1
|
Fujisawa M, Onodera T, Kuroda D, Kewcharoenwong C, Sasaki M, Itakura Y, Yumoto K, Nithichanon A, Ito N, Takeoka S, Suzuki T, Sawa H, Lertmemongkolchai G, Takahashi Y. Molecular convergence of neutralizing antibodies in human revealed by repeated rabies vaccination. NPJ Vaccines 2025; 10:39. [PMID: 39988605 DOI: 10.1038/s41541-025-01073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/13/2025] [Indexed: 02/25/2025] Open
Abstract
Rabies vaccines require repeated immunization to robustly elicit neutralizing antibodies that prevent fatal diseases. Here, we analyzed rabies glycoprotein antibody repertoires at both polyclonal and monoclonal levels following repeated vaccination. Booster vaccination dramatically elevated the neutralizing activity of recalled antibodies, primarily targeting an immunodominant site III epitope with hydrophilic and rugged structures. Strikingly, the majority of site III-directed antibodies in the recall response used a convergent VH gene (IGHV3-30), and they exhibited more hydrophilic and shorter paratopes than non-site III antibodies, providing physicochemical advantages for binding to site III. Additionally, several amino acids on heavy chain CDR3 were identified as key sites for acquiring an ultrapotent neutralizing activity through site III binding. Our in-depth analysis of antibody repertoires revealed the molecular signatures of neutralizing antibodies generated by repeated rabies vaccination, possibly as a result of adaptive convergence.
Collapse
Affiliation(s)
- Mizuki Fujisawa
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Daisuke Kuroda
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Chidchamai Kewcharoenwong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Ching Mai, Thailand
- The Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control (IIZC), Hokkaido University, Hokkaido, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan
| | - Yukari Itakura
- Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan
| | - Kohei Yumoto
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Arnone Nithichanon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Shinji Takeoka
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
- Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido, Japan
| | - Ganjana Lertmemongkolchai
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Ching Mai, Thailand
- The Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
- Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan.
| |
Collapse
|
2
|
Ammitzbøll C, Thomsen MK, Erikstrup C, Troldborg A. Considerations for Coronavirus Disease 2019 Vaccination Among B-Cell-Depleted Patients. Rheum Dis Clin North Am 2025; 51:45-59. [PMID: 39550106 DOI: 10.1016/j.rdc.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
Abstract
This article provides a comprehensive review of the impact of B-cell-directed therapy on severe acute respiratory syndrome coronavirus 2 vaccine immunity, focusing on its implications in autoimmune inflammatory rheumatic diseases (AIIRD). Rituximab (RTX) is the primary B-cell-depleting drug that has been studied in AIIRD and is the focus of this review. We review the pivotal role of B cells in vaccine response and propose strategies to manage and predict vaccine responses in B-cell-depleted individuals. We highlight the need to strategize patients into distinct groups when predicting vaccine responses and developing guidelines to ensure optimal outcomes for RTX-treated patients.
Collapse
Affiliation(s)
- Christian Ammitzbøll
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Christian Erikstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Immunology, Aarhus University Hospital, Aarhus N, Denmark
| | - Anne Troldborg
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Adeleke RA, Sahler J, Choi A, Roth K, Upadhye V, Ezzatpour S, Imbiakha B, Khomandiak S, Diaz A, Whittaker GR, Jager MC, August A, Buchholz DW, Aguilar HC. Replication-incompetent VSV-based vaccine elicits protective responses against SARS-CoV-2 and influenza virus. SCIENCE ADVANCES 2025; 11:eadq4545. [PMID: 39879304 PMCID: PMC11777205 DOI: 10.1126/sciadv.adq4545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses lead to severe respiratory illnesses and death in humans, exacerbated in individuals with underlying health conditions, remaining substantial global public health concerns. Here, we developed a bivalent replication-incompetent single-cycle pseudotyped vesicular stomatitis virus vaccine that incorporates both a prefusion-stabilized SARS-CoV-2 spike protein lacking a furin cleavage site and a full-length influenza A virus neuraminidase protein. Vaccination of K18-hACE2 or C57BL/6J mouse models generated durable levels of neutralizing antibodies, T cell responses, and protection from morbidity and mortality upon challenge with either virus. Furthermore, the vaccine provided heterologous protection upon challenge with a different influenza virus strain, supporting the advantage of using NA to increase the breadth of vaccine protection. Now, no bivalent vaccine is approved for use against both SARS-CoV-2 and influenza virus. Our study supports using this platform to develop safe and efficient vaccines against multiple viruses.
Collapse
Affiliation(s)
- Richard A. Adeleke
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Julie Sahler
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Annette Choi
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Kyle Roth
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Viraj Upadhye
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Shahrzad Ezzatpour
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Brian Imbiakha
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Solomiia Khomandiak
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Annika Diaz
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Mason C. Jager
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Avery August
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - David W. Buchholz
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Li J, Long H, Chen S, Zhang Z, Li S, Liu Q, Liu J, Cai J, Luo L, Peng Y. An mRNA-Based Respiratory Syncytial Virus Vaccine Elicits Strong Neutralizing Antibody Responses and Protects Rodents Without Vaccine-Associated Enhanced Respiratory Disease. Vaccines (Basel) 2025; 13:52. [PMID: 39852831 PMCID: PMC11768429 DOI: 10.3390/vaccines13010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) causes the most common type of severe lower respiratory tract infection worldwide, and the fusion (F) protein is a target for neutralizing antibodies and vaccine development. This study aimed to investigate the immunogenicity and efficacy of an mRNA-based RSV vaccine with an F protein sequence. METHODS We designed an mRNA construct encoding a modified RSV F protein, which was further developed into an LNP-encapsulated mRNA vaccine (LVRNA007). LVRNA007 was administered to mice and cotton rats, followed by immunogenicity analysis and viral challenge studies. Protection of rodents from the viral infection was evaluated based on the presence of the virus in the lung and pathological examination of respiratory tissues. RESULTS LVRNA007 induced robust humoral and cellular immune responses in both mice and cotton rats, with neutralization antibody levels in the immunized animals maintained at high levels for over one year. Vaccination of LVRNA007 also protected the rodents from RSV challenge, judged by the much decreased virus titer and the pathological score in the lung tissue. In addition, no vaccine-enhanced disease (VED) phenomenon was observed with LVRNA007 vaccination. CONCLUSIONS Based on the preclinical immunogenicity and efficacy data, LVRNA007 could be a potential promising vaccine for prophylaxis of RSV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yucai Peng
- Liverna Therapeutics Inc., Zhuhai 519000, China; (J.L.); (H.L.); (S.C.); (Z.Z.); (S.L.); (Q.L.); (J.L.); (J.C.); (L.L.)
| |
Collapse
|
5
|
Faliti CE, Van TTP, Anam FA, Cheedarla N, Williams ME, Mishra AK, Usman SY, Woodruff MC, Kraker G, Runnstrom MC, Kyu S, Sanz D, Ahmed H, Ghimire M, Morrison-Porter A, Quehl H, Haddad NS, Chen W, Cheedarla S, Neish AS, Roback JD, Antia R, Hom J, Tipton CM, Lindner JM, Ghosn E, Khurana S, Scharer CD, Khosroshahi A, Lee FEH, Sanz I. Disease-associated B cells and immune endotypes shape adaptive immune responses to SARS-CoV-2 mRNA vaccination in human SLE. Nat Immunol 2025; 26:131-145. [PMID: 39533072 PMCID: PMC11695260 DOI: 10.1038/s41590-024-02010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 mRNA vaccination has reduced effectiveness in certain immunocompromised individuals. However, the cellular mechanisms underlying these defects, as well as the contribution of disease-induced cellular abnormalities, remain largely unexplored. In this study, we conducted a comprehensive serological and cellular analysis of patients with autoimmune systemic lupus erythematosus (SLE) who received the Wuhan-Hu-1 monovalent mRNA coronavirus disease 2019 vaccine. Our findings revealed that patients with SLE exhibited reduced avidity of anti-receptor-binding domain antibodies, leading to decreased neutralization potency and breadth. We also observed a sustained anti-spike response in IgD-CD27- 'double-negative (DN)' DN2/DN3 B cell populations persisting during memory responses and with greater representation in the SLE cohort. Additionally, patients with SLE displayed compromised anti-spike T cell immunity. Notably, low vaccine efficacy strongly correlated with higher values of a newly developed extrafollicular B and T cell score, supporting the importance of distinct B cell endotypes. Finally, we found that anti-BAFF blockade through belimumab treatment was associated with poor vaccine immunogenicity due to inhibition of naive B cell priming and an unexpected impact on circulating T follicular helper cells.
Collapse
Affiliation(s)
- Caterina E Faliti
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Trinh T P Van
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Fabliha A Anam
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Narayanaiah Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - M Elliott Williams
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ashish Kumar Mishra
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD, USA
| | - Sabeena Y Usman
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Matthew C Woodruff
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | | | - Martin C Runnstrom
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Shuya Kyu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Daniel Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Hasan Ahmed
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Midushi Ghimire
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Andrea Morrison-Porter
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Hannah Quehl
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Natalie S Haddad
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
- MicroB-plex, Inc., Atlanta, GA, USA
| | - Weirong Chen
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Suneethamma Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - John D Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Jennifer Hom
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Christopher M Tipton
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | | | - Eliver Ghosn
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Arezou Khosroshahi
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA.
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA.
| |
Collapse
|
6
|
Yuan M, Wilson IA. Structural Immunology of SARS-CoV-2. Immunol Rev 2025; 329:e13431. [PMID: 39731211 PMCID: PMC11727448 DOI: 10.1111/imr.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024]
Abstract
The SARS-CoV-2 spike (S) protein has undergone significant evolution, enhancing both receptor binding and immune evasion. In this review, we summarize ongoing efforts to develop antibodies targeting various epitopes of the S protein, focusing on their neutralization potency, breadth, and escape mechanisms. Antibodies targeting the receptor-binding site (RBS) typically exhibit high neutralizing potency but are frequently evaded by mutations in SARS-CoV-2 variants. In contrast, antibodies targeting conserved regions, such as the S2 stem helix and fusion peptide, exhibit broader reactivity but generally lower neutralization potency. However, several broadly neutralizing antibodies have demonstrated exceptional efficacy against emerging variants, including the latest omicron subvariants, underscoring the potential of targeting vulnerable sites such as RBS-A and RBS-D/CR3022. We also highlight public classes of antibodies targeting different sites on the S protein. The vulnerable sites targeted by public antibodies present opportunities for germline-targeting vaccine strategies. Overall, developing escape-resistant, potent antibodies and broadly effective vaccines remains crucial for combating future variants. This review emphasizes the importance of identifying key epitopes and utilizing antibody affinity maturation to inform future therapeutic and vaccine design.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
7
|
Zhou G, Dael N, Verweij S, Balafas S, Mubarik S, Oude Rengerink K, Pasmooij AMG, van Baarle D, Mol PGM, de Bock GH, Hak E. Effectiveness of COVID-19 vaccines against SARS-CoV-2 infection and severe outcomes in adults: a systematic review and meta-analysis of European studies published up to 22 January 2024. Eur Respir Rev 2025; 34:240222. [PMID: 39971395 PMCID: PMC11836669 DOI: 10.1183/16000617.0222-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/11/2024] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Up-to-date evidence from European studies on long-term vaccine effectiveness (VE) of COVID-19 vaccines is lacking. This review aimed to evaluate effectiveness and durability of primary vaccine series and boosters in preventing infection and severe outcomes in the European population. METHODS We conducted systematic searches of PubMed and Embase up to 22 January 2024. We included observational studies that evaluated VE against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or severe disease (hospitalisation, intensive care unit admission or death) for primary series and boosters in Europe. We applied a random-effects meta-analysis model. RESULTS We included 33 studies and over 56 million participants. The overall VE of the complete primary series against infection with any SARS-CoV-2 variant was 70.7%. VE was lower for Omicron, at 26.1%, than for pre-Omicron strains, at 77.0%. Over time, VE against infection by any variant decreased from 68.9% to 38.9% after 6 months. Boosters restored VE to 76.4% and maintained at 58.4% after 3 months. The overall VE of a complete primary series for severe outcomes due to any variant was 87.4%, with 93.3% for pre-Omicron and 62.8% for Omicron strains. Protection against severe outcomes declined less than for infection. 6 months after the primary series, the vaccine still provided over 50% protection against severe outcomes caused by Omicron. Boosters restored VE to 87.9% and maintained at 78.5% after 3 months. CONCLUSION VE against SARS-CoV-2 infection declines markedly with time and Omicron variants. Protection against severe outcomes was more durable and resistant to viral mutation. Boosters restored protection, emphasising the need for timely booster vaccination for vulnerable populations.
Collapse
Affiliation(s)
- Guiling Zhou
- Unit of Pharmaco-Therapy, -Epidemiology and -Economics (PTEE), Department of Pharmacy, University of Groningen, Groningen, The Netherlands
- These authors contributed equally to this work
| | - Nina Dael
- Unit of Pharmaco-Therapy, -Epidemiology and -Economics (PTEE), Department of Pharmacy, University of Groningen, Groningen, The Netherlands
- These authors contributed equally to this work
| | - Stefan Verweij
- Unit of Pharmaco-Therapy, -Epidemiology and -Economics (PTEE), Department of Pharmacy, University of Groningen, Groningen, The Netherlands
- Dutch Medicines Evaluation Board, Utrecht, The Netherlands
| | - Spyros Balafas
- Unit of Pharmaco-Therapy, -Epidemiology and -Economics (PTEE), Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Sumaira Mubarik
- Unit of Pharmaco-Therapy, -Epidemiology and -Economics (PTEE), Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | | | - Anna Maria Gerdina Pasmooij
- Dutch Medicines Evaluation Board, Utrecht, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Debbie van Baarle
- Virology and Immunology Research Group, Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter G M Mol
- Dutch Medicines Evaluation Board, Utrecht, The Netherlands
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Geertruida H de Bock
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eelko Hak
- Unit of Pharmaco-Therapy, -Epidemiology and -Economics (PTEE), Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Wall N, Lamerton R, Ashford F, Perez-Toledo M, Jasiulewicz A, Banham GD, Newby ML, Faustini SE, Richter AG, Selvaskandan H, Billany RE, Adenwalla SF, Henderson IR, Crispin M, Graham-Brown M, Harper L, Cunningham AF. Distinct Neutralising and Complement-Fixing Antibody Responses Can Be Induced to the Same Antigen in Haemodialysis Patients After Immunisation with Different Vaccine Platforms. Vaccines (Basel) 2024; 13:7. [PMID: 39852786 PMCID: PMC11768972 DOI: 10.3390/vaccines13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Generalised immune dysfunction in chronic kidney disease, especially in patients requiring haemodialysis (HD), significantly enhances the risk of severe infections. Vaccine-induced immunity is typically reduced in HD populations. The SARS-CoV-2 pandemic provided an opportunity to examine the magnitude and functionality of antibody responses in HD patients to a previously unencountered antigen-Spike (S)-glycoprotein-after vaccination with different vaccine platforms (viral vector (VV); mRNA (mRV)). Methods: We compared the total and functional anti-S antibody responses (cross-variant neutralisation and complement binding) in 187 HD patients and 43 healthy controls 21-28 days after serial immunisation. Results: After 2 doses of the same vaccine, HD patients had anti-S antibody levels and a complement binding capacity comparable to controls. However, 2 doses of mRV induced greater polyfunctional antibody responses than VV (defined by the presence of both complement binding and cross-variant neutralisation activity). Interestingly, an mRV boost after 2 doses of VV significantly enhanced antibody functionality in HD patients without a prior history of SARS-CoV-2 infection. Conclusions: HD patients can generate near-normal, functional antigen-specific antibody responses following serial vaccination to a novel antigen. Encouragingly, exploiting immunological memory by using mRNA vaccines and boosting may improve the success of vaccination strategies in this vulnerable patient population.
