1
|
Chen Y, Yang C, Gao B, Chen K, Jao Keehn RJ, Müller RA, Yuan LX, You Y. Altered functional connectivity of unimodal sensory and multisensory integration networks is related to symptom severity in autism spectrum disorders. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00313-6. [PMID: 39491786 DOI: 10.1016/j.bpsc.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Atypical sensory processing is a prevalent feature in autism spectrum disorders (ASD) and constitutes a core diagnostic criterion in the Diagnostic and Statistical Manual of Mental of Disorders, 5th edition (DSM-5). However, neurocognitive underpinnings of atypical unimodal and multimodal sensory processing and their relationships with autism symptoms remain unclear. METHODS This study examined intrinsic functional connectivity (FC) patterns among five unimodal sensory and multisensory integration (MSI) networks in ASD with a large multi-site dataset (n = 646), and investigated the relationships among altered FC, atypical sensory processing, social communicative deficits, and overall autism symptoms with correlation and mediation analyses. RESULTS Relative to typically developing (TD) controls, the ASD group demonstrated increased FC of the olfactory network, decreased FC within the MSI network, and decreased FC of the MSI-unimodal-sensory networks. Furthermore, altered FC was positively associated with autism symptom severity, and such associations were completely mediated by atypical sensory processing and social communicative deficits. CONCLUSIONS ASD-specific olfactory overconnectivity and MSI-unimodal-sensory underconnectivity lend support to the Intense World Theory and Weak Central Coherence Theory, suggesting olfactory hypersensitivity at the expense of multisensory integration as potential neural mechanisms underlying atypical sensory processing in ASD. These atypical FC patterns further suggest potential targets for psychological and neuromodulatory interventions.
Collapse
Affiliation(s)
- Yahui Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Chen Yang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Bicheng Gao
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Kehui Chen
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - R Joanne Jao Keehn
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Ralph-Axel Müller
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Li-Xia Yuan
- School of Physics, Zhejiang University, Hangzhou, China.
| | - Yuqi You
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Pupillo F, Düzel S, Kühn S, Lindenberger U, Shing YL. Deficits in memory metacognitive efficiency in late adulthood are related to distinct brain profile. Memory 2024; 32:1286-1302. [PMID: 38635864 PMCID: PMC11552703 DOI: 10.1080/09658211.2024.2341711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
The tendency of falsely remembering events that did not happen in the past increases with age. This is particularly evident in cases in which features presented at study are re-presented at test in a recombined constellation (termed rearranged pairs). Interestingly, older adults also express high confidence in such false memories, a tendency that may indicate reduced metacognitive efficiency. Within an existing cohort study, we aimed at investigating age-related differences in memory metacognitive efficiency (as measured by meta d' ratio) in a sample of 1522 older adults and 397 young adults. The analysis showed an age-related deficit in metacognition which was more pronounced for rearranged pairs than for new pairs. We then explored associations between cortical thickness and memory metacognitive efficiency for rearranged pairs in a subsample of 231 older adults. By using partial least square analysis, we found that a multivariate profile composed by ventromedial prefrontal cortex, insula, and parahippocampal cortex was uniquely associated with between-person differences in memory metacognitive efficiency. These results suggest that the impairment in memory metacognitive efficiency for false alarms is a distinct age-related deficit, above and beyond a general age-related decline in memory discrimination, and that it is associated with brain regions involved in metacognitive processes.
Collapse
Affiliation(s)
- Francesco Pupillo
- Department of Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany
- TS Social and Behavioural Sciences, Tilburg University, Tilburg, Netherlands
| | - Sandra Düzel
- Friede Springer Cardiovascular Prevention Center @Charité, Berlin, Germany
| | - Simone Kühn
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, German
- Lise-Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
| | - Ulman Lindenberger
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, German
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Yee Lee Shing
- Department of Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany
- IDeA Center for Individual Development and Adaptive Education, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Ilan Y. Using the Constrained Disorder Principle to Navigate Uncertainties in Biology and Medicine: Refining Fuzzy Algorithms. BIOLOGY 2024; 13:830. [PMID: 39452139 PMCID: PMC11505099 DOI: 10.3390/biology13100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/17/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Uncertainty in biology refers to situations in which information is imperfect or unknown. Variability, on the other hand, is measured by the frequency distribution of observed data. Biological variability adds to the uncertainty. The Constrained Disorder Principle (CDP) defines all systems in the universe by their inherent variability. According to the CDP, systems exhibit a degree of variability necessary for their proper function, allowing them to adapt to changes in their environments. Per the CDP, while variability differs from uncertainty, it can be viewed as a regulated mechanism for efficient functionality rather than uncertainty. This paper explores the various aspects of un-certainties in biology. It focuses on using CDP-based platforms for refining fuzzy algorithms to address some of the challenges associated with biological and medical uncertainties. Developing a fuzzy decision tree that considers the natural variability of systems can help minimize uncertainty. This method can reveal previously unidentified classes, reduce the number of unknowns, improve the accuracy of modeling results, and generate algorithm outputs that are more biologically and clinically relevant.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hadassah Medical Center, Faculty of Medicine, Hebrew University, Jerusalem 9112001, Israel
| |
Collapse
|
4
|
Adkinson BD, Rosenblatt M, Dadashkarimi J, Tejavibulya L, Jiang R, Noble S, Scheinost D. Brain-phenotype predictions of language and executive function can survive across diverse real-world data: Dataset shifts in developmental populations. Dev Cogn Neurosci 2024; 70:101464. [PMID: 39447452 PMCID: PMC11538622 DOI: 10.1016/j.dcn.2024.101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Predictive modeling potentially increases the reproducibility and generalizability of neuroimaging brain-phenotype associations. Yet, the evaluation of a model in another dataset is underutilized. Among studies that undertake external validation, there is a notable lack of attention to generalization across dataset-specific idiosyncrasies (i.e., dataset shifts). Research settings, by design, remove the between-site variations that real-world and, eventually, clinical applications demand. Here, we rigorously test the ability of a range of predictive models to generalize across three diverse, unharmonized developmental samples: the Philadelphia Neurodevelopmental Cohort (n=1291), the Healthy Brain Network (n=1110), and the Human Connectome Project in Development (n=428). These datasets have high inter-dataset heterogeneity, encompassing substantial variations in age distribution, sex, racial and ethnic minority representation, recruitment geography, clinical symptom burdens, fMRI tasks, sequences, and behavioral measures. Through advanced methodological approaches, we demonstrate that reproducible and generalizable brain-behavior associations can be realized across diverse dataset features. Results indicate the potential of functional connectome-based predictive models to be robust despite substantial inter-dataset variability. Notably, for the HCPD and HBN datasets, the best predictions were not from training and testing in the same dataset (i.e., cross-validation) but across datasets. This result suggests that training on diverse data may improve prediction in specific cases. Overall, this work provides a critical foundation for future work evaluating the generalizability of brain-phenotype associations in real-world scenarios and clinical settings.
Collapse
Affiliation(s)
- Brendan D Adkinson
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Matthew Rosenblatt
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Javid Dadashkarimi
- Department of Radiology, Athinoula. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02129, USA
| | - Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Rongtao Jiang
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
| | - Stephanie Noble
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; Department of Bioengineering, Northeastern University, Boston, MA 02120, USA; Department of Psychology, Northeastern University, Boston, MA 02115, USA
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; Department of Statistics & Data Science, Yale University, New Haven, CT 06520, USA; Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
5
|
Lee HJ, Dworetsky A, Labora N, Gratton C. Using precision approaches to improve brain-behavior prediction. Trends Cogn Sci 2024:S1364-6613(24)00229-8. [PMID: 39419740 DOI: 10.1016/j.tics.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
Predicting individual behavioral traits from brain idiosyncrasies has broad practical implications, yet predictions vary widely. This constraint may be driven by a combination of signal and noise in both brain and behavioral variables. Here, we expand on this idea, highlighting the potential of extended sampling 'precision' studies. First, we discuss their relevance to improving the reliability of individualized estimates by minimizing measurement noise. Second, we review how targeted within-subject experiments, when combined with individualized analysis or modeling frameworks, can maximize signal. These improvements in signal-to-noise facilitated by precision designs can help boost prediction studies. We close by discussing the integration of precision approaches with large-sample consortia studies to leverage the advantages of both.
Collapse
Affiliation(s)
- Hyejin J Lee
- Department of Psychology, Florida State University, Tallahassee, FL, USA; Department of Psychology, Beckman Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA.
| | - Ally Dworetsky
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Nathan Labora
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Caterina Gratton
- Department of Psychology, Florida State University, Tallahassee, FL, USA; Department of Psychology, Beckman Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA.
| |
Collapse
|
6
|
Sigawi T, Israeli A, Ilan Y. Harnessing Variability Signatures and Biological Noise May Enhance Immunotherapies' Efficacy and Act as Novel Biomarkers for Diagnosing and Monitoring Immune-Associated Disorders. Immunotargets Ther 2024; 13:525-539. [PMID: 39431244 PMCID: PMC11488351 DOI: 10.2147/itt.s477841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
Lack of response to immunotherapies poses a significant challenge in treating immune-mediated disorders and cancers. While the mechanisms associated with poor responsiveness are not well defined and change between and among subjects, the current methods for overcoming the loss of response are insufficient. The Constrained Disorder Principle (CDP) explains biological systems based on their inherent variability, bounded by dynamic boundaries that change in response to internal and external perturbations. Inter and intra-subject variability characterize the immune system, making it difficult to provide a single therapeutic regimen to all patients and even the same patients over time. The dynamicity of the immune variability is also a significant challenge for personalizing immunotherapies. The CDP-based second-generation artificial intelligence system is an outcome-based dynamic platform that incorporates personalized variability signatures into the therapeutic regimen and may provide methods for improving the response and overcoming the loss of response to treatments. The signatures of immune variability may also offer a method for identifying new biomarkers for early diagnosis, monitoring immune-related disorders, and evaluating the response to treatments.
Collapse
Affiliation(s)
- Tal Sigawi
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Adir Israeli
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
7
|
Rosenblatt M, Tejavibulya L, Sun H, Camp CC, Khaitova M, Adkinson BD, Jiang R, Westwater ML, Noble S, Scheinost D. Power and reproducibility in the external validation of brain-phenotype predictions. Nat Hum Behav 2024; 8:2018-2033. [PMID: 39085406 DOI: 10.1038/s41562-024-01931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/18/2024] [Indexed: 08/02/2024]
Abstract
Brain-phenotype predictive models seek to identify reproducible and generalizable brain-phenotype associations. External validation, or the evaluation of a model in external datasets, is the gold standard in evaluating the generalizability of models in neuroimaging. Unlike typical studies, external validation involves two sample sizes: the training and the external sample sizes. Thus, traditional power calculations may not be appropriate. Here we ran over 900 million resampling-based simulations in functional and structural connectivity data to investigate the relationship between training sample size, external sample size, phenotype effect size, theoretical power and simulated power. Our analysis included a wide range of datasets: the Healthy Brain Network, the Adolescent Brain Cognitive Development Study, the Human Connectome Project (Development and Young Adult), the Philadelphia Neurodevelopmental Cohort, the Queensland Twin Adolescent Brain Project, and the Chinese Human Connectome Project; and phenotypes: age, body mass index, matrix reasoning, working memory, attention problems, anxiety/depression symptoms and relational processing. High effect size predictions achieved adequate power with training and external sample sizes of a few hundred individuals, whereas low and medium effect size predictions required hundreds to thousands of training and external samples. In addition, most previous external validation studies used sample sizes prone to low power, and theoretical power curves should be adjusted for the training sample size. Furthermore, model performance in internal validation often informed subsequent external validation performance (Pearson's r difference <0.2), particularly for well-harmonized datasets. These results could help decide how to power future external validation studies.
Collapse
Affiliation(s)
- Matthew Rosenblatt
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Huili Sun
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Chris C Camp
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Milana Khaitova
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Brendan D Adkinson
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Rongtao Jiang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Margaret L Westwater
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Dustin Scheinost
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
| |
Collapse
|
8
|
Lumaca M, Keller PE, Baggio G, Pando-Naude V, Bajada CJ, Martinez MA, Hansen JH, Ravignani A, Joe N, Vuust P, Vulić K, Sandberg K. Frontoparietal network topology as a neural marker of musical perceptual abilities. Nat Commun 2024; 15:8160. [PMID: 39289390 PMCID: PMC11408523 DOI: 10.1038/s41467-024-52479-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Why are some individuals more musical than others? Neither cognitive testing nor classical localizationist neuroscience alone can provide a complete answer. Here, we test how the interplay of brain network organization and cognitive function delivers graded perceptual abilities in a distinctively human capacity. We analyze multimodal magnetic resonance imaging, cognitive, and behavioral data from 200+ participants, focusing on a canonical working memory network encompassing prefrontal and posterior parietal regions. Using graph theory, we examine structural and functional frontoparietal network organization in relation to assessments of musical aptitude and experience. Results reveal a positive correlation between perceptual abilities and the integration efficiency of key frontoparietal regions. The linkage between functional networks and musical abilities is mediated by working memory processes, whereas structural networks influence these abilities through sensory integration. Our work lays the foundation for future investigations into the neurobiological roots of individual differences in musicality.
