1
|
Han D, Cui Y, Deng X, Li C, Zhu X, Wang B, Chu GC, Wang ZA, Tang S, Zheng JS, Liang LJ, Liu L. Mechanically Triggered Protein Desulfurization. J Am Chem Soc 2025; 147:4135-4146. [PMID: 39849831 DOI: 10.1021/jacs.4c13464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
The technology of native chemical ligation and postligation desulfurization has greatly expanded the scope of modern chemical protein synthesis. Here, we report that ultrasonic energy can trigger robust and clean protein desulfurization, and we developed an ultrasound-induced desulfurization (USID) strategy that is simple to use and generally applicable to peptides and proteins. The USID strategy involves a simple ultrasonic cleaning bath and an easy-to-use and easy-to-remove sonosensitizer, titanium dioxide. It features mild and convenient reaction conditions and excellent functional group compatibility, e.g., with thiazolidine (Thz) and serotonin, which are sensitive to other desulfurization strategies. The USID strategy is robust: without reoptimizing the reaction conditions, the same USID procedure can be used for the clean desulfurization of a broad range of proteins with one or more sulfhydryl groups, even in multi-hundred-milligram scale reactions. The utility of USID was demonstrated by the one-pot synthesis of bioactive cyclopeptides such as Cycloleonuripeptide E and Segetalin F, as well as convergent chemical synthesis of functionally important proteins such as histone H3.5 using Thz as a temporary protecting group. A mechanistic investigation indicated that USID proceeds via a radical-based mechanism promoted by low-frequency and low-intensity ultrasonication. Overall, our work introduces a mechanically triggered approach with the potential to become a robust desulfurization method for general use in chemical protein synthesis by both academic and industrial laboratories.
Collapse
Affiliation(s)
- Dongyang Han
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yan Cui
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiangyu Deng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chuntong Li
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xianglai Zhu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bingji Wang
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Chao Chu
- The First Affiliated Hospital of USTC, MOE Key Laboratory of Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Zhipeng A Wang
- Desai Sethi Urology Institute, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Shan Tang
- Department of Oncology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Ji-Shen Zheng
- The First Affiliated Hospital of USTC, MOE Key Laboratory of Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Lu-Jun Liang
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Wang H, Helin K. Roles of H3K4 methylation in biology and disease. Trends Cell Biol 2025; 35:115-128. [PMID: 38909006 DOI: 10.1016/j.tcb.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 06/24/2024]
Abstract
Epigenetic modifications, including posttranslational modifications of histones, are closely linked to transcriptional regulation. Trimethylated H3 lysine 4 (H3K4me3) is one of the most studied histone modifications owing to its enrichment at the start sites of transcription and its association with gene expression and processes determining cell fate, development, and disease. In this review, we focus on recent studies that have yielded insights into how levels and patterns of H3K4me3 are regulated, how H3K4me3 contributes to the regulation of specific phases of transcription such as RNA polymerase II initiation, pause-release, heterogeneity, and consistency. The conclusion from these studies is that H3K4me3 by itself regulates gene expression and its precise regulation is essential for normal development and preventing disease.
Collapse
Affiliation(s)
- Hua Wang
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing, 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | | |
Collapse
|
3
|
Dong R, Wang T, Dong W, Zhang H, Li Y, Tao R, Liu Q, Liang H, Chen X, Zhang B, Zhang X. TGM2-mediated histone serotonylation promotes HCC progression via MYC signalling pathway. J Hepatol 2025:S0168-8278(24)02829-0. [PMID: 39788430 DOI: 10.1016/j.jhep.2024.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is an aggressive malignancy with few effective treatment options. H3Q5ser, a serotonin-based histone modification mediated by transglutaminase 2 (TGM2), affects diverse biological processes, such as neurodevelopment. The role of TGM2-mediated H3Q5ser in HCC progression remains unclear. This study investigated the role of TGM2 in promoting HCC progression and evaluated its potential as a therapeutic target for HCC treatment. METHODS Adeno-associated virus (AAV)-mediated liver-specific overexpression models of Tgm2 or H3.3 were adopted to validate the effects of H3Q5ser on HCC progression. CUT&Tag and RNA sequencing was employed to investigate the underlying mechanisms. HCC organoids, subcutaneous xenograft models, and hydrodynamic tail vein injection models were used to evaluate the treatment efficiency of TGM2 inhibitors. RESULTS TMG2 expression positively correlated with higher AFP levels, poor differentiation, and a later BCLC stage. Tgm2 deficiency or H3Q5ser inhibition notably inhibited HCC progression. CUT&Tag and RNA sequencing analyses revealed that downregulated genes were enriched in the MYC pathway following treatment with the TGM2 inhibitors. Furthermore, transcriptional intermediary factor 1 β mediated the recruitment of TGM2 to MYC, facilitating H3Q5ser modifications on MYC target genes. Finally, targeting the transglutaminase activity of TGM2 significantly suppressed HCC progression and showed synergy with sorafenib treatment in preclinical models. TGM2 inhibitors did not cause significant myelosuppression or tissue damage. CONCLUSIONS TGM2 serves as a prognostic biomarker and targeting its transglutaminase activity may be an effective strategy for inhibiting HCC progression.
Collapse
Affiliation(s)
- Renshun Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China
| | - Tianci Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Department of Haematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Wei Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, , Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Haoquan Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China
| | - Yani Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, , Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Ran Tao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, , Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, , Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, , Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, , Chinese Academy of Medical Sciences, Wuhan 430030, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, , Chinese Academy of Medical Sciences, Wuhan 430030, China.
| | - Xuewu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, , Chinese Academy of Medical Sciences, Wuhan 430030, China.
| |
Collapse
|
4
|
Sardar D, Kutateladze TG. Circadian rhythms are set by epigenetic marks in neurons. Nature 2025; 637:795-796. [PMID: 39779988 DOI: 10.1038/d41586-024-04080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
5
|
Zheng Q, Weekley BH, Vinson DA, Zhao S, Bastle RM, Thompson RE, Stransky S, Ramakrishnan A, Cunningham AM, Dutta S, Chan JC, Di Salvo G, Chen M, Zhang N, Wu J, Fulton SL, Kong L, Wang H, Zhang B, Vostal L, Upad A, Dierdorff L, Shen L, Molina H, Sidoli S, Muir TW, Li H, David Y, Maze I. Bidirectional histone monoaminylation dynamics regulate neural rhythmicity. Nature 2025; 637:974-982. [PMID: 39779849 PMCID: PMC11754111 DOI: 10.1038/s41586-024-08371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
Histone H3 monoaminylations at Gln5 represent an important family of epigenetic marks in brain that have critical roles in permissive gene expression1-3. We previously demonstrated that serotonylation4-10 and dopaminylation9,11-13 of Gln5 of histone H3 (H3Q5ser and H3Q5dop, respectively) are catalysed by transglutaminase 2 (TG2), and alter both local and global chromatin states. Here we found that TG2 additionally functions as an eraser and exchanger of H3 monoaminylations, including H3Q5 histaminylation (H3Q5his), which displays diurnally rhythmic expression in brain and contributes to circadian gene expression and behaviour. We found that H3Q5his, in contrast to H3Q5ser, inhibits the binding of WDR5, a core member of histone H3 Lys4 (H3K4) methyltransferase complexes, thereby antagonizing methyltransferase activities on H3K4. Taken together, these data elucidate a mechanism through which a single chromatin regulatory enzyme has the ability to sense chemical microenvironments to affect the epigenetic states of cells, the dynamics of which have critical roles in the regulation of neural rhythmicity.
Collapse
Affiliation(s)
- Qingfei Zheng
- Department of Radiation Oncology, College of Medicine and Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Benjamin H Weekley
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David A Vinson
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shuai Zhao
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Ryan M Bastle
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashley M Cunningham
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sohini Dutta
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer C Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giuseppina Di Salvo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Min Chen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nan Zhang
- Department of Radiation Oncology, College of Medicine and Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jinghua Wu
- Department of Radiation Oncology, College of Medicine and Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Sasha L Fulton
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lingchun Kong
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Haifeng Wang
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Baichao Zhang
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Lauren Vostal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Akhil Upad
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Lauren Dierdorff
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Henrik Molina
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Haitao Li
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- SXMU-TM Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA.
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Venditti S. Remodeling the Epigenome Through Meditation: Effects on Brain, Body, and Well-being. Subcell Biochem 2025; 108:231-260. [PMID: 39820865 DOI: 10.1007/978-3-031-75980-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Epigenetic mechanisms are key processes that constantly reshape genome activity carrying out physiological responses to environmental stimuli. Such mechanisms regulate gene activity without modifying the DNA sequence, providing real-time adaptation to changing environmental conditions. Both favorable and unfavorable lifestyles have been shown to influence body and brain by means of epigenetics, leaving marks on the genome that can either be rapidly reversed or persist in time and even be transmitted trans-generationally. Among virtuous habits, meditation seemingly represents a valuable way of activating inner resources to cope with adverse experiences. While unhealthy habits, stress, and traumatic early-life events may favor the onset of diseases linked to inflammation, neuroinflammation, and neuroendocrine dysregulation, the practice of mindfulness-based techniques was associated with the alleviation of many of the above symptoms, underlying the importance of lifestyles for health and well-being. Meditation influences brain and body systemwide, eliciting structural/morphological changes as well as modulating the levels of circulating factors and the expression of genes linked to the HPA axis and the immune and neuroimmune systems. The current chapter intends to give an overview of pioneering research showing how meditation can promote health through epigenetics, by reshaping the profiles of the three main epigenetic markers, namely DNA methylation, histone modifications, and non-coding RNAs.
Collapse
Affiliation(s)
- Sabrina Venditti
- Department of Biology and Biotechnologies C. Darwin, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
7
|
Chan ZCK, Qi C, Cai Y, Li X, Ren J. Revealing and mitigating the inhibitory effect of serotonin on HRP-mediated protein labelling. Sci Rep 2024; 14:32126. [PMID: 39738643 DOI: 10.1038/s41598-024-83928-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Proximity-dependent biotinylation coupled with mass spectrometry enables the characterization of subcellular proteomes. This technique has significantly advanced neuroscience by revealing sub-synaptic protein networks, such as the synaptic cleft and post-synaptic density. Profiling proteins at this detailed level is essential for understanding the molecular mechanisms of neuronal connectivity and transmission. Despite its recent successful application to various neuronal types, proximity labelling has yet to be employed to study the serotonin system. In this study, we uncovered an unreported inhibitory mechanism of serotonin on horseradish peroxidase (HRP)-based biotinylation. Our result showed that serotonin significantly reduces biotinylation levels across various Biotin-XX-tyramide (BxxP) concentrations in HEK293T cells and primary neurons, whereas dopamine exerts minimal interference, highlighting the specificity of this inhibition. To counteract this inhibition, we demonstrated that Dz-PEG, an aryl diazonium compound that consumes serotonin through an azo-coupling reaction, restores biotinylation efficiency. Label-free quantitative proteomics confirmed that serotonin inhibits biotinylation, and that Dz-PEG effectively reverses this inhibition. These findings highlight the importance of accounting for neurotransmitter interference in proximity-dependent biotinylation studies, especially for cell-type specific profiling in neuroscience. Additionally, we provided a potential strategy to mitigate these challenges, thereby enhancing the accuracy and reliability of such studies.
