in exploring novel OA therapies that target skeletal interoception.
Collapse
Affiliation(s)
- Dinglong Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jiawen Xu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
22
|
Pan Y, Bu T, Deng X, Jia J, Yuan G. Gut microbiota and type 2 diabetes mellitus: a focus on the gut-brain axis. Endocrine 2024; 84:1-15. [PMID: 38227168 DOI: 10.1007/s12020-023-03640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/30/2023] [Indexed: 01/17/2024]
Abstract
Type 2 diabetes mellitus (T2DM) has become one of the most serious public healthcare challenges, contributing to increased mortality and disability. In the past decades, significant progress has been made in understanding the pathogenesis of T2DM. Mounting evidence suggested that gut microbiota (GM) plays a significant role in the development of T2DM. Communication between the GM and the brain is a complex bidirectional connection, known as the "gut-brain axis," via the nervous, neuroendocrine, and immune systems. Gut-brain axis has an essential impact on various physiological processes, including glucose metabolism, food intake, gut motility, etc. In this review, we provide an outline of the gut-brain axis. We also highlight how the dysbiosis of the gut-brain axis affects glucose homeostasis and even results in T2DM.
Collapse
Affiliation(s)
- Yi Pan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tong Bu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xia Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jue Jia
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
23
|
Borgmann D, Fenselau H. Vagal pathways for systemic regulation of glucose metabolism. Semin Cell Dev Biol 2024; 156:244-252. [PMID: 37500301 DOI: 10.1016/j.semcdb.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/20/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Maintaining blood glucose at an appropriate physiological level requires precise coordination of multiple organs and tissues. The vagus nerve bidirectionally connects the central nervous system with peripheral organs crucial to glucose mobilization, nutrient storage, and food absorption, thereby presenting a key pathway for the central control of blood glucose levels. However, the precise mechanisms by which vagal populations that target discrete tissues participate in glucoregulation are much less clear. Here we review recent advances unraveling the cellular identity, neuroanatomical organization, and functional contributions of both vagal efferents and vagal afferents in the control of systemic glucose metabolism. We focus on their involvement in relaying glucoregulatory cues from the brain to peripheral tissues, particularly the pancreatic islet, and by sensing and transmitting incoming signals from ingested food to the brain. These recent findings - largely driven by advances in viral approaches, RNA sequencing, and cell-type selective manipulations and tracings - have begun to clarify the precise vagal neuron populations involved in the central coordination of glucose levels, and raise interesting new possibilities for the treatment of glucose metabolism disorders such as diabetes.
Collapse
Affiliation(s)
- Diba Borgmann
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Physical Activity Research (CFAS), Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50937 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne 50931, Germany.
| |
Collapse
|
24
|
Lai TT, Tsai YH, Liou CW, Fan CH, Hou YT, Yao TH, Chuang HL, Wu WL. The gut microbiota modulate locomotion via vagus-dependent glucagon-like peptide-1 signaling. NPJ Biofilms Microbiomes 2024; 10:2. [PMID: 38228675 DOI: 10.1038/s41522-024-00477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Locomotor activity is an innate behavior that can be triggered by gut-motivated conditions, such as appetite and metabolic condition. Various nutrient-sensing receptors distributed in the vagal terminal in the gut are crucial for signal transduction from the gut to the brain. The levels of gut hormones are closely associated with the colonization status of the gut microbiota, suggesting a complicated interaction among gut bacteria, gut hormones, and the brain. However, the detailed mechanism underlying gut microbiota-mediated endocrine signaling in the modulation of locomotion is still unclear. Herein, we show that broad-spectrum antibiotic cocktail (ABX)-treated mice displayed hypolocomotion and elevated levels of the gut hormone glucagon-like peptide-1 (GLP-1). Blockade of the GLP-1 receptor and subdiaphragmatic vagal transmission rescued the deficient locomotor phenotype in ABX-treated mice. Activation of the GLP-1 receptor and vagal projecting brain regions led to hypolocomotion. Finally, selective antibiotic treatment dramatically increased serum GLP-1 levels and decreased locomotion. Colonizing Lactobacillus reuteri and Bacteroides thetaiotaomicron in microbiota-deficient mice suppressed GLP-1 levels and restored the hypolocomotor phenotype. Our findings identify a mechanism by which specific gut microbes mediate host motor behavior via the enteroendocrine and vagal-dependent neural pathways.
Collapse
Affiliation(s)
- Tzu-Ting Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yu-Hsuan Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Chia-Wei Liou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yu-Tian Hou
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Tzu-Hsuan Yao
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 115202, Taiwan
| | - Wei-Li Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
| |
Collapse
|
25
|
Akagi Y, Takayama Y, Nihashi Y, Yamashita A, Yoshida R, Miyamoto Y, Kida YS. Functional engineering of human iPSC-derived parasympathetic neurons enhances responsiveness to gastrointestinal hormones. FEBS Open Bio 2024; 14:63-78. [PMID: 38013211 PMCID: PMC10761937 DOI: 10.1002/2211-5463.13741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023] Open
Abstract
Food-derived biological signals are transmitted to the brain via peripheral nerves through the paracrine activity of gastrointestinal (GI) hormones. The signal transduction circuit of the brain-gut axis has been analyzed in animals; however, species-related differences and animal welfare concerns necessitate investigation using in vitro human experimental models. Here, we focused on the receptors of five GI hormones (CCK, GLP1, GLP2, PYY, and serotonin (5-HT)), and established human induced pluripotent stem cell (iPSC) lines that functionally expressed each receptor. Compared to the original iPSCs, iPSCs expressing one of the receptors did not show any differences in global mRNA expression, genomic stability, or differentiation capacities of the three germ layers. We induced parasympathetic neurons from these established iPSC lines to assess vagus nerve activity. We generated GI hormone receptor-expressing neurons (CCKAR, GLP1R, and NPY2R-neuron) and tested their responsiveness to each ligand using Ca2+ imaging and microelectrode array recording. GI hormone receptor-expressing neurons (GLP2R and HTR3A) were generated directly by gene induction into iPSC-derived peripheral nerve progenitors. These receptor-expressing neurons promise to contribute to a better understanding of how the body responds to GI hormones via the brain-gut axis, aid in drug development, and offer an alternative to animal studies.