Collapse
Affiliation(s)
- M Lumaca
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.
| | - P E Keller
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia
| | - G Baggio
- Language Acquisition and Language Processing Lab, Norwegian University of Science and Technology, Trondheim, Norway
| | - V Pando-Naude
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - C J Bajada
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta / University of Malta Magnetic Resonance Imaging Research Platform, Msida, Malta
| | - M A Martinez
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - J H Hansen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - A Ravignani
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - N Joe
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - P Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - K Vulić
- Department for Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - K Sandberg
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Godefroy V, Durand A, Simon MC, Weber B, Kable J, Lerman C, Bergström F, Levy R, Batrancourt B, Schmidt L, Plassmann H, Koban L. A structural MRI marker predicts individual differences in impulsivity and classifies patients with behavioral-variant frontotemporal dementia from matched controls. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612706. [PMID: 39345385 PMCID: PMC11429931 DOI: 10.1101/2024.09.12.612706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Impulsivity and higher preference for sooner over later rewards (i.e., delay discounting) are transdiagnostic markers of many psychiatric and neurodegenerative disorders. Yet, their neurobiological basis is still debated. Here, we aimed at 1) identifying a structural MRI signature of delay discounting in healthy adults, and 2) validating it in patients with behavioral variant frontotemporal dementia (bvFTD)-a neurodegenerative disease characterized by high impulsivity. We used a machine-learning algorithm to predict individual differences in delay discounting rates based on whole-brain grey matter density maps in healthy male adults (Study 1, N=117). This resulted in a cross-validated prediction-outcome correlation of r=0.35 (p=0.0028). We tested the validity of this brain signature in an independent sample of 166 healthy adults (Study 2) and its clinical relevance in 24 bvFTD patients and 18 matched controls (Study 3). In Study 2, responses of the brain signature did not correlate significantly with discounting rates, but in both Studies 1 and 2, they correlated with psychometric measures of trait urgency-a measure of impulsivity. In Study 3, brain-based predictions correlated with discounting rates, separated bvFTD patients from controls with 81% accuracy, and were associated with the severity of disinhibition among patients. Our results suggest a new structural brain pattern-the Structural Impulsivity Signature (SIS)-which predicts individual differences in impulsivity from whole-brain structure, albeit with small-to-moderate effect sizes. It provides a new brain target that can be tested in future studies to assess its diagnostic value in bvFTD and other neurodegenerative and psychiatric conditions characterized by high impulsivity.
Collapse
Affiliation(s)
- Valérie Godefroy
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, F-69500, Bron, France
| | - Anais Durand
- Paris Brain Institute (ICM), INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France UMR 7225, Sorbonne University, Paris, France
| | | | - Bernd Weber
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
| | - Joseph Kable
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Fredrik Bergström
- Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
- Department of Psychology, University of Gothenburg, Sweden
| | - Richard Levy
- Paris Brain Institute (ICM), INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France UMR 7225, Sorbonne University, Paris, France
| | - Bénédicte Batrancourt
- Paris Brain Institute (ICM), INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France UMR 7225, Sorbonne University, Paris, France
| | - Liane Schmidt
- Paris Brain Institute (ICM), INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France UMR 7225, Sorbonne University, Paris, France
| | - Hilke Plassmann
- Paris Brain Institute (ICM), INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France UMR 7225, Sorbonne University, Paris, France
- Marketing Area, INSEAD, Fontainebleau, France
| | - Leonie Koban
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, F-69500, Bron, France
| |
Collapse
|
10
|
Hoang N, Sardaripour N, Ramey GD, Schilling K, Liao E, Chen Y, Park JH, Bledsoe X, Landman BA, Gamazon ER, Benton ML, Capra JA, Rubinov M. Integration of estimated regional gene expression with neuroimaging and clinical phenotypes at biobank scale. PLoS Biol 2024; 22:e3002782. [PMID: 39269986 PMCID: PMC11424006 DOI: 10.1371/journal.pbio.3002782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/25/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
An understanding of human brain individuality requires the integration of data on brain organization across people and brain regions, molecular and systems scales, as well as healthy and clinical states. Here, we help advance this understanding by leveraging methods from computational genomics to integrate large-scale genomic, transcriptomic, neuroimaging, and electronic-health record data sets. We estimated genetically regulated gene expression (gr-expression) of 18,647 genes, across 10 cortical and subcortical regions of 45,549 people from the UK Biobank. First, we showed that patterns of estimated gr-expression reflect known genetic-ancestry relationships, regional identities, as well as inter-regional correlation structure of directly assayed gene expression. Second, we performed transcriptome-wide association studies (TWAS) to discover 1,065 associations between individual variation in gr-expression and gray-matter volumes across people and brain regions. We benchmarked these associations against results from genome-wide association studies (GWAS) of the same sample and found hundreds of novel associations relative to these GWAS. Third, we integrated our results with clinical associations of gr-expression from the Vanderbilt Biobank. This integration allowed us to link genes, via gr-expression, to neuroimaging and clinical phenotypes. Fourth, we identified associations of polygenic gr-expression with structural and functional MRI phenotypes in the Human Connectome Project (HCP), a small neuroimaging-genomic data set with high-quality functional imaging data. Finally, we showed that estimates of gr-expression and magnitudes of TWAS were generally replicable and that the p-values of TWAS were replicable in large samples. Collectively, our results provide a powerful new resource for integrating gr-expression with population genetics of brain organization and disease.
Collapse
Affiliation(s)
- Nhung Hoang
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Neda Sardaripour
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Grace D. Ramey
- Biological and Medical Informatics Division, University of California, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, United States of America
| | - Kurt Schilling
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Emily Liao
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Yiting Chen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jee Hyun Park
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Xavier Bledsoe
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Bennett A. Landman
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric R. Gamazon
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Mary Lauren Benton
- Department of Computer Science, Baylor University, Waco, Texas, United States of America
| | - John A. Capra
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Bakar Computational Health Sciences Institute, University of California, San Francisco, California, United States of America
| | - Mikail Rubinov
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, United States of America
- Howard Hughes Medical Institute Janelia Research Campus, Ashburn, Virginia, United States of America
| |
Collapse
|
11
|
Feilong M, Jiahui G, Gobbini MI, Haxby JV. A cortical surface template for human neuroscience. Nat Methods 2024; 21:1736-1742. [PMID: 39014074 PMCID: PMC11399089 DOI: 10.1038/s41592-024-02346-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024]
Abstract
Neuroimaging data analysis relies on normalization to standard anatomical templates to resolve macroanatomical differences across brains. Existing human cortical surface templates sample locations unevenly because of distortions introduced by inflation of the folded cortex into a standard shape. Here we present the onavg template, which affords uniform sampling of the cortex. We created the onavg template based on openly available high-quality structural scans of 1,031 brains-25 times more than existing cortical templates. We optimized the vertex locations based on cortical anatomy, achieving an even distribution. We observed consistently higher multivariate pattern classification accuracies and representational geometry inter-participant correlations based on onavg than on other templates, and onavg only needs three-quarters as much data to achieve the same performance compared with other templates. The optimized sampling also reduces CPU time across algorithms by 1.3-22.4% due to less variation in the number of vertices in each searchlight.
Collapse
Affiliation(s)
- Ma Feilong
- Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH, USA.
| | - Guo Jiahui
- Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH, USA
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Maria Ida Gobbini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - James V Haxby
- Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
12
|
Adams RA, Zor C, Mihalik A, Tsirlis K, Brudfors M, Chapman J, Ashburner J, Paulus MP, Mourão-Miranda J. Voxelwise Multivariate Analysis of Brain-Psychosocial Associations in Adolescents Reveals 6 Latent Dimensions of Cognition and Psychopathology. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:915-927. [PMID: 38588854 DOI: 10.1016/j.bpsc.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Adolescence heralds the onset of considerable psychopathology, which may be conceptualized as an emergence of altered covariation between symptoms and brain measures. Multivariate methods can detect such modes of covariation or latent dimensions, but none specifically relating to psychopathology have yet been found using population-level structural brain data. Using voxelwise (instead of parcellated) brain data may strengthen latent dimensions' brain-psychosocial relationships, but this creates computational challenges. METHODS We obtained voxelwise gray matter density and psychosocial variables from the baseline (ages 9-10 years) Adolescent Brain Cognitive Development (ABCD) Study cohort (N = 11,288) and employed a state-of-the-art segmentation method, sparse partial least squares, and a rigorous machine learning framework to prevent overfitting. RESULTS We found 6 latent dimensions, 4 of which pertain specifically to mental health. The mental health dimensions were related to overeating, anorexia/internalizing, oppositional symptoms (all ps < .002) and attention-deficit/hyperactivity disorder symptoms (p = .03). Attention-deficit/hyperactivity disorder was related to increased and internalizing symptoms related to decreased gray matter density in dopaminergic and serotonergic midbrain areas, whereas oppositional symptoms were related to increased gray matter in a noradrenergic nucleus. Internalizing symptoms were related to increased and oppositional symptoms to reduced gray matter density in the insular, cingulate, and auditory cortices. Striatal regions featured strongly, with reduced caudate nucleus gray matter in attention-deficit/hyperactivity disorder and reduced putamen gray matter in oppositional/conduct problems. Voxelwise gray matter density generated stronger brain-psychosocial correlations than brain parcellations. CONCLUSIONS Voxelwise brain data strengthen latent dimensions of brain-psychosocial covariation, and sparse multivariate methods increase their psychopathological specificity. Internalizing and externalizing symptoms are associated with opposite gray matter changes in similar cortical and subcortical areas.
Collapse
Affiliation(s)
- Rick A Adams
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom.
| | - Cemre Zor
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Agoston Mihalik
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Konstantinos Tsirlis
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - Mikael Brudfors
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - James Chapman
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - John Ashburner
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | | | - Janaina Mourão-Miranda
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| |
Collapse
|
13
|
Little B, Flowers C, Blamire A, Thelwall P, Taylor JP, Gallagher P, Cousins DA, Wang Y. Multivariate brain-cognition associations in euthymic bipolar disorder. Bipolar Disord 2024. [PMID: 39138611 DOI: 10.1111/bdi.13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
BACKGROUND People with bipolar disorder (BD) tend to show widespread cognitive impairment compared to healthy controls. Impairments in processing speed (PS), attention and executive function (EF) may represent 'core' impairments that have a role in wider cognitive dysfunction. Cognitive impairments appear to relate to structural brain abnormalities in BD, but whether core deficits are related to particular brain regions is unclear and much of the research on brain-cognition associations is limited by univariate analysis and small samples. METHODS Euthymic BD patients (n = 56) and matched healthy controls (n = 26) underwent T1-weighted MRI scans and completed neuropsychological tests of PS, attention and EF. We utilised public datasets to develop normative models of cortical thickness (n = 5977) to generate robust estimations of cortical abnormalities in patients. Canonical correlation analysis was used to assess multivariate brain-cognition associations in BD, controlling for age, sex and premorbid IQ. RESULTS BD showed impairments on tests of PS, attention and EF, and abnormal cortical thickness in several brain regions compared to healthy controls. Impairments in tests of PS and EF were most strongly associated with cortical thickness in the left inferior temporal, right entorhinal and right temporal pole areas. CONCLUSION Impairments in PS, attention and EF can be observed in euthymic BD and may be related to abnormal cortical thickness in temporal regions. Future research should continue to leverage normative modelling and multivariate methods to examine complex brain-cognition associations in BD. Future research may benefit from exploring covariance between traditional brain structural morphological metrics such as cortical thickness, cortical volume and surface area.
Collapse
Affiliation(s)
- Bethany Little
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex Biosystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Carly Flowers
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew Blamire
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Peter Thelwall
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Peter Gallagher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - David Andrew Cousins
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Yujiang Wang
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex Biosystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
14
|
Herbet G, Duffau H, Mandonnet E. Predictors of cognition after glioma surgery: connectotomy, structure-function phenotype, plasticity. Brain 2024; 147:2621-2635. [PMID: 38573324 DOI: 10.1093/brain/awae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/19/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024] Open
Abstract
Determining preoperatively the maximal extent of resection that would preserve cognitive functions is the core challenge of brain tumour surgery. Over the past decade, the methodological framework to achieve this goal has been thoroughly renewed: the population-level topographically-focused voxel-based lesion-symptom mapping has been progressively overshadowed by machine learning (ML) algorithmics, in which the problem is framed as predicting cognitive outcomes in a patient-specific manner from a typically large set of variables. However, the choice of these predictors is of utmost importance, as they should be both informative and parsimonious. In this perspective, we first introduce the concept of connectotomy: instead of parameterizing resection topography through the status (intact/resected) of a huge number of voxels (or parcels) paving the whole brain in the Cartesian 3D-space, the connectotomy models the resection in the connectivity space, by computing a handful number of networks disconnection indices, measuring how the structural connectivity sustaining each network of interest was hit by the resection. This connectivity-informed reduction of dimensionality is a necessary step for efficiently implementing ML tools, given the relatively small number of patient-examples in available training datasets. We further argue that two other major sources of interindividual variability must be considered to improve the accuracy with which outcomes are predicted: the underlying structure-function phenotype and neuroplasticity, for which we provide an in-depth review and propose new ways of determining relevant predictors. We finally discuss the benefits of our approach for precision surgery of glioma.
