1
|
Keeley O, Coyne AN. Nuclear and degradative functions of the ESCRT-III pathway: implications for neurodegenerative disease. Nucleus 2024; 15:2349085. [PMID: 38700207 PMCID: PMC11073439 DOI: 10.1080/19491034.2024.2349085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
The ESCRT machinery plays a pivotal role in membrane-remodeling events across multiple cellular processes including nuclear envelope repair and reformation, nuclear pore complex surveillance, endolysosomal trafficking, and neuronal pruning. Alterations in ESCRT-III functionality have been associated with neurodegenerative diseases including Frontotemporal Dementia (FTD), Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Disease (AD). In addition, mutations in specific ESCRT-III proteins have been identified in FTD/ALS. Thus, understanding how disruptions in the fundamental functions of this pathway and its individual protein components in the human central nervous system (CNS) may offer valuable insights into mechanisms underlying neurodegenerative disease pathogenesis and identification of potential therapeutic targets. In this review, we discuss ESCRT components, dynamics, and functions, with a focus on the ESCRT-III pathway. In addition, we explore the implications of altered ESCRT-III function for neurodegeneration with a primary emphasis on nuclear surveillance and endolysosomal trafficking within the CNS.
Collapse
Affiliation(s)
- Olivia Keeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyssa N. Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Fare CM, Rothstein JD. Nuclear pore dysfunction and disease: a complex opportunity. Nucleus 2024; 15:2314297. [PMID: 38383349 PMCID: PMC10883112 DOI: 10.1080/19491034.2024.2314297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
The separation of genetic material from bulk cytoplasm has enabled the evolution of increasingly complex organisms, allowing for the development of sophisticated forms of life. However, this complexity has created new categories of dysfunction, including those related to the movement of material between cellular compartments. In eukaryotic cells, nucleocytoplasmic trafficking is a fundamental biological process, and cumulative disruptions to nuclear integrity and nucleocytoplasmic transport are detrimental to cell survival. This is particularly true in post-mitotic neurons, where nuclear pore injury and errors to nucleocytoplasmic trafficking are strongly associated with neurodegenerative disease. In this review, we summarize the current understanding of nuclear pore biology in physiological and pathological contexts and discuss potential therapeutic approaches for addressing nuclear pore injury and dysfunctional nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Charlotte M Fare
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey D Rothstein
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Zhang Y, Zou M, Wu H, Zhu J, Jin T. The cGAS-STING pathway drives neuroinflammation and neurodegeneration via cellular and molecular mechanisms in neurodegenerative diseases. Neurobiol Dis 2024; 202:106710. [PMID: 39490400 DOI: 10.1016/j.nbd.2024.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a type of common chronic progressive disorders characterized by progressive damage to specific cell populations in the nervous system, ultimately leading to disability or death. Effective treatments for these diseases are still lacking, due to a limited understanding of their pathogeneses, which involve multiple cellular and molecular pathways. The triggering of an immune response is a common feature in neurodegenerative disorders. A critical challenge is the intricate interplay between neuroinflammation, neurodegeneration, and immune responses, which are not yet fully characterized. In recent years, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway, a crucial immune response for intracellular DNA sensing, has gradually gained attention. However, the specific roles of this pathway within cellular types such as immune cells, glial and neuronal cells, and its contribution to ND pathogenesis, remain not fully elucidated. In this review, we systematically explore how the cGAS-STING signaling links various cell types with related cellular effector pathways under the context of NDs for multifaceted therapeutic directions. We emphasize the discovery of condition-dependent cellular heterogeneity in the cGAS-STING pathway, which is integral for understanding the diverse cellular responses and potential therapeutic targets. Additionally, we review the pathogenic role of cGAS-STING activation in Parkinson's disease, ataxia-telangiectasia, and amyotrophic lateral sclerosis. We focus on the complex bidirectional roles of the cGAS-STING pathway in Alzheimer's disease, Huntington's disease, and multiple sclerosis, revealing their double-edged nature in disease progression. The objective of this review is to elucidate the pivotal role of the cGAS-STING pathway in ND pathogenesis and catalyze new insights for facilitating the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meijuan Zou
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Saez-Atienzar S, Souza CDS, Chia R, Beal SN, Lorenzini I, Huang R, Levy J, Burciu C, Ding J, Gibbs JR, Jones A, Dewan R, Pensato V, Peverelli S, Corrado L, van Vugt JJFA, van Rheenen W, Tunca C, Bayraktar E, Xia M, Iacoangeli A, Shatunov A, Tiloca C, Ticozzi N, Verde F, Mazzini L, Kenna K, Al Khleifat A, Opie-Martin S, Raggi F, Filosto M, Piccinelli SC, Padovani A, Gagliardi S, Inghilleri M, Ferlini A, Vasta R, Calvo A, Moglia C, Canosa A, Manera U, Grassano M, Mandrioli J, Mora G, Lunetta C, Tanel R, Trojsi F, Cardinali P, Gallone S, Brunetti M, Galimberti D, Serpente M, Fenoglio C, Scarpini E, Comi GP, Corti S, Del Bo R, Ceroni M, Pinter GL, Taroni F, Bella ED, Bersano E, Curtis CJ, Lee SH, Chung R, Patel H, Morrison KE, Cooper-Knock J, Shaw PJ, Breen G, Dobson RJB, Dalgard CL, Scholz SW, Al-Chalabi A, van den Berg LH, McLaughlin R, Hardiman O, Cereda C, Sorarù G, D'Alfonso S, Chandran S, Pal S, Ratti A, Gellera C, Johnson K, Doucet-O'Hare T, Pasternack N, Wang T, Nath A, Siciliano G, Silani V, Başak AN, Veldink JH, Camu W, Glass JD, Landers JE, Chiò A, Sattler R, Shaw CE, Ferraiuolo L, Fogh I, Traynor BJ. Mechanism-free repurposing of drugs for C9orf72-related ALS/FTD using large-scale genomic data. CELL GENOMICS 2024:100679. [PMID: 39437787 DOI: 10.1016/j.xgen.2024.100679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 09/22/2024] [Indexed: 10/25/2024]
Abstract
Repeat expansions in the C9orf72 gene are the most common genetic cause of (ALS) and frontotemporal dementia (FTD). Like other genetic forms of neurodegeneration, pinpointing the precise mechanism(s) by which this mutation leads to neuronal death remains elusive, and this lack of knowledge hampers the development of therapy for C9orf72-related disease. We used an agnostic approach based on genomic data (n = 41,273 ALS and healthy samples, and n = 1,516 C9orf72 carriers) to overcome these bottlenecks. Our drug-repurposing screen, based on gene- and expression-pattern matching and information about the genetic variants influencing onset age among C9orf72 carriers, identified acamprosate, a γ-aminobutyric acid analog, as a potentially repurposable treatment for patients carrying C9orf72 repeat expansions. We validated its neuroprotective effect in cell models and showed comparable efficacy to riluzole, the current standard of care. Our work highlights the potential value of genomics in repurposing drugs in situations where the underlying pathomechanisms are inherently complex. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Sara Saez-Atienzar
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health (NIH), Bethesda, MD 20892, USA; Department of Neurology, Ohio State University, Columbus, OH 43210, USA.
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Ruth Chia
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Selina N Beal
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Ileana Lorenzini
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Ruili Huang
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD 20850, USA
| | - Jennifer Levy
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Camelia Burciu
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
| | - J Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
| | - Ashley Jones
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Ramita Dewan
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Viviana Pensato
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Peverelli
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Lucia Corrado
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Joke J F A van Vugt
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Wouter van Rheenen
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ceren Tunca
- Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Elif Bayraktar
- Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Menghang Xia
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD 20850, USA
| | - Alfredo Iacoangeli
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; National Institute for Health Research Biomedical Research Centre and Dementia Unit, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Aleksey Shatunov
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Cinzia Tiloca
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy; Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Federico Verde
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy; Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Letizia Mazzini
- Amyotrophic Lateral Sclerosis Center, Department of Neurology "Maggiore della Carità" University Hospital, Novara, Italy
| | - Kevin Kenna
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ahmad Al Khleifat
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Sarah Opie-Martin
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Flavia Raggi
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Massimiliano Filosto
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, University of Brescia, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefano Cotti Piccinelli
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, University of Brescia, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stella Gagliardi
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Maurizio Inghilleri
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, 00185 Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Science, University of Ferrara, Ferrara, Italy
| | - Rosario Vasta
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy
| | - Andrea Calvo
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy; Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Cristina Moglia
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy; Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Antonio Canosa
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy; Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy; Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy
| | - Umberto Manera
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy; Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Maurizio Grassano
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Gabriele Mora
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy
| | - Christian Lunetta
- Department of Neurorehabilitation, Istituti Clinici Scientifici Maugeri IRCCS, Institute of Milan, Milan, Italy; NEMO Clinical Center Milano, Fondazione Serena Onlus, Milan, Italy
| | - Raffaella Tanel
- Operative Unit of Neurology, S. Chiara Hospital, Trento, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | | | - Salvatore Gallone
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy
| | - Maura Brunetti
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy
| | - Daniela Galimberti
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Maria Serpente
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Fenoglio
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Elio Scarpini
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo P Comi
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy; Neurology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy; Neurology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto Del Bo
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy; Neurology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Ceroni
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Giuseppe Lauria Pinter
- 3rd Neurology Unit, Motor Neuron Diseases Center, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Dalla Bella
- 3rd Neurology Unit, Motor Neuron Diseases Center, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy
| | - Enrica Bersano
- 3rd Neurology Unit, Motor Neuron Diseases Center, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; "L. Sacco" Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Charles J Curtis
- Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College London, London, UK; NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM), London, UK
| | - Sang Hyuck Lee
- Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College London, London, UK; NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM), London, UK
| | - Raymond Chung
- Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College London, London, UK; NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM), London, UK
| | - Hamel Patel
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM), London, UK
| | - Karen E Morrison
- School of Medicine, Dentistry, and Biomedical Sciences, Faculty of Medicine Health and Life Sciences, Queen's University, Belfast, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, and the NIHR Sheffield Biomedical Research Centre, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, and the NIHR Sheffield Biomedical Research Centre, Sheffield, UK
| | - Gerome Breen
- Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College London, London, UK; NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM), London, UK
| | - Richard J B Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College London, London SE5 8AF, UK; NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK; Health Data Research UK London, University College London, London, UK; Institute of Health Informatics, University College London, London, UK; NIHR Biomedical Research Centre at University College London Hospitals NHS Foundation Trust, London, UK
| | - Clifton L Dalgard
- Department of Anatomy, Physiology, & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; Department of Clinical Neuroscience, King's College Hospital, London SE5 9RS, UK
| | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Russell McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Cristina Cereda
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Gianni Sorarù
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Sandra D'Alfonso
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Siddharthan Chandran
- Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK; UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Suvankar Pal
- Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK; Centre for Neuroregeneration and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Kory Johnson
- Bioinformatics Section, Information Technology Program (ITP), Division of Intramural Research (DIR), National Institute of Neurological Disorders & Stroke, NIH, Bethesda, MD 20892, USA
| | - Tara Doucet-O'Hare
- Neuro-oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Nicholas Pasternack
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA
| | - Tongguang Wang
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA
| | - Avindra Nath
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy; Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Ayşe Nazlı Başak
- Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - William Camu
- ALS Center, CHU Gui de Chauliac, University of Montpellier, Montpellier, France
| | - Jonathan D Glass
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Adriano Chiò
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy; Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy; Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy
| | - Rita Sattler
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Christopher E Shaw
- United Kingdom Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Isabella Fogh
- United Kingdom Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health (NIH), Bethesda, MD 20892, USA; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK; National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA; RNA Therapeutics Laboratory, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD 20850, USA.
| |
Collapse
|
5
|
Wu H, Wang LC, Sow BM, Leow D, Zhu J, Gallo KM, Wilsbach K, Gupta R, Ostrow LW, Yeo CJJ, Sobota RM, Li R. TDP43 aggregation at ER-exit sites impairs ER-to-Golgi transport. Nat Commun 2024; 15:9026. [PMID: 39424779 PMCID: PMC11489672 DOI: 10.1038/s41467-024-52706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024] Open
Abstract
Protein aggregation plays key roles in age-related degenerative diseases, but how different proteins coalesce to form inclusions that vary in composition, morphology, molecular dynamics and confer physiological consequences is poorly understood. Here we employ a general reporter based on mutant Hsp104 to identify proteins forming aggregates in human cells under common proteotoxic stress. We identify over 300 proteins that form different inclusions containing subsets of aggregating proteins. In particular, TDP43, implicated in Amyotrophic Lateral Sclerosis (ALS), partitions dynamically between two distinct types of aggregates: stress granule and a previously unknown non-dynamic (solid-like) inclusion at the ER exit sites (ERES). TDP43-ERES co-aggregation is induced by diverse proteotoxic stresses and observed in the motor neurons of ALS patients. Such aggregation causes retention of secretory cargos at ERES and therefore delays ER-to-Golgi transport, providing a link between TDP43 aggregation and compromised cellular function in ALS patients.