Collapse
Affiliation(s)
- Yuka Akagi
- Cellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
- Tsukuba Life Science Innovation Program (T‐LSI), School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Yuzo Takayama
- Cellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Yuma Nihashi
- Cellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Azusa Yamashita
- Analytical Science Laboratories, Asahi Quality & Innovations, Ltd.MoriyaJapan
| | - Risa Yoshida
- Analytical Science Laboratories, Asahi Quality & Innovations, Ltd.MoriyaJapan
| | - Yasuhisa Miyamoto
- Analytical Science Laboratories, Asahi Quality & Innovations, Ltd.MoriyaJapan
| | - Yasuyuki S. Kida
- Cellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
- School of Integrative & Global Majors (SIGMA)University of TsukubaTsukubaJapan
| |
Collapse
|
26
|
Guo W, Xiong W. From gut microbiota to brain: implications on binge eating disorders. Gut Microbes 2024; 16:2357177. [PMID: 38781112 PMCID: PMC11123470 DOI: 10.1080/19490976.2024.2357177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
The prevalence of eating disorders has been increasing over the last 50 years. Binge eating disorder (BED) and bulimia nervosa (BN) are two typical disabling, costly and life-threatening eating disorders that substantially compromise the physical well-being of individuals while undermining their psychological functioning. The distressing and recurrent episodes of binge eating are commonly observed in both BED and BN; however, they diverge as BN often involves the adoption of inappropriate compensatory behaviors aimed at averting weight gain. Normal eating behavior is coordinated by a well-regulated trade-off between intestinal and central ingestive mechanism. Conversely, despite the fact that the etiology of BED and BN remains incompletely resolved, emerging evidence corroborates the notion that dysbiosis of gastrointestinal microbiome and its metabolites, alteration of gut-brain axis, as well as malfunctioning central circuitry regulating motivation, execution and reward all contribute to the pathology of binge eating. In this review, we aim to outline the current state of knowledge pertaining to the potential mechanisms through which each component of the gut-brain axis participates in binge eating behaviors, and provide insight for the development of microbiome-based therapeutic interventions that hold promise in ameliorating patients afflicted with binge eating disorders.
Collapse
Affiliation(s)
- Weiwei Guo
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Wei Xiong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- CAS Key Laboratory of Brain Function and Disease, Hefei, China
| |
Collapse
|
27
|
Tang Y, Du J, Wu H, Wang M, Liu S, Tao F. Potential Therapeutic Effects of Short-Chain Fatty Acids on Chronic Pain. Curr Neuropharmacol 2024; 22:191-203. [PMID: 36173071 PMCID: PMC10788890 DOI: 10.2174/1570159x20666220927092016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/03/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
The intestinal homeostasis maintained by the gut microbiome and relevant metabolites is essential for health, and its disturbance leads to various intestinal or extraintestinal diseases. Recent studies suggest that gut microbiome-derived metabolites short-chain fatty acids (SCFAs) are involved in different neurological disorders (such as chronic pain). SCFAs are produced by bacterial fermentation of dietary fibers in the gut and contribute to multiple host processes, including gastrointestinal regulation, cardiovascular modulation, and neuroendocrine-immune homeostasis. Although SCFAs have been implicated in the modulation of chronic pain, the detailed mechanisms that underlie such roles of SCFAs remain to be further investigated. In this review, we summarize currently available research data regarding SCFAs as a potential therapeutic target for chronic pain treatment and discuss several possible mechanisms by which SCFAs modulate chronic pain.
Collapse
Affiliation(s)
- Yuanyuan Tang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Key Laboratory for Molecular Neurology of Xinxiang, Xinxiang, Henan, China
| | - Juan Du
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hongfeng Wu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Mengyao Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Sufang Liu
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University Dallas, Texas, USA
| | - Feng Tao
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University Dallas, Texas, USA
| |
Collapse
|
28
|
Arnold RA, Fowler DK, Peters JH. TRPV1 enhances cholecystokinin signaling in primary vagal afferent neurons and mediates the central effects on spontaneous glutamate release in the NTS. Am J Physiol Cell Physiol 2024; 326:C112-C124. [PMID: 38047304 PMCID: PMC11192538 DOI: 10.1152/ajpcell.00409.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
The gut peptide cholecystokinin (CCK) is released during feeding and promotes satiation by increasing excitation of vagal afferent neurons that innervate the upper gastrointestinal tract. Vagal afferent neurons express CCK1 receptors (CCK1Rs) in the periphery and at central terminals in the nucleus of the solitary tract (NTS). While the effects of CCK have been studied for decades, CCK receptor signaling and coupling to membrane ion channels are not entirely understood. Previous findings have implicated L-type voltage-gated calcium channels as well as transient receptor potential (TRP) channels in mediating the effects of CCK, but the lack of selective pharmacology has made determining the contributions of these putative mediators difficult. The nonselective ion channel transient receptor potential vanilloid subtype 1 (TRPV1) is expressed throughout vagal afferent neurons and controls many forms of signaling, including spontaneous glutamate release onto NTS neurons. Here we tested the hypothesis that CCK1Rs couple directly to TRPV1 to mediate vagal signaling using fluorescent calcium imaging and brainstem electrophysiology. We found that CCK signaling at high concentrations (low-affinity binding) was potentiated in TRPV1-containing afferents and that TRPV1 itself mediated the enhanced CCK1R signaling. While competitive antagonism of TRPV1 failed to alter CCK1R signaling, TRPV1 pore blockade or genetic deletion (TRPV1 KO) significantly reduced the CCK response in cultured vagal afferents and eliminated its ability to increase spontaneous glutamate release in the NTS. Together, these results establish that TRPV1 mediates the low-affinity effects of CCK on vagal afferent activation and control of synaptic transmission in the brainstem.NEW & NOTEWORTHY Cholecystokinin (CCK) signaling via the vagus nerve reduces food intake and produces satiation, yet the signaling cascades mediating these effects remain unknown. Here we report that the capsaicin receptor transient receptor potential vanilloid subtype 1 (TRPV1) potentiates CCK signaling in the vagus and mediates the ability of CCK to control excitatory synaptic transmission in the nucleus of the solitary tract. These results may prove useful in the future development of CCK/TRPV1-based therapeutic interventions.