Collapse
Affiliation(s)
- Zora Chui-Kuen Chan
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Cheng Qi
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Yuanhong Cai
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xin Li
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Jing Ren
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
8
|
Delgado T, Emerson J, Hong M, Keillor JW, Johnson GVW. Pharmacological Inhibition of Astrocytic Transglutaminase 2 Facilitates the Expression of a Neurosupportive Astrocyte Reactive Phenotype in Association with Increased Histone Acetylation. Biomolecules 2024; 14:1594. [PMID: 39766301 PMCID: PMC11673777 DOI: 10.3390/biom14121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Astrocytes play critical roles in supporting structural and metabolic homeostasis in the central nervous system (CNS). CNS injury leads to the development of a range of reactive phenotypes in astrocytes whose molecular determinants are poorly understood. Finding ways to modulate astrocytic injury responses and leverage a pro-recovery phenotype holds promise in treating CNS injury. Recently, it has been demonstrated that ablation of astrocytic transglutaminase 2 (TG2) shifts reactive astrocytes towards a phenotype that improves neuronal injury outcomes both in vitro and in vivo. Additionally, in an in vivo mouse model, pharmacological inhibition of TG2 with the irreversible inhibitor VA4 phenocopied the neurosupportive effects of TG2 deletion in astrocytes. In this study, we extended our comparisons of VA4 treatment and TG2 deletion to provide insights into the mechanisms by which TG2 attenuates neurosupportive astrocytic function after injury. Using a neuron-astrocyte co-culture model, we found that VA4 treatment improves the ability of astrocytes to support neurite outgrowth on an injury-relevant matrix, as we previously showed for astrocytic TG2 deletion. We hypothesize that TG2 mediates its influence on astrocytic phenotype through transcriptional regulation, and our previous RNA sequencing suggests that TG2 is primarily transcriptionally repressive in astrocytes, although it can facilitate both up- and downregulation of gene expression. Therefore, we asked whether VA4 inhibition could alter TG2's interaction with Zbtb7a, a transcription factor that we previously identified as a functionally relevant TG2 nuclear interactor. We found that VA4 significantly decreased the interaction of TG2 and Zbtb7a. Additionally, we assessed the effect of TG2 deletion and VA4 treatment on transcriptionally permissive histone acetylation and found significantly greater acetylation in both experimental groups. Consistent with these findings, our present proteomic analysis further supports the predominant transcriptionally repressive role of TG2 in astrocytes. Our proteomic data additionally unveiled pronounced changes in lipid and antioxidant metabolism in astrocytes with TG2 deletion or inhibition, which likely contribute to the enhanced neurosupportive function of these astrocytes.
Collapse
Affiliation(s)
- Thomas Delgado
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620, USA; (T.D.); (J.E.); (M.H.)
| | - Jacen Emerson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620, USA; (T.D.); (J.E.); (M.H.)
| | - Matthew Hong
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620, USA; (T.D.); (J.E.); (M.H.)
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N6N5, Canada;
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620, USA; (T.D.); (J.E.); (M.H.)
| |
Collapse
|
9
|
Frolova VS, Nikishina YO, Shmukler YB, Nikishin DA. Serotonin Signaling in Mouse Preimplantation Development: Insights from Transcriptomic and Structural-Functional Analyses. Int J Mol Sci 2024; 25:12954. [PMID: 39684667 DOI: 10.3390/ijms252312954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Serotonin (5-HT), a versatile signaling molecule, plays a variety of roles in both neurotransmission and tissue regulation. The influence of serotonin on early development was first studied in marine invertebrate embryos and has since been documented in a variety of vertebrate species, including mammals. The present study investigates the expression and functional activity of serotonin components in mouse embryos, focusing on key receptors and transporters. Transcriptomic analyses revealed that mRNA transcripts related to serotonin show marked expression during the oogenesis and preimplantation stages. The results of the immunohistochemical studies show the presence of serotonin, the vesicular monoamine transporter VMAT2, and several membrane receptors (5-HT1B, 5-HT1D, 5-HT2B, 5-HT7) in the early stages of development. A functional analysis performed with the VMAT inhibitor reserpine revealed the crucial role of vesicular transport in the maintenance of serotonin signaling. The findings presented here support the hypothesis that serotonin plays a significant role in oocyte maturation and embryonic development, as well as in interblastomere interactions.
Collapse
Affiliation(s)
- Veronika S Frolova
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Yulia O Nikishina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Yuri B Shmukler
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Denis A Nikishin
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
10
|
Scheinman SB, Dong H. The impact of sex on memory during aging and Alzheimer's disease progression: Epigenetic mechanisms. J Alzheimers Dis 2024; 102:562-576. [PMID: 39539121 PMCID: PMC11721493 DOI: 10.1177/13872877241288709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, disability, and death in the elderly. While the etiology of AD is unknown, there are several established risk factors for the disease including, aging, female sex, and genetics. However, specific genetic mutations only account for a small percentage (1-5%) of AD cases and the much more common sporadic form of the disease has no causative genetic basis, although certain risk factor genes have been identified. While the genetic code remains static throughout the lifetime, the activation and expression levels of genes change dynamically over time via epigenetics. Recent evidence has emerged linking changes in epigenetics to the pathogenesis of AD, and epigenetic alterations also modulate cognitive changes during physiological aging. Aging is the greatest risk factor for the development of AD and two-thirds of all AD patients are women, who experience an increased rate of symptom progression compared to men of the same age. In humans and other mammalian species, males and females experience aging differently, raising the important question of whether sex differences in epigenetic regulation during aging could provide an explanation for sex differences in neurodegenerative diseases such as AD. This review explores distinct epigenetic changes that impact memory function during aging and AD, with a specific focus on sexually divergent epigenetic alterations (in particular, histone modifications) as a potential mechanistic explanation for sex differences in AD.
Collapse
Affiliation(s)
- Sarah B Scheinman
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
11
|
Terada Y, Obara K, Yoshioka Y, Ochiya T, Bito H, Tsuchida K, Ageta H, Ageta-Ishihara N. Intracellular dynamics of ubiquitin-like 3 visualized using an inducible fluorescent timer expression system. Biol Open 2024; 13:bio060345. [PMID: 39498724 PMCID: PMC11556312 DOI: 10.1242/bio.060345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024] Open
Abstract
Exosomes are small extracellular vesicles (sEVs) secreted via multivesicular bodies (MVBs)/late endosomes and mediators of cell-cell communication. We previously reported a novel post-translational modification by ubiquitin-like 3 (UBL3). UBL3 is localized in MVBs and the plasma membrane and released outside as sEVs, including exosomes. Approximately 60% of proteins sorted in sEVs are affected by UBL3 and localized in various organelles, the plasma membrane, and the cytosol, suggesting that its dynamic movement in the cell before entering the MVBs. To examine the intracellular dynamics of UBL3, we constructed a sophisticated visualization system via fusing fluorescent timers that changed from blue to red form over time with UBL3 and by its expression under Tet-on regulation. Intriguingly, we found that after synthesis, UBL3 was initially distributed within the cytosol. Subsequently, UBL3 was localized to MVBs and the plasma membrane and finally showed predominant accumulation in MVBs. Furthermore, by super-resolution microscopy analysis, UBL3 was found to be associated with one of its substrates, α-tubulin, in the cytosol, and the complex was subsequently transported to MVBs. This spatiotemporal visualization system for UBL3 will form a basis for further studies to elucidate when and where UBL3 associates with its substrates/binding proteins before localization in MVBs.
Collapse
Affiliation(s)
- Yuka Terada
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Kumi Obara
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Shinjyuku-ku, Tokyo 160-0023, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Shinjyuku-ku, Tokyo 160-0023, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kunihiro Tsuchida
- Division for Therapies Against Intractable Diseases, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hiroshi Ageta
- Division for Therapies Against Intractable Diseases, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Natsumi Ageta-Ishihara
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
12
|
Delgado T, Emerson J, Hong M, Keillor JW, Johnson GVW. Pharmacological inhibition of astrocytic transglutaminase 2 facilitates the expression of a neurosupportive astrocyte reactive phenotype in association with increased histone acetylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589192. [PMID: 38659783 PMCID: PMC11042235 DOI: 10.1101/2024.04.15.589192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Astrocytes play critical roles in supporting structural and metabolic homeostasis in the central nervous system (CNS). CNS injury leads to the development of a range of reactive phenotypes in astrocytes whose molecular determinants are poorly understood. Finding ways to modulate astrocytic injury responses and leverage a pro-recovery phenotype holds promise in treating CNS injury. Recently, it has been demonstrated that ablation of astrocytic transglutaminase 2 (TG2) modulates the phenotype of reactive astrocytes in a way that improves neuronal injury outcomes both in vitro and in vivo. In an in vivo mouse model, pharmacological inhibition of TG2 with the irreversible inhibitor VA4 phenocopies the neurosupportive effects of TG2 deletion in astrocytes. In this study, we provide insights into the mechanisms by which TG2 deletion or inhibition result in a more neurosupportive astrocytic phenotype. Using a neuron-astrocyte co-culture model, we show that VA4 treatment improves the ability of astrocytes to support neurite outgrowth on an injury-relevant matrix. To better understand how pharmacologically altering TG2 affects its ability to regulate reactive astrocyte phenotypes, we assessed how VA4 inhibition impacts TG2's interaction with Zbtb7a, a transcription factor we have previously identified as a functionally relevant TG2 nuclear interactor. The results of these studies demonstrate that VA4 significantly decreases the interaction of TG2 and Zbtb7a. TG2's interactions with Zbtb7a, as well as a wide range of other transcription factors and chromatin regulatory proteins, suggest that TG2 may act as an epigenetic regulator to modulate gene expression. To begin to understand if TG2-mediated epigenetic modification may impact astrocytic phenotypes in our models, we interrogated the effect of TG2 deletion and VA4 treatment on histone acetylation and found significantly greater acetylation in both experimental groups. Consistent with these findings, previous RNA-sequencing and our present proteomic analysis also supported a predominant transcriptionally suppressive role of TG2 in astrocytes. Our proteomic data additionally unveiled pronounced changes in lipid and antioxidant metabolism in astrocytes with TG2 deletion or inhibition, which likely contribute to the enhanced neurosupportive function of these astrocytes.
Collapse
Affiliation(s)
- Thomas Delgado
- 601 Elmwood Ave, box 604, Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, 14620, USA
| | - Jacen Emerson
- 601 Elmwood Ave, box 604, Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, 14620, USA
| | - Matthew Hong
- 601 Elmwood Ave, box 604, Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, 14620, USA
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N6N5, Canada
| | - Gail VW Johnson
- 601 Elmwood Ave, box 604, Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, 14620, USA
| |
Collapse
|
13
|
Gantner BN, Palma FR, Pandkar MR, Sakiyama MJ, Arango D, DeNicola GM, Gomes AP, Bonini MG. Metabolism and epigenetics: drivers of tumor cell plasticity and treatment outcomes. Trends Cancer 2024; 10:992-1008. [PMID: 39277448 DOI: 10.1016/j.trecan.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/17/2024]
Abstract
Emerging evidence indicates that metabolism not only is a source of energy and biomaterials for cell division but also acts as a driver of cancer cell plasticity and treatment resistance. This is because metabolic changes lead to remodeling of chromatin and reprogramming of gene expression patterns, furthering tumor cell phenotypic transitions. Therefore, the crosstalk between metabolism and epigenetics seems to hold immense potential for the discovery of novel therapeutic targets for various aggressive tumors. Here, we highlight recent discoveries supporting the concept that the cooperation between metabolism and epigenetics enables cancer to overcome mounting treatment-induced pressures. We discuss how specific metabolites contribute to cancer cell resilience and provide perspective on how simultaneously targeting these key forces could produce synergistic therapeutic effects to improve treatment outcomes.
