1
|
Marcos-Villar L, Perdiguero B, López-Bravo M, Zamora C, Sin L, Álvarez E, Sorzano CÓS, Sánchez-Cordón PJ, Casasnovas JM, Astorgano D, García-Arriaza J, Anthiya S, Borrajo ML, Lou G, Cuesta B, Franceschini L, Gelpí JL, Thielemans K, Sisteré-Oró M, Meyerhans A, García F, Esteban I, López-Bigas N, Plana M, Alonso MJ, Esteban M, Gómez CE. Heterologous mRNA/MVA delivering trimeric-RBD as effective vaccination regimen against SARS-CoV-2: COVARNA Consortium. Emerg Microbes Infect 2024; 13:2387906. [PMID: 39087555 PMCID: PMC11313003 DOI: 10.1080/22221751.2024.2387906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
Despite the high efficiency of current SARS-CoV-2 mRNA vaccines in reducing COVID-19 morbidity and mortality, waning immunity and the emergence of resistant variants underscore the need for novel vaccination strategies. This study explores a heterologous mRNA/Modified Vaccinia virus Ankara (MVA) prime/boost regimen employing a trimeric form of the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein compared to a homologous MVA/MVA regimen. In C57BL/6 mice, the RBD was delivered during priming via an mRNA vector encapsulated in nanoemulsions (NE) or lipid nanoparticles (LNP), followed by a booster with a replication-deficient MVA-based recombinant virus (MVA-RBD). This heterologous mRNA/MVA regimen elicited strong anti-RBD binding and neutralizing antibodies (BAbs and NAbs) against both the ancestral SARS-CoV-2 strain and different variants of concern (VoCs). Additionally, this protocol induced robust and polyfunctional RBD-specific CD4 and CD8 T cell responses, particularly in animals primed with mLNP-RBD. In K18-hACE2 transgenic mice, the LNP-RBD/MVA combination provided complete protection from morbidity and mortality following a live SARS-CoV-2 challenge compared with the partial protection observed with mNE-RBD/MVA or MVA/MVA regimens. Although the mNE-RBD/MVA regimen only protects half of the animals, it was able to induce antibodies with Fc-mediated effector functions besides NAbs. Moreover, viral replication and viral load in the respiratory tract were markedly reduced and decreased pro-inflammatory cytokine levels were observed. These results support the efficacy of heterologous mRNA/MVA vaccine combinations over homologous MVA/MVA regimen, using alternative nanocarriers that circumvent intellectual property restrictions of current mRNA vaccine formulations.
Collapse
MESH Headings
- Animals
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Mice
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- COVID-19/prevention & control
- COVID-19/immunology
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Antibodies, Neutralizing/immunology
- Mice, Inbred C57BL
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- Humans
- Female
- Nanoparticles/administration & dosage
- Vaccination
- mRNA Vaccines/administration & dosage
- Mice, Transgenic
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- CD8-Positive T-Lymphocytes/immunology
- Angiotensin-Converting Enzyme 2/immunology
- Angiotensin-Converting Enzyme 2/genetics
- Liposomes
Collapse
Affiliation(s)
- Laura Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - Carmen Zamora
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Laura Sin
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Enrique Álvarez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | - Pedro J. Sánchez-Cordón
- Veterinary Pathology Department, Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Madrid, Spain
| | | | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Shubaash Anthiya
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Mireya L. Borrajo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gustavo Lou
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Belén Cuesta
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Lorenzo Franceschini
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Josep L. Gelpí
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona (UB), Barcelona, Spain
| | - Kris Thielemans
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marta Sisteré-Oró
- Infection Biology Laboratory, Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Felipe García
- Infectious Diseases Department, Hospital Clínic, UB,Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, UB, Barcelona, Spain
| | - Ignasi Esteban
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, UB, Barcelona, Spain
| | - Núria López-Bigas
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, Madrid, Spain
| | - Montserrat Plana
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, UB, Barcelona, Spain
| | - María J. Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
2
|
Kafle S, Montoya B, Tang L, Tam YK, Muramatsu H, Pardi N, Sigal LJ. The roles of CD4 + T cell help, sex, and dose in the induction of protective CD8 + T cells against a lethal poxvirus by mRNA-LNP vaccines. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102279. [PMID: 39188304 PMCID: PMC11345529 DOI: 10.1016/j.omtn.2024.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 07/16/2024] [Indexed: 08/28/2024]
Abstract
The role of CD4+ T cells in the induction of protective CD8+ T cells by mRNA lipid nanoparticle (LNP) vaccines is unknown. We used B6 or Tlr9 -/- mice depleted or not of CD4+ T cells and LNP vaccines loaded with mRNAs encoding the ectromelia virus (ECTV) MHC class I H-2 Kb-restricted immunodominant CD8+ T cell epitope TSYKFESV (TSYKFESV mRNA-LNPs) or the ECTV EVM158 protein, which contains TSYKFESV (EVM-158 mRNA-LNPs). Following prime and boost with 10 μg of either vaccine, Kb-TSYKFESV-specific CD8+ T cells fully protected male and female mice from ECTV at 29 (both mRNA-LNPs) or 90 days (EVM158 mRNA-LNPs) post boost (dpb) independently of CD4+ T cells. However, at 29 dpb with 1 μg mRNA-LNPs, males had lower frequencies of Kb-TSYKFESV-specific CD8+ T cells and were much less well protected than females from ECTV, also independently of CD4+ T cells. At 90 dpb with 1 μg EVM158 mRNA-LNPs, the frequencies of Kb-TSYKFESV-specific CD8+ T cells in males and females were similar, and both were similarly partially protected from ECTV, independently of CD4+ T cells. Therefore, at optimal or suboptimal doses of mRNA-LNP vaccines, CD4+ T cell help is unnecessary to induce protective anti-poxvirus CD8+ T cells specific to a dominant epitope. At suboptimal doses, protection of males requires more time to develop.
Collapse
Affiliation(s)
- Samita Kafle
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Brian Montoya
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lingjuan Tang
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ying K. Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luis J. Sigal
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
3
|
Vieira ISA, Rocha FMD, Vilarim M, Rebelo F, Marano D. Neutralizing antibodies in milk and blood of lactating women vaccinated for SARS-CoV-2: a systematic review. REVISTA PAULISTA DE PEDIATRIA : ORGAO OFICIAL DA SOCIEDADE DE PEDIATRIA DE SAO PAULO 2024; 43:e2023210. [PMID: 39258663 PMCID: PMC11382815 DOI: 10.1590/1984-0462/2025/43/2023210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/03/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVE To compare the presence of neutralizing antibodies against SARS-CoV-2 found in the breast milk and blood of vaccinated lactating women with those not vaccinated. DATA SOURCE The study was registered in the International Prospective Register of Systematic Reviews (PROSPERO) under CRD42021287554 and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Cohort, case-control, and cross-sectional studies that evaluated antibodies against SARS-CoV-2 in the milk and blood of vaccinated mothers and had as control group unvaccinated mothers were eligible. Health Sciences Descriptors (DeCs), Medical Subject Headings (MeSH) and Emtree descriptors were used for the Virtual Health Library (VHL), Medical Literature Analysis and Retrieval System Online (Medline/Pubmed), and Embase databases, respectively. In the Web of Science and Scopus, the strategy was adapted. No restrictions on the publication period and language were set. DATA SYNTHESIS The search identified 233 records, of which 128 duplicates and 101 papers that did not meet the inclusion criteria were excluded. Hence, four cohort studies were eligible. Nursing mothers vaccinated with the Pfizer-BioNTech and Moderna vaccines showed antibodies against SARS-CoV-2 in their blood and breast milk. CONCLUSIONS Vaccinated lactating women had higher levels of immunoglobulin G (IgG) and A (IgA) in serum and breast milk than unvaccinated women.
Collapse
Affiliation(s)
- Ianne Stéfani Angelim Vieira
- Fundação Oswaldo Cruz, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Rio de Janeiro, RJ, Brazil
| | - Fernanda Mazzoli da Rocha
- Fundação Oswaldo Cruz, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Rio de Janeiro, RJ, Brazil
| | - Marina Vilarim
- Fundação Oswaldo Cruz, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Rio de Janeiro, RJ, Brazil
| | - Fernanda Rebelo
- Fundação Oswaldo Cruz, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Rio de Janeiro, RJ, Brazil
| | - Daniele Marano
- Fundação Oswaldo Cruz, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Weskamm LM, Tarnow P, Harms C, Huchon M, Raadsen MP, Friedrich M, Rübenacker L, Grüttner C, Garcia MG, Koch T, Becker S, Sutter G, Lhomme E, Haagmans BL, Fathi A, Blois SM, Dahlke C, Richert L, Addo MM. Dissecting humoral immune responses to an MVA-vectored MERS-CoV vaccine in humans using a systems serology approach. iScience 2024; 27:110470. [PMID: 39148710 PMCID: PMC11325358 DOI: 10.1016/j.isci.2024.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 08/17/2024] Open
Abstract
Besides neutralizing antibodies, which are considered an important measure for vaccine immunogenicity, Fc-mediated antibody functions can contribute to antibody-mediated protection. They are strongly influenced by structural antibody properties such as subclass and Fc glycan composition. We here applied a systems serology approach to dissect humoral immune responses induced by MVA-MERS-S, an MVA-vectored vaccine against the Middle East respiratory syndrome coronavirus (MERS-CoV). Building on preceding studies reporting the safety and immunogenicity of MVA-MERS-S, our study highlights the potential of a late boost, administered one year after prime, to enhance both neutralizing and Fc-mediated antibody functionality compared to the primary vaccination series. Distinct characteristics were observed for antibodies specific to the MERS-CoV spike protein S1 and S2 subunits, regarding subclass and glycan compositions as well as Fc functionality. These findings highlight the benefit of a late homologous booster vaccination with MVA-MERS-S and may be of interest for the design of future coronavirus vaccines.
Collapse
Affiliation(s)
- Leonie M Weskamm
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Paulina Tarnow
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Charlotte Harms
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Glyco-HAM, a Cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Huchon
- University of Bordeaux, INSERM, INRIA, BPH, U1219, Sistm, Bordeaux, France
- Vaccine Research Institute, Creteil, France
| | - Matthijs P Raadsen
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Monika Friedrich
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Laura Rübenacker
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Cordula Grüttner
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Mariana G Garcia
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Glyco-HAM, a Cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Koch
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Antibiotic Stewardship Team, Pharmacy of the University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
- German Center for Infection Research, Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Infection Research, Partner Site München, Munich, Germany
| | - Edouard Lhomme
- University of Bordeaux, INSERM, INRIA, BPH, U1219, Sistm, Bordeaux, France
- Vaccine Research Institute, Creteil, France
- CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France
| | - Bart L Haagmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anahita Fathi
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Division of Infectious Diseases, 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Glyco-HAM, a Cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Dahlke
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Laura Richert
- University of Bordeaux, INSERM, INRIA, BPH, U1219, Sistm, Bordeaux, France
- Vaccine Research Institute, Creteil, France
- CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France
| | - Marylyn M Addo
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
5
|
Izadi A, Nordenfelt P. Protective non-neutralizing SARS-CoV-2 monoclonal antibodies. Trends Immunol 2024; 45:609-624. [PMID: 39034185 DOI: 10.1016/j.it.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
Recent studies show an important role for non-neutralizing anti-spike antibodies, including monoclonal antibodies (mAbs), in robustly protecting against SARS-CoV-2 infection. These mAbs use Fc-mediated functions such as complement activation, phagocytosis, and cellular cytotoxicity. There is an untapped potential for using non-neutralizing mAbs in durable antibody treatments; because of their available conserved epitopes, they may not be as sensitive to virus mutations as neutralizing mAbs. Here, we discuss evidence of non-neutralizing mAb-mediated protection against SARS-CoV-2 infection. We explore how non-neutralizing mAb Fc-mediated functions can be enhanced via novel antibody-engineering techniques. Important questions remain to be answered regarding the characteristics of protective non-neutralizing mAbs, including the models and assays used for study, the risks of ensuing detrimental inflammation, as well as the durability and mechanisms of protection.
Collapse
Affiliation(s)
- Arman Izadi
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden; Karolinska University Hospital, Stockholm, Sweden
| | - Pontus Nordenfelt
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden; Department of Laboratory Medicine, Clinical Microbiology, Skåne University Hospital Lund, Lund University, Lund, Sweden.
| |
Collapse
|
6
|
Chung YS, Lam CY, Tan PH, Tsang HF, Wong SCC. Comprehensive Review of COVID-19: Epidemiology, Pathogenesis, Advancement in Diagnostic and Detection Techniques, and Post-Pandemic Treatment Strategies. Int J Mol Sci 2024; 25:8155. [PMID: 39125722 PMCID: PMC11312261 DOI: 10.3390/ijms25158155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
At present, COVID-19 remains a public health concern due to the ongoing evolution of SARS-CoV-2 and its prevalence in particular countries. This paper provides an updated overview of the epidemiology and pathogenesis of COVID-19, with a focus on the emergence of SARS-CoV-2 variants and the phenomenon known as 'long COVID'. Meanwhile, diagnostic and detection advances will be mentioned. Though many inventions have been made to combat the COVID-19 pandemic, some outstanding ones include multiplex RT-PCR, which can be used for accurate diagnosis of SARS-CoV-2 infection. ELISA-based antigen tests also appear to be potential diagnostic tools to be available in the future. This paper also discusses current treatments, vaccination strategies, as well as emerging cell-based therapies for SARS-CoV-2 infection. The ongoing evolution of SARS-CoV-2 underscores the necessity for us to continuously update scientific understanding and treatments for it.
