1
|
Luo S, Wang PY, Zhou P, Zhang WJ, Gu YJ, Liang XY, Zhang JW, Luo JX, Zhang HW, Lan S, Zhang TT, Yang JH, Sun SZ, Guo XY, Wang JL, Deng LF, Xu ZH, Jin L, He YY, Ye ZL, Gu WY, Li BM, Shi YW, Liu XR, Yan HJ, Yi YH, Jiang YW, Mao X, Li WL, Meng H, Liao WP. Variants in EP400, encoding a chromatin remodeler, cause epilepsy with neurodevelopmental disorders. Am J Hum Genet 2024:S0002-9297(24)00419-1. [PMID: 39708813 DOI: 10.1016/j.ajhg.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024] Open
Abstract
EP400 encodes a core catalytic ATPase subunit of ATP-dependent chromatin remodeling complexes. The gene-disease association of EP400 is undetermined. In this study, we performed trio-based whole-exome sequencing in a cohort of 402 families with epilepsy and neurodevelopmental disorders (NDDs) and identified compound heterozygous EP400 variants in six unrelated individuals. Six additional EP400 individuals were recruited via the match platform of China, including two de novo heterozygous and four compound heterozygous variants. The individual with a heterozygous de novo frameshift variant presented with NDDs, while the others exhibited epilepsy and NDDs, explained by the damaged genetic dependence quantity. EP400 presented significantly higher excesses of variants in the individuals. Clustering analysis revealed that the majority paralogs of EP400 were associated with NDDs/epilepsy and co-expressed highly with EP400. Analysis of the spatiotemporal expression indicated that EP400 is highly expressed in the developing brain and cells during differentiation, indicating its vital role in neurodevelopment; EP400 is predominantly expressed in inhibitory neurons in the early stage but in excitatory neurons in the mature stage. The development-dependent expression pattern of neuron specificity explained the favorable outcome of epilepsy. Knockdown of EP400 ortholog in Drosophila caused significantly increased susceptibility to seizures and abnormal neuronal firing. The ep400 crispant zebrafish exhibited brain developmental abnormalities, poorer adaptability, lower response to stimulation, epileptic discharges, abnormal cellular apoptosis, and increased susceptibility to seizures. Transcriptome analysis showed that ep400 deficiency caused expressional dysregulation of 84 epilepsy/NDD-associated genes, including 11 highly dose-sensitive genes. This study identified EP400 as a causative gene of epilepsy/NDDs.
Collapse
Affiliation(s)
- Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Peng-Yu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Peng Zhou
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Wen-Jun Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yu-Jie Gu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Xiao-Yu Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Jing-Wen Zhang
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jun-Xia Luo
- Epilepsy Center, Qilu Children's Hospital of Shandong University, Jinan 250000, Shandong, China
| | - Hong-Wei Zhang
- Epilepsy Center, Qilu Children's Hospital of Shandong University, Jinan 250000, Shandong, China
| | - Song Lan
- Department of Neurology, Maoming People's Hospital, Maoming 525000, Guangdong, China
| | - Ting-Ting Zhang
- Department of Psychology, Guangdong Sanjiu Brain Hospital, Guangzhou 510440, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie-Hua Yang
- Department of Neurology, Second Affiliated Hospital of Shantou University, Shantou 515000, Guangdong, China
| | - Su-Zhen Sun
- Department of Neurology, Hebei Children's Hospital, Shijiazhuang 050000, Hebei, China
| | - Xiang-Yang Guo
- Department of Pediatrics, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Ju-Li Wang
- Epilepsy Center, Jiamusi Central Hospital, Jiamusi 154002, Heilongjiang, China
| | - Lin-Fan Deng
- Department of Pediatrics, Mianyang Central Hospital, Mianyang 621000, Sichuan, China
| | - Ze-Hai Xu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Liang Jin
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yun-Yan He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Zi-Long Ye
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Wei-Yue Gu
- Beijing Chigene Translational Medicine Research Center Co., Ltd., Beijing 100000, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yi-Wu Shi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Hong-Jun Yan
- Epilepsy Center, Guangdong Sanjiu Brain Hospital, Guangzhou 510440, Guangdong, China
| | - Yong-Hong Yi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yu-Wu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiao Mao
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Wen-Ling Li
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Heng Meng
- Department of Neurology, the First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, 613 West Huangpu Avenue, Guangzhou, China.
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China.
| |
Collapse
|
2
|
Akiki RM, Cornbrooks RG, Magami K, Greige A, Snyder KK, Wood DJ, Herrington MC, Mace P, Blidy K, Koike N, Berto S, Cowan CW, Taniguchi M. A long noncoding eRNA forms R-loops to shape emotional experience-induced behavioral adaptation. Science 2024; 386:1282-1289. [PMID: 39666799 DOI: 10.1126/science.adp1562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/09/2024] [Indexed: 12/14/2024]
Abstract
Emotional experiences often evoke neural plasticity that supports adaptive changes in behavior, including maladaptive plasticity associated with mood and substance use disorders. These adaptations are supported in part by experience-dependent activation of immediate-early response genes, such as Npas4 (neuronal PAS domain protein 4). Here we show that a conserved long noncoding enhancer RNA (lnc-eRNA), transcribed from an activity-sensitive enhancer, produces DNA:RNA hybrid R-loop structures that support three-dimensional chromatin looping between enhancer and proximal promoter and rapid Npas4 gene induction. Furthermore, in mouse models, Npas4 lnc-eRNA and its R-loop are required for the development of behavioral adaptations produced by chronic psychosocial stress or cocaine exposure, revealing a potential role for this regulatory mechanism in the transmission of emotional experiences.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Adaptation, Psychological/drug effects
- Adaptation, Psychological/physiology
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Behavior, Animal
- Chromatin/metabolism
- Cocaine/pharmacology
- Emotions/drug effects
- Emotions/physiology
- Enhancer Elements, Genetic
- Mice, Inbred C57BL
- Neuronal Plasticity
- Promoter Regions, Genetic
- R-Loop Structures
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Stress, Psychological/genetics
- Stress, Psychological/psychology
Collapse
Affiliation(s)
- Rose Marie Akiki
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, USA
| | - Rebecca G Cornbrooks
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Kosuke Magami
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Alain Greige
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, USA
| | - Kirsten K Snyder
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Daniel J Wood
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, USA
| | | | - Philip Mace
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Kyle Blidy
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Nobuya Koike
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
3
|
Wu Z, Qu J, Liu GH. Roles of chromatin and genome instability in cellular senescence and their relevance to ageing and related diseases. Nat Rev Mol Cell Biol 2024; 25:979-1000. [PMID: 39363000 DOI: 10.1038/s41580-024-00775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 10/05/2024]
Abstract
Ageing is a complex biological process in which a gradual decline in physiological fitness increases susceptibility to diseases such as neurodegenerative disorders and cancer. Cellular senescence, a state of irreversible cell-growth arrest accompanied by functional deterioration, has emerged as a pivotal driver of ageing. In this Review, we discuss how heterochromatin loss, telomere attrition and DNA damage contribute to cellular senescence, ageing and age-related diseases by eliciting genome instability, innate immunity and inflammation. We also discuss how emerging therapeutic strategies could restore heterochromatin stability, maintain telomere integrity and boost the DNA repair capacity, and thus counteract cellular senescence and ageing-associated pathologies. Finally, we outline current research challenges and future directions aimed at better comprehending and delaying ageing.