Collapse
Affiliation(s)
- Benjamin N Gantner
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Flavio R Palma
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Madhura R Pandkar
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Marcelo J Sakiyama
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Daniel Arango
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gina M DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Marcelo G Bonini
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
14
|
Travis CR, Henriksen HC, Wilkinson JR, Schomburg NK, Treacy JW, Kean KM, Houk KN, Waters ML. WDR5 Binding to Histone Serotonylation Is Driven by an Edge-Face Aromatic Interaction with Unexpected Electrostatic Effects. J Am Chem Soc 2024; 146:27451-27459. [PMID: 39321462 DOI: 10.1021/jacs.4c07277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Histone serotonylation has emerged as a key post-translational modification. WDR5 preferentially binds to serotonylated histone 3 (H3), and this binding event has been associated with tumorigenesis. Herein, we utilize genetic code expansion, structure-activity relationship studies, and computation to study an edge-face aromatic interaction between WDR5 Phe149 and serotonin on H3 that is key to this protein-protein interaction. We find experimentally that this edge-face aromatic interaction is unaffected by modulating the electrostatics of the face component but is weakened by electron-withdrawing substituents on the edge component. Overall, these results elucidate that this interaction is governed by van der Waals forces as well as electrostatics of the edge ring, a result that clarifies discrepancies among previous theoretical models and model system studies of this interaction type. This is the first evaluation of the driving force of an edge-face aromatic interaction at a protein-protein interface and provides a key benchmark for the nature of these understudied interactions that are abundant in the proteome.
Collapse
Affiliation(s)
- Christopher R Travis
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hanne C Henriksen
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jake R Wilkinson
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Noah K Schomburg
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joseph W Treacy
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095-1569, United States
| | - Kelsey M Kean
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095-1569, United States
| | - Marcey L Waters
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
15
|
Zhang N, Wu J, Gao S, Peng H, Li H, Gibson C, Wu S, Zhu J, Zheng Q. pH-Controlled Chemoselective Rapid Azo-Coupling Reaction (CRACR) Enables Global Profiling of Serotonylation Proteome in Cancer Cells. J Proteome Res 2024; 23:4457-4466. [PMID: 39208062 DOI: 10.1021/acs.jproteome.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Serotonylation has been identified as a novel protein posttranslational modification for decades, where an isopeptide bond is formed between the glutamine residue and serotonin through transamination. Transglutaminase 2 (also known as TGM2 or TGase2) was proven to act as the main "writer" enzyme for this PTM, and a number of key regulatory proteins (including small GTPases, fibronectin, fibrinogen, serotonin transporter, and histone H3) have been characterized as the substrates of serotonylation. However, due to the lack of pan-specific antibodies for serotonylated glutamine, the precise enrichment and proteomic profiling of serotonylation still remain challenging. In our previous research, we developed an aryldiazonium probe to specifically label protein serotonylation in a bioorthogonal manner, which depended on a pH-controlled chemoselective rapid azo-coupling reaction. Here, we report the application of a photoactive aryldiazonium-biotin probe for the global profiling of serotonylation proteome in cancer cells. Thus, over 1,000 serotonylated proteins were identified from HCT 116 cells, many of which are highly related to carcinogenesis. Moreover, a number of modification sites of these serotonylated proteins were determined, attributed to the successful application of our chemical proteomic approach. Overall, these findings provided new insights into the significant association between cellular protein serotonylation and cancer development, further suggesting that to target TGM2-mediated monoaminylation may serve as a promising strategy for cancer therapeutics.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jinghua Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shuaixin Gao
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Haidong Peng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Huapeng Li
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Connor Gibson
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sophia Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Columbus Academy, Gahanna, Ohio 43230, United States
| | - Jiangjiang Zhu
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Chen Y, Yan Y, Li Y, Zhang L, Luo T, Zhu X, Qin D, Chen N, Huang W, Chen X, Wang L, Zhu X, Zhang L. Deletion of Tgm2 suppresses BMP-mediated hepatocyte-to-cholangiocyte metaplasia in ductular reaction. Cell Prolif 2024; 57:e13646. [PMID: 38623945 PMCID: PMC11471396 DOI: 10.1111/cpr.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Transglutaminase 2 (Tgm2) plays an essential role in hepatic repair following prolonged toxic injury. During cholestatic liver injury, the intrahepatic cholangiocytes undergo dynamic tissue expansion and remodelling, referred to as ductular reaction (DR), which is crucial for liver regeneration. However, the molecular mechanisms governing the dynamics of active cells in DR are still largely unclear. Here, we generated Tgm2-knockout mice (Tgm2-/-) and Tgm2-CreERT2-Rosa26-mTmG flox/flox (Tgm2CreERT2-R26T/Gf/f) mice and performed a three-dimensional (3D) collagen gel culture of mouse hepatocytes to demonstrate how Tgm2 signalling is involved in DR to remodel intrahepatic cholangiocytes. Our results showed that the deletion of Tgm2 adversely affected the functionality and maturity of the proliferative cholangiocytes in DR, thus leading to more severe cholestasis during DDC-induced liver injury. Additionally, Tgm2 hepatocytes played a crucial role in the regulation of DR through metaplasia. We unveiled that Tgm2 regulated H3K4me3Q5ser via serotonin to promote BMP signalling activation to participate in DR. Besides, we revealed that the activation or inhibition of BMP signalling could promote or suppress the development and maturation of cholangiocytes in DDC-induced DR. Furthermore, our 3D collagen gel culture assay indicated that Tgm2 was vital for the development of cholangiocytes in vitro. Our results uncovered a considerable role of BMP signalling in controlling metaplasia of Tgm2 hepatocytes in DR and revealed the phenotypic plasticity of mature hepatocytes.
Collapse
Affiliation(s)
- Yaqing Chen
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Yi Yan
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Yujing Li
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Liang Zhang
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Tingting Luo
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Xinlong Zhu
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Dan Qin
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Ning Chen
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Wendong Huang
- Department of Diabetes Complications and MetabolismDiabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical CenterDuarteCaliforniaUSA
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General HospitalNephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease ResearchBeijingChina
| | - Liqiang Wang
- Department of Nephrology, First Medical Center of Chinese PLA General HospitalNephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease ResearchBeijingChina
| | - Xianmin Zhu
- Department of Hepatobiliary and Pancreatic SurgeryCancer Hospital of Wuhan University (Hubei Cancer Hospital)WuhanChina
| | - Lisheng Zhang
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
17
|
Ling T, Dai Z, Wang H, Kien TT, Cui R, Yu T, Chen J. Serotonylation in tumor-associated fibroblasts contributes to the tumor-promoting roles of serotonin in colorectal cancer. Cancer Lett 2024; 600:217150. [PMID: 39097134 DOI: 10.1016/j.canlet.2024.217150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Accumulated studies have highlighted the diverse roles of 5-hydroxytryptamine (5-HT), or serotonin, in cancer biology, particularly in colorectal cancer (CRC). While 5-HT primarily exerts its effects through binding to various 5-HT receptors, receptor-independent mechanisms such as serotonylation remain unclear. This study revealed that depleting 5-HT, either through genetic silencing of Tph1 or using a selective TPH1 inhibitor, effectively reduced the growth of CRC tumors. Interestingly, although intrinsic 5-HT synthesis exists in CRC, it is circulating 5-HT that mediates the cancer-promoting function of 5-HT. Blocking the function of 5-HT receptors showed that the oncogenic roles of 5-HT in CRC operate through a mechanism that is separate from its receptor. Instead, serotonylation of histone H3Q5 (H3Q5ser) was found in CRC cells and cancer-associated fibroblasts (CAFs). H3Q5ser triggers a phenotypic switch of CAFs towards an inflammatory-like CAF (iCAF) subtype, which further enhances CRC cell proliferation, invasive characteristics, and macrophage polarization. Knockdown of the 5-HT transporter SLC22A3 or inhibition of TGM2 reduces H3Q5ser levels and reverses the tumor-promoting phenotypes of CAFs in CRC. Collectively, this study sheds light on the serotonylation-dependent mechanisms of 5-HT in CRC progression, offering insights into potential therapeutic strategies targeting the serotonin pathway for CRC treatment.
Collapse
Affiliation(s)
- Tianlong Ling
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhanghan Dai
- Department of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Houming Wang
- Department of General Surgery, Jiading Hospital of Traditional Chinese Medicine, Jiading District, Shanghai, China
| | - Tran Trung Kien
- Oncology Department, University Medical Shing Mark Hospital, 1054 Highway 51, Long Binh Tan Ward, Bien Hoa City, Dong Nai, Viet Nam
| | - Rong Cui
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Tachung Yu
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jianjun Chen
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
18
|
Stewart AF, Fulton SL, Durand-de Cuttoli R, Thompson RE, Chen PJ, Brindley E, Cetin B, Farrelly LA, Futamura R, Claypool S, Bastle RM, Di Salvo G, Peralta C, Molina H, Baljinnyam E, Marro SG, Russo SJ, DeVita RJ, Muir TW, Maze I. Hippocampal γCaMKII dopaminylation promotes synaptic-to-nuclear signaling and memory formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613951. [PMID: 39345578 PMCID: PMC11430047 DOI: 10.1101/2024.09.19.613951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Protein monoaminylation is a class of posttranslational modification (PTM) that contributes to transcription, physiology and behavior. While recent analyses have focused on histones as critical substrates of monoaminylation, the broader repertoire of monoaminylated proteins in brain remains unclear. Here, we report the development/implementation of a chemical probe for the bioorthogonal labeling, enrichment and proteomics-based detection of dopaminylated proteins in brain. We identified 1,557 dopaminylated proteins - many synaptic - including γCaMKII, which mediates Ca2+-dependent cellular signaling and hippocampal-dependent memory. We found that γCaMKII dopaminylation is largely synaptic and mediates synaptic-to-nuclear signaling, neuronal gene expression and intrinsic excitability, and contextual memory. These results indicate a critical role for synaptic dopaminylation in adaptive brain plasticity, and may suggest roles for these phenomena in pathologies associated with altered monoaminergic signaling.