Collapse
Affiliation(s)
- Rachel A Arnold
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States
| | - Daniel K Fowler
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States
| | - James H Peters
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States
| |
Collapse
|
29
|
Lai TT, Liou CW, Tsai YH, Lin YY, Wu WL. Butterflies in the gut: the interplay between intestinal microbiota and stress. J Biomed Sci 2023; 30:92. [PMID: 38012609 PMCID: PMC10683179 DOI: 10.1186/s12929-023-00984-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Psychological stress is a global issue that affects at least one-third of the population worldwide and increases the risk of numerous psychiatric disorders. Accumulating evidence suggests that the gut and its inhabiting microbes may regulate stress and stress-associated behavioral abnormalities. Hence, the objective of this review is to explore the causal relationships between the gut microbiota, stress, and behavior. Dysbiosis of the microbiome after stress exposure indicated microbial adaption to stressors. Strikingly, the hyperactivated stress signaling found in microbiota-deficient rodents can be normalized by microbiota-based treatments, suggesting that gut microbiota can actively modify the stress response. Microbiota can regulate stress response via intestinal glucocorticoids or autonomic nervous system. Several studies suggest that gut bacteria are involved in the direct modulation of steroid synthesis and metabolism. This review provides recent discoveries on the pathways by which gut microbes affect stress signaling and brain circuits and ultimately impact the host's complex behavior.
Collapse
Affiliation(s)
- Tzu-Ting Lai
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Chia-Wei Liou
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yu-Hsuan Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yuan-Yuan Lin
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Wei-Li Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
| |
Collapse
|
30
|
Kim H, Park KT, Jo H, Shin Y, Chung G, Ko SG, Jin YH, Kim W. The effect of ginger extract on cisplatin-induced acute anorexia in rats. Front Pharmacol 2023; 14:1267254. [PMID: 38026983 PMCID: PMC10665510 DOI: 10.3389/fphar.2023.1267254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Cisplatin is a platinum-based chemotherapeutic agent widely used to treat various cancers. However, several side effects have been reported in treated patients. Among these, acute anorexia is one of the most severe secondary effects. In this study, a single oral administration of 100 or 500 mg/kg ginger extract (GE) significantly alleviated the cisplatin-induced decrease in food intake in rats. However, these body weight and water intake decreases were reversed in the 100 mg/kg group rats. To elucidate the underlying mechanism of action, serotonin (5-HT) and 5-HT2C, 3A, and 4 receptors in the nodose ganglion of the vagus nerve were investigated. The results showed that cisplatin-induced increases in serotonin levels in both the blood and nodose ganglion tissues were significantly decreased by100 and 500 mg/kg of GE administration. On 5-HT receptors, 5-HT3A and 4, but not 2C receptors, were affected by cisplatin, and GE 100 and 500 mg/kg succeeded in downregulating the evoked upregulated gene of these receptors. Protein expression of 5-HT3A and 4 receptors were also reduced in the 100 mg/kg group. Furthermore, the injection of 5-HT3A, and 4 receptors antagonists (palonostron, 0.1 mg/kg, i.p.; piboserod, 1 mg/kg, i.p., respectively) in cisplatin treated rats prevented the decrease in food intake. Using high-performance liquid chromatography (HPLC) analysis, [6]-gingerol and [6]-shogaol were identified and quantified as the major components of GE, comprising 4.12% and 2.15% of the GE, respectively. Although [6]-gingerol or [6]-shogaol alone failed to alleviate the evoked anorexia, when treated together, the effect was significant on the cisplatin-induced decrease in food intake. These results show that GE can be considered a treatment option to alleviate cisplatin-induced anorexia.
Collapse
Affiliation(s)
- Hyeonah Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Keun-Tae Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Heejoon Jo
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yuchan Shin
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Young-Ho Jin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Wang L, Gao F, Wang Z, Liang F, Dai Y, Wang M, Wu J, Chen Y, Yan Q, Wang L. Transcutaneous auricular vagus nerve stimulation in the treatment of disorders of consciousness: mechanisms and applications. Front Neurosci 2023; 17:1286267. [PMID: 37920298 PMCID: PMC10618368 DOI: 10.3389/fnins.2023.1286267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
This review provides an in-depth exploration of the mechanisms and applications of transcutaneous auricular vagus nerve stimulation (taVNS) in treating disorders of consciousness (DOC). Beginning with an exploration of the vagus nerve's role in modulating brain function and consciousness, we then delve into the neuroprotective potential of taVNS demonstrated in animal models. The subsequent sections assess the therapeutic impact of taVNS on human DOC, discussing the safety, tolerability, and various factors influencing the treatment response. Finally, the review identifies the current challenges in taVNS research and outlines future directions, emphasizing the need for large-scale trials, optimization of treatment parameters, and comprehensive investigation of taVNS's long-term effects and underlying mechanisms. This comprehensive overview positions taVNS as a promising and safe modality for DOC treatment, with a focus on understanding its intricate neurophysiological influence and optimizing its application in clinical settings.
Collapse
Affiliation(s)
- Likai Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fei Gao
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhan Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Feng Liang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yongli Dai
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Mengchun Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jingyi Wu
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yaning Chen
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qinjie Yan
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Litong Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
32
|
Ullah H, Arbab S, Tian Y, Liu CQ, Chen Y, Qijie L, Khan MIU, Hassan IU, Li K. The gut microbiota-brain axis in neurological disorder. Front Neurosci 2023; 17:1225875. [PMID: 37600019 PMCID: PMC10436500 DOI: 10.3389/fnins.2023.1225875] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
The gut microbiota (GM) plays an important role in the physiology and pathology of the host. Microbiota communicate with different organs of the organism by synthesizing hormones and regulating body activity. The interaction of the central nervous system (CNS) and gut signaling pathways includes chemical, neural immune and endocrine routes. Alteration or dysbiosis in the gut microbiota leads to different gastrointestinal tract disorders that ultimately impact host physiology because of the abnormal microbial metabolites that stimulate and trigger different physiologic reactions in the host body. Intestinal dysbiosis leads to a change in the bidirectional relationship between the CNS and GM, which is linked to the pathogenesis of neurodevelopmental and neurological disorders. Increasing preclinical and clinical studies/evidence indicate that gut microbes are a possible susceptibility factor for the progression of neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and autism spectrum disorder (ASD). In this review, we discuss the crucial connection between the gut microbiota and the central nervous system, the signaling pathways of multiple biological systems and the contribution of gut microbiota-related neurological disorders.