Collapse
Affiliation(s)
- Hongyi Wu
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Loo Chien Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Belle M Sow
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Damien Leow
- Department of Anatomy, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin Zhu
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Kathryn M Gallo
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kathleen Wilsbach
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Roshni Gupta
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Lyle W Ostrow
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Crystal J J Yeo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland, UK
| | - Radoslaw M Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Rong Li
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Alshehri RS, Abuzinadah AR, Alrawaili MS, Alotaibi MK, Alsufyani HA, Alshanketi RM, AlShareef AA. A Review of Biomarkers of Amyotrophic Lateral Sclerosis: A Pathophysiologic Approach. Int J Mol Sci 2024; 25:10900. [PMID: 39456682 PMCID: PMC11507293 DOI: 10.3390/ijms252010900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. The heterogeneous nature of ALS at the clinical, genetic, and pathological levels makes it challenging to develop diagnostic and prognostic tools that fit all disease phenotypes. Limitations associated with the functional scales and the qualitative nature of mainstay electrophysiological testing prompt the investigation of more objective quantitative assessment. Biofluid biomarkers have the potential to fill that gap by providing evidence of a disease process potentially early in the disease, its progression, and its response to therapy. In contrast to other neurodegenerative diseases, no biomarker has yet been validated in clinical use for ALS. Several fluid biomarkers have been investigated in clinical studies in ALS. Biofluid biomarkers reflect the different pathophysiological processes, from protein aggregation to muscle denervation. This review takes a pathophysiologic approach to summarizing the findings of clinical studies utilizing quantitative biofluid biomarkers in ALS, discusses the utility and shortcomings of each biomarker, and highlights the superiority of neurofilaments as biomarkers of neurodegeneration over other candidate biomarkers.
Collapse
Affiliation(s)
- Rawiah S. Alshehri
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Ahmad R. Abuzinadah
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Moafaq S. Alrawaili
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Muteb K. Alotaibi
- Neurology Department, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia;
| | - Hadeel A. Alsufyani
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Rajaa M. Alshanketi
- Internal Medicine Department, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
| | - Aysha A. AlShareef
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
7
|
Sirkis DW, Oddi AP, Jonson C, Bonham LW, Hoang PT, Yokoyama JS. The role of interferon signaling in neurodegeneration and neuropsychiatric disorders. Front Psychiatry 2024; 15:1480438. [PMID: 39421070 PMCID: PMC11484020 DOI: 10.3389/fpsyt.2024.1480438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Recent advances in transcriptomics research have uncovered heightened interferon (IFN) responses in neurodegenerative diseases including Alzheimer's disease, primary tauopathy, Parkinson's disease, TDP-43 proteinopathy, and related mouse models. Augmented IFN signaling is now relatively well established for microglia in these contexts, but emerging work has highlighted a novel role for IFN-responsive T cells in the brain and peripheral blood in some types of neurodegeneration. These findings complement a body of literature implicating dysregulated IFN signaling in neuropsychiatric disorders including major depression and post-traumatic stress disorder. In this review, we will characterize and integrate advances in our understanding of IFN responses in neurodegenerative and neuropsychiatric disease, discuss how sex and ancestry modulate the IFN response, and examine potential mechanistic explanations for the upregulation of antiviral-like IFN signaling pathways in these seemingly non-viral neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Daniel W. Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Alexis P. Oddi
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Caroline Jonson
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, United States
- DataTecnica LLC, Washington, DC, United States
| | - Luke W. Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Phuong T. Hoang
- Movement Disorders and Neuromodulation Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer S. Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
8
|
Driver MD, Postema J, Onck PR. The Effect of Dipeptide Repeat Proteins on FUS/TDP43-RNA Condensation in C9orf72 ALS/FTD. J Phys Chem B 2024; 128:9405-9417. [PMID: 39311028 PMCID: PMC11457143 DOI: 10.1021/acs.jpcb.4c04663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Condensation of RNA binding proteins (RBPs) with RNA is essential for cellular function. The most common familial cause of the diseases ALS and FTD is C9orf72 repeat expansion disorders that produce dipeptide repeat proteins (DPRs). We explore the hypothesis that DPRs disrupt the native condensation behavior of RBPs and RNA through molecular interactions resulting in toxicity. FUS and TDP43 are two RBPs known to be affected in ALS/FTD. We use our previously developed 1-bead-per-amino acid and a newly developed 3-bead-per-nucleotide molecular dynamics model to explore ternary phase diagrams of FUS/TDP43-RNA-DPR systems. We show that the most toxic arginine containing DPRs (R-DPRs) can disrupt the RBP condensates through cation-π interactions and can strongly sequester RNA through electrostatic interactions. The native droplet morphologies are already modified at small additions of R-DPRs leading to non-native FUS/TDP43-encapsulated condensates with a marbled RNA/DPR core.
Collapse
Affiliation(s)
- Mark D. Driver
- Zernike Institute
for Advanced
Materials, University of Groningen, Groningen 9747AG, the Netherlands
| | - Jasper Postema
- Zernike Institute
for Advanced
Materials, University of Groningen, Groningen 9747AG, the Netherlands
| | - Patrick R. Onck
- Zernike Institute
for Advanced
Materials, University of Groningen, Groningen 9747AG, the Netherlands
| |
Collapse
|
9
|
Yang L, Guttman L, Dawson VL, Dawson TM. Parthanatos: Mechanisms, modulation, and therapeutic prospects in neurodegenerative disease and stroke. Biochem Pharmacol 2024; 228:116174. [PMID: 38552851 PMCID: PMC11410548 DOI: 10.1016/j.bcp.2024.116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Parthanatos is a cell death signaling pathway that has emerged as a compelling target for pharmaceutical intervention. It plays a pivotal role in the neuron loss and neuroinflammation that occurs in Parkinson's Disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS), and stroke. There are currently no treatments available to humans to prevent cell death in any of these diseases. This review provides an in-depth examination of the current understanding of the Parthanatos mechanism, with a particular focus on its implications in neuroinflammation and various diseases discussed herein. Furthermore, we thoroughly review potential intervention targets within the Parthanatos pathway. We dissect recent progress in inhibitory strategies, complimented by a detailed structural analysis of key Parthanatos executioners, PARP-1, AIF, and MIF, along with an assessment of their established inhibitors. We hope to introduce a new perspective on the feasibility of targeting components within the Parthanatos pathway, emphasizing its potential to bring about transformative outcomes in therapeutic interventions. By delineating therapeutic opportunities and known targets, we seek to emphasize the imperative of blocking Parthanatos as a precursor to developing disease-modifying treatments. This comprehensive exploration aims to catalyze a paradigm shift in our understanding of potential neurodegenerative disease therapeutics, advocating for the pursuit of effective interventions centered around Parthanatos inhibition.
Collapse
Affiliation(s)
- Liu Yang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren Guttman
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Zhang J, Cao W, Xie J, Pang C, Gao L, Zhu L, Li Y, Yu H, Du L, Fan D, Deng B. Metabolic Syndrome and Risk of Amyotrophic Lateral Sclerosis: Insights from a Large-Scale Prospective Study. Ann Neurol 2024; 96:788-801. [PMID: 38934512 DOI: 10.1002/ana.27019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Although metabolic abnormalities are implicated in the etiology of neurodegenerative diseases, their role in the development of amyotrophic lateral sclerosis (ALS) remains a subject of controversy. We aimed to identify the association between metabolic syndrome (MetS) and the risk of ALS. METHODS This study included 395,987 participants from the UK Biobank to investigate the relationship between MetS and ALS. Cox regression model was used to estimate hazard ratios (HR). Stratified analyses were performed based on gender, body mass index (BMI), smoking status, and education level. Mediation analysis was conducted to explore potential mechanisms. RESULTS In this study, a total of 539 cases of ALS were recorded after a median follow-up of 13.7 years. Patients with MetS (defined harmonized) had a higher risk of developing ALS after adjusting for confounding factors (HR: 1.50, 95% CI: 1.19-1.89). Specifically, hypertension and high triglycerides were linked to a higher risk of ALS (HR: 1.53, 95% CI: 1.19-1.95; HR: 1.31, 95% CI: 1.06-1.61, respectively). Moreover, the quantity of metabolic abnormalities showed significant results. Stratified analysis revealed that these associations are particularly significant in individuals with a BMI <25. These findings remained stable after sensitivity analysis. Notably, mediation analysis identified potential metabolites and metabolomic mediators, including alkaline phosphatase, cystatin C, γ-glutamyl transferase, saturated fatty acids to total fatty acids percentage, and omega-6 fatty acids to omega-3 fatty acids ratio. INTERPRETATION MetS exhibits a robust association with an increased susceptibility to ALS, particularly in individuals with a lower BMI. Furthermore, metabolites and metabolomics, as potential mediators, provide invaluable insights into the intricate biological mechanisms. ANN NEUROL 2024;96:788-801.
Collapse
Affiliation(s)
- Junwei Zhang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Jiali Xie
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunyang Pang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lingfei Gao
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luyi Zhu
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yaojia Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huan Yu
- Department of Pediatrics, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lihuai Du
- College of Mathematics and Physics, Wenzhou University, Wenzhou, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Binbin Deng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
de Calbiac H, Renault S, Haouy G, Jung V, Roger K, Zhou Q, Campanari ML, Chentout L, Demy DL, Marian A, Goudin N, Edbauer D, Guerrera C, Ciura S, Kabashi E. Poly-GP accumulation due to C9orf72 loss of function induces motor neuron apoptosis through autophagy and mitophagy defects. Autophagy 2024; 20:2164-2185. [PMID: 39316747 PMCID: PMC11423671 DOI: 10.1080/15548627.2024.2358736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 09/26/2024] Open
Abstract
The GGGGCC hexanucleotide repeat expansion (HRE) of the C9orf72 gene is the most frequent cause of amyotrophic lateral sclerosis (ALS), a devastative neurodegenerative disease characterized by motor neuron degeneration. C9orf72 HRE is associated with lowered levels of C9orf72 expression and its translation results in the production of dipeptide-repeats (DPRs). To recapitulate C9orf72-related ALS disease in vivo, we developed a zebrafish model where we expressed glycine-proline (GP) DPR in a c9orf72 knockdown context. We report that C9orf72 gain- and loss-of-function properties act synergistically to induce motor neuron degeneration and paralysis with poly(GP) accumulating preferentially within motor neurons along with Sqstm1/p62 aggregation indicating macroautophagy/autophagy deficits. Poly(GP) levels were shown to accumulate upon c9orf72 downregulation and were comparable to levels assessed in autopsy samples of patients carrying C9orf72 HRE. Chemical boosting of autophagy using rapamycin or apilimod, is able to rescue motor deficits. Proteomics analysis of zebrafish-purified motor neurons unravels mitochondria dysfunction confirmed through a comparative analysis of previously published C9orf72 iPSC-derived motor neurons. Consistently, 3D-reconstructions of motor neuron demonstrate that poly(GP) aggregates colocalize to mitochondria, thus inducing their elongation and swelling and the failure of their processing by mitophagy, with mitophagy activation through urolithin A preventing locomotor deficits. Finally, we report apoptotic-related increased amounts of cleaved Casp3 (caspase 3, apoptosis-related cysteine peptidase) and rescue of motor neuron degeneration by constitutive inhibition of Casp9 or treatment with decylubiquinone. Here we provide evidence of key pathogenic steps in C9ALS-FTD that can be targeted through pharmacological avenues, thus raising new therapeutic perspectives for ALS patients.