Collapse
Affiliation(s)
- Andrew F. Stewart
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Sasha L. Fulton
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Romain Durand-de Cuttoli
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | | | - Peng-Jen Chen
- Department of Pharmacological Sciences and Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Elizabeth Brindley
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Bulent Cetin
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Lorna A. Farrelly
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Rita Futamura
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Sarah Claypool
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Ryan M. Bastle
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Giuseppina Di Salvo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Christopher Peralta
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Henrik Molina
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Erdene Baljinnyam
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Samuele G. Marro
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Scott J. Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Robert J. DeVita
- Department of Pharmacological Sciences and Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Tom W. Muir
- Department of Chemistry, Princeton, New Jersey 08544, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Pharmacological Sciences and Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
19
|
Lallai V, Lam TT, Garcia-Milian R, Chen YC, Fowler JP, Manca L, Piomelli D, Williams K, Nairn AC, Fowler CD. Proteomic Profile of Circulating Extracellular Vesicles in the Brain after Δ9-Tetrahydrocannabinol Inhalation. Biomolecules 2024; 14:1143. [PMID: 39334909 PMCID: PMC11430348 DOI: 10.3390/biom14091143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Given the increasing use of cannabis in the US, there is an urgent need to better understand the drug's effects on central signaling mechanisms. Extracellular vesicles (EVs) have been identified as intercellular signaling mediators that contain a variety of cargo, including proteins. Here, we examined whether the main psychoactive component in cannabis, Δ9-tetrahydrocannabinol (THC), alters EV protein signaling dynamics in the brain. We first conducted in vitro studies, which found that THC activates signaling in choroid plexus epithelial cells, resulting in transcriptional upregulation of the cannabinoid 1 receptor and immediate early gene c-fos, in addition to the release of EVs containing RNA cargo. Next, male and female rats were examined for the effects of either acute or chronic exposure to aerosolized ('vaped') THC on circulating brain EVs. Cerebrospinal fluid was extracted from the brain, and EVs were isolated and processed with label-free quantitative proteomic analyses via high-resolution tandem mass spectrometry. Interestingly, circulating EV-localized proteins were differentially expressed based on acute or chronic THC exposure in a sex-specific manner. Taken together, these findings reveal that THC acts in the brain to modulate circulating EV signaling, thereby providing a novel understanding of how exogenous factors can regulate intercellular communication in the brain.
Collapse
Affiliation(s)
- Valeria Lallai
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA; (V.L.); (Y.-C.C.); (J.P.F.)
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT 06511, USA; (T.T.L.); (R.G.-M.); (K.W.); (A.C.N.)
| | - TuKiet T. Lam
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT 06511, USA; (T.T.L.); (R.G.-M.); (K.W.); (A.C.N.)
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06511, USA
| | - Rolando Garcia-Milian
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT 06511, USA; (T.T.L.); (R.G.-M.); (K.W.); (A.C.N.)
- Bioinformatics Support Hub, Harvey Cushing/John Whitney Medical Library, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yen-Chu Chen
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA; (V.L.); (Y.-C.C.); (J.P.F.)
| | - James P. Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA; (V.L.); (Y.-C.C.); (J.P.F.)
| | - Letizia Manca
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA; (V.L.); (Y.-C.C.); (J.P.F.)
| | - Daniele Piomelli
- Department and Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA;
| | - Kenneth Williams
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT 06511, USA; (T.T.L.); (R.G.-M.); (K.W.); (A.C.N.)
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Angus C. Nairn
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT 06511, USA; (T.T.L.); (R.G.-M.); (K.W.); (A.C.N.)
- Department of Psychiatry, Yale University, New Haven, CT 06511, USA
| | - Christie D. Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA; (V.L.); (Y.-C.C.); (J.P.F.)
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT 06511, USA; (T.T.L.); (R.G.-M.); (K.W.); (A.C.N.)
| |
Collapse
|
20
|
Inserra A, Campanale A, Rezai T, Romualdi P, Rubino T. Epigenetic mechanisms of rapid-acting antidepressants. Transl Psychiatry 2024; 14:359. [PMID: 39231927 PMCID: PMC11375021 DOI: 10.1038/s41398-024-03055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Rapid-acting antidepressants (RAADs), including dissociative anesthetics, psychedelics, and empathogens, elicit rapid and sustained therapeutic improvements in psychiatric disorders by purportedly modulating neuroplasticity, neurotransmission, and immunity. These outcomes may be mediated by, or result in, an acute and/or sustained entrainment of epigenetic processes, which remodel chromatin structure and alter DNA accessibility to regulate gene expression. METHODS In this perspective, we present an overview of the known mechanisms, knowledge gaps, and future directions surrounding the epigenetic effects of RAADs, with a focus on the regulation of stress-responsive DNA and brain regions, and on the comparison with conventional antidepressants. MAIN BODY Preliminary correlative evidence indicates that administration of RAADs is accompanied by epigenetic effects which are similar to those elicited by conventional antidepressants. These include changes in DNA methylation, post-translational modifications of histones, and differential regulation of non-coding RNAs in stress-responsive chromatin areas involved in neurotrophism, neurotransmission, and immunomodulation, in stress-responsive brain regions. Whether these epigenetic changes causally contribute to the therapeutic effects of RAADs, are a consequence thereof, or are unrelated, remains unknown. Moreover, the potential cell type-specificity and mechanisms involved are yet to be fully elucidated. Candidate mechanisms include neuronal activity- and serotonin and Tropomyosine Receptor Kinase B (TRKB) signaling-mediated epigenetic changes, and direct interaction with DNA, histones, or chromatin remodeling complexes. CONCLUSION Correlative evidence suggests that epigenetic changes induced by RAADs accompany therapeutic and side effects, although causation, mechanisms, and cell type-specificity remain largely unknown. Addressing these research gaps may lead to the development of novel neuroepigenetics-based precision therapeutics.
Collapse
Affiliation(s)
- Antonio Inserra
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Behavioral Neuroscience Laboratory, University of South Santa Catarina (UNISUL), Tubarão, Brazil., Tubarão, Brazil.
| | | | - Tamim Rezai
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Varese, Italy
| |
Collapse
|
21
|
Gantner BN, Palma FR, Kayzuka C, Lacchini R, Foltz DR, Backman V, Kelleher N, Shilatifard A, Bonini MG. Histone oxidation as a new mechanism of metabolic control over gene expression. Trends Genet 2024; 40:739-746. [PMID: 38910033 PMCID: PMC11387142 DOI: 10.1016/j.tig.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
The emergence of aerobic respiration created unprecedented bioenergetic advantages, while imposing the need to protect critical genetic information from reactive byproducts of oxidative metabolism (i.e., reactive oxygen species, ROS). The evolution of histone proteins fulfilled the need to shield DNA from these potentially damaging toxins, while providing the means to compact and structure massive eukaryotic genomes. To date, several metabolism-linked histone post-translational modifications (PTMs) have been shown to regulate chromatin structure and gene expression. However, whether and how PTMs enacted by metabolically produced ROS regulate adaptive chromatin remodeling remain relatively unexplored. Here, we review novel mechanistic insights into the interactions of ROS with histones and their consequences for the control of gene expression regulation, cellular plasticity, and behavior.
Collapse
Affiliation(s)
- Benjamin N Gantner
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Flavio R Palma
- Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cezar Kayzuka
- Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil; Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Sao Paulo, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Sao Paulo, Brazil
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vadim Backman
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Bioengineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| | - Neil Kelleher
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Chemistry of Life Processes Institute, Northwestern University, Chicago, IL, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marcelo G Bonini
- Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
22
|
Lin X, He K, Gu Z, Zhao X. Emerging chemophysiological diversity of gut microbiota metabolites. Trends Pharmacol Sci 2024; 45:824-838. [PMID: 39129061 DOI: 10.1016/j.tips.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
Human physiology is profoundly influenced by the gut microbiota, which generates a wide array of metabolites. These microbiota-derived compounds serve as signaling molecules, interacting with various cellular targets in the gastrointestinal tract and distant organs, thereby impacting our immune, metabolic, and neurobehavioral systems. Recent advancements have unveiled unique physiological functions of diverse metabolites derived from tryptophan (Trp) and bile acids (BAs). This review highlights the emerging chemophysiological diversity of these metabolites and discusses the role of chemical and biological tools in analyzing and therapeutically manipulating microbial metabolism and host targets, with the aim of bridging the chemical diversity with physiological complexity in host-microbe molecular interactions.
Collapse
Affiliation(s)
- Xiaorong Lin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Kaixin He
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhen Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, Zhejiang, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, Zhejiang, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Xiaohui Zhao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
23
|
Jing JQ, Jia SJ, Yang CJ. Physical activity promotes brain development through serotonin during early childhood. Neuroscience 2024; 554:34-42. [PMID: 39004411 DOI: 10.1016/j.neuroscience.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Early childhood serves as a critical period for neural development and skill acquisition when children are extremely susceptible to the external environment and experience. As a crucial experiential stimulus, physical activity is believed to produce a series of positive effects on brain development, such as cognitive function, social-emotional abilities, and psychological well-being. The World Health Organization recommends that children engage in sufficient daily physical activity, which has already been strongly advocated in the practice of preschool education. However, the mechanisms by which physical activity promotes brain development are still unclear. The role of neurotransmitters, especially serotonin, in promoting brain development through physical activity has received increasing attention. Physical activity has been shown to stimulate the secretion of serotonin by increasing the bioavailability of free tryptophan and enriching the diversity of gut microbiota. Due to its important role in modulating neuronal proliferation, differentiation, synaptic morphogenesis, and synaptic transmission, serotonin can regulate children's explicit cognitive and social interaction behavior in the early stages of life. Therefore, we hypothesized that serotonin emerges as a pivotal transmitter that mediates the relationship between physical activity and brain development during early childhood. Further systematic reviews and meta-analyses are needed to specifically explore whether the type, intensity, dosage, duration, and degree of voluntariness of PA may affect the role of serotonin in the relationship between physical activity and brain function. This review not only helps us understand the impact of exercise on development but also provides a solid theoretical basis for increasing physical activity during early childhood.
Collapse
Affiliation(s)
- Jia-Qi Jing
- Faculty of Education, East China Normal University, Shanghai, China
| | - Si-Jia Jia
- Faculty of Education, East China Normal University, Shanghai, China
| | - Chang-Jiang Yang
- Faculty of Education, East China Normal University, Shanghai, China.
| |
Collapse
|
24
|
Li H, Wu J, Zhang N, Zheng Q. Transglutaminase 2-mediated histone monoaminylation and its role in cancer. Biosci Rep 2024; 44:BSR20240493. [PMID: 39115570 PMCID: PMC11345673 DOI: 10.1042/bsr20240493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024] Open
Abstract
Transglutaminase 2 (TGM2) has been known as a well-characterized factor regulating the progression of multiple types of cancer, due to its multifunctional activities and the ubiquitous signaling pathways it is involved in. As a member of the transglutaminase family, TGM2 catalyzes protein post-translational modifications (PTMs), including monoaminylation, amide hydrolysis, cross-linking, etc., through the transamidation of variant glutamine-containing protein substrates. Recent discoveries revealed histone as an important category of TGM2 substrates, thus identifying histone monoaminylation as an emerging epigenetic mark, which is highly enriched in cancer cells and possesses significant regulatory functions of gene transcription. In this review, we will summarize recent advances in TGM2-mediated histone monoaminylation as well as its role in cancer and discuss the key research methodologies to better understand this unique epigenetic mark, thereby shedding light on the therapeutic potential of TGM2 as a druggable target in cancer treatment.