Collapse
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier 34090, France
- Praxiling lab, UMR5267 CNRS & Paul Valéry University, Montpellier 34090, France
- Department of Medicine, University of Montpellier, Montpellier 34090, France
- Institut Universitaire de France, Paris 75000, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier 34090, France
- Department of Medicine, University of Montpellier, Montpellier 34090, France
- Team 'Plasticity of Central Nervous System, Stem Cells and Glial Tumors', U1191 Laboratory, Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM), University of Montpellier, Montpellier 34000, France
| | - Emmanuel Mandonnet
- Department of Neurosurgery, Lariboisière Hospital, AP-HP, Paris 75010, France
- Frontlab, CNRS UMR 7225, INSERM U1127, Paris Brain Institute (ICM), Paris 75013, France
- Université de Paris Cité, UFR de médecine, Paris 75005, France
| |
Collapse
|
15
|
McGugin RW, Roche A, Ma J, Gauthier I. Challenges in replication: Does amygdala gray matter volume relate to social network size? COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:707-719. [PMID: 38549033 PMCID: PMC11233388 DOI: 10.3758/s13415-024-01185-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 07/11/2024]
Abstract
In this work, we tried to replicate and extend prior research on the relationship between social network size and the volume of the amygdala. We focused on the earliest evidence for this relationship (Bickart et al., Nature Neuroscience 14(2), 163-164, 2011) and another methodologically unique study that often is cited as a replication (Kanai et al., Proceedings of the Royal Society B: Biological Sciences, 279(1732), 1327-1334, 2012). Despite their tight link in the literature, we argue that Kanai et al. (Proceedings of the Royal Society B: Biological Sciences, 279(1732), 1327-1334, 2012) is not a replication of Bickart et al. Nature Neuroscience 14(2), 163-164 (2011), because it uses different morphometric measurements. We collected data from 128 participants on a 7-Tesla MRI and examined variations in gray matter volume (GMV) in the amygdala and its nuclei. We found inconclusive support for a correlation between measures of real-world social network and amygdala GMV, with small effect sizes and only anecdotal evidence for a positive relationship. We found support for the absence of a correlation between measures of online social network and amygdala GMV. We discuss different challenges faced in replication attempts for small effects, as initially reported in these two studies, and suggest that the results would be most helpful in the context of estimation and future meta-analytical efforts. Our findings underscore the value of a narrow approach in replication of brain-behavior relationships, one that is focused enough to investigate the specifics of what is measured. This approach can provide a complementary perspective to the more popular "thematic" alternative, in which conclusions are often broader but where conclusions may become disconnected from the evidence.
Collapse
Affiliation(s)
- Rankin W McGugin
- Department of Psychology, Vanderbilt University, 111 21st Avenue South, Nashville, TN, 37240, USA
| | - Alexandra Roche
- Department of Psychology, Vanderbilt University, 111 21st Avenue South, Nashville, TN, 37240, USA
| | - Jonathan Ma
- Department of Psychology, Vanderbilt University, 111 21st Avenue South, Nashville, TN, 37240, USA
| | - Isabel Gauthier
- Department of Psychology, Vanderbilt University, 111 21st Avenue South, Nashville, TN, 37240, USA.
| |
Collapse
|
16
|
Liu X, Wei S, Zhao X, Bi Y, Hu L. Establishing the relationship between subjective perception and neural responses: Insights from correlation analysis and representational similarity analysis. Neuroimage 2024; 295:120650. [PMID: 38768740 DOI: 10.1016/j.neuroimage.2024.120650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024] Open
Abstract
Exploring the relationship between sensory perception and brain responses holds important theoretical and clinical implications. However, commonly used methodologies like correlation analysis performed either intra- or inter- individually often yield inconsistent results across studies, limiting their generalizability. Representational similarity analysis (RSA), a method that assesses the perception-response relationship by calculating the correlation between behavioral and neural patterns, may offer a fresh perspective to reveal novel findings. Here, we delivered a series of graded sensory stimuli of four modalities (i.e., nociceptive somatosensory, non-nociceptive somatosensory, visual, and auditory) to/near the left or right hand of 107 healthy subjects and collected their single-trial perceptual ratings and electroencephalographic (EEG) responses. We examined the relationship between sensory perception and brain responses using within- and between-subject correlation analysis and RSA, and assessed their stability across different numbers of subjects and trials. We found that within-subject and between-subject correlations yielded distinct results: within-subject correlation revealed strong and reliable correlations between perceptual ratings and most brain responses, while between-subject correlation showed weak correlations that were vulnerable to the change of subject number. In addition to verifying the correlation results, RSA revealed some novel findings, i.e., correlations between behavioral and neural patterns were observed in some additional neural responses, such as "γ-ERS" in the visual modality. RSA results were sensitive to the trial number, but not to the subject number, suggesting that consistent results could be obtained for studies with relatively small sample sizes. In conclusion, our study provides a novel perspective on establishing the relationship between behavior and brain activity, emphasizing that RSA holds promise as a method for exploring this pattern relationship in future research.
Collapse
Affiliation(s)
- Xu Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China; Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
| | - Shiyu Wei
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyue Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanzhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Ren J, Loughnan R, Xu B, Thompson WK, Fan CC. Estimating the total variance explained by whole-brain imaging for zero-inflated outcomes. Commun Biol 2024; 7:836. [PMID: 38982203 PMCID: PMC11233705 DOI: 10.1038/s42003-024-06504-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
There is a dearth of statistical models that adequately capture the total signal attributed to whole-brain imaging features. The total signal is often widely distributed across the brain, with individual imaging features exhibiting small effect sizes for predicting neurobehavioral phenotypes. The challenge of capturing the total signal is compounded by the distribution of neurobehavioral data, particularly responses to psychological questionnaires, which often feature zero-inflated, highly skewed outcomes. To close this gap, we have developed a novel Variational Bayes algorithm that characterizes the total signal captured by whole-brain imaging features for zero-inflated outcomes. Our zero-inflated variance (ZIV) estimator estimates the fraction of variance explained (FVE) and the proportion of non-null effects (PNN) from large-scale imaging data. In simulations, ZIV demonstrates superior performance over other linear models. When applied to data from the Adolescent Brain Cognitive DevelopmentSM (ABCD) Study, we found that whole-brain imaging features contribute to a larger FVE for externalizing behaviors compared to internalizing behaviors. Moreover, focusing on features contributing to the PNN, ZIV estimator localized key neurocircuitry associated with neurobehavioral traits. To the best of our knowledge, the ZIV estimator is the first specialized method for analyzing zero-inflated neuroimaging data, enhancing future studies on brain-behavior relationships and improving the understanding of neurobehavioral disorders.
Collapse
Affiliation(s)
- Junting Ren
- Division of Biostatistics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, 9500 Gilman Street, La Jolla, 92093, CA, USA.
| | - Robert Loughnan
- Center for Human Development, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093, CA, USA
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, 74136, OK, USA
| | - Bohan Xu
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, 74136, OK, USA
| | - Wesley K Thompson
- Division of Biostatistics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, 9500 Gilman Street, La Jolla, 92093, CA, USA
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, 74136, OK, USA
| | - Chun Chieh Fan
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, 74136, OK, USA.
- Department of Radiology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093, CA, USA.
| |
Collapse
|
18
|
Bergström F, Schu G, Lee S, Lerman C, Kable JW. Multivariate analysis of multimodal brain structure predicts individual differences in risk and intertemporal preference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.602046. [PMID: 39026787 PMCID: PMC11257450 DOI: 10.1101/2024.07.04.602046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Large changes to brain structure (e.g., from damage or disease) can explain alterations in behavior. It is therefore plausible that smaller structural differences in healthy samples can be used to better understand and predict individual differences in behavior. Despite the brain's multivariate and distributed structure-to-function mapping, most studies have used univariate analyses of individual structural brain measures. Here we used a multivariate approach in a multimodal data set composed of volumetric, surface-based, diffusion-based, and functional resting-state MRI measures to predict reliable individual differences in risk and intertemporal preferences. We show that combining twelve brain structure measures led to better predictions across tasks than using any individual measure, and by examining model coefficients, we visualize the relative contribution of different brain measures from different brain regions. Using a multivariate approach to brain structure-to-function mapping that combines across many brain structure properties, along with reliably measured behavior phenotypes, may increase out-of-sample prediction accuracies and insight into neural underpinnings. Furthermore, this methodological approach may be useful to improve predictions and neural insight across basic, translational, and clinical research fields.
Collapse
Affiliation(s)
- Fredrik Bergström
- Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
- Department of Psychology, University of Gothenburg, Sweden
| | - Guilherme Schu
- Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| | - Sangil Lee
- Social Science Matrix, University of California, Berkeley, CA, USA
| | - Caryn Lerman
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph W. Kable
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Ocklenburg S, Mundorf A, Gerrits R, Karlsson EM, Papadatou-Pastou M, Vingerhoets G. Clinical implications of brain asymmetries. Nat Rev Neurol 2024; 20:383-394. [PMID: 38783057 DOI: 10.1038/s41582-024-00974-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
No two human brains are alike, and with the rise of precision medicine in neurology, we are seeing an increased emphasis on understanding the individual variability in brain structure and function that renders every brain unique. Functional and structural brain asymmetries are a fundamental principle of brain organization, and recent research suggests substantial individual variability in these asymmetries that needs to be considered in clinical practice. In this Review, we provide an overview of brain asymmetries, variations in such asymmetries and their relevance in the clinical context. We review recent findings on brain asymmetries in neuropsychiatric and neurodevelopmental disorders, as well as in specific learning disabilities, with an emphasis on large-scale database studies and meta-analyses. We also highlight the relevance of asymmetries for disease symptom onset in neurodegenerative diseases and their implications for lateralized treatments, including brain stimulation. We conclude that alterations in brain asymmetry are not sufficiently specific to act as diagnostic biomarkers but can serve as meaningful symptom or treatment response biomarkers in certain contexts. On the basis of these insights, we provide several recommendations for neurological clinical practice.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany.
- ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany.
- Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| | - Annakarina Mundorf
- ISM Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Division of Cognitive Neuroscience, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robin Gerrits
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Emma M Karlsson
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Marietta Papadatou-Pastou
- National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Guy Vingerhoets
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Ilan Y. Free Will as Defined by the Constrained Disorder Principle: a Restricted, Mandatory, Personalized, Regulated Process for Decision-Making. Integr Psychol Behav Sci 2024:10.1007/s12124-024-09853-9. [PMID: 38900370 DOI: 10.1007/s12124-024-09853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
The concept of free will has challenged physicists, biologists, philosophers, and other professionals for decades. The constrained disorder principle (CDP) is a fundamental law that defines systems according to their inherent variability. It provides mechanisms for adapting to dynamic environments. This work examines the CDP's perspective of free will concerning various free will theories. Per the CDP, systems lack intentions, and the "freedom" to select and act is built into their design. The "freedom" is embedded within the response range determined by the boundaries of the systems' variability. This built-in and self-generating mechanism enables systems to cope with perturbations. According to the CDP, neither dualism nor an unknown metaphysical apparatus dictates choices. Brain variability facilitates cognitive adaptation to complex, unpredictable situations across various environments. Human behaviors and decisions reflect an underlying physical variability in the brain and other organs for dealing with unpredictable noises. Choices are not predetermined but reflect the ongoing adaptation processes to dynamic prssu½res. Malfunctions and disease states are characterized by inappropriate variability, reflecting an inability to respond adequately to perturbations. Incorporating CDP-based interventions can overcome malfunctions and disease states and improve decision processes. CDP-based second-generation artificial intelligence platforms improve interventions and are being evaluated to augment personal development, wellness, and health.
Collapse
Affiliation(s)
- Yaron Ilan
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
21
|
Crone EA, Bol T, Braams BR, de Rooij M, Franke B, Franken I, Gazzola V, Güroğlu B, Huizenga H, Hulshoff Pol H, Keijsers L, Keysers C, Krabbendam L, Jansen L, Popma A, Stulp G, van Atteveldt N, van Duijvenvoorde A, Veenstra R. Growing Up Together in Society (GUTS): A team science effort to predict societal trajectories in adolescence and young adulthood. Dev Cogn Neurosci 2024; 67:101403. [PMID: 38852381 PMCID: PMC11214182 DOI: 10.1016/j.dcn.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
Our society faces a great diversity of opportunities for youth. The 10-year Growing Up Together in Society (GUTS) program has the long-term goal to understand which combination of measures best predict societal trajectories, such as school success, mental health, well-being, and developing a sense of belonging in society. Our leading hypothesis is that self-regulation is key to how adolescents successfully navigate the demands of contemporary society. We aim to test these questions using socio-economic, questionnaire (including experience sampling methods), behavioral, brain (fMRI, sMRI, EEG), hormonal, and genetic measures in four large cohorts including adolescents and young adults. Two cohorts are designed as test and replication cohorts to test the developmental trajectory of self-regulation, including adolescents of different socioeconomic status thereby bridging individual, family, and societal perspectives. The third cohort consists of an entire social network to examine how neural and self-regulatory development influences and is influenced by whom adolescents and young adults choose to interact with. The fourth cohort includes youth with early signs of antisocial and delinquent behavior to understand patterns of societal development in individuals at the extreme ends of self-regulation and societal participation, and examines pathways into and out of delinquency. We will complement the newly collected cohorts with data from existing large-scale population-based and case-control cohorts. The study is embedded in a transdisciplinary approach that engages stakeholders throughout the design stage, with a strong focus on citizen science and youth participation in study design, data collection, and interpretation of results, to ensure optimal translation to youth in society.