Collapse
Affiliation(s)
- Hortense de Calbiac
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Solène Renault
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Grégoire Haouy
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Vincent Jung
- Proteomics Platform 3P5Necker, INSERM US24/CNRS UMS, Paris Descartes University, Structure Fédérative de Recherche Necker, Paris, France
| | - Kevin Roger
- Proteomics Platform 3P5Necker, INSERM US24/CNRS UMS, Paris Descartes University, Structure Fédérative de Recherche Necker, Paris, France
| | - Qihui Zhou
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| | - Maria-Letizia Campanari
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Loïc Chentout
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Doris Lou Demy
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Anca Marian
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Nicolas Goudin
- Imaging Core Facility, INSERM US24/CNRS UMS3633, Paris, France
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Chiara Guerrera
- Proteomics Platform 3P5Necker, INSERM US24/CNRS UMS, Paris Descartes University, Structure Fédérative de Recherche Necker, Paris, France
| | - Sorana Ciura
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Edor Kabashi
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| |
Collapse
|
12
|
van der Geest AT, Jakobs CE, Ljubikj T, Huffels CFM, Cañizares Luna M, Vieira de Sá R, Adolfs Y, de Wit M, Rutten DH, Kaal M, Zwartkruis MM, Carcolé M, Groen EJN, Hol EM, Basak O, Isaacs AM, Westeneng HJ, van den Berg LH, Veldink JH, Schlegel DK, Pasterkamp RJ. Molecular pathology, developmental changes and synaptic dysfunction in (pre-) symptomatic human C9ORF72-ALS/FTD cerebral organoids. Acta Neuropathol Commun 2024; 12:152. [PMID: 39289761 PMCID: PMC11409520 DOI: 10.1186/s40478-024-01857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024] Open
Abstract
A hexanucleotide repeat expansion (HRE) in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Human brain imaging and experimental studies indicate early changes in brain structure and connectivity in C9-ALS/FTD, even before symptom onset. Because these early disease phenotypes remain incompletely understood, we generated iPSC-derived cerebral organoid models from C9-ALS/FTD patients, presymptomatic C9ORF72-HRE (C9-HRE) carriers, and controls. Our work revealed the presence of all three C9-HRE-related molecular pathologies and developmental stage-dependent size phenotypes in cerebral organoids from C9-ALS/FTD patients. In addition, single-cell RNA sequencing identified changes in cell type abundance and distribution in C9-ALS/FTD organoids, including a reduction in the number of deep layer cortical neurons and the distribution of neural progenitors. Further, molecular and cellular analyses and patch-clamp electrophysiology detected various changes in synapse structure and function. Intriguingly, organoids from all presymptomatic C9-HRE carriers displayed C9-HRE molecular pathology, whereas the extent to which more downstream cellular defects, as found in C9-ALS/FTD models, were detected varied for the different presymptomatic C9-HRE cases. Together, these results unveil early changes in 3D human brain tissue organization and synaptic connectivity in C9-ALS/FTD that likely constitute initial pathologies crucial for understanding disease onset and the design of therapeutic strategies.
Collapse
Affiliation(s)
- Astrid T van der Geest
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Channa E Jakobs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tijana Ljubikj
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Christiaan F M Huffels
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marta Cañizares Luna
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Renata Vieira de Sá
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marina de Wit
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Daan H Rutten
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marthe Kaal
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maria M Zwartkruis
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mireia Carcolé
- UK Dementia Research Institute at UCL and Dept. of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Ewout J N Groen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Onur Basak
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Adrian M Isaacs
- UK Dementia Research Institute at UCL and Dept. of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Henk-Jan Westeneng
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Domino K Schlegel
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Liu H, Zhao XF, Lu YN, Hayes LR, Wang J. CRISPR/Cas13d targeting suppresses repeat-associated non-AUG translation of C9orf72 hexanucleotide repeat RNA. J Clin Invest 2024; 134:e179016. [PMID: 39288267 PMCID: PMC11527445 DOI: 10.1172/jci179016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
A hexanucleotide GGGGCC repeat expansion in the non-coding region of the C9orf72 gene is the most common genetic mutation identified in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The resulting repeat RNA and dipeptide repeat proteins from non-conventional repeat translation have been recognized as important markers associated with the diseases. CRISPR/Cas13d, a powerful RNA-targeting tool, has faced challenges in effectively targeting RNA with stable secondary structures. Here we report that CRISPR/Cas13d can be optimized to specifically target GGGGCC repeat RNA. Our results demonstrate that the CRISPR/Cas13d system can be harnessed to significantly diminish the translation of poly-dipeptides originating from the GGGGCC repeat RNA. This efficacy has been validated in various cell types, including induced pluripotent stem cells and differentiated motor neurons originating from C9orf72-ALS patients, as well as in C9orf72 repeat transgenic mice. These findings demonstrate the application of CRISPR/Cas13d in targeting RNA with intricate higher-order structures and suggest a potential therapeutic approach for ALS and FTD.
Collapse
Affiliation(s)
- Honghe Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, and
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xiao-Feng Zhao
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, and
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yu-Ning Lu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, and
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lindsey R. Hayes
- Brain Science Institute and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, and
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Fisher RMA, Torrente MP. Histone post-translational modification and heterochromatin alterations in neurodegeneration: revealing novel disease pathways and potential therapeutics. Front Mol Neurosci 2024; 17:1456052. [PMID: 39346681 PMCID: PMC11427407 DOI: 10.3389/fnmol.2024.1456052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), Frontotemporal Dementia (FTD), and Amyotrophic lateral sclerosis (ALS) are complex and fatal neurodegenerative diseases. While current treatments for these diseases do alleviate some symptoms, there is an imperative need for novel treatments able to stop their progression. For all of these ailments, most cases occur sporadically and have no known genetic cause. Only a small percentage of patients bear known mutations which occur in a multitude of genes. Hence, it is clear that genetic factors alone do not explain disease occurrence. Chromatin, a DNA-histone complex whose basic unit is the nucleosome, is divided into euchromatin, an open form accessible to the transcriptional machinery, and heterochromatin, which is closed and transcriptionally inactive. Protruding out of the nucleosome, histone tails undergo post-translational modifications (PTMs) including methylation, acetylation, and phosphorylation which occur at specific residues and are connected to different chromatin structural states and regulate access to transcriptional machinery. Epigenetic mechanisms, including histone PTMs and changes in chromatin structure, could help explain neurodegenerative disease processes and illuminate novel treatment targets. Recent research has revealed that changes in histone PTMs and heterochromatin loss or gain are connected to neurodegeneration. Here, we review evidence for epigenetic changes occurring in AD, PD, and FTD/ALS. We focus specifically on alterations in the histone PTMs landscape, changes in the expression of histone modifying enzymes and chromatin remodelers as well as the consequences of these changes in heterochromatin structure. We also highlight the potential for epigenetic therapies in neurodegenerative disease treatment. Given their reversibility and pharmacological accessibility, epigenetic mechanisms provide a promising avenue for novel treatments. Altogether, these findings underscore the need for thorough characterization of epigenetic mechanisms and chromatin structure in neurodegeneration.
Collapse
Affiliation(s)
- Raven M. A. Fisher
- PhD. Program in Biochemistry, City University of New York - The Graduate Center, New York, NY, United States
| | - Mariana P. Torrente
- Department of Chemistry and Biochemistry, Brooklyn College, Brooklyn, NY, United States
- PhD. Programs in Chemistry, Biochemistry, and Biology, City University of New York - The Graduate Center, New York, NY, United States
| |
Collapse
|
15
|
Zelina P, de Ruiter AA, Kolsteeg C, van Ginneken I, Vos HR, Supiot LF, Burgering BMT, Meye FJ, Veldink JH, van den Berg LH, Pasterkamp RJ. ALS-associated C21ORF2 variant disrupts DNA damage repair, mitochondrial metabolism, neuronal excitability and NEK1 levels in human motor neurons. Acta Neuropathol Commun 2024; 12:144. [PMID: 39227882 PMCID: PMC11373222 DOI: 10.1186/s40478-024-01852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease leading to motor neuron loss. Currently mutations in > 40 genes have been linked to ALS, but the contribution of many genes and genetic mutations to the ALS pathogenic process remains poorly understood. Therefore, we first performed comparative interactome analyses of five recently discovered ALS-associated proteins (C21ORF2, KIF5A, NEK1, TBK1, and TUBA4A) which highlighted many novel binding partners, and both unique and shared interactors. The analysis further identified C21ORF2 as a strongly connected protein. The role of C21ORF2 in neurons and in the nervous system, and of ALS-associated C21ORF2 variants is largely unknown. Therefore, we combined human iPSC-derived motor neurons with other models and different molecular cell biological approaches to characterize the potential pathogenic effects of C21ORF2 mutations in ALS. First, our data show C21ORF2 expression in ALS-relevant mouse and human neurons, such as spinal and cortical motor neurons. Further, the prominent ALS-associated variant C21ORF2-V58L caused increased apoptosis in mouse neurons and movement defects in zebrafish embryos. iPSC-derived motor neurons from C21ORF2-V58L-ALS patients, but not isogenic controls, show increased apoptosis, and changes in DNA damage response, mitochondria and neuronal excitability. In addition, C21ORF2-V58L induced post-transcriptional downregulation of NEK1, an ALS-associated protein implicated in apoptosis and DDR. In all, our study defines the pathogenic molecular and cellular effects of ALS-associated C21ORF2 mutations and implicates impaired post-transcriptional regulation of NEK1 downstream of mutant C21ORF72 in ALS.
Collapse
Affiliation(s)
- Pavol Zelina
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Anna Aster de Ruiter
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Christy Kolsteeg
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Ilona van Ginneken
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Harmjan R Vos
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Laura F Supiot
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Frank J Meye
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Santangelo S, Invernizzi S, Sorce MN, Casiraghi V, Peverelli S, Brusati A, Colombrita C, Ticozzi N, Silani V, Bossolasco P, Ratti A. NEK1 haploinsufficiency worsens DNA damage, but not defective ciliogenesis, in C9ORF72 patient-derived iPSC-motoneurons. Hum Mol Genet 2024:ddae121. [PMID: 39222049 DOI: 10.1093/hmg/ddae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The hexanucleotide G4C2 repeat expansion (HRE) in C9ORF72 gene is the major cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leading to both loss- and gain-of-function pathomechanisms. The wide clinical heterogeneity among C9ORF72 patients suggests potential modifying genetic and epigenetic factors. Notably, C9ORF72 HRE often co-occurs with other rare variants in ALS/FTD-associated genes, such as NEK1, which encodes for a kinase involved in multiple cell pathways, including DNA damage response and ciliogenesis. In this study, we generated induced pluripotent stem cells (iPSCs) and differentiated motoneurons (iPSC-MNs) from an ALS patient carrying both C9ORF72 HRE and a NEK1 loss-of-function mutation to investigate the biological effect of NEK1 haploinsufficiency on C9ORF72 pathology in a condition of oligogenicity. Double mutant C9ORF72/NEK1 cells showed increased pathological C9ORF72 RNA foci in iPSCs and higher DNA damage levels in iPSC-MNs compared to single mutant C9ORF72 cells, but no effect on DNA damage response. When we analysed the primary cilium, we observed a defective ciliogenesis in C9ORF72 iPSC-MNs which was not worsened by NEK1 haploinsufficiency in the double mutant iPSC-MNs. Altogether, our study shows that NEK1 haploinsufficiency influences differently DNA damage and cilia length, potentially acting as a modifier at biological level in an in vitro ALS patient-derived disease model of C9ORF72 pathology.