Collapse
Affiliation(s)
- Huapeng Li
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Jinghua Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Qingfei Zheng
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, IN, U.S.A
| |
Collapse
|
25
|
Romero-Reyes J, Vázquez-Martínez ER, Silva CC, Molina-Hernández A, Díaz NF, Camacho-Arroyo I. Navigating glioblastoma complexity: the interplay of neurotransmitters and chromatin. Mol Biol Rep 2024; 51:912. [PMID: 39153092 PMCID: PMC11330389 DOI: 10.1007/s11033-024-09853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Glioblastoma is the most aggressive brain cancer with an unfavorable prognosis for patient survival. Glioma stem cells, a subpopulation of cancer cells, drive tumor initiation, self-renewal, and resistance to therapy and, together with the microenvironment, play a crucial role in glioblastoma maintenance and progression. Neurotransmitters such as noradrenaline, dopamine, and serotonin have contrasting effects on glioblastoma development, stimulating or inhibiting its progression depending on the cellular context and through their action on glioma stem cells, perhaps changing the epigenetic landscape. Recent studies have revealed that serotonin and dopamine induce chromatin modifications related to transcriptional plasticity in the mammalian brain and possibly in glioblastoma; however, this topic still needs to be explored because of its potential implications for glioblastoma treatment. Also, it is essential to consider that neurotransmitters' effects depend on the tumor's microenvironment since it can significantly influence the response and behavior of cancer cells. This review examines the possible role of neurotransmitters as regulators of glioblastoma development, focusing on their impact on the chromatin of glioma stem cells.
Collapse
Affiliation(s)
- Jessica Romero-Reyes
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México
| | - Carlos-Camilo Silva
- Chronobiology of Reproduction Research Lab. Biology of Reproduction Research Unit, Carrera de Biología, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City, México
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Mexico City, México
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Mexico City, México.
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México.
| |
Collapse
|
26
|
Chen HC, He P, McDonald M, Williamson MR, Varadharajan S, Lozzi B, Woo J, Choi DJ, Sardar D, Huang-Hobbs E, Sun H, Ippagunta SM, Jain A, Rao G, Merchant TE, Ellison DW, Noebels JL, Bertrand KC, Mack SC, Deneen B. Histone serotonylation regulates ependymoma tumorigenesis. Nature 2024; 632:903-910. [PMID: 39085609 DOI: 10.1038/s41586-024-07751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
Bidirectional communication between tumours and neurons has emerged as a key facet of the tumour microenvironment that drives malignancy1,2. Another hallmark feature of cancer is epigenomic dysregulation, in which alterations in gene expression influence cell states and interactions with the tumour microenvironment3. Ependymoma (EPN) is a paediatric brain tumour that relies on epigenomic remodelling to engender malignancy4,5; however, how these epigenetic mechanisms intersect with extrinsic neuronal signalling during EPN tumour progression is unknown. Here we show that the activity of serotonergic neurons regulates EPN tumorigenesis, and that serotonin itself also serves as an activating modification on histones. We found that inhibiting histone serotonylation blocks EPN tumorigenesis and regulates the expression of a core set of developmental transcription factors. High-throughput, in vivo screening of these transcription factors revealed that ETV5 promotes EPN tumorigenesis and functions by enhancing repressive chromatin states. Neuropeptide Y (NPY) is one of the genes repressed by ETV5, and its overexpression suppresses EPN tumour progression and tumour-associated network hyperactivity through synaptic remodelling. Collectively, this study identifies histone serotonylation as a key driver of EPN tumorigenesis, and also reveals how neuronal signalling, neuro-epigenomics and developmental programs are intertwined to drive malignancy in brain cancer.
Collapse
Affiliation(s)
- Hsiao-Chi Chen
- Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Peihao He
- Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Malcolm McDonald
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Program in Development, Disease, Models and Therapeutics, Baylor College of Medicine, Houston, TX, USA
| | - Michael R Williamson
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Srinidhi Varadharajan
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, USA
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Dong-Joo Choi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Debosmita Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Emmet Huang-Hobbs
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Hua Sun
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Siri M Ippagunta
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Ganesh Rao
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffrey L Noebels
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Kelsey C Bertrand
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen C Mack
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA.
- Neurobiology and Brain Tumor Program, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Benjamin Deneen
- Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, USA.
- Program in Development, Disease, Models and Therapeutics, Baylor College of Medicine, Houston, TX, USA.
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
27
|
Bernasocchi T, Mostoslavsky R. Subcellular one carbon metabolism in cancer, aging and epigenetics. FRONTIERS IN EPIGENETICS AND EPIGENOMICS 2024; 2:1451971. [PMID: 39239102 PMCID: PMC11375787 DOI: 10.3389/freae.2024.1451971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The crosstalk between metabolism and epigenetics is an emerging field that is gaining importance in different areas such as cancer and aging, where changes in metabolism significantly impacts the cellular epigenome, in turn dictating changes in chromatin as an adaptive mechanism to bring back metabolic homeostasis. A key metabolic pathway influencing an organism's epigenetic state is one-carbon metabolism (OCM), which includes the folate and methionine cycles. Together, these cycles generate S-adenosylmethionine (SAM), the universal methyl donor essential for DNA and histone methylation. SAM serves as the sole methyl group donor for DNA and histone methyltransferases, making it a crucial metabolite for chromatin modifications. In this review, we will discuss how SAM and its byproduct, S-adenosylhomocysteine (SAH), along with the enzymes and cofactors involved in OCM, may function in the different cellular compartments, particularly in the nucleus, to directly regulate the epigenome in aging and cancer.
Collapse
Affiliation(s)
- Tiziano Bernasocchi
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, United States
- The Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Raul Mostoslavsky
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, United States
- The Broad Institute of Harvard and MIT, Cambridge, MA, United States
| |
Collapse
|
28
|
Sewa AS, Besser HA, Mathews II, Khosla C. Structural and mechanistic analysis of Ca 2+-dependent regulation of transglutaminase 2 activity using a Ca 2+-bound intermediate state. Proc Natl Acad Sci U S A 2024; 121:e2407066121. [PMID: 38959038 PMCID: PMC11252922 DOI: 10.1073/pnas.2407066121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Mammalian transglutaminases, a family of Ca2+-dependent proteins, are implicated in a variety of diseases. For example, celiac disease (CeD) is an autoimmune disorder whose pathogenesis requires transglutaminase 2 (TG2) to deamidate select glutamine residues in diet-derived gluten peptides. Deamidation involves the formation of transient γ-glutamyl thioester intermediates. Recent studies have revealed that in addition to the deamidated gluten peptides themselves, their corresponding thioester intermediates are also pathogenically relevant. A mechanistic understanding of this relevance is hindered by the absence of any structure of Ca2+-bound TG2. We report the X-ray crystallographic structure of human TG2 bound to an inhibitory gluten peptidomimetic and two Ca2+ ions in sites previously designated as S1 and S3. Together with additional structure-guided experiments, this structure provides a mechanistic explanation for how S1 regulates formation of an inhibitory disulfide bond in TG2, while also establishing that S3 is essential for γ-glutamyl thioester formation. Furthermore, our crystallographic findings and associated analyses have revealed that i) two interacting residues, H305 and E363, play a critical role in resolving the thioester intermediate into an isopeptide bond (transamidation) but not in thioester hydrolysis (deamidation); and ii) residues N333 and K176 stabilize preferred TG2 substrates and inhibitors via hydrogen bonding to nonreactive backbone atoms. Overall, the intermediate-state conformer of TG2 reported here represents a superior model to previously characterized conformers for both transition states of the TG2-catalyzed reaction.
Collapse
Affiliation(s)
- Agnele S. Sewa
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - Harrison A. Besser
- Department of Chemistry, Stanford University, Stanford, CA94305
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA94305
| | - Irimpan I. Mathews
- Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, CA94025
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA94305
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Sarafan Chemistry, Engineering Medicine and Human Health, Stanford University, Stanford, CA94305
| |
Collapse
|
29
|
Liang W, Xu F, Li L, Peng C, Sun H, Qiu J, Sun J. Epigenetic control of skeletal muscle atrophy. Cell Mol Biol Lett 2024; 29:99. [PMID: 38978023 PMCID: PMC11229277 DOI: 10.1186/s11658-024-00618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Skeletal muscular atrophy is a complex disease involving a large number of gene expression regulatory networks and various biological processes. Despite extensive research on this topic, its underlying mechanisms remain elusive, and effective therapeutic approaches are yet to be established. Recent studies have shown that epigenetics play an important role in regulating skeletal muscle atrophy, influencing the expression of numerous genes associated with this condition through the addition or removal of certain chemical modifications at the molecular level. This review article comprehensively summarizes the different types of modifications to DNA, histones, RNA, and their known regulators. We also discuss how epigenetic modifications change during the process of skeletal muscle atrophy, the molecular mechanisms by which epigenetic regulatory proteins control skeletal muscle atrophy, and assess their translational potential. The role of epigenetics on muscle stem cells is also highlighted. In addition, we propose that alternative splicing interacts with epigenetic mechanisms to regulate skeletal muscle mass, offering a novel perspective that enhances our understanding of epigenetic inheritance's role and the regulatory network governing skeletal muscle atrophy. Collectively, advancements in the understanding of epigenetic mechanisms provide invaluable insights into the study of skeletal muscle atrophy. Moreover, this knowledge paves the way for identifying new avenues for the development of more effective therapeutic strategies and pharmaceutical interventions.
Collapse
Affiliation(s)
- Wenpeng Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, China
| | - Li Li
- Nantong Center for Disease Control and Prevention, Medical School of Nantong University, Nantong, 226001, China
| | - Chunlei Peng
- Department of Medical Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, 226000, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China
| | - Jiaying Qiu
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China.
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China.
| |
Collapse
|
30
|
Zhang N, Wu J, Zheng Q. Chemical proteomics approaches for protein post-translational modification studies. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141017. [PMID: 38641087 DOI: 10.1016/j.bbapap.2024.141017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
The diversity and dynamics of proteins play essential roles in maintaining the basic constructions and functions of cells. The abundance of functional proteins is regulated by the transcription and translation processes, while the alternative splicing enables the same gene to generate distinct protein isoforms of different lengths. Beyond the transcriptional and translational regulations, post-translational modifications (PTMs) are able to further expand the diversity and functional scope of proteins. PTMs have been shown to make significant changes in the surface charges, structures, activation states, and interactome of proteins. Due to the functional complexity, highly dynamic nature, and low presence percentage, the study of protein PTMs remains challenging. Here we summarize and discuss the major chemical biology tools and chemical proteomics approaches to enrich and investigate the protein PTM of interest.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Jinghua Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States; Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
31
|
Chen L, Huang S, Wu X, He W, Song M. Serotonin signalling in cancer: Emerging mechanisms and therapeutic opportunities. Clin Transl Med 2024; 14:e1750. [PMID: 38943041 PMCID: PMC11213692 DOI: 10.1002/ctm2.1750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine) is a multifunctional bioamine serving as a neurotransmitter, peripheral hormone and mitogen in the vertebrate system. It has pleiotropic activities in central nervous system and gastrointestinal function via an orchestrated action of serotonergic elements, particularly serotonin receptor-mediated signalling cascades. The mitogenic properties of serotonin have garnered recognition for years and have been exploited for repurposing serotonergic-targeted drugs in cancer therapy. However, emerging conflicting findings necessitate a more comprehensive elucidation of serotonin's role in cancer pathogenesis. MAIN BODY AND CONCLUSION Here, we provide an overview of the biosynthesis, metabolism and action modes of serotonin. We summarise our current knowledge regarding the effects of the peripheral serotonergic system on tumourigenesis, with a specific emphasis on its immunomodulatory activities in human cancers. We also discuss the dual roles of serotonin in tumour pathogenesis and elucidate the potential of serotonergic drugs, some of which display favourable safety profiles and impressive efficacy in clinical trials, as a promising avenue in cancer treatment. KEY POINTS Primary synthesis and metabolic routes of peripheral 5-hydroxytryptamine in the gastrointestinal tract. Advanced research has established a strong association between the serotonergic components and carcinogenic mechanisms. The interplay between serotonergic signalling and the immune system within the tumour microenvironment orchestrates antitumour immune responses. Serotonergic-targeted drugs offer valuable clinical options for cancer therapy.