Collapse
Affiliation(s)
- Nadezhda Wall
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Rachel Lamerton
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Fiona Ashford
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Marisol Perez-Toledo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Aleksandra Jasiulewicz
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Gemma D. Banham
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Maddy L. Newby
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Sian E. Faustini
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Alex G. Richter
- University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Haresh Selvaskandan
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust, University of Leicester, Leicester LE1 7RH, UK
| | - Roseanne E. Billany
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust, University of Leicester, Leicester LE1 7RH, UK
| | - Sherna F. Adenwalla
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust, University of Leicester, Leicester LE1 7RH, UK
| | - Ian R. Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Matthew Graham-Brown
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust, University of Leicester, Leicester LE1 7RH, UK
| | - Lorraine Harper
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Adam F. Cunningham
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
9
|
Roederer AL, Cao Y, St Denis K, Sheehan ML, Li CJ, Lam EC, Gregory DJ, Poznansky MC, Iafrate AJ, Canaday DH, Gravenstein S, Garcia-Beltran WF, Balazs AB. Ongoing evolution of SARS-CoV-2 drives escape from mRNA vaccine-induced humoral immunity. Cell Rep Med 2024; 5:101850. [PMID: 39657661 PMCID: PMC11722104 DOI: 10.1016/j.xcrm.2024.101850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/24/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
With the onset of the COVID-19 pandemic 4 years ago, viral sequencing continues to document numerous individual mutations in the viral spike protein across many variants. To determine the ability of vaccine-mediated humoral immunity to combat continued SARS-CoV-2 evolution, we construct a comprehensive panel of pseudoviruses harboring each individual mutation spanning 4 years of the pandemic to understand the fitness cost and resistance benefits of each. These efforts identify numerous mutations that escape from vaccine-induced humoral immunity. Across 50 variants and 131 mutants we construct, we observe progressive loss of neutralization across variants, irrespective of vaccine doses, as well as increasing infectivity and ACE2 binding. Importantly, the recent XBB.1.5 booster significantly increases titers against most variants but not JN.1, KP.2, or KP.3. These findings demonstrate that variants continue to evade updated mRNA vaccines, highlighting the need for different approaches to control SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Alex L Roederer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Yi Cao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Kerri St Denis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Maegan L Sheehan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Chia Jung Li
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Evan C Lam
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - David J Gregory
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA 02129, USA; Pediatric Infectious Disease, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA 02129, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David H Canaday
- Case Western Reserve University School of Medicine, Cleveland, OH, USA; Geriatric Research Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Stefan Gravenstein
- Center of Innovation in Long-Term Services and Supports, Veterans Administration Medical Center, Providence, RI, USA; Division of Geriatrics and Palliative Medicine, Alpert Medical School of Brown University, Providence, RI, USA; Brown University School of Public Health Center for Gerontology and Healthcare Research, Providence, RI, USA
| | - Wilfredo F Garcia-Beltran
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | |
Collapse
|
10
|
Kuijper LH, Kreher C, Elias G, Claireaux M, Kerster G, Bos AV, Duurland MC, Konijn VAL, Paul AGA, de Jong N, de Jongh R, Steenhuis M, Garcia-Vallejo JJ, van Gils MJ, Kuijpers TW, Eftimov F, Rispens T, van der Schoot CE, van Ham SM, ten Brinke A. Longevity of antibody responses is associated with distinct antigen-specific B cell subsets early after infection. Front Immunol 2024; 15:1505719. [PMID: 39742271 PMCID: PMC11686410 DOI: 10.3389/fimmu.2024.1505719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/12/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Upon infection, T cell-driven B cell responses in GC reactions induce memory B cells and antibody-secreting cells that secrete protective antibodies. How formation of specifically long-lived plasma cells is regulated via the interplay between specific B and CD4+ T cells is not well understood. Generally, antibody levels decline over time after clearance of the primary infection. Method In this study, convalescent individuals with stable RBD antibody levels (n=14, "sustainers") were compared with donors (n=13) with the greatest antibody decline from a cohort of 132. To investigate the role of the cellular immune compartment in the maintenance of antibody levels, SARS-CoV-2-specific responses at 4 to 6 weeks post-mild COVID-19 infection were characterized using deep immune profiling. Results Both groups had similar frequencies of total SARS-CoV-2-specific B and CD4+ T cells. Sustainers had fewer Spike-specific IgG+ memory B cells early after infection and increased neutralizing capacity of RBD antibodies over time, unlike the declining group. However, declining IgG titers correlated with lower frequency of Spike-specific CD4+ T cells. Conclusion These data suggest that "sustainers" have unique dynamics of GC reactions, yield different outputs of terminally differentiating cells, and improve the quality of protective antibodies over time. This study helps identify factors controlling formation of long-lived PC and sustained antibody responses.
Collapse
Affiliation(s)
- Lisan H. Kuijper
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Christine Kreher
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - George Elias
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mathieu Claireaux
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Gius Kerster
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Amélie V. Bos
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mariël C. Duurland
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Veronique A. L. Konijn
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Alberta G. A. Paul
- Cytek Biosciences, Inc., Fremont, CA, United States
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity and Cancer Center Amsterdam, Amsterdam University Medical Centers, Free University of Amsterdam, Amsterdam, Netherlands
| | - Nina de Jong
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Rivka de Jongh
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maurice Steenhuis
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Juan J. Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity and Cancer Center Amsterdam, Amsterdam University Medical Centers, Free University of Amsterdam, Amsterdam, Netherlands
| | - Marit J. van Gils
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Filip Eftimov
- Department of Neurology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - C. Ellen van der Schoot
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - S. Marieke van Ham
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Anja ten Brinke
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
11
|
Hicks P, Manzoni TB, Westover JB, Petch RJ, Roper B, Gowen BB, Bates P. Safety, Immunogenicity, and Efficacy of a Recombinant Vesicular Stomatitis Virus Vectored Vaccine Against Severe Fever with Thrombocytopenia Syndrome Virus and Heartland Bandavirus. Vaccines (Basel) 2024; 12:1403. [PMID: 39772063 PMCID: PMC11728676 DOI: 10.3390/vaccines12121403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome virus (SFTSV) is a recently emerged tickborne virus in east Asia with over 18,000 confirmed cases. With a high case fatality ratio, SFTSV has been designated a high priority pathogen by the WHO and the NIAID. Despite this, there are currently no approved therapies or vaccines to treat or prevent SFTS. Vesicular stomatitis virus (VSV) represents an FDA-approved vaccine platform that has been considered for numerous viruses due to its low sero-prevalence in humans, ease in genetic manipulation, and promiscuity in incorporating foreign glycoproteins into its virions. METHODS In this study, we developed a recombinant VSV (rVSV) expressing the SFTSV glycoproteins Gn/Gc (rVSV-SFTSV) and assessed its safety, immunogenicity, and efficacy in C57BL/6, Ifnar-/-, and AG129 mice. RESULTS We demonstrate that rVSV-SFTSV is safe when given to immunocompromised animals and is not neuropathogenic when injected intracranially into young immunocompetent mice. Immunization of wild type (C57BL/6) and Ifnar-/- mice with rVSV-SFTSV resulted in high levels of neutralizing antibodies and protection in a lethal SFTSV challenge model. Additionally, passive transfer of sera from immunized Ifnar-/- mice into naïve animals was protective when given pre- or post-exposure. Finally, we demonstrate that immunization with rVSV-SFTSV cross protects AG129 mice against challenge with the closely related Heartland bandavirus despite negligible neutralizing titers to the virus. CONCLUSIONS Taken together, these data suggest that rVSV-SFTSV is a promising vaccine candidate for SFTSV and Heartland bandavirus with a favorable safety profile.
Collapse
Affiliation(s)
- Philip Hicks
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.H.); (T.B.M.); (R.J.P.); (B.R.)
| | - Tomaz B. Manzoni
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.H.); (T.B.M.); (R.J.P.); (B.R.)
| | - Jonna B. Westover
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (J.B.W.); (B.B.G.)
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Raegan J. Petch
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.H.); (T.B.M.); (R.J.P.); (B.R.)
| | - Brianne Roper
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.H.); (T.B.M.); (R.J.P.); (B.R.)
| | - Brian B. Gowen
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (J.B.W.); (B.B.G.)
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Paul Bates
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.H.); (T.B.M.); (R.J.P.); (B.R.)
| |
Collapse
|
12
|
Bangaru S, Jackson AM, Copps J, Fernández-Quintero ML, Torres JL, Richey ST, Nogal B, Sewall LM, de la Peña AT, Rehman A, Guebre-Xabier M, Girard B, Das R, Corbett-Helaire KS, Seder RA, Graham BS, Edwards DK, Patel N, Smith G, Ward AB. Structural serology of polyclonal antibody responses to mRNA-1273 and NVX-CoV2373 COVID-19 vaccines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.628030. [PMID: 39713412 PMCID: PMC11661243 DOI: 10.1101/2024.12.11.628030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Current COVID-19 vaccines are largely limited in their ability to induce broad, durable immunity against emerging viral variants. Design and development of improved vaccines utilizing existing platforms requires an in-depth understanding of the antigenic and immunogenic properties of available vaccines. Here we examined the antigenicity of two of the original COVID-19 vaccines, mRNA-1273 and NVX-CoV2373, by electron microscopy-based polyclonal epitope mapping (EMPEM) of serum from immunized non-human primates (NHPs) and clinical trial donors. Both vaccines induce diverse polyclonal antibody (pAb) responses to the N-terminal domain (NTD) in addition to the receptor-binding domain (RBD) of the Spike protein, with the NTD supersite being an immunodominant epitope. High-resolution cryo-EMPEM studies revealed extensive pAb responses to and around the supersite with unique angles of approach and engagement. NTD supersite pAbs were also the most susceptible to variant mutations compared to other specificities, indicating that ongoing Spike ectodomain-based vaccine design strategies should consider immuno-masking this site to prevent induction of these strain-specific responses.
Collapse
Affiliation(s)
- Sandhya Bangaru
- Dept. of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - Abigail M. Jackson
- Dept. of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - Jeffrey Copps
- Dept. of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - Monica L. Fernández-Quintero
- Dept. of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - Jonathan L. Torres
- Dept. of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - Sara T. Richey
- Dept. of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - Bartek Nogal
- Dept. of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - Leigh M. Sewall
- Dept. of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - Alba Torrents de la Peña
- Dept. of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - Asma Rehman
- Novavax, Inc; 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | | | | | | | - Kizzmekia S. Corbett-Helaire
- Vaccine Research Center; National Institutes of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892, USA
- Current affiliation: Department of Immunology and Infectious Diseases; Harvard T.H. Chan School of Public Health; Boston, Massachusetts, 02115, USA
- Current affiliation: Howard Hughes Medical Institute; Chevy Chase, Maryland, 20815, USA
| | - Robert A. Seder
- Vaccine Research Center; National Institutes of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892, USA
| | - Barney S. Graham
- Vaccine Research Center; National Institutes of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892, USA
- Current affiliation: Department of Microbiology, Biochemistry & Immunology; Morehouse School of Medicine; Atlanta, Georgia, 30310, USA
| | | | - Nita Patel
- Novavax, Inc; 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Gale Smith
- Novavax, Inc; 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Andrew B. Ward
- Dept. of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA, 92037, USA
| |
Collapse
|
13
|
Jia Z, Wang K, Xie M, Wu J, Hu Y, Zhou Y, Yisimayi A, Fu W, Wang L, Liu P, Fan K, Chen R, Wang L, Li J, Wang Y, Ge X, Zhang Q, Wu J, Wang N, Wu W, Gao Y, Miao J, Jiang Y, Qin L, Zhu L, Huang W, Zhang Y, Zhang H, Li B, Gao Q, Xie XS, Wang Y, Cao Y, Wang Q, Wang X. A third dose of inactivated vaccine augments the potency, breadth, and duration of anamnestic responses against SARS-CoV-2. Protein Cell 2024; 15:930-937. [PMID: 38801319 PMCID: PMC11637481 DOI: 10.1093/procel/pwae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/29/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Zijing Jia
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kang Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Minxiang Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiajing Wu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Yaling Hu
- Sinovac Biotech Ltd., Beijing 100085, China
| | - Yunjiao Zhou
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China
| | - Ayijiang Yisimayi
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), School of Life Science, Peking University, Beijing 100091, China
| | - Wangjun Fu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pan Liu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kaiyue Fan
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruihong Chen
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Guangzhou Laboratory, Guangzhou 510320, China
| | - Lin Wang
- Sinovac Biotech Ltd., Beijing 100085, China
| | - Jing Li
- Sinovac Biotech Ltd., Beijing 100085, China
| | - Yao Wang
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), School of Life Science, Peking University, Beijing 100091, China
| | - Xiaoqin Ge
- Sinovac Biotech Ltd., Beijing 100085, China
| | - Qianqian Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianbo Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Nan Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yidan Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | - Lili Qin
- Acrobiosystems Inc., Beijing 102600, China
| | - Ling Zhu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Yanjun Zhang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Huan Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Baisheng Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Qiang Gao
- Sinovac Biotech Ltd., Beijing 100085, China
| | - Xiaoliang Sunney Xie
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), School of Life Science, Peking University, Beijing 100091, China
- Changping Laboratory, Beijing 102206, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
- Changping Laboratory, Beijing 102206, China
| | - Yunlong Cao
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), School of Life Science, Peking University, Beijing 100091, China
- Changping Laboratory, Beijing 102206, China
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Guangzhou Laboratory, Guangzhou 510320, China
- Changping Laboratory, Beijing 102206, China
| |
Collapse
|
14
|
Mohd Hisham AA, Mat Yassim AS, Suppian R, Azlan M, Mohamad Asri AA, Idris NS, Muhamad R, Norazmi MN. Comparable and sustained levels of S1-RBD-IgG and S1-RBD-IgA in BNT162b2 homologous and CoronaVac-BNT162b2 heterologous booster vaccination: A 22-month prospective study in Malaysia. Vaccine 2024; 42:126471. [PMID: 39490114 DOI: 10.1016/j.vaccine.2024.126471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
This prospective cohort study examines the long-term humoral immune responses post-COVID-19 vaccination in 146 individuals who received either a homologous three-dose BNT162b2 vaccine regimen (PPP) or two primary doses of CoronaVac followed by BNT162b2 booster (SSP) in Malaysia. The study focuses on serum anti-S1-RBD-IgG, -IgA, and -IgM, using the ELISA method. The results show that BNT162b2 outperformed CoronaVac in the two dose primary vaccination series. BNT162b2 booster dose significantly raised serum anti-S1-RBD-IgG and -IgA levels, sustaining this increase from 26 to 52 weeks after administration, regardless of the vaccine regimen. This leads to equivalent levels of anti-S1-RBD-IgG and -IgA after boosting with BNT162b2 in both groups. Breakthrough infections, particularly with the emergence of the Omicron variant, did not result in increased anti-S1-RBD-IgG and -IgA levels. No significant induction of anti-S1-RBD-IgM was observed following multiple vaccine doses. The long-term investigation revealed that PPP and SSP groups had comparable humoral immune responses to SARS-CoV-2, highlighting the advantage of mRNA booster dose in our cohort.