Collapse
Affiliation(s)
- Eveline A Crone
- Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands; Leiden University, Institute of Psychology, the Netherlands.
| | - Thijs Bol
- Department of Sociology, University of Amsterdam, the Netherlands
| | - Barbara R Braams
- Department of Clinical, Neuro, and Developmental Psychology, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, the Netherlands
| | - Mark de Rooij
- Leiden University, Institute of Psychology, the Netherlands
| | - Barbara Franke
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Departments of Cognitive Neuroscience and Human Genetics, Nijmegen, the Netherlands
| | - Ingmar Franken
- Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience (KNAW) and University of Amsterdam, Amsterdam, the Netherlands
| | - Berna Güroğlu
- Leiden University, Institute of Psychology, the Netherlands
| | - Hilde Huizenga
- Department of Psychology, University of Amsterdam, the Netherlands
| | | | - Loes Keijsers
- Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands
| | - Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience (KNAW) and University of Amsterdam, Amsterdam, the Netherlands
| | - Lydia Krabbendam
- Department of Clinical, Neuro, and Developmental Psychology, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, the Netherlands
| | - Lucres Jansen
- Department of Child and Adolescent Psychiatry & Psychosocial Care, AmsterdamUMC and Research Institute Amsterdam Public Health, Amsterdam, the Netherlands
| | - Arne Popma
- Department of Child and Adolescent Psychiatry & Psychosocial Care, AmsterdamUMC and Research Institute Amsterdam Public Health, Amsterdam, the Netherlands
| | - Gert Stulp
- University of Groningen, Department of Sociology / Inter-University Center for Social Science Theory and Methodology, Groningen, the Netherlands
| | - Nienke van Atteveldt
- Department of Clinical, Neuro, and Developmental Psychology, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, the Netherlands
| | | | - René Veenstra
- University of Groningen, Department of Sociology / Inter-University Center for Social Science Theory and Methodology, Groningen, the Netherlands
| |
Collapse
|
22
|
Vieira S, Bolton TAW, Schöttner M, Baecker L, Marquand A, Mechelli A, Hagmann P. Multivariate brain-behaviour associations in psychiatric disorders. Transl Psychiatry 2024; 14:231. [PMID: 38824172 PMCID: PMC11144193 DOI: 10.1038/s41398-024-02954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Mapping brain-behaviour associations is paramount to understand and treat psychiatric disorders. Standard approaches involve investigating the association between one brain and one behavioural variable (univariate) or multiple variables against one brain/behaviour feature ('single' multivariate). Recently, large multimodal datasets have propelled a new wave of studies that leverage on 'doubly' multivariate approaches capable of parsing the multifaceted nature of both brain and behaviour simultaneously. Within this movement, canonical correlation analysis (CCA) and partial least squares (PLS) emerge as the most popular techniques. Both seek to capture shared information between brain and behaviour in the form of latent variables. We provide an overview of these methods, review the literature in psychiatric disorders, and discuss the main challenges from a predictive modelling perspective. We identified 39 studies across four diagnostic groups: attention deficit and hyperactive disorder (ADHD, k = 4, N = 569), autism spectrum disorders (ASD, k = 6, N = 1731), major depressive disorder (MDD, k = 5, N = 938), psychosis spectrum disorders (PSD, k = 13, N = 1150) and one transdiagnostic group (TD, k = 11, N = 5731). Most studies (67%) used CCA and focused on the association between either brain morphology, resting-state functional connectivity or fractional anisotropy against symptoms and/or cognition. There were three main findings. First, most diagnoses shared a link between clinical/cognitive symptoms and two brain measures, namely frontal morphology/brain activity and white matter association fibres (tracts between cortical areas in the same hemisphere). Second, typically less investigated behavioural variables in multivariate models such as physical health (e.g., BMI, drug use) and clinical history (e.g., childhood trauma) were identified as important features. Finally, most studies were at risk of bias due to low sample size/feature ratio and/or in-sample testing only. We highlight the importance of carefully mitigating these sources of bias with an exemplar application of CCA.
Collapse
Affiliation(s)
- S Vieira
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Center for Research in Neuropsychology and Cognitive Behavioral Intervention, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal.
| | - T A W Bolton
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital, Lausanne, Switzerland
| | - M Schöttner
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - L Baecker
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - A Marquand
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
- Department of Neuroimaging, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
| | - A Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - P Hagmann
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Melzer N, Rosenow F. Autoimmune-associated epilepsy - a challenging concept. Seizure 2024:S1059-1311(24)00156-0. [PMID: 38852019 DOI: 10.1016/j.seizure.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024] Open
Abstract
The current International League Against Epilepsy (ILAE) definition and classification guidelines for the first time introduced the category of immune-mediated focal epilepsy in addition to structural, genetic, infectious, and metabolic aetiologies. Moreover, the ILAE Autoimmunity and Inflammation Taskforce recently provided a conceptual framework for the distinction between acute "provoked" seizures in the acute phase of autoimmune encephalitis from chronic "unprovoked" seizures due to autoimmune-associated epilepsy. The first category predominately applies to those autoimmune encephalitis patients with autoantibodies against cell surface neural antigens, in whom autoantibodies are assumed to exert a direct ictogenic effect without overt structural damage. These patients do not exhibit enduring predisposition to seizures after the "acute phase" encephalitis, and thus do not fulfil the definition of epilepsy. The second category applies to those autoimmune encephalitis patients with autoantibodies against intracellular neural antigens and Rasmussen's encephalitis, in whom T cells are assumed to cause epileptogenic effects through immune-inflammation and overt structural damage. These patients do exhibit enduring predisposition to seizures after the "acute phase" of encephalitis and thus fulfil the definition of epilepsy. AAE may result from both, ongoing brain autoimmunity and associated structural brain damage according to the current ILAE definition and classification guideline. We here discuss the difficulties of this concept and suggest an unbiased translationally validated and data-driven approach to predict in an individual encephalitis patient the propensity to develop (or not) AAE and the cognitive and behavioural outcome.
Collapse
Affiliation(s)
- Nico Melzer
- Department of Neurology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstraße 5, Düsseldorf 40225, Germany.
| | - Felix Rosenow
- Goethe University Frankfurt, Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital Frankfurt, Frankfurt, Germany; Goethe University Frankfurt, LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany
| |
Collapse
|
24
|
Zhang X, Wang Z, Zou J, Zhang L, Ning JH, Jiang B, Liang Y, Zhang YZ. Association between physical frailty and cortical structure in middle-aged and elderly people: a Mendelian randomization study. Front Aging Neurosci 2024; 16:1395553. [PMID: 38841102 PMCID: PMC11150765 DOI: 10.3389/fnagi.2024.1395553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Physical weakness is associated with cortical structures, but the exact causes remain to be investigated. Therefore, we utilized Mendelian randomization (MR) analysis to uncover the underlying connection between frailty and cortical structures. Methods The Genome-Wide Association Study (GWAS) on frailty pooled data from publicly available sources such as the UK Biobank and included five indicators of frailty: weakness, walking speed, weight loss, physical activity, and exhaustion. GWAS data on cerebral cortical structure were obtained from the ENIGMA consortium, and we assessed the causal relationship between hereditary frailty and cortical surface area (SA) or cortical thickness (TH). Inverse variance weighting (IVW) was used as the primary estimate, and heterogeneity and multidimensionality were monitored by MR-PRESSO to detect outliers. Additionally, MR-Egger, Cochran's Q test, and weighted median were employed. Results At the aggregate level, there was no causal relationship between frailty and cortical thickness or surface area. At the regional level, frailty was associated with the thickness of the middle temporal lobe, parahippocampus, rostral middle frontal lobe, lower parietal lobe, anterior cingulate gyrus, upper temporal lobe, lateral orbital frontal cortex, pericardial surface area, rostral middle frontal lobe, upper temporal lobe, rostral anterior cingulate gyrus, lower parietal lobe, and upper parietal lobe. These results were nominally significant, and sensitivity analyses did not detect any multidirectionality or heterogeneity, suggesting that the results of our analyses are reliable. Discussion The results of our analyses suggest a potential causal relationship between somatic weakness and multiple regions of cortical structure. However, the specific mechanisms of influence remain to be investigated. Preliminary results from our analysis suggest that the effects of physical frailty on cortical structures are influenced by various factors related to frailty exposure. This relationship has been documented, and it is therefore both feasible and meaningful to build on existing research to explore the clinical significance of the relationship.
Collapse
Affiliation(s)
- Xin Zhang
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Zhen Wang
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Jing Zou
- The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Le Zhang
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Jing-Hua Ning
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Bei Jiang
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan (Cultivation), Dali, Yunnan, China
| | - Yi Liang
- Princess Margaret Cancer Centre, TMDT-MaRS Centre, University Health Network, Toronto, ON, Canada
| | - Yu-Zhe Zhang
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| |
Collapse
|
25
|
Santacroce F, Cachia A, Fragueiro A, Grande E, Roell M, Baldassarre A, Sestieri C, Committeri G. Human intraparietal sulcal morphology relates to individual differences in language and memory performance. Commun Biol 2024; 7:520. [PMID: 38698168 PMCID: PMC11065983 DOI: 10.1038/s42003-024-06175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
The sulco-gyral pattern is a qualitative feature of the cortical anatomy that is determined in utero, stable throughout lifespan and linked to brain function. The intraparietal sulcus (IPS) is a nodal associative brain area, but the relation between its morphology and cognition is largely unknown. By labelling the left and right IPS of 390 healthy participants into two patterns, according to the presence or absence of a sulcus interruption, here we demonstrate a strong association between the morphology of the right IPS and performance on memory and language tasks. We interpret the results as a morphological advantage of a sulcus interruption, probably due to the underlying white matter organization. The right-hemisphere specificity of this effect emphasizes the neurodevelopmental and plastic role of sulcus morphology in cognition prior to lateralisation processes. The results highlight a promising area of investigation on the relationship between cognitive performance, sulco-gyral pattern and white matter bundles.
Collapse
Affiliation(s)
- Federica Santacroce
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy.
| | - Arnaud Cachia
- Université Paris Cité, Laboratoire de Psychologie du développement et de l'Education de l'Enfant (LaPsyDÉ), CNRS UMR 8240, Paris, France
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR S1266, Paris, France
| | - Agustina Fragueiro
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Eleonora Grande
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Margot Roell
- Université Paris Cité, Laboratoire de Psychologie du développement et de l'Education de l'Enfant (LaPsyDÉ), CNRS UMR 8240, Paris, France
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Giorgia Committeri
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy.
| |
Collapse
|
26
|
Gao Y, Feng R, Ouyang X, Zhou Z, Bao W, Li Y, Zhuo L, Hu X, Li H, Zhang L, Huang G, Huang X. Multivariate association between psychosocial environment, behaviors, and brain functional networks in adolescent depression. Asian J Psychiatr 2024; 95:104009. [PMID: 38520945 DOI: 10.1016/j.ajp.2024.104009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/06/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Adolescent depression shows high clinical heterogeneity. Brain functional networks serve as a powerful tool for investigating neural mechanisms underlying depression profiles. A key challenge is to characterize how variation in brain functional organization links to behavioral features and psychosocial environmental influences. METHODS We recruited 80 adolescents with major depressive disorder (MDD) and 42 healthy controls (HCs). First, we estimated the differences in functional connectivity of resting-state networks (RSN) between the two groups. Then, we used sparse canonical correlation analysis to characterize patterns of associations between RSN connectivity and symptoms, cognition, and psychosocial environmental factors in MDD adolescents. Clustering analysis was applied to stratify patients into homogenous subtypes according to these brain-behavior-environment associations. RESULTS MDD adolescents showed significantly hyperconnectivity between the ventral attention and cingulo-opercular networks compared with HCs. We identified one reliable pattern of covariation between RSN connectivity and clinical/environmental features in MDD adolescents. In this pattern, psychosocial factors, especially the interpersonal and family relationships, were major contributors to variation in connectivity of salience, cingulo-opercular, ventral attention, subcortical and somatosensory-motor networks. Based on this association, we categorized patients into two subgroups which showed different environment and symptoms characteristics, and distinct connectivity alterations. These differences were covered up when the patients were taken as a whole group. CONCLUSION This study identified the environmental exposures associated with specific functional networks in MDD youths. Our findings emphasize the importance of the psychosocial context in assessing brain function alterations in adolescent depression and have the potential to promote targeted treatment and precise prevention.