Collapse
Affiliation(s)
| | | | | | | | - Sze-Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; (Y.-S.C.); (C.-Y.L.); (P.-H.T.); (H.-F.T.)
| |
Collapse
|
7
|
Motsoeneng BM, Bhiman JN, Richardson SI, Moore PL. SARS-CoV-2 humoral immunity in people living with HIV-1. Trends Immunol 2024; 45:511-522. [PMID: 38890026 DOI: 10.1016/j.it.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
The effect of COVID-19 on the high number of immunocompromised people living with HIV-1 (PLWH), particularly in Africa, remains a critical concern. Here, we identify key areas that still require further investigation, by examining COVID-19 vaccine effectiveness, and understanding antibody responses in SARS-CoV-2 infection and vaccination in comparison with people without HIV-1 (PWOH). We also assess the potential impact of pre-existing immunity against endemic human coronaviruses on SARS-CoV-2 responses in these individuals. Lastly, we discuss the consequences of persistent infection in PLWH (or other immunocompromised individuals), including prolonged shedding, increased viral diversity within the host, and the implications on SARS-CoV-2 evolution in Africa.
Collapse
Affiliation(s)
- Boitumelo M Motsoeneng
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Jinal N Bhiman
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Simone I Richardson
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Penny L Moore
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa; Centre for the AIDS Program of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa.
| |
Collapse
|
8
|
Gozlan J, Baron A, Boyd A, Salmona M, Fofana D, Minier M, Gabassi A, Morand-Joubert L, Delaugerre C, Maylin S. Anti-SARS-CoV-2 Neutralizing Responses in Various Populations: Use of a Rapid Surrogate Lateral Flow Assay and Correlations with Anti-RBD Antibody Levels. Life (Basel) 2024; 14:791. [PMID: 39063546 PMCID: PMC11277712 DOI: 10.3390/life14070791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND After the global COVID-19 crisis, understanding post-infectious immunity and vaccine efficacy remains crucial. This study aims to assess anti-SARS-CoV-2 immunity through a quantitative analysis of anti-receptor-binding domain (RBD) antibodies and rapid functional testing of the neutralizing humoral response. METHODS A retrospective analysis was conducted on samples from various cohorts, including partially vaccinated, fully vaccinated, post-COVID/no-vaccination, and post-COVID/vaccination individuals with various immune-competency statuses. The anti-RBD antibodies were measured using an automated chemiluminescence assay, while the neutralizing antibodies' (NAbs') activity was assessed through the lateral flow ichroma COVID-19 nAb test (LFT), a surrogate neutralization assay. RESULTS The analysis revealed various levels of anti-RBD antibodies and seroneutralization responses across cohorts, with the post-COVID/vaccination group demonstrating the most robust protection. A correlation between anti-RBD antibodies and seroneutralization was observed, albeit with varying strength depending on the subgroup analyzed. Longitudinal assessment following natural infection showed an initial surge followed by a decline in both measures. A cutoff of 3.0 log10 BAU/mL was established to predict significant seroneutralization. CONCLUSIONS The ichroma™ COVID-19 nAb test displayed high specificity and emerged as a valuable tool for monitoring anti-SARS-CoV-2 immunity. These findings contribute to understand the antibody response dynamics and underscore the potential of rapid tests in predicting protection against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Joël Gozlan
- AP-HP, Saint Antoine Hospital, Laboratory of Virology, 75012 Paris, France; (J.G.); (D.F.); (L.M.-J.)
- Reseach’s Department of Saint-Antoine, “Cancer Biology and Therapeutics”, University of Sorbonne, INSERM, 75012 Paris, France
| | - Audrey Baron
- AP-HP, Saint Louis Hospital, Laboratory of Virology, 75010 Paris, France; (A.B.); (M.S.); (M.M.); (A.G.); (C.D.)
| | - Anders Boyd
- Department of Infectious Diseases, Public Health Service of Amsterdam, 1018 WT Amsterdam, The Netherlands;
| | - Maud Salmona
- AP-HP, Saint Louis Hospital, Laboratory of Virology, 75010 Paris, France; (A.B.); (M.S.); (M.M.); (A.G.); (C.D.)
- INSERM U976, University of Paris, 75010 Paris, France
| | - Djeneba Fofana
- AP-HP, Saint Antoine Hospital, Laboratory of Virology, 75012 Paris, France; (J.G.); (D.F.); (L.M.-J.)
| | - Marine Minier
- AP-HP, Saint Louis Hospital, Laboratory of Virology, 75010 Paris, France; (A.B.); (M.S.); (M.M.); (A.G.); (C.D.)
| | - Audrey Gabassi
- AP-HP, Saint Louis Hospital, Laboratory of Virology, 75010 Paris, France; (A.B.); (M.S.); (M.M.); (A.G.); (C.D.)
| | - Laurence Morand-Joubert
- AP-HP, Saint Antoine Hospital, Laboratory of Virology, 75012 Paris, France; (J.G.); (D.F.); (L.M.-J.)
- INSERM, Institut Pierre Louis of Epidémiology and Public Health, University of Sorbonne, 75012 Paris, France
| | - Constance Delaugerre
- AP-HP, Saint Louis Hospital, Laboratory of Virology, 75010 Paris, France; (A.B.); (M.S.); (M.M.); (A.G.); (C.D.)
- INSERM U944, Biology of Emerging Viruses, University of Paris Cité, 75006 Paris, France
| | - Sarah Maylin
- AP-HP, Saint Louis Hospital, Laboratory of Virology, 75010 Paris, France; (A.B.); (M.S.); (M.M.); (A.G.); (C.D.)
| |
Collapse
|
9
|
Focosi D, Franchini M, Maggi F, Shoham S. COVID-19 therapeutics. Clin Microbiol Rev 2024; 37:e0011923. [PMID: 38771027 PMCID: PMC11237566 DOI: 10.1128/cmr.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
SUMMARYSince the emergence of COVID-19 in 2020, an unprecedented range of therapeutic options has been studied and deployed. Healthcare providers have multiple treatment approaches to choose from, but efficacy of those approaches often remains controversial or compromised by viral evolution. Uncertainties still persist regarding the best therapies for high-risk patients, and the drug pipeline is suffering fatigue and shortage of funding. In this article, we review the antiviral activity, mechanism of action, pharmacokinetics, and safety of COVID-19 antiviral therapies. Additionally, we summarize the evidence from randomized controlled trials on efficacy and safety of the various COVID-19 antivirals and discuss unmet needs which should be addressed.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Fabrizio Maggi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Shmuel Shoham
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Kozłowski P, Leszczyńska A, Ciepiela O. Long COVID Definition, Symptoms, Risk Factors, Epidemiology and Autoimmunity: A Narrative Review. AMERICAN JOURNAL OF MEDICINE OPEN 2024; 11:100068. [PMID: 39034937 PMCID: PMC11256271 DOI: 10.1016/j.ajmo.2024.100068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 07/23/2024]
Abstract
The virus called SARS-CoV-2 emerged in 2019 and quickly spread worldwide, causing COVID-19. It has greatly impacted on everyday life, healthcare systems, and the global economy. In order to save as many lives as possible, precautions such as social distancing, quarantine, and testing policies were implemented, and effective vaccines were developed. A growing amount of data collected worldwide allowed the characterization of this new disease, which turned out to be more complex than other common respiratory tract infections. An increasing number of convalescents presented with a variety of nonspecific symptoms emerging after the acute infection. This possible new global health problem was identified and labelled as long COVID. Since then, a great effort has been made by clinicians and the scientific community to understand the underlying mechanisms and to develop preventive measures and effective treatment. The role of autoimmunity induced by SARS-CoV-2 infection in the development of long COVID is discussed in this review. We aim to deliver a description of several conditions with an autoimmune background observed in COVID-19 convalescents, including Guillain-Barré syndrome, antiphospholipid syndrome and related thrombosis, and Kawasaki disease highlighting a relationship between SARS-CoV-2 infection and the development of autoimmunity. However, further studies are required to determine its true clinical significance.
Collapse
Affiliation(s)
- Paweł Kozłowski
- Central Laboratory, University Clinical Centre of the Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Leszczyńska
- Central Laboratory, University Clinical Centre of the Medical University of Warsaw, Warsaw, Poland
| | - Olga Ciepiela
- Central Laboratory, University Clinical Centre of the Medical University of Warsaw, Warsaw, Poland
- Department of Laboratory Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Borgogna C, Ferrante D, Rosso G, Guglielmetti G, Lo Cigno I, Raviola S, Caneparo V, Quaglia M, Cantaluppi V, Gariglio M. A prospective humoral immune monitoring study of kidney transplant recipients receiving three doses of SARS-CoV-2 mRNA vaccine. J Med Virol 2024; 96:e29710. [PMID: 38804187 DOI: 10.1002/jmv.29710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/04/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Kidney transplant recipients (KTRs), like other solid organ transplant recipients display a suboptimal response to mRNA vaccines, with only about half achieving seroconversion after two doses. However, the effectiveness of a booster dose, particularly in generating neutralizing antibodies (NAbs), remains poorly understood, as most studies have mainly focused on non-neutralizing antibodies. Here, we have longitudinally assessed the humoral response to the SARS-CoV-2 mRNA vaccine in 40 KTRs over a year, examining changes in both anti-spike IgG and NAbs following a booster dose administered about 5 months post-second dose. We found a significant humoral response increase 5 months post-booster, a stark contrast to the attenuated response observed after the second dose. Of note, nearly a quarter of participants did not achieve protective plasma levels even after the booster dose. We also found that the higher estimated glomerular filtration rate (eGFR) correlated with a more robust humoral response postvaccination. Altogether, these findings underscore the effectiveness of the booster dose in enhancing durable humoral immunity in KTRs, as evidenced by the protective level of NAbs found in 65% of the patients 5 months post- booster, especially those with higher eGFR rates.
Collapse
Affiliation(s)
- Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Daniela Ferrante
- Medical Statistics, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Greta Rosso
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, "Maggiore della Carità" University Hospital, University of Piemonte Orientale, Novara, Italy
| | - Gabriele Guglielmetti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, "Maggiore della Carità" University Hospital, University of Piemonte Orientale, Novara, Italy
| | - Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Stefano Raviola
- Virology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Intrinsic Immunity Unit, Department of Translational Medicine, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara, Italy
| | - Valeria Caneparo
- Intrinsic Immunity Unit, Department of Translational Medicine, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara, Italy
| | - Marco Quaglia
- Nephrology and Dialysis Unit, Department of Translational Medicine, "SS Biagio e Cesare" University Hospital, University of Piemonte Orientale, Alessandria, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, "Maggiore della Carità" University Hospital, University of Piemonte Orientale, Novara, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
12
|
Zedan HT, Smatti MK, Al-Sadeq DW, Al Khatib HA, Nicolai E, Pieri M, Bernardini S, Hssain AA, Taleb S, Qotba H, Issa K, Abu Raddad LJ, Althani AA, Nasrallah GK, Yassine HM. SARS-CoV-2 infection triggers more potent antibody-dependent cellular cytotoxicity (ADCC) responses than mRNA-, vector-, and inactivated virus-based COVID-19 vaccines. J Med Virol 2024; 96:e29527. [PMID: 38511514 DOI: 10.1002/jmv.29527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/08/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
Neutralizing antibodies (NAbs) are elicited after infection and vaccination and have been well studied. However, their antibody-dependent cellular cytotoxicity (ADCC) functionality is still poorly characterized. Here, we investigated ADCC activity in convalescent sera from infected patients with wild-type (WT) severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) or omicron variant compared with three coronavirus disease 2019 (COVID-19) vaccine platforms and postvaccination breakthrough infection (BTI). We analyzed ADCC activity targeting SARS-CoV-2 spike (S) and nucleocapsid (N) proteins in convalescent sera following WT SARS-CoV-2-infection (n = 91), including symptomatic and asymptomatic infections, omicron-infection (n = 8), COVID-19 vaccination with messenger RNA- (mRNA)- (BNT162b2 or mRNA-1273, n = 77), adenovirus vector- (n = 41), and inactivated virus- (n = 46) based vaccines, as well as post-mRNA vaccination BTI caused by omicron (n = 28). Correlations between ADCC, binding, and NAb titers were reported. ADCC was elicited within the first month postinfection and -vaccination and remained detectable for ≥3 months. WT-infected symptomatic patients had higher S-specific ADCC levels than asymptomatic and vaccinated individuals. Also, no difference in N-specific ADCC activity was seen between symptomatic and asymptomatic patients, but the levels were higher than the inactivated vaccine. Notably, omicron infection showed reduced overall ADCC activity compared to WT SARS-CoV-2 infection. Although post-mRNA vaccination BTI elicited high levels of binding and NAbs, ADCC activity was significantly reduced. Also, there was no difference in ADCC levels across the four vaccines, although NAbs and binding antibody titers were significantly higher in mRNA-vaccinated individuals. All evaluated vaccine platforms are inferior in inducing ADCC compared to natural infection with WT SARS-CoV-2. The inactivated virus-based vaccine can induce N-specific ADCC activity, but its relevance to clinical outcomes requires further investigation. Our data suggest that ADCC could be used to estimate the extra-neutralization level against COVID-19 and provides evidence that vaccination should focus on other Fc-effector functions besides NAbs. Also, the decreased susceptibility of the omicron variant to ADCC offers valuable guidance for forthcoming efforts to identify the specific targets of antibodies facilitating ADCC.