Collapse
Affiliation(s)
- Zeming Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Putman JN, Watson SD, Zhang Z, Khandelwal N, Kulkarni A, Gibson JR, Huber KM. Pre- and Postsynaptic MEF2C Promotes Experience-Dependent, Input-Specific Development of Cortical Layer 4 to Layer 2/3 Excitatory Synapses and Regulates Activity-Dependent Expression of Synaptic Cell Adhesion Molecules. J Neurosci 2024; 44:e0098242024. [PMID: 39317473 PMCID: PMC11551898 DOI: 10.1523/jneurosci.0098-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Experience- and activity-dependent transcription is a candidate mechanism to mediate development and refinement of specific cortical circuits. Here, we demonstrate that the activity-dependent transcription factor myocyte enhancer factor 2C (MEF2C) is required in both presynaptic layer (L) 4 and postsynaptic L2/3 mouse (male and female) somatosensory (S1) cortical neurons for development of this specific synaptic connection. While postsynaptic deletion of Mef2c weakens L4 synaptic inputs, it has no effect on inputs from local L2/3, contralateral S1, or the ipsilateral frontal/motor cortex. Similarly, homozygous or heterozygous deletion of Mef2c in presynaptic L4 neurons weakens L4 to L2/3 excitatory synaptic inputs by decreasing presynaptic release probability. Postsynaptic MEF2C is specifically required during an early postnatal, experience-dependent, period for L4 to L2/3 synapse function, and expression of transcriptionally active MEF2C (MEF2C-VP16) rescues weak L4 to L2/3 synaptic strength in sensory-deprived mice. Together, these results suggest that experience- and/or activity-dependent transcriptional activation of MEF2C promotes development of L4 to L2/3 synapses. Additionally, MEF2C regulates the expression of many pre- and postsynaptic genes in postnatal cortical neurons. Interestingly, MEF2C was necessary for activity-dependent expression of many presynaptic genes, including those that function in transsynaptic adhesion and neurotransmitter release. This work provides mechanistic insight into the experience-dependent development of specific cortical circuits.
Collapse
Affiliation(s)
- Jennifer N Putman
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Sean D Watson
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Zhe Zhang
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Nitin Khandelwal
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Jay R Gibson
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
5
|
Wood CA, Somasundaram P, Dundee JM, Rudy MA, Watkins TA, Jankowsky JL. Chemogenetic neuronal silencing decouples c-Jun activation from cell death in the temporal cortex. Eur J Neurosci 2024. [PMID: 39449079 DOI: 10.1111/ejn.16575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Initial symptoms of neurodegenerative diseases are often defined by the loss of the most vulnerable neural populations specific to each disorder. In the early stages of Alzheimer's disease, vulnerable circuits in the temporal lobe exhibit diminished activity prior to overt degeneration. It remains unclear whether these functional changes contribute to regional vulnerability or are simply a consequence of pathology. We previously found that entorhinal neurons in the temporal cortex undergo cell death following transient suppression of electrical activity, suggesting a causal role for activity disruption in neurodegeneration. Here we demonstrate that electrical arrest of this circuit stimulates the injury-response transcription factor c-Jun. Entorhinal silencing induces transcriptional changes consistent with c-Jun activation that share characteristics of gene signatures in other neuronal populations vulnerable to Alzheimer's disease. Despite its established role in the neuronal injury response, inhibiting c-Jun failed to ameliorate entorhinal degeneration following activity disruption. Finally, we present preliminary evidence of integrated stress response activity that may serve as an alternative hypothesis to what drives entorhinal degeneration after silencing. Our data demonstrate that c-Jun is activated in response to neuronal silencing in the entorhinal cortex but is decoupled from subsequent neurodegeneration.
Collapse
Affiliation(s)
- Caleb A Wood
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | | | - Jacob M Dundee
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Melissa A Rudy
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Trent A Watkins
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Departments of Neurology and Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
Cohen S, Cheradame L, Pratt KJB, Collins S, Barillas A, Carlson A, Ramani V, Legube G, Villeda SA, Mullins RD, Schwer B. Endogenous neuronal DNA double-strand breaks are not sufficient to drive brain aging and neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619740. [PMID: 39484383 PMCID: PMC11526996 DOI: 10.1101/2024.10.22.619740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Loss of genomic information due to the accumulation of somatic DNA damage has been implicated in aging and neurodegeneration 1-3 . Somatic mutations in human neurons increase with age 4 , but it is unclear whether this is a cause or a consequence of brain aging. Here, we clarify the role of endogenous, neuronal DNA double-strand breaks (DSBs) in brain aging and neurodegeneration by generating mice with post-developmental inactivation of the classical non-homologous end-joining (C-NHEJ) core factor Xrcc4 in forebrain neurons. Xrcc4 is critical for the ligation step of C-NHEJ and has no known function outside of DSB repair 5,6 . We find that, unlike their wild-type counterparts, C-NHEJ-deficient neurons accumulate high levels of DSB foci with age, indicating that neurons undergo frequent DSBs that are typically efficiently repaired by C-NHEJ across their lifespan. Genome-wide mapping reveals that endogenous neuronal DSBs preferentially occur in promoter regions and other genic features. Analysis of 3-D genome organization shows intra-chromosomal clustering and loop extrusion of neuronal DSB regions. Strikingly, however, DSB accumulation caused by loss of C-NHEJ induces only minor epigenetic alterations and does not significantly affect gene expression, 3-D genome organization, or mutational outcomes at neuronal DSBs. Despite extensive aging-associated accumulation of neuronal DSBs, mice with neuronal Xrcc4 inactivation do not show neurodegeneration, neuroinflammation, reduced lifespan, or impaired memory and learning behavior. We conclude that the formation of spontaneous neuronal DSBs caused by normal cellular processes is insufficient to cause brain aging and neurodegeneration, even in the absence of C-NHEJ, the principal neuronal DSB repair pathway.
Collapse
|
7
|
Cunningham JL, Frankovich J, Dubin RA, Pedrosa E, Baykara RN, Schlenk NC, Maqbool SB, Dolstra H, Marino J, Edinger J, Shea JM, Laje G, Swagemakers SMA, Sinnadurai S, Zhang ZD, Lin JR, van der Spek PJ, Lachman HM. Ultrarare Variants in DNA Damage Repair Genes in Pediatric Acute-Onset Neuropsychiatric Syndrome or Acute Behavioral Regression in Neurodevelopmental Disorders. Dev Neurosci 2024:1-20. [PMID: 39396515 DOI: 10.1159/000541908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
INTRODUCTION Acute onset of severe psychiatric symptoms or regression may occur in children with premorbid neurodevelopmental disorders, although typically developing children can also be affected. Infections or other stressors are likely triggers. The underlying causes are unclear, but a current hypothesis suggests the convergence of genes that influence neuronal and immunological function. We previously identified 11 genes in pediatric acute-onset neuropsychiatric syndrome (PANS), in which two classes of genes related to either synaptic function or the immune system were found. Among the latter, three affect the DNA damage response (DDR): PPM1D, CHK2, and RAG1. We now report an additional 17 cases with mutations in PPM1D and other DDR genes in patients with acute onset of psychiatric symptoms and/or regression that their clinicians classified as PANS or another inflammatory brain condition. METHODS We analyzed genetic findings obtained from parents and carried out whole-exome sequencing on a total of 17 cases, which included 3 sibling pairs and a family with 4 affected children. RESULTS The DDR genes include clusters affecting p53 DNA repair (PPM1D, ATM, ATR, 53BP1, and RMRP), and the Fanconi Anemia Complex (FANCE, SLX4/FANCP, FANCA, FANCI, and FANCC). We hypothesize that defects in DNA repair genes, in the context of infection or other stressors, could contribute to decompensated states through an increase in genomic instability with a concomitant accumulation of cytosolic DNA in immune cells triggering DNA sensors, such as cGAS-STING and AIM2 inflammasomes, as well as central deficits on neuroplasticity. In addition, increased senescence and defective apoptosis affecting immunological responses could be playing a role. CONCLUSION These compelling preliminary findings motivate further genetic and functional characterization as the downstream impact of DDR deficits may point to novel treatment strategies.