Collapse
Affiliation(s)
- Serena Santangelo
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi 93, Segrate, Milan 20054, Italy
| | - Sabrina Invernizzi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi 93, Segrate, Milan 20054, Italy
| | - Marta Nice Sorce
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, Cusano Milanino, Milan 20095, Italy
| | - Valeria Casiraghi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi 93, Segrate, Milan 20054, Italy
| | - Silvia Peverelli
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, Cusano Milanino, Milan 20095, Italy
| | - Alberto Brusati
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia 27100, Italy
| | - Claudia Colombrita
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, Cusano Milanino, Milan 20095, Italy
| | - Nicola Ticozzi
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, Cusano Milanino, Milan 20095, Italy
- "Dino Ferrari" Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, Milan 20122, Italy
| | - Vincenzo Silani
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, Cusano Milanino, Milan 20095, Italy
- "Dino Ferrari" Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, Milan 20122, Italy
| | - Patrizia Bossolasco
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, Cusano Milanino, Milan 20095, Italy
| | - Antonia Ratti
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi 93, Segrate, Milan 20054, Italy
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, Cusano Milanino, Milan 20095, Italy
| |
Collapse
|
17
|
Au WH, Miller-Fleming L, Sanchez-Martinez A, Lee JA, Twyning MJ, Prag HA, Raik L, Allen SP, Shaw PJ, Ferraiuolo L, Mortiboys H, Whitworth AJ. Activation of the Keap1/Nrf2 pathway suppresses mitochondrial dysfunction, oxidative stress, and motor phenotypes in C9orf72 ALS/FTD models. Life Sci Alliance 2024; 7:e202402853. [PMID: 38906677 PMCID: PMC11192839 DOI: 10.26508/lsa.202402853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024] Open
Abstract
Mitochondrial dysfunction is a common feature of C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD); however, it remains unclear whether this is a cause or consequence of the pathogenic process. Analysing multiple aspects of mitochondrial biology across several Drosophila models of C9orf72-ALS/FTD, we found morphology, oxidative stress, and mitophagy are commonly affected, which correlated with progressive loss of locomotor performance. Notably, only genetic manipulations that reversed the oxidative stress levels were also able to rescue C9orf72 locomotor deficits, supporting a causative link between mitochondrial dysfunction, oxidative stress, and behavioural phenotypes. Targeting the key antioxidant Keap1/Nrf2 pathway, we found that genetic reduction of Keap1 or pharmacological inhibition by dimethyl fumarate significantly rescued the C9orf72-related oxidative stress and motor deficits. Finally, mitochondrial ROS levels were also elevated in C9orf72 patient-derived iNeurons and were effectively suppressed by dimethyl fumarate treatment. These results indicate that mitochondrial oxidative stress is an important mechanistic contributor to C9orf72 pathogenesis, affecting multiple aspects of mitochondrial function and turnover. Targeting the Keap1/Nrf2 signalling pathway to combat oxidative stress represents a therapeutic strategy for C9orf72-related ALS/FTD.
Collapse
Affiliation(s)
- Wing Hei Au
- https://ror.org/013meh722 MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- https://ror.org/013meh722 John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Leonor Miller-Fleming
- https://ror.org/013meh722 MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Alvaro Sanchez-Martinez
- https://ror.org/013meh722 MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - James Ak Lee
- Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Madeleine J Twyning
- https://ror.org/013meh722 MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Hiran A Prag
- https://ror.org/013meh722 MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- https://ror.org/013meh722 Department of Medicine, University of Cambridge, Cambridge, UK
| | - Laura Raik
- https://ror.org/013meh722 MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Scott P Allen
- Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Alexander J Whitworth
- https://ror.org/013meh722 MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Hang Z, Zhou L, Bian X, Liu G, Cui F, Du H, Wen Y. Potential application of aptamers combined with DNA nanoflowers in neurodegenerative diseases. Ageing Res Rev 2024; 100:102444. [PMID: 39084322 DOI: 10.1016/j.arr.2024.102444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The efficacy of neurotherapeutic drugs hinges on their ability to traverse the blood-brain barrier and access the brain, which is crucial for treating or alleviating neurodegenerative diseases (NDs). Given the absence of definitive cures for NDs, early diagnosis and intervention become paramount in impeding disease progression. However, conventional therapeutic drugs and existing diagnostic approaches must meet clinical demands. Consequently, there is a pressing need to advance drug delivery systems and early diagnostic methods tailored for NDs. Certain aptamers endowed with specific functionalities find widespread utility in the targeted therapy and diagnosis of NDs. DNA nanoflowers (DNFs), distinctive flower-shaped DNA nanomaterials, are intricately self-assembled through rolling ring amplification (RCA) of circular DNA templates. Notably, imbuing DNFs with diverse functionalities becomes seamlessly achievable by integrating aptamer sequences with specific functions into RCA templates, resulting in a novel nanomaterial, aptamer-bound DNFs (ADNFs) that amalgamates the advantageous features of both components. This article delves into the characteristics and applications of aptamers and DNFs, exploring the potential or application of ADNFs in drug-targeted delivery, direct treatment, early diagnosis, etc. The objective is to offer prospective ideas for the clinical treatment or diagnosis of NDs, thereby contributing to the ongoing efforts in this critical field.
Collapse
Affiliation(s)
- Zhongci Hang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xiaochun Bian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guotao Liu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fenghe Cui
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangdingdong Road, Zhifu District, Yantai, Shandong 264000, China.
| | - Hongwu Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
19
|
Huang SH, Parandhaman M, Jyothi Ravi M, Janda DC, Amemiya S. Nanoscale interactions of arginine-containing dipeptide repeats with nuclear pore complexes as measured by transient scanning electrochemical microscopy. Chem Sci 2024; 15:d4sc05063k. [PMID: 39246336 PMCID: PMC11375788 DOI: 10.1039/d4sc05063k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
The nuclear pore complex (NPC) plays imperative biological and biomedical roles as the sole gateway for molecular transport between the cytoplasm and nucleus of eukaryotic cells. The proteinous nanopore, however, can be blocked by arginine-containing polydipeptide repeats (DPRs) of proteins resulting from the disordered C9orf72 gene as a potential cause of serious neurological diseases. Herein, we report the new application of transient scanning electrochemical microscopy (SECM) to quantitatively characterize DPR-NPC interactions for the first time. Twenty repeats of neurotoxic glycine-arginine and proline-arginine in the NPC are quantified to match the number of phenylalanine-glycine (FG) units in hydrophobic transport barriers of the nanopore. The 1 : 1 stoichiometry supports the hypothesis that the guanidinium residue of a DPR molecule engages in cation-π interactions with the aromatic residue of an FG unit. Cation-π interactions, however, are too weak to account for the measured free energy of DPR transfer from water into the NPC. The DPR transfer is thermodynamically as favorable as the transfer of nuclear transport receptors, which is attributed to hydrophobic interactions as hypothesized generally for NPC-mediated macromolecular transport. Kinetically, the DPRs are trapped by FG units for much longer than the physiological receptors, thereby blocking the nanopore. Significantly, the novel mechanism of toxicity implies that the efficient and safe nuclear import of genetic therapeutics requires strong association with and fast dissociation from the NPC. Moreover, this work demonstrates the unexplored power of transient SECM to determine the thermodynamics and kinetics of biological membrane-molecule interactions.
Collapse
Affiliation(s)
- Siao-Han Huang
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Moghitha Parandhaman
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Manu Jyothi Ravi
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Donald C Janda
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
20
|
Latimer CS, Quadri Z, Cook DG. Editorial: Meeting new challenges in translationally relevant neurodegenerative disease research. Front Neurosci 2024; 18:1453770. [PMID: 39238927 PMCID: PMC11374760 DOI: 10.3389/fnins.2024.1453770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 09/07/2024] Open
Affiliation(s)
- Caitlin Shannon Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Zainuddin Quadri
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - David G Cook
- Geriatric Research Education and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA, United States
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, United States
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
21
|
Papini N, Giussani P, Tringali C. Metformin Lysosomal Targeting: A Novel Aspect to Be Investigated for Metformin Repurposing in Neurodegenerative Diseases? Int J Mol Sci 2024; 25:8884. [PMID: 39201569 PMCID: PMC11354325 DOI: 10.3390/ijms25168884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Metformin is a widely employed drug in type 2 diabetes. In addition to warranting good short- and long-term glycemic control, metformin displays many intriguing properties as protection against cardiovascular and neurodegenerative diseases, anti-tumorigenic and longevity promotion. In addition to being a low-cost drug, metformin is generally well tolerated. However, despite the enthusiastic drive to aliment these novel studies, many contradictory results suggest the importance of better elucidating the complexity of metformin action in different tissues/cells to establish its possible employment in neurodegenerative diseases. This review summarises recent data identifying lysosomal-dependent processes and lysosomal targets, such as endosomal Na+/H+ exchangers, presenilin enhancer 2 (PEN2), the lysosomal pathway leading to AMP-activated protein kinase (AMPK) activation, and the transcription factor EB (TFEB), modulated by metformin. Lysosomal dysfunctions resulting in autophagic and lysosomal acidification and biogenesis impairment appear to be hallmarks of many inherited and acquired neurodegenerative diseases. Lysosomes are not yet seen as a sort of cellular dump but are crucial in determining key signalling paths and processes involved in the clearance of aggregated proteins. Thus, the possibility of pharmacologically modulating them deserves great interest. Despite the potentiality of metformin in this context, many additional important issues, such as dosing, should be addressed in the future.
Collapse
Affiliation(s)
| | | | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, 20054 Segrate, MI, Italy; (N.P.); (P.G.)
| |
Collapse
|
22
|
Wenzhi Y, Xiangyi L, Dongsheng F. The prion-like effect and prion-like protein targeting strategy in amyotrophic lateral sclerosis. Heliyon 2024; 10:e34963. [PMID: 39170125 PMCID: PMC11336370 DOI: 10.1016/j.heliyon.2024.e34963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Pathological proteins in amyotrophic lateral sclerosis (ALS), such as superoxide dismutase 1, TAR DNA-binding protein 43, and fused in sarcoma, exhibit a prion-like pattern. All these proteins have a low-complexity domain and seeding activity in cells. In this review, we summarize the studies on the prion-like effect of these proteins and list six prion-like protein targeting strategies that we believe have potential for ALS therapy, including antisense oligonucleotides, antibody-based technology, peptide, protein chaperone, autophagy enhancement, and heteromultivalent compounds. Considering the pathological complexity and heterogeneity of ALS, we believe that the final solution to ALS therapy is most likely to be an individualized cocktail therapy, including clearance of toxicity, blockage of pathological progress, and protection of neurons.
Collapse
Affiliation(s)
- Yang Wenzhi
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Liu Xiangyi
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Fan Dongsheng
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| |
Collapse
|
23
|
Luan T, Li Q, Huang Z, Feng Y, Xu D, Zhou Y, Hu Y, Wang T. Axonopathy Underlying Amyotrophic Lateral Sclerosis: Unraveling Complex Pathways and Therapeutic Insights. Neurosci Bull 2024:10.1007/s12264-024-01267-2. [PMID: 39097850 DOI: 10.1007/s12264-024-01267-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/08/2024] [Indexed: 08/05/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder characterized by progressive axonopathy, jointly leading to the dying back of the motor neuron, disrupting both nerve signaling and motor control. In this review, we highlight the roles of axonopathy in ALS progression, driven by the interplay of multiple factors including defective trafficking machinery, protein aggregation, and mitochondrial dysfunction. Dysfunctional intracellular transport, caused by disruptions in microtubules, molecular motors, and adaptors, has been identified as a key contributor to disease progression. Aberrant protein aggregation involving TDP-43, FUS, SOD1, and dipeptide repeat proteins further amplifies neuronal toxicity. Mitochondrial defects lead to ATP depletion, oxidative stress, and Ca2+ imbalance, which are regarded as key factors underlying the loss of neuromuscular junctions and axonopathy. Mitigating these defects through interventions including neurotrophic treatments offers therapeutic potential. Collaborative research efforts aim to unravel ALS complexities, opening avenues for holistic interventions that target diverse pathological mechanisms.
Collapse
Affiliation(s)
- Tongshu Luan
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qing Li
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhi Huang
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yu Feng
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Duo Xu
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yujie Zhou
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yiqing Hu
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tong Wang
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
24
|
Soubannier V, Chaineau M, Gursu L, Lépine S, Kalaydjian D, Sirois J, Haghi G, Rouleau G, Durcan TM, Stifani S. Early nuclear phenotypes and reactive transformation in human iPSC-derived astrocytes from ALS patients with SOD1 mutations. Glia 2024. [PMID: 39092466 DOI: 10.1002/glia.24598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive death of motor neurons (MNs). Glial cells play roles in MN degeneration in ALS. More specifically, astrocytes with mutations in the ALS-associated gene Cu/Zn superoxide dismutase 1 (SOD1) promote MN death. The mechanisms by which SOD1-mutated astrocytes reduce MN survival are incompletely understood. To characterize the impact of SOD1 mutations on astrocyte physiology, we generated astrocytes from human induced pluripotent stem cell (iPSC) derived from ALS patients carrying SOD1 mutations, together with control isogenic iPSCs. We report that astrocytes harboring SOD1(A4V) and SOD1(D90A) mutations exhibit molecular and morphological changes indicative of reactive astrogliosis when compared to isogenic astrocytes. We show further that a number of nuclear phenotypes precede, or coincide with, reactive transformation. These include increased nuclear oxidative stress and DNA damage, and accumulation of the SOD1 protein in the nucleus. These findings reveal early cell-autonomous phenotypes in SOD1-mutated astrocytes that may contribute to the acquisition of a reactive phenotype involved in alterations of astrocyte-MN communication in ALS.