Collapse
Affiliation(s)
- Hadeel T Zedan
- Infectious Diseases Department, Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar
| | - Maria K Smatti
- Infectious Diseases Department, Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
| | - Duaa W Al-Sadeq
- College of Medicine, Member of QU Health, Qatar University, Doha, Qatar
| | - Hebah A Al Khatib
- Infectious Diseases Department, Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
| | - Eleonora Nicolai
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ali Ait Hssain
- Medical Intensive Care Unit, Hamad Medical Corporation, Doha, Qatar
| | - Sara Taleb
- Department of Research, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Hamda Qotba
- Department of Clinical Research, Primary Health Care Centers, Doha, Qatar
- Department of Pathology, Sidra Medicine, Doha, Qatar
| | - Khodr Issa
- Proteomics, Inflammatory Response, and Mass Spectrometry (PRISM) Laboratory, INSERM U-1192, University of Lille, Lille, France
| | - Laith J Abu Raddad
- Department of Population Health Sciences, Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Asmaa A Althani
- Infectious Diseases Department, Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar
| | - Gheyath K Nasrallah
- Infectious Diseases Department, Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Infectious Diseases Department, Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
| |
Collapse
|
13
|
Teixeira DG, Rodrigues-Neto JF, da Cunha DCS, Jeronimo SMB. Understanding SARS-CoV-2 spike glycoprotein clusters and their impact on immunity of the population from Rio Grande do Norte, Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105556. [PMID: 38242186 DOI: 10.1016/j.meegid.2024.105556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
SARS-CoV-2 genome underwent mutations since it started circulating within the human population. The aim of this study was to understand the fluctuation of the spike clusters concomitant to the population immunity either due to natural infection and/or vaccination in a state of Brazil that had both high rate of natural infection and vaccination coverage. A total of 1725 SARS-CoV-2 sequences from the state of Rio Grande do Norte, Brazil, were retrieved from GISAID and subjected to cluster analysis. Immunoinformatics were used to predict T- and B-cell epitopes, followed by simulation to estimate either pro- or anti-inflammatory responses and to correlate with circulating variants. From March 2020 to June 2022, the state of Rio Grande do Norte reported 579,931 COVID-19 cases with a 1.4% fatality rate across the three major waves: May-Sept 2020, Feb-Aug 2021, and Jan-Mar 2022. Cluster 0 variants (wild type strain, Zeta) were prevalent in the first wave and Delta (AY.*), which circulated in Brazil in the latter half of 2021, featuring fewer unique epitopes. Cluster 1 (Gamma (P.1 + P.1.*)) dominated the first half of 2021. Late 2021 had two new clusters, Cluster 2 (Omicron, (B.1.1.529 + BA.*)), and Cluster 3 (BA.*) with the most unique epitopes, in addition to Cluster 4 (Delta sub lineages) which emerged in the second half of 2021 with fewer unique epitopes. Cluster 1 epitopes showed a high pro-inflammatory propensity, while others exhibited a balanced cytokine induction. The clustering method effectively identified Spike groups that may contribute to immune evasion and clinical presentation, and explain in part the clinical outcome.
Collapse
Affiliation(s)
- Diego Gomes Teixeira
- Instituto de Medicina Tropical do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - João Firmino Rodrigues-Neto
- Instituto de Medicina Tropical do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil; Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Caicó, Rio Grande do Norte, Brazil
| | - Dayse Caroline Severiano da Cunha
- Instituto de Medicina Tropical do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Selma Maria Bezerra Jeronimo
- Instituto de Medicina Tropical do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil; Departmento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande Norte, Natal, Rio Grande do Norte, Brazil; Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais, Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
14
|
Schlotheuber LJ, Lüchtefeld I, Eyer K. Antibodies, repertoires and microdevices in antibody discovery and characterization. LAB ON A CHIP 2024; 24:1207-1225. [PMID: 38165819 PMCID: PMC10898418 DOI: 10.1039/d3lc00887h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/01/2023] [Indexed: 01/04/2024]
Abstract
Therapeutic antibodies are paramount in treating a wide range of diseases, particularly in auto-immunity, inflammation and cancer, and novel antibody candidates recognizing a vast array of novel antigens are needed to expand the usefulness and applications of these powerful molecules. Microdevices play an essential role in this challenging endeavor at various stages since many general requirements of the overall process overlap nicely with the general advantages of microfluidics. Therefore, microfluidic devices are rapidly taking over various steps in the process of new candidate isolation, such as antibody characterization and discovery workflows. Such technologies can allow for vast improvements in time-lines and incorporate conservative antibody stability and characterization assays, but most prominently screenings and functional characterization within integrated workflows due to high throughput and standardized workflows. First, we aim to provide an overview of the challenges of developing new therapeutic candidates, their repertoires and requirements. Afterward, this review focuses on the discovery of antibodies using microfluidic systems, technological aspects of micro devices and small-scale antibody protein characterization and selection, as well as their integration and implementation into antibody discovery workflows. We close with future developments in microfluidic detection and antibody isolation principles and the field in general.
Collapse
Affiliation(s)
- Luca Johannes Schlotheuber
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland.
| | - Ines Lüchtefeld
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland.
- ETH Laboratory for Tumor and Stem Cell Dynamics, Institute of Molecular Health Sciences, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | - Klaus Eyer
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
15
|
Zeng W, Jia X, Chi X, Zhang X, Li E, Wu Y, Liu Y, Han J, Ni K, Ye X, Hu X, Ma H, Yu C, Chiu S, Jin T. An engineered bispecific nanobody in tetrameric secretory IgA format confers broad neutralization against SARS-CoV-1&2 and most variants. Int J Biol Macromol 2023; 253:126817. [PMID: 37690653 DOI: 10.1016/j.ijbiomac.2023.126817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
SARS-CoV-2, a type of respiratory virus, has exerted a great impact on global health and economy over the past three years. Antibody-based therapy was initially successful but later failed due to the accumulation of mutations in the spike protein of the virus. Strategies that enable antibodies to resist virus escape are therefore of great significance. Here, we engineer a bispecific SARS-CoV-2 neutralizing nanobody in secretory Immunoglobulin A (SIgA) format, named S2-3-IgA2m2, which shows broad and potent neutralization against SARS-CoV-1, SARS-CoV-2 and its variants of concern (VOCs) including XBB and BQ.1.1. S2-3-IgA2m2 is ∼1800-fold more potent than its parental IgG counterpart in neutralizing XBB. S2-3-IgA2m2 is stable in mouse lungs at least for three days when administrated by nasal delivery. In hamsters infected with BA.5, three intranasal doses of S2-3-IgA2m2 at 1 mg/kg significantly reduce viral RNA loads and completely eliminate infectious particles in the trachea and lungs. Notably, even at single dose of 1 mg/kg, S2-3-IgA2m2 prophylactically administered through the intranasal route drastically reduces airway viral RNA loads and infectious particles. This study provides an effective weapon combating SARS-CoV-2, proposes a new strategy overcoming the virus escape, and lays strategic reserves for rapid response to potential future outbreaks of "SARS-CoV-3".
Collapse
Affiliation(s)
- Weihong Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiaoying Jia
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Xiangyang Chi
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xinghai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Yang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Jin Han
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Kang Ni
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaodong Ye
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaowen Hu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Huan Ma
- Institute of Clinical Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| | - Changming Yu
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Tengchuan Jin
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China.
| |
Collapse
|
16
|
Zaidi AK, Bajpai S, Dehgani-Mobaraki P. B cell responses to SARS-CoV-2. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 202:155-181. [PMID: 38237985 DOI: 10.1016/bs.pmbts.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
This chapter provides an overview of B cell responses in COVID-19, highlighting the structure of SARS-CoV-2 and its impact on B cell immunity. It explores the production and maturation of SARS-CoV-2-specific B cells, with a focus on the two distinct phases of the humoral immune response: the extrafollicular (EF) phase and the germinal center (GC) phase. Furthermore, the interplay between B cells, follicular T helper cells, CD4+ T cells, and plasma cells is discussed, emphasizing their collaborative role in mounting an effective humoral immune response against SARS-CoV-2. The concept of immunological memory is explored, highlighting the roles of plasma cells and B memory cells in providing long-term protection. The chapter delves into the antibody response during SARS-CoV-2 infection, categorizing the types of antibodies generated. This includes a detailed analysis of neutralizing antibodies, such as those directed against the receptor-binding domain (RBD) and the N-terminal domain (NTD), as well as non-neutralizing antibodies. The role of mucosal antibodies, cross-reactive antibodies, and auto-reactive antibodies is also discussed. Factors influencing the dynamics of anti-SARS-CoV-2 antibodies are examined, including the duration and strength of the humoral response. Additionally, the chapter highlights the impact of the Omicron variant on humoral immune responses and its implications for vaccine efficacy and antibody-mediated protection.
Collapse
Affiliation(s)
| | - Sanchit Bajpai
- Consultant ENT & Head and Neck Surgeon at TSM Medical College and Multispeciality Hospital, Lucknow, India.
| | - Puya Dehgani-Mobaraki
- Founder and President, Associazione Naso Sano, Ringgold Institution ID 567754, San Mariano, Italy
| |
Collapse
|
17
|
Renia L, Ng LF. Acquired immunity against SARS-CoV-2 infection and vaccination. EMBO Mol Med 2023; 15:e16345. [PMID: 37966373 DOI: 10.15252/emmm.202216345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023] Open
Abstract
The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused more than 700 million confirmed infections and ~7 million fatalities worldwide since its emergence in December 2019. SARS-CoV-2 is part of a family of positive-sense, enveloped RNA viruses known as coronaviruses. Today, at least seven human coronaviruses have been identified and are known to cause respiratory tract illnesses with varying severity. The COVID-19 pandemic spurred the generation of a vast amount of scientific knowledge on coronaviruses in record time, leading to a broad understanding of host immunity against SARS-CoV-2, and the rapid development of life-saving vaccines (mainly mRNA and adenovirus- or inactivated virus-based vaccines). Real world data on licensed SARS-CoV-2 vaccines have shown that efficacy ranges from 50 to 95% depending on viral variants, pre-infections, and vaccine formulations, regimens, and combinations. While vaccination does markedly decrease the chances of infection and severe disease, breakthrough symptomatic and asymptomatic infections have occurred due to the emergence of immune escape virus variants. Therefore, despite these early successes, a better understanding of the mechanisms of protective immunity against infection is essential for the development of longer lasting and more efficient vaccines against SARS-CoV-2 and future coronaviruses.
Collapse
Affiliation(s)
- Laurent Renia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Lisa Fp Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Wu J, Yang H, Yu D, Yang X. Blood-derived product therapies for SARS-CoV-2 infection and long COVID. MedComm (Beijing) 2023; 4:e426. [PMID: 38020714 PMCID: PMC10651828 DOI: 10.1002/mco2.426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/15/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is capable of large-scale transmission and has caused the coronavirus disease 2019 (COVID-19) pandemic. Patients with COVID-19 may experience persistent long-term health issues, known as long COVID. Both acute SARS-CoV-2 infection and long COVID have resulted in persistent negative impacts on global public health. The effective application and development of blood-derived products are important strategies to combat the serious damage caused by COVID-19. Since the emergence of COVID-19, various blood-derived products that target or do not target SARS-CoV-2 have been investigated for therapeutic applications. SARS-CoV-2-targeting blood-derived products, including COVID-19 convalescent plasma, COVID-19 hyperimmune globulin, and recombinant anti-SARS-CoV-2 neutralizing immunoglobulin G, are virus-targeting and can provide immediate control of viral infection in the short term. Non-SARS-CoV-2-targeting blood-derived products, including intravenous immunoglobulin and human serum albumin exhibit anti-inflammatory, immunomodulatory, antioxidant, and anticoagulatory properties. Rational use of these products can be beneficial to patients with SARS-CoV-2 infection or long COVID. With evidence accumulated since the pandemic began, we here summarize the progress of blood-derived product therapies for COVID-19, discuss the effective methods and scenarios regarding these therapies, and provide guidance and suggestions for clinical treatment.
Collapse
Affiliation(s)
- Junzheng Wu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd.ChengduChina
| | | | - Ding Yu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd.ChengduChina
- Beijing Tiantan Biological Products Co., Ltd.BeijingChina
| | | |
Collapse
|
19
|
Schommers P, Kim DS, Schlotz M, Kreer C, Eggeling R, Hake A, Stecher M, Park J, Radford CE, Dingens AS, Ercanoglu MS, Gruell H, Odidika S, Dahlhaus M, Gieselmann L, Ahmadov E, Lawong RY, Heger E, Knops E, Wyen C, Kümmerle T, Römer K, Scholten S, Wolf T, Stephan C, Suárez I, Raju N, Adhikari A, Esser S, Streeck H, Duerr R, Nanfack AJ, Zolla-Pazner S, Geldmacher C, Geisenberger O, Kroidl A, William W, Maganga L, Ntinginya NE, Georgiev IS, Vehreschild JJ, Hoelscher M, Fätkenheuer G, Lavinder JJ, Bloom JD, Seaman MS, Lehmann C, Pfeifer N, Georgiou G, Klein F. Dynamics and durability of HIV-1 neutralization are determined by viral replication. Nat Med 2023; 29:2763-2774. [PMID: 37957379 PMCID: PMC10667105 DOI: 10.1038/s41591-023-02582-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/07/2023] [Indexed: 11/15/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1)-neutralizing antibodies (nAbs) that prevent infection are the main goal of HIV vaccine discovery. But as no nAb-eliciting vaccines are yet available, only data from HIV-1 neutralizers-persons with HIV-1 who naturally develop broad and potent nAbs-can inform about the dynamics and durability of nAb responses in humans, knowledge which is crucial for the design of future HIV-1 vaccine regimens. To address this, we assessed HIV-1-neutralizing immunoglobulin G (IgG) from 2,354 persons with HIV-1 on or off antiretroviral therapy (ART). Infection with non-clade B viruses, CD4+ T cell counts <200 µl-1, being off ART and a longer time off ART were independent predictors of a more potent and broad neutralization. In longitudinal analyses, we found nAb half-lives of 9.3 and 16.9 years in individuals with no- or low-level viremia, respectively, and 4.0 years in persons who newly initiated ART. Finally, in a potent HIV-1 neutralizer, we identified lower fractions of serum nAbs and of nAb-encoding memory B cells after ART initiation, suggesting that a decreasing neutralizing serum activity after antigen withdrawal is due to lower levels of nAbs. These results collectively show that HIV-1-neutralizing responses can persist for several years, even at low antigen levels, suggesting that an HIV-1 vaccine may elicit a durable nAb response.