Collapse
Affiliation(s)
- Janet L Cunningham
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Jennifer Frankovich
- Department of Pediatrics, Division of Pediatric Allergy, Immunology, Rheumatology and Immune Behavioral Health Program, Stanford Children's Health and Stanford University School of Medicine, Palo Alto, California, USA
| | - Robert A Dubin
- Center for Epigenomics, Computational Genomics Core, Albert Einstein College of Medicine, New York, New York, USA
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Refia Nur Baykara
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Noelle Cathleen Schlenk
- Stanford Children's Health, PANS Clinic and Research Program, Stanford University School of Medicine, Stanford, California, USA
| | - Shahina B Maqbool
- Department of Genetics Epigenetics Shared Facility, Albert Einstein College of Medicine, New York, New York, USA
| | - Hedwig Dolstra
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Jacqueline Marino
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Jacob Edinger
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Julia M Shea
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Gonzalo Laje
- Department of Psychiatry, Permian Basin, Texas Tech University Health Sciences Center School of Medicine, Lubbock, Texas, USA
| | - Sigrid M A Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Siamala Sinnadurai
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology and Health Promotion at the School of Public Health Medical Center for Postgraduate Education, Warsaw, Poland
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Herbert M Lachman
- Department of Psychiatry and Behavioral Sciences, Department of Medicine, Department of Genetics, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
8
|
Choi J, Jung S, Kim J, So D, Kim A, Kim S, Choi S, Yoo E, Kim JY, Jang YC, Lee H, Kim J, Shin HS, Chae S, Keum S. ARNT2 controls prefrontal somatostatin interneurons mediating affective empathy. Cell Rep 2024; 43:114659. [PMID: 39180750 DOI: 10.1016/j.celrep.2024.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
Empathy, crucial for social interaction, is impaired across various neuropsychiatric conditions. However, the genetic and neural underpinnings of empathy variability remain elusive. By combining forward genetic mapping with transcriptome analysis, we discover that aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) is a key driver modulating observational fear, a basic form of affective empathy. Disrupted ARNT2 expression in the anterior cingulate cortex (ACC) reduces affect sharing in mice. Specifically, selective ARNT2 ablation in somatostatin (SST)-expressing interneurons leads to decreased pyramidal cell excitability, increased spontaneous firing, aberrant Ca2+ dynamics, and disrupted theta oscillations in the ACC, resulting in reduced vicarious freezing. We further demonstrate that ARNT2-expressing SST interneurons govern affective state discrimination, uncovering a potential mechanism by which ARNT2 polymorphisms associate with emotion recognition in humans. Our findings advance our understanding of the molecular mechanism controlling empathic capacity and highlight the neural substrates underlying social affective dysfunctions in psychiatric disorders.
Collapse
Affiliation(s)
- Jiye Choi
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Seungmoon Jung
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Jieun Kim
- Department of Bio-Health Technology, College of Biomedicine Science, Kangwon National University, Chuncheon 24341, South Korea; Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Dahm So
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Arie Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Sowon Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Sungjoon Choi
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Eunsu Yoo
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Jee Yeon Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Yoon Cheol Jang
- Research Solution Center, Institute for Basic Science, Daejeon 34126, South Korea
| | - Hyoin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Jeongyeon Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Sehyun Chae
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, South Korea; Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, South Korea.
| | - Sehoon Keum
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea.
| |
Collapse
|
9
|
Polyzos AA, Cheong A, Yoo JH, Blagec L, Toprani SM, Nagel ZD, McMurray CT. Base excision repair and double strand break repair cooperate to modulate the formation of unrepaired double strand breaks in mouse brain. Nat Commun 2024; 15:7726. [PMID: 39231940 PMCID: PMC11375129 DOI: 10.1038/s41467-024-51906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/19/2024] [Indexed: 09/06/2024] Open
Abstract
We lack the fundamental information needed to understand how DNA damage in the brain is generated and how it is controlled over a lifetime in the absence of replication check points. To address these questions, here, we integrate cell-type and region-specific features of DNA repair activity in the normal brain. The brain has the same repair proteins as other tissues, but normal, canonical repair activity is unequal and is characterized by high base excision repair (BER) and low double strand break repair (DSBR). The natural imbalance creates conditions where single strand breaks (SSBs) can convert to double strand breaks (DSBs) and reversibly switch between states in response to oxidation both in vivo and in vitro. Our data suggest that, in a normal background of repair, SSBs and DSBs are in an equilibrium which is pushed or pulled by metabolic state. Interconversion of SSB to DSBs provides a physiological check point, which would allow the formation of unrepaired DSBs for productive functions, but would also restrict them from exceeding tolerable limits.
Collapse
Affiliation(s)
- Aris A Polyzos
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Ana Cheong
- Department of Environmental Health, John B Little Centre for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jung Hyun Yoo
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lana Blagec
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sneh M Toprani
- Department of Environmental Health, John B Little Centre for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zachary D Nagel
- Department of Environmental Health, John B Little Centre for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Cynthia T McMurray
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
10
|
Wan H, He M, Cheng C, Yang K, Wu H, Cong P, Huang X, Zhang Q, Shi Y, Hu J, Tian L, Xiong L. Clec7a Worsens Long-Term Outcomes after Ischemic Stroke by Aggravating Microglia-Mediated Synapse Elimination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403064. [PMID: 39088351 PMCID: PMC11423142 DOI: 10.1002/advs.202403064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/12/2024] [Indexed: 08/03/2024]
Abstract
Ischemic stroke (IS) is a leading cause of morbidity and mortality globally and triggers a series of reactions leading to primary and secondary brain injuries and permanent neurological deficits. Microglia in the central nervous system play dual roles in neuroprotection and responding to ischemic brain damage. Here, an IS model is employed to determine the involvement of microglia in phagocytosis at excitatory synapses. Additionally, the effects of pharmacological depletion of microglia are investigated on improving neurobehavioral outcomes and mitigating brain injury. RNA sequencing of microglia reveals an increase in phagocytosis-associated pathway activity and gene expression, and C-type lectin domain family 7 member A (Clec7a) is identified as a key regulator of this process. Manipulating microglial Clec7a expression can potentially regulate microglial phagocytosis of synapses, thereby preventing synaptic loss and improving neurobehavioral outcomes after IS. It is further demonstrat that microglial Clec7a interacts with neuronal myeloid differentiation protein 2 (MD2), a key molecule mediating poststroke neurological injury, and propose the novel hypothesis that MD2 is a ligand for microglial Clec7a. These findings suggest that microglial Clec7a plays a critical role in mediating synaptic phagocytosis in a mouse model of IS, suggesting that Clec7a may be a therapeutic target for IS.
Collapse
Affiliation(s)
- Hanxi Wan
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Mengfan He
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Chun Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Kexin Yang
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Huanghui Wu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Peilin Cong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Xinwei Huang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Qian Zhang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Yufei Shi
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Ji Hu
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Li Tian
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| |
Collapse
|
11
|
Wang LY, Liu XJ, Li QQ, Zhu Y, Ren HL, Song JN, Zeng J, Mei J, Tian HX, Rong DC, Zhang SH. The romantic history of signaling pathway discovery in cell death: an updated review. Mol Cell Biochem 2024; 479:2255-2272. [PMID: 37851176 DOI: 10.1007/s11010-023-04873-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
Cell death is a fundamental physiological process in all living organisms. Processes such as embryonic development, organ formation, tissue growth, organismal immunity, and drug response are accompanied by cell death. In recent years with the development of electron microscopy as well as biological techniques, especially the discovery of novel death modes such as ferroptosis, cuprotosis, alkaliptosis, oxeiptosis, and disulfidptosis, researchers have been promoted to have a deeper understanding of cell death modes. In this systematic review, we examined the current understanding of modes of cell death, including the recently discovered novel death modes. Our analysis highlights the common and unique pathways of these death modes, as well as their impact on surrounding cells and the organism as a whole. Our aim was to provide a comprehensive overview of the current state of research on cell death, with a focus on identifying gaps in our knowledge and opportunities for future investigation. We also presented a new insight for macroscopic intracellular survival patterns, namely that intracellular molecular homeostasis is central to the balance of different cell death modes, and this viewpoint can be well justified by the signaling crosstalk of different death modes. These concepts can facilitate the future research about cell death in clinical diagnosis, drug development, and therapeutic modalities.