Collapse
Affiliation(s)
- Yingxue Gao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Ruohan Feng
- Department of Radiology, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Xinqin Ouyang
- Department of Radiology, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Zilin Zhou
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Weijie Bao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Yang Li
- Department of Psychiatry, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Lihua Zhuo
- Department of Radiology, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Xinyue Hu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Hailong Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Lianqing Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Guoping Huang
- Department of Psychiatry, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; The Xiaman Key Lab of psychoradiology and neuromodulation, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
27
|
Wiersch L, Friedrich P, Hamdan S, Komeyer V, Hoffstaedter F, Patil KR, Eickhoff SB, Weis S. Sex classification from functional brain connectivity: Generalization to multiple datasets. Hum Brain Mapp 2024; 45:e26683. [PMID: 38647035 PMCID: PMC11034006 DOI: 10.1002/hbm.26683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Machine learning (ML) approaches are increasingly being applied to neuroimaging data. Studies in neuroscience typically have to rely on a limited set of training data which may impair the generalizability of ML models. However, it is still unclear which kind of training sample is best suited to optimize generalization performance. In the present study, we systematically investigated the generalization performance of sex classification models trained on the parcelwise connectivity profile of either single samples or compound samples of two different sizes. Generalization performance was quantified in terms of mean across-sample classification accuracy and spatial consistency of accurately classifying parcels. Our results indicate that the generalization performance of parcelwise classifiers (pwCs) trained on single dataset samples is dependent on the specific test samples. Certain datasets seem to "match" in the sense that classifiers trained on a sample from one dataset achieved a high accuracy when tested on the respected other one and vice versa. The pwCs trained on the compound samples demonstrated overall highest generalization performance for all test samples, including one derived from a dataset not included in building the training samples. Thus, our results indicate that both a large sample size and a heterogeneous data composition of a training sample have a central role in achieving generalizable results.
Collapse
Affiliation(s)
- Lisa Wiersch
- Institute of Systems NeuroscienceHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| | - Patrick Friedrich
- Institute of Systems NeuroscienceHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| | - Sami Hamdan
- Institute of Systems NeuroscienceHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| | - Vera Komeyer
- Institute of Systems NeuroscienceHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
- Department of Biology, Faculty of Mathematics and Natural SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Felix Hoffstaedter
- Institute of Systems NeuroscienceHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| | - Kaustubh R. Patil
- Institute of Systems NeuroscienceHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| | - Simon B. Eickhoff
- Institute of Systems NeuroscienceHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| | - Susanne Weis
- Institute of Systems NeuroscienceHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| |
Collapse
|
28
|
Ma Y, Kochunov P, Kvarta MD, LeGates T, Adhikari BM, Chiappelli J, van der Vaart A, Goldwaser EL, Bruce H, Hatch KS, Gao S, Chen S, Summerfelt A, Nichols TE, Hong LE. Reciprocal relationships between stress and depressive symptoms: the essential role of the nucleus accumbens. Psychol Med 2024; 54:1045-1056. [PMID: 37750294 PMCID: PMC11078439 DOI: 10.1017/s0033291723002866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
BACKGROUND Stress and depression have a reciprocal relationship, but the neural underpinnings of this reciprocity are unclear. We investigated neuroimaging phenotypes that facilitate the reciprocity between stress and depressive symptoms. METHODS In total, 22 195 participants (52.0% females) from the population-based UK Biobank study completed two visits (initial visit: 2006-2010, age = 55.0 ± 7.5 [40-70] years; second visit: 2014-2019; age = 62.7 ± 7.5 [44-80] years). Structural equation modeling was used to examine the longitudinal relationship between self-report stressful life events (SLEs) and depressive symptoms. Cross-sectional data were used to examine the overlap between neuroimaging correlates of SLEs and depressive symptoms on the second visit among 138 multimodal imaging phenotypes. RESULTS Longitudinal data were consistent with significant bidirectional causal relationship between SLEs and depressive symptoms. In cross-sectional analyses, SLEs were significantly associated with lower bilateral nucleus accumbal volume and lower fractional anisotropy of the forceps major. Depressive symptoms were significantly associated with extensive white matter hyperintensities, thinner cortex, lower subcortical volume, and white matter microstructural deficits, mainly in corticostriatal-limbic structures. Lower bilateral nucleus accumbal volume were the only imaging phenotypes with overlapping effects of depressive symptoms and SLEs (B = -0.032 to -0.023, p = 0.006-0.034). Depressive symptoms and SLEs significantly partially mediated the effects of each other on left and right nucleus accumbens volume (proportion of effects mediated = 12.7-14.3%, p < 0.001-p = 0.008). For the left nucleus accumbens, post-hoc seed-based analysis showed lower resting-state functional connectivity with the left orbitofrontal cortex (cluster size = 83 voxels, p = 5.4 × 10-5) in participants with high v. no SLEs. CONCLUSIONS The nucleus accumbens may play a key role in the reciprocity between stress and depressive symptoms.
Collapse
Affiliation(s)
- Yizhou Ma
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark D. Kvarta
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tara LeGates
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Bhim M. Adhikari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew van der Vaart
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eric L. Goldwaser
- Department of Psychiatry, Weill Cornell Medical College/New York-Presbyterian Hospital, New York, NY, USA
| | - Heather Bruce
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathryn S. Hatch
- School of Medicine, University of California, San Diego, CA, USA
| | - Si Gao
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ann Summerfelt
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Thomas E. Nichols
- Department of Statistics, Big Data Science Institute, University of Oxford, Oxford, UK
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Jockwitz C, Krämer C, Dellani P, Caspers S. Differential predictability of cognitive profiles from brain structure in older males and females. GeroScience 2024; 46:1713-1730. [PMID: 37730943 PMCID: PMC10828131 DOI: 10.1007/s11357-023-00934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
Structural brain imaging parameters may successfully predict cognitive performance in neurodegenerative diseases but mostly fail to predict cognitive abilities in healthy older adults. One important aspect contributing to this might be sex differences. Behaviorally, older males and females have been found to differ in terms of cognitive profiles, which cannot be captured by examining them as one homogenous group. In the current study, we examined whether the prediction of cognitive performance from brain structure, i.e. region-wise grey matter volume (GMV), would benefit from the investigation of sex-specific cognitive profiles in a large sample of older adults (1000BRAINS; N = 634; age range 55-85 years). Prediction performance was assessed using a machine learning (ML) approach. Targets represented a) a whole-sample cognitive component solution extracted from males and females, and b) sex-specific cognitive components. Results revealed a generally low predictability of cognitive profiles from region-wise GMV. In males, low predictability was observed across both, the whole sample as well as sex-specific cognitive components. In females, however, predictability differences across sex-specific cognitive components were observed, i.e. visual working memory (WM) and executive functions showed higher predictability than fluency and verbal WM. Hence, results accentuated that addressing sex-specific cognitive profiles allowed a more fine-grained investigation of predictability differences, which may not be observable in the prediction of the whole-sample solution. The current findings not only emphasize the need to further investigate the predictive power of each cognitive component, but they also emphasize the importance of sex-specific analyses in older adults.
Collapse
Affiliation(s)
- Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Camilla Krämer
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Paulo Dellani
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
30
|
Roshchupkina L, Wens V, Coquelet N, Urbain C, de Tiege X, Peigneux P. Motor learning- and consolidation-related resting state fast and slow brain dynamics across wake and sleep. Sci Rep 2024; 14:7531. [PMID: 38553500 PMCID: PMC10980824 DOI: 10.1038/s41598-024-58123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
Motor skills dynamically evolve during practice and after training. Using magnetoencephalography, we investigated the neural dynamics underpinning motor learning and its consolidation in relation to sleep during resting-state periods after the end of learning (boost window, within 30 min) and at delayed time scales (silent 4 h and next day 24 h windows) with intermediate daytime sleep or wakefulness. Resting-state neural dynamics were investigated at fast (sub-second) and slower (supra-second) timescales using Hidden Markov modelling (HMM) and functional connectivity (FC), respectively, and their relationship to motor performance. HMM results show that fast dynamic activities in a Temporal/Sensorimotor state network predict individual motor performance, suggesting a trait-like association between rapidly recurrent neural patterns and motor behaviour. Short, post-training task re-exposure modulated neural network characteristics during the boost but not the silent window. Re-exposure-related induction effects were observed on the next day, to a lesser extent than during the boost window. Daytime naps did not modulate memory consolidation at the behavioural and neural levels. These results emphasise the critical role of the transient boost window in motor learning and memory consolidation and provide further insights into the relationship between the multiscale neural dynamics of brain networks, motor learning, and consolidation.
Collapse
Affiliation(s)
- Liliia Roshchupkina
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit Affiliated at CRCN - Centre for Research in Cognition and Neurosciences, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- UNI - ULB Neuroscience Institute, Brussels, Belgium.
- LN2T - Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, ULB, Brussels, Belgium.
- Faculté des Sciences Psychologiques et de l'Éducation, Campus du Solbosch - CP 191, Avenue F.D. Roosevelt, 50, 1050, Brussels, Belgium.
| | - Vincent Wens
- UNI - ULB Neuroscience Institute, Brussels, Belgium
- LN2T - Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, ULB, Brussels, Belgium
- Department of Functional Neuroimaging, Service of Nuclear Medicine, HUB - Hôpital Universitaire de Bruxelles, Hospital Erasme, Brussels, Belgium
| | - Nicolas Coquelet
- UNI - ULB Neuroscience Institute, Brussels, Belgium
- LN2T - Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, ULB, Brussels, Belgium
- Department of Functional Neuroimaging, Service of Nuclear Medicine, HUB - Hôpital Universitaire de Bruxelles, Hospital Erasme, Brussels, Belgium
| | - Charline Urbain
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit Affiliated at CRCN - Centre for Research in Cognition and Neurosciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
- UNI - ULB Neuroscience Institute, Brussels, Belgium
- LN2T - Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, ULB, Brussels, Belgium
| | - Xavier de Tiege
- UNI - ULB Neuroscience Institute, Brussels, Belgium
- LN2T - Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, ULB, Brussels, Belgium
- Department of Functional Neuroimaging, Service of Nuclear Medicine, HUB - Hôpital Universitaire de Bruxelles, Hospital Erasme, Brussels, Belgium
| | - Philippe Peigneux
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit Affiliated at CRCN - Centre for Research in Cognition and Neurosciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
- UNI - ULB Neuroscience Institute, Brussels, Belgium
| |
Collapse
|
31
|
Petersen M, Hoffstaedter F, Nägele FL, Mayer C, Schell M, Rimmele DL, Zyriax BC, Zeller T, Kühn S, Gallinat J, Fiehler J, Twerenbold R, Omidvarnia A, Patil KR, Eickhoff SB, Thomalla G, Cheng B. A latent clinical-anatomical dimension relating metabolic syndrome to brain structure and cognition. eLife 2024; 12:RP93246. [PMID: 38512127 PMCID: PMC10957178 DOI: 10.7554/elife.93246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
The link between metabolic syndrome (MetS) and neurodegenerative as well as cerebrovascular conditions holds substantial implications for brain health in at-risk populations. This study elucidates the complex relationship between MetS and brain health by conducting a comprehensive examination of cardiometabolic risk factors, brain morphology, and cognitive function in 40,087 individuals. Multivariate, data-driven statistics identified a latent dimension linking more severe MetS to widespread brain morphological abnormalities, accounting for up to 71% of shared variance in the data. This dimension was replicable across sub-samples. In a mediation analysis, we could demonstrate that MetS-related brain morphological abnormalities mediated the link between MetS severity and cognitive performance in multiple domains. Employing imaging transcriptomics and connectomics, our results also suggest that MetS-related morphological abnormalities are linked to the regional cellular composition and macroscopic brain network organization. By leveraging extensive, multi-domain data combined with a dimensional stratification approach, our analysis provides profound insights into the association of MetS and brain health. These findings can inform effective therapeutic and risk mitigation strategies aimed at maintaining brain integrity.
Collapse
Affiliation(s)
- Marvin Petersen
- Department of Neurology, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Felix Hoffstaedter
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center JülichJülichGermany
| | - Felix L Nägele
- Department of Neurology, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Carola Mayer
- Department of Neurology, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Maximilian Schell
- Department of Neurology, University Medical Center Hamburg-EppendorfHamburgGermany
| | - D Leander Rimmele
- Department of Neurology, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Birgit-Christiane Zyriax
- Midwifery Science-Health Services Research and Prevention, Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-EppendorfHamburgGermany
| | - Tanja Zeller
- Department of Cardiology, University Heart and Vascular CenterHamburgGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
- University Center of Cardiovascular Science, University Heart and Vascular CenterHamburgGermany
| | - Simone Kühn
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Raphael Twerenbold
- Department of Cardiology, University Heart and Vascular CenterHamburgGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
- University Center of Cardiovascular Science, University Heart and Vascular CenterHamburgGermany
- Epidemiological Study Center, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Amir Omidvarnia
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center JülichJülichGermany
| | - Kaustubh R Patil
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center JülichJülichGermany
| | - Simon B Eickhoff
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center JülichJülichGermany
| | - Goetz Thomalla
- Department of Neurology, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-EppendorfHamburgGermany
| |
Collapse
|
32
|
Wiersch L, Friedrich P, Hamdan S, Komeyer V, Hoffstaedter F, Patil KR, Eickhoff SB, Weis S. Sex classification from functional brain connectivity: Generalization to multiple datasets Generalizability of sex classifiers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.30.555495. [PMID: 37693374 PMCID: PMC10491190 DOI: 10.1101/2023.08.30.555495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Machine learning (ML) approaches are increasingly being applied to neuroimaging data. Studies in neuroscience typically have to rely on a limited set of training data which may impair the generalizability of ML models. However, it is still unclear which kind of training sample is best suited to optimize generalization performance. In the present study, we systematically investigated the generalization performance of sex classification models trained on the parcelwise connectivity profile of either single samples or a compound sample containing data from four different datasets. Generalization performance was quantified in terms of mean across-sample classification accuracy and spatial consistency of accurately classifying parcels. Our results indicate that generalization performance of pwCs trained on single dataset samples is dependent on the specific test samples. Certain datasets seem to "match" in the sense that classifiers trained on a sample from one dataset achieved a high accuracy when tested on the respected other one and vice versa. The pwC trained on the compound sample demonstrated overall highest generalization performance for all test samples, including one derived from a dataset not included in building the training samples. Thus, our results indicate that a big and heterogenous training sample comprising data of multiple datasets is best suited to achieve generalizable results.