Collapse
Affiliation(s)
- Anis Atifah Mohd Hisham
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Aini Syahida Mat Yassim
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Rapeah Suppian
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Maryam Azlan
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | | | - Nur Suhaila Idris
- School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rosediani Muhamad
- School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000 Kajang, Selangor, Malaysia.
| |
Collapse
|
15
|
Shrestha LB, Tungatt K, Aggarwal A, Stubis A, Fewings NL, Fichter C, Akerman A, Rodrigo C, Tedla N, Lee S, Lloyd AR, Brilot F, Britton WJ, Kelleher A, Caterson ID, Douglas MW, Rockett R, Tangye SG, Triccas JA, Turville SG, Sandgren KJ, Bull RA, Cunningham AL. Bivalent Omicron BA.1 vaccine booster increases memory B cell breadth and neutralising antibodies against emerging SARS-CoV-2 variants. EBioMedicine 2024; 110:105461. [PMID: 39612651 DOI: 10.1016/j.ebiom.2024.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Current literature informs us that bivalent vaccines will generate a broader serum neutralizing antibody response to multiple SARS-CoV-2 variants, but studies on how this breadth relates to the memory B cell (MBC) and T cell responses are sparse. This study compared breadth of neutralising antibody, and memory B and T cell responses to monovalent or a bivalent ancestral/Omicron BA.1 COVID-19 booster vaccine. METHODS At baseline and 1-month post-booster, neutralisation activity and frequencies of receptor binding domain (RBD)-specific MBCs and Spike-specific memory T cells were measured against a panel of variants. FINDINGS Both vaccines boosted neutralising antibodies to 5 variants - Wuhan-Hu-1, Delta, BA.1, BA.5 and JN.1, the latter of which had not yet emerged at the time of sample collection. The bivalent vaccine induced a significantly larger increase in nAb against BA.1 and JN.1. Both vaccines boosted RBD-specific MBC responses to Wuhan-Hu-1, Delta, BA.1 and BA.5 variants with a significantly greater increase for BA.1 in the bivalent group. The breadth of MBCs was significantly higher in those who received the bivalent boost and correlated with nAb breadth. Both vaccines significantly boosted Spike-specific T cell responses to the Wuhan-Hu-1 and BA.5 variants, but only the bivalent vaccine boosted BA.1 responses. INTERPRETATION These results suggest that the bivalent vaccine confers an advantage against future novel variants due to increased frequency of broadly reactive RBD-specific B cells. FUNDING Work supported by NSW Health for the NSW Vaccine, Infection and Immunology Collaborative (VIIM).
Collapse
Affiliation(s)
- Lok Bahadur Shrestha
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia; School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Katie Tungatt
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Aija Stubis
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Nicole L Fewings
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Christina Fichter
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Anouschka Akerman
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Chaturaka Rodrigo
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Nicodemus Tedla
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Sharon Lee
- Research & Education Network, Western Sydney Local Health District, Westmead, NSW, Australia
| | - Andrew R Lloyd
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Fabienne Brilot
- Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Westmead, NSW, Australia; Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Warwick J Britton
- Centenary Institute, The University of Sydney, Camperdown, NSW, Australia; RPAH Vaccination Centre, Sydney Local Health District, Sydney, NSW, Australia
| | - Anthony Kelleher
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Ian D Caterson
- RPAH Vaccination Centre, Sydney Local Health District, Sydney, NSW, Australia
| | - Mark W Douglas
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia; Storr Liver Centre, The Westmead Institute for Medical Research, Westmead, NSW, Australia; Centre for Infectious Diseases and Microbiology, Westmead Hospital, Westmead, NSW, Australia
| | - Rebecca Rockett
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - James A Triccas
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Stuart G Turville
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia; Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Rowena A Bull
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia; School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia; Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
16
|
Kuwata T, Kaku Y, Biswas S, Matsumoto K, Shimizu M, Kawanami Y, Uraki R, Okazaki K, Minami R, Nagasaki Y, Nagashima M, Yoshida I, Sadamasu K, Yoshimura K, Ito M, Kiso M, Yamayoshi S, Imai M, Ikeda T, Sato K, Toyoda M, Ueno T, Inoue T, Tanaka Y, Kimura KT, Hashiguchi T, Sugita Y, Noda T, Morioka H, Kawaoka Y, Matsushita S. Induction of IGHV3-53 public antibodies with broadly neutralising activity against SARS-CoV-2 including Omicron subvariants in a Delta breakthrough infection case. EBioMedicine 2024; 110:105439. [PMID: 39488016 PMCID: PMC11565539 DOI: 10.1016/j.ebiom.2024.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Emergence of SARS-CoV-2 variants that escape neutralising antibodies hampers the development of vaccines and therapeutic antibodies against SARS-CoV-2. IGHV3-53/3-66-derived public antibodies, which are generally specific to the prototype virus and are frequently induced in infected or vaccinated individuals, show minimal affinity maturation and high potency against prototype SARS-CoV-2. METHODS Monoclonal antibodies isolated from a Delta breakthrough infection case were analysed for cross-neutralising activities against SARS-CoV-2 variants. The broadly neutralising antibody K4-66 was further analysed in a hamster model, and the effect of somatic hypermutations was assessed using the inferred germline precursor. FINDINGS Antibodies derived from IGHV3-53/3-66 showed broader neutralising activity than antibodies derived from IGHV1-69 and other IGHV genes. IGHV3-53/3-66 antibodies neutralised the Delta variant better than the IGHV1-69 antibodies, suggesting that the IGHV3-53/3-66 antibodies were further maturated by Delta breakthrough infection. One IGHV3-53/3-66 antibody, K4-66, neutralised all Omicron subvariants tested, including EG.5.1, BA.2.86, and JN.1, and decreased the viral load in the lungs of hamsters infected with Omicron subvariant XBB.1.5. The importance of somatic hypermutations was demonstrated by the loss of neutralising activity of the inferred germline precursor of K4-66 against Beta and Omicron variants. INTERPRETATION Broadly neutralising IGHV3-53/3-66 antibodies have potential as a target for the development of effective vaccines and therapeutic antibodies against newly emerging SARS-CoV-2 variants. FUNDING This work was supported by grants from AMED (JP23ym0126048, JP22ym0126048, JP21ym0126048, JP23wm0125002, JP233fa627001, JP223fa627009, JP24jf0126002, and JP22fk0108572), and the JSPS (JP21H02970, JK23K20041, and JPJSCCA20240006).
Collapse
Affiliation(s)
- Takeo Kuwata
- Collaborative Research Program with the Chemo-Sero-Therapeutic Research Institute for Anti-viral Agents and Hematological Diseases, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| | - Yu Kaku
- Collaborative Research Program with the Chemo-Sero-Therapeutic Research Institute for Anti-viral Agents and Hematological Diseases, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shashwata Biswas
- Collaborative Research Program with the Chemo-Sero-Therapeutic Research Institute for Anti-viral Agents and Hematological Diseases, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kaho Matsumoto
- Collaborative Research Program with the Chemo-Sero-Therapeutic Research Institute for Anti-viral Agents and Hematological Diseases, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Mikiko Shimizu
- Collaborative Research Program with the Chemo-Sero-Therapeutic Research Institute for Anti-viral Agents and Hematological Diseases, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yoko Kawanami
- Collaborative Research Program with the Chemo-Sero-Therapeutic Research Institute for Anti-viral Agents and Hematological Diseases, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Ryuta Uraki
- Division of Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kyo Okazaki
- Department of Analytical and Biophysical Chemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Rumi Minami
- Internal Medicine, Clinical Research Institute, NHO Kyushu Medical Center, Fukuoka, Japan
| | - Yoji Nagasaki
- Internal Medicine, Clinical Research Institute, NHO Kyushu Medical Center, Fukuoka, Japan
| | - Mami Nagashima
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Isao Yoshida
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kenji Sadamasu
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | - Mutsumi Ito
- Division of Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Maki Kiso
- Division of Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaki Imai
- Division of Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mako Toyoda
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Takamasa Ueno
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Takako Inoue
- Department of Clinical Laboratory Medicine, Nagoya City University Hospital, Nagoya, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kanako Tarakado Kimura
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yukihiko Sugita
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroshi Morioka
- Department of Analytical and Biophysical Chemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shuzo Matsushita
- Collaborative Research Program with the Chemo-Sero-Therapeutic Research Institute for Anti-viral Agents and Hematological Diseases, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
17
|
Belik M, Reinholm A, Kolehmainen P, Heroum J, Maljanen S, Altan E, Österlund P, Laine L, Ritvos O, Pasternack A, Naves RA, Iakubovskaia A, Barkoff AM, He Q, Lempainen J, Tähtinen PA, Ivaska L, Jalkanen P, Julkunen I, Kakkola L. Long-term COVID-19 vaccine- and Omicron infection-induced humoral and cell-mediated immunity. Front Immunol 2024; 15:1494432. [PMID: 39640263 PMCID: PMC11617562 DOI: 10.3389/fimmu.2024.1494432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Mutations occurring in the spike (S) protein of SARS-CoV-2 enables the virus to evade COVID-19 vaccine- and infection-induced immunity. Methods Here we provide a comprehensive analysis of humoral and cell-mediated immunity in 111 healthcare workers who received three or four vaccine doses and were followed up to 12 and 6 months, respectively, after the last vaccine dose. Omicron breakthrough infection occurred in 71% of the vaccinees, enabling evaluation of vaccine- and vaccine/infection-induced hybrid immunity. Results Neutralizing antibodies were the highest against the ancestral D614G and were sequentially reduced against the Omicron variants BA.2, BA.5 and XBB.1.5. S1-specific IgG and neutralizing antibody levels were significantly higher in infected than in uninfected vaccinees, and the fourth vaccine dose in combination with a breakthrough infection resulted in high neutralizing antibody levels against all variants. T cell-mediated immunity, instead, was well retained already after two vaccine doses, and was not significantly strengthened by additional booster vaccine doses or Omicron breakthrough infections. Discussion While humoral immunity is sensitive to mutations in the S protein and thus declined rapidly, the cell-mediated immunity is durable to antigenic variation, which may explain the good efficacy of COVID-19 vaccines against a severe disease.
Collapse
Affiliation(s)
- Milja Belik
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Arttu Reinholm
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Jemna Heroum
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sari Maljanen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eda Altan
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Pamela Österlund
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Larissa Laine
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Olli Ritvos
- Department of Physiology, Medicum, University of Helsinki, Helsinki, Finland
| | - Arja Pasternack
- Department of Physiology, Medicum, University of Helsinki, Helsinki, Finland
| | - Rauno A. Naves
- Department of Physiology, Medicum, University of Helsinki, Helsinki, Finland
| | - Alina Iakubovskaia
- Department of Physiology, Medicum, University of Helsinki, Helsinki, Finland
| | | | - Qiushui He
- Institute of Biomedicine, University of Turku, Turku, Finland
- InFlames Research Flagship Center, University of Turku, Turku, Finland
| | - Johanna Lempainen
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Paula A. Tähtinen
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Lauri Ivaska
- InFlames Research Flagship Center, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Pinja Jalkanen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Turku, Finland
- InFlames Research Flagship Center, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Laura Kakkola
- Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| |
Collapse
|
18
|
Klegerman ME, Peng T, Seferovich I, Rahbar MH, Hessabi M, Tahanan A, Wanger A, Grimes CZ, Ostrosky-Zeichner LZ, Koster K, Cirillo JD, Abeydeera D, De Lira S, McPherson DD. Absolute concentration estimation of COVID-19 convalescent and post-vaccination IgG antibodies. PLoS One 2024; 19:e0311777. [PMID: 39485748 PMCID: PMC11530011 DOI: 10.1371/journal.pone.0311777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/24/2024] [Indexed: 11/03/2024] Open
Abstract
Soon after commencement of the SARS-CoV-2 disease outbreak of 2019 (COVID-19), it became evident that the receptor-binding domain of the viral spike protein is the target of neutralizing antibodies that comprise a critical element of protective immunity to the virus. This study addresses the relative lack of information regarding actual antibody concentrations and binding affinities in convalescent plasma (CP) samples from COVID-19 patients and extends these analyses to post-vaccination (PV) samples to estimate protective IgG antibody (Ab) levels. A direct enzyme-linked immunosorbent assay (ELISA) was used to measure IgG anti-spike protein (SP) antibodies (Abs) relative to human chimeric spike S1 Ab standards. Microplate wells were coated with recombinant SP. Affinities of Ab binding to SP were determined by previously described methods. Binding affinities were also determined in an RBD-specific sandwich ELISA. Two indices of protective immunity were determined as permutations of Ab molar concentration divided by affinity as dissociation constant (KD). The range and geometric means of Ab concentrations in 21 CP and 21 PV samples were similar and a protective Ab level of 7.5 μg/ml was determined for the latter population, based on 95% of the normal distribution of the PV population. A population (n = 21) of plasma samples from individuals receiving only one vaccination with the BNT162b2 or mRNA-1273 vaccines (PtV) exhibited a geometric mean Ab concentration significantly (p < 0.03) lower than the PV population. The results of this study have implications for future vaccine development, projection of protective efficacy duration, and understanding of the immune response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Melvin E. Klegerman
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Tao Peng
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Ira Seferovich
- Carterra, Inc., Salt Lake City, UT, United States of America
| | - Mohammad H. Rahbar
- Department of Epidemiology, Human Genetics, and Environmental Sciences (EHGES), School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
- Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Manouchehr Hessabi
- Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Amirali Tahanan
- Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Audrey Wanger
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Carolyn Z. Grimes
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Luis Z. Ostrosky-Zeichner
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Kent Koster
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States of America
| | - Jeffrey D. Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States of America
| | | | - Steve De Lira
- Carterra, Inc., Salt Lake City, UT, United States of America
| | - David D. McPherson
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| |
Collapse
|
19
|
Lam N, Lee Y, Farber DL. A guide to adaptive immune memory. Nat Rev Immunol 2024; 24:810-829. [PMID: 38831162 DOI: 10.1038/s41577-024-01040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Immune memory - comprising T cells, B cells and plasma cells and their secreted antibodies - is crucial for human survival. It enables the rapid and effective clearance of a pathogen after re-exposure, to minimize damage to the host. When antigen-experienced, memory T cells become activated, they proliferate and produce effector molecules at faster rates and in greater magnitudes than antigen-inexperienced, naive cells. Similarly, memory B cells become activated and differentiate into antibody-secreting cells more rapidly than naive B cells, and they undergo processes that increase their affinity for antigen. The ability of T cells and B cells to form memory cells after antigen exposure is the rationale behind vaccination. Understanding immune memory not only is crucial for the design of more-efficacious vaccines but also has important implications for immunotherapies in infectious disease and cancer. This 'guide to' article provides an overview of the current understanding of the phenotype, function, location, and pathways for the generation, maintenance and protective capacity of memory T cells and memory B cells.