Collapse
Affiliation(s)
- Lulu Chen
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| | - Shuting Huang
- School of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| | - Xiaoxue Wu
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| | - Weiling He
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
- Department of Gastrointestinal SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenChina
| | - Mei Song
- Institute of Precision MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
32
|
Al-Kachak A, Di Salvo G, Fulton SL, Chan JC, Farrelly LA, Lepack AE, Bastle RM, Kong L, Cathomas F, Newman EL, Menard C, Ramakrishnan A, Safovich P, Lyu Y, Covington HE, Shen L, Gleason K, Tamminga CA, Russo SJ, Maze I. Histone serotonylation in dorsal raphe nucleus contributes to stress- and antidepressant-mediated gene expression and behavior. Nat Commun 2024; 15:5042. [PMID: 38871707 PMCID: PMC11176395 DOI: 10.1038/s41467-024-49336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
Mood disorders are an enigmatic class of debilitating illnesses that affect millions of individuals worldwide. While chronic stress clearly increases incidence levels of mood disorders, including major depressive disorder (MDD), stress-mediated disruptions in brain function that precipitate these illnesses remain largely elusive. Serotonin-associated antidepressants (ADs) remain the first line of therapy for many with depressive symptoms, yet low remission rates and delays between treatment and symptomatic alleviation have prompted skepticism regarding direct roles for serotonin in the precipitation and treatment of affective disorders. Our group recently demonstrated that serotonin epigenetically modifies histone proteins (H3K4me3Q5ser) to regulate transcriptional permissiveness in brain. However, this non-canonical phenomenon has not yet been explored following stress and/or AD exposures. Here, we employed a combination of genome-wide and biochemical analyses in dorsal raphe nucleus (DRN) of male and female mice exposed to chronic social defeat stress, as well as in DRN of human MDD patients, to examine the impact of stress exposures/MDD diagnosis on H3K4me3Q5ser dynamics, as well as associations between the mark and depression-related gene expression. We additionally assessed stress-induced/MDD-associated regulation of H3K4me3Q5ser following AD exposures, and employed viral-mediated gene therapy in mice to reduce H3K4me3Q5ser levels in DRN and examine its impact on stress-associated gene expression and behavior. We found that H3K4me3Q5ser plays important roles in stress-mediated transcriptional plasticity. Chronically stressed mice displayed dysregulated H3K4me3Q5ser dynamics in DRN, with both AD- and viral-mediated disruption of these dynamics proving sufficient to attenuate stress-mediated gene expression and behavior. Corresponding patterns of H3K4me3Q5ser regulation were observed in MDD subjects on vs. off ADs at their time of death. These findings thus establish a neurotransmission-independent role for serotonin in stress-/AD-associated transcriptional and behavioral plasticity, observations of which may be of clinical relevance to human MDD and its treatment.
Collapse
Affiliation(s)
- Amni Al-Kachak
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Giuseppina Di Salvo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Sasha L Fulton
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jennifer C Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lorna A Farrelly
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ashley E Lepack
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ryan M Bastle
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lingchun Kong
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Flurin Cathomas
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emily L Newman
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Belmont, MA, 02478, USA
| | - Caroline Menard
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Polina Safovich
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yang Lyu
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Herbert E Covington
- Department of Psychology, Empire State College, State University of New York, Saratoga Springs, NY, 12866, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kelly Gleason
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX, 75390, USA
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX, 75390, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
33
|
Singh VP, Hirose S, Takemoto M, Farrag AMAS, Sato SI, Honjo T, Chamoto K, Uesugi M. Chemoproteomic Identification of Spermidine-Binding Proteins and Antitumor-Immunity Activators. J Am Chem Soc 2024. [PMID: 38848460 DOI: 10.1021/jacs.3c14615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Cancer immune therapies, particularly programmed cell death protein 1 (PD-1) blockade immunotherapy, falter in aged individuals due to compromised T-cell immunity. Spermidine, a biogenic polyamine that declines along with aging, shows promise in restoring antitumor immunity by enhancing mitochondrial fatty acid oxidation (FAO). Herein, we report a spermidine-based chemoproteomic probe (probe 2) that enables profiling of spermidine-binding proteins and screening for small-molecule enhancers of mitochondrial FAO. Chemoproteomic profiling by the probe revealed 140 proteins engaged in cellular interaction with spermidine, with a significant majority being mitochondrial proteins. Hydroxyl coenzyme A (CoA) dehydrogenase subunits α (HADHA) and other lipid metabolism-linked proteins are among the mitochondrial proteins that have attracted considerable interest. Screening spermidine analogs with the probe led to the discovery of compound 13, which interacts with these lipid metabolism-linked proteins and activates HADHA. This simple and biostable synthetic compound we named "spermimic" mirrors spermidine's ability to enhance mitochondrial bioenergetics and displays similar effectiveness in augmenting PD-1 blockade therapy in mice. This study lays the foundation for developing small-molecule activators of antitumor immunity, offering potential in combination cancer immunotherapy.
Collapse
Affiliation(s)
- Vaibhav Pal Singh
- Division of Biochemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Shuhei Hirose
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Misao Takemoto
- Division of Biochemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Asmaa M A S Farrag
- Division of Biochemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Shin-Ichi Sato
- Division of Biochemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tasuku Honjo
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Kenji Chamoto
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
- Department of Immuno-Oncology PDT, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Motonari Uesugi
- Division of Biochemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Kyoto 606-8372, Japan
| |
Collapse
|
34
|
Zhang N, Wu J, Hossain F, Peng H, Li H, Gibson C, Chen M, Zhang H, Gao S, Zheng X, Wang Y, Zhu J, Wang JJ, Maze I, Zheng Q. Bioorthogonal Labeling and Enrichment of Histone Monoaminylation Reveal Its Accumulation and Regulatory Function in Cancer Cell Chromatin. J Am Chem Soc 2024. [PMID: 38848464 DOI: 10.1021/jacs.4c04249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Histone monoaminylation (i.e., serotonylation and dopaminylation) is an emerging category of epigenetic mark occurring on the fifth glutamine (Q5) residue of H3 N-terminal tail, which plays significant roles in gene transcription. Current analysis of histone monoaminylation is mainly based on site-specific antibodies and mass spectrometry, which either lacks high resolution or is time-consuming. In this study, we report the development of chemical probes for bioorthogonal labeling and enrichment of histone serotonylation and dopaminylation. These probes were successfully applied for the monoaminylation analysis of in vitro biochemical assays, cells, and tissue samples. The enrichment of monoaminylated histones by the probes further confirmed the crosstalk between H3Q5 monoaminylation and H3K4 methylation. Finally, combining the ex vivo and in vitro analyses based on the developed probes, we have shown that both histone serotonylation and dopaminylation are highly enriched in tumor tissues that overexpress transglutaminase 2 (TGM2) and regulate the three-dimensional architecture of cellular chromatin.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jinghua Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Farzana Hossain
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Haidong Peng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Huapeng Li
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Connor Gibson
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Min Chen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Huan Zhang
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shuaixin Gao
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xinru Zheng
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yongdong Wang
- Cerno Bioscience, Las Vegas, Nevada 89144, United States
| | - Jiangjiang Zhu
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jing J Wang
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
35
|
Kawaf RR, Ramadan WS, El-Awady R. Deciphering the interplay of histone post-translational modifications in cancer: Co-targeting histone modulators for precision therapy. Life Sci 2024; 346:122639. [PMID: 38615747 DOI: 10.1016/j.lfs.2024.122639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Chromatin undergoes dynamic regulation through reversible histone post-translational modifications (PTMs), orchestrated by "writers," "erasers," and "readers" enzymes. Dysregulation of these histone modulators is well implicated in shaping the cancer epigenome and providing avenues for precision therapies. The approval of six drugs for cancer therapy targeting histone modulators, along with the ongoing clinical trials of numerous candidates, represents a significant advancement in the field of precision medicine. Recently, it became apparent that histone PTMs act together in a coordinated manner to control gene expression. The intricate crosstalk of histone PTMs has been reported to be dysregulated in cancer, thus emerging as a critical factor in the complex landscape of cancer development. This formed the foundation of the swift emergence of co-targeting different histone modulators as a new strategy in cancer therapy. This review dissects how histone PTMs, encompassing acetylation, phosphorylation, methylation, SUMOylation and ubiquitination, collaboratively influence the chromatin states and impact cellular processes. Furthermore, we explore the significance of histone modification crosstalk in cancer and discuss the potential of targeting histone modification crosstalk in cancer management. Moreover, we underscore the significant strides made in developing dual epigenetic inhibitors, which hold promise as emerging candidates for effective cancer therapy.
Collapse
Affiliation(s)
- Rawan R Kawaf
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Raafat El-Awady
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
36
|
Chen YZ, Zhu XM, Lv P, Hou XK, Pan Y, Li A, Du Z, Xuan JF, Guo X, Xing JX, Liu K, Yao J. Association of histone modification with the development of schizophrenia. Biomed Pharmacother 2024; 175:116747. [PMID: 38744217 DOI: 10.1016/j.biopha.2024.116747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Schizophrenia, influenced by genetic and environmental factors, may involve epigenetic alterations, notably histone modifications, in its pathogenesis. This review summarizes various histone modifications including acetylation, methylation, phosphorylation, ubiquitination, serotonylation, lactylation, palmitoylation, and dopaminylation, and their implications in schizophrenia. Current research predominantly focuses on histone acetylation and methylation, though other modifications also play significant roles. These modifications are crucial in regulating transcription through chromatin remodeling, which is vital for understanding schizophrenia's development. For instance, histone acetylation enhances transcriptional efficiency by loosening chromatin, while increased histone methyltransferase activity on H3K9 and altered histone phosphorylation, which reduces DNA affinity and destabilizes chromatin structure, are significant markers of schizophrenia.