Collapse
Affiliation(s)
- Philipp Schommers
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Dae Sung Kim
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Maike Schlotz
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christoph Kreer
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ralf Eggeling
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Anna Hake
- Research Group Computational Biology, Max Planck Institute for Informatics, Saarbrücken, Germany
- Saarland Informatics Campus, Saarbrücken, Germany
| | - Melanie Stecher
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Juyeon Park
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Caelan E Radford
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA, USA
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Meryem S Ercanoglu
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Henning Gruell
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stanley Odidika
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Marten Dahlhaus
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Lutz Gieselmann
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Elvin Ahmadov
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Rene Y Lawong
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Heger
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elena Knops
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christoph Wyen
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Praxis am Ebertplatz, Cologne, Germany
| | | | - Katja Römer
- Gemeinschaftspraxis Gotenring, Cologne, Germany
| | | | - Timo Wolf
- Infectious Diseases Division, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Christoph Stephan
- Infectious Diseases Division, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Isabelle Suárez
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anurag Adhikari
- Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences, Lalitpur, Nepal
| | - Stefan Esser
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Hendrik Streeck
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
- Institute of Virology, Medical Faculty, University Bonn, Bonn, Germany
| | - Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York City, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, New York City, NY, USA
- Vaccine Center, NYU Grossman School of Medicine, New York City, NY, USA
| | - Aubin J Nanfack
- Medical Diagnostic Center, Yaoundé, Cameroon
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Microbiology, Icahn School of Medicine, New York City, NY, USA
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
| | - Otto Geisenberger
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Arne Kroidl
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Wiston William
- Mbeya Medical Research Centre, National Institute for Medical Research, Mbeya, Tanzania
| | - Lucas Maganga
- Mbeya Medical Research Centre, National Institute for Medical Research, Mbeya, Tanzania
| | | | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Jörg J Vehreschild
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
- Unit Global Health, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Gerd Fätkenheuer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Jason J Lavinder
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Clara Lehmann
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Nico Pfeifer
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - George Georgiou
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Florian Klein
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany.
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
20
|
Carlini F, Lusi V, Rizzi C, Assogna F, Laroni A. Cladribine Tablets Mode of Action, Learning from the Pandemic: A Narrative Review. Neurol Ther 2023; 12:1477-1490. [PMID: 37421556 PMCID: PMC10444742 DOI: 10.1007/s40120-023-00520-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system, characterized by chronic, inflammatory, demyelinating, and neurodegenerative processes. MS management relies on disease-modifying drugs that suppress/modulate the immune system. Cladribine tablets (CladT) have been approved by different health authorities for patients with various forms of relapsing MS. The drug has been demonstrated to deplete CD4+ and CD8+ T-cells, with a higher effect described in the former, and to decrease total CD19+, CD20+, and naive B-cell counts. COVID-19 is expected to become endemic, suggesting its potential infection risk for immuno-compromised patients, including MS patients treated with disease-modifying drugs. We report here the available data on disease-modifying drug-treated-MS patients and COVID-19 infection and vaccination, with a focus on CladT. MS patients treated with CladT are not at higher risk of developing severe COVID-19. While anti-SARS-CoV-2 vaccination is recommended in all MS patients with guidelines addressing vaccination timing according to the different disease-modifying drugs, no vaccination timing restrictions seem to be necessary for cladribine, based on its mechanism of action and available evidence. Published data suggest that CladT treatment does not impact the production of anti-SARS-CoV-2 antibodies after COVID-19 vaccination, possibly due to its relative sparing effect on naïve B-cells and the rapid B-cell reconstitution following treatment. Slightly lower specific T-cell responses are likely not impacting the risk of breakthrough COVID-19. It could be stated that cladribine's transient effect on innate immune cells likely contributes to maintaining an adequate first line of defense against the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Federico Carlini
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa, Italy
| | - Valeria Lusi
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa, Italy
| | - Caterina Rizzi
- Merck Serono S.P.A., Italy an Affiliate of Merck KGaA, Piazza del Pigneto 9, Rome, Italy
| | - Francesco Assogna
- Merck Serono S.P.A., Italy an Affiliate of Merck KGaA, Piazza del Pigneto 9, Rome, Italy
| | - Alice Laroni
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa, Italy.
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Largo Daneo 3, Genoa, Italy.
| |
Collapse
|
21
|
Metcalf C, Klein SL, Read JM, Riley S, Cummings D, Guan Y, Kwok KO, Huachen Z, Jiang CQ, Lam TH, Lessler J. Survival at older ages: are greater influenza antibody titers protective? Med Hypotheses 2023; 178:111135. [PMID: 37744025 PMCID: PMC10512879 DOI: 10.1016/j.mehy.2023.111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Antibodies are a core element of the immune system's defense against infectious diseases. We hypothesize that antibody titres might therefore be an important predictor of survival in older individuals. This is important because biomarkers that robustly measure survival have proved elusive, despite their potential utility in health care settings. We present evidence supporting the hypothesis that influenza antibody titres are associated with overall survival of older individuals, and indicate a role for biological sex in modulating this association. Since antibody titres can be modulated by vaccination, these results have important implications for public health policy on influenza control in aging populations.
Collapse
Affiliation(s)
- Cje Metcalf
- Dept of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - S L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - J M Read
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, UK
| | - S Riley
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Dat Cummings
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Yi Guan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Guangzhou No. 12 Hospital, Guangzhou, Guangdong, China
| | - K O Kwok
- School of Public Health, University of Hong Kong, Hong Kong, China
| | - Z Huachen
- School of Public Health, University of Hong Kong, Hong Kong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - C Q Jiang
- Guangzhou No. 12 Hospital, Guangzhou, Guangdong, China
| | - Tai Hing Lam
- School of Public Health, University of Hong Kong, Hong Kong, China
| | - J Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
22
|
McNamara RP, Maron JS, Boucau J, Roy V, Webb NE, Bertera HL, Barczak AK, Positives Study Staff T, Franko N, Logue JK, Kemp M, Li JZ, Zhou L, Hsieh CL, McLellan JS, Siedner MJ, Seaman MS, Lemieux JE, Chu HY, Alter G. Anamnestic humoral correlates of immunity across SARS-CoV-2 variants of concern. mBio 2023; 14:e0090223. [PMID: 37535402 PMCID: PMC10470538 DOI: 10.1128/mbio.00902-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/22/2023] [Indexed: 08/04/2023] Open
Abstract
While immune correlates against SARS-CoV-2 are typically defined at peak immunogenicity following vaccination, immunologic responses that expand selectively during the anamnestic response following infection can provide mechanistic and detailed insights into the immune mechanisms of protection. Moreover, whether anamnestic correlates are conserved across variants of concern (VOC), including the Delta and more distant Omicron VOC, remains unclear. To define the anamnestic correlates of immunity, across VOCs, we deeply profiled the humoral immune response in individuals infected with sequence-confirmed Delta or Omicron VOC after completing the vaccination series. While limited acute N-terminal domain and receptor-binding domain (RBD)-specific immune expansion was observed following breakthrough infection, a significant immunodominant expansion of opsonophagocytic Spike-specific antibody responses focused largely on the conserved S2-domain of SARS-CoV-2 was observed. This S2-specific functional humoral response continued to evolve over 2-3 weeks following Delta or Omicron breakthrough, targeting multiple VOCs and common coronaviruses. Strong responses were observed on the fusion peptide (FP) region and the heptad repeat 1 (HR1) region adjacent to the RBD. Notably, the FP is highly conserved across SARS-related coronaviruses and even non-SARS-related betacoronavirus. Taken together, our results point to a critical role of highly conserved, functional S2-specific responses in the anamnestic antibody response to SARS-CoV-2 infection across VOCs. These humoral responses linked to virus clearance can guide next-generation vaccine-boosting approaches to confer broad protection against future SARS-related coronaviruses. IMPORTANCE The Spike protein of SARS-CoV-2 is the primary target of antibody-based recognition. Selective pressures, be it the adaption to human-to-human transmission or evasion of previously acquired immunity, have spurred the emergence of variants of the virus such as the Delta and Omicron lineages. Therefore, understanding how antibody responses are expanded in breakthrough cases of previously vaccinated individuals can provide insights into key correlates of protection against current and future variants. Here, we show that vaccinated individuals who had documented COVID-19 breakthrough showed anamnestic antibody expansions targeting the conserved S2 subdomain of Spike, particularly within the fusion peptide region. These S2-directed antibodies were highly leveraged for non-neutralizing, phagocytic functions and were similarly expanded independent of the variant. We propose that through deep profiling of anamnestic antibody responses in breakthrough cases, we can identify antigen targets susceptible to novel monoclonal antibody therapy or vaccination-boosting strategies.
Collapse
Affiliation(s)
- Ryan P. McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Jenny S. Maron
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Julie Boucau
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Nicholas E. Webb
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Harry L. Bertera
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Amy K. Barczak
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - The Positives Study Staff
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Nicholas Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Jennifer K. Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Megan Kemp
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Jonathan Z. Li
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ling Zhou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Mark J. Siedner
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Michael S. Seaman
- Harvard Medical School, Boston, Massachusetts, USA
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jacob E. Lemieux
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- The Broad Institute, Cambridge, Massachusetts, USA
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
23
|
Ouyang MJ, Ao Z, Olukitibi TA, Lawrynuik P, Shieh C, Kung SKP, Fowke KR, Kobasa D, Yao X. Oral Immunization with rVSV Bivalent Vaccine Elicits Protective Immune Responses, Including ADCC, against Both SARS-CoV-2 and Influenza A Viruses. Vaccines (Basel) 2023; 11:1404. [PMID: 37766083 PMCID: PMC10534613 DOI: 10.3390/vaccines11091404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
COVID-19 and influenza both cause enormous disease burdens, and vaccines are the primary measures for their control. Since these viral diseases are transmitted through the mucosal surface of the respiratory tract, developing an effective and convenient mucosal vaccine should be a high priority. We previously reported a recombinant vesicular stomatitis virus (rVSV)-based bivalent vaccine (v-EM2/SPΔC1Delta) that protects animals from both SARS-CoV-2 and influenza viruses via intramuscular and intranasal immunization. Here, we further investigated the immune response induced by oral immunization with this vaccine and its protective efficacy in mice. The results demonstrated that the oral delivery, like the intranasal route, elicited strong and protective systemic immune responses against SARS-CoV-2 and influenza A virus. This included high levels of neutralizing antibodies (NAbs) against SARS-CoV-2, as well as strong anti-SARS-CoV-2 spike protein (SP) antibody-dependent cellular cytotoxicity (ADCC) and anti-influenza M2 ADCC responses in mice sera. Furthermore, it provided efficient protection against challenge with influenza H1N1 virus in a mouse model, with a 100% survival rate and a significantly low lung viral load of influenza virus. All these findings provide substantial evidence for the effectiveness of oral immunization with the rVSV bivalent vaccine.
Collapse
Affiliation(s)
- Maggie Jing Ouyang
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
| | - Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
| | - Titus A. Olukitibi
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
| | - Peter Lawrynuik
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
| | - Christopher Shieh
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
| | - Sam K. P. Kung
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W3, Canada;
| | - Keith R. Fowke
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
| | - Darwyn Kobasa
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3L5, Canada
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
| |
Collapse
|
24
|
Aiello A, Najafi-Fard S, Goletti D. Initial immune response after exposure to Mycobacterium tuberculosis or to SARS-COV-2: similarities and differences. Front Immunol 2023; 14:1244556. [PMID: 37662901 PMCID: PMC10470049 DOI: 10.3389/fimmu.2023.1244556] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) and Coronavirus disease-2019 (COVID-19), whose etiologic agent is severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), are currently the two deadliest infectious diseases in humans, which together have caused about more than 11 million deaths worldwide in the past 3 years. TB and COVID-19 share several aspects including the droplet- and aerosol-borne transmissibility, the lungs as primary target, some symptoms, and diagnostic tools. However, these two infectious diseases differ in other aspects as their incubation period, immune cells involved, persistence and the immunopathological response. In this review, we highlight the similarities and differences between TB and COVID-19 focusing on the innate and adaptive immune response induced after the exposure to Mtb and SARS-CoV-2 and the pathological pathways linking the two infections. Moreover, we provide a brief overview of the immune response in case of TB-COVID-19 co-infection highlighting the similarities and differences of each individual infection. A comprehensive understanding of the immune response involved in TB and COVID-19 is of utmost importance for the design of effective therapeutic strategies and vaccines for both diseases.
Collapse
Affiliation(s)
| | | | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
25
|
Kim IJ, Lee YH, Khalid MM, Chen IP, Zhang Y, Ott M, Verdin E. SARS-CoV-2 protein ORF8 limits expression levels of Spike antigen and facilitates immune evasion of infected host cells. J Biol Chem 2023; 299:104955. [PMID: 37354973 PMCID: PMC10289268 DOI: 10.1016/j.jbc.2023.104955] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
Recovery from COVID-19 depends on the ability of the host to effectively neutralize virions and infected cells, a process largely driven by antibody-mediated immunity. However, with the newly emerging variants that evade Spike-targeting antibodies, re-infections and breakthrough infections are increasingly common. A full characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mechanisms counteracting antibody-mediated immunity is therefore needed. Here, we report that ORF8 is a virally encoded SARS-CoV-2 factor that controls cellular Spike antigen levels. We show that ORF8 limits the availability of mature Spike by inhibiting host protein synthesis and retaining Spike at the endoplasmic reticulum, reducing cell-surface Spike levels and recognition by anti-SARS-CoV-2 antibodies. In conditions of limited Spike availability, we found ORF8 restricts Spike incorporation during viral assembly, reducing Spike levels in virions. Cell entry of these virions then leaves fewer Spike molecules at the cell surface, limiting antibody recognition of infected cells. Based on these findings, we propose that SARS-CoV-2 variants may adopt an ORF8-dependent strategy that facilitates immune evasion of infected cells for extended viral production.