Collapse
Affiliation(s)
- Hanif Ullah
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Safia Arbab
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yali Tian
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Chang-qing Liu
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Yuwen Chen
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Li Qijie
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Muhammad Inayat Ullah Khan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Inam Ul Hassan
- Department of Microbiology, Hazara University Mansehra, Mansehra, Pakistan
| | - Ka Li
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Brown SSG, Westwater ML, Seidlitz J, Ziauddeen H, Fletcher PC. Hypothalamic volume is associated with body mass index. Neuroimage Clin 2023; 39:103478. [PMID: 37558541 PMCID: PMC10509524 DOI: 10.1016/j.nicl.2023.103478] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/19/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
The hypothalamus is an important neuroendocrine hub for the control of appetite and satiety. In animal studies it has been established that hypothalamic lesioning or stimulation causes alteration to feeding behaviour and consequently body mass, and exposure to high calorie diets induces hypothalamic inflammation. These findings suggest that alterations in hypothalamic structure and function are both a cause and a consequence of changes to food intake. However, there is limited in vivo human data relating the hypothalamus to obesity or eating disorders, in part due to technical problems relating to its small size. Here, we used a novel automated segmentation algorithm to exploratorily investigate the relationship between hypothalamic volume, normalised to intracranial volume, and body mass index (BMI). The analysis was applied across four independent datasets comprising of young adults (total n = 1,351 participants) spanning a range of BMIs (13.3 - 47.8 kg/m2). We compared underweight (including individuals with anorexia nervosa), healthy weight, overweight and obese individuals in a series of complementary analyses. We report that overall hypothalamic volume is significantly larger in overweight and obese groups of young adults. This was also observed for a number of hypothalamic sub-regions. In the largest dataset (the HCP-Young Adult dataset (n = 1111)) there was a significant relationship between hypothalamic volume and BMI. We suggest that our findings of a positive relationship between hypothalamic volume and BMI is potentially consistent with hypothalamic inflammation as seen in animal models in response to high fat diet, although more research is needed to establish a causal relationship. Overall, we present novel, in vivo findings that link elevated BMI to altered hypothalamic structure. This has important implications for study of the neural mechanisms of obesity in humans.
Collapse
Affiliation(s)
- Stephanie S G Brown
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, United Kingdom.
| | - Margaret L Westwater
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, United Kingdom
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute of Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Hisham Ziauddeen
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Paul C Fletcher
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, United Kingdom; Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom; Cambridgeshire and Peterborough NHS Trust, United Kingdom
| |
Collapse
|
34
|
Villalobos J, Payne SC, Ward GM, Andrikopoulos S, Hyakumura T, MacIsaac RJ, Fallon JB. Stimulation parameters for directional vagus nerve stimulation. Bioelectron Med 2023; 9:16. [PMID: 37464423 DOI: 10.1186/s42234-023-00117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Autonomic nerve stimulation is used as a treatment for a growing number of diseases. We have previously demonstrated that application of efferent vagus nerve stimulation (eVNS) has promising glucose lowering effects in a rat model of type 2 diabetes. This paradigm combines high frequency pulsatile stimulation to block nerve activation in the afferent direction with low frequency stimulation to activate the efferent nerve section. In this study we explored the effects of the parameters for nerve blocking on the ability to inhibit nerve activation in the afferent direction. The overarching aim is to establish a blocking stimulation strategy that could be applied using commercially available implantable pulse generators used in the clinic. METHODS Male rats (n = 20) had the anterior abdominal vagus nerve implanted with a multi-electrode cuff. Evoked compound action potentials (ECAP) were recorded at the proximal end of the electrode cuff. The efficacy of high frequency stimulation to block the afferent ECAP was assessed by changes in the threshold and saturation level of the response. Blocking frequency and duty cycle of the blocking pulses were varied while maintaining a constant 4 mA current amplitude. RESULTS During application of blocking at lower frequencies (≤ 4 kHz), the ECAP threshold increased (ANOVA, p < 0.001) and saturation level decreased (p < 0.001). Application of higher duty cycles (> 70%) led to an increase in evoked neural response threshold (p < 0.001) and a decrease in saturation level (p < 0.001). During the application of a constant pulse width and frequency (1 or 1.6 kHz, > 70% duty cycle), the charge delivered per pulse had a significant influence on the magnitude of the block (ANOVA, p = 0.003), and was focal (< 2 mm range). CONCLUSIONS This study has determined the range of frequencies, duty cycles and currents of high frequency stimulation that generate an efficacious, focal axonal block of a predominantly C-fiber tract. These findings could have potential application for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Joel Villalobos
- Bionics Institute, East Melbourne, Vic, Australia
- Department of Medical Bionics, University of Melbourne, Parkville, Vic, Australia
| | - Sophie C Payne
- Bionics Institute, East Melbourne, Vic, Australia
- Department of Medical Bionics, University of Melbourne, Parkville, Vic, Australia
| | - Glenn M Ward
- Bionics Institute, East Melbourne, Vic, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Fitzroy, Vic, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Vic, Australia
| | - Sofianos Andrikopoulos
- Australian Centre for Accelerating Diabetes Innovations, University of Melbourne, Parkville, Australia
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Vic, Australia
| | - Tomoko Hyakumura
- Bionics Institute, East Melbourne, Vic, Australia
- Department of Medical Bionics, University of Melbourne, Parkville, Vic, Australia
| | - Richard J MacIsaac
- Bionics Institute, East Melbourne, Vic, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Fitzroy, Vic, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Vic, Australia
- Australian Centre for Accelerating Diabetes Innovations, University of Melbourne, Parkville, Australia
| | - James B Fallon
- Bionics Institute, East Melbourne, Vic, Australia.
- Department of Medical Bionics, University of Melbourne, Parkville, Vic, Australia.
- Australian Diabetes Society, Sydney, NSW, Australia.
| |
Collapse
|
35
|
Isola JVV, Ko S, Ocañas SR, Stout MB. Role of Estrogen Receptor α in Aging and Chronic Disease. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2023; 5:e230005. [PMID: 37425648 PMCID: PMC10327608 DOI: 10.20900/agmr20230005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Estrogen receptor alpha (ERα) plays a crucial role in reproductive function in both sexes. It also mediates cellular responses to estrogens in multiple nonreproductive organ systems, many of which regulate systemic metabolic homeostasis and inflammatory processes in mammals. The loss of estrogens and/or ERα agonism during aging is associated with the emergence of several comorbid conditions, particularly in females undergoing the menopausal transition. Emerging data also suggests that male mammals likely benefit from ERα agonism if done in a way that circumvents feminizing characteristics. This has led us, and others, to speculate that tissue-specific ERα agonism may hold therapeutic potential for curtailing aging and chronic disease burden in males and females that are at high-risk of cancer and/or cardiovascular events with traditional estrogen replacement therapies. In this mini-review, we emphasize the role of ERα in the brain and liver, summarizing recent evidence that indicates these two organs systems mediate the beneficial effects of estrogens on metabolism and inflammation during aging. We also discuss how 17α-estradiol administration elicits health benefits in an ERα-dependent manner, which provides proof-of-concept that ERα may be a druggable target for attenuating aging and age-related disease burden.