Collapse
Affiliation(s)
- Lei-Yun Wang
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, People's Republic of China
| | - Xing-Jian Liu
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Qiu-Qi Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Ying Zhu
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, People's Republic of China
| | - Hui-Li Ren
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, People's Republic of China
| | - Jia-Nan Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Jun Zeng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jie Mei
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Hui-Xiang Tian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Ding-Chao Rong
- Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, Guangdong, People's Republic of China.
| | - Shao-Hui Zhang
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China.
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, People's Republic of China.
| |
Collapse
|
12
|
Yang Z, Mameri A, Cattoglio C, Lachance C, Florez Ariza AJ, Luo J, Humbert J, Sudarshan D, Banerjea A, Galloy M, Fradet-Turcotte A, Lambert JP, Ranish JA, Côté J, Nogales E. Structural insights into the human NuA4/TIP60 acetyltransferase and chromatin remodeling complex. Science 2024; 385:eadl5816. [PMID: 39088653 DOI: 10.1126/science.adl5816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/25/2024] [Accepted: 06/25/2024] [Indexed: 08/03/2024]
Abstract
The human nucleosome acetyltransferase of histone H4 (NuA4)/Tat-interactive protein, 60 kilodalton (TIP60) coactivator complex, a fusion of the yeast switch/sucrose nonfermentable related 1 (SWR1) and NuA4 complexes, both incorporates the histone variant H2A.Z into nucleosomes and acetylates histones H4, H2A, and H2A.Z to regulate gene expression and maintain genome stability. Our cryo-electron microscopy studies show that, within the NuA4/TIP60 complex, the E1A binding protein P400 (EP400) subunit serves as a scaffold holding the different functional modules in specific positions, creating a distinct arrangement of the actin-related protein (ARP) module. EP400 interacts with the transformation/transcription domain-associated protein (TRRAP) subunit by using a footprint that overlaps with that of the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, preventing the formation of a hybrid complex. Loss of the TRRAP subunit leads to mislocalization of NuA4/TIP60, resulting in the redistribution of H2A.Z and its acetylation across the genome, emphasizing the dual functionality of NuA4/TIP60 as a single macromolecular assembly.
Collapse
Affiliation(s)
- Zhenlin Yang
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Amel Mameri
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Claudia Cattoglio
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Catherine Lachance
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Alfredo Jose Florez Ariza
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | - Jie Luo
- Institute for Systems Biology, Seattle, WA, USA
| | - Jonathan Humbert
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Deepthi Sudarshan
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Arul Banerjea
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Maxime Galloy
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Amélie Fradet-Turcotte
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Jean-Philippe Lambert
- Endocrinology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | | | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
13
|
Sun Z, Kwon JS, Ren Y, Chen S, Walker CK, Lu X, Cates K, Karahan H, Sviben S, Fitzpatrick JAJ, Valdez C, Houlden H, Karch CM, Bateman RJ, Sato C, Mennerick SJ, Diamond MI, Kim J, Tanzi RE, Holtzman DM, Yoo AS. Modeling late-onset Alzheimer's disease neuropathology via direct neuronal reprogramming. Science 2024; 385:adl2992. [PMID: 39088624 DOI: 10.1126/science.adl2992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/31/2024] [Indexed: 08/03/2024]
Abstract
Late-onset Alzheimer's disease (LOAD) is the most common form of Alzheimer's disease (AD). However, modeling sporadic LOAD that endogenously captures hallmark neuronal pathologies such as amyloid-β (Aβ) deposition, tau tangles, and neuronal loss remains an unmet need. We demonstrate that neurons generated by microRNA (miRNA)-based direct reprogramming of fibroblasts from individuals affected by autosomal dominant AD (ADAD) and LOAD in a three-dimensional environment effectively recapitulate key neuropathological features of AD. Reprogrammed LOAD neurons exhibit Aβ-dependent neurodegeneration, and treatment with β- or γ-secretase inhibitors before (but not subsequent to) Aβ deposit formation mitigated neuronal death. Moreover inhibiting age-associated retrotransposable elements in LOAD neurons reduced both Aβ deposition and neurodegeneration. Our study underscores the efficacy of modeling late-onset neuropathology of LOAD through high-efficiency miRNA-based neuronal reprogramming.
Collapse
Affiliation(s)
- Zhao Sun
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ji-Sun Kwon
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Program in Computational and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yudong Ren
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Program in Developmental, Regenerative, and Stem Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shawei Chen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Courtney K Walker
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xinguo Lu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kitra Cates
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Program in Molecular Genetics and Genomics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sanja Sviben
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Clarissa Valdez
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Henry Houlden
- UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Celeste M Karch
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Randall J Bateman
- Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chihiro Sato
- Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven J Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - David M Holtzman
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew S Yoo
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
14
|
Asada-Utsugi M, Urushitani M. Tau beyond Tangles: DNA Damage Response and Cytoskeletal Protein Crosstalk on Neurodegeneration. Int J Mol Sci 2024; 25:7906. [PMID: 39063148 PMCID: PMC11277103 DOI: 10.3390/ijms25147906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Neurons in the brain are continuously exposed to various sources of DNA damage. Although the mechanisms of DNA damage repair in mitotic cells have been extensively characterized, the repair pathways in post-mitotic neurons are still largely elusive. Moreover, inaccurate repair can result in deleterious mutations, including deletions, insertions, and chromosomal translocations, ultimately compromising genomic stability. Since neurons are terminally differentiated cells, they cannot employ homologous recombination (HR) for double-strand break (DSB) repair, suggesting the existence of neuron-specific repair mechanisms. Our research has centered on the microtubule-associated protein tau (MAPT), a crucial pathological protein implicated in neurodegenerative diseases, and its interplay with neurons' DNA damage response (DDR). This review aims to provide an updated synthesis of the current understanding of the complex interplay between DDR and cytoskeletal proteins in neurons, with a particular focus on the role of tau in neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Makoto Urushitani
- Department of Neurology, Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| |
Collapse
|
15
|
Roberts A, Swerdlow RH, Wang N. Adaptive and Maladaptive DNA Breaks in Neuronal Physiology and Alzheimer's Disease. Int J Mol Sci 2024; 25:7774. [PMID: 39063016 PMCID: PMC11277458 DOI: 10.3390/ijms25147774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
DNA strand breaks excessively accumulate in the brains of patients with Alzheimer's disease (AD). While traditionally considered random, deleterious events, neuron activity itself induces DNA breaks, and these "adaptive" breaks help mediate synaptic plasticity and memory formation. Recent studies mapping the brain DNA break landscape reveal that despite a net increase in DNA breaks in ectopic genomic hotspots, adaptive DNA breaks around synaptic genes are lost in AD brains, and this is associated with transcriptomic dysregulation. Additionally, relationships exist between mitochondrial dysfunction, a hallmark of AD, and DNA damage, such that mitochondrial dysfunction may perturb adaptive DNA break formation, while DNA breaks may conversely impair mitochondrial function. A failure of DNA break physiology could, therefore, potentially contribute to AD pathogenesis.
Collapse
Affiliation(s)
- Anysja Roberts
- University of Kansas Alzheimer’s Disease Research Center, Kansas City, KS 66205, USA (R.H.S.)