Collapse
Affiliation(s)
- Ik-Jung Kim
- Buck Institute for Research on Aging, Novato, California, United States.
| | - Yong-Ho Lee
- Buck Institute for Research on Aging, Novato, California, United States; Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Mir M Khalid
- Gladstone Institutes, San Francisco, California, United States; Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| | - Irene P Chen
- Gladstone Institutes, San Francisco, California, United States; Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| | - Yini Zhang
- Buck Institute for Research on Aging, Novato, California, United States
| | - Melanie Ott
- Gladstone Institutes, San Francisco, California, United States; Department of Medicine, University of California, San Francisco, San Francisco, California, United States; Chan Zuckerberg Biohub, San Francisco, California, United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California, United States.
| |
Collapse
|
26
|
Bang MS, Kim CM, Cho NH, Seo JW, Kim DY, Yun NR, Kim DM. Evaluation of humoral immune response in relation to COVID-19 severity over 1 year post-infection: critical cases higher humoral immune response than mild cases. Front Immunol 2023; 14:1203803. [PMID: 37545518 PMCID: PMC10401267 DOI: 10.3389/fimmu.2023.1203803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2. We investigated the antibody response against SARS-CoV-2 until 1 year after symptom onset. Methods We collected 314 serum samples from 97 patients with COVID-19. Antibody responses were tested using an indirect immunofluorescence assay (IFA), enzyme-linked immunosorbent assay (ELISA), and plaque reduction neutralization test (PRNT) to detect specific neutralizing antibodies. Results The positivity rates for neutralizing antibodies at a 1:10 titer cutoff were 58.1% at 1 week, 97.8% at 4 weeks, and 78% at 1 year after symptom onset (53.8% in asymptomatic patients and 89.3% in symptomatic patients). The IFA and anti-S1 ELISA IgG results significantly correlated with neutralizing antibody titers. Critical/fatal cases showed significantly higher antibody titers than the asymptomatic or mild-to-moderate illness groups. Nonetheless, the median number of days to the seroconversion of neutralizing antibodies was 10 and 15 in asymptomatic and symptomatic patients, respectively. The asymptomatic group had a significantly higher neutralizing potency index than the mild-to-severe illness groups. Conclusions Neutralizing antibodies corresponded to earlier seroconversion but had a shorter presence in the asymptomatic group than in the symptomatic group and were still present 1 year after symptom onset in critical/fatal cases.
Collapse
Affiliation(s)
- Mi-Seon Bang
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Choon-Mee Kim
- Premedical Science, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun-Won Seo
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Da Young Kim
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Na Ra Yun
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Dong-Min Kim
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
27
|
Yazdanparast S, Bakhtiyaridovvombaygi M, Mikanik F, Ahmadi R, Ghorbani M, Mansoorian MR, Mansoorian M, Chegni H, Moshari J, Gharehbaghian A. Spotlight on contributory role of host immunogenetic profiling in SARS-CoV-2 infection: Susceptibility, severity, mortality, and vaccine effectiveness. Life Sci 2023:121907. [PMID: 37394094 DOI: 10.1016/j.lfs.2023.121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The SARS-CoV-2 virus has spread continuously worldwide, characterized by various clinical symptoms. The immune system responds to SARS-CoV-2 infection by producing Abs and secreting cytokines. Recently, numerous studies have highlighted that immunogenetic factors perform a putative role in COVID-19 pathogenesis and implicate vaccination effectiveness. AIM This review summarizes the relevant articles and evaluates the significance of mutation and polymorphism in immune-related genes regarding susceptibility, severity, mortality, and vaccination effectiveness of COVID-19. Furthermore, the correlation between host immunogenetic and SARS-CoV-2 reinfection is discussed. METHOD A comprehensive search was conducted to identify relevant articles using five databases until January 2023, which resulted in 105 total articles. KEY FINDINGS Taken to gather this review summarized that: (a) there is a plausible correlation between immune-related genes and COVID-19 outcomes, (b) the HLAs, cytokines, chemokines, and other immune-related genes expression profiles can be a prognostic factor in COVID-19-infected patients, and (c) polymorphisms in immune-related genes have been associated with the effectiveness of vaccination. SIGNIFICANCE Regarding the importance of mutation and polymorphisms in immune-related genes in COVID-19 outcomes, modulating candidate genes is expected to help clinical decisions, patient outcomes management, and innovative therapeutic approach development. In addition, the manipulation of host immunogenetics is hypothesized to induce more robust cellular and humoral immune responses, effectively increase the efficacy of vaccines, and subsequently reduce the incidence rates of reinfection-associated COVID-19.
Collapse
Affiliation(s)
- Somayeh Yazdanparast
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Ahmadi
- Department of Infectious Diseases, School of Medicine, Infectious Diseases Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Ghorbani
- Laboratory Hematology and Transfusion Medicine, Department of Pathology, Faculty Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | | | - Mozhgan Mansoorian
- Nursing Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamid Chegni
- Department of Immunology, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalil Moshari
- School of Medicine, Gonabad University of Medical Science, Gonabad, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran; Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Yang MC, Su YT, Chen PH, Tsai CC, Lin TI, Wu JR. Changing patterns of infectious diseases in children during the COVID-19 pandemic. Front Cell Infect Microbiol 2023; 13:1200617. [PMID: 37457965 PMCID: PMC10339349 DOI: 10.3389/fcimb.2023.1200617] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Each infectious disease has had its own epidemic pattern and seasonality for decades. However, public health mitigation measures during the coronavirus disease 2019 (COVID-19) pandemic have resulted in changing epidemic patterns of infectious diseases. Stringent measures resulted in low incidences of various infectious diseases during the outbreak of COVID-19, including influenza, respiratory syncytial virus, pneumococcus, enterovirus, and parainfluenza. Owing to the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and subsequent immunity development, decreasing virulence of SARS-CoV-2, and worldwide immunization against SARS-CoV-2 in children beyond 6 months of age, mitigation measures are lifted country by country. Consequently, the immunity debt to infectious respiratory viruses other than SARS-CoV-2 contributed to the "off-season," "see-saw," and "upsurge" patterns of various infectious diseases in children. Moreover, apart from the persistence of SARS-CoV-2, the coexistence of other circulating viruses or bacterial outbreaks may lead to twindemics or tripledemics during the following years. Therefore, it is necessary to maintain hand hygiene and immunization policies against various pathogens to alleviate the ongoing impact of infectious diseases on children.
Collapse
Affiliation(s)
- Ming-Chun Yang
- Department of Pediatrics, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Tsun Su
- Department of Pediatrics, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Ping-Hong Chen
- Department of Pediatrics, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Ching-Chung Tsai
- Department of Pediatrics, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Ting-I Lin
- Department of Pediatrics, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Jiunn-Ren Wu
- Department of Pediatrics, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
29
|
Goshina A, Matyushenko V, Mezhenskaya D, Rak A, Katelnikova A, Gusev D, Rudenko L, Isakova-Sivak I. RDE Treatment Prevents Non-Specific Detection of SARS-CoV-2- and Influenza-Specific IgG Antibodies in Heat-Inactivated Serum Samples. Antibodies (Basel) 2023; 12:39. [PMID: 37366655 PMCID: PMC10295076 DOI: 10.3390/antib12020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Assessing the levels of serum IgG antibodies is widely used to measure immunity to influenza and the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after natural infection or vaccination with specific vaccines, as well as to study immune responses to these viruses in animal models. For safety reasons, sometimes serum specimens collected from infected individuals are subjected to heat inactivation at 56 °C to reduce the risk of infecting personnel during serological studies. However, this procedure may affect the level of virus-specific antibodies, making the results of antibody immunoassays uninterpretable. Here, we evaluated the effect of the heat inactivation of human, ferret and hamster serum samples on the binding of IgG antibodies to the influenza and SARS-CoV-2 antigens. For this, serum samples of naive and immune hosts were analyzed in three variants: (i) untreated sera, (ii) heated at 56 °C for 1 h, and (iii) treated with receptor-destroying enzyme (RDE). The samples were studied through an in-house enzyme-linked immunosorbent assay (ELISA) using whole influenza virus or recombinant proteins corresponding to nucleocapsid (N) protein and the receptor-binding domain of SARS-CoV-2 Spike (RBD) as antigens. We demonstrated that the heat inactivation of the naive serum samples of various hosts can lead to false-positive results, while RDE treatment abolished the effect of the non-specific binding of IgG antibodies to the viral antigens. Furthermore, RDE also significantly decreased the level of virus-specific IgG antibodies in SARS-CoV-2 and influenza-immune sera of humans and animals, although it is unknown whether it actually removes true virus-specific IgG antibodies or only non-specifically binding artifacts. Nevertheless, we suggest that the RDE treatment of human and animal sera may be useful in preventing false-positive results in various immunoassays, while also neutralizing infectious virus, since the standard protocol for the use of RDE also includes heating the sample at 56 °C.
Collapse
Affiliation(s)
- Arina Goshina
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (A.G.); (V.M.); (D.M.); (A.R.)
| | - Victoria Matyushenko
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (A.G.); (V.M.); (D.M.); (A.R.)
| | - Daria Mezhenskaya
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (A.G.); (V.M.); (D.M.); (A.R.)
| | - Alexandra Rak
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (A.G.); (V.M.); (D.M.); (A.R.)
| | - Anastasia Katelnikova
- Department of Toxicology and Microbiology, Institute of Preclinical Research Ltd., 188663 Saint Petersburg, Russia;
| | - Denis Gusev
- Botkin Infectious Diseases Hospital, Piskarovskiy Ave 49, 195067 Saint Petersburg, Russia
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (A.G.); (V.M.); (D.M.); (A.R.)
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (A.G.); (V.M.); (D.M.); (A.R.)
| |
Collapse
|
30
|
Wuo M, Dugan AE, Halim M, Hauser BM, Feldman J, Caradonna TM, Zhang S, Pepi LE, Atyeo C, Fischinger S, Alter G, Garcia-Beltran WF, Azadi P, Hung D, Schmidt AG, Kiessling LL. Lectin Fingerprinting Distinguishes Antibody Neutralization in SARS-CoV-2. ACS CENTRAL SCIENCE 2023; 9:947-956. [PMID: 37252360 PMCID: PMC10214521 DOI: 10.1021/acscentsci.2c01471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Indexed: 05/31/2023]
Abstract
Enveloped viruses co-opt host glycosylation pathways to decorate their surface proteins. As viruses evolve, emerging strains can modify their glycosylation patterns to influence host interactions and subvert immune recognition. Still, changes in viral glycosylation or their impact on antibody protection cannot be predicted from genomic sequences alone. Using the highly glycosylated SARS-CoV-2 Spike protein as a model system, we present a lectin fingerprinting method that rapidly reports on changes in variant glycosylation state, which are linked to antibody neutralization. In the presence of antibodies or convalescent and vaccinated patient sera, unique lectin fingerprints emerge that distinguish neutralizing versus non-neutralizing antibodies. This information could not be inferred from direct binding interactions between antibodies and the Spike receptor-binding domain (RBD) binding data alone. Comparative glycoproteomics of the Spike RBD of wild-type (Wuhan-Hu-1) and Delta (B.1.617.2) variants reveal O-glycosylation differences as a key determinant of immune recognition differences. These data underscore the interplay between viral glycosylation and immune recognition and reveal lectin fingerprinting to be a rapid, sensitive, and high-throughput assay to distinguish the neutralization potential of antibodies that target critical viral glycoproteins.
Collapse
Affiliation(s)
- Michael
G. Wuo
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Amanda E. Dugan
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Melanie Halim
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Blake M. Hauser
- Ragon
Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Jared Feldman
- Ragon
Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Timothy M. Caradonna
- Ragon
Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Shuting Zhang
- The
Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Boston, Massachusetts 02139, United States
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Lauren E. Pepi
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Caroline Atyeo
- Ragon
Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Stephanie Fischinger
- Ragon
Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Galit Alter
- Ragon
Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | | | - Parastoo Azadi
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Deb Hung
- The
Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Boston, Massachusetts 02139, United States
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Aaron G. Schmidt
- Ragon
Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Laura L. Kiessling
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- The
Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Koch
Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
31
|
Loos C, Coccia M, Didierlaurent AM, Essaghir A, Fallon JK, Lauffenburger D, Luedemann C, Michell A, van der Most R, Zhu AL, Alter G, Burny W. Systems serology-based comparison of antibody effector functions induced by adjuvanted vaccines to guide vaccine design. NPJ Vaccines 2023; 8:34. [PMID: 36890168 PMCID: PMC9992919 DOI: 10.1038/s41541-023-00613-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/27/2023] [Indexed: 03/10/2023] Open
Abstract
The mechanisms by which antibodies confer protection vary across vaccines, ranging from simple neutralization to functions requiring innate immune recruitment via Fc-dependent mechanisms. The role of adjuvants in shaping the maturation of antibody-effector functions remains under investigated. Using systems serology, we compared adjuvants in licensed vaccines (AS01B/AS01E/AS03/AS04/Alum) combined with a model antigen. Antigen-naive adults received two adjuvanted immunizations followed by late revaccination with fractional-dosed non-adjuvanted antigen ( NCT00805389 ). A dichotomy in response quantities/qualities emerged post-dose 2 between AS01B/AS01E/AS03 and AS04/Alum, based on four features related to immunoglobulin titers or Fc-effector functions. AS01B/E and AS03 induced similar robust responses that were boosted upon revaccination, suggesting that memory B-cell programming by the adjuvanted vaccinations dictated responses post non-adjuvanted boost. AS04 and Alum induced weaker responses, that were dissimilar with enhanced functionalities for AS04. Distinct adjuvant classes can be leveraged to tune antibody-effector functions, where selective vaccine formulation using adjuvants with different immunological properties may direct antigen-specific antibody functions.