Collapse
Affiliation(s)
- José V. V. Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sunghwan Ko
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sarah R. Ocañas
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Michael B. Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
36
|
Kupari J, Ernfors P. Molecular taxonomy of nociceptors and pruriceptors. Pain 2023; 164:1245-1257. [PMID: 36718807 PMCID: PMC10184562 DOI: 10.1097/j.pain.0000000000002831] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Jussi Kupari
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Girardi G, Zumpano D, Goshi N, Raybould H, Seker E. Cultured Vagal Afferent Neurons as Sensors for Intestinal Effector Molecules. BIOSENSORS 2023; 13:601. [PMID: 37366967 DOI: 10.3390/bios13060601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
The gut-brain axis embodies the bi-directional communication between the gastrointestinal tract and the central nervous system (CNS), where vagal afferent neurons (VANs) serve as sensors for a variety of gut-derived signals. The gut is colonized by a large and diverse population of microorganisms that communicate via small (effector) molecules, which also act on the VAN terminals situated in the gut viscera and consequently influence many CNS processes. However, the convoluted in vivo environment makes it difficult to study the causative impact of the effector molecules on VAN activation or desensitization. Here, we report on a VAN culture and its proof-of-principle demonstration as a cell-based sensor to monitor the influence of gastrointestinal effector molecules on neuronal behavior. We initially compared the effect of surface coatings (poly-L-lysine vs. Matrigel) and culture media composition (serum vs. growth factor supplement) on neurite growth as a surrogate of VAN regeneration following tissue harvesting, where the Matrigel coating, but not the media composition, played a significant role in the increased neurite growth. We then used both live-cell calcium imaging and extracellular electrophysiological recordings to show that the VANs responded to classical effector molecules of endogenous and exogenous origin (cholecystokinin serotonin and capsaicin) in a complex fashion. We expect this study to enable platforms for screening various effector molecules and their influence on VAN activity, assessed by their information-rich electrophysiological fingerprints.
Collapse
Affiliation(s)
- Gregory Girardi
- Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616, USA
| | - Danielle Zumpano
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Noah Goshi
- Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616, USA
| | - Helen Raybould
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Erkin Seker
- Department of Electrical and Computer Engineering, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
38
|
Zhang S, He H, Wang Y, Wang X, Liu X. Transcutaneous auricular vagus nerve stimulation as a potential novel treatment for polycystic ovary syndrome. Sci Rep 2023; 13:7721. [PMID: 37173458 PMCID: PMC10182028 DOI: 10.1038/s41598-023-34746-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of childbearing age. The etiology of PCOS is multifactorial, and current treatments for PCOS are far from satisfactory. Recently, an imbalanced autonomic nervous system (ANS) with sympathetic hyperactivity and reduced parasympathetic nerve activity (vagal tone) has aroused increasing attention in the pathogenesis of PCOS. In this paper, we review an innovative therapy for the treatment of PCOS and related co-morbidities by targeting parasympathetic modulation based on non-invasive transcutaneous auricular vagal nerve stimulation (ta-VNS). In this work, we present the role of the ANS in the development of PCOS and describe a large number of experimental and clinical reports that support the favorable effects of VNS/ta-VNS in treating a variety of symptoms, including obesity, insulin resistance, type 2 diabetes mellitus, inflammation, microbiome dysregulation, cardiovascular disease, and depression, all of which are also commonly present in PCOS patients. We propose a model focusing on ta-VNS that may treat PCOS by (1) regulating energy metabolism via bidirectional vagal signaling; (2) reversing insulin resistance via its antidiabetic effect; (3) activating anti-inflammatory pathways; (4) restoring homeostasis of the microbiota-gut-brain axis; (5) restoring the sympatho-vagal balance to improve CVD outcomes; (6) and modulating mental disorders. ta-VNS is a safe clinical procedure and it might be a promising new treatment approach for PCOS, or at least a supplementary treatment for current therapeutics.
Collapse
Affiliation(s)
- Shike Zhang
- Southern University of Science and Technology Yantian Hospital, Shenzhen, 518081, China
- Shenzhen Yantian District People's Hospital, Shenzhen, 518081, China
| | - Hui He
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Yu Wang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiao Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaofang Liu
- Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| |
Collapse
|
39
|
Prospective Multicenter Study of the Primary Obesity Surgery Endoluminal (POSE 2.0) Procedure for Treatment of Obesity. Clin Gastroenterol Hepatol 2023; 21:81-89.e4. [PMID: 35533995 DOI: 10.1016/j.cgh.2022.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The Primary Obesity Surgery Endoluminal (POSE) 2.0 procedure involves a novel pattern of full-thickness gastric body plications to shorten and narrow the stomach using durable suture anchor pairs. Our prospective, multicenter trial examined the safety, efficacy, durability, and physiologic effects of POSE 2.0 in adults with obesity. METHODS Adults with obesity underwent POSE 2.0 at 3 centers. Primary outcomes were percent total body weight loss (%TBWL) and proportion of patients achieving >5% TBWL at 12 months. Secondary outcomes included change in obesity comorbidities, satiety, quality of life at 6 months, and durability of plications at 12 and 24 months. Subjects were followed for adverse events throughout the study duration. RESULTS 44 patients (61% female; mean age, 45 ± 9.7 years; mean body mass index, 37 ± 2.1 kg/m2) were enrolled. This procedure used an average of 19 suture anchor pairs, with a mean duration of 37 ± 11 minutes, and was technically successful in all subjects. Mean %TBWL at 12 months was 15.7% ± 6.8%. At 12 months, %TBWL >5%, >10%, and >15% was achieved in 98%, 86%, and 58% of patients, respectively. Improvements in lipid profile, liver biochemistries, and hepatic steatosis were seen at 6 months. Improvements in hepatic steatosis persisted for 24 months in a subgroup of patients (P < .01). POSE 2.0 reduced maximum tolerated meal volume (P = .03) and was associated with increased fullness (P < .01) and improved eating behavior (P < .01) at 6 months. Impact of weight on quality-of-life questionnaire improved at 6 months (2.23 vs 1.23; P < .01). Repeat assessment at 24 months (n = 26) showed fully intact plications. No serious adverse events occurred. CONCLUSION POSE 2.0 is an effective and durable endoscopic bariatric therapy which may influence physiologic pathways impacting satiety. Larger comparative studies are needed to further elucidate these initial findings. CLINICALTRIALS gov Identifier: NCT03721731.