Collapse
Affiliation(s)
- Lisa Wiersch
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Patrick Friedrich
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Sami Hamdan
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Vera Komeyer
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Department of Biology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Felix Hoffstaedter
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Kaustubh R Patil
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Susanne Weis
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
33
|
Chen D, Jia T, Cheng W, Desrivières S, Heinz A, Schumann G, Feng J. Evaluation of behavioral variance/covariance explained by the neuroimaging data through a pattern-based regression. Hum Brain Mapp 2024; 45:e26601. [PMID: 38488475 PMCID: PMC10941514 DOI: 10.1002/hbm.26601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 03/18/2024] Open
Abstract
Neuroimaging data have been widely used to understand the neural bases of human behaviors. However, most studies were either based on a few predefined regions of interest or only able to reveal limited vital regions, hence not providing an overarching description of the relationship between neuroimaging and behaviors. Here, we proposed a voxel-based pattern regression that not only could investigate the overall brain-associated variance (BAV) for a given behavioral measure but could also evaluate the shared neural bases between different behaviors across multiple neuroimaging data. The proposed method demonstrated consistently high reliability and accuracy through comprehensive simulations. We further implemented this approach on real data of adolescents (IMAGEN project, n = 2089) and adults (HCP project, n = 808) to investigate brain-based variances of multiple behavioral measures, for instance, cognitive behaviors, substance use, and psychiatric disorders. Notably, intelligence-related scores showed similar high BAVs with the gray matter volume across both datasets. Further, our approach allows us to reveal the latent brain-based correlation across multiple behavioral measures, which are challenging to obtain otherwise. For instance, we observed a shared brain architecture underlying depression and externalizing problems in adolescents, while the symptom comorbidity may only emerge later in adults. Overall, our approach will provide an important statistical tool for understanding human behaviors using neuroimaging data.
Collapse
Affiliation(s)
- Di Chen
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University)Ministry of EducationShanghaiChina
| | - Tianye Jia
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University)Ministry of EducationShanghaiChina
- Institute of Psychiatry, Psychology & NeuroscienceSGDP Centre, King's College LondonLondonUK
| | - Wei Cheng
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University)Ministry of EducationShanghaiChina
| | - Sylvane Desrivières
- Institute of Psychiatry, Psychology & NeuroscienceSGDP Centre, King's College LondonLondonUK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCMCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Gunter Schumann
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
- Department of Psychiatry and Psychotherapy CCMCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Jianfeng Feng
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University)Ministry of EducationShanghaiChina
- Department of Computer ScienceUniversity of WarwickCoventryUK
| |
Collapse
|
34
|
Chan YT, Lin CS. Structural brain feature is associated with changes of masticatory performance in healthy elderly people: Evidence from longitudinal neuroimaging research over two years. J Oral Rehabil 2024; 51:526-535. [PMID: 37904309 DOI: 10.1111/joor.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/19/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Human neuroimaging studies have revealed the association between brain structure and masticatory function. However, the majority of the studies adopted a cross-sectional design, which hardly reveals the change in masticatory function and brain structure between different timepoints, and the dynamical association between changes in masticatory function and changes in brain structure has not been elucidated. OBJECTIVE With a longitudinal design, we assessed the association between changes in masticatory performance (MP) and regional brain volume. METHODS Twenty-two elderly participants received assessments of the number of missing teeth and MP (via colour-changeable chewing gum) when they entered the study (i.e. the initial stage, T0 ), approximately 6 months later (T0.5 ), and approximately 1-2 years later (T1 ). Difficulty of food intake was assessed using a questionnaire. The participants received magnetic resonance imaging (MRI) at T0 and T1 . The brain volume of the motor-related area was estimated using FreeSurfer for MRI data. The associations between different stages were analysed using Spearman's rho correlation coefficients. RESULTS (1) Individually, a smaller volume of right primary motor cortex at T0 was associated with increased MP from T0 to T1 , suggesting the brain's role in changing oral functions; (2) higher MP at T0 was associated with an increased volume of the left superior frontal cortex from T0 to T1 p, suggesting a potential effect on brain plasticity, and (3) increased difficulty to eat was associated with decrease MP but not brain volume of motor-related area. CONCLUSIONS The preliminary findings revealed a complicated pattern of structural brain features and masticatory function in elderly people, and either the hypothesis that the brain predisposes masticatory function or the hypothesis that mastication reshapes the brain is oversimplified.
Collapse
Affiliation(s)
- Yu-Ting Chan
- General dentistry private practice, Hui-An Dental Clinic, New Taipei City, Taiwan
| | - Chia-Shu Lin
- Department of Dentistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
35
|
Snytte J, Setton R, Mwilambwe-Tshilobo L, Natasha Rajah M, Sheldon S, Turner GR, Spreng RN. Structure-Function Interactions in the Hippocampus and Prefrontal Cortex Are Associated with Episodic Memory in Healthy Aging. eNeuro 2024; 11:ENEURO.0418-23.2023. [PMID: 38479810 PMCID: PMC10972739 DOI: 10.1523/eneuro.0418-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 04/01/2024] Open
Abstract
Aging comes with declines in episodic memory. Memory decline is accompanied by structural and functional alterations within key brain regions, including the hippocampus and lateral prefrontal cortex, as well as their affiliated default and frontoparietal control networks. Most studies have examined how structural or functional differences relate to memory independently. Here we implemented a multimodal, multivariate approach to investigate how interactions between individual differences in structural integrity and functional connectivity relate to episodic memory performance in healthy aging. In a sample of younger (N = 111; mean age, 22.11 years) and older (N = 78; mean age, 67.29 years) adults, we analyzed structural MRI and multiecho resting-state fMRI data. Participants completed measures of list recall (free recall of words from a list), associative memory (cued recall of paired words), and source memory (cued recall of the trial type, or the sensory modality in which a word was presented). The findings revealed that greater structural integrity of the posterior hippocampus and middle frontal gyrus were linked with a pattern of increased within-network connectivity, which together were related to better associative and source memory in older adulthood. Critically, older adults displayed better memory performance in the context of decreased hippocampal volumes when structural differences were accompanied by functional reorganization. This functional reorganization was characterized by a pruning of connections between the hippocampus and the limbic and frontoparietal control networks. Our work provides insight into the neural mechanisms that underlie age-related compensation, revealing that the functional architecture associated with better memory performance in healthy aging is tied to the structural integrity of the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Jamie Snytte
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Roni Setton
- Department of Psychology, Harvard University, Cambridge, Massachusetts 02138
| | - Laetitia Mwilambwe-Tshilobo
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Psychology, Princeton University, Princeton, New Jersey 08540
| | - M Natasha Rajah
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, Ontario M3J 1P3, Canada
| | - R Nathan Spreng
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
36
|
Helmer M, Warrington S, Mohammadi-Nejad AR, Ji JL, Howell A, Rosand B, Anticevic A, Sotiropoulos SN, Murray JD. On the stability of canonical correlation analysis and partial least squares with application to brain-behavior associations. Commun Biol 2024; 7:217. [PMID: 38383808 PMCID: PMC11245620 DOI: 10.1038/s42003-024-05869-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 01/28/2024] [Indexed: 02/23/2024] Open
Abstract
Associations between datasets can be discovered through multivariate methods like Canonical Correlation Analysis (CCA) or Partial Least Squares (PLS). A requisite property for interpretability and generalizability of CCA/PLS associations is stability of their feature patterns. However, stability of CCA/PLS in high-dimensional datasets is questionable, as found in empirical characterizations. To study these issues systematically, we developed a generative modeling framework to simulate synthetic datasets. We found that when sample size is relatively small, but comparable to typical studies, CCA/PLS associations are highly unstable and inaccurate; both in their magnitude and importantly in the feature pattern underlying the association. We confirmed these trends across two neuroimaging modalities and in independent datasets with n ≈ 1000 and n = 20,000, and found that only the latter comprised sufficient observations for stable mappings between imaging-derived and behavioral features. We further developed a power calculator to provide sample sizes required for stability and reliability of multivariate analyses. Collectively, we characterize how to limit detrimental effects of overfitting on CCA/PLS stability, and provide recommendations for future studies.
Collapse
Affiliation(s)
- Markus Helmer
- Department of Psychiatry, Yale School of of Medicine, New Haven, CT, 06511, USA
- Manifest Technologies, New Haven, CT, 06510, USA
| | - Shaun Warrington
- Sir Peter Mansfield Imaging Centre, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Ali-Reza Mohammadi-Nejad
- Sir Peter Mansfield Imaging Centre, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Ctr, Queens Medical Ctr, Nottingham, United Kingdom
| | - Jie Lisa Ji
- Department of Psychiatry, Yale School of of Medicine, New Haven, CT, 06511, USA
- Manifest Technologies, New Haven, CT, 06510, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Amber Howell
- Department of Psychiatry, Yale School of of Medicine, New Haven, CT, 06511, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Benjamin Rosand
- Department of Physics, Yale University, New Haven, CT, 06511, USA
| | - Alan Anticevic
- Department of Psychiatry, Yale School of of Medicine, New Haven, CT, 06511, USA
- Manifest Technologies, New Haven, CT, 06510, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Psychology, Yale University, New Haven, CT, 06511, USA
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, United Kingdom.
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Ctr, Queens Medical Ctr, Nottingham, United Kingdom.
| | - John D Murray
- Department of Psychiatry, Yale School of of Medicine, New Haven, CT, 06511, USA.
- Manifest Technologies, New Haven, CT, 06510, USA.
- Department of Physics, Yale University, New Haven, CT, 06511, USA.
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
37
|
Roalf DR, Figee M, Oathes DJ. Elevating the field for applying neuroimaging to individual patients in psychiatry. Transl Psychiatry 2024; 14:87. [PMID: 38341414 PMCID: PMC10858949 DOI: 10.1038/s41398-024-02781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
Although neuroimaging has been widely applied in psychiatry, much of the exuberance in decades past has been tempered by failed replications and a lack of definitive evidence to support the utility of imaging to inform clinical decisions. There are multiple promising ways forward to demonstrate the relevance of neuroimaging for psychiatry at the individual patient level. Ultra-high field magnetic resonance imaging is developing as a sensitive measure of neurometabolic processes of particular relevance that holds promise as a new way to characterize patient abnormalities as well as variability in response to treatment. Neuroimaging may also be particularly suited to the science of brain stimulation interventions in psychiatry given that imaging can both inform brain targeting as well as measure changes in brain circuit communication as a function of how effectively interventions improve symptoms. We argue that a greater focus on individual patient imaging data will pave the way to stronger relevance to clinical care in psychiatry. We also stress the importance of using imaging in symptom-relevant experimental manipulations and how relevance will be best demonstrated by pairing imaging with differential treatment prediction and outcome measurement. The priorities for using brain imaging to inform psychiatry may be shifting, which compels the field to solidify clinical relevance for individual patients over exploratory associations and biomarkers that ultimately fail to replicate.
Collapse
Affiliation(s)
- David R Roalf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Desmond J Oathes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Brain Imaging and Stimulation, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Neuromodulation in Depression and Stress, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Brain Science Translation, Innovation, and Modulation Center, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
38
|
Dahl A, Eilertsen EM, Rodriguez-Cabello SF, Norbom LB, Tandberg AD, Leonardsen E, Lee SH, Ystrom E, Tamnes CK, Alnæs D, Westlye LT. Genetic and brain similarity independently predict childhood anthropometrics and neighborhood socioeconomic conditions. Dev Cogn Neurosci 2024; 65:101339. [PMID: 38184855 PMCID: PMC10818201 DOI: 10.1016/j.dcn.2023.101339] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/22/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024] Open
Abstract
Linking the developing brain with individual differences in clinical and demographic traits is challenging due to the substantial interindividual heterogeneity of brain anatomy and organization. Here we employ an integrative approach that parses individual differences in both cortical thickness and common genetic variants, and assess their effects on a wide set of childhood traits. The approach uses a linear mixed model framework to obtain the unique effects of each type of similarity, as well as their covariance. We employ this approach in a sample of 7760 unrelated children in the ABCD cohort baseline sample (mean age 9.9, 46.8% female). In general, associations between cortical thickness similarity and traits were limited to anthropometrics such as height, weight, and birth weight, as well as a marker of neighborhood socioeconomic conditions. Common genetic variants explained significant proportions of variance across nearly all included outcomes, although estimates were somewhat lower than previous reports. No significant covariance of the effects of genetic and cortical thickness similarity was found. The present findings highlight the connection between anthropometrics as well as neighborhood socioeconomic conditions and the developing brain, which appear to be independent from individual differences in common genetic variants in this population-based sample.