Collapse
Affiliation(s)
- Carolin Loos
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Arnaud M Didierlaurent
- GSK, Rixensart, Belgium.,Center of Vaccinology, University of Geneva, Geneva, Switzerland
| | | | | | | | | | - Ashlin Michell
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Alex Lee Zhu
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Virology and Immunology Program, University of Duisburg-Essen, Essen, Germany
| | - Galit Alter
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | |
Collapse
|
32
|
Santos LD, Antunes KH, Cassão G, Gonçalves JI, Abbadi BL, Bizarro CV, Basso LA, Machado P, de Souza APD, Porto BN. SARS-CoV-2 immune complex triggers human monocyte necroptosis. Int Immunopharmacol 2023; 117:109954. [PMID: 36870284 PMCID: PMC9968621 DOI: 10.1016/j.intimp.2023.109954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023]
Abstract
We analyzed the ability of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) itself and SARS-CoV-2-IgG immune complexes to trigger human monocyte necroptosis. SARS-CoV-2 was able to induce monocyte necroptosis dependently of MLKL activation. Necroptosis-associated proteins (RIPK1, RIPK3 and MLKL) were involved in SARS-CoV-2N1 gene expression in monocytes. SARS-CoV-2 immune complexes promoted monocyte necroptosis in a RIPK3- and MLKL-dependent manner, and Syk tyrosine kinase was necessary for SARS-CoV-2 immune complex-induced monocyte necroptosis, indicating the involvement of Fcγ receptors on necroptosis. Finally, we provide evidence that elevated LDH levels as a marker of lytic cell death are associated with COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Leonardo Duarte Santos
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Krist Helen Antunes
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Gisele Cassão
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Ismael Gonçalves
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruno Lopes Abbadi
- Research Center of Functional and Molecular Biology (CPBMF), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristiano Valim Bizarro
- Research Center of Functional and Molecular Biology (CPBMF), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiz Augusto Basso
- Research Center of Functional and Molecular Biology (CPBMF), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Pablo Machado
- Research Center of Functional and Molecular Biology (CPBMF), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Paula D de Souza
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.
| | - Bárbara Nery Porto
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
33
|
Lin F, Lin X, Fu B, Xiong Y, Zaky MY, Wu H. Functional studies of HLA and its role in SARS-CoV-2: Stimulating T cell response and vaccine development. Life Sci 2023; 315:121374. [PMID: 36621539 PMCID: PMC9815883 DOI: 10.1016/j.lfs.2023.121374] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
In the biological immune process, the major histocompatibility complex (MHC) plays an indispensable role in the expression of HLA molecules in the human body when viral infection activates the T-cell response to remove the virus. Since the first case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in 2019, how to address and prevent SARS-CoV-2 has become a common problem facing all mankind. The T-cell immune response activated by MHC peptides is a way to construct a defense line and reduce the transmission and harm of the virus. Presentation of SARS-CoV-2 antigen is associated with different types of HLA phenotypes, and different HLA phenotypes induce different immune responses. The prediction of SARS-CoV-2 mutation information and the design of vaccines based on HLAs can effectively activate autoimmunity and cope with virus mutations, which can provide some references for the prevention and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Feng Lin
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Xiaoyuan Lin
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt; Department of Oncology and Department of Biomedical and Clinical Science, Faculty of Medicine, Linköping University, Sweden
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| |
Collapse
|
34
|
Sonnweber T, Birgit S, Weiss G, Löffler-Ragg J. Pulmonary recovery after COVID-19 - a review. Expert Rev Respir Med 2023; 17:447-457. [PMID: 37449405 DOI: 10.1080/17476348.2023.2210837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/02/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION COVID-19 is caused by infection with the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). As the respiratory tract is the primary site of infection and host-mediated inflammatory responses, pathologies and dysfunction of the respiratory system characterize the severe disease and are typically associated with the need for oxygen supply or even ventilator support. In survivors of severe COVID-19, computed tomography follow-up frequently reveals structural lung abnormalities, and one-third of individuals who were hospitalized during acute COVID-19 demonstrate persisting lung abnormalities for at least 12 months after disease onset. AREAS COVERED This review summarizes current evidence on pulmonary recovery after COVID-19, focusing on adult patients who suffered from COVID-19 pneumonia. EXPERT OPINION Severe COVID-19 is associated with a high frequency of persisting lung abnormalities at follow-up. The long-term consequences of these findings remain elusive and urge further evaluation to identify individuals at risk for COVID-19 long-term consequences.
Collapse
Affiliation(s)
- Thomas Sonnweber
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck, Austria
| | - Sailer Birgit
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anaemia Research, Medical University Innsbruck, Innsbruck, Austria
| | - Judith Löffler-Ragg
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
35
|
Khoo WH, Jackson K, Phetsouphanh C, Zaunders JJ, Alquicira-Hernandez J, Yazar S, Ruiz-Diaz S, Singh M, Dhenni R, Kyaw W, Tea F, Merheb V, Lee FXZ, Burrell R, Howard-Jones A, Koirala A, Zhou L, Yuksel A, Catchpoole DR, Lai CL, Vitagliano TL, Rouet R, Christ D, Tang B, West NP, George S, Gerrard J, Croucher PI, Kelleher AD, Goodnow CG, Sprent JD, Powell JE, Brilot F, Nanan R, Hsu PS, Deenick EK, Britton PN, Phan TG. Tracking the clonal dynamics of SARS-CoV-2-specific T cells in children and adults with mild/asymptomatic COVID-19. Clin Immunol 2023; 246:109209. [PMID: 36539107 PMCID: PMC9758763 DOI: 10.1016/j.clim.2022.109209] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop less severe coronavirus disease 2019 (COVID-19) than adults. The mechanisms for the age-specific differences and the implications for infection-induced immunity are beginning to be uncovered. We show by longitudinal multimodal analysis that SARS-CoV-2 leaves a small footprint in the circulating T cell compartment in children with mild/asymptomatic COVID-19 compared to adult household contacts with the same disease severity who had more evidence of systemic T cell interferon activation, cytotoxicity and exhaustion. Children harbored diverse polyclonal SARS-CoV-2-specific naïve T cells whereas adults harbored clonally expanded SARS-CoV-2-specific memory T cells. A novel population of naïve interferon-activated T cells is expanded in acute COVID-19 and is recruited into the memory compartment during convalescence in adults but not children. This was associated with the development of robust CD4+ memory T cell responses in adults but not children. These data suggest that rapid clearance of SARS-CoV-2 in children may compromise their cellular immunity and ability to resist reinfection.
Collapse
Affiliation(s)
- Weng Hua Khoo
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | | | | | - John J Zaunders
- Centre for Applied Medical Research, St Vincent's Hospital, Sydney, Australia
| | - José Alquicira-Hernandez
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Seyhan Yazar
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia
| | | | - Mandeep Singh
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Rama Dhenni
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Wunna Kyaw
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Fiona Tea
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia
| | - Vera Merheb
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia
| | - Fiona X Z Lee
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia
| | - Rebecca Burrell
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | | | - Archana Koirala
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Li Zhou
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Aysen Yuksel
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Daniel R Catchpoole
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia
| | - Catherine L Lai
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | | | - Romain Rouet
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Benjamin Tang
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia; Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, Australia; Respiratory Tract Infection Research Node, Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney, Australia
| | - Nicholas P West
- Systems Biology and Data Science, Menzies Health Institute QLD, Griffith University, Parklands, Australia
| | - Shane George
- Departments of Emergency Medicine and Children's Critical Care, Gold Coast University Hospital, Southport, QLD, Australia; School of Medicine and Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - John Gerrard
- Department of Infectious Diseases and Immunology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Peter I Croucher
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | | | - Christopher G Goodnow
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia; UNSW Cellular Genomics Futures Institute, UNSW Sydney, Sydney, Australia
| | - Jonathan D Sprent
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia; UNSW Cellular Genomics Futures Institute, UNSW Sydney, Sydney, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia; Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, Australia; Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Ralph Nanan
- Charles Perkins Centre Nepean, University of Sydney, Sydney, Australia
| | - Peter S Hsu
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia
| | - Elissa K Deenick
- Garvan Institute of Medical Research, Sydney, Australia; Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Philip N Britton
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
36
|
Beyond neutralization: Fc-dependent antibody effector functions in SARS-CoV-2 infection. Nat Rev Immunol 2022:10.1038/s41577-022-00813-1. [PMID: 36536068 PMCID: PMC9761659 DOI: 10.1038/s41577-022-00813-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Neutralizing antibodies are known to have a crucial role in protecting against SARS-CoV-2 infection and have been suggested to be a useful correlate of protection for vaccine clinical trials and for population-level surveys. In addition to neutralizing virus directly, antibodies can also engage immune effectors through their Fc domains, including Fc receptor-expressing immune cells and complement. The outcome of these interactions depends on a range of factors, including antibody isotype-Fc receptor combinations, Fc receptor-bearing cell types and antibody post-translational modifications. A growing body of evidence has shown roles for these Fc-dependent antibody effector functions in determining the outcome of SARS-CoV-2 infection. However, measuring these functions is more complicated than assays that measure antibody binding and virus neutralization. Here, we examine recent data illuminating the roles of Fc-dependent antibody effector functions in the context of SARS-CoV-2 infection, and we discuss the implications of these data for the development of next-generation SARS-CoV-2 vaccines and therapeutics.
Collapse
|
37
|
Srivastava A, Hollenbach JA. The immunogenetics of COVID-19. Immunogenetics 2022; 75:309-320. [PMID: 36534127 PMCID: PMC9762652 DOI: 10.1007/s00251-022-01284-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022]
Abstract
The worldwide coronavirus disease 2019 pandemic was sparked by the severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2) that first surfaced in December 2019 (COVID-19). The effects of COVID-19 differ substantially not just between patients individually but also between populations with different ancestries. In humans, the human leukocyte antigen (HLA) system coordinates immune regulation. Since HLA molecules are a major component of antigen-presenting pathway, they play an important role in determining susceptibility to infectious disease. It is likely that differential susceptibility to SARS-CoV-2 infection and/or disease course in COVID-19 in different individuals could be influenced by the variations in the HLA genes which are associated with various immune responses to SARS-CoV-2. A growing number of studies have identified a connection between HLA variation and diverse COVID-19 outcomes. Here, we review research investigating the impact of HLA on individual responses to SARS-CoV-2 infection and/or progression, also discussing the significance of MHC-related immunological patterns and its use in vaccine design.
Collapse
Affiliation(s)
- Anshika Srivastava
- grid.266102.10000 0001 2297 6811University of California San Francisco, San Francisco, CA USA
| | - Jill A. Hollenbach
- grid.266102.10000 0001 2297 6811University of California San Francisco, San Francisco, CA USA
| |
Collapse
|
38
|
A bispecific nanobody dimer broadly neutralizes SARS-CoV-1 & 2 variants of concern and offers substantial protection against Omicron via low-dose intranasal administration. Cell Discov 2022; 8:132. [PMID: 36494344 PMCID: PMC9734137 DOI: 10.1038/s41421-022-00497-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Current SARS-CoV-2 Omicron subvariants impose a heavy burden on global health systems by evading immunity from most developed neutralizing antibodies and vaccines. Here, we identified a nanobody (aSA3) that strongly cross-reacts with the receptor binding domain (RBD) of both SARS-CoV-1 and wild-type (WT) SARS-CoV-2. The dimeric construct of aSA3 (aSA3-Fc) tightly binds and potently neutralizes both SARS-CoV-1 and WT SARS-CoV-2. Based on X-ray crystallography, we engineered a bispecific nanobody dimer (2-3-Fc) by fusing aSA3-Fc to aRBD-2, a previously identified broad-spectrum nanobody targeting an RBD epitope distinct from aSA3. 2-3-Fc exhibits single-digit ng/mL neutralizing potency against all major variants of concerns including BA.5. In hamsters, a single systemic dose of 2-3-Fc at 10 mg/kg conferred substantial efficacy against Omicron infection. More importantly, even at three low doses of 0.5 mg/kg, 2-3-Fc prophylactically administered through the intranasal route drastically reduced viral RNA loads and completely eliminated infectious Omicron particles in the trachea and lungs. Finally, we discovered that 2(Y29G)-3-Fc containing a Y29G substitution in aRBD-2 showed better activity than 2-3-Fc in neutralizing BA.2.75, a recent Omicron subvariant that emerged in India. This study expands the arsenal against SARS-CoV-1, provides potential therapeutic and prophylactic candidates that fully cover major SARS-CoV-2 variants, and may offer a simple preventive approach against Omicron and its subvariants.
Collapse
|
39
|
Cable J, Fauci A, Dowling WE, Günther S, Bente DA, Yadav PD, Madoff LC, Wang L, Arora RK, Van Kerkhove M, Chu MC, Jaenisch T, Epstein JH, Frost SDW, Bausch DG, Hensley LE, Bergeron É, Sitaras I, Gunn MD, Geisbert TW, Muñoz‐Fontela C, Krammer F, de Wit E, Nordenfelt P, Saphire EO, Gilbert SC, Corbett KS, Branco LM, Baize S, van Doremalen N, Krieger MA, Clemens SAC, Hesselink R, Hartman D. Lessons from the pandemic: Responding to emerging zoonotic viral diseases-a Keystone Symposia report. Ann N Y Acad Sci 2022; 1518:209-225. [PMID: 36183296 PMCID: PMC9538336 DOI: 10.1111/nyas.14898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The COVID-19 pandemic caught the world largely unprepared, including scientific and policy communities. On April 10-13, 2022, researchers across academia, industry, government, and nonprofit organizations met at the Keystone symposium "Lessons from the Pandemic: Responding to Emerging Zoonotic Viral Diseases" to discuss the successes and challenges of the COVID-19 pandemic and what lessons can be applied moving forward. Speakers focused on experiences not only from the COVID-19 pandemic but also from outbreaks of other pathogens, including the Ebola virus, Lassa virus, and Nipah virus. A general consensus was that investments made during the COVID-19 pandemic in infrastructure, collaborations, laboratory and manufacturing capacity, diagnostics, clinical trial networks, and regulatory enhancements-notably, in low-to-middle income countries-must be maintained and strengthened to enable quick, concerted responses to future threats, especially to zoonotic pathogens.