Collapse
|
40
|
Central and peripheral regulations mediated by short-chain fatty acids on energy homeostasis. Transl Res 2022; 248:128-150. [PMID: 35688319 DOI: 10.1016/j.trsl.2022.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
Abstract
The human gut microbiota influences obesity, insulin resistance, and the subsequent development of type 2 diabetes (T2D). The gut microbiota digests and ferments nutrients resulting in the production of short-chain fatty acids (SCFAs), which generate various beneficial metabolic effects on energy and glucose homeostasis. However, their roles in the central nervous system (CNS)-mediated outputs on the metabolism have only been minimally studied. Here, we explore what is known and future directions that may be worth exploring in this emerging area. Specifically, we searched studies or data in English by using PubMed, Google Scholar, and the Human Metabolome Database. Studies were filtered by time from 1978 to March 2022. As a result, 195 studies, 53 reviews, 1 website, and 1 book were included. One hundred and sixty-five of 195 studies describe the production and metabolism of SCFAs or the effects of SCFAs on energy homeostasis, glucose balance, and mental diseases through the gut-brain axis or directly by a central pathway. Thirty of 195 studies show that inappropriate metabolism and excessive of SCFAs are metabolically detrimental. Most studies suggest that SCFAs exert beneficial metabolic effects by acting as the energy substrate in the TCA cycle, regulating the hormones related to satiety regulation and insulin secretion, and modulating immune cells and microglia. These functions have been linked with AMPK signaling, GPCRs-dependent pathways, and inhibition of histone deacetylases (HDACs). However, the studies focusing on the central effects of SCFAs are still limited. The mechanisms by which central SCFAs regulate appetite, energy expenditure, and blood glucose during different physiological conditions warrant further investigation.
Collapse
|
41
|
Vagus nerve stimulation increases stomach-brain coupling via a vagal afferent pathway. Brain Stimul 2022; 15:1279-1289. [PMID: 36067977 DOI: 10.1016/j.brs.2022.08.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/27/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Maintaining energy homeostasis is vital and supported by vagal signaling between digestive organs and the brain. Previous research has established a gastric network in the brain that is phase synchronized with the rhythm of the stomach, but tools to perturb its function were lacking. OBJECTIVE To evaluate whether stomach-brain coupling can be acutely increased by non-invasively stimulating vagal afferent projections to the brain. METHODS Using a single-blind randomized crossover design, we investigated the effect of acute right-sided transcutaneous auricular vagus nerve stimulation (taVNS) versus sham stimulation on stomach-brain coupling. RESULTS In line with preclinical research, taVNS increased stomach-brain coupling in the nucleus of the solitary tract (NTS) and the midbrain while boosting coupling across the brain. Crucially, in the cortex, taVNS-induced changes in coupling occurred primarily in transmodal regions and were associated with changes in hunger ratings as indicators of the subjective metabolic state. CONCLUSIONS taVNS increases stomach-brain coupling via an NTS-midbrain pathway that signals gut-induced reward, indicating that communication between the brain and the body is effectively modulated by vago-vagal signaling. Such insights may help us better understand the role of vagal afferents in orchestrating the recruitment of the gastric network which could pave the way for novel neuromodulatory treatments.
Collapse
|
42
|
Parent MB. Using Postmeal Measures and Manipulations to Investigate Hippocampal Mnemonic Control of Eating Behavior. Neuroscience 2022; 497:228-238. [PMID: 34998891 PMCID: PMC9256844 DOI: 10.1016/j.neuroscience.2021.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Episodic meal-related memories provide the brain with a powerful mechanism for tracking and controlling eating behavior because they contain a detailed record of recent energy intake that likely outlasts the physiological signals generated by feeding bouts. This review briefly summarizes evidence from human participants showing that episodic meal-related memory limits later eating behavior and then describes our research aimed at investigating whether hippocampal neurons mediate the inhibitory effects of meal-related memory on subsequent feeding. Our approach has been inspired by pioneering work conducted by Ivan Izquierdo and others who used posttraining manipulations to investigate memory consolidation. This review describes the rationale and value of posttraining manipulations, how Izquierdo used them to demonstrate that dorsal hippocampal (dHC) neurons are critical for memory consolidation, and how we have adapted this strategy to investigate whether dHC neurons are necessary for mnemonic control of energy intake. I describe our evidence showing that ingestion activates the molecular processes necessary for synaptic plasticity and memory during the early postprandial period, when the memory of the meal would be undergoing consolidation, and then summarize our findings showing that neural activity in dHC neurons is critical during the early postprandial period for limiting future intake. Collectively, our evidence supports the hypothesis that dHC neurons mediate the inhibitory effects of ingestion-related memory on future intake and demonstrates that post-experience memory modulation is not confined to artificial laboratory memory tasks.
Collapse
Affiliation(s)
- M B Parent
- Neuroscience Institute & Department of Psychology, Georgia State University, PO Box 5030, Atlanta, GA 30303, USA.
| |
Collapse
|
43
|
Mamedova E, Árting LB, Rekling JC. Bile acids induce Ca 2+ signaling and membrane permeabilizations in vagal nodose ganglion neurons. Biochem Biophys Rep 2022; 31:101288. [PMID: 35669985 PMCID: PMC9162955 DOI: 10.1016/j.bbrep.2022.101288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Bile acids (BAs) play an important role in the digestion of dietary fats and act as signaling molecules. However, due to their solubilizing properties, high concentrations in the gut may negatively affect gut epithelium and possibly afferent fibers innervating the gastrointestinal tract (GI). To determine the effect of BAs on intracellular Ca2+ and membrane permeabilization we tested a range of concentrations of two BAs on vagal nodose ganglion (NG) neurons, Chinese Hamster Ovary (CHO), and PC12 cell lines. NG explants from mice were drop-transduced with the genetically encoded Ca2+ indicator AAV9-Syn-jGCaMP7s and used to measure Ca2+ changes upon application of deoxycholic acid (DCA) and taurocholic acid (TCA). We found that both BAs induced a Ca2+ increase in NG neurons in a dose-dependent manner. The DCA-induced Ca2+ increase was dependent on intracellular Ca2+ stores. NG explants, with an intact peripheral part of the vagus nerve, showed excitation of NG neurons in nerve field recordings upon exposure to DCA. The viability of NG neurons at different BA concentrations was determined, and compared to CHO and PC12 cells lines using propidium iodide labeling, showing threshold concentrations of BA-induced cell death at 400–500 μM. These observations suggest that BAs act as Ca2+-inducing signaling molecules in vagal sensory neurons at low concentrations, but induce cell death at higher concentrations, which may occur during inflammatory bowel diseases. Intracellular Ca2+ is measured in hundreds of explant vagal sensory neurons using jGCaMP7s. Bile acids deoxycholic acid and taurocholic acid induce a Ca2+ increase in vagal sensory neurons. Deoxycholic acid -induced Ca2+ increase is dependent on intracellular Ca2+ stores. Bile acid concentrations above 400–500 μM permeabilize the membrane inducing cell death.