Collapse
Affiliation(s)
- Yun-Zhou Chen
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Xiu-Mei Zhu
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Peng Lv
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Xi-Kai Hou
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Ying Pan
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Ang Li
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Zhe Du
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Jin-Feng Xuan
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Xiaochong Guo
- Laboratory Animal Center, China Medical University, PR China
| | - Jia-Xin Xing
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China.
| | - Kun Liu
- Key Laboratory of Health Ministry in Congenital Malformation, Shengjing Hospital of China Medical University, PR China.
| | - Jun Yao
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China.
| |
Collapse
|
37
|
Kondo T, Okada Y, Shizuya S, Yamaguchi N, Hatakeyama S, Maruyama K. Neuroimmune modulation by tryptophan derivatives in neurological and inflammatory disorders. Eur J Cell Biol 2024; 103:151418. [PMID: 38729083 DOI: 10.1016/j.ejcb.2024.151418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
The nervous and immune systems are highly developed, and each performs specialized physiological functions. However, they work together, and their dysfunction is associated with various diseases. Specialized molecules, such as neurotransmitters, cytokines, and more general metabolites, are essential for the appropriate regulation of both systems. Tryptophan, an essential amino acid, is converted into functional molecules such as serotonin and kynurenine, both of which play important roles in the nervous and immune systems. The role of kynurenine metabolites in neurodegenerative and psychiatric diseases has recently received particular attention. Recently, we found that hyperactivity of the kynurenine pathway is a critical risk factor for septic shock. In this review, we first outline neuroimmune interactions and tryptophan derivatives and then summarized the changes in tryptophan metabolism in neurological disorders. Finally, we discuss the potential of tryptophan derivatives as therapeutic targets for neuroimmune disorders.
Collapse
Affiliation(s)
- Takeshi Kondo
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Saika Shizuya
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Naoko Yamaguchi
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Kenta Maruyama
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan.
| |
Collapse
|
38
|
Bell CG. Epigenomic insights into common human disease pathology. Cell Mol Life Sci 2024; 81:178. [PMID: 38602535 PMCID: PMC11008083 DOI: 10.1007/s00018-024-05206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The epigenome-the chemical modifications and chromatin-related packaging of the genome-enables the same genetic template to be activated or repressed in different cellular settings. This multi-layered mechanism facilitates cell-type specific function by setting the local sequence and 3D interactive activity level. Gene transcription is further modulated through the interplay with transcription factors and co-regulators. The human body requires this epigenomic apparatus to be precisely installed throughout development and then adequately maintained during the lifespan. The causal role of the epigenome in human pathology, beyond imprinting disorders and specific tumour suppressor genes, was further brought into the spotlight by large-scale sequencing projects identifying that mutations in epigenomic machinery genes could be critical drivers in both cancer and developmental disorders. Abrogation of this cellular mechanism is providing new molecular insights into pathogenesis. However, deciphering the full breadth and implications of these epigenomic changes remains challenging. Knowledge is accruing regarding disease mechanisms and clinical biomarkers, through pathogenically relevant and surrogate tissue analyses, respectively. Advances include consortia generated cell-type specific reference epigenomes, high-throughput DNA methylome association studies, as well as insights into ageing-related diseases from biological 'clocks' constructed by machine learning algorithms. Also, 3rd-generation sequencing is beginning to disentangle the complexity of genetic and DNA modification haplotypes. Cell-free DNA methylation as a cancer biomarker has clear clinical utility and further potential to assess organ damage across many disorders. Finally, molecular understanding of disease aetiology brings with it the opportunity for exact therapeutic alteration of the epigenome through CRISPR-activation or inhibition.
Collapse
Affiliation(s)
- Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
39
|
Reddy AP, Rawat P, Rohr N, Alvir R, Bisht J, Bushra MA, Luong J, Reddy AP. Role of Serotonylation and SERT Posttranslational Modifications in Alzheimer's Disease Pathogenesis. Aging Dis 2024:AD.2024.0328. [PMID: 39254383 DOI: 10.14336/ad.2024.0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) is implicated mainly in Alzheimer's disease (AD) and reported to be responsible for several processes and roles in the human body, such as regulating sleep, food intake, sexual behavior, anxiety, and drug abuse. It is synthesized from the amino acid tryptophan. Serotonin also functions as a signal between neurons to mature, survive, and differentiate. It plays a crucial role in neuronal plasticity, including cell migration and cell contact formation. Various psychiatric disorders, such as depression, schizophrenia, autism, and Alzheimer's disease, have been linked to an increase in serotonin-dependent signaling during the development of the nervous system. Recent studies have found 5-HT and other monoamines embedded in the nuclei of various cells, including immune cells, the peritoneal mast, and the adrenal medulla. Evidence suggests these monoamines to be involved in widespread intracellular regulation by posttranslational modifications (PTMs) of proteins. Serotonylation is the calcium-dependent process in which 5-HT forms a long-lasting covalent bond to small cytoplasmic G-proteins by endogenous transglutaminase 2 (TGM2). Serotonylation plays a role in various biological processes. The purpose of our article is to summarize historical developments and recent advances in serotonin research and serotonylation in depression, aging, AD, and other age-related neurological diseases. We also discussed several of the latest developments with Serotonin, including biological functions, pathophysiological implications and therapeutic strategies to treat patients with depression, dementia, and other age-related conditions.
Collapse
Affiliation(s)
- Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Priyanka Rawat
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Nicholas Rohr
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Razelle Alvir
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jasbir Bisht
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Mst Anika Bushra
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jennifer Luong
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Aananya P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
40
|
Zong Y, Weiss N, Wang K, Pagano AE, Heissel S, Perveen S, Huang J. Development of Complementary Photo-arginine/lysine to Promote Discovery of Arg/Lys hPTMs Interactomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307526. [PMID: 38298064 PMCID: PMC11005723 DOI: 10.1002/advs.202307526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/03/2023] [Indexed: 02/02/2024]
Abstract
Arginine and lysine, frequently appearing as a pair on histones, have been proven to carry diverse modifications and execute various epigenetic regulatory functions. However, the most context-specific and transient effectors of these marks, while significant, have evaded study as detection methods have thus far not reached a standard to capture these ephemeral events. Herein, a pair of complementary photo-arginine/δ-photo-lysine (R-dz/K-dz) probes is developed and involve these into histone peptide, nucleosome, and chromatin substrates to capture and explore the interactomes of Arg and Lys hPTMs. By means of these developed tools, this study identifies that H3R2me2a can recruit MutS protein homolog 6 (MSH6), otherwise repelDouble PHD fingers 2 (DPF2), Retinoblastoma binding protein 4/7 (RBBP4/7). And it is disclosed that H3R2me2a inhibits the chromatin remodeling activity of the cBAF complex by blocking the interaction between DPF2 (one component of cBAF) and the nucleosome. In addition, the novel pairs of H4K5 PTMs and respective readers are highlighted, namely H4K5me-Lethal(3)malignant brain tumor-like protein 2 (L3MBTL2), H4K5me2-L3MBTL2, and H4K5acK8ac-YEATS domain-containing protein 4 (YEATS4). These powerful tools pave the way for future investigation of related epigenetic mechanisms including but not limited to hPTMs.
Collapse
Affiliation(s)
- Yu Zong
- Chemical Biology ProgramMemorial Sloan Kettering Cancer CenterNew York10065USA
| | - Nicole Weiss
- Program of PharmacologyWeill Cornell Medical College of Cornell UniversityNew York10065USA
| | - Ke Wang
- Chemical Biology ProgramMemorial Sloan Kettering Cancer CenterNew York10065USA
| | | | - Søren Heissel
- Proteomics Resource CenterRockefeller UniversityNew York10065USA
| | - Sumera Perveen
- Structural Genomics ConsortiumUniversity of TorontoTorontoM5S3H2Canada
| | - Jian Huang
- Department of Molecular BiologyPrinceton UniversityPrinceton08544USA
| |
Collapse
|
41
|
Chan JC, Alenina N, Cunningham AM, Ramakrishnan A, Shen L, Bader M, Maze I. Serotonin Transporter-dependent Histone Serotonylation in Placenta Contributes to the Neurodevelopmental Transcriptome. J Mol Biol 2024; 436:168454. [PMID: 38266980 PMCID: PMC10957302 DOI: 10.1016/j.jmb.2024.168454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Brain development requires appropriate regulation of serotonin (5-HT) signaling from distinct tissue sources across embryogenesis. At the maternal-fetal interface, the placenta is thought to be an important contributor of offspring brain 5-HT and is critical to overall fetal health. Yet, how placental 5-HT is acquired, and the mechanisms through which 5-HT influences placental functions, are not well understood. Recently, our group identified a novel epigenetic role for 5-HT, in which 5-HT can be added to histone proteins to regulate transcription, a process called H3 serotonylation. Here, we show that H3 serotonylation undergoes dynamic regulation during placental development, corresponding to gene expression changes that are known to influence key metabolic processes. Using transgenic mice, we demonstrate that placental H3 serotonylation is dependent on 5-HT uptake by the serotonin transporter (SERT/SLC6A4). SERT deletion robustly reduces enrichment of H3 serotonylation across the placental genome, and disrupts neurodevelopmental gene networks in early embryonic brain tissues. Thus, these findings suggest a novel role for H3 serotonylation in coordinating placental transcription at the intersection of maternal physiology and offspring brain development.
Collapse
Affiliation(s)
- Jennifer C Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Ashley M Cunningham
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; Charité Universitätsmedizin Berlin, Berlin, Germany; Institute for Biology, University of Lübeck, Germany
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
42
|
Gates LA, Reis BS, Lund PJ, Paul MR, Leboeuf M, Djomo AM, Nadeem Z, Lopes M, Vitorino FN, Unlu G, Carroll TS, Birsoy K, Garcia BA, Mucida D, Allis CD. Histone butyrylation in the mouse intestine is mediated by the microbiota and associated with regulation of gene expression. Nat Metab 2024; 6:697-707. [PMID: 38413806 PMCID: PMC11520355 DOI: 10.1038/s42255-024-00992-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024]
Abstract
Post-translational modifications (PTMs) on histones are a key source of regulation on chromatin through impacting cellular processes, including gene expression1. These PTMs often arise from metabolites and are thus impacted by metabolism and environmental cues2-7. One class of metabolically regulated PTMs are histone acylations, which include histone acetylation, butyrylation, crotonylation and propionylation3,8. As these PTMs can be derived from short-chain fatty acids, which are generated by the commensal microbiota in the intestinal lumen9-11, we aimed to define how microbes impact the host intestinal chromatin landscape, mainly in female mice. Here we show that in addition to acetylation, intestinal epithelial cells from the caecum and distal mouse intestine also harbour high levels of butyrylation and propionylation on lysines 9 and 27 of histone H3. We demonstrate that these acylations are regulated by the microbiota and that histone butyrylation is additionally regulated by the metabolite tributyrin. Tributyrin-regulated gene programmes are correlated with histone butyrylation, which is associated with active gene-regulatory elements and levels of gene expression. Together, our study uncovers a regulatory layer of how the microbiota and metabolites influence the intestinal epithelium through chromatin, demonstrating a physiological setting in which histone acylations are dynamically regulated and associated with gene regulation.
Collapse
Affiliation(s)
- Leah A Gates
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY, USA.