Collapse
Affiliation(s)
- Nora Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - YoonSeung Lee
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
20
|
Hu Y, Wu Q, Chang F, Yang J, Zhang X, Wang Q, Chen J, Teng S, Liu Y, Zheng X, Wang Y, Lu R, Pan D, Liu Z, Liu F, Xie T, Wu C, Tang Y, Tang F, Qian J, Chen H, Liu W, Li YP, Qu X. Broad cross neutralizing antibodies against sarbecoviruses generated by SARS-CoV-2 infection and vaccination in humans. NPJ Vaccines 2024; 9:195. [PMID: 39438493 PMCID: PMC11496711 DOI: 10.1038/s41541-024-00997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
The outbreaks of severe acute respiratory syndrome coronavirus (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2 highlight the need for countermeasures to prevent future coronavirus pandemics. Given the unpredictable nature of spillover events, preparing antibodies with broad coronavirus-neutralizing activity is an ideal proactive strategy. Here, we investigated whether SARS-CoV-2 infection and vaccination could provide cross-neutralizing antibodies (nAbs) against zoonotic sarbecoviruses. We evaluated the cross-neutralizing profiles of plasma and monoclonal antibodies constructed from B cells from coronavirus disease 2019 (COVID-19) convalescents and vaccine recipients; against sarbecoviruses originating from bats, civets, and pangolins; and against SARS-CoV-1 and SARS-CoV-2. We found that the majority of individuals with natural infection and vaccination elicited broad nAb responses to most tested sarbecoviruses, particularly to clade 1b viruses, but exhibited very low cross-neutralization to SARS-CoV-1 in both natural infection and vaccination, and vaccination boosters significantly augmented the magnitude and breadth of nAbs to sarbecoviruses. Of the nAbs, several exhibited neutralization activity against multiple sarbecoviruses by targeting the spike receptor-binding domain (RBD) and competing with angiotensin-converting enzyme 2 (ACE2) binding. SCM12-61 demonstrated exceptional potency, with half-maximal inhibitory concentration (IC50) values of 0.001-0.091 μg/mL against tested sarbecoviruses; while VSM9-12 exhibited remarkable cross-neutralizing breadth against sarbecoviruses and SARS-CoV-2 Omicron subvariants, highlighting the potential of these two nAbs in combating sarbecoviruses and SARS-CoV-2 Omicron subvariants. Collectively, our findings suggest that vaccination with an ancestral SARS-CoV-2 vaccine, in combination with broad nAbs against sarbecoviruses, may provide a countermeasure for preventing further sarbecovirus outbreaks in humans.
Collapse
Affiliation(s)
- Yabin Hu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, 423000, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qian Wu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fangfang Chang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing Yang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyue Zhang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Qijie Wang
- The Central Hospital of Shaoyang, Shaoyang, 422099, China
| | - Jun Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Shishan Teng
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Yongchen Liu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xingyu Zheng
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - You Wang
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Rui Lu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Dong Pan
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Zhanpeng Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Fen Liu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Tianyi Xie
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Chanfeng Wu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Yinggen Tang
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Fei Tang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Qian
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hongying Chen
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| | - Wenpei Liu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China.
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, 423000, China.
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiaowang Qu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China.
| |
Collapse
|
21
|
Murayama G, Kusaoi M, Horiuchi Y, Tabe Y, Naito T, Ito S, Yamaji K, Tamura N. Effects of the induction of humoral and cellular immunity by third vaccination for SARS-CoV-2. J Infect Chemother 2024; 30:1021-1027. [PMID: 38570139 DOI: 10.1016/j.jiac.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/08/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION To control the spread of severe disease caused by mutant strains of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), it is necessary to determine whether continued vaccination enhances humoral and cellular immunity. AIM In this study, we examined the changes in humoral and cellular immunity to SARS-CoV-2 after administration of the third vaccination in Japanese adults who had received the second dose of messenger ribonucleic acid (mRNA)-1273 vaccine and the third vaccination (BNT162b2 or mRNA-1273). METHODS We measured anti-spike antibodies in immunoglobulin G (IgG) and anti-nucleocapsid IgG titers in the serum of the vaccinated subjects. To evaluate cellular immunity, the peripheral blood mononuclear cells of inoculated individuals were cultured with spiked proteins, including those of the SARS-CoV-2 conventional strain and Omicron strain, and then subjected to enzyme-linked immunospot (ELISPOT). RESULTS The results revealed that the anti-SARS-CoV-2 spike protein antibody titer increased after the third vaccination and was maintained; however, a decrease was observed at 6 months after vaccination. SARS-CoV-2 antigen-specific T helper (Th)1 and Th2 cell responses were also induced after the third vaccination and were maintained for 6 months after vaccination. Furthermore, induction of cellular immunity against Omicron strains by the omicron non-compliant vaccines, BNT162b2 or mRNA-1273, was observed. CONCLUSION These findings demonstrate the effectiveness of vaccination against unknown mutant strains that may occur in the future and provide important insights into vaccination strategies.
Collapse
Affiliation(s)
- Goh Murayama
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan.
| | - Makio Kusaoi
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Yuki Horiuchi
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Toshio Naito
- Department of General Medicine, Juntendo University Faculty of Medicine, Tokyo, 113-8421, Japan
| | - Suminobu Ito
- Department of General Medicine, Juntendo University Faculty of Medicine, Tokyo, 113-8421, Japan; Medical Technology Innovation Centre, Juntendo University, Tokyo, 113-8421, Japan
| | - Ken Yamaji
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| |
Collapse
|
22
|
Dinç HÖ, Can G, Budak B, Daşdemir FO, Keskin E, Kirkoyun-Uysal H, Aydoğan O, Balkan II, Karaali R, Ergin S, Saltoğlu N, Kocazeybek B. Antibody responses post-booster COVID-19 vaccination: Insights from a single-center prospective cohort study. Diagn Microbiol Infect Dis 2024; 110:116425. [PMID: 39098282 DOI: 10.1016/j.diagmicrobio.2024.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
The study aimed to evaluate the effect of booster dose COVID-19 vaccines on prevention and humoral immune response in individuals with different vaccination schemes during the period BA.4 and BA.5 omicron sub-variants were globally dominant. The study included 146 individuals who preferred different vaccination schemes for booster doses. Anti-spike/RBD-IgG and neutralizing antibody levels were measured 28 days after the booster dose vaccination upon their consent. There is no significant difference between median antibody titers detected according to different vaccination schemes. SARS-CoV-2 neutralizing antibody inhibition percentages were detected significantly higher in serum samples before and after the last booster dose in 2 BNT162b2+1 BNT162b2(99.42 %), 2 BNT162b2 + 2 BNT162b2(99.42 %), and 2 BNT162b2 + 3 BNT162b2(99.42 %) vaccination schemes (p = 0.004, p = 0.044, p = 0.002,respectively). The study indicated that a booster vaccination dose provides a high level of protection against severe COVID-19 and death. We think that the variant-specific pancoronavirus vaccines will be necessary to protect against breakthrough infections.
Collapse
Affiliation(s)
- Harika-Öykü Dinç
- Department of Medical Microbiology, Faculty of Medicine, Üsküdar University, Istanbul, 34768, Turkey
| | - Günay Can
- Department of Public Health, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Beyhan Budak
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Ferhat-Osman Daşdemir
- Department of Medical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Elif Keskin
- Department of Medical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Hayriye Kirkoyun-Uysal
- Department of Medical Microbiology, Faculty of Medicine, Istanbul University, Istanbul 34093, Turkey
| | - Okan Aydoğan
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Ilker-Inanç Balkan
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Rıdvan Karaali
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Sevgi Ergin
- Department of Medical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Neşe Saltoğlu
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Bekir Kocazeybek
- Department of Medical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey.
| |
Collapse
|
23
|
Ma C, Luo C, Deng F, Yu C, Chen Y, Zhong G, Zhan Y, Nie L, Huang Y, Xia Y, Cai Z, Xu K, Cai H, Wang F, Lu Z, Zeng X, Zhu Y, Liu S. Major vault protein directly enhances adaptive immunity induced by Influenza A virus or indirectly through innate immunity. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167441. [PMID: 39069011 DOI: 10.1016/j.bbadis.2024.167441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
As we previously revealed, major vault protein (MVP) is a virus-induced host factor, and its expression is crucial for innate immune responses. Nevertheless, the function of MVP in adaptive immunity is poorly known. Here, we demonstrate that Mvp knockout mice had attenuated antibody responses and reduced survival after rechallenge with homologous influenza A virus (IAV) relative to wild-type mice. Analysis of B cell populations showed that MVP promoted germinal center (GC) responses to develop optimal antiviral humoral immunity. Although MVP-deficient T cells and dendritic cells (DCs) were not intrinsically damaged, MVP promoted activating effector T cells and T follicular helper responses and regulated specific DC subsets. These findings suggest that MVP directs an effective adaptive immune response against IAV by directly engaging in GC reactions or indirectly augmenting cellular immunity via innate immune pathways.
Collapse
Affiliation(s)
- Caijiao Ma
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chuanjin Luo
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Feiyan Deng
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chen Yu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yumeng Chen
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Gechang Zhong
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuxin Zhan
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Longyu Nie
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Huang
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yongfang Xia
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zeng Cai
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ke Xu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huanhuan Cai
- Institute of Myocardial Injury and Repair, Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Fubing Wang
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430072, China
| | - Zhibing Lu
- Institute of Myocardial Injury and Repair, Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xiangtai Zeng
- Department of General Surgery, Ganzhou Key Laboratory of Thyroid Cancer, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute of Myocardial Injury and Repair, Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430072, China; Department of General Surgery, Ganzhou Key Laboratory of Thyroid Cancer, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
24
|
Zhang X, Li M, Zhang N, Li Y, Teng F, Li Y, Zhang X, Xu X, Li H, Zhu Y, Wang Y, Jia Y, Qin C, Wang B, Guo S, Wang Y, Yu X. SARS-CoV-2 Evolution: Immune Dynamics, Omicron Specificity, and Predictive Modeling in Vaccinated Populations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402639. [PMID: 39206813 PMCID: PMC11516136 DOI: 10.1002/advs.202402639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Host immunity is central to the virus's spread dynamics, which is significantly influenced by vaccination and prior infection experiences. In this work, we analyzed the co-evolution of SARS-CoV-2 mutation, angiotensin-converting enzyme 2 (ACE2) receptor binding, and neutralizing antibody (NAb) responses across various variants in 822 human and mice vaccinated with different non-Omicron and Omicron vaccines is analyzed. The link between vaccine efficacy and vaccine type, dosing, and post-vaccination duration is revealed. The classification of immune protection against non-Omicron and Omicron variants is co-evolved with genetic mutations and vaccination. Additionally, a model, the Prevalence Score (P-Score) is introduced, which surpasses previous algorithm-based models in predicting the potential prevalence of new variants in vaccinated populations. The hybrid vaccination combining the wild-type (WT) inactivated vaccine with the Omicron BA.4/5 mRNA vaccine may provide broad protection against both non-Omicron variants and Omicron variants, albeit with EG.5.1 still posing a risk. In conclusion, these findings enhance understanding of population immunity variations and provide valuable insights for future vaccine development and public health strategies.
Collapse
Affiliation(s)
- Xiaohan Zhang
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences‐Beijing (PHOENIX Center)Beijing Institute of LifeomicsBeijing102206China
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Mansheng Li
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences‐Beijing (PHOENIX Center)Beijing Institute of LifeomicsBeijing102206China
| | - Nana Zhang
- Department of VirologyState Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071China
| | - Yunhui Li
- Department of Clinical LaboratoryBeijing Ditan HospitalCapital Medical UniversityBeijing100015China
| | - Fei Teng
- Emergency Medicine Clinical Research CenterBeijing Chao‐Yang HospitalCapital Medical UniversityBeijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijing100020China
| | - Yongzhe Li
- Department of Clinical LaboratoryPeking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical CollegeBeijing100730China
| | - Xiaomei Zhang
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences‐Beijing (PHOENIX Center)Beijing Institute of LifeomicsBeijing102206China
| | - Xingming Xu
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences‐Beijing (PHOENIX Center)Beijing Institute of LifeomicsBeijing102206China
| | - Haolong Li
- Department of Clinical LaboratoryPeking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical CollegeBeijing100730China
| | - Yunping Zhu
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences‐Beijing (PHOENIX Center)Beijing Institute of LifeomicsBeijing102206China
| | - Yumin Wang
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Yan Jia
- ProteomicsEra Medical Co. Ltd.Beijing102206China
| | - Chengfeng Qin
- Department of VirologyState Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071China
| | - Bingwei Wang
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Shubin Guo
- Emergency Medicine Clinical Research CenterBeijing Chao‐Yang HospitalCapital Medical UniversityBeijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijing100020China
| | - Yajie Wang
- Department of Clinical LaboratoryBeijing Ditan HospitalCapital Medical UniversityBeijing100015China
| | - Xiaobo Yu
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences‐Beijing (PHOENIX Center)Beijing Institute of LifeomicsBeijing102206China
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| |
Collapse
|
25
|
Notarbartolo S. T-Cell Immune Responses to SARS-CoV-2 Infection and Vaccination. Vaccines (Basel) 2024; 12:1126. [PMID: 39460293 PMCID: PMC11511197 DOI: 10.3390/vaccines12101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
The innate and adaptive immune systems collaborate to detect SARS-CoV-2 infection, minimize the viral spread, and kill infected cells, ultimately leading to the resolution of the infection. The adaptive immune system develops a memory of previous encounters with the virus, providing enhanced responses when rechallenged by the same pathogen. Such immunological memory is the basis of vaccine function. Here, we review the current knowledge on the immune response to SARS-CoV-2 infection and vaccination, focusing on the pivotal role of T cells in establishing protective immunity against the virus. After providing an overview of the immune response to SARS-CoV-2 infection, we describe the main features of SARS-CoV-2-specific CD4+ and CD8+ T cells, including cross-reactive T cells, generated in patients with different degrees of COVID-19 severity, and of Spike-specific CD4+ and CD8+ T cells induced by vaccines. Finally, we discuss T-cell responses to SARS-CoV-2 variants and hybrid immunity and conclude by highlighting possible strategies to improve the efficacy of COVID-19 vaccination.