Collapse
|
44
|
Singh R, Stogios N, Smith E, Lee J, Maksyutynsk K, Au E, Wright DC, De Palma G, Graff-Guerrero A, Gerretsen P, Müller DJ, Remington G, Hahn M, Agarwal SM. Gut microbiome in schizophrenia and antipsychotic-induced metabolic alterations: a scoping review. Ther Adv Psychopharmacol 2022; 12:20451253221096525. [PMID: 35600753 PMCID: PMC9118432 DOI: 10.1177/20451253221096525] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/07/2022] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SCZ) is a severe mental disorder with high morbidity and lifetime disability rates. Patients with SCZ have a higher risk of developing metabolic comorbidities such as obesity and diabetes mellitus, leading to increased mortality. Antipsychotics (APs), which are the mainstay in the treatment of SCZ, increase the risk of these metabolic perturbations. Despite extensive research, the mechanism underlying SCZ pathophysiology and associated metabolic comorbidities remains unclear. In recent years, gut microbiota (GMB) has been regarded as a 'chamber of secrets', particularly in the context of severe mental illnesses such as SCZ, depression, and bipolar disorder. In this scoping review, we aimed to investigate the underlying role of GMB in the pathophysiology of SCZ and metabolic alterations associated with APs. Furthermore, we also explored the therapeutic benefits of prebiotic and probiotic formulations in managing SCZ and AP-induced metabolic alterations. A systematic literature search yielded 46 studies from both preclinical and clinical settings that met inclusion criteria for qualitative synthesis. Preliminary evidence from preclinical and clinical studies indicates that GMB composition changes are associated with SCZ pathogenesis and AP-induced metabolic perturbations. Fecal microbiota transplantation from SCZ patients to mice has been shown to induce SCZ-like behavioral phenotypes, further supporting the plausible role of GMB in SCZ pathogenesis. This scoping review recapitulates the preclinical and clinical evidence suggesting the role of GMB in SCZ symptomatology and metabolic adverse effects associated with APs. Moreover, this scoping review also discusses the therapeutic potentials of prebiotic/probiotic formulations in improving SCZ symptoms and attenuating metabolic alterations related to APs.
Collapse
Affiliation(s)
- Raghunath Singh
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Nicolette Stogios
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Emily Smith
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jiwon Lee
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kateryna Maksyutynsk
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Emily Au
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - David C. Wright
- Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ariel Graff-Guerrero
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Philip Gerretsen
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Daniel J. Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gary Remington
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Margaret Hahn
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Sri Mahavir Agarwal
- Staff Psychiatrist and Clinician-Scientist, Medical Head, Clinical Research, Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), 1051 Queen Street W, Toronto, ON M6J 1H3, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
45
|
Payne SC, Ward G, Fallon JB, Hyakumura T, Prins JB, Andrikopoulos S, MacIsaac RJ, Villalobos J. Blood glucose modulation and safety of efferent vagus nerve stimulation in a type 2 diabetic rat model. Physiol Rep 2022; 10:e15257. [PMID: 35439355 PMCID: PMC9017977 DOI: 10.14814/phy2.15257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/21/2022] Open
Abstract
Vagus nerve stimulation is emerging as a promising treatment for type 2 diabetes. Here, we evaluated the ability of stimulation of the vagus nerve to reduce glycemia in awake, freely moving metabolically compromised rats. A model of type 2 diabetes (n = 10) was induced using a high‐fat diet and low doses of streptozotocin. Stimulation of the abdominal vagus nerve was achieved by pairing 15 Hz pulses on a distal pair of electrodes with high‐frequency blocking stimulation (26 kHz, 4 mA) on a proximal pair of electrodes to preferentially produce efferent conducting activity (eVNS). Stimulation was well tolerated in awake, freely moving rats. During 1 h of eVNS, glycemia decreased in 90% of subjects (−1.25 ± 1.25 mM h, p = 0.017), and 2 dB above neural threshold was established as the most effective “dose” of eVNS (p = 0.009). Following 5 weeks of implantation, eVNS was still effective, resulting in significantly decreased glycemia (−1.7 ± 0.6 mM h, p = 0.003) during 1 h of eVNS. There were no overt changes in fascicle area or signs of histopathological damage observed in implanted vagal nerve tissue following chronic implantation and stimulation. Demonstration of the biocompatibility and safety of eVNS in awake, metabolically compromised animals is a critical first step to establishing this therapy for clinical use. With further development, eVNS could be a promising novel therapy for treating type 2 diabetes.
Collapse
Affiliation(s)
- Sophie C Payne
- Bionics Institute, East Melbourne, Victoria, Australia.,Department of Medical Bionics, University of Melbourne, Parkville, Victoria, Australia
| | - Glenn Ward
- Bionics Institute, East Melbourne, Victoria, Australia.,Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia.,Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia
| | - James B Fallon
- Bionics Institute, East Melbourne, Victoria, Australia.,Department of Medical Bionics, University of Melbourne, Parkville, Victoria, Australia
| | - Tomoko Hyakumura
- Bionics Institute, East Melbourne, Victoria, Australia.,Department of Medical Bionics, University of Melbourne, Parkville, Victoria, Australia
| | - Johannes B Prins
- Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia.,Department of Endocrinology, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Australian Centre for Accelerating Diabetes Innovations, University of Melbourne, Melbourne, Australia
| | - Sofianos Andrikopoulos
- Australian Centre for Accelerating Diabetes Innovations, University of Melbourne, Melbourne, Australia.,Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Victoria, Australia
| | - Richard J MacIsaac
- Bionics Institute, East Melbourne, Victoria, Australia.,Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia.,Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia.,Australian Centre for Accelerating Diabetes Innovations, University of Melbourne, Melbourne, Australia
| | - Joel Villalobos
- Bionics Institute, East Melbourne, Victoria, Australia.,Department of Medical Bionics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
46
|
Prescott SL, Liberles SD. Internal senses of the vagus nerve. Neuron 2022; 110:579-599. [PMID: 35051375 PMCID: PMC8857038 DOI: 10.1016/j.neuron.2021.12.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/30/2021] [Accepted: 12/11/2021] [Indexed: 12/16/2022]
Abstract
The vagus nerve is an indispensable body-brain connection that controls vital aspects of autonomic physiology like breathing, heart rate, blood pressure, and gut motility, reflexes like coughing and swallowing, and survival behaviors like feeding, drinking, and sickness responses. Classical physiological studies and recent molecular/genetic approaches have revealed a tremendous diversity of vagal sensory neuron types that innervate different internal organs, with many cell types remaining poorly understood. Here, we review the state of knowledge related to vagal sensory neurons that innervate the respiratory, cardiovascular, and digestive systems. We focus on cell types and their response properties, physiological/behavioral roles, engaged neural circuits and, when possible, sensory receptors. We are only beginning to understand the signal transduction mechanisms used by vagal sensory neurons and upstream sentinel cells, and future studies are needed to advance the field of interoception to the level of mechanistic understanding previously achieved for our external senses.