Collapse
Affiliation(s)
- Andreas Dahl
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Espen M Eilertsen
- Research Center for Developmental Processes and Gradients in Mental Health (PROMENTA), Department of Psychology, University of Oslo, Oslo, Norway
| | - Sara F Rodriguez-Cabello
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn B Norbom
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Center for Developmental Processes and Gradients in Mental Health (PROMENTA), Department of Psychology, University of Oslo, Oslo, Norway
| | - Anneli D Tandberg
- Department of Psychology, University of Oslo, Oslo, Norway; Research Center for Developmental Processes and Gradients in Mental Health (PROMENTA), Department of Psychology, University of Oslo, Oslo, Norway
| | - Esten Leonardsen
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sang Hong Lee
- Australian Centre for Precision Health, UniSA Allied Health & Human Performance, University of South Australia, Adelaide, Australia; South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, Australia
| | - Eivind Ystrom
- Research Center for Developmental Processes and Gradients in Mental Health (PROMENTA), Department of Psychology, University of Oslo, Oslo, Norway; Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Christian K Tamnes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Center for Developmental Processes and Gradients in Mental Health (PROMENTA), Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Dag Alnæs
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway
| |
Collapse
|
39
|
Adkinson BD, Rosenblatt M, Dadashkarimi J, Tejavibulya L, Jiang R, Noble S, Scheinost D. Brain-phenotype predictions can survive across diverse real-world data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576916. [PMID: 38328100 PMCID: PMC10849571 DOI: 10.1101/2024.01.23.576916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Recent work suggests that machine learning models predicting psychiatric treatment outcomes based on clinical data may fail when applied to unharmonized samples. Neuroimaging predictive models offer the opportunity to incorporate neurobiological information, which may be more robust to dataset shifts. Yet, among the minority of neuroimaging studies that undertake any form of external validation, there is a notable lack of attention to generalization across dataset-specific idiosyncrasies. Research settings, by design, remove the between-site variations that real-world and, eventually, clinical applications demand. Here, we rigorously test the ability of a range of predictive models to generalize across three diverse, unharmonized samples: the Philadelphia Neurodevelopmental Cohort (n=1291), the Healthy Brain Network (n=1110), and the Human Connectome Project in Development (n=428). These datasets have high inter-dataset heterogeneity, encompassing substantial variations in age distribution, sex, racial and ethnic minority representation, recruitment geography, clinical symptom burdens, fMRI tasks, sequences, and behavioral measures. We demonstrate that reproducible and generalizable brain-behavior associations can be realized across diverse dataset features with sample sizes in the hundreds. Results indicate the potential of functional connectivity-based predictive models to be robust despite substantial inter-dataset variability. Notably, for the HCPD and HBN datasets, the best predictions were not from training and testing in the same dataset (i.e., cross-validation) but across datasets. This result suggests that training on diverse data may improve prediction in specific cases. Overall, this work provides a critical foundation for future work evaluating the generalizability of neuroimaging predictive models in real-world scenarios and clinical settings.
Collapse
Affiliation(s)
- Brendan D Adkinson
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Matthew Rosenblatt
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Javid Dadashkarimi
- Department of Radiology, Athinoula. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA, 02129, USA
| | - Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Rongtao Jiang
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Stephanie Noble
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Bioengineering, Northeastern University, Boston, MA, 02120, USA
- Department of Psychology, Northeastern University, Boston, MA, 02115, USA
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Statistics & Data Science, Yale University, New Haven, CT, 06520, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
40
|
Pan N, Wang S, Lan H, Zhang X, Qin K, Kemp GJ, Suo X, Gong Q. Multivariate patterns of brain functional connectome associated with COVID-19-related negative affect symptoms. Transl Psychiatry 2024; 14:49. [PMID: 38253618 PMCID: PMC10803304 DOI: 10.1038/s41398-024-02741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Severe mental health problems with the representation of negative affect symptoms (NAS) have been increasingly reported during the coronavirus disease 2019 (COVID-19) pandemic. This study aimed to explore the multivariate patterns of brain functional connectome predicting COVID-19-related NAS. This cohort study encompassed a group of university students to undergo neuroimaging scans before the pandemic, and we re-contacted participants for 1-year follow-up COVID-related NAS evaluations during the pandemic. Regularized canonical correlation analysis was used to identify connectome-based dimensions of NAS to compute pairs of canonical variates. The predictive ability of identified functional connectome to NAS dimensional scores was examined with a nested cross-validation. Two dimensions (i.e. mode stress and mode anxiety) were related to distinct patterns of brain functional connectome (r2 = 0.911, PFDR = 0.048; r2 = 0.901, PFDR = 0.037, respectively). Mode anxiety was characterized by high loadings in connectivity between affective network (AFN) and visual network (VN), while connectivity of the default mode network with dorsal attention network (DAN) were remarkably prominent in mode stress. Connectivity patterns within the DAN and between DAN and VN, ventral attention network, and AFN was common for both dimensions. The identified functional connectome can reliably predict mode stress (r = 0.37, MAE = 5.1, p < 0.001) and mode anxiety (r = 0.28, MAE = 5.4, p = 0.005) in the cross-validation. Our findings provide new insight into multivariate dimensions of COVID-related NAS, which may have implications for developing network-based biomarkers in psychological interventions for vulnerable individuals in the pandemic.
Collapse
Affiliation(s)
- Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, USA
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
| | - Huan Lan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
| | - Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
| | - Kun Qin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, USA
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China.
| |
Collapse
|
41
|
Wulan N, An L, Zhang C, Kong R, Chen P, Bzdok D, Eickhoff SB, Holmes AJ, Yeo BTT. Translating phenotypic prediction models from big to small anatomical MRI data using meta-matching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573801. [PMID: 38260665 PMCID: PMC10802307 DOI: 10.1101/2023.12.31.573801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Individualized phenotypic prediction based on structural MRI is an important goal in neuroscience. Prediction performance increases with larger samples, but small-scale datasets with fewer than 200 participants are often unavoidable. We have previously proposed a "meta-matching" framework to translate models trained from large datasets to improve the prediction of new unseen phenotypes in small collection efforts. Meta-matching exploits correlations between phenotypes, yielding large improvement over classical machine learning when applied to prediction models using resting-state functional connectivity as input features. Here, we adapt the two best performing meta-matching variants ("meta-matching finetune" and "meta-matching stacking") from our previous study to work with T1-weighted MRI data by changing the base neural network architecture to a 3D convolution neural network. We compare the two meta-matching variants with elastic net and classical transfer learning using the UK Biobank (N = 36,461), Human Connectome Project Young Adults (HCP-YA) dataset (N = 1,017) and HCP-Aging dataset (N = 656). We find that meta-matching outperforms elastic net and classical transfer learning by a large margin, both when translating models within the same dataset, as well as translating models across datasets with different MRI scanners, acquisition protocols and demographics. For example, when translating a UK Biobank model to 100 HCP-YA participants, meta-matching finetune yielded a 136% improvement in variance explained over transfer learning, with an average absolute gain of 2.6% (minimum = -0.9%, maximum = 17.6%) across 35 phenotypes. Overall, our results highlight the versatility of the meta-matching framework.
Collapse
Affiliation(s)
- Naren Wulan
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - Lijun An
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - Chen Zhang
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - Ru Kong
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - Pansheng Chen
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, School of Computer Science, McGill University, Montreal QC, Canada
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Simon B Eickhoff
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Jülich, Germany
| | - Avram J Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - B T Thomas Yeo
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
42
|
Li XY, Yuan LX, Ding CC, Guo TF, Du WY, Jiang JH, Jessen F, Zang YF, Han Y. Convergent Multimodal Imaging Abnormalities in the Dorsal Precuneus in Subjective Cognitive Decline. J Alzheimers Dis 2024; 101:589-601. [PMID: 39213059 DOI: 10.3233/jad-231360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background A range of imaging modalities have reported Alzheimer's disease-related abnormalities in individuals experiencing subjective cognitive decline (SCD). However, there has been no consistent local abnormality identified across multiple neuroimaging modalities for SCD. Objective We aimed to investigate the convergent local alterations in amyloid-β (Aβ) deposition, glucose metabolism, and resting-state functional MRI (RS-fMRI) metrics in SCD. Methods Fifty SCD patients (66.4±5.7 years old, 19 men [38%]) and 15 normal controls (NC) (66.3±4.4 years old, 5 men [33.3%]) were scanned with both [18F]-florbetapir PET and [18F]-fluorodeoxyglucose PET, as well as simultaneous RS-fMRI from February 2018 to November 2018. Voxel-wise metrics were retrospectively analyzed, including Aβ deposition, glucose metabolism, amplitude of low frequency fluctuation (ALFF), regional homogeneity (ReHo), and degree centrality(DC). Results The SCD group showed increased Aβ deposition and glucose metabolism (p < 0.05, corrected), as well as decreased ALFF, ReHo, and DC (p < 0.05, uncorrected) in the left dorsal precuneus (dPCu). Furthermore, the dPCu illustrated negative resting-state functional connectivity with the default mode network. Regarding global Aβ deposition positivity, the Aβ deposition in the left dPCu showed a gradient change, i.e., Aβ positive SCD > Aβ negative SCD > Aβ negative NC. Additionally, both Aβ positive SCD and Aβ negative SCD showed increased glucose metabolism and decreased RS-fMRI metrics in the dPCu. Conclusions The dorsal precuneus, an area implicated in early AD, shows convergent neuroimaging alterations in SCD, and might be more related to other cognitive functions (e.g., unfocused attention) than episodic memory.
Collapse
Affiliation(s)
- Xuan-Yu Li
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Li-Xia Yuan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| | - Chang-Chang Ding
- Department of Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Teng-Fei Guo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Wen-Ying Du
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
| | - Jie-Hui Jiang
- Department of Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Frank Jessen
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ying Han
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
- School of Biomedical Engineering, Hainan University, Haikou, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
- The Central Hospital of Karamay, Xinjiang, China
| |
Collapse
|
43
|
Ge YJ, Wu BS, Zhang Y, Chen SD, Zhang YR, Kang JJ, Deng YT, Ou YN, He XY, Zhao YL, Kuo K, Ma Q, Banaschewski T, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Lemaitre H, Paus T, Poustka L, Hohmann S, Millenet S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Feng JF, Tan L, Dong Q, Schumann G, Cheng W, Yu JT. Genetic architectures of cerebral ventricles and their overlap with neuropsychiatric traits. Nat Hum Behav 2024; 8:164-180. [PMID: 37857874 DOI: 10.1038/s41562-023-01722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023]
Abstract
The cerebral ventricles are recognized as windows into brain development and disease, yet their genetic architectures, underlying neural mechanisms and utility in maintaining brain health remain elusive. Here we aggregated genetic and neuroimaging data from 61,974 participants (age range, 9 to 98 years) in five cohorts to elucidate the genetic basis of ventricular morphology and examined their overlap with neuropsychiatric traits. Genome-wide association analysis in a discovery sample of 31,880 individuals identified 62 unique loci and 785 candidate genes associated with ventricular morphology. We replicated over 80% of loci in a well-matched cohort of lateral ventricular volume. Gene set analysis revealed enrichment of ventricular-trait-associated genes in biological processes and disease pathogenesis during both early brain development and degeneration. We explored the age-dependent genetic associations in cohorts of different age groups to investigate the possible roles of ventricular-trait-associated loci in neurodevelopmental and neurodegenerative processes. We describe the genetic overlap between ventricular and neuropsychiatric traits through comprehensive integrative approaches under correlative and causal assumptions. We propose the volume of the inferior lateral ventricles as a heritable endophenotype to predict the risk of Alzheimer's disease, which might be a consequence of prodromal Alzheimer's disease. Our study provides an advance in understanding the genetics of the cerebral ventricles and demonstrates the potential utility of ventricular measurements in tracking brain disorders and maintaining brain health across the lifespan.
Collapse
Affiliation(s)
- Yi-Jun Ge
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ju-Jiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yong-Li Zhao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Kevin Kuo
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing Ma
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 'Trajectoires développementales & psychiatrie', University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 'Trajectoires développementales & psychiatrie', University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
- AP-HP, Sorbonne University, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 'Trajectoires développementales & psychiatrie', University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Herve Lemaitre
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, Bordeaux, France
| | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
- Departments of Psychiatry and Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine, Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Beijing, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine, Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine, Institute for Science and Technology of Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Beijing, China.
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China.
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer 79 Center, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
44
|
Mallaroni P, Mason NL, Kloft L, Reckweg JT, van Oorsouw K, Toennes SW, Tolle HM, Amico E, Ramaekers JG. Shared functional connectome fingerprints following ritualistic ayahuasca intake. Neuroimage 2024; 285:120480. [PMID: 38061689 DOI: 10.1016/j.neuroimage.2023.120480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024] Open
Abstract
The knowledge that brain functional connectomes are unique and reliable has enabled behaviourally relevant inferences at a subject level. However, whether such "fingerprints" persist under altered states of consciousness is unknown. Ayahuasca is a potent serotonergic psychedelic which produces a widespread dysregulation of functional connectivity. Used communally in religious ceremonies, its shared use may highlight relevant novel interactions between mental state and functional connectome (FC) idiosyncrasy. Using 7T fMRI, we assessed resting-state static and dynamic FCs for 21 Santo Daime members after collective ayahuasca intake in an acute, within-subject study. Here, connectome fingerprinting revealed FCs showed reduced idiosyncrasy, accompanied by a spatiotemporal reallocation of keypoint edges. Importantly, we show that interindividual differences in higher-order FC motifs are relevant to experiential phenotypes, given that they can predict perceptual drug effects. Collectively, our findings offer an example of how individualised connectivity markers can be used to trace a subject's FC across altered states of consciousness.