Collapse
Affiliation(s)
- Samuele Notarbartolo
- Infectious Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
26
|
Ying B, Liang CY, Desai P, Scheaffer SM, Elbashir SM, Edwards DK, Thackray LB, Diamond MS. Ipsilateral or contralateral boosting of mice with mRNA vaccines confers equivalent immunity and protection against a SARS-CoV-2 Omicron strain. J Virol 2024; 98:e0057424. [PMID: 39194250 PMCID: PMC11406931 DOI: 10.1128/jvi.00574-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Boosting with mRNA vaccines encoding variant-matched spike proteins has been implemented to mitigate their reduced efficacy against emerging SARS-CoV-2 variants. Nonetheless, in humans, it remains unclear whether boosting in the ipsilateral or contralateral arm with respect to the priming doses impacts immunity and protection. Here, we boosted K18-hACE2 mice with either monovalent mRNA-1273 (Wuhan-1 spike) or bivalent mRNA-1273.214 (Wuhan-1 + BA.1 spike) vaccine in the ipsilateral or contralateral leg after a two-dose priming series with mRNA-1273. Boosting in the ipsilateral or contralateral leg elicited equivalent levels of serum IgG and neutralizing antibody responses against Wuhan-1 and BA.1. While contralateral boosting with mRNA vaccines resulted in the expansion of spike-specific B and T cells beyond the ipsilateral draining lymph node (DLN) to the contralateral DLN, administration of a third mRNA vaccine dose at either site resulted in similar levels of antigen-specific germinal center B cells, plasmablasts/plasma cells, T follicular helper cells, and CD8+ T cells in the DLNs and the spleen. Furthermore, ipsilateral and contralateral boosting with mRNA-1273 or mRNA-1273.214 vaccines conferred similar homologous or heterologous immune protection against SARS-CoV-2 BA.1 virus challenge with equivalent reductions in viral RNA and infectious virus in the nasal turbinates and lungs. Collectively, our data show limited differences in B and T cell immune responses after ipsilateral and contralateral site boosting by mRNA vaccines that do not substantively impact protection against an Omicron strain.IMPORTANCESequential boosting with mRNA vaccines has been an effective strategy to overcome waning immunity and neutralization escape by emerging SARS-CoV-2 variants. However, it remains unclear how the site of boosting relative to the primary vaccination series shapes optimal immune responses or breadth of protection against variants. In K18-hACE2 transgenic mice, we observed that intramuscular boosting with historical monovalent or variant-matched bivalent vaccines in the ipsilateral or contralateral limb elicited comparable levels of serum spike-specific antibody and antigen-specific B and T cell responses. Moreover, boosting on either side conferred equivalent protection against a SARS-CoV-2 Omicron challenge strain. Our data in mice suggest that the site of intramuscular boosting with an mRNA vaccine does not substantially impact immunity or protection against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Suzanne M Scheaffer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | - Larissa B Thackray
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
27
|
Byrne J, Gu L, Garcia-Leon A, Gaillard CM, Saini G, Alalwan D, Tomás-Cortázar J, Kenny G, Donohue S, Reynolds B, O'Gorman T, Landay A, Doran P, Stemler J, Koehler P, Cox RJ, Olesen OF, Lelievre JD, O'Broin C, Savinelli S, Feeney ER, O'Halloran JA, Cotter A, Horgan M, Kelly C, Sadlier C, de Barra E, Cornely OA, Gautier V, Mallon PW. Robust and persistent B-cell responses following SARS-CoV-2 vaccine determine protection from SARS-CoV-2 infection. Front Immunol 2024; 15:1445653. [PMID: 39355249 PMCID: PMC11442242 DOI: 10.3389/fimmu.2024.1445653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction A clear immune correlate of protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has not been defined. We explored antibody, B-cell, and T-cell responses to the third-dose vaccine and relationship to incident SARS-CoV-2 infection. Methods Adults in a prospective cohort provided blood samples at day 0, day 14, and 10 months after the third-dose SARS-CoV-2 vaccine. Participants self-reported incident SARS-CoV-2 infection. Plasma anti-SARS-CoV-2 receptor-binding domain (RBD) and spike-subunit-1 and spike-subunit-2 antibodies were measured. A sub-study assessed SARS-CoV-2-specific plasma and memory B-cell and memory T-cell responses in peripheral blood mononuclear cells by enzyme-linked immunospot. Comparative analysis between participants who developed incident infection and uninfected participants utilised non-parametric t-tests, Kaplan-Meier survival analysis, and Cox proportional hazard ratios. Results Of the 132 participants, 47 (36%) reported incident SARS-CoV-2 infection at a median 16.5 (16.25-21) weeks after the third-dose vaccination. RBD titres and B-cell responses, but not T-cell responses, increased after the third-dose vaccine. Whereas no significant difference in day 14 antibody titres or T-cell responses was observed between participants with and without incident SARS-CoV-2 infection, RBD memory B-cell frequencies were significantly higher in those who did not develop infection [10.0% (4.5%-16.0%) versus 4.9% (1.6%-9.3%), p = 0.01]. RBD titres and memory B-cell frequencies remained significantly higher at 10 months than day 0 levels (p < 0.01). Discussion Robust antibody and B-cell responses persisted at 10 months following the third-dose vaccination. Higher memory B-cell frequencies, rather than antibody titres or T-cell responses, predicted protection from subsequent infection, identifying memory B cells as a correlate of protection.
Collapse
Affiliation(s)
- Joanne Byrne
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Lili Gu
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Alejandro Garcia-Leon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Colette Marie Gaillard
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Gurvin Saini
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Dana Alalwan
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Julen Tomás-Cortázar
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Grace Kenny
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Sean Donohue
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Bearach Reynolds
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Tessa O'Gorman
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Alan Landay
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Peter Doran
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Jannik Stemler
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Cologne, Germany
- Faculty of Medicine Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Philipp Koehler
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Cologne, Germany
- Faculty of Medicine Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole F Olesen
- European Vaccine Initiative, Heidelberg, Germany
| | | | - Cathal O'Broin
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Stefano Savinelli
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Eoin R Feeney
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Jane A O'Halloran
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Aoife Cotter
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Mary Horgan
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Christine Kelly
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Corrina Sadlier
- Department of Infectious Diseases, Cork University Hospital, Cork, Ireland
| | - Eoghan de Barra
- Department of Infectious Diseases, Beaumont Hospital, Dublin, Ireland
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Oliver A Cornely
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Cologne, Germany
- Faculty of Medicine Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Partner Site Bonn-Cologne Department Cologne, German Centre for Infection Research (DZIF), Cologne, Germany
| | - Virginie Gautier
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Patrick Wg Mallon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
28
|
Goodwin E, Gibbs JS, Yewdell JW, Eisenlohr LC, Hensley SE. Influenza virus antibodies inhibit antigen-specific de novo B cell responses in mice. J Virol 2024; 98:e0076624. [PMID: 39194245 PMCID: PMC11406888 DOI: 10.1128/jvi.00766-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Antibody responses to influenza vaccines tend to be focused on epitopes encountered during prior influenza exposures, with little production of de novo responses to novel epitopes. To examine the contribution of circulating antibodies to this phenomenon, we passively transferred a hemagglutinin (HA)-specific monoclonal antibody (mAb) into mice before immunizing with whole inactivated virions. The HA mAb inhibited de novo HA-specific antibodies, plasmablasts, germinal center B cells, and memory B cells, while responses to a second antigen in the vaccine, neuraminidase (NA), were uninhibited. The HA mAb potently inhibited de novo antibody responses against epitopes near the HA mAb binding site. The HA mAb also promoted IgG1 class switching, an effect that, unlike the inhibition of HA responses, relied on signaling through Fc-gamma receptors. These studies suggest that circulating antibodies inhibit de novo B cell responses in an antigen-specific manner, which likely contributes to differences in antibody specificities elicited during primary and secondary influenza virus exposures.IMPORTANCEMost humans are exposed to influenza viruses in childhood and then subsequently exposed to antigenically drifted influenza variants later in life. It is unclear if antibodies elicited by earlier influenza virus exposures impact immunity against new influenza virus strains. Here, we used a mouse model to investigate how an anti-hemagglutinin (HA) monoclonal antibody (mAb) affects de novo B cell and antibody responses to the protein targeted by the monoclonal antibody (HA) and a second protein not targeted by the monoclonal antibody [neuraminidase (NA)]. Collectively, our studies suggest that circulating anti-influenza virus antibodies can potently modulate the magnitude and specificity of antibody responses elicited by secondary influenza virus exposures.
Collapse
Affiliation(s)
- Eileen Goodwin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James S Gibbs
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Laurence C Eisenlohr
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Raisinghani N, Alshahrani M, Gupta G, Verkhivker G. AlphaFold2 Modeling and Molecular Dynamics Simulations of the Conformational Ensembles for the SARS-CoV-2 Spike Omicron JN.1, KP.2 and KP.3 Variants: Mutational Profiling of Binding Energetics Reveals Epistatic Drivers of the ACE2 Affinity and Escape Hotspots of Antibody Resistance. Viruses 2024; 16:1458. [PMID: 39339934 PMCID: PMC11437503 DOI: 10.3390/v16091458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The most recent wave of SARS-CoV-2 Omicron variants descending from BA.2 and BA.2.86 exhibited improved viral growth and fitness due to convergent evolution of functional hotspots. These hotspots operate in tandem to optimize both receptor binding for effective infection and immune evasion efficiency, thereby maintaining overall viral fitness. The lack of molecular details on structure, dynamics and binding energetics of the latest FLiRT and FLuQE variants with the ACE2 receptor and antibodies provides a considerable challenge that is explored in this study. We combined AlphaFold2-based atomistic predictions of structures and conformational ensembles of the SARS-CoV-2 spike complexes with the host receptor ACE2 for the most dominant Omicron variants JN.1, KP.1, KP.2 and KP.3 to examine the mechanisms underlying the role of convergent evolution hotspots in balancing ACE2 binding and antibody evasion. Using the ensemble-based mutational scanning of the spike protein residues and computations of binding affinities, we identified binding energy hotspots and characterized the molecular basis underlying epistatic couplings between convergent mutational hotspots. The results suggested the existence of epistatic interactions between convergent mutational sites at L455, F456, Q493 positions that protect and restore ACE2-binding affinity while conferring beneficial immune escape. To examine immune escape mechanisms, we performed structure-based mutational profiling of the spike protein binding with several classes of antibodies that displayed impaired neutralization against BA.2.86, JN.1, KP.2 and KP.3. The results confirmed the experimental data that JN.1, KP.2 and KP.3 harboring the L455S and F456L mutations can significantly impair the neutralizing activity of class 1 monoclonal antibodies, while the epistatic effects mediated by F456L can facilitate the subsequent convergence of Q493E changes to rescue ACE2 binding. Structural and energetic analysis provided a rationale to the experimental results showing that BD55-5840 and BD55-5514 antibodies that bind to different binding epitopes can retain neutralizing efficacy against all examined variants BA.2.86, JN.1, KP.2 and KP.3. The results support the notion that evolution of Omicron variants may favor emergence of lineages with beneficial combinations of mutations involving mediators of epistatic couplings that control balance of high ACE2 affinity and immune evasion.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
30
|
Mondi A, Mastrorosa I, Navarra A, Cimaglia C, Pinnetti C, Mazzotta V, Agresta A, Corpolongo A, Zolezzi A, Al Moghazi S, Loiacono L, Bocci MG, Matusali G, D’Annunzio A, Gallì P, Maggi F, Vairo F, Girardi E, Antinori A. Impact of Anti-SARS-CoV-2 Vaccination on Disease Severity and Clinical Outcomes of Individuals Hospitalized for COVID-19 Throughout Successive Pandemic Waves: Data from an Italian Reference Hospital. Vaccines (Basel) 2024; 12:1018. [PMID: 39340048 PMCID: PMC11435849 DOI: 10.3390/vaccines12091018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
This is a retrospective observational study including all COVID-19 patients admitted at our Institute throughout three successive pandemic waves, from January 2021 to June 2023. The main in-hospital outcomes (clinical progression [CP], defined as admission to Intensive Care Unit [ICU]/death, and death within 28 days) were compared among participants unvaccinated (NV), fully vaccinated (FV), with one (FV&B1) and two (FV&B2) booster doses. Vaccinated participants were stratified into recently and waned FV/FV&B1/FV&B2, depending on the time elapsed from last dose (≤ and >120 days, respectively). There were 4488 participants: 2224 NV, 674 FV, 1207 FV&B1, and 383 FV&B2. Within 28 days, there were 604 ICU admissions, 396 deaths, and 737 CP. After adjusting for the main confounders, the risk of both in-hospital outcomes was reduced in vaccinated individuals, especially in those who received the booster dose (approximately by 36% for FV and >50% for FV&B1 and FV&B2 compared to NV). Similarly, after restricting the analysis to vaccinated participants only, we observed a risk reduction of approximately 40% for FV&B1 and 50% for FV&B2, compared to FV, regardless of the distance since the last dose. Our data confirm the vaccine's effectiveness in preventing severe COVID-19 and support the efforts to increase the uptake of booster doses, mainly among older and frailer individuals, still at a greater risk of clinical progression.
Collapse
Affiliation(s)
- Annalisa Mondi
- Clinical and Research Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.M.); (C.P.); (V.M.); (A.C.); (A.Z.); (S.A.M.); (L.L.); (M.G.B.); (A.A.)
| | - Ilaria Mastrorosa
- Clinical and Research Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.M.); (C.P.); (V.M.); (A.C.); (A.Z.); (S.A.M.); (L.L.); (M.G.B.); (A.A.)
| | - Assunta Navarra
- Department of Epidemiology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.N.); (C.C.); (A.A.); (F.V.)
| | - Claudia Cimaglia
- Department of Epidemiology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.N.); (C.C.); (A.A.); (F.V.)
| | - Carmela Pinnetti
- Clinical and Research Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.M.); (C.P.); (V.M.); (A.C.); (A.Z.); (S.A.M.); (L.L.); (M.G.B.); (A.A.)
| | - Valentina Mazzotta
- Clinical and Research Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.M.); (C.P.); (V.M.); (A.C.); (A.Z.); (S.A.M.); (L.L.); (M.G.B.); (A.A.)
| | - Alessandro Agresta
- Department of Epidemiology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.N.); (C.C.); (A.A.); (F.V.)
| | - Angela Corpolongo
- Clinical and Research Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.M.); (C.P.); (V.M.); (A.C.); (A.Z.); (S.A.M.); (L.L.); (M.G.B.); (A.A.)
| | - Alberto Zolezzi
- Clinical and Research Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.M.); (C.P.); (V.M.); (A.C.); (A.Z.); (S.A.M.); (L.L.); (M.G.B.); (A.A.)
| | - Samir Al Moghazi
- Clinical and Research Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.M.); (C.P.); (V.M.); (A.C.); (A.Z.); (S.A.M.); (L.L.); (M.G.B.); (A.A.)
| | - Laura Loiacono
- Clinical and Research Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.M.); (C.P.); (V.M.); (A.C.); (A.Z.); (S.A.M.); (L.L.); (M.G.B.); (A.A.)
| | - Maria Grazia Bocci
- Clinical and Research Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.M.); (C.P.); (V.M.); (A.C.); (A.Z.); (S.A.M.); (L.L.); (M.G.B.); (A.A.)
| | - Giulia Matusali
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (G.M.); (F.M.)
| | - Alberto D’Annunzio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Health Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy;
| | - Paola Gallì
- Health Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy;
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (G.M.); (F.M.)
| | - Francesco Vairo
- Department of Epidemiology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.N.); (C.C.); (A.A.); (F.V.)
| | - Enrico Girardi
- Scientific Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy;
| | - Andrea Antinori
- Clinical and Research Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.M.); (C.P.); (V.M.); (A.C.); (A.Z.); (S.A.M.); (L.L.); (M.G.B.); (A.A.)
| |
Collapse
|
31
|
Stalman EW, Wieske L, Keijser JBD, van Dam KPJ, Kummer LYL, Wilbrink MF, van Kempen ZLE, Killestein J, Volkers AG, Tas SW, Boekel L, Wolbink GJ, van der Kooi AJ, Raaphorst J, Löwenberg M, Takkenberg RB, D'Haens GRAM, Spuls PI, Bekkenk MW, Musters AH, Post NF, Bosma AL, Hilhorst ML, Vegting Y, Bemelman FJ, Voskuyl AE, Broens B, Parra Sanchez A, van Els CACM, de Wit J, Rutgers A, de Leeuw K, Horváth B, Verschuuren JJGM, Ruiter AM, van Ouwerkerk L, van der Woude D, Allaart RCF, Onno Teng YK, van Paassen P, Busch MH, Brusse E, van Doorn PA, Baars AE, Hijnen D, Schreurs CRG, van der Pol WL, Goedee HS, Steenhuis M, Keijzer S, Cristianawati O, Brinke AT, Verstegen NJM, Zwinderman KAH, van Ham SM, Rispens T, Welkers MR, Jonges M, Eftimov F, Kuijpers TW. Clinical and humoral response after SARS-CoV-2 breakthrough infection in patients receiving immunosuppressant therapy. J Allergy Clin Immunol 2024; 154:754-766.e7. [PMID: 38763170 DOI: 10.1016/j.jaci.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Despite impaired humoral response in patients treated with immunosuppressants (ISPs), recent studies found similar severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breakthrough infection compared to controls. One potential explanation is the rapid generation of humoral response on infection, but evidence is lacking. OBJECTIVES We investigated the longitudinal dynamics of the SARS-CoV-2 antibody repertoire after SARS-CoV-2 delta and omicron breakthrough infection in patients with immune-mediated inflammatory diseases (IMIDs) receiving ISP therapy and controls. METHODS As a prospective substudy of the national Target-to-B! (T2B!) consortium, we included IMID patients receiving ISPs therapy and controls who reported SARS-CoV-2 breakthrough infection between July 1, 2021, and April 1, 2022. To get an impression of the dynamics of the antibody repertoire, 3 antibody titers of wild-type RBD, wild-type S, and omicron RBD were measured at 4 time points after SARS-CoV-2 breakthrough infection. RESULTS We included 302 IMID patients receiving ISPs and 178 controls. Antibody titers increased up to 28 days after breakthrough infection in both groups. However, in IMID patients receiving therapy with anti-CD20 and sphingosine-1 phosphate receptor modulators, antibody titers were considerably lower compared to controls. In the anti-TNF group, we observed slightly lower antibody titers in the early stages and a faster decline of antibodies after infection compared to controls. Breakthrough infections were mostly mild, and hospitalization was required in less than 1% of cases. CONCLUSIONS Most ISPs do not influence the dynamics of the SARS-CoV-2 antibody repertoire and exhibit a rapid recall response with cross-reactive antibody clones toward new virus variants. However, in patients treated with anti-CD20 therapy or sphingosine-1 phosphate receptor modulators, the dynamics were greatly impaired, and to a lesser extent in those who received anti-TNF. Nevertheless, only a few severe breakthrough cases were reported.