Collapse
Affiliation(s)
- Vincent Soubannier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Mathilde Chaineau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Lale Gursu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Sarah Lépine
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - David Kalaydjian
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Julien Sirois
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Ghazal Haghi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Guy Rouleau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Structural Genomics Consortium, Toronto, Ontario, Canada
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Cammack AJ, Balendra R, Isaacs AM. Failure of C9orf72 sense repeat-targeting antisense oligonucleotides: lessons learned and the path forward. Brain 2024; 147:2607-2609. [PMID: 38805751 DOI: 10.1093/brain/awae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024] Open
Abstract
The recent failure of two independent clinical trials targeting C9orf72 sense repeat-containing RNAs with antisense oligonucleotides was a great disappointment for the field. Cammack et al. discuss the data from these trials, possible reasons for the failures, and the future of C9orf72 therapeutic targeting moving forward.
Collapse
Affiliation(s)
- Alexander J Cammack
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Rubika Balendra
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Adrian M Isaacs
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
26
|
Jacob SM, Lee S, Kim SH, Sharkey KA, Pfeffer G, Nguyen MD. Brain-body mechanisms contribute to sexual dimorphism in amyotrophic lateral sclerosis. Nat Rev Neurol 2024; 20:475-494. [PMID: 38965379 DOI: 10.1038/s41582-024-00991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common form of human motor neuron disease. It is characterized by the progressive degeneration of upper and lower motor neurons, leading to generalized motor weakness and, ultimately, respiratory paralysis and death within 3-5 years. The disease is shaped by genetics, age, sex and environmental stressors, but no cure or routine biomarkers exist for the disease. Male individuals have a higher propensity to develop ALS, and a different manifestation of the disease phenotype, than female individuals. However, the mechanisms underlying these sex differences remain a mystery. In this Review, we summarize the epidemiology of ALS, examine the sexually dimorphic presentation of the disease and highlight the genetic variants and molecular pathways that might contribute to sex differences in humans and animal models of ALS. We advance the idea that sexual dimorphism in ALS arises from the interactions between the CNS and peripheral organs, involving vascular, metabolic, endocrine, musculoskeletal and immune systems, which are strikingly different between male and female individuals. Finally, we review the response to treatments in ALS and discuss the potential to implement future personalized therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Sarah M Jacob
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sukyoung Lee
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Seung Hyun Kim
- Department of Neurology, Hanyang University Hospital, Seoul, South Korea
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
27
|
Lin CY, Wu HE, Weng EFJ, Wu HC, Su TP, Wang SM. Fluvoxamine Exerts Sigma-1R to Rescue Autophagy via Pom121-Mediated Nucleocytoplasmic Transport of TFEB. Mol Neurobiol 2024; 61:5282-5294. [PMID: 38180612 PMCID: PMC11249700 DOI: 10.1007/s12035-023-03885-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Expansion of the GGGGCC-RNA repeat is a known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), which currently have no cure. Recent studies have indicated the activation of Sigma-1 receptor plays an important role in providing neuroprotection, especially in ALS and Alzheimer's disease. Nevertheless, the mechanisms underlying Sigma-1R activation and its effect on (G4C2)n-RNA-induced cell death remain unclear. In this study, we demonstrated that fluvoxamine is a Sigma-1R agonist that can increase chaperone activity and stabilize the protein expression of Pom121 in (G4C2)31-RNA-expressing NSC34 cells, leading to increased colocalization at the nuclear envelope. Interestingly, fluvoxamine treatment increased Pom121 protein expression without affecting transcription. In C9orf72-ALS, the nuclear translocation of TFEB autophagy factor decreased owing to nucleocytoplasmic transport defects. Our results showed that pretreatment of NSC34 cells with fluvoxamine promoted the shuttling of TFEB into the nucleus and elevated the expression of LC3-II compared to the overexpression of (G4C2)31-RNA alone. Additionally, even when used alone, fluvoxamine increases Pom121 expression and TFEB translocation. To summarize, fluvoxamine may act as a promising repurposed medicine for patients with C9orf72-ALS, as it stabilizes the nucleoporin Pom121 and promotes the translocation of TFEB in (G4C2)31-RNA-expressing NSC34 cells.
Collapse
Affiliation(s)
- Chun-Yu Lin
- School of Medicine, China Medical University, Taichung, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
| | - Hsiang-En Wu
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Eddie Feng-Ju Weng
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404333, Taiwan
| | - Hsuan-Cheng Wu
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404333, Taiwan
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Shao-Ming Wang
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404333, Taiwan.
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
28
|
Geng Y, Liu C, Xu N, Suen MC, Miao H, Xie Y, Zhang B, Chen X, Song Y, Wang Z, Cai Q, Zhu G. Crystal structure of a tetrameric RNA G-quadruplex formed by hexanucleotide repeat expansions of C9orf72 in ALS/FTD. Nucleic Acids Res 2024; 52:7961-7970. [PMID: 38860430 PMCID: PMC11260476 DOI: 10.1093/nar/gkae473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
The abnormal GGGGCC hexanucleotide repeat expansions (HREs) in C9orf72 cause the fatal neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal dementia. The transcribed RNA HREs, short for r(G4C2)n, can form toxic RNA foci which sequestrate RNA binding proteins and impair RNA processing, ultimately leading to neurodegeneration. Here, we determined the crystal structure of r(G4C2)2, which folds into a parallel tetrameric G-quadruplex composed of two four-layer dimeric G-quadruplex via 5'-to-5' stacking in coordination with a K+ ion. Notably, the two C bases locate at 3'- end stack on the outer G-tetrad with the assistance of two additional K+ ions. The high-resolution structure reported here lays a foundation in understanding the mechanism of neurological toxicity of RNA HREs. Furthermore, the atomic details provide a structural basis for the development of potential therapeutic agents against the fatal neurodegenerative diseases ALS/FTD.
Collapse
Affiliation(s)
- Yanyan Geng
- Clinical Research Institute of the First Affiliated Hospital of Xiamen University, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Changdong Liu
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, Guangdong, China
| | - Naining Xu
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, Guangdong, China
| | - Monica Ching Suen
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, Guangdong, China
| | - Haitao Miao
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yuanyuan Xie
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Bingchang Zhang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xueqin Chen
- Clinical Research Institute of the First Affiliated Hospital of Xiamen University, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yuanjian Song
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qixu Cai
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Guang Zhu
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, Guangdong, China
| |
Collapse
|
29
|
Hipp MS, Hartl FU. Interplay of Proteostasis Capacity and Protein Aggregation: Implications for Cellular Function and Disease. J Mol Biol 2024; 436:168615. [PMID: 38759929 DOI: 10.1016/j.jmb.2024.168615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Eukaryotic cells are equipped with an intricate proteostasis network (PN), comprising nearly 3,000 components dedicated to preserving proteome integrity and sustaining protein homeostasis. This protective system is particularly important under conditions of external and intrinsic cell stress, where inherently dynamic proteins may unfold and lose functionality. A decline in proteostasis capacity is associated with the aging process, resulting in a reduced folding efficiency of newly synthesized proteins and a deficit in the cellular capacity to degrade misfolded proteins. A critical consequence of PN insufficiency is the accumulation of cytotoxic protein aggregates that underlie various age-related neurodegenerative conditions and other pathologies. By interfering with specific proteostasis components, toxic aggregates place an excessive burden on the PN's ability to maintain proteome integrity. This initiates a feed-forward loop, wherein the generation of misfolded and aggregated proteins ultimately leads to proteostasis collapse and cellular demise.
Collapse
Affiliation(s)
- Mark S Hipp
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan, 1, 9713 AV Groningen, the Netherlands; Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, the Netherlands; School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
30
|
Sun S, Shen Y, Zhang X, Ding N, Xu Z, Zhang Q, Li L. The MuSK agonist antibody protects the neuromuscular junction and extends the lifespan in C9orf72-ALS mice. Mol Ther 2024; 32:2176-2189. [PMID: 38734896 PMCID: PMC11286808 DOI: 10.1016/j.ymthe.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/06/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
The disassembly of the neuromuscular junction (NMJ) is an early event in amyotrophic lateral sclerosis (ALS), ultimately leading to motor dysfunction and lethal respiratory paralysis. The hexanucleotide GGGGCC repeat expansion in the C9orf72 gene is the most common genetic mutation, and the dipeptide repeat (DPR) proteins have been shown to cause neurodegeneration. While no drugs can treat ALS patients efficiently, new treatment strategies are urgently needed. Here, we report that a MuSK agonist antibody alleviates poly-PR-induced NMJ deficits in C9orf72-ALS mice. The HB9-PRF/F mice, which express poly-PR proteins in motor neurons, exhibited impaired motor behavior and NMJ deficits. Mechanistically, poly-PR proteins interacted with Agrin to disrupt the interaction between Agrin and Lrp4, leading to attenuated activation of MuSK. Treatment with a MuSK agonist antibody rescued NMJ deficits, and extended the lifespan of C9orf72-ALS mice. Moreover, impaired NMJ transmission was observed in C9orf72-ALS patients. These findings identify the mechanism by which poly-PR proteins attenuate MuSK activation and NMJ transmission, highlighting the potential of promoting MuSK activation with an agonist antibody as a therapeutic strategy to protect NMJ function and prolong the lifespan of ALS patients.
Collapse
Affiliation(s)
- Shuangshuang Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yihui Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ning Ding
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhe Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qijie Zhang
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| | - Lei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
31
|
Del Val C, Díaz de la Guardia-Bolívar E, Zwir I, Mishra PP, Mesa A, Salas R, Poblete GF, de Erausquin G, Raitoharju E, Kähönen M, Raitakari O, Keltikangas-Järvinen L, Lehtimäki T, Cloninger CR. Gene expression networks regulated by human personality. Mol Psychiatry 2024; 29:2241-2260. [PMID: 38433276 PMCID: PMC11408262 DOI: 10.1038/s41380-024-02484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
Genome-wide association studies of human personality have been carried out, but transcription of the whole genome has not been studied in relation to personality in humans. We collected genome-wide expression profiles of adults to characterize the regulation of expression and function in genes related to human personality. We devised an innovative multi-omic approach to network analysis to identify the key control elements and interactions in multi-modular networks. We identified sets of transcribed genes that were co-expressed in specific brain regions with genes known to be associated with personality. Then we identified the minimum networks for the co-localized genes using bioinformatic resources. Subjects were 459 adults from the Young Finns Study who completed the Temperament and Character Inventory and provided peripheral blood for genomic and transcriptomic analysis. We identified an extrinsic network of 45 regulatory genes from seed genes in brain regions involved in self-regulation of emotional reactivity to extracellular stimuli (e.g., self-regulation of anxiety) and an intrinsic network of 43 regulatory genes from seed genes in brain regions involved in self-regulation of interpretations of meaning (e.g., production of concepts and language). We discovered that interactions between the two networks were coordinated by a control hub of 3 miRNAs and 3 protein-coding genes shared by both. Interactions of the control hub with proteins and ncRNAs identified more than 100 genes that overlap directly with known personality-related genes and more than another 4000 genes that interact indirectly. We conclude that the six-gene hub is the crux of an integrative network that orchestrates information-transfer throughout a multi-modular system of over 4000 genes enriched in liquid-liquid-phase-separation (LLPS)-related RNAs, diverse transcription factors, and hominid-specific miRNAs and lncRNAs. Gene expression networks associated with human personality regulate neuronal plasticity, epigenesis, and adaptive functioning by the interactions of salience and meaning in self-awareness.