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Research Center, Kansas City, KS 66205, USA (R.H.S.)
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City 66160, KS, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ning Wang
- University of Kansas Alzheimer’s Disease Research Center, Kansas City, KS 66205, USA (R.H.S.)
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
16
|
Chmykhalo VK, Deev RV, Tokarev AT, Polunina YA, Xue L, Shidlovskii YV. SWI/SNF Complex Connects Signaling and Epigenetic State in Cells of Nervous System. Mol Neurobiol 2024:10.1007/s12035-024-04355-6. [PMID: 39002058 DOI: 10.1007/s12035-024-04355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
SWI/SNF protein complexes are evolutionarily conserved epigenetic regulators described in all eukaryotes. In metameric animals, the complexes are involved in all processes occurring in the nervous system, from neurogenesis to higher brain functions. On the one hand, the range of roles is wide because the SWI/SNF complexes act universally by mobilizing the nucleosomes in a chromatin template at multiple loci throughout the genome. On the other hand, the complexes mediate the action of multiple signaling pathways that control most aspects of neural tissue development and function. The issues are discussed to provide insight into the molecular basis of the multifaceted role of SWI/SNFs in cell cycle regulation, DNA repair, activation of immediate-early genes, neurogenesis, and brain and connectome formation. An overview is additionally provided for the molecular basis of nervous system pathologies associated with the SWI/SNF complexes and their contribution to neuroinflammation and neurodegeneration. Finally, we discuss the idea that SWI/SNFs act as an integration platform to connect multiple signaling and genetic programs.
Collapse
Affiliation(s)
- Victor K Chmykhalo
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia.
| | - Roman V Deev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
| | - Artemiy T Tokarev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
| | - Yulia A Polunina
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
| | - Lei Xue
- School of Life Science and Technology, The First Rehabilitation Hospital of Shanghai, Tongji University, Shanghai, China
| | - Yulii V Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
- Department of Biology and General Genetics, Sechenov University, Moscow, Russia
| |
Collapse
|
17
|
Currim F, Tanwar R, Brown-Leung JM, Paranjape N, Liu J, Sanders LH, Doorn JA, Cannon JR. Selective dopaminergic neurotoxicity modulated by inherent cell-type specific neurobiology. Neurotoxicology 2024; 103:266-287. [PMID: 38964509 PMCID: PMC11288778 DOI: 10.1016/j.neuro.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease affecting millions of individuals worldwide. Hallmark features of PD pathology are the formation of Lewy bodies in neuromelanin-containing dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNpc), and the subsequent irreversible death of these neurons. Although genetic risk factors have been identified, around 90 % of PD cases are sporadic and likely caused by environmental exposures and gene-environment interaction. Mechanistic studies have identified a variety of chemical PD risk factors. PD neuropathology occurs throughout the brain and peripheral nervous system, but it is the loss of DAergic neurons in the SNpc that produce many of the cardinal motor symptoms. Toxicology studies have found specifically the DAergic neuron population of the SNpc exhibit heightened sensitivity to highly variable chemical insults (both in terms of chemical structure and mechanism of neurotoxic action). Thus, it has become clear that the inherent neurobiology of nigral DAergic neurons likely underlies much of this neurotoxic response to broad insults. This review focuses on inherent neurobiology of nigral DAergic neurons and how such neurobiology impacts the primary mechanism of neurotoxicity. While interactions with a variety of other cell types are important in disease pathogenesis, understanding how inherent DAergic biology contributes to selective sensitivity and primary mechanisms of neurotoxicity is critical to advancing the field. Specifically, key biological features of DAergic neurons that increase neurotoxicant susceptibility.
Collapse
Affiliation(s)
- Fatema Currim
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Reeya Tanwar
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Josephine M Brown-Leung
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Neha Paranjape
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Liu
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laurie H Sanders
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jonathan A Doorn
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA.
| |
Collapse
|
18
|
Hidmi O, Oster S, Shatleh D, Monin J, Aqeilan RI. Protocol for mapping physiological DSBs using in-suspension break labeling in situ and sequencing. STAR Protoc 2024; 5:103059. [PMID: 38717906 PMCID: PMC11098942 DOI: 10.1016/j.xpro.2024.103059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/20/2024] Open
Abstract
Physiological double-stranded breaks (DSBs) are a major source of genomic instability. Here, we present a protocol for mapping physiological DSBs by in-suspension break labeling in situ and sequencing (sBLISS) in a single-nucleotide resolution. We describe steps for cell fixation, labeling of DSBs, DNA isolation followed by in vitro transcription (IVT), reverse transcription, and library preparation. sBLISS provides a map of DSBs over the genome and can be used to study the role of different factors in DSB formation. For complete details on the use and execution of this protocol, please refer to Hidmi et al.1.
Collapse
Affiliation(s)
- Osama Hidmi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Sara Oster
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Diala Shatleh
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jonathan Monin
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rami I Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; Cyprus Cancer Research Institute (CCRI), Nicosia, Cyprus.
| |
Collapse
|
19
|
Benoit E, Lyons DG, Rihel J. Noradrenergic tone is not required for neuronal activity-induced rebound sleep in zebrafish. J Comp Physiol B 2024; 194:279-298. [PMID: 37480493 PMCID: PMC11233345 DOI: 10.1007/s00360-023-01504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/03/2023] [Indexed: 07/24/2023]
Abstract
Sleep pressure builds during wakefulness, but the mechanisms underlying this homeostatic process are poorly understood. One zebrafish model suggests that sleep pressure increases as a function of global neuronal activity, such as during sleep deprivation or acute exposure to drugs that induce widespread brain activation. Given that the arousal-promoting noradrenergic system is important for maintaining heightened neuronal activity during wakefulness, we hypothesised that genetic and pharmacological reduction of noradrenergic tone during drug-induced neuronal activation would dampen subsequent rebound sleep in zebrafish larvae. During stimulant drug treatment, dampening noradrenergic tone with the α2-adrenoceptor agonist clonidine unexpectedly enhanced subsequent rebound sleep, whereas enhancing noradrenergic signalling with a cocktail of α1- and β-adrenoceptor agonists did not enhance rebound sleep. Similarly, CRISPR/Cas9-mediated elimination of the dopamine β-hydroxylase (dbh) gene, which encodes an enzyme required for noradrenalin synthesis, enhanced baseline sleep in larvae but did not prevent additional rebound sleep following acute induction of neuronal activity. Across all drug conditions, c-fos expression immediately after drug exposure correlated strongly with the amount of induced rebound sleep, but was inversely related to the strength of noradrenergic modulatory tone. These results are consistent with a model in which increases in neuronal activity, as reflected by brain-wide levels of c-fos induction, drive a sleep pressure signal that promotes rebound sleep independently of noradrenergic tone.
Collapse
Affiliation(s)
- Eleanor Benoit
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Declan G Lyons
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
20
|
Zhang W, Sun HS, Wang X, Dumont AS, Liu Q. Cellular senescence, DNA damage, and neuroinflammation in the aging brain. Trends Neurosci 2024; 47:461-474. [PMID: 38729785 DOI: 10.1016/j.tins.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024]
Abstract
Aging may lead to low-level chronic inflammation that increases the susceptibility to age-related conditions, including memory impairment and progressive loss of brain volume. As brain health is essential to promoting healthspan and lifespan, it is vital to understand age-related changes in the immune system and central nervous system (CNS) that drive normal brain aging. However, the relative importance, mechanistic interrelationships, and hierarchical order of such changes and their impact on normal brain aging remain to be clarified. Here, we synthesize accumulating evidence that age-related DNA damage and cellular senescence in the immune system and CNS contribute to the escalation of neuroinflammation and cognitive decline during normal brain aging. Targeting cellular senescence and immune modulation may provide a logical rationale for developing new treatment options to restore immune homeostasis and counteract age-related brain dysfunction and diseases.