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | | | - Peder J Lund
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew R Paul
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Marylene Leboeuf
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY, USA
| | - Annaelle M Djomo
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY, USA
| | - Zara Nadeem
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY, USA
- Hunter College of the City University of New York, Yalow Honors Scholar Program, New York, NY, USA
| | - Mariana Lopes
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Francisca N Vitorino
- Department of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Gokhan Unlu
- Laboratory of Metabolic Regulation & Genetics, The Rockefeller University, New York, NY, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Kivanç Birsoy
- Laboratory of Metabolic Regulation & Genetics, The Rockefeller University, New York, NY, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - C David Allis
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
43
|
Hananya N, Koren S, Muir TW. Interrogating epigenetic mechanisms with chemically customized chromatin. Nat Rev Genet 2024; 25:255-271. [PMID: 37985791 PMCID: PMC11176933 DOI: 10.1038/s41576-023-00664-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 11/22/2023]
Abstract
Genetic and genomic techniques have proven incredibly powerful for identifying and studying molecular players implicated in the epigenetic regulation of DNA-templated processes such as transcription. However, achieving a mechanistic understanding of how these molecules interact with chromatin to elicit a functional output is non-trivial, owing to the tremendous complexity of the biochemical networks involved. Advances in protein engineering have enabled the reconstitution of 'designer' chromatin containing customized post-translational modification patterns, which, when used in conjunction with sophisticated biochemical and biophysical methods, allow many mechanistic questions to be addressed. In this Review, we discuss how such tools complement established 'omics' techniques to answer fundamental questions on chromatin regulation, focusing on chromatin mark establishment and protein-chromatin interactions.
Collapse
Affiliation(s)
- Nir Hananya
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Shany Koren
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
44
|
Bryant L, Sangree A, Clark K, Bhoj E. Histone 3.3-related chromatinopathy: missense variants throughout H3-3A and H3-3B cause a range of functional consequences across species. Hum Genet 2024; 143:497-510. [PMID: 36867246 DOI: 10.1007/s00439-023-02536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
There has been considerable recent interest in the role that germline variants in histone genes play in Mendelian syndromes. Specifically, missense variants in H3-3A and H3-3B, which both encode Histone 3.3, were discovered to cause a novel neurodevelopmental disorder, Bryant-Li-Bhoj syndrome. Most of the causative variants are private and scattered throughout the protein, but all seem to have either a gain-of-function or dominant negative effect on protein function. This is highly unusual and not well understood. However, there is extensive literature about the effects of Histone 3.3 mutations in model organisms. Here, we collate the previous data to provide insight into the elusive pathogenesis of missense variants in Histone 3.3.
Collapse
Affiliation(s)
- Laura Bryant
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Annabel Sangree
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kelly Clark
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Elizabeth Bhoj
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
45
|
Zhao F, Deng Y, Yang F, Yan Y, Feng F, Peng B, Gao J, Bedford MT, Li H. Molecular Basis for SPINDOC-Spindlin1 Engagement and Its Role in Transcriptional Attenuation. J Mol Biol 2024; 436:168371. [PMID: 37977297 DOI: 10.1016/j.jmb.2023.168371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Spindlin1 is a histone reader with three Tudor-like domains and its transcriptional co-activator activity could be attenuated by SPINDOC. The first two Tudors are involved in histone methylation readout, while the function of Tudor 3 is largely unknown. Here our structural and binding studies revealed an engagement mode of SPINDOC-Spindlin1, in which a hydrophobic motif of SPINDOC, DOCpep3, stably interacts with Spindlin1 Tudor 3, and two neighboring K/R-rich motifs, DOCpep1 and DOCpep2, bind to the acidic surface of Spindlin1 Tudor 2. Although DOCpep3-Spindlin1 engagement is compatible with histone readout, an extended SPINDOC fragment containing the K/R-rich region attenuates histone or TCF4 binding by Spindlin1 due to introduced competition. This inhibitory effect is more pronounced for weaker binding targets but not for strong ones such as H3 "K4me3-K9me3" bivalent mark. Further ChIP-seq and RT-qPCR indicated that SPINDOC could promote genomic relocation of Spindlin1, thus modulate downstream gene transcription. Collectively, we revealed multivalent engagement between SPINDOC and Spindlin1, in which a hydrophobic motif acts as the primary binding site for stable SPINDOC-Spindlin1 association, while K/R-rich region modulates the target selectivity of Spindlin1 via competitive inhibition, therefore attenuating the transcriptional co-activator activity of Spindlin1.
Collapse
Affiliation(s)
- Fan Zhao
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yafang Deng
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fen Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Yan Yan
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Fan Feng
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bo Peng
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Juntao Gao
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China.
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.
| | - Haitao Li
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, MOE Key Laboratory of Coal Environmental Pathogenesis and Prevention, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
46
|
Lauberth SM, Kutateladze TG, Black JC. Interpreting Combinatorial Epigenetic Modifications for Biological Meaning. J Mol Biol 2024; 436:168501. [PMID: 38401624 PMCID: PMC11507655 DOI: 10.1016/j.jmb.2024.168501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Affiliation(s)
- Shannon M Lauberth
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joshua C Black
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
47
|
Lossi L, Castagna C, Merighi A. An Overview of the Epigenetic Modifications in the Brain under Normal and Pathological Conditions. Int J Mol Sci 2024; 25:3881. [PMID: 38612690 PMCID: PMC11011998 DOI: 10.3390/ijms25073881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Epigenetic changes are changes in gene expression that do not involve alterations to the DNA sequence. These changes lead to establishing a so-called epigenetic code that dictates which and when genes are activated, thus orchestrating gene regulation and playing a central role in development, health, and disease. The brain, being mostly formed by cells that do not undergo a renewal process throughout life, is highly prone to the risk of alterations leading to neuronal death and neurodegenerative disorders, mainly at a late age. Here, we review the main epigenetic modifications that have been described in the brain, with particular attention on those related to the onset of developmental anomalies or neurodegenerative conditions and/or occurring in old age. DNA methylation and several types of histone modifications (acetylation, methylation, phosphorylation, ubiquitination, sumoylation, lactylation, and crotonylation) are major players in these processes. They are directly or indirectly involved in the onset of neurodegeneration in Alzheimer's or Parkinson's disease. Therefore, this review briefly describes the roles of these epigenetic changes in the mechanisms of brain development, maturation, and aging and some of the most important factors dynamically regulating or contributing to these changes, such as oxidative stress, inflammation, and mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (L.L.); (C.C.)
| |
Collapse
|
48
|
Zhang N, Wu J, Hossain F, Peng H, Li H, Gibson C, Chen M, Zhang H, Gao S, Zheng X, Wang Y, Zhu J, Wang JJ, Maze I, Zheng Q. Bioorthogonal labeling and enrichment of histone monoaminylation reveal its accumulation and regulatory function in cancer cell chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.586010. [PMID: 38562869 PMCID: PMC10983900 DOI: 10.1101/2024.03.20.586010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Histone monoaminylation ( i . e ., serotonylation and dopaminylation) is an emerging category of epigenetic mark occurring on the fifth glutamine (Q5) residue of H3 N-terminal tail, which plays significant roles in gene transcription. Current analysis of histone monoaminylation is mainly based on site-specific antibodies and mass spectrometry, which either lacks high resolution or is time-consuming. In this study, we report the development of chemical probes for bioorthogonal labeling and enrichment of histone serotonylation and dopaminylation. These probes were successfully applied for the monoaminylation analysis of in vitro biochemical assays, cells, and tissue samples. The enrichment of monoaminylated histones by the probes further confirmed the crosstalk between H3Q5 monoaminylation and H3K4 methylation. Finally, combining the ex vivo and in vitro analyses based on the developed probes, we have shown that both histone serotonylation and dopaminylation are highly enriched in tumor tissues that overexpress transglutaminase 2 (TGM2) and regulate the three-dimensional architecture of cellular chromatin. TOC
Collapse
|
49
|
Liu SX, Ramakrishnan A, Shen L, Gewirtz JC, Georgieff MK, Tran PV. Chromatin accessibility and H3K9me3 landscapes reveal long-term epigenetic effects of fetal-neonatal iron deficiency in rat hippocampus. BMC Genomics 2024; 25:301. [PMID: 38515015 PMCID: PMC10956188 DOI: 10.1186/s12864-024-10230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Iron deficiency (ID) during the fetal-neonatal period results in long-term neurodevelopmental impairments associated with pervasive hippocampal gene dysregulation. Prenatal choline supplementation partially normalizes these effects, suggesting an interaction between iron and choline in hippocampal transcriptome regulation. To understand the regulatory mechanisms, we investigated epigenetic marks of genes with altered chromatin accessibility (ATAC-seq) or poised to be repressed (H3K9me3 ChIP-seq) in iron-repleted adult rats having experienced fetal-neonatal ID exposure with or without prenatal choline supplementation. RESULTS Fetal-neonatal ID was induced by limiting maternal iron intake from gestational day (G) 2 through postnatal day (P) 7. Half of the pregnant dams were given supplemental choline (5.0 g/kg) from G11-18. This resulted in 4 groups at P65 (Iron-sufficient [IS], Formerly Iron-deficient [FID], IS with choline [ISch], and FID with choline [FIDch]). Hippocampi were collected from P65 iron-repleted male offspring and analyzed for chromatin accessibility and H3K9me3 enrichment. 22% and 24% of differentially transcribed genes in FID- and FIDch-groups, respectively, exhibited significant differences in chromatin accessibility, whereas 1.7% and 13% exhibited significant differences in H3K9me3 enrichment. These changes mapped onto gene networks regulating synaptic plasticity, neuroinflammation, and reward circuits. Motif analysis of differentially modified genomic sites revealed significantly stronger choline effects than early-life ID and identified multiple epigenetically modified transcription factor binding sites. CONCLUSIONS This study reveals genome-wide, stable epigenetic changes and epigenetically modifiable gene networks associated with specific chromatin marks in the hippocampus, and lays a foundation to further elucidate iron-dependent epigenetic mechanisms that underlie the long-term effects of fetal-neonatal ID, choline, and their interactions.
Collapse
Affiliation(s)
- Shirelle X Liu
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Li Shen
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jonathan C Gewirtz
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael K Georgieff
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Phu V Tran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
50
|
Wong KG, Cheng YCF, Wu VH, Kiseleva AA, Li J, Poleshko A, Smith CL, Epstein JA. Growth factor-induced activation of MSK2 leads to phosphorylation of H3K9me2S10 and corresponding changes in gene expression. SCIENCE ADVANCES 2024; 10:eadm9518. [PMID: 38478612 PMCID: PMC10936876 DOI: 10.1126/sciadv.adm9518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024]
Abstract
Extracellular signals are transmitted through kinase cascades to modulate gene expression, but it remains unclear how epigenetic changes regulate this response. Here, we provide evidence that growth factor-stimulated changes in the transcript levels of many responsive genes are accompanied by increases in histone phosphorylation levels, specifically at histone H3 serine-10 when the adjacent lysine-9 is dimethylated (H3K9me2S10). Imaging and proteomic approaches show that epidermal growth factor (EGF) stimulation results in H3K9me2S10 phosphorylation, which occurs in genomic regions enriched for regulatory enhancers of EGF-responsive genes. We also demonstrate that the EGF-induced increase in H3K9me2S10ph is dependent on the nuclear kinase MSK2, and this subset of EGF-induced genes is dependent on MSK2 for transcription. Together, our work indicates that growth factor-induced changes in chromatin state can mediate the activation of downstream genes.
Collapse
Affiliation(s)
- Karen G. Wong
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu-Chia F. Cheng
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vincent H. Wu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anna A. Kiseleva
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Li
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrey Poleshko
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cheryl L. Smith
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan A. Epstein
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|