Collapse
Affiliation(s)
- Coral Del Val
- University of Granada, Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| | - Elisa Díaz de la Guardia-Bolívar
- University of Granada, Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence, Granada, Spain
| | - Igor Zwir
- University of Granada, Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence, Granada, Spain
- Washington University School of Medicine, Department of Psychiatry, St. Louis, MO, USA
| | - Pashupati P Mishra
- Tampere University, Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Alberto Mesa
- University of Granada, Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence, Granada, Spain
| | - Ramiro Salas
- The Menninger Clinic, Baylor College of Medicine, and DeBakey VA Medical Center, Houston, TX, USA
| | | | - Gabriel de Erausquin
- University of Texas Health San Antonio, Long School of Medicine, Department of Neurology, Biggs Institute of Alzheimer's & Neurodegenerative Disorders, San Antonio, TX, USA
| | - Emma Raitoharju
- Tampere University, Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli Raitakari
- University of Turku and Turku University Hospital, Center for Population Health Research; University of Turku, Research Center of Applied and Preventive Cardiovascular Medicine; Turku University Hospital, Department of Clinical Physiology and Nuclear Medicine, Turku, Finland
| | | | - Terho Lehtimäki
- Tampere University, Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere, Finland
| | | |
Collapse
|
32
|
Guo R, Chen Y, Zhang J, Zhou Z, Feng B, Du X, Liu X, Ma J, Cui H. Neural Differentiation and spinal cord organoid generation from induced pluripotent stem cells (iPSCs) for ALS modelling and inflammatory screening. Mol Neurobiol 2024; 61:4732-4749. [PMID: 38127186 DOI: 10.1007/s12035-023-03836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
C9orf72 genetic mutation is the most common genetic cause of ALS/FTD accompanied by abnormal protein insufficiency. Induced pluripotent stem cell (iPSC)-derived two-dimensional (2D) and three-dimensional (3D) cultures are providing new approaches. Therefore, this study established neuronal cell types and generated spinal cord organoids (SCOs) derived from C9orf72 knockdown human iPSCs to model ALS disease and screen the unrevealed phenotype. Wild-type (WT) iPSC lines from three healthy donor fibroblasts were established, and pluripotency and differentiation ability were identified by RT-PCR, immunofluorescence and flow cytometry. After infection by the lentivirus with C9orf72-targeting shRNA, stable C9-knockdown iPSC colonies were selected and differentiated into astrocytes, motor neurons and SCOs. Finally, we analyzed the extracted RNA-seq data of human C9 mutant/knockout iPSC-derived motor neurons and astrocytes from the GEO database and the inflammatory regulation-related genes in function and pathways. The expression of inflammatory factors was measured by qRT-PCR. The results showed that both WT-iPSCs and edited C9-iPSCs maintained a similar ability to differentiate into the three germ layers, astrocytes and motor neurons, forming SCOs in a 3D culture system. The constructed C9-SCOs have features of spinal cord development and multiple neuronal cell types, including sensory neurons, motor neurons, and other neurons. Based on the bioinformatics analysis, proinflammatory factors were confirmed to be upregulated in C9-iPSC-derived 2D cells and 3D cultured SCOs. The above differentiated models exhibited low C9orf72 expression and the pathological characteristics of ALS, especially neuroinflammation.
Collapse
Affiliation(s)
- Ruiyun Guo
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Yimeng Chen
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Jinyu Zhang
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Zijing Zhou
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Baofeng Feng
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Xiaofeng Du
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Xin Liu
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Jun Ma
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| | - Huixian Cui
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
33
|
Jiang T, Ruan N, Luo P, Wang Q, Wei X, Li Y, Dai Y, Lin L, Lv J, Liu Y, Zhang C. Modulation of ER-mitochondria tethering complex VAPB-PTPIP51: Novel therapeutic targets for aging-associated diseases. Ageing Res Rev 2024; 98:102320. [PMID: 38719161 DOI: 10.1016/j.arr.2024.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Aging is a gradual and irreversible natural process. With aging, the body experiences a functional decline, and the effects amplify the vulnerability to a range of age-related diseases, including neurodegenerative, cardiovascular, and metabolic diseases. Within the aging process, the morphology and function of mitochondria and the endoplasmic reticulum (ER) undergo alterations, particularly in the structure connecting these organelles known as mitochondria-associated membranes (MAMs). MAMs serve as vital intracellular signaling hubs, facilitating communication between the ER and mitochondria when regulating various cellular events, including calcium homeostasis, lipid metabolism, mitochondrial function, and apoptosis. The formation of MAMs is partly dependent on the interaction between the vesicle-associated membrane protein-associated protein-B (VAPB) and protein tyrosine phosphatase-interacting protein-51 (PTPIP51). Accumulating evidence has begun to elucidate the pivotal role of the VAPB-PTPIP51 tether in the initiation and progression of age-related diseases. In this study, we delineate the intricate structure and multifunctional role of the VAPB-PTPIP51 tether and discuss its profound implications in aging-associated diseases. Moreover, we provide a comprehensive overview of potential therapeutic interventions and pharmacological agents targeting the VAPB-PTPIP51-mediated MAMs, thereby offering a glimmer of hope in mitigating aging processes and treating age-related disorders.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Nan Ruan
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengcheng Luo
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiuxian Wei
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Li
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Dai
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Lin
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Division of Cardiology, Department of Internal Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiagao Lv
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Division of Cardiology, Department of Internal Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Liu
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
34
|
Chung TH, Zhuravskaya A, Makeyev EV. Regulation potential of transcribed simple repeated sequences in developing neurons. Hum Genet 2024; 143:875-895. [PMID: 38153590 PMCID: PMC11294396 DOI: 10.1007/s00439-023-02626-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Simple repeated sequences (SRSs), defined as tandem iterations of microsatellite- to satellite-sized DNA units, occupy a substantial part of the human genome. Some of these elements are known to be transcribed in the context of repeat expansion disorders. Mounting evidence suggests that the transcription of SRSs may also contribute to normal cellular functions. Here, we used genome-wide bioinformatics approaches to systematically examine SRS transcriptional activity in cells undergoing neuronal differentiation. We identified thousands of long noncoding RNAs containing >200-nucleotide-long SRSs (SRS-lncRNAs), with hundreds of these transcripts significantly upregulated in the neural lineage. We show that SRS-lncRNAs often originate from telomere-proximal regions and that they have a strong potential to form multivalent contacts with a wide range of RNA-binding proteins. Our analyses also uncovered a cluster of neurally upregulated SRS-lncRNAs encoded in a centromere-proximal part of chromosome 9, which underwent an evolutionarily recent segmental duplication. Using a newly established in vitro system for rapid neuronal differentiation of induced pluripotent stem cells, we demonstrate that at least some of the bioinformatically predicted SRS-lncRNAs, including those encoded in the segmentally duplicated part of chromosome 9, indeed increase their expression in developing neurons to readily detectable levels. These and other lines of evidence suggest that many SRSs may be expressed in a cell type and developmental stage-specific manner, providing a valuable resource for further studies focused on the functional consequences of SRS-lncRNAs in the normal development of the human brain, as well as in the context of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Tek Hong Chung
- Centre for Developmental Neurobiology, New Hunt's House, King's College London, London, SE1 1UL, UK
| | - Anna Zhuravskaya
- Centre for Developmental Neurobiology, New Hunt's House, King's College London, London, SE1 1UL, UK
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology, New Hunt's House, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
35
|
Garg V, Geurten BRH. Diving deep: zebrafish models in motor neuron degeneration research. Front Neurosci 2024; 18:1424025. [PMID: 38966756 PMCID: PMC11222423 DOI: 10.3389/fnins.2024.1424025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024] Open
Abstract
In the dynamic landscape of biomedical science, the pursuit of effective treatments for motor neuron disorders like hereditary spastic paraplegia (HSP), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA) remains a key priority. Central to this endeavor is the development of robust animal models, with the zebrafish emerging as a prime candidate. Exhibiting embryonic transparency, a swift life cycle, and significant genetic and neuroanatomical congruencies with humans, zebrafish offer substantial potential for research. Despite the difference in locomotion-zebrafish undulate while humans use limbs, the zebrafish presents relevant phenotypic parallels to human motor control disorders, providing valuable insights into neurodegenerative diseases. This review explores the zebrafish's inherent traits and how they facilitate profound insights into the complex behavioral and cellular phenotypes associated with these disorders. Furthermore, we examine recent advancements in high-throughput drug screening using the zebrafish model, a promising avenue for identifying therapeutically potent compounds.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Lower Saxony, Germany
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | | |
Collapse
|
36
|
Jaroszynska N, Salzinger A, Tsarouchas TM, Becker CG, Becker T, Lyons DA, MacDonald RB, Keatinge M. C9ORF72 Deficiency Results in Neurodegeneration in the Zebrafish Retina. J Neurosci 2024; 44:e2128232024. [PMID: 38658168 PMCID: PMC11209673 DOI: 10.1523/jneurosci.2128-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/19/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
Hexanucleotide repeat expansions within the gene C9ORF72 are the most common cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This disease-causing expansion leads to a reduction in C9ORF72 expression levels in patients, suggesting loss of C9ORF72 function could contribute to disease. To further understand the consequences of C9ORF72 deficiency in vivo, we generated a c9orf72 mutant zebrafish line. Analysis of the adult female spinal cords revealed no appreciable neurodegenerative pathology such as loss of motor neurons or increased levels of neuroinflammation. However, detailed examination of adult female c9orf72-/- retinas showed prominent neurodegenerative features, including a decrease in retinal thickness, gliosis, and an overall reduction in neurons of all subtypes. Analysis of rod and cone cells within the photoreceptor layer showed a disturbance in their outer segment structure and rhodopsin mislocalization from rod outer segments to their cell bodies and synaptic terminals. Thus, C9ORF72 may play a previously unappreciated role in retinal homeostasis and suggests C9ORF72 deficiency can induce tissue specific neuronal loss.
Collapse
Affiliation(s)
- Natalia Jaroszynska
- Institute of Ophthalmology, University College London, London EC1Y 0AD, United Kingdom
| | - Andrea Salzinger
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Themistoklis M Tsarouchas
- Department of Psychiatry and Behavioural Sciences, Stanford University School of Medicine, Palo Alto, California 94305
| | - Catherina G Becker
- Center for Regenerative Therapies Dresden (CRTD), Dresden 01307, Germany
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, United Kingdom
| | - Thomas Becker
- Center for Regenerative Therapies Dresden (CRTD), Dresden 01307, Germany
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, United Kingdom
| | - David A Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, United Kingdom
| | - Ryan B MacDonald
- Institute of Ophthalmology, University College London, London EC1Y 0AD, United Kingdom
| | - Marcus Keatinge
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| |
Collapse
|
37
|
Okekenwa S, Tsai M, Dooley P, Wang B, Comassio P, Moreira J, Kriefall N, Martin S, Morfini G, Brady S, Song Y. Divergent Molecular Pathways for Toxicity of Selected Mutant C9ORF72-derived Dipeptide Repeats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.28.558663. [PMID: 37808871 PMCID: PMC10557653 DOI: 10.1101/2023.09.28.558663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Expansion of a hexanucleotide repeat in a noncoding region of the C9ORF72 gene is responsible for a significant fraction of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) cases, but mechanisms linking mutant gene products to neuronal toxicity remain debatable. Pathogenesis was proposed to involve the production of toxic RNA species and/or accumulation of toxic dipeptide repeats (DPRs) but distinguishing between these mechanisms has been challenging. In this study, we first use complementary model systems for analyzing pathogenesis in adult-onset neurodegenerative diseases to characterize the pathogenicity of DPRs produced by Repeat Associated Non-ATG translation of C9ORF72 in specific cellular compartments: isolated axoplasm and giant synapse from the squid. Results showed selective axonal and presynaptic toxicity of GP-DPRs, independent of associated RNA. These effects involved a MAPK signaling pathway that affects fast axonal transport and synaptic function, a pathogenic mechanism shared with other mutant proteins associated with familial ALS, like SOD1 and FUS. In primary cultured neurons, GP but not other DPRs promote the "dying-back" axonopathy seen in ALS. Interestingly, GR- and PR-DPRs, which had no effect on axonal transport or synaptic transmission, were found to disrupt the nuclear membrane, promoting "dying-forward" neuropathy. All C9-DPR-mediated toxic effects observed in these studies are independent of whether the corresponding mRNAs contained hexanucleotide repeats or alternative codons. Finally, C9ORF72 human tissues confirmed a close association between GP and active P38 in degenerating motor neurons as well as GR-associated nuclear damage in the cortex. Collectively, our studies establish compartment-specific toxic effects of C9-DPRs associated with degeneration, suggesting that two independent pathogenic mechanisms may contribute to disease heterogeneity and/or synergize on disease progression in C9ORF72 patients with ALS and/or FTD symptoms.