Collapse
Affiliation(s)
- Eileen W Stalman
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Clinical Neurophysiology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Jim B D Keijser
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Koos P J van Dam
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura Y L Kummer
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Maarten F Wilbrink
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Zoé L E van Kempen
- Department of Neurology, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Joep Killestein
- Department of Neurology, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Adriaan G Volkers
- Department of Gastroenterology and Hepatology, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sander W Tas
- Amsterdam Rheumatology and Immunology Center, Amsterdam UMC, Department of Rheumatology and Clinical Immunology, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura Boekel
- Amsterdam Rheumatology and Immunology Center, Amsterdam UMC, Department of Rheumatology and Clinical Immunology, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerrit J Wolbink
- Amsterdam Rheumatology and Immunology Center, location Reade, Department of Rheumatology, Amsterdam, The Netherlands
| | - Anneke J van der Kooi
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joost Raaphorst
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Löwenberg
- Department of Gastroenterology and Hepatology, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - R Bart Takkenberg
- Department of Gastroenterology and Hepatology, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Geert R A M D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Phyllis I Spuls
- Department of Dermatology, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel W Bekkenk
- Department of Dermatology, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Annelie H Musters
- Department of Dermatology, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicoline F Post
- Department of Dermatology, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Angela L Bosma
- Department of Dermatology, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc L Hilhorst
- Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Yosta Vegting
- Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Frederique J Bemelman
- Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexandre E Voskuyl
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Bo Broens
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Agner Parra Sanchez
- Amsterdam Rheumatology and Immunology Center, Amsterdam UMC, Department of Rheumatology and Clinical Immunology, University of Amsterdam, Amsterdam, The Netherlands; Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands; Faculty of Veterinary Medicine, Utrecht University Utrecht, Utrecht, The Netherlands
| | - Jelle de Wit
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Abraham Rutgers
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, The Netherlands
| | - Karina de Leeuw
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, The Netherlands
| | - Barbara Horváth
- Department of Dermatology, Center for Blistering Diseases, University Medical Center Groningen, University Groningen, Groningen, The Netherlands
| | | | - Annabel M Ruiter
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lotte van Ouwerkerk
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Diane van der Woude
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Renée C F Allaart
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Y K Onno Teng
- Centre of Expertise for Lupus-, Vasculitis-, and Complement-Mediated Systemic Diseases, Department of Internal Medicine-Nephrology Section, Leiden University Medical Centre, Leiden, The Netherlands
| | - Pieter van Paassen
- Department of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Matthias H Busch
- Department of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Esther Brusse
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Pieter A van Doorn
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Adája E Baars
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Dirkjan Hijnen
- Department of Dermatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Corine R G Schreurs
- Department of Dermatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - W Ludo van der Pol
- Department of Neurology and Neurosurgery, Brain Center UMC Utrecht, Utrecht, The Netherlands
| | - H Stephan Goedee
- Department of Neurology and Neurosurgery, Brain Center UMC Utrecht, Utrecht, The Netherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sofie Keijzer
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Olvi Cristianawati
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Niels J M Verstegen
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Koos A H Zwinderman
- Clinical Research Unit, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands; Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Matthijs R Welkers
- Medical Microbiology and Infection Prevention Department, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel Jonges
- Medical Microbiology and Infection Prevention Department, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology, and Infectious Disease, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Kotaki R, Moriyama S, Oishi S, Onodera T, Adachi Y, Sasaki E, Ishino K, Morikawa M, Takei H, Takahashi H, Takano T, Nishiyama A, Yumoto K, Terahara K, Isogawa M, Matsumura T, Shinkai M, Takahashi Y. Repeated Omicron exposures redirect SARS-CoV-2-specific memory B cell evolution toward the latest variants. Sci Transl Med 2024; 16:eadp9927. [PMID: 39167666 DOI: 10.1126/scitranslmed.adp9927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024]
Abstract
Immunological imprinting by ancestral SARS-CoV-2 strains is thought to impede the robust induction of Omicron-specific humoral responses by Omicron-based booster vaccines. Here, we analyzed the specificity and neutralization activity of memory B (Bmem) cells after repeated BA.5 exposure in individuals previously imprinted by ancestral strain-based mRNA vaccines. After a second BA.5 exposure, Bmem cells with BA.5 spike protein-skewed reactivity were promptly elicited, correlating with preexisting antibody titers. Clonal lineage analysis identified BA.5-skewed Bmem cells that had redirected their specificity from the ancestral strain to BA.5 through somatic hypermutations. Moreover, Bmem cells with redirected BA.5 specificity exhibited accelerated development compared with de novo Bmem cells derived from naïve repertoires. This redirected BA.5 specificity demonstrated greater resilience to viral point mutation and adaptation to recent Omicron variants HK.3 and JN.1, months after the second BA.5 exposure, suggesting that existing Bmem cells elicited by older vaccines can redirect their specificity toward newly evolving variants.
Collapse
Affiliation(s)
- Ryutaro Kotaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Shintaro Oishi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Eita Sasaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kota Ishino
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | | | | | - Tomohiro Takano
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Ayae Nishiyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kohei Yumoto
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kazutaka Terahara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Masanori Isogawa
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Takayuki Matsumura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Hokkaido 001-0021, Japan
| |
Collapse
|
33
|
Voss WN, Mallory MA, Byrne PO, Marchioni JM, Knudson SA, Powers JM, Leist SR, Dadonaite B, Townsend DR, Kain J, Huang Y, Satterwhite E, Castillo IN, Mattocks M, Paresi C, Munt JE, Scobey T, Seeger A, Premkumar L, Bloom JD, Georgiou G, McLellan JS, Baric RS, Lavinder JJ, Ippolito GC. Hybrid immunity to SARS-CoV-2 arises from serological recall of IgG antibodies distinctly imprinted by infection or vaccination. Cell Rep Med 2024; 5:101668. [PMID: 39094579 PMCID: PMC11384961 DOI: 10.1016/j.xcrm.2024.101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
We describe the molecular-level composition of polyclonal immunoglobulin G (IgG) anti-spike antibodies from ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, vaccination, or their combination ("hybrid immunity") at monoclonal resolution. Infection primarily triggers S2/N-terminal domain (NTD)-reactive antibodies, whereas vaccination mainly induces anti-receptor-binding domain (RBD) antibodies. This imprint persists after secondary exposures wherein >60% of ensuing hybrid immunity derives from the original IgG pool. Monoclonal constituents of the original IgG pool can increase breadth, affinity, and prevalence upon secondary exposures, as exemplified by the plasma antibody SC27. Following a breakthrough infection, vaccine-induced SC27 gained neutralization breadth and potency against SARS-CoV-2 variants and zoonotic viruses (half-maximal inhibitory concentration [IC50] ∼0.1-1.75 nM) and increased its binding affinity to the protective RBD class 1/4 epitope (dissociation constant [KD] < 5 pM). According to polyclonal escape analysis, SC27-like binding patterns are common in SARS-CoV-2 hybrid immunity. Our findings provide a detailed molecular definition of immunological imprinting and show that vaccination can produce class 1/4 (SC27-like) IgG antibodies circulating in the blood.
Collapse
Affiliation(s)
- William N Voss
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Michael A Mallory
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick O Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey M Marchioni
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Sean A Knudson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - John M Powers
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Douglas R Townsend
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jessica Kain
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Yimin Huang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ed Satterwhite
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Izabella N Castillo
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa Mattocks
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chelsea Paresi
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Jennifer E Munt
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Trevor Scobey
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison Seeger
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA
| | - George Georgiou
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ralph S Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason J Lavinder
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Gregory C Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
34
|
Ramezani-Rad P, Marina-Zárate E, Maiorino L, Myers A, Michaels KK, Pires IS, Bloom NI, Lopez PG, Cottrell CA, Burton I, Groschel B, Pradhan A, Stiegler G, Budai M, Kumar D, Pallerla S, Sayeed E, Sagar SL, Kasturi SP, Van Rompay KKA, Hangartner L, Wagner A, Burton DR, Schief WR, Crotty S, Irvine DJ. Dose-dependent regulation of immune memory responses against HIV by saponin monophosphoryl lipid A nanoparticle adjuvant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.604373. [PMID: 39211109 PMCID: PMC11361155 DOI: 10.1101/2024.07.31.604373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The induction of durable protective immune responses is the main goal of prophylactic vaccines, and adjuvants play an important role as drivers of such responses. Despite advances in vaccine strategies, a safe and effective HIV vaccine remains a significant challenge. The use of an appropriate adjuvant is crucial to the success of HIV vaccines. Here we assessed the saponin/MPLA nanoparticle (SMNP) adjuvant with an HIV envelope (Env) trimer, evaluating the safety and impact of multiple variables including adjuvant dose (16-fold dose range), immunization route, and adjuvant composition on the establishment of Env-specific memory T and B cell responses (T Mem and B Mem ) and long-lived plasma cells in non-human primates. Robust B Mem were detected in all groups, but a 6-fold increase was observed in the highest SMNP dose group vs. the lowest dose group. Similarly, stronger vaccine responses were induced in the highest SMNP dose for CD40L + OX40 + CD4 T Mem (11-fold), IFNγ + CD4 T Mem (15-fold), IL21 + CD4 T Mem (9-fold), circulating T FH (3.6-fold), bone marrow plasma cells (7-fold), and binding IgG (1.3-fold). Substantial tier-2 neutralizing antibodies were only observed in the higher SMNP dose groups. These investigations highlight the dose-dependent potency of SMNP in non-human primates, which are relevant for human use and next-generation vaccines.
Collapse
|
35
|
Kim W. Germinal Center Response to mRNA Vaccination and Impact of Immunological Imprinting on Subsequent Vaccination. Immune Netw 2024; 24:e28. [PMID: 39246619 PMCID: PMC11377948 DOI: 10.4110/in.2024.24.e28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Accepted: 04/29/2024] [Indexed: 09/10/2024] Open
Abstract
Vaccines are the most effective intervention currently available, offering protective immunity against targeted pathogens. The emergence of the coronavirus disease 2019 pandemic has prompted rapid development and deployment of lipid nanoparticle encapsulated, mRNA-based vaccines. While these vaccines have demonstrated remarkable immunogenicity, concerns persist regarding their ability to confer durable protective immunity to continuously evolving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. This review focuses on human B cell responses induced by SARS-CoV-2 mRNA vaccination, with particular emphasis on the crucial role of germinal center reactions in shaping enduring protective immunity. Additionally, we explored observations of immunological imprinting and dynamics of recalled pre-existing immunity following variants of concern-based booster vaccination. Insights from this review contribute to comprehensive understanding B cell responses to mRNA vaccination in humans, thereby refining vaccination strategies for optimal and sustained protection against evolving coronavirus variants.
Collapse
Affiliation(s)
- Wooseob Kim
- Department of Microbiology, Korea University College of Medicine, Seoul 02841, Korea
- Vaccine Innovation Center, Korea University College of Medicine, Seoul 02841, Korea
| |
Collapse
|
36
|
Hartley GE, Fryer HA, Gill PA, Boo I, Bornheimer SJ, Hogarth PM, Drummer HE, O'Hehir RE, Edwards ESJ, van Zelm MC. Homologous but not heterologous COVID-19 vaccine booster elicits IgG4+ B-cells and enhanced Omicron subvariant binding. NPJ Vaccines 2024; 9:129. [PMID: 39013889 PMCID: PMC11252355 DOI: 10.1038/s41541-024-00919-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
Booster vaccinations are recommended to improve protection against severe disease from SARS-CoV-2 infection. With primary vaccinations involving various adenoviral vector and mRNA-based formulations, it remains unclear if these differentially affect the immune response to booster doses. We examined the effects of homologous (mRNA/mRNA) and heterologous (adenoviral vector/mRNA) vaccination on antibody and memory B cell (Bmem) responses against ancestral and Omicron subvariants. Healthy adults who received primary BNT162b2 (mRNA) or ChAdOx1 (vector) vaccination were sampled 1-month and 6-months after their 2nd and 3rd dose (homologous or heterologous) vaccination. Recombinant spike receptor-binding domain (RBD) proteins from ancestral, Omicron BA.2 and BA.5 variants were produced for ELISA-based serology, and tetramerized for immunophenotyping of RBD-specific Bmem. Dose 3 boosters significantly increased ancestral RBD-specific plasma IgG and Bmem in both cohorts. Up to 80% of ancestral RBD-specific Bmem expressed IgG1+. IgG4+ Bmem were detectable after primary mRNA vaccination, and expanded significantly to 5-20% after dose 3, whereas heterologous boosting did not elicit IgG4+ Bmem. Recognition of Omicron BA.2 and BA.5 by ancestral RBD-specific plasma IgG increased from 20% to 60% after the 3rd dose in both cohorts. Reactivity of ancestral RBD-specific Bmem to Omicron BA.2 and BA.5 increased following a homologous booster from 40% to 60%, but not after a heterologous booster. A 3rd mRNA dose generates similarly robust serological and Bmem responses in homologous and heterologous vaccination groups. The expansion of IgG4+ Bmem after mRNA priming might result from the unique vaccine formulation or dosing schedule affecting the Bmem response duration and antibody maturation.
Collapse
Affiliation(s)
- Gemma E Hartley
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Holly A Fryer
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Paul A Gill
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Irene Boo
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia
| | | | - P Mark Hogarth
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Heidi E Drummer
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Robyn E O'Hehir
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Emily S J Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia.