Collapse
Affiliation(s)
- Wenyan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hong-Shuo Sun
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Xiaoying Wang
- Tulane Center for Clinical Neurosciences, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Aaron S Dumont
- Tulane Center for Clinical Neurosciences, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
21
|
Gouveia Roque C, Phatnani H, Hengst U. The broken Alzheimer's disease genome. CELL GENOMICS 2024; 4:100555. [PMID: 38697121 PMCID: PMC11099344 DOI: 10.1016/j.xgen.2024.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/25/2024] [Accepted: 04/07/2024] [Indexed: 05/04/2024]
Abstract
The complex pathobiology of late-onset Alzheimer's disease (AD) poses significant challenges to therapeutic and preventative interventions. Despite these difficulties, genomics and related disciplines are allowing fundamental mechanistic insights to emerge with clarity, particularly with the introduction of high-resolution sequencing technologies. After all, the disrupted processes at the interface between DNA and gene expression, which we call the broken AD genome, offer detailed quantitative evidence unrestrained by preconceived notions about the disease. In addition to highlighting biological pathways beyond the classical pathology hallmarks, these advances have revitalized drug discovery efforts and are driving improvements in clinical tools. We review genetic, epigenomic, and gene expression findings related to AD pathogenesis and explore how their integration enables a better understanding of the multicellular imbalances contributing to this heterogeneous condition. The frontiers opening on the back of these research milestones promise a future of AD care that is both more personalized and predictive.
Collapse
Affiliation(s)
- Cláudio Gouveia Roque
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA; Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY 10032, USA
| | - Ulrich Hengst
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pathology & Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
22
|
Kumar NH, Kluever V, Barth E, Krautwurst S, Furlan M, Pelizzola M, Marz M, Fornasiero EF. Comprehensive transcriptome analysis reveals altered mRNA splicing and post-transcriptional changes in the aged mouse brain. Nucleic Acids Res 2024; 52:2865-2885. [PMID: 38471806 PMCID: PMC11014377 DOI: 10.1093/nar/gkae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/18/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
A comprehensive understanding of molecular changes during brain aging is essential to mitigate cognitive decline and delay neurodegenerative diseases. The interpretation of mRNA alterations during brain aging is influenced by the health and age of the animal cohorts studied. Here, we carefully consider these factors and provide an in-depth investigation of mRNA splicing and dynamics in the aging mouse brain, combining short- and long-read sequencing technologies with extensive bioinformatic analyses. Our findings encompass a spectrum of age-related changes, including differences in isoform usage, decreased mRNA dynamics and a module showing increased expression of neuronal genes. Notably, our results indicate a reduced abundance of mRNA isoforms leading to nonsense-mediated RNA decay and suggest a regulatory role for RNA-binding proteins, indicating that their regulation may be altered leading to the reshaping of the aged brain transcriptome. Collectively, our study highlights the importance of studying mRNA splicing events during brain aging.
Collapse
Affiliation(s)
- Nisha Hemandhar Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Verena Kluever
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Emanuel Barth
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany
- Bioinformatics Core Facility, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sebastian Krautwurst
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Mattia Furlan
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Manja Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany
- Leibniz Institute for Age Research, FLI, Beutenbergstraße 11, Jena 07743, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University, Leutragraben 1, Jena 07743, Germany
- German Center for Integrative Biodiversity Research (iDiv), Puschstraße 4, Leipzig 04103, Germany
- Michael Stifel Center Jena, Friedrich Schiller University, Ernst-Abbe-Platz 2, Jena 07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Fuerstengraben 1, Jena 07743, Germany
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
23
|
Escoubas CC, Dorman LC, Nguyen PT, Lagares-Linares C, Nakajo H, Anderson SR, Barron JJ, Wade SD, Cuevas B, Vainchtein ID, Silva NJ, Guajardo R, Xiao Y, Lidsky PV, Wang EY, Rivera BM, Taloma SE, Kim DK, Kaminskaya E, Nakao-Inoue H, Schwer B, Arnold TD, Molofsky AB, Condello C, Andino R, Nowakowski TJ, Molofsky AV. Type-I-interferon-responsive microglia shape cortical development and behavior. Cell 2024; 187:1936-1954.e24. [PMID: 38490196 PMCID: PMC11015974 DOI: 10.1016/j.cell.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/31/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Microglia are brain-resident macrophages that shape neural circuit development and are implicated in neurodevelopmental diseases. Multiple microglial transcriptional states have been defined, but their functional significance is unclear. Here, we identify a type I interferon (IFN-I)-responsive microglial state in the developing somatosensory cortex (postnatal day 5) that is actively engulfing whole neurons. This population expands during cortical remodeling induced by partial whisker deprivation. Global or microglial-specific loss of the IFN-I receptor resulted in microglia with phagolysosomal dysfunction and an accumulation of neurons with nuclear DNA damage. IFN-I gain of function increased neuronal engulfment by microglia in both mouse and zebrafish and restricted the accumulation of DNA-damaged neurons. Finally, IFN-I deficiency resulted in excess cortical excitatory neurons and tactile hypersensitivity. These data define a role for neuron-engulfing microglia during a critical window of brain development and reveal homeostatic functions of a canonical antiviral signaling pathway in the brain.
Collapse
Affiliation(s)
- Caroline C Escoubas
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Leah C Dorman
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Phi T Nguyen
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christian Lagares-Linares
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Haruna Nakajo
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sarah R Anderson
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jerika J Barron
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sarah D Wade
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beatriz Cuevas
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ilia D Vainchtein
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nicholas J Silva
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ricardo Guajardo
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Peter V Lidsky
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ellen Y Wang
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; UCSF SRTP program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brianna M Rivera
- Institute for Neurodegenerative Diseases/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sunrae E Taloma
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dong Kyu Kim
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elizaveta Kaminskaya
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hiromi Nakao-Inoue
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bjoern Schwer
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Thomas D Arnold
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Carlo Condello
- Institute for Neurodegenerative Diseases/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tomasz J Nowakowski
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Anna V Molofsky
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
24
|
Ferro A, Arshad A, Boyd L, Stanley T, Berisha A, Vrudhula U, Gomez AM, Borniger JC, Cheadle L. The cytokine receptor Fn14 is a molecular brake on neuronal activity that mediates circadian function in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587786. [PMID: 38617238 PMCID: PMC11014623 DOI: 10.1101/2024.04.02.587786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
To survive, organisms must adapt to a staggering diversity of environmental signals, ranging from sensory information to pathogenic infection, across the lifespan. At the same time, organisms intrinsically generate biological oscillations, such as circadian rhythms, without input from the environment. While the nervous system is well-suited to integrate extrinsic and intrinsic cues, how the brain balances these influences to shape biological function system-wide is not well understood at the molecular level. Here, we demonstrate that the cytokine receptor Fn14, previously identified as a mediator of sensory experience-dependent synaptic refinement during brain development, regulates neuronal activity and function in adult mice in a time-of-day-dependent manner. We show that a subset of excitatory pyramidal (PYR) neurons in the CA1 subregion of the hippocampus increase Fn14 expression when neuronal activity is heightened. Once expressed, Fn14 constrains the activity of these same PYR neurons, suggesting that Fn14 operates as a molecular brake on neuronal activity. Strikingly, differences in PYR neuron activity between mice lacking or expressing Fn14 were most robust at daily transitions between light and dark, and genetic ablation of Fn14 caused aberrations in circadian rhythms, sleep-wake states, and sensory-cued and spatial memory. At the cellular level, microglia contacted fewer, but larger, excitatory synapses in CA1 in the absence of Fn14, suggesting that these brain-resident immune cells may dampen neuronal activity by modifying synaptic inputs onto PYR neurons. Finally, mice lacking Fn14 exhibited heightened susceptibility to chemically induced seizures, implicating Fn14 in disorders characterized by hyperexcitation, such as epilepsy. Altogether, these findings reveal that cytokine receptors that mediates inflammation in the periphery, such as Fn14, can also play major roles in healthy neurological function in the adult brain downstream of both extrinsic and intrinsic cues.