Collapse
|
38
|
d’Almeida NA, Tipping M. Flight to insight: maximizing the potential of Drosophila models of C9orf72-FTD. Front Mol Neurosci 2024; 17:1434443. [PMID: 38915937 PMCID: PMC11194461 DOI: 10.3389/fnmol.2024.1434443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024] Open
Abstract
Advancements in understanding the pathogenesis of C9orf72-associated frontotemporal dementia (C9orf72-FTD) have highlighted the role of repeat-associated non-ATG (RAN) translation and dipeptide repeat proteins (DPRs), with Drosophila melanogaster models providing valuable insights. While studies have primarily focused on RAN translation and DPR toxicity, emerging areas of investigation in fly models have expanded to neuronal dysfunction, autophagy impairment, and synaptic dysfunction, providing potential directions for new therapeutic targets and mechanisms of neurodegeneration. Despite this progress, there are still significant gaps in Drosophila models of C9orf72-FTD, namely in the areas of metabolism and circadian rhythm. Metabolic dysregulation, particularly lipid metabolism, autophagy, and insulin signaling, has been implicated in disease progression with findings from animal models and human patients with C9orf72 repeat expansions. Moreover, circadian disruptions have been observed in C9of72-FTD, with alterations in rest-activity patterns and cellular circadian machinery, suggesting a potential role in disease pathophysiology. Drosophila models offer unique opportunities to explore these aspects of C9orf72-FTD and identify novel therapeutic targets aimed at mitigating neurodegeneration.
Collapse
|
39
|
Kettunen P, Koistinaho J, Rolova T. Contribution of CNS and extra-CNS infections to neurodegeneration: a narrative review. J Neuroinflammation 2024; 21:152. [PMID: 38845026 PMCID: PMC11157808 DOI: 10.1186/s12974-024-03139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Central nervous system infections have been suggested as a possible cause for neurodegenerative diseases, particularly sporadic cases. They trigger neuroinflammation which is considered integrally involved in neurodegenerative processes. In this review, we will look at data linking a variety of viral, bacterial, fungal, and protozoan infections to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis and unspecified dementia. This narrative review aims to bring together a broad range of data currently supporting the involvement of central nervous system infections in the development of neurodegenerative diseases. The idea that no single pathogen or pathogen group is responsible for neurodegenerative diseases will be discussed. Instead, we suggest that a wide range of susceptibility factors may make individuals differentially vulnerable to different infectious pathogens and subsequent pathologies.
Collapse
Affiliation(s)
- Pinja Kettunen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Taisia Rolova
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
40
|
Fu X, Zhang Z, Hayes LR, Wright N, Asbury J, Li S, Ye Y, Sun S. DDX3X overexpression decreases dipeptide repeat proteins in a mouse model of C9ORF72-ALS/FTD. Exp Neurol 2024; 376:114768. [PMID: 38556190 PMCID: PMC11058010 DOI: 10.1016/j.expneurol.2024.114768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Hexanucleotide repeat expansion in C9ORF72 (C9) is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). One of the proposed pathogenic mechanisms is the neurotoxicity arising from dipeptide repeat (DPR) proteins produced by repeat-associated non-AUG (RAN) translation. Therefore, reducing DPR levels emerges as a potential therapeutic strategy for C9ORF72-ALS/FTD. We previously identified an RNA helicase, DEAD-box helicase 3 X-linked (DDX3X), modulates RAN translation. DDX3X overexpression decreases poly-GP accumulation in C9ORF72-ALS/FTD patient-derived induced pluripotent stem cell (iPSC)-differentiated neurons (iPSNs) and reduces the glutamate-induced neurotoxicity. In this study, we examined the in vivo efficacy of DDX3X overexpression using a mouse model. We expressed exogenous DDX3X or GFP in the central nervous system (CNS) of the C9-500 ALS/FTD BAC transgenic or non-transgenic control mice using adeno-associated virus serotype 9 (AAV9). The DPR levels were significantly reduced in the brains of DDX3X-expressing C9-BAC mice compared to the GFP control even twelve months after virus delivery. Additionally, p62 aggregation was also decreased. No neuronal loss or neuroinflammatory response were detected in the DDX3X overexpressing C9-BAC mice. This work demonstrates that DDX3X overexpression effectively reduces DPR levels in vivo without provoking neuroinflammation or neurotoxicity, suggesting the potential of increasing DDX3X expression as a therapeutic strategy for C9ORF72-ALS/FTD.
Collapse
Affiliation(s)
- Xiujuan Fu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhe Zhang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lindsey R Hayes
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Noelle Wright
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Julie Asbury
- Notre Dame of Maryland University, Baltimore, MD 21210, USA
| | - Shelley Li
- John Hopkins University, Baltimore, MD 21218, USA
| | - Yingzhi Ye
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Physiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuying Sun
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
41
|
Buccellato FR, D'Anca M, Tartaglia GM, Del Fabbro M, Galimberti D. Frontotemporal dementia: from genetics to therapeutic approaches. Expert Opin Investig Drugs 2024; 33:561-573. [PMID: 38687620 DOI: 10.1080/13543784.2024.2349286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) includes a group of neurodegenerative diseases characterized clinically by behavioral disturbances and by neurodegeneration of brain anterior temporal and frontal lobes, leading to atrophy. Apart from symptomatic treatments, there is, at present, no disease-modifying cure for FTD. AREAS COVERED Three main mutations are known as causes of familial FTD, and large consortia have studied carriers of mutations, also in preclinical Phases. As genetic cases are the only ones in which the pathology can be predicted in life, compounds developed so far are directed toward specific proteins or mutations. Herein, recently approved clinical trials will be summarized, including molecules, mechanisms of action and pharmacological testing. EXPERT OPINION These studies are paving the way for the future. They will clarify whether single mutations should be addressed rather than common proteins depositing in the brain to move from genetic to sporadic FTD.
Collapse
Affiliation(s)
- Francesca R Buccellato
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marianna D'Anca
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
42
|
Buchan JR. Stress granule and P-body clearance: Seeking coherence in acts of disappearance. Semin Cell Dev Biol 2024; 159-160:10-26. [PMID: 38278052 PMCID: PMC10939798 DOI: 10.1016/j.semcdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
Stress granules and P-bodies are conserved cytoplasmic biomolecular condensates whose assembly and composition are well documented, but whose clearance mechanisms remain controversial or poorly described. Such understanding could provide new insight into how cells regulate biomolecular condensate formation and function, and identify therapeutic strategies in disease states where aberrant persistence of stress granules in particular is implicated. Here, I review and compare the contributions of chaperones, the cytoskeleton, post-translational modifications, RNA helicases, granulophagy and the proteasome to stress granule and P-body clearance. Additionally, I highlight the potentially vital role of RNA regulation, cellular energy, and changes in the interaction networks of stress granules and P-bodies as means of eliciting clearance. Finally, I discuss evidence for interplay of distinct clearance mechanisms, suggest future experimental directions, and suggest a simple working model of stress granule clearance.
Collapse
Affiliation(s)
- J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85716, United States.
| |
Collapse
|
43
|
Arnold FJ, Putka AF, Raychaudhuri U, Hsu S, Bedlack RS, Bennett CL, La Spada AR. Revisiting Glutamate Excitotoxicity in Amyotrophic Lateral Sclerosis and Age-Related Neurodegeneration. Int J Mol Sci 2024; 25:5587. [PMID: 38891774 PMCID: PMC11171854 DOI: 10.3390/ijms25115587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disorder. While there are five FDA-approved drugs for treating this disease, each has only modest benefits. To design new and more effective therapies for ALS, particularly for sporadic ALS of unknown and diverse etiologies, we must identify key, convergent mechanisms of disease pathogenesis. This review focuses on the origin and effects of glutamate-mediated excitotoxicity in ALS (the cortical hyperexcitability hypothesis), in which increased glutamatergic signaling causes motor neurons to become hyperexcitable and eventually die. We characterize both primary and secondary contributions to excitotoxicity, referring to processes taking place at the synapse and within the cell, respectively. 'Primary pathways' include upregulation of calcium-permeable AMPA receptors, dysfunction of the EAAT2 astrocytic glutamate transporter, increased release of glutamate from the presynaptic terminal, and reduced inhibition by cortical interneurons-all of which have been observed in ALS patients and model systems. 'Secondary pathways' include changes to mitochondrial morphology and function, increased production of reactive oxygen species, and endoplasmic reticulum (ER) stress. By identifying key targets in the excitotoxicity cascade, we emphasize the importance of this pathway in the pathogenesis of ALS and suggest that intervening in this pathway could be effective for developing therapies for this disease.
Collapse
Affiliation(s)
- Frederick J. Arnold
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; (A.F.P.)
| | - Alexandra F. Putka
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; (A.F.P.)
| | - Urmimala Raychaudhuri
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Solomon Hsu
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Richard S. Bedlack
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; (A.F.P.)
| | - Craig L. Bennett
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
- Department of Neurology, University of California Irvine, Irvine, CA 92617, USA
| | - Albert R. La Spada
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; (A.F.P.)
- Department of Neurology, University of California Irvine, Irvine, CA 92617, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92617, USA
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- UCI Center for Neurotherapeutics, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
44
|
Nguyen L. Updates on Disease Mechanisms and Therapeutics for Amyotrophic Lateral Sclerosis. Cells 2024; 13:888. [PMID: 38891021 PMCID: PMC11172142 DOI: 10.3390/cells13110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, is a motor neuron disease. In ALS, upper and lower motor neurons in the brain and spinal cord progressively degenerate during the course of the disease, leading to the loss of the voluntary movement of the arms and legs. Since its first description in 1869 by a French neurologist Jean-Martin Charcot, the scientific discoveries on ALS have increased our understanding of ALS genetics, pathology and mechanisms and provided novel therapeutic strategies. The goal of this review article is to provide a comprehensive summary of the recent findings on ALS mechanisms and related therapeutic strategies to the scientific audience. Several highlighted ALS research topics discussed in this article include the 2023 FDA approved drug for SOD1 ALS, the updated C9orf72 GGGGCC repeat-expansion-related mechanisms and therapeutic targets, TDP-43-mediated cryptic splicing and disease markers and diagnostic and therapeutic options offered by these recent discoveries.
Collapse
Affiliation(s)
- Lien Nguyen
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
45
|
Dorrity TJ, Shin H, Gertie JA, Chung H. The Sixth Sense: Self-nucleic acid sensing in the brain. Adv Immunol 2024; 161:53-83. [PMID: 38763702 PMCID: PMC11186578 DOI: 10.1016/bs.ai.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Our innate immune system uses pattern recognition receptors (PRRs) as a first line of defense to detect microbial ligands and initiate an immune response. Viral nucleic acids are key ligands for the activation of many PRRs and the induction of downstream inflammatory and antiviral effects. Initially it was thought that endogenous (self) nucleic acids rarely activated these PRRs, however emerging evidence indicates that endogenous nucleic acids are able to activate host PRRs in homeostasis and disease. In fact, many regulatory mechanisms are in place to finely control and regulate sensing of self-nucleic acids by PRRs. Sensing of self-nucleic acids is particularly important in the brain, as perturbations to nucleic acid sensing commonly leads to neuropathology. This review will highlight the role of nucleic acid sensors in the brain, both in disease and homeostasis. We also indicate the source of endogenous stimulatory nucleic acids where known and summarize future directions for the study of this growing field.