Collapse
Affiliation(s)
| | - Anthony Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)National Institutes of Health (NIH)BethesdaMarylandUSA
| | | | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine and German Center for Infection ResearchHamburgGermany
| | - Dennis A. Bente
- University of Texas Medical BranchGalveston National LaboratoryGalvestonTexasUSA
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Pragya Dhruv Yadav
- Indian Council of Medical Research‐National Institute of VirologyPuneIndia
| | - Lawrence C. Madoff
- Department of MedicineUniversity of Massachusetts Chan School of MedicineWorcesterMassachusettsUSA
| | | | - Rahul K. Arora
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
| | | | - May C. Chu
- Colorado School of Public HealthAnschutz Medical CampusAuroraColoradoUSA
| | - Thomas Jaenisch
- Colorado School of Public HealthAnschutz Medical CampusAuroraColoradoUSA
| | | | | | | | - Lisa E. Hensley
- Partnership for Research on Vaccines and Infectious Diseases in Liberia (PREVAIL)MonroviaLiberia
- Division of Clinical ResearchNational Institute of Allergy and Infectious DiseasesBethesdaMarylandUSA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High‐Consequence Pathogens and PathologyCenters for Disease Control and PreventionAtlantaGeorgiaUSA
| | - Ioannis Sitaras
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Michael D. Gunn
- Department of MedicineDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Thomas W. Geisbert
- University of ManitobaWinnipegManitobaCanada
- Galveston National Laboratory and Department of Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - César Muñoz‐Fontela
- Bernhard Nocht Institute for Tropical Medicine and German Center for Infection ResearchHamburgGermany
| | - Florian Krammer
- Department of Microbiology and Department of PathologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthHamiltonMontanaUSA
| | - Pontus Nordenfelt
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of MedicineLund UniversityLundSweden
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
| | - Sarah C. Gilbert
- Pandemic Sciences Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Kizzmekia S. Corbett
- Department of Immunology and Infectious DiseasesHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | | | - Sylvain Baize
- Unité de Biologie des Infections Virales EmergentesInstitut PasteurLyonFrance
- Centre International de Recherche en Infectiologie (CIRI)LyonFrance
- INSERM, Ecole Normale Supérieure de LyonUniversité de LyonLyonFrance
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthHamiltonMontanaUSA
| | - Marco A. Krieger
- Laboratory for Applied Science and Technology in Health, Carlos Chagas InstituteOswaldo Cruz Foundation ‐ ParanáCuritibaBrazil
- Integrated Translational Program in Chagas Disease from Fiocruz (Fio‐Chagas)Oswaldo Cruz Foundation ‐ Rio de JaneiroRio de JaneiroBrazil
| | - Sue Ann Costa Clemens
- Oxford Vaccine GroupOxford UniversityOxfordUK
- Institute for Global HealthUniversity of SienaSienaItaly
| | - Renske Hesselink
- Coalition for Epidemic Preparedness Innovations (CEPI)OsloNorway
| | - Dan Hartman
- Bill & Melinda Gates FoundationSeattleWashingtonUSA
| |
Collapse
|
40
|
Ardicli O, Carli KT, Satitsuksanoa P, Dreher A, Cusini A, Hutter S, Mirer D, Rückert B, Jonsdottir H, Weber B, Cervia C, Akdis M, Boyman O, Eggel A, Brüggen M, Akdis C, van de Veen W. Exposure to avian coronavirus vaccines is associated with increased levels of SARS-CoV-2-cross-reactive antibodies. Allergy 2022; 77:3648-3662. [PMID: 35869837 PMCID: PMC9467642 DOI: 10.1111/all.15441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/01/2022] [Accepted: 07/09/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Although avian coronavirus infectious bronchitis virus (IBV) and SARS-CoV-2 belong to different genera of the Coronaviridae family, exposure to IBV may result in the development of cross-reactive antibodies to SARS-CoV-2 due to homologous epitopes. We aimed to investigate whether antibody responses to IBV cross-react with SARS-CoV-2 in poultry farm personnel who are occupationally exposed to aerosolized IBV vaccines. METHODS We analyzed sera from poultry farm personnel, COVID-19 patients, and pre-pandemic controls. IgG levels against the SARS-CoV-2 antigens S1, RBD, S2, and N and peptides corresponding to the SARS-CoV-2 ORF3a, N, and S proteins as well as whole virus antigens of the four major S1-genotypes 4/91, IS/1494/06, M41, and D274 of IBV were investigated by in-house ELISAs. Moreover, live-virus neutralization test (VNT) was performed. RESULTS A subgroup of poultry farm personnel showed elevated levels of specific IgG for all tested SARS-CoV-2 antigens compared with pre-pandemic controls. Moreover, poultry farm personnel, COVID-19 patients, and pre-pandemic controls showed specific IgG antibodies against IBV strains. These antibody titers were higher in long-term vaccine implementers. We observed a strong correlation between IBV-specific IgG and SARS-CoV-2 S1-, RBD-, S2-, and N-specific IgG in poultry farm personnel compared with pre-pandemic controls and COVID-19 patients. However, no neutralization was observed for these cross-reactive antibodies from poultry farm personnel using the VNT. CONCLUSION We report here for the first time the detection of cross-reactive IgG antibodies against SARS-CoV-2 antigens in humans exposed to IBV vaccines. These findings may be useful for further studies on the adaptive immunity against COVID-19.
Collapse
Affiliation(s)
- Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
- Department of Microbiology, Faculty of Veterinary MedicineBursa Uludag UniversityBursaTurkey
| | - K. Tayfun Carli
- Department of Microbiology, Faculty of Veterinary MedicineBursa Uludag UniversityBursaTurkey
| | | | - Anita Dreher
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - Alexia Cusini
- Division of Infectious DiseasesCantonal Hospital of GrisonsChurSwitzerland
| | - Sandra Hutter
- Central LaboratoryCantonal Hospital of GrisonsChurSwitzerland
| | - David Mirer
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Hulda R. Jonsdottir
- Spiez Laboratory, Federal Office for Civil ProtectionSpiezSwitzerland
- Department of Rheumatology, Immunology, and AllergologyInselspital University HospitalBernSwitzerland
- Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Benjamin Weber
- Spiez Laboratory, Federal Office for Civil ProtectionSpiezSwitzerland
| | - Carlo Cervia
- Department of ImmunologyUniversity Hospital ZurichZurichSwitzerland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Onur Boyman
- Department of ImmunologyUniversity Hospital ZurichZurichSwitzerland
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
| | - Alexander Eggel
- Department of Rheumatology, Immunology, and AllergologyInselspital University HospitalBernSwitzerland
- Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Marie‐Charlotte Brüggen
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| |
Collapse
|
41
|
Egia-Mendikute L, Bosch A, Prieto-Fernández E, Vila-Vecilla L, Zanetti SR, Lee SY, Jiménez-Lasheras B, García del Río A, Antoñana-Vildosola A, de Blas A, Velasco-Beltrán P, Serrano-Maciá M, Iruzubieta P, Mehrpouyan M, Goldberg EM, Bornheimer SJ, Embade N, Martínez-Chantar ML, López-Hoyos M, Mato JM, Millet Ó, Palazón A. A flow cytometry-based neutralization assay for simultaneous evaluation of blocking antibodies against SARS-CoV-2 variants. Front Immunol 2022; 13:1014309. [PMID: 36505411 PMCID: PMC9730237 DOI: 10.3389/fimmu.2022.1014309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Vaccines against SARS-CoV-2 have alleviated infection rates, hospitalization and deaths associated with COVID-19. In order to monitor humoral immunity, several serology tests have been developed, but the recent emergence of variants of concern has revealed the need for assays that predict the neutralizing capacity of antibodies in a fast and adaptable manner. Sensitive and fast neutralization assays would allow a timely evaluation of immunity against emerging variants and support drug and vaccine discovery efforts. Here we describe a simple, fast, and cell-free multiplexed flow cytometry assay to interrogate the ability of antibodies to prevent the interaction of Angiotensin-converting enzyme 2 (ACE2) and the receptor binding domain (RBD) of the original Wuhan-1 SARS-CoV-2 strain and emerging variants simultaneously, as a surrogate neutralization assay. Using this method, we demonstrate that serum antibodies collected from representative individuals at different time-points during the pandemic present variable neutralizing activity against emerging variants, such as Omicron BA.1 and South African B.1.351. Importantly, antibodies present in samples collected during 2021, before the third dose of the vaccine was administered, do not confer complete neutralization against Omicron BA.1, as opposed to samples collected in 2022 which show significant neutralizing activity. The proposed approach has a comparable performance to other established surrogate methods such as cell-based assays using pseudotyped lentiviral particles expressing the spike of SARS-CoV-2, as demonstrated by the assessment of the blocking activity of therapeutic antibodies (i.e. Imdevimab) and serum samples. This method offers a scalable, cost effective and adaptable platform for the dynamic evaluation of antibody protection in affected populations against variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Leire Egia-Mendikute
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Alexandre Bosch
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Endika Prieto-Fernández
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Laura Vila-Vecilla
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Samanta Romina Zanetti
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - So Young Lee
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Borja Jiménez-Lasheras
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Ana García del Río
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Asier Antoñana-Vildosola
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Ander de Blas
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Paloma Velasco-Beltrán
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Marina Serrano-Maciá
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Paula Iruzubieta
- Servicio Inmunología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Cantabria, Spain
| | | | | | | | - Nieves Embade
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - María L. Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Marcos López-Hoyos
- Servicio Inmunología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Cantabria, Spain
| | - José M. Mato
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Óscar Millet
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Asís Palazón
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain,Ikerbasque, Basque Foundation for Science, Bizkaia, Spain,*Correspondence: Asís Palazón,
| |
Collapse
|
42
|
Seadawy MG, Zekri ARN, Saeed AA, San EJ, Ageez AM. Candidate Multi-Epitope Vaccine against Corona B.1.617 Lineage: In Silico Approach. Life (Basel) 2022; 12:1715. [PMID: 36362871 PMCID: PMC9694184 DOI: 10.3390/life12111715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 06/21/2024] Open
Abstract
Various mutations have accumulated since the first genome sequence of SARS-CoV2 in 2020. Mutants of the virus carrying the D614G and P681R mutations in the spike protein are increasingly becoming dominant all over the world. The two mutations increase the viral infectivity and severity of the disease. This report describes an in silico design of SARS-CoV-2 multi-epitope carrying the spike D614G and P681R mutations. The designed vaccine harbors the D614G mutation that increases viral infectivity, fitness, and the P681R mutation that enhances the cleavage of S to S1 and S2 subunits. The designed multi-epitope vaccine showed an antigenic property with a value of 0.67 and the immunogenicity of the predicted vaccine was calculated and yielded 3.4. The vaccine construct is predicted to be non-allergenic, thermostable and has hydrophilic nature. The combination of the selected CTL and HTL epitopes in the vaccine resulted in 96.85% population coverage globally. Stable interactions of the vaccine with Toll-Like Receptor 4 were tested by docking studies. The multi-epitope vaccine can be a good candidate against highly infecting SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Mohamed G. Seadawy
- Biological Prevention Department, Chemical Warfare, 4.5 km Suez-Cairo Rd, Almaza, Cairo 11351, Egypt
| | | | - Aya A. Saeed
- National Cancer Institute, Cairo University, Giza 12613, Egypt
| | - Emmanuel James San
- KwaZulu-Natal Research Innovation and Sequencing Platform, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Amr M. Ageez
- Faculty of Biotechnology, MSA University, 6 October City 12451, Egypt
| |
Collapse
|
43
|
Adhikari A, Abayasingam A, Rodrigo C, Agapiou D, Pandzic E, Brasher NA, Fernando BSM, Keoshkerian E, Li H, Kim HN, Lord M, Popovic G, Rawlinson W, Mina M, Post JJ, Hudson B, Gilroy N, Dwyer D, Sasson SC, Grubor-Bauk B, Lloyd AR, Martinello M, Bull RA, Tedla N. Longitudinal Characterization of Phagocytic and Neutralization Functions of Anti-Spike Antibodies in Plasma of Patients after Severe Acute Respiratory Syndrome Coronavirus 2 Infection. THE JOURNAL OF IMMUNOLOGY 2022; 209:1499-1512. [DOI: 10.4049/jimmunol.2200272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/01/2022] [Indexed: 11/06/2022]
|
44
|
DeWolf S, Laracy JC, Perales MA, Kamboj M, van den Brink MRM, Vardhana S. SARS-CoV-2 in immunocompromised individuals. Immunity 2022; 55:1779-1798. [PMID: 36182669 PMCID: PMC9468314 DOI: 10.1016/j.immuni.2022.09.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
Immunocompromised individuals and particularly those with hematologic malignancies are at increased risk for SARS-CoV-2-associated morbidity and mortality due to immunologic deficits that limit prevention, treatment, and clearance of the virus. Understanding the natural history of viral infections in people with impaired immunity due to underlying conditions, immunosuppressive therapy, or a combination thereof has emerged as a critical area of investigation during the COVID-19 pandemic. Studies focused on these individuals have provided key insights into aspects of innate and adaptive immunity underlying both the antiviral immune response and excess inflammation in the setting of COVID-19. This review presents what is known about distinct states of immunologic vulnerability to SARS-CoV-2 and how this information can be harnessed to improve prevention and treatment strategies for immunologically high-risk populations.