Collapse
Affiliation(s)
- Austin Ferro
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | - Anosha Arshad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
- Department of Neurobiology and Behavior, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA
| | - Leah Boyd
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | - Tess Stanley
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | - Adrian Berisha
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | - Uma Vrudhula
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | - Adrian M. Gomez
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | | | - Lucas Cheadle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
- Howard Hughes Medical Institute, Cold Spring Harbor, NY 11740, USA
| |
Collapse
|
25
|
Xuan F, Xuan H, Huang M, He W, Xu H, Shi X, Wen H. The Tudor-knot Domain of KAT5 Regulates Nucleosomal Substrate Acetylation. J Mol Biol 2024; 436:168414. [PMID: 38141874 PMCID: PMC10957329 DOI: 10.1016/j.jmb.2023.168414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The lysine acetyltransferase KAT5 is a pivotal enzyme responsible for catalyzing histone H4 acetylation in cells. In addition to its indispensable HAT domain, KAT5 also encompasses a conserved Tudor-knot domain at its N-terminus. However, the function of this domain remains elusive, with conflicting findings regarding its role as a histone reader. In our study, we have employed a CRISPR tiling array approach and unveiled the Tudor-knot motif as an essential domain for cell survival. The Tudor-knot domain does not bind to histone tails and is not required for KAT5's chromatin occupancy. However, its absence leads to a global reduction in histone acetylation, accompanied with genome-wide alterations in gene expression that consequently result in diminished cell viability. Mechanistically, we find that the Tudor-knot domain regulates KAT5's HAT activity on nucleosomes by fine-tuning substrate accessibility. In summary, our study uncovers the Tudor-knot motif as an essential domain for cell survival and reveals its critical role in modulating KAT5's catalytic efficiency on nucleosome and KAT5-dependent transcriptional programs critical for cell viability.
Collapse
Affiliation(s)
- Fan Xuan
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hongwen Xuan
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Mengying Huang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Wei He
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Han Xu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hong Wen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
26
|
Lissek T. Aging as a Consequence of the Adaptation-Maladaptation Dilemma. Adv Biol (Weinh) 2024; 8:e2300654. [PMID: 38299389 DOI: 10.1002/adbi.202300654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Indexed: 02/02/2024]
Abstract
In aging, the organism is unable to counteract certain harmful influences over its lifetime which leads to progressive dysfunction and eventually death, thus delineating aging as one failed process of adaptation to a set of aging stimuli. A central problem in understanding aging is hence to explain why the organism cannot adapt to these aging stimuli. The adaptation-maladaptation theory of aging proposes that in aging adaptation processes such as adaptive transcription, epigenetic remodeling, and metabolic plasticity drive dysfunction themselves over time (maladaptation) and thereby cause aging-related disorders such as cancer and metabolic dysregulation. The central dilemma of aging is thus that the set of adaptation mechanisms that the body uses to deal with internal and external stressors acts as a stressor itself and cannot be effectively counteracted. The only available option for the organism to decrease maladaptation may be a program to progressively reduce the output of adaptive cascades (e.g., via genomic methylation) which then leads to reduced physiological adaptation capacity and syndromes like frailty, immunosenescence, and cognitive decline. The adaptation-maladaptation dilemma of aging entails that certain biological mechanisms can simultaneously protect against aging as well as drive aging. The key to longevity may lie in uncoupling adaptation from maladaptation.
Collapse
Affiliation(s)
- Thomas Lissek
- Interdisciplinary Center for Neurosciences, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| |
Collapse
|
27
|
Wang S, DeLeon C, Sun W, Quake SR, Roth BL, Südhof TC. Alternative splicing of latrophilin-3 controls synapse formation. Nature 2024; 626:128-135. [PMID: 38233523 PMCID: PMC10830413 DOI: 10.1038/s41586-023-06913-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024]
Abstract
The assembly and specification of synapses in the brain is incompletely understood1-3. Latrophilin-3 (encoded by Adgrl3, also known as Lphn3)-a postsynaptic adhesion G-protein-coupled receptor-mediates synapse formation in the hippocampus4 but the mechanisms involved remain unclear. Here we show in mice that LPHN3 organizes synapses through a convergent dual-pathway mechanism: activation of Gαs signalling and recruitment of phase-separated postsynaptic protein scaffolds. We found that cell-type-specific alternative splicing of Lphn3 controls the LPHN3 G-protein-coupling mode, resulting in LPHN3 variants that predominantly signal through Gαs or Gα12/13. CRISPR-mediated manipulation of Lphn3 alternative splicing that shifts LPHN3 from a Gαs- to a Gα12/13-coupled mode impaired synaptic connectivity as severely as the overall deletion of Lphn3, suggesting that Gαs signalling by LPHN3 splice variants mediates synapse formation. Notably, Gαs-coupled, but not Gα12/13-coupled, splice variants of LPHN3 also recruit phase-transitioned postsynaptic protein scaffold condensates, such that these condensates are clustered by binding of presynaptic teneurin and FLRT ligands to LPHN3. Moreover, neuronal activity promotes alternative splicing of the synaptogenic Gαs-coupled variant of LPHN3. Together, these data suggest that activity-dependent alternative splicing of a key synaptic adhesion molecule controls synapse formation by parallel activation of two convergent pathways: Gαs signalling and clustered phase separation of postsynaptic protein scaffolds.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Chelsea DeLeon
- Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Wenfei Sun
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Stephen R Quake
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- The Chan Zuckerberg Initiative, Redwood City, CA, USA
| | - Bryan L Roth
- Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
28
|
Phan BN, Ray MH, Xue X, Fu C, Fenster RJ, Kohut SJ, Bergman J, Haber SN, McCullough KM, Fish MK, Glausier JR, Su Q, Tipton AE, Lewis DA, Freyberg Z, Tseng GC, Russek SJ, Alekseyev Y, Ressler KJ, Seney ML, Pfenning AR, Logan RW. Single nuclei transcriptomics in human and non-human primate striatum in opioid use disorder. Nat Commun 2024; 15:878. [PMID: 38296993 PMCID: PMC10831093 DOI: 10.1038/s41467-024-45165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
In brain, the striatum is a heterogenous region involved in reward and goal-directed behaviors. Striatal dysfunction is linked to psychiatric disorders, including opioid use disorder (OUD). Striatal subregions are divided based on neuroanatomy, each with unique roles in OUD. In OUD, the dorsal striatum is involved in altered reward processing, formation of habits, and development of negative affect during withdrawal. Using single nuclei RNA-sequencing, we identified both canonical (e.g., dopamine receptor subtype) and less abundant cell populations (e.g., interneurons) in human dorsal striatum. Pathways related to neurodegeneration, interferon response, and DNA damage were significantly enriched in striatal neurons of individuals with OUD. DNA damage markers were also elevated in striatal neurons of opioid-exposed rhesus macaques. Sex-specific molecular differences in glial cell subtypes associated with chronic stress were found in OUD, particularly female individuals. Together, we describe different cell types in human dorsal striatum and identify cell type-specific alterations in OUD.