Collapse
Key Words
- Brain
- DNA sensing PRRs: cGAS, AIM2, TLR9
- Neurodegeneration: Aicardi-Goutieres syndrome (AGS), Alzheimer's disease, Amyotrophic lateral sclerosis, Stroke, Traumatic brain injury
- Neurodevelopment
- Neuroinflammation
- Nuecleic acid immunity
- Pattern recognition receptors (PRRs)
- RNA sensing PRRs: MDA5, RIG-I, PKR, TLR3, TLR7/8
Collapse
Affiliation(s)
- Tyler J Dorrity
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States
| | - Heegwon Shin
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States
| | - Jake A Gertie
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States; Medical Scientist Training Program, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Hachung Chung
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
46
|
Bhattacharyya N, Chai N, Hafford-Tear NJ, Sadan AN, Szabo A, Zarouchlioti C, Jedlickova J, Leung SK, Liao T, Dudakova L, Skalicka P, Parekh M, Moghul I, Jeffries AR, Cheetham ME, Muthusamy K, Hardcastle AJ, Pontikos N, Liskova P, Tuft SJ, Davidson AE. Deciphering novel TCF4-driven mechanisms underlying a common triplet repeat expansion-mediated disease. PLoS Genet 2024; 20:e1011230. [PMID: 38713708 PMCID: PMC11101122 DOI: 10.1371/journal.pgen.1011230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/17/2024] [Accepted: 03/19/2024] [Indexed: 05/09/2024] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is an age-related cause of vision loss, and the most common repeat expansion-mediated disease in humans characterised to date. Up to 80% of European FECD cases have been attributed to expansion of a non-coding CTG repeat element (termed CTG18.1) located within the ubiquitously expressed transcription factor encoding gene, TCF4. The non-coding nature of the repeat and the transcriptomic complexity of TCF4 have made it extremely challenging to experimentally decipher the molecular mechanisms underlying this disease. Here we comprehensively describe CTG18.1 expansion-driven molecular components of disease within primary patient-derived corneal endothelial cells (CECs), generated from a large cohort of individuals with CTG18.1-expanded (Exp+) and CTG 18.1-independent (Exp-) FECD. We employ long-read, short-read, and spatial transcriptomic techniques to interrogate expansion-specific transcriptomic biomarkers. Interrogation of long-read sequencing and alternative splicing analysis of short-read transcriptomic data together reveals the global extent of altered splicing occurring within Exp+ FECD, and unique transcripts associated with CTG18.1-expansions. Similarly, differential gene expression analysis highlights the total transcriptomic consequences of Exp+ FECD within CECs. Furthermore, differential exon usage, pathway enrichment and spatial transcriptomics reveal TCF4 isoform ratio skewing solely in Exp+ FECD with potential downstream functional consequences. Lastly, exome data from 134 Exp- FECD cases identified rare (minor allele frequency <0.005) and potentially deleterious (CADD>15) TCF4 variants in 7/134 FECD Exp- cases, suggesting that TCF4 variants independent of CTG18.1 may increase FECD risk. In summary, our study supports the hypothesis that at least two distinct pathogenic mechanisms, RNA toxicity and TCF4 isoform-specific dysregulation, both underpin the pathophysiology of FECD. We anticipate these data will inform and guide the development of translational interventions for this common triplet-repeat mediated disease.
Collapse
Affiliation(s)
- Nihar Bhattacharyya
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Niuzheng Chai
- University College London Institute of Ophthalmology, London, United Kingdom
| | | | - Amanda N. Sadan
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Anita Szabo
- University College London Institute of Ophthalmology, London, United Kingdom
| | | | - Jana Jedlickova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Szi Kay Leung
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Tianyi Liao
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Lubica Dudakova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavlina Skalicka
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Mohit Parekh
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Ismail Moghul
- University College London Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | - Aaron R. Jeffries
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Michael E. Cheetham
- University College London Institute of Ophthalmology, London, United Kingdom
| | | | - Alison J. Hardcastle
- University College London Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | - Nikolas Pontikos
- University College London Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | - Petra Liskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Stephen J. Tuft
- University College London Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | - Alice E. Davidson
- University College London Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|
47
|
Oliveira NAS, Pinho BR, Pinto J, Guedes de Pinho P, Oliveira JMA. Edaravone counteracts redox and metabolic disruptions in an emerging zebrafish model of sporadic ALS. Free Radic Biol Med 2024; 217:126-140. [PMID: 38531462 DOI: 10.1016/j.freeradbiomed.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which the death of motor neurons leads to loss of muscle function. Additionally, cognitive and circadian disruptions are common in ALS patients, contributing to disease progression and burden. Most ALS cases are sporadic, and environmental exposures contribute to their aetiology. However, animal models of these sporadic ALS cases are scarce. The small vertebrate zebrafish is a leading organism to model neurodegenerative diseases; previous studies have proposed bisphenol A (BPA) or β-methylamino-l-alanine (BMAA) exposure to model sporadic ALS in zebrafish, damaging motor neurons and altering motor responses. Here we characterise the face and predictive validity of sporadic ALS models, showing their potential for the mechanistic study of ALS drugs. We phenotypically characterise the BPA and BMAA-induced models, going beyond motor activity and motor axon morphology, to include circadian, redox, proteostasis, and metabolomic phenotypes, and assessing their predictive validity for ALS modelling. BPA or BMAA exposure induced concentration-dependent activity impairments. Also, exposure to BPA but not BMAA induced motor axonopathy and circadian alterations in zebrafish larvae. Our further study of the BPA model revealed loss of habituation to repetitive startles, increased oxidative damage, endoplasmic reticulum (ER) stress, and metabolome abnormalities. The BPA-induced model shows predictive validity, since the approved ALS drug edaravone counteracted BPA-induced motor phenotypes, ER stress, and metabolic disruptions. Overall, BPA exposure is a promising model of ALS-related redox and ER imbalances, contributing to fulfil an unmet need for validated sporadic ALS models.
Collapse
Affiliation(s)
- Nuno A S Oliveira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Brígida R Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Faculty of Pharmacy, Laboratory of Toxicology, University of Porto, 4050-313, Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Faculty of Pharmacy, Laboratory of Toxicology, University of Porto, 4050-313, Porto, Portugal
| | - Jorge M A Oliveira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
48
|
Chatterjee A, Hirsch-Reinshagen V, Scott I, Cashman N, Hsiung GYR. A Systematic Review of the Genetics and Pathology of Psychosis in Frontotemporal Dementia. Can J Neurol Sci 2024; 51:369-378. [PMID: 37385628 DOI: 10.1017/cjn.2023.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
OBJECTIVES Frontotemporal dementia (FTD) patients frequently present with psychosis, which complicates diagnosis and management. In this study, we aim to examine the relationship between psychosis and the most common genetic mutations predisposing to FTD, and in the different pathological subtypes of FTD. DESIGN We conducted a systematic review, searching the literature up to December 2022, and reviewed 50 articles that met our inclusion criteria. From the reviewed articles, we extracted and summarized data regarding the frequency of psychosis and patient characteristics in each major genetic and pathological subtype of FTD. RESULTS Among FTD patients with confirmed genetic mutations or pathological diagnosss, the frequency of psychosis was 24.2%. Among the genetic mutation carriers, C9orf72 mutation carriers had the highest frequency of psychosis (31.4%), whereas GRN (15.0%) and MAPT (9.2%) mutation carriers had lower frequencies of psychosis. MAPT mutation carriers notably developed psychosis at a younger age compared to other genetic groups. The most common psychotic symptoms were delusions among C9orf72 carriers and visual hallucinations among GRN mutation carriers. Among the pathological subtypes, 30% of patients with FUS pathology, 25.3% of patients with TDP-43 pathology, and 16.4% of patients with tau pathology developed psychosis. In the TDP-43 group, subtype B pathology was the most common subtype reported in association with psychosis. CONCLUSION Our systematic review suggests a high frequency of psychosis in specific subgroups of FTD patients. Further studies are required to understand the structural and biological underpinnings of psychosis in FTD.
Collapse
Affiliation(s)
- Atri Chatterjee
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Imogene Scott
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Neil Cashman
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ging-Yuek Robin Hsiung
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
49
|
Xu S, Ma Q, Shen J, Li N, Sun S, Wang N, Chen Y, Dong C, Tam KY, Prehn JH, Wang H, Ying Z. ALS-linked C9orf72 dipeptide repeats inhibit starvation-induced autophagy through modulating BCL2-BECN1 interaction. Acta Pharm Sin B 2024; 14:2026-2038. [PMID: 38799643 PMCID: PMC11119520 DOI: 10.1016/j.apsb.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 05/29/2024] Open
Abstract
Growing evidences indicate that dysfunction of autophagy contributes to the disease pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two neurodegenerative disorders. The GGGGCC·GGCCCC repeat RNA expansion in chromosome 9 open reading frame 72 (C9orf72) is the most genetic cause of both ALS and FTD. According to the previous studies, GGGGCC·GGCCCC repeat undergoes the unconventional repeat-associated non-ATG translation, which produces dipeptide repeat (DPR) proteins. Although there is a growing understanding that C9orf72 DPRs have a strong ability to harm neurons and induce C9orf72-linked ALS/FTD, whether these DPRs can affect autophagy remains unclear. In the present study, we find that poly-GR and poly-PR, two arginine-containing DPRs which display the most cytotoxic properties according to the previous studies, strongly inhibit starvation-induced autophagy. Moreover, our data indicate that arginine-rich DPRs enhance the interaction between BCL2 and BECN1/Beclin 1 by inhibiting BCL2 phosphorylation, therefore they can impair autophagic clearance of neurodegenerative disease-associated protein aggregates under starvation condition in cells. Importantly, our study not only highlights the role of C9orf72 DPR in autophagy dysfunction, but also provides novel insight that pharmacological intervention of autophagy using SW063058, a small molecule compound that can disrupt the interaction between BECN1 and BCL2, may reduce C9orf72 DPR-induced neurotoxicity.
Collapse
Affiliation(s)
- Shiqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Qilian Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Dept. of Physiology & Medical Physics and FUTURE-NEURO Research Centre, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Junwen Shen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ningning Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Shan Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Nana Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yang Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Chunsheng Dong
- Insititutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Jochen H.M. Prehn
- Dept. of Physiology & Medical Physics and FUTURE-NEURO Research Centre, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Hongfeng Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Zheng Ying
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| |
Collapse
|
50
|
Sachdev A, Gill K, Sckaff M, Birk AM, Aladesuyi Arogundade O, Brown KA, Chouhan RS, Issagholian-Lewin PO, Patel E, Watry HL, Bernardi MT, Keough KC, Tsai YC, Smith AST, Conklin BR, Clelland CD. Reversal of C9orf72 mutation-induced transcriptional dysregulation and pathology in cultured human neurons by allele-specific excision. Proc Natl Acad Sci U S A 2024; 121:e2307814121. [PMID: 38621131 PMCID: PMC11047104 DOI: 10.1073/pnas.2307814121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/01/2024] [Indexed: 04/17/2024] Open
Abstract
Efforts to genetically reverse C9orf72 pathology have been hampered by our incomplete understanding of the regulation of this complex locus. We generated five different genomic excisions at the C9orf72 locus in a patient-derived induced pluripotent stem cell (iPSC) line and a non-diseased wild-type (WT) line (11 total isogenic lines), and examined gene expression and pathological hallmarks of C9 frontotemporal dementia/amyotrophic lateral sclerosis in motor neurons differentiated from these lines. Comparing the excisions in these isogenic series removed the confounding effects of different genomic backgrounds and allowed us to probe the effects of specific genomic changes. A coding single nucleotide polymorphism in the patient cell line allowed us to distinguish transcripts from the normal vs. mutant allele. Using digital droplet PCR (ddPCR), we determined that transcription from the mutant allele is upregulated at least 10-fold, and that sense transcription is independently regulated from each allele. Surprisingly, excision of the WT allele increased pathologic dipeptide repeat poly-GP expression from the mutant allele. Importantly, a single allele was sufficient to supply a normal amount of protein, suggesting that the C9orf72 gene is haplo-sufficient in induced motor neurons. Excision of the mutant repeat expansion reverted all pathology (RNA abnormalities, dipeptide repeat production, and TDP-43 pathology) and improved electrophysiological function, whereas silencing sense expression did not eliminate all dipeptide repeat proteins, presumably because of the antisense expression. These data increase our understanding of C9orf72 gene regulation and inform gene therapy approaches, including antisense oligonucleotides (ASOs) and CRISPR gene editing.
Collapse
Affiliation(s)
| | - Kamaljot Gill
- Gladstone Institutes, San Francisco, CA94158
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
| | - Maria Sckaff
- Gladstone Institutes, San Francisco, CA94158
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
| | | | - Olubankole Aladesuyi Arogundade
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
- Memory & Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA94158
| | - Katherine A. Brown
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
- Memory & Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA94158
| | - Runvir S. Chouhan
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
- Memory & Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA94158
| | - Patrick Oliver Issagholian-Lewin
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
- Memory & Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA94158
| | - Esha Patel
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
- Memory & Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA94158
| | | | | | | | | | - Alec Simon Tulloch Smith
- Department of Physiology and Biophysics, University of Washington, Seattle, WA98195
- The Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA98195
| | - Bruce R. Conklin
- Gladstone Institutes, San Francisco, CA94158
- Department of Medicine, University of California San Francisco, San Francisco, CA94143
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA94143
- Department of Pharmacology, University of California San Francisco, San Francisco, CA94158
| | - Claire Dudley Clelland
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
- Memory & Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA94158
| |
Collapse
|