Collapse
|
47
|
Silencing gut CCK cells alters gut reaction to sugar. Nat Neurosci 2022; 25:136-138. [PMID: 35027762 DOI: 10.1038/s41593-021-00998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Parent MB, Higgs S, Cheke LG, Kanoski SE. Memory and eating: A bidirectional relationship implicated in obesity. Neurosci Biobehav Rev 2022; 132:110-129. [PMID: 34813827 PMCID: PMC8816841 DOI: 10.1016/j.neubiorev.2021.10.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 01/03/2023]
Abstract
This paper reviews evidence demonstrating a bidirectional relationship between memory and eating in humans and rodents. In humans, amnesia is associated with impaired processing of hunger and satiety cues, disrupted memory of recent meals, and overconsumption. In healthy participants, meal-related memory limits subsequent ingestive behavior and obesity is associated with impaired memory and disturbances in the hippocampus. Evidence from rodents suggests that dorsal hippocampal neural activity contributes to the ability of meal-related memory to control future intake, that endocrine and neuropeptide systems act in the ventral hippocampus to provide cues regarding energy status and regulate learned aspects of eating, and that consumption of hypercaloric diets and obesity disrupt these processes. Collectively, this evidence indicates that diet-induced obesity may be caused and/or maintained, at least in part, by a vicious cycle wherein excess intake disrupts hippocampal functioning, which further increases intake. This perspective may advance our understanding of how the brain controls eating, the neural mechanisms that contribute to eating-related disorders, and identify how to treat diet-induced obesity.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute & Department of Psychology, Georgia State University, Box 5030, Atlanta, GA 30303-5030, United States.
| | - Suzanne Higgs
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, BI5 2TT, United Kingdom.
| | - Lucy G Cheke
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, United Kingdom.
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, 90089-0371, United States.
| |
Collapse
|
49
|
Plassmann H, Schelski DS, Simon M, Koban L. How we decide what to eat: Toward an interdisciplinary model of gut-brain interactions. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2022; 13:e1562. [PMID: 33977675 PMCID: PMC9286667 DOI: 10.1002/wcs.1562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/12/2022]
Abstract
Everyday dietary decisions have important short-term and long-term consequences for health and well-being. How do we decide what to eat, and what physiological and neurobiological systems are involved in those decisions? Here, we integrate findings from thus-far separate literatures: (a) the cognitive neuroscience of dietary decision-making, and (b) growing evidence of gut-brain interactions and especially influences of the gut microbiome on diet and health outcomes. We review findings that suggest that dietary decisions and food consumption influence nutrient sensing, homeostatic signaling in the gut, and the composition of the gut microbiome. In turn, the microbiome can influence host health and behavior. Through reward signaling pathways, the microbiome could potentially affect food and drink decisions. Such bidirectional links between gut microbiome and the brain systems underlying dietary decision-making may lead to self-reinforcing feedback loops that determine long-term dietary patterns, body mass, and health outcomes. This article is categorized under: Economics > Individual Decision-Making Psychology > Brain Function and Dysfunction Psychology > Reasoning and Decision Making.
Collapse
Affiliation(s)
- Hilke Plassmann
- Marketing AreaINSEADFontainebleauFrance
- Paris Brain Institute (ICM)INSERM U 1127, CNRS UMR 7225, Sorbonne UniversitéParisFrance
| | - Daniela Stephanie Schelski
- Center for Economics and NeuroscienceUniversity of BonnBonnGermany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical CenterBonnGermany
| | - Marie‐Christine Simon
- Institute of Nutrition and Food Science (IEL), Nutrition and Microbiota, University of BonnBonnGermany
| | - Leonie Koban
- Marketing AreaINSEADFontainebleauFrance
- Paris Brain Institute (ICM)INSERM U 1127, CNRS UMR 7225, Sorbonne UniversitéParisFrance
| |
Collapse
|
50
|
Matsubara Y, Kiyohara H, Teratani T, Mikami Y, Kanai T. Organ and brain crosstalk: The liver-brain axis in gastrointestinal, liver, and pancreatic diseases. Neuropharmacology 2021; 205:108915. [PMID: 34919906 DOI: 10.1016/j.neuropharm.2021.108915] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
The liver is the largest organ in the human body and is responsible for the metabolism and storage of the three principal nutrients: carbohydrates, fats, and proteins. In addition, the liver contributes to the breakdown and excretion of alcohol, medicinal agents, and toxic substances and the production and secretion of bile. In addition to its role as a metabolic centre, the liver has recently attracted attention for its function in the liver-brain axis, which interacts closely with the central nervous system via the autonomic nervous system, including the vagus nerve. The liver-brain axis influences the control of eating behaviour in the central nervous system through stimuli from the liver. Conversely, neural signals from the central nervous system influence glucose, lipid, and protein metabolism in the liver. The liver also receives a constant influx of nutrients and hormones from the intestinal tract and compounds of bacterial origin via the portal system. As a result, the intestinal tract and liver are involved in various immunological interactions. A good example is the co-occurrence of primary sclerosing cholangitis and ulcerative colitis. These heterogeneous roles of the liver-brain axis are mediated via the vagus nerve in an asymmetrical manner. In this review, we provide an overview of these interactions, mainly with the liver but also with the brain and gut.
Collapse
Affiliation(s)
- Yuta Matsubara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroki Kiyohara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|