Collapse
Affiliation(s)
- BaDoi N Phan
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Madelyn H Ray
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Chen Fu
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Robert J Fenster
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Division of Depression and Anxiety, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Stephen J Kohut
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA
| | - Jack Bergman
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA
| | - Suzanne N Haber
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine, Rochester, NY, 14642, USA
| | - Kenneth M McCullough
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Madeline K Fish
- Center for Systems Neuroscience, Boston University, Boston, MA, 02118, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02118, USA
| | - Jill R Glausier
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Qiao Su
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Allison E Tipton
- Center for Systems Neuroscience, Boston University, Boston, MA, 02118, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02118, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Shelley J Russek
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02118, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02118, USA
| | - Yuriy Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Division of Depression and Anxiety, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Andreas R Pfenning
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| | - Ryan W Logan
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA.
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
29
|
Hou Y, Li Y, Xiang JF, Tilahun K, Jiang J, Corces VG, Yao B. TDP-43 chronic deficiency leads to dysregulation of transposable elements and gene expression by affecting R-loop and 5hmC crosstalk. Cell Rep 2024; 43:113662. [PMID: 38184854 PMCID: PMC10857847 DOI: 10.1016/j.celrep.2023.113662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024] Open
Abstract
TDP-43 is an RNA/DNA-binding protein that forms aggregates in various brain disorders. TDP-43 engages in many aspects of RNA metabolism, but its molecular roles in regulating genes and transposable elements (TEs) have not been extensively explored. Chronic TDP-43 knockdown impairs cell proliferation and cellular responses to DNA damage. At the molecular level, TDP-43 chronic deficiency affects gene expression either locally or distally by concomitantly altering the crosstalk between R-loops and 5-hydroxymethylcytosine (5hmC) in gene bodies and long-range enhancer/promoter interactions. Furthermore, TDP-43 knockdown induces substantial disease-relevant TE activation by influencing their R-loop and 5hmC homeostasis in a locus-specific manner. Together, our findings highlight the genomic roles of TDP-43 in modulating R-loop-5hmC coordination in coding genes, distal regulatory elements, and TEs, presenting a general and broad molecular mechanism underlying the contributions of proteinopathies to the etiology of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yingzi Hou
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jian-Feng Xiang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kedamawit Tilahun
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jie Jiang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
30
|
Villalba S, González B, Junge S, Bernardi A, González J, Fagúndez C, Torterolo P, Carrera I, Urbano FJ, Bisagno V. 5-HT 2A Receptor Knockout Mice Show Sex-Dependent Differences following Acute Noribogaine Administration. Int J Mol Sci 2024; 25:687. [PMID: 38255760 PMCID: PMC10815577 DOI: 10.3390/ijms25020687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
Noribogaine (noribo) is the primary metabolite from ibogaine, an atypical psychedelic alkaloid isolated from the root bark of the African shrub Tabernanthe iboga. The main objective of this study was to test the hypothesis that molecular, electrophysiological, and behavioral responses of noribo are mediated by the 5-HT2A receptor (5-HT2AR) in mice. In that regard, we used male and female, 5-HT2AR knockout (KO) and wild type (WT) mice injected with a single noribo dose (10 or 40 mg/kg; i.p.). After 30 min., locomotor activity was recorded followed by mRNA measurements by qPCR (immediate early genes; IEG, glutamate receptors, and 5-HT2AR levels) and electrophysiology recordings of layer V pyramidal neurons from the medial prefrontal cortex. Noribo 40 decreased locomotion in male, but not female WT. Sex and genotype differences were observed for IEG and glutamate receptor expression. Expression of 5-HT2AR mRNA increased in the mPFC of WT mice following Noribo 10 (males) or Noribo 40 (females). Patch-clamp recordings showed that Noribo 40 reduced the NMDA-mediated postsynaptic current density in mPFC pyramidal neurons only in male WT mice, but no effects were found for either KO males or females. Our results highlight that noribo produces sexually dimorphic effects while the genetic removal of 5HT2AR blunted noribo-mediated responses to NMDA synaptic transmission.
Collapse
Affiliation(s)
- Sofía Villalba
- Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET-Universidad Austral, Mariano Acosta 1611, Buenos Aires B1629WWA, Argentina; (S.V.); (S.J.)
- Departamento de Fisiología, Biología Molecular y Celular Prof. Héctor Maldonado, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina;
| | - Bruno González
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Avenida General Flores 2124, Montevideo 11800, Uruguay; (B.G.); (C.F.); (I.C.)
| | - Stephanie Junge
- Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET-Universidad Austral, Mariano Acosta 1611, Buenos Aires B1629WWA, Argentina; (S.V.); (S.J.)
- Departamento de Fisiología, Biología Molecular y Celular Prof. Héctor Maldonado, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina;
| | - Alejandra Bernardi
- Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET-Universidad Austral, Mariano Acosta 1611, Buenos Aires B1629WWA, Argentina; (S.V.); (S.J.)
- Departamento de Fisiología, Biología Molecular y Celular Prof. Héctor Maldonado, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina;
| | - Joaquín González
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125, Montevideo 11800, Uruguay; (J.G.); (P.T.)
| | - Catherine Fagúndez
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Avenida General Flores 2124, Montevideo 11800, Uruguay; (B.G.); (C.F.); (I.C.)
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125, Montevideo 11800, Uruguay; (J.G.); (P.T.)
| | - Ignacio Carrera
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Avenida General Flores 2124, Montevideo 11800, Uruguay; (B.G.); (C.F.); (I.C.)
| | - Francisco J. Urbano
- Departamento de Fisiología, Biología Molecular y Celular Prof. Héctor Maldonado, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina;
| | - Verónica Bisagno
- Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET-Universidad Austral, Mariano Acosta 1611, Buenos Aires B1629WWA, Argentina; (S.V.); (S.J.)
| |
Collapse
|
31
|
Zolzaya S, Narumoto A, Katsuyama Y. Genomic variation in neurons. Dev Growth Differ 2024; 66:35-42. [PMID: 37855730 DOI: 10.1111/dgd.12898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023]
Abstract
Neurons born during the fetal period have extreme longevity and survive until the death of the individual because the human brain has highly limited tissue regeneration. The brain is comprised of an enormous variety of neurons each exhibiting different morphological and physiological characteristics and recent studies have further reported variations in their genome including chromosomal abnormalities, copy number variations, and single nucleotide mutations. During the early stages of brain development, the increasing number of neurons generated at high speeds has been proposed to lead to chromosomal instability. Additionally, mutations in the neuronal genome can occur in the mature brain. This observed genomic mosaicism in the brain can be produced by multiple endogenous and environmental factors and careful analyses of these observed variations in the neuronal genome remain central for our understanding of the genetic basis of neurological disorders.
Collapse
Affiliation(s)
- Sunjidmaa Zolzaya
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| | - Ayano Narumoto
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| | - Yu Katsuyama
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
32
|
Huang Z. Evidence that Alzheimer's Disease Is a Disease of Competitive Synaptic Plasticity Gone Awry. J Alzheimers Dis 2024; 99:447-470. [PMID: 38669548 PMCID: PMC11119021 DOI: 10.3233/jad-240042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Mounting evidence indicates that a physiological function of amyloid-β (Aβ) is to mediate neural activity-dependent homeostatic and competitive synaptic plasticity in the brain. I have previously summarized the lines of evidence supporting this hypothesis and highlighted the similarities between Aβ and anti-microbial peptides in mediating cell/synapse competition. In cell competition, anti-microbial peptides deploy a multitude of mechanisms to ensure both self-protection and competitor elimination. Here I review recent studies showing that similar mechanisms are at play in Aβ-mediated synapse competition and perturbations in these mechanisms underpin Alzheimer's disease (AD). Specifically, I discuss evidence that Aβ and ApoE, two crucial players in AD, co-operate in the regulation of synapse competition. Glial ApoE promotes self-protection by increasing the production of trophic monomeric Aβ and inhibiting its assembly into toxic oligomers. Conversely, Aβ oligomers, once assembled, promote the elimination of competitor synapses via direct toxic activity and amplification of "eat-me" signals promoting the elimination of weak synapses. I