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
37
|
Raisinghani N, Alshahrani M, Gupta G, Verkhivker G. Atomistic Prediction of Structures, Conformational Ensembles and Binding Energetics for the SARS-CoV-2 Spike JN.1, KP.2 and KP.3 Variants Using AlphaFold2 and Molecular Dynamics Simulations: Mutational Profiling and Binding Free Energy Analysis Reveal Epistatic Hotspots of the ACE2 Affinity and Immune Escape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602810. [PMID: 39026832 PMCID: PMC11257589 DOI: 10.1101/2024.07.09.602810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The most recent wave of SARS-CoV-2 Omicron variants descending from BA.2 and BA.2.86 exhibited improved viral growth and fitness due to convergent evolution of functional hotspots. These hotspots operate in tandem to optimize both receptor binding for effective infection and immune evasion efficiency, thereby maintaining overall viral fitness. The lack of molecular details on structure, dynamics and binding energetics of the latest FLiRT and FLuQE variants with the ACE2 receptor and antibodies provides a considerable challenge that is explored in this study. We combined AlphaFold2-based atomistic predictions of structures and conformational ensembles of the SARS-CoV-2 Spike complexes with the host receptor ACE2 for the most dominant Omicron variants JN.1, KP.1, KP.2 and KP.3 to examine the mechanisms underlying the role of convergent evolution hotspots in balancing ACE2 binding and antibody evasion. Using the ensemble-based mutational scanning of the spike protein residues and computations of binding affinities, we identified binding energy hotspots and characterized molecular basis underlying epistatic couplings between convergent mutational hotspots. The results suggested that the existence of epistatic interactions between convergent mutational sites at L455, F456, Q493 positions that enable to protect and restore ACE2 binding affinity while conferring beneficial immune escape. To examine immune escape mechanisms, we performed structure-based mutational profiling of the spike protein binding with several classes of antibodies that displayed impaired neutralization against BA.2.86, JN.1, KP.2 and KP.3. The results confirmed the experimental data that JN.1, KP.2 and KP.3 harboring the L455S and F456L mutations can significantly impair the neutralizing activity of class-1 monoclonal antibodies, while the epistatic effects mediated by F456L can facilitate the subsequent convergence of Q493E changes to rescue ACE2 binding. Structural and energetic analysis provided a rationale to the experimental results showing that BD55-5840 and BD55-5514 antibodies that bind to different binding epitopes can retain neutralizing efficacy against all examined variants BA.2.86, JN.1, KP.2 and KP.3. The results support the notion that evolution of Omicron variants may favor emergence of lineages with beneficial combinations of mutations involving mediators of epistatic couplings that control balance of high ACE2 affinity and immune evasion.
Collapse
|
38
|
Cyster JG, Wilson PC. Antibody modulation of B cell responses-Incorporating positive and negative feedback. Immunity 2024; 57:1466-1481. [PMID: 38986442 PMCID: PMC11257158 DOI: 10.1016/j.immuni.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
Antibodies are powerful modulators of ongoing and future B cell responses. While the concept of antibody feedback has been appreciated for over a century, the topic has seen a surge in interest due to the evidence that the broadening of antibody responses to SARS-CoV-2 after a third mRNA vaccination is a consequence of antibody feedback. Moreover, the discovery that slow antigen delivery can lead to more robust humoral immunity has put a spotlight on the capacity for early antibodies to augment B cell responses. Here, we review the mechanisms whereby antibody feedback shapes B cell responses, integrating findings in humans and in mouse models. We consider the major influence of epitope masking and the diverse actions of complement and Fc receptors and provide a framework for conceptualizing the ways antigen-specific antibodies may influence B cell responses to any form of antigen, in conditions as diverse as infectious disease, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
| | - Patrick C Wilson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
39
|
Bruhn M, Obara M, Salam A, Costa B, Ziegler A, Waltl I, Pavlou A, Hoffmann M, Graalmann T, Pöhlmann S, Schambach A, Kalinke U. Diversification of the VH3-53 immunoglobulin gene segment by somatic hypermutation results in neutralization of SARS-CoV-2 virus variants. Eur J Immunol 2024; 54:e2451056. [PMID: 38593351 DOI: 10.1002/eji.202451056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
COVID-19 induces re-circulating long-lived memory B cells (MBC) that, upon re-encounter with the pathogen, are induced to mount immunoglobulin responses. During convalescence, antibodies are subjected to affinity maturation, which enhances the antibody binding strength and generates new specificities that neutralize virus variants. Here, we performed a single-cell RNA sequencing analysis of spike-specific B cells from a SARS-CoV-2 convalescent subject. After COVID-19 vaccination, matured infection-induced MBC underwent recall and differentiated into plasmablasts. Furthermore, the transcriptomic profiles of newly activated B cells transiently shifted toward the ones of atypical and CXCR3+ B cells and several B-cell clonotypes massively expanded. We expressed monoclonal antibodies (mAbs) from all B-cell clones from the largest clonotype that used the VH3-53 gene segment. The in vitro analysis revealed that some somatic hypermutations enhanced the neutralization breadth of mAbs in a putatively stochastic manner. Thus, somatic hypermutation of B-cell clonotypes generates an anticipatory memory that can neutralize new virus variants.
Collapse
Affiliation(s)
- Matthias Bruhn
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Maureen Obara
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Abdus Salam
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Bibiana Costa
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Annett Ziegler
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Inken Waltl
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Faculty of Biology, Georg-August-University Göttingen, Göttingen, Germany
| | - Theresa Graalmann
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Junior Research Group for Translational Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Faculty of Biology, Georg-August-University Göttingen, Göttingen, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
40
|
Jackson S, Marshall JL, Mawer A, Lopez-Ramon R, Harris SA, Satti I, Hughes E, Preston-Jones H, Cabrera Puig I, Longet S, Tipton T, Laidlaw S, Doherty RP, Morrison H, Mitchell R, Tanner R, Ateere A, Stylianou E, Wu MS, Fredsgaard-Jones TPW, Breuer J, Rapeport G, Ferreira VM, Gleeson F, Pollard AJ, Carroll M, Catchpole A, Chiu C, McShane H. Safety, tolerability, viral kinetics, and immune correlates of protection in healthy, seropositive UK adults inoculated with SARS-CoV-2: a single-centre, open-label, phase 1 controlled human infection study. THE LANCET. MICROBE 2024; 5:655-668. [PMID: 38703782 PMCID: PMC7616636 DOI: 10.1016/s2666-5247(24)00025-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND A SARS-CoV-2 controlled human infection model (CHIM) has been successfully established in seronegative individuals using a dose of 1×101 50% tissue culture infectious dose (TCID50) pre-alpha SARS-CoV-2 virus. Given the increasing prevalence of seropositivity to SARS-CoV-2, a CHIM that could be used for vaccine development will need to induce infection in those with pre-existing immunity. Our aim was to find a dose of pre-alpha SARS-CoV-2 virus that induced infection in previously infected individuals. METHODS Healthy, UK volunteers aged 18-30 years, with proven (quantitative RT-PCR or lateral flow antigen test) previous SARS-CoV-2 infection (with or without vaccination) were inoculated intranasally in a stepwise dose escalation CHIM with either 1×101, 1×102, 1×10³, 1×104, or 1×105 TCID50 SARS-CoV-2/human/GBR/484861/2020, the same virus used in the seronegative CHIM. Post-inoculation, volunteers were quarantined in functionally negative pressure rooms (Oxford, UK) for 14 days and until 12-hourly combined oropharyngeal-nasal swabs were negative for viable virus by focus-forming assay. Outpatient follow-up continued for 12 months post-enrolment, with additional visits for those who developed community-acquired SARS-CoV-2 infection. The primary objective was to identify a safe, well tolerated dose that induced infection (defined as two consecutive SARS-CoV-2 positive PCRs starting 24 h after inoculation) in 50% of seropositive volunteers. This study is registered with ClinicalTrials.gov (NCT04864548); enrolment and follow-up to 12 months post-enrolment are complete. FINDINGS Recruitment commenced on May 6, 2021, with the last volunteer enrolled into the dose escalation cohort on Nov 24, 2022. 36 volunteers were enrolled, with four to eight volunteers inoculated in each dosing group from 1×101 to 1×105 TCID50 SARS-CoV-2. All volunteers have completed quarantine, with follow-up to 12 months complete. Despite dose escalation to 1×105 TCID50, we were unable to induce sustained infection in any volunteers. Five (14%) of 36 volunteers were considered to have transient infection, based on the kinetic of their PCR-positive swabs. Transiently infected volunteers had significantly lower baseline mucosal and systemic SARS-CoV-2-specific antibody titres and significantly lower peripheral IFNγ responses against a CD8+ T-cell SARS-CoV-2 peptide pool than uninfected volunteers. 14 (39%) of 36 volunteers subsequently developed breakthrough infection with the omicron variant after discharge from quarantine. Most adverse events reported by volunteers in quarantine were mild, with fatigue (16 [44%]) and stuffy nose (16 [44%]) being the most common. There were no serious adverse events. INTERPRETATION Our study demonstrates potent protective immunity induced by homologous vaccination and homologous or heterologous previous SARS-CoV-2 infection. The community breakthrough infections seen with the omicron variant supports the use of newer variants to establish a model with sufficient rate of infection for use in vaccine and therapeutic development. FUNDING Wellcome Trust and Department for Health and Social Care.
Collapse
Affiliation(s)
- Susan Jackson
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Julia L Marshall
- Department of Paediatrics, University of Oxford, Oxford, UK; The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Mawer
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | | | - Iman Satti
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Eileen Hughes
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | | | - Stephanie Longet
- The Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tom Tipton
- The Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen Laidlaw
- The Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Hazel Morrison
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Rachel Tanner
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Alberta Ateere
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Meng-San Wu
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Judith Breuer
- Institute of Child Health, University College London, London, UK
| | - Garth Rapeport
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Fergus Gleeson
- Oxford Radiology Research Unit, University of Oxford, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Miles Carroll
- The Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Helen McShane
- Department of Paediatrics, University of Oxford, Oxford, UK.
| |
Collapse
|
41
|
Sheward DJ, Pushparaj P, Das H, Greaney AJ, Kim C, Kim S, Hanke L, Hyllner E, Dyrdak R, Lee J, Dopico XC, Dosenovic P, Peacock TP, McInerney GM, Albert J, Corcoran M, Bloom JD, Murrell B, Karlsson Hedestam GB, Hällberg BM. Structural basis of broad SARS-CoV-2 cross-neutralization by affinity-matured public antibodies. Cell Rep Med 2024; 5:101577. [PMID: 38761799 PMCID: PMC11228396 DOI: 10.1016/j.xcrm.2024.101577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 12/15/2023] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
Descendants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant now account for almost all SARS-CoV-2 infections. The Omicron variant and its sublineages have spike glycoproteins that are highly diverged from the pandemic founder and first-generation vaccine strain, resulting in significant evasion from monoclonal antibody therapeutics and vaccines. Understanding how commonly elicited antibodies can broaden to cross-neutralize escape variants is crucial. We isolate IGHV3-53, using "public" monoclonal antibodies (mAbs) from an individual 7 months post infection with the ancestral virus and identify antibodies that exhibit potent and broad cross-neutralization, extending to the BA.1, BA.2, and BA.4/BA.5 sublineages of Omicron. Deep mutational scanning reveals these mAbs' high resistance to viral escape. Structural analysis via cryoelectron microscopy of a representative broadly neutralizing antibody, CAB-A17, in complex with the Omicron BA.1 spike highlights the structural underpinnings of this broad neutralization. By reintroducing somatic hypermutations into a germline-reverted CAB-A17, we delineate the role of affinity maturation in the development of cross-neutralization by a public class of antibodies.
Collapse
Affiliation(s)
- Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Pradeepa Pushparaj
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hrishikesh Das
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Allison J Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sungyong Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Erik Hyllner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Dyrdak
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jimin Lee
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pia Dosenovic
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, London, UK
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Centre for Structural Systems Biology (CSSB) and Karolinska Institutet VR-RÅC, Notkestraße 85, 22607 Hamburg, Germany.
| |
Collapse
|
42
|
Tarke A, Ramezani-Rad P, Alves Pereira Neto T, Lee Y, Silva-Moraes V, Goodwin B, Bloom N, Siddiqui L, Avalos L, Frazier A, Zhang Z, da Silva Antunes R, Dan J, Crotty S, Grifoni A, Sette A. SARS-CoV-2 breakthrough infections enhance T cell response magnitude, breadth, and epitope repertoire. Cell Rep Med 2024; 5:101583. [PMID: 38781962 PMCID: PMC11228552 DOI: 10.1016/j.xcrm.2024.101583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/22/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Little is known about the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or SARS2) vaccine breakthrough infections (BTIs) on the magnitude and breadth of the T cell repertoire after exposure to different variants. We studied samples from individuals who experienced symptomatic BTIs during Delta or Omicron waves. In the pre-BTI samples, 30% of the donors exhibited substantial immune memory against non-S (spike) SARS2 antigens, consistent with previous undiagnosed asymptomatic SARS2 infections. Following symptomatic BTI, we observed (1) enhanced S-specific CD4 and CD8 T cell responses in donors without previous asymptomatic infection, (2) expansion of CD4 and CD8 T cell responses to non-S targets (M, N, and nsps) independent of SARS2 variant, and (3) generation of novel epitopes recognizing variant-specific mutations. These variant-specific T cell responses accounted for 9%-15% of the total epitope repertoire. Overall, BTIs boost vaccine-induced immune responses by increasing the magnitude and by broadening the repertoire of T cell antigens and epitopes recognized.
Collapse
Affiliation(s)
- Alison Tarke
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Parham Ramezani-Rad
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | | | - Yeji Lee
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Vanessa Silva-Moraes
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - Benjamin Goodwin
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Nathaniel Bloom
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Leila Siddiqui
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Liliana Avalos
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - April Frazier
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Zeli Zhang
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | | | - Jennifer Dan
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA.
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| |
Collapse
|
43
|
Chen X, Mohapatra A, Nguyen HTV, Schimanski L, Kit Tan T, Rijal P, Chen CP, Cheng SH, Lee WH, Chou YC, Townsend AR, Ma C, Huang KYA. The presence of broadly neutralizing anti-SARS-CoV-2 RBD antibodies elicited by primary series and booster dose of COVID-19 vaccine. PLoS Pathog 2024; 20:e1012246. [PMID: 38857264 PMCID: PMC11192315 DOI: 10.1371/journal.ppat.1012246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/21/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
Antibody-mediated immunity plays a key role in protection against SARS-CoV-2. We characterized B-cell-derived anti-SARS-CoV-2 RBD antibody repertoires from vaccinated and infected individuals and elucidate the mechanism of action of broadly neutralizing antibodies and dissect antibodies at the epitope level. The breadth and clonality of anti-RBD B cell response varies among individuals. The majority of neutralizing antibody clones lose or exhibit reduced activities against Beta, Delta, and Omicron variants. Nevertheless, a portion of anti-RBD antibody clones that develops after a primary series or booster dose of COVID-19 vaccination exhibit broad neutralization against emerging Omicron BA.2, BA.4, BA.5, BQ.1.1, XBB.1.5 and XBB.1.16 variants. These broadly neutralizing antibodies share genetic features including a conserved usage of the IGHV3-53 and 3-9 genes and recognize three clustered epitopes of the RBD, including epitopes that partially overlap the classically defined set identified early in the pandemic. The Fab-RBD crystal and Fab-Spike complex structures corroborate the epitope grouping of antibodies and reveal the detailed binding mode of broadly neutralizing antibodies. Structure-guided mutagenesis improves binding and neutralization potency of antibody with Omicron variants via a single amino-substitution. Together, these results provide an immunological basis for partial protection against severe COVID-19 by the ancestral strain-based vaccine and indicate guidance for next generation monoclonal antibody development and vaccine design.