Collapse
Affiliation(s)
- Pablo Mallaroni
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
| | - Natasha L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Lilian Kloft
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Johannes T Reckweg
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Kim van Oorsouw
- Department of Forensic Psychology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Stefan W Toennes
- Institute of Legal Medicine, University Hospital, Goethe University, Frankfurt/Main, Germany
| | | | | | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| |
Collapse
|
45
|
Petersen M, Hoffstaedter F, Nägele FL, Mayer C, Schell M, Rimmele DL, Zyriax BC, Zeller T, Kühn S, Gallinat J, Fiehler J, Twerenbold R, Omidvarnia A, Patil KR, Eickhoff SB, Thomalla G, Cheng B. A latent clinical-anatomical dimension relating metabolic syndrome to brain structure and cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529531. [PMID: 36865285 PMCID: PMC9980040 DOI: 10.1101/2023.02.22.529531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The link between metabolic syndrome (MetS) and neurodegenerative as well cerebrovascular conditions holds substantial implications for brain health in at-risk populations. This study elucidates the complex relationship between MetS and brain health by conducting a comprehensive examination of cardiometabolic risk factors, cortical morphology, and cognitive function in 40,087 individuals. Multivariate, data-driven statistics identified a latent dimension linking more severe MetS to widespread brain morphological abnormalities, accounting for up to 71% of shared variance in the data. This dimension was replicable across sub-samples. In a mediation analysis we could demonstrate that MetS-related brain morphological abnormalities mediated the link between MetS severity and cognitive performance in multiple domains. Employing imaging transcriptomics and connectomics, our results also suggest that MetS-related morphological abnormalities are linked to the regional cellular composition and macroscopic brain network organization. By leveraging extensive, multi-domain data combined with a dimensional stratification approach, our analysis provides profound insights into the association of MetS and brain health. These findings can inform effective therapeutic and risk mitigation strategies aimed at maintaining brain integrity.
Collapse
Affiliation(s)
- Marvin Petersen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Felix Hoffstaedter
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Ju lich, Wilhelm-Johnen-Straße, 52425 Ju lich, Germany
| | - Felix L. Nägele
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Carola Mayer
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Maximilian Schell
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - D. Leander Rimmele
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Birgit-Christiane Zyriax
- Midwifery Science-Health Services Research and Prevention, Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Tanja Zeller
- Department of Cardiology, University Heart and Vascular Center, Martinistraße 52, 20251 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Luebeck, Martinistraße 52, 20251 Hamburg, Germany
- University Center of Cardiovascular Science, University Heart and Vascular Center, Martinistraße 52, 20251 Hamburg, Germany
| | - Simone Kühn
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Raphael Twerenbold
- Department of Cardiology, University Heart and Vascular Center, Martinistraße 52, 20251 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Luebeck, Martinistraße 52, 20251 Hamburg, Germany
- University Center of Cardiovascular Science, University Heart and Vascular Center, Martinistraße 52, 20251 Hamburg, Germany
- Epidemiological Study Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Amir Omidvarnia
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Ju lich, Wilhelm-Johnen-Straße, 52425 Ju lich, Germany
| | - Kaustubh R. Patil
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Ju lich, Wilhelm-Johnen-Straße, 52425 Ju lich, Germany
| | - Simon B. Eickhoff
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Ju lich, Wilhelm-Johnen-Straße, 52425 Ju lich, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| |
Collapse
|
46
|
Ilan Y. Variability in exercise is linked to improved age-related dysfunctions: A potential role for the constrained-disorder principle-based second-generation artificial intelligence system. RESEARCH SQUARE 2023:rs.3.rs-3671709. [PMID: 38196652 PMCID: PMC10775380 DOI: 10.21203/rs.3.rs-3671709/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Objective: Regular physical activity (PA) promotes mental and physical health. Nevertheless, inactivity is a worldwide pandemic, and methods to augment exercise benefits are required. The constrained disorder principle (CDP) characterizes biological systems based on their inherent variability. We aimed to investigate the association between intra-individual variability in PA and disability among non-athlete adults. Methods: In this retrospective analysis of the longitudinal SHARE survey, we included non-disabled adults aged >50 with at least six visits over 14 years. Self-reported PA frequency was documented bi- to triennially. Low PA intensity was defined as vigorous PA frequency less than once a week. Stable PA was described as an unchanged PA intensity in all consecutive middle observations. The primary outcome was defined as a physical limitation in everyday activities at the end of the survey. Secondary outcomes were cognitive functions, including short-term memory, long-term memory, and verbal fluency. Results: The study included 2,049 non-disabled adults with a mean age of 53 and 49.1% women. In the initially high PA intensity group, variability in PA was associated with increased physical disability prevalence (23.3% vs. 33.2%, stable vs. unstable PA ; P<0.01; adjusted P<0.01). In the initially low PA intensity group, variability was associated with a reduced physical disability (45.6% vs. 33.3%, stable vs. unstable PA ; P=0.02; adjusted P=0.03). There were no statistically significant differences in cognitive parameters between the groups. Among individuals with the same low PA intensity at the beginning and end of follow-up, variability was associated with reduced physical disability (56.9% vs. 36.5%, stable vs. unstable PA ; P=0.02; adjusted P=0.04) and improved short-term memory (score change: -0.28 vs. +0.29, stable vs. unstable PA ; P=0.05). Conclusion: Incorporating variability into PA regimens of inactive adults may enhance their physical and cognitive benefits.
Collapse
|
47
|
Marawi T, Zhukovsky P, Rashidi-Ranjbar N, Bowie CR, Brooks H, Fischer CE, Flint AJ, Herrmann N, Mah L, Pollock BG, Rajji TK, Tartaglia MC, Voineskos AN, Mulsant BH. Brain-Cognition Associations in Older Patients With Remitted Major Depressive Disorder or Mild Cognitive Impairment: A Multivariate Analysis of Gray and White Matter Integrity. Biol Psychiatry 2023; 94:913-923. [PMID: 37271418 DOI: 10.1016/j.biopsych.2023.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Almost half of older patients with major depressive disorder (MDD) present with cognitive impairment, and one-third meet diagnostic criteria for mild cognitive impairment (MCI). However, mechanisms linking MDD and MCI remain unclear. We investigated multivariate associations between brain structural alterations and cognition in 3 groups of older patients at risk for dementia, remitted MDD (rMDD), MCI, and rMDD+MCI, as well as cognitively healthy nondepressed control participants. METHODS We analyzed magnetic resonance imaging data and cognitive domain scores in participants from the PACt-MD (Prevention of Alzheimer's Disease With Cognitive Remediation Plus Transcranial Direct Current Stimulation in Mild Cognitive Impairment and Depression) study. Following quality control, we measured cortical thickness and subcortical volumes of selected regions from 283 T1-weighted scans and fractional anisotropy of white matter tracts from 226 diffusion-weighted scans. We assessed brain-cognition associations using partial least squares regressions in the whole sample and in each subgroup. RESULTS In the entire sample, atrophy in the medial temporal lobe and subregions of the motor and prefrontal cortex was associated with deficits in verbal and visuospatial memory, language skills, and, to a lesser extent, processing speed (p < .0001; multivariate r = 0.30, 0.34, 0.26, and 0.18, respectively). Widespread reduced white matter integrity was associated with deficits in executive functioning, working memory, and processing speed (p = .008; multivariate r = 0.21, 0.26, 0.35, respectively). Overall, associations remained significant in the MCI and rMDD+MCI groups, but not the rMDD or healthy control groups. CONCLUSIONS We confirm findings of brain-cognition associations previously reported in MCI and extend them to rMDD+MCI, but similar associations in rMDD are not supported. Early-onset and treated MDD might not contribute to structural alterations associated with cognitive impairment.
Collapse
Affiliation(s)
- Tulip Marawi
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Peter Zhukovsky
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Neda Rashidi-Ranjbar
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Christopher R Bowie
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychology, Queen's University, Kingston, Ontario, Canada; Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| | - Heather Brooks
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Corinne E Fischer
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Alastair J Flint
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Centre for Mental Health, University Health Network, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Sunnybrook Health Sciences Centre, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Linda Mah
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Baycrest Health Services, Rotman Research Institute, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Bruce G Pollock
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tarek K Rajji
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto Dementia Research Alliance, University of Toronto, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Aristotle N Voineskos
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Benoit H Mulsant
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto Dementia Research Alliance, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
48
|
Lan H, Suo X, Zuo C, Pan N, Zhang X, Kemp GJ, Gong Q, Wang S. Distinct pre-COVID brain structural signatures in COVID-19-related post-traumatic stress symptoms and post-traumatic growth. Cereb Cortex 2023; 33:11373-11383. [PMID: 37804248 DOI: 10.1093/cercor/bhad372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/09/2023] Open
Abstract
Post-traumatic stress symptoms and post-traumatic growth are common co-occurring psychological responses following exposure to traumatic events (such as COVID-19 pandemic), their mutual relationship remains unclear. To explore this relationship, structural magnetic resonance imaging data were acquired from 115 general college students before the COVID-19 pandemic, and follow-up post-traumatic stress symptoms and post-traumatic growth measurements were collected during the pandemic. Voxel-based morphometry was conducted and individual structural covariance networks based on gray matter volume were further analyzed using graph theory and partial least squares correlation. Behavioral correlation found no significant relationship between post-traumatic stress symptoms and post-traumatic growth. Voxel-based morphometry analyses showed that post-traumatic stress symptoms were positively correlated with gray matter volume in medial prefrontal cortex/dorsal anterior cingulate cortex, and post-traumatic growth was negatively correlated with gray matter volume in left dorsolateral prefrontal cortex. Structural covariance network analyses found that post-traumatic stress symptoms were negatively correlated with the local efficiency and clustering coefficient of the network. Moreover, partial least squares correlation showed that post-traumatic stress symptoms were correlated with pronounced nodal properties patterns in default mode, sensory and motor regions, and a marginal correlation of post-traumatic growth with a nodal property pattern in emotion regulation-related regions. This study advances our understanding of the neurobiological substrates of post-traumatic stress symptoms and post-traumatic growth, and suggests that they may have different neuroanatomical features.
Collapse
Affiliation(s)
- Huan Lan
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Xueling Suo
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Chao Zuo
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Nanfang Pan
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Xun Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361000, China
| | - Song Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
49
|
Wang Y, Genon S, Dong D, Zhou F, Li C, Yu D, Yuan K, He Q, Qiu J, Feng T, Chen H, Lei X. Covariance patterns between sleep health domains and distributed intrinsic functional connectivity. Nat Commun 2023; 14:7133. [PMID: 37932259 PMCID: PMC10628193 DOI: 10.1038/s41467-023-42945-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
Sleep health is both conceptually and operationally a composite concept containing multiple domains of sleep. In line with this, high dependence and interaction across different domains of sleep health encourage a transition in sleep health research from categorical to dimensional approaches that integrate neuroscience and sleep health. Here, we seek to identify the covariance patterns between multiple sleep health domains and distributed intrinsic functional connectivity by applying a multivariate approach (partial least squares). This multivariate analysis reveals a composite sleep health dimension co-varying with connectivity patterns involving the attentional and thalamic networks and which appear relevant at the neuromolecular level. These findings are further replicated and generalized to several unseen independent datasets. Critically, the identified sleep-health related connectome shows diagnostic potential for insomnia disorder. These results together delineate a potential brain connectome biomarker for sleep health with high potential for clinical translation.
Collapse
Affiliation(s)
- Yulin Wang
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Sarah Genon
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Feng Zhou
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Chenyu Li
- Sleep Center, Department of Brain Disease, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Dahua Yu
- Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shanxi, China
| | - Qinghua He
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China.
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
50
|
Karl V, Rohe T. Structural brain changes in emotion recognition across the adult lifespan. Soc Cogn Affect Neurosci 2023; 18:nsad052. [PMID: 37769357 PMCID: PMC10627307 DOI: 10.1093/scan/nsad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/22/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Emotion recognition (ER) declines with increasing age, yet little is known whether this observation is based on structural brain changes conveyed by differential atrophy. To investigate whether age-related ER decline correlates with reduced grey matter (GM) volume in emotion-related brain regions, we conducted a voxel-based morphometry analysis using data of the Human Connectome Project-Aging (N = 238, aged 36-87) in which facial ER was tested. We expected to find brain regions that show an additive or super-additive age-related change in GM volume indicating atrophic processes that reduce ER in older adults. The data did not support our hypotheses after correction for multiple comparisons. Exploratory analyses with a threshold of P < 0.001 (uncorrected), however, suggested that relationships between GM volume and age-related general ER may be widely distributed across the cortex. Yet, small effect sizes imply that only a small fraction of the decline of ER in older adults can be attributed to local GM volume changes in single voxels or their multivariate patterns.
Collapse
Affiliation(s)
- Valerie Karl
- Institute of Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo 0424, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo 0373, Norway
| | - Tim Rohe
- Institute of Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| |
Collapse
|