Collapse
Affiliation(s)
- Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin C Laracy
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Mini Kamboj
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marcel R M van den Brink
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Santosha Vardhana
- Weill Cornell Medical College, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
45
|
Ankerhold J, Giese S, Kolb P, Maul-Pavicic A, Voll RE, Göppert N, Ciminski K, Kreutz C, Lother A, Salzer U, Bildl W, Welsink T, Morgenthaler NG, Grawitz AB, Emmerich F, Steinmann D, Huzly D, Schwemmle M, Hengel H, Falcone V. Circulating multimeric immune complexes contribute to immunopathology in COVID-19. Nat Commun 2022; 13:5654. [PMID: 36163132 PMCID: PMC9513013 DOI: 10.1038/s41467-022-32867-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 08/22/2022] [Indexed: 01/08/2023] Open
Abstract
A dysregulated immune response with high levels of SARS-CoV-2 specific IgG antibodies characterizes patients with severe or critical COVID-19. Although a robust IgG response is considered to be protective, excessive triggering of activating Fc-gamma-receptors (FcγRs) could be detrimental and cause immunopathology. Here, we document excessive FcγRIIIA/CD16A activation in patients developing severe or critical COVID-19 but not in those with mild disease. We identify two independent ligands mediating extreme FcγRIIIA/CD16A activation. Soluble circulating IgG immune complexes (sICs) are detected in about 80% of patients with severe and critical COVID-19 at levels comparable to active systemic lupus erythematosus (SLE) disease. FcγRIIIA/CD16A activation is further enhanced by afucosylation of SARS-CoV-2 specific IgG. Utilizing cell-based reporter systems we provide evidence that sICs can be formed prior to a specific humoral response against SARS-CoV-2. Our data suggest a cycle of immunopathology driven by an early formation of sICs in predisposed patients. These findings suggest a reason for the seemingly paradoxical findings of high antiviral IgG responses and systemic immune dysregulation in severe COVID-19. The involvement of circulating sICs in the promotion of immunopathology in predisposed patients opens new possibilities for intervention strategies to mitigate critical COVID-19 progression. During viral infections high levels of antibodies can form soluble immune complexes (sICs) with antigen and trigger Fcγ receptors (FcγR) leading to increased immunopathology. Here the authors measure FcγRs activation by sICs and consider how these may lead to excessive immunopathology during severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jakob Ankerhold
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Sebastian Giese
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Philipp Kolb
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Andrea Maul-Pavicic
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Nathalie Göppert
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Kevin Ciminski
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Achim Lother
- Department of Cardiology and Angiology I, University Heart Center, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Interdisciplinary Medical Intensive Care, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Ulrich Salzer
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Wolfgang Bildl
- Institute of Physiology II, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Tim Welsink
- InVivo BioTech Services GmbH, Hennigsdorf, Germany
| | | | - Andrea Busse Grawitz
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Florian Emmerich
- Institute for Transfusion Medicine and Gene Therapy, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Steinmann
- Occupational Medical Service, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Daniela Huzly
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Hartmut Hengel
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
| | - Valeria Falcone
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
| |
Collapse
|
46
|
Hastak PS, Andersen CR, Kelleher AD, Sasson SC. Frontline workers: Mediators of mucosal immunity in community acquired pneumonia and COVID-19. Front Immunol 2022; 13:983550. [PMID: 36211412 PMCID: PMC9539803 DOI: 10.3389/fimmu.2022.983550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
The current COVID-19 pandemic has highlighted a need to further understand lung mucosal immunity to reduce the burden of community acquired pneumonia, including that caused by the SARS-CoV-2 virus. Local mucosal immunity provides the first line of defence against respiratory pathogens, however very little is known about the mechanisms involved, with a majority of literature on respiratory infections based on the examination of peripheral blood. The mortality for severe community acquired pneumonia has been rising annually, even prior to the current pandemic, highlighting a significant need to increase knowledge, understanding and research in this field. In this review we profile key mediators of lung mucosal immunity, the dysfunction that occurs in the diseased lung microenvironment including the imbalance of inflammatory mediators and dysbiosis of the local microbiome. A greater understanding of lung tissue-based immunity may lead to improved diagnostic and prognostic procedures and novel treatment strategies aimed at reducing the disease burden of community acquired pneumonia, avoiding the systemic manifestations of infection and excess morbidity and mortality.
Collapse
Affiliation(s)
- Priyanka S. Hastak
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| | - Christopher R. Andersen
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
- Intensive Care Unit, Royal North Shore Hospital, Sydney, NSW, Australia
- Critical Care and Trauma Division, The George Institute for Global Health, Sydney, NSW, Australia
| | - Anthony D. Kelleher
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| | - Sarah C. Sasson
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
47
|
Yang X, Chi H, Wu M, Wang Z, Lang Q, Han Q, Wang X, Liu X, Li Y, Wang X, Huang N, Bi J, Liang H, Gao Y, Zhao Y, Feng N, Yang S, Wang T, Xia X, Ge L. Discovery and characterization of SARS-CoV-2 reactive and neutralizing antibodies from humanized CAMouseHG mice through rapid hybridoma screening and high-throughput single-cell V(D)J sequencing. Front Immunol 2022; 13:992787. [PMID: 36211410 PMCID: PMC9545174 DOI: 10.3389/fimmu.2022.992787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
The coronavirus disease 2019 pandemic has caused more than 532 million infections and 6.3 million deaths to date. The reactive and neutralizing fully human antibodies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are effective detection tools and therapeutic measures. During SARS-CoV-2 infection, a large number of SARS-CoV-2 reactive and neutralizing antibodies will be produced. Most SARS-CoV-2 reactive and neutralizing fully human antibodies are isolated from human and frequently encoded by convergent heavy-chain variable genes. However, SARS-CoV-2 viruses can mutate rapidly during replication and the resistant variants of neutralizing antibodies easily survive and evade the immune response, especially in the face of such focused antibody responses in humans. Therefore, additional tools are needed to develop different kinds of fully human antibodies to compensate for current deficiency. In this study, we utilized antibody humanized CAMouseHG mice to develop a rapid antibody discovery method and examine the antibody repertoire of SARS-CoV-2 RBD-reactive hybridoma cells derived from CAMouseHG mice by using high-throughput single-cell V(D)J sequencing analysis. CAMouseHG mice were immunized by 28-day rapid immunization method. After electrofusion and semi-solid medium screening on day 12 post-electrofusion, 171 hybridoma clones were generated based on the results of SARS-CoV-2 RBD binding activity assay. A rather obvious preferential usage of IGHV6-1 family was found in these hybridoma clones derived from CAMouseHG mice, which was significantly different from the antibodies found in patients with COVID-19. After further virus neutralization screening and antibody competition assays, we generated a noncompeting two-antibody cocktail, which showed a potent prophylactic protective efficacy against SARS-CoV-2 in cynomolgus macaques. These results indicate that humanized CAMouseHG mice not only provide a valuable platform to obtain fully human reactive and neutralizing antibodies but also have a different antibody repertoire from humans. Thus, humanized CAMouseHG mice can be used as a good complementary tool in discovery of fully human therapeutic and diagnostic antibodies.
Collapse
Affiliation(s)
- Xi Yang
- Institute of Bioengineering, ChongQing Academy of Animal Sciences, Chongqing, China
| | - Hang Chi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Meng Wu
- Institute of Bioengineering, ChongQing Academy of Animal Sciences, Chongqing, China
| | - Zhenshan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Qiaoli Lang
- Institute of Bioengineering, ChongQing Academy of Animal Sciences, Chongqing, China
| | - Qiuxue Han
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Xinyue Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Xueqin Liu
- Institute of Bioengineering, ChongQing Academy of Animal Sciences, Chongqing, China
| | - Yuanguo Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiwen Wang
- Food and Drug Inspection Laboratory, Administration for Drug and Instrument Supervision and Inspection, Beijing, China
| | - Nan Huang
- Institute of Bioengineering, ChongQing Academy of Animal Sciences, Chongqing, China
| | - Jinhao Bi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Hao Liang
- Institute of Bioengineering, ChongQing Academy of Animal Sciences, Chongqing, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Liangpeng Ge, ; Tiecheng Wang, ; Xianzhu Xia,
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Liangpeng Ge, ; Tiecheng Wang, ; Xianzhu Xia,
| | - Liangpeng Ge
- Institute of Bioengineering, ChongQing Academy of Animal Sciences, Chongqing, China
- *Correspondence: Liangpeng Ge, ; Tiecheng Wang, ; Xianzhu Xia,
| |
Collapse
|
48
|
Brlić PK, Pavletić M, Lerga M, Krstanović F, Matešić MP, Miklić K, Malić S, Mikša L, Pajcur M, Peruč D, Schubert M, Bertoglio F, Arapović J, Protić A, Šustić A, Milošević M, Šain LČ, Jonjić S, Lisnić VJ, Brizić I. SARS-CoV-2 Spike and Nucleocapsid Antibody Response in Vaccinated Croatian Healthcare Workers and Infected Hospitalized Patients: A Single Center Cohort Study. Viruses 2022; 14:1966. [PMID: 36146773 PMCID: PMC9503044 DOI: 10.3390/v14091966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Studies assessing the dynamics and duration of antibody responses following SARS-CoV-2 infection or vaccination are an invaluable tool for vaccination schedule planning, assessment of risk groups and management of pandemics. In this study, we developed and employed ELISA assays to analyze the humoral responses to Nucleocapsid and Spike proteins in vaccinated health-care workers (HCW) and critically ill COVID-19 patients. Sera of more than 1000 HCWs and critically ill patients from the Clinical Hospital Center Rijeka were tested across a one-year period, encompassing the spread of major SARS-CoV-2 variants of concern (VOCs). We observed 97% of seroconversion in HCW cohort as well as sustained anti-Spike antibody response in vaccinees for more than 6 months. In contrast, the infection-induced anti-Nucleocapsid response was waning significantly in a six-month period. Furthermore, a substantial decrease in vaccinees' anti-Spike antibodies binding to Spike protein of Omicron VOC was also observed. Critically ill COVID-19 patients had higher levels of anti-Spike and anti-Nucleocapsid antibodies compared to HCWs. No significant differences in anti-Spike and anti-Nucleocapsid antibody levels between the critically ill COVID-19 patients that were on non-invasive oxygen supplementation and those on invasive ventilation support were observed. However, stronger anti-Spike, but not anti-Nucleocapsid, antibody response correlated with a better disease outcome in the cohort of patients on invasive ventilation support. Altogether, our results contribute to the growing pool of data on humoral responses to SARS-CoV-2 infection and vaccination.
Collapse
Affiliation(s)
- Paola Kučan Brlić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Martina Pavletić
- Emergency Department, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Mate Lerga
- Emergency Department, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Fran Krstanović
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Marina Pribanić Matešić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Karmela Miklić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Suzana Malić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Leonarda Mikša
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Maja Pajcur
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Dolores Peruč
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Jurica Arapović
- Faculty of Medicine, University of Mostar, Bijeli Brijeg b.b., 88000 Mostar, Bosnia and Herzegovina
| | - Alen Protić
- Department of Anesthesiology, Reanimation, Intensive Care and Emergency Medicine, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Alan Šustić
- Department of Anesthesiology, Reanimation, Intensive Care and Emergency Medicine, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Department of Clinical Medical Science II, Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia
| | - Marko Milošević
- Department of Anesthesiology, Reanimation, Intensive Care and Emergency Medicine, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Luka Čičin Šain
- Helmholtz Center for Infection Research, Department of Viral Immunology, 38124 Braunschweig, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, 38124 Braunschweig, Germany
- Centre for Individualised Infection Medicine (CiiM), Joint Venture of Helmholtz Centre for Infection Research and Hannover Medical School, 30625 Hannover, Germany
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
49
|
Abstract
The COVID-19 pandemic has caused an unprecedented health crisis and economic burden worldwide. Its etiological agent SARS-CoV-2, a new virus in the coronavirus family, has infected hundreds of millions of people worldwide. SARS-CoV-2 has evolved over the past 2 years to increase its transmissibility as well as to evade the immunity established by previous infection and vaccination. Nevertheless, strong immune responses can be elicited by viral infection and vaccination, which have proved to be protective against the emergence of variants, particularly with respect to hospitalization or severe disease. Here, we review our current understanding of how the virus enters the host cell and how our immune system is able to defend against cell entry and infection. Neutralizing antibodies are a major component of our immune defense and have been extensively studied for SARS-CoV-2 and its variants. Structures of these neutralizing antibodies have provided valuable insights into epitopes that are protective against the original ancestral virus and the variants that have emerged. The molecular characterization of neutralizing epitopes as well as epitope conservation and resistance are important for design of next-generation vaccines and antibody therapeutics.
Collapse
Affiliation(s)
- Hejun Liu
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
50
|
Takahashi M, Ai T, Sinozuka K, Baba Y, Igawa G, Nojiri S, Yamamoto T, Yuri M, Takei S, Saito K, Horiuchi Y, Kanno T, Tobiume M, Khasawneh A, Paran FJ, Hiki M, Wakita M, Miida T, Suzuki T, Okuzawa A, Takahashi K, Naito T, Tabe Y. Activation of SARS-CoV-2 neutralizing antibody is slower than elevation of spike-specific IgG, IgM, and nucleocapsid-specific IgG antibodies. Sci Rep 2022; 12:14909. [PMID: 36050347 PMCID: PMC9436163 DOI: 10.1038/s41598-022-19073-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022] Open
Abstract
COVID-19 antibody testing has been developed to investigate humoral immune response in SARS-CoV-2 infection. To assess the serological dynamics and neutralizing potency following SARS-CoV-2 infection, we investigated the neutralizing (NT) antibody, anti-spike, and anti-nucleocapsid antibodies responses using a total of 168 samples obtained from 68 SARS-CoV-2 infected patients. Antibodies were measured using an authentic virus neutralization assay, the high-throughput laboratory measurements of the Abbott Alinity quantitative anti-spike receptor-binding domain IgG (S-IgG), semiquantitative anti-spike IgM (S-IgM), and anti-nucleocapsid IgG (N-IgG) assays. The quantitative measurement of S-IgG antibodies was well correlated with the neutralizing activity detected by the neutralization assay (r = 0.8943, p < 0.0001). However, the kinetics of the SARS-CoV-2 NT antibody in severe cases were slower than that of anti-S and anti-N specific antibodies. These findings indicate a limitation of using the S-IgG antibody titer, detected by the chemiluminescent immunoassay, as a direct quantitative marker of neutralizing activity capacity. Antibody testing should be carefully interpreted when utilized as a marker for serological responses to facilitate diagnostic, therapeutic, and prophylactic interventions.
Collapse
Affiliation(s)
- Maika Takahashi
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Tomohiko Ai
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Hongo 2-1-2, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Konomi Sinozuka
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Yuna Baba
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Gene Igawa
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Shuko Nojiri
- Medical Technology Innovation Center, Juntendo University, Tokyo, Japan
| | - Takamasa Yamamoto
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Maiko Yuri
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Satomi Takei
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Hongo 2-1-2, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kaori Saito
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Hongo 2-1-2, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yuki Horiuchi
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Hongo 2-1-2, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takayuki Kanno
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Minoru Tobiume
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Abdullah Khasawneh
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Hongo 2-1-2, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Faith Jessica Paran
- Department of Research Support Utilizing Bioresource Bank, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Makoto Hiki
- Department of Emergency Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Cardiovascular Biology and Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Mitsuru Wakita
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Hongo 2-1-2, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Atsushi Okuzawa
- Medical Technology Innovation Center, Juntendo University, Tokyo, Japan
- Department of Research Support Utilizing Bioresource Bank, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Research Support Utilizing Bioresource Bank, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshio Naito
- Department of Research Support Utilizing Bioresource Bank, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of General Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Hongo 2-1-2, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Department of Research Support Utilizing Bioresource Bank, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|