Collapse
Affiliation(s)
- Xiaorui Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Hong Thuy Vy Nguyen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Lisa Schimanski
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Tiong Kit Tan
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Pramila Rijal
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Cheng-Pin Chen
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Hsing Cheng
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, and School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Wen-Hsin Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Alain R. Townsend
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Kuan-Ying A. Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Immunology and Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
44
|
Wietschel KA, Fechtner K, Antileo E, Abdurrahman G, Drechsler CA, Makuvise MK, Rose R, Voß M, Krumbholz A, Michalik S, Weiss S, Ulm L, Franikowski P, Fickenscher H, Bröker BM, Raafat D, Holtfreter S. Non-cross-reactive epitopes dominate the humoral immune response to COVID-19 vaccination - kinetics of plasma antibodies, plasmablasts and memory B cells. Front Immunol 2024; 15:1382911. [PMID: 38807606 PMCID: PMC11130424 DOI: 10.3389/fimmu.2024.1382911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction COVID-19 vaccines are highly effective in inducing protective immunity. While the serum antibody response to COVID-19 vaccination has been studied in depth, our knowledge of the underlying plasmablast and memory B cell (Bmem) responses is still incomplete. Here, we determined the antibody and B cell response to COVID-19 vaccination in a naïve population and contrasted it with the response to a single influenza vaccination in a primed cohort. In addition, we analyzed the antibody and B cell responses against the four endemic human coronaviruses (HCoVs). Methods Measurement of specific plasma IgG antibodies was combined with functional analyses of antibody-secreting plasmablasts and Bmems. SARS-CoV-2- and HCoV-specific IgG antibodies were quantified with an in-house bead-based multiplexed immunoassay. Results The antibody and B cell responses to COVID-19 vaccination reflected the kinetics of a prime-boost immunization, characterized by a slow and moderate primary response and a faster and stronger secondary response. In contrast, the influenza vaccinees possessed robust immune memory for the vaccine antigens prior to vaccination, and the recall vaccination moderately boosted antibody production and Bmem responses. Antibody levels and Bmem responses waned several months after the 2nd COVID-19 vaccination, but were restored upon the 3rd vaccination. The COVID-19 vaccine-induced antibodies mainly targeted novel, non-cross-reactive S1 epitopes of the viral spike protein, while cross-reactive S2 epitopes were less immunogenic. Booster vaccination not only strongly enhanced neutralizing antibodies against an original SARS-CoV-2 strain, but also induced neutralizing antibodies against the Omicron BA.2 variant. We observed a 100% plasma antibody prevalence against the S1 subunits of HCoVs, which was not affected by vaccination. Discussion Overall, by complementing classical serology with a functional evaluation of plasmablasts and memory B cells we provide new insights into the specificity of COVID-19 vaccine-induced antibody and B cell responses.
Collapse
Affiliation(s)
- Kilian A. Wietschel
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Kevin Fechtner
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Elmer Antileo
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Goran Abdurrahman
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Chiara A. Drechsler
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | | | - Ruben Rose
- Institute for Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Mathias Voß
- Institute for Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
- Labor Dr. Krause und Kollegen MVZ GmbH, Kiel, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Lena Ulm
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Philipp Franikowski
- Institute for Educational Quality Improvement, Humboldt University of Berlin, Berlin, Germany
| | - Helmut Fickenscher
- Institute for Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Barbara M. Bröker
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Dina Raafat
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Silva Holtfreter
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
45
|
Tortorici MA, Addetia A, Seo AJ, Brown J, Sprouse K, Logue J, Clark E, Franko N, Chu H, Veesler D. Persistent immune imprinting occurs after vaccination with the COVID-19 XBB.1.5 mRNA booster in humans. Immunity 2024; 57:904-911.e4. [PMID: 38490197 DOI: 10.1016/j.immuni.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 03/17/2024]
Abstract
Immune imprinting describes how the first exposure to a virus shapes immunological outcomes of subsequent exposures to antigenically related strains. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Omicron breakthrough infections and bivalent COVID-19 vaccination primarily recall cross-reactive memory B cells induced by prior Wuhan-Hu-1 spike mRNA vaccination rather than priming Omicron-specific naive B cells. These findings indicate that immune imprinting occurs after repeated Wuhan-Hu-1 spike exposures, but whether it can be overcome remains unclear. To understand the persistence of immune imprinting, we investigated memory and plasma antibody responses after administration of the updated XBB.1.5 COVID-19 mRNA vaccine booster. We showed that the XBB.1.5 booster elicited neutralizing antibody responses against current variants that were dominated by recall of pre-existing memory B cells previously induced by the Wuhan-Hu-1 spike. Therefore, immune imprinting persists after multiple exposures to Omicron spikes through vaccination and infection, including post XBB.1.5 booster vaccination, which will need to be considered to guide future vaccination.
Collapse
Affiliation(s)
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Albert J Seo
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Kaiti Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jenni Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Erica Clark
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Nicholas Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Helen Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
46
|
Grigoryan L, Feng Y, Bellusci L, Lai L, Wali B, Ellis M, Yuan M, Arunachalam PS, Hu M, Kowli S, Gupta S, Maysel-Auslender S, Maecker HT, Samaha H, Rouphael N, Wilson IA, Moreno AC, Suthar MS, Khurana S, Pillet S, Charland N, Ward BJ, Pulendran B. AS03 adjuvant enhances the magnitude, persistence, and clonal breadth of memory B cell responses to a plant-based COVID-19 vaccine in humans. Sci Immunol 2024; 9:eadi8039. [PMID: 38579013 PMCID: PMC11732256 DOI: 10.1126/sciimmunol.adi8039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Vaccine adjuvants increase the breadth of serum antibody responses, but whether this is due to the generation of antigen-specific B cell clones with distinct specificities or the maturation of memory B cell clones that produce broadly cross-reactive antibodies is unknown. Here, we longitudinally analyzed immune responses in healthy adults after two-dose vaccination with either a virus-like particle COVID-19 vaccine (CoVLP), CoVLP adjuvanted with AS03 (CoVLP+AS03), or a messenger RNA vaccination (mRNA-1273). CoVLP+AS03 enhanced the magnitude and durability of circulating antibodies and antigen-specific CD4+ T cell and memory B cell responses. Antigen-specific CD4+ T cells in the CoVLP+AS03 group at day 42 correlated with antigen-specific memory B cells at 6 months. CoVLP+AS03 induced memory B cell responses, which accumulated somatic hypermutations over 6 months, resulting in enhanced neutralization breadth of monoclonal antibodies. Furthermore, the fraction of broadly neutralizing antibodies encoded by memory B cells increased between day 42 and 6 months. These results indicate that AS03 enhances the antigenic breadth of B cell memory at the clonal level and induces progressive maturation of the B cell response.
Collapse
Affiliation(s)
- Lilit Grigoryan
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | | | - Lilin Lai
- Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory School of Medicine, Atlanta, GA, 30329 USA
| | - Bushra Wali
- Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory School of Medicine, Atlanta, GA, 30329 USA
| | - Madison Ellis
- Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory School of Medicine, Atlanta, GA, 30329 USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Prabhu S. Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Sangeeta Kowli
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Sheena Gupta
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Sofia Maysel-Auslender
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Holden T. Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Hady Samaha
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Nadine Rouphael
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Hope Clinic of Emory Vaccine Center, Emory University, Decatur, GA, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Alberto C. Moreno
- Department of Medicine, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, 30329 USA
| | - Mehul S. Suthar
- Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory School of Medicine, Atlanta, GA, 30329 USA
| | | | - Stéphane Pillet
- Medicago Inc., Québec, QC, Canada
- Research Institute of the McGill University Health Center, 1001 Decarie St, Montréal, QC, Canada H4A 3J1
| | | | - Brian J. Ward
- Medicago Inc., Québec, QC, Canada
- Research Institute of the McGill University Health Center, 1001 Decarie St, Montréal, QC, Canada H4A 3J1
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
47
|
Qian J, Zhang S, Wang F, Li J, Zhang J. What makes SARS-CoV-2 unique? Focusing on the spike protein. Cell Biol Int 2024; 48:404-430. [PMID: 38263600 DOI: 10.1002/cbin.12130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024]
Abstract
Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) seriously threatens public health and safety. Genetic variants determine the expression of SARS-CoV-2 structural proteins, which are associated with enhanced transmissibility, enhanced virulence, and immune escape. Vaccination is encouraged as a public health intervention, and different types of vaccines are used worldwide. However, new variants continue to emerge, especially the Omicron complex, and the neutralizing antibody responses are diminished significantly. In this review, we outlined the uniqueness of SARS-CoV-2 from three perspectives. First, we described the detailed structure of the spike (S) protein, which is highly susceptible to mutations and contributes to the distinct infection cycle of the virus. Second, we systematically summarized the immunoglobulin G epitopes of SARS-CoV-2 and highlighted the central role of the nonconserved regions of the S protein in adaptive immune escape. Third, we provided an overview of the vaccines targeting the S protein and discussed the impact of the nonconserved regions on vaccine effectiveness. The characterization and identification of the structure and genomic organization of SARS-CoV-2 will help elucidate its mechanisms of viral mutation and infection and provide a basis for the selection of optimal treatments. The leaps in advancements regarding improved diagnosis, targeted vaccines and therapeutic remedies provide sound evidence showing that scientific understanding, research, and technology evolved at the pace of the pandemic.
Collapse
Affiliation(s)
- Jingbo Qian
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Shichang Zhang
- Department of Clinical Laboratory Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Fang Wang
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jiexin Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| |
Collapse
|
48
|
Deng Y, Tang M, Ross TM, Schmidt AG, Chakraborty AK, Lingwood D. Repeated vaccination with homologous influenza hemagglutinin broadens human antibody responses to unmatched flu viruses. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.27.24303943. [PMID: 38585939 PMCID: PMC10996724 DOI: 10.1101/2024.03.27.24303943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The on-going diversification of influenza virus necessicates annual vaccine updating. The vaccine antigen, the viral spike protein hemagglutinin (HA), tends to elicit strain-specific neutralizing activity, predicting that sequential immunization with the same HA strain will boost antibodies with narrow coverage. However, repeated vaccination with homologous SARS-CoV-2 vaccine eventually elicits neutralizing activity against highly unmatched variants, questioning this immunological premise. We evaluated a longitudinal influenza vaccine cohort, where each year the subjects received the same, novel H1N1 2009 pandemic vaccine strain. Repeated vaccination gradually enhanced receptor-blocking antibodies (HAI) to highly unmatched H1N1 strains within individuals with no initial memory recall against these historical viruses. An in silico model of affinity maturation in germinal centers integrated with a model of differentiation and expansion of memory cells provides insight into the mechanisms underlying these results and shows how repeated exposure to the same immunogen can broaden the antibody response against diversified targets.
Collapse
|
49
|
Lee H, Shin K, Lee Y, Lee S, Lee S, Lee E, Kim SW, Shin HY, Kim JH, Chung J, Kwon S. Identification of B cell subsets based on antigen receptor sequences using deep learning. Front Immunol 2024; 15:1342285. [PMID: 38576618 PMCID: PMC10991714 DOI: 10.3389/fimmu.2024.1342285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
B cell receptors (BCRs) denote antigen specificity, while corresponding cell subsets indicate B cell functionality. Since each B cell uniquely encodes this combination, physical isolation and subsequent processing of individual B cells become indispensable to identify both attributes. However, this approach accompanies high costs and inevitable information loss, hindering high-throughput investigation of B cell populations. Here, we present BCR-SORT, a deep learning model that predicts cell subsets from their corresponding BCR sequences by leveraging B cell activation and maturation signatures encoded within BCR sequences. Subsequently, BCR-SORT is demonstrated to improve reconstruction of BCR phylogenetic trees, and reproduce results consistent with those verified using physical isolation-based methods or prior knowledge. Notably, when applied to BCR sequences from COVID-19 vaccine recipients, it revealed inter-individual heterogeneity of evolutionary trajectories towards Omicron-binding memory B cells. Overall, BCR-SORT offers great potential to improve our understanding of B cell responses.
Collapse
Affiliation(s)
- Hyunho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Kyoungseob Shin
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Yongju Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Soobin Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seungyoun Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eunjae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Woo Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ha Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Hoon Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
- Inter-University Semiconductor Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
50
|
Singh T, Miller IG, Venkatayogi S, Webster H, Heimsath HJ, Eudailey JA, Dudley DM, Kumar A, Mangan RJ, Thein A, Aliota MT, Newman CM, Mohns MS, Breitbach ME, Berry M, Friedrich TC, Wiehe K, O'Connor DH, Permar SR. Prior dengue virus serotype 3 infection modulates subsequent plasmablast responses to Zika virus infection in rhesus macaques. mBio 2024; 15:e0316023. [PMID: 38349142 PMCID: PMC10936420 DOI: 10.1128/mbio.03160-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/17/2024] [Indexed: 03/14/2024] Open
Abstract
Immunodominant and highly conserved flavivirus envelope proteins can trigger cross-reactive IgG antibodies against related flaviviruses, which shapes subsequent protection or disease severity. This study examined how prior dengue serotype 3 (DENV-3) infection affects subsequent Zika virus (ZIKV) plasmablast responses in rhesus macaques (n = 4). We found that prior DENV-3 infection was not associated with diminished ZIKV-neutralizing antibodies or magnitude of plasmablast activation. Rather, characterization of 363 plasmablasts and their derivative 177 monoclonal antibody supernatants from acute ZIKV infection revealed that prior DENV-3 infection was associated with a differential isotype distribution toward IgG, lower somatic hypermutation, and lesser B cell receptor variable gene diversity as compared with repeat ZIKV challenge. We did not find long-lasting DENV-3 cross-reactive IgG after a ZIKV infection but did find persistent ZIKV-binding cross-reactive IgG after a DENV-3 infection, suggesting non-reciprocal cross-reactive immunity. Infection with ZIKV after DENV-3 boosted pre-existing DENV-3-neutralizing antibodies by two- to threefold, demonstrating immune imprinting. These findings suggest that the order of DENV and ZIKV infections has impact on the quality of early B cell immunity which has implications for optimal immunization strategies. IMPORTANCE The Zika virus epidemic of 2015-2016 in the Americas revealed that this mosquito-transmitted virus could be congenitally transmitted during pregnancy and cause birth defects in newborns. Currently, there are no interventions to mitigate this disease and Zika virus is likely to re-emerge. Understanding how protective antibody responses are generated against Zika virus can help in the development of a safe and effective vaccine. One main challenge is that Zika virus co-circulates with related viruses like dengue, such that prior exposure to one can generate cross-reactive antibodies against the other which may enhance infection and disease from the second virus. In this study, we sought to understand how prior dengue virus infection impacts subsequent immunity to Zika virus by single-cell sequencing of antibody producing cells in a second Zika virus infection. Identifying specific qualities of Zika virus immunity that are modulated by prior dengue virus immunity will enable optimal immunization strategies.
Collapse
Affiliation(s)
- Tulika Singh
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | | | - Sravani Venkatayogi
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Helen Webster
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Holly J. Heimsath
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Josh A. Eudailey
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, USA
| | - Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amit Kumar
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Riley J. Mangan
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Amelia Thein
- Department of Pediatrics, Weill Cornell Medicine, New York, USA
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| | - Christina M. Newman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mariel S. Mohns
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Meghan E. Breitbach
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Madison Berry
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin Wiehe
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sallie R. Permar
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, USA
| |
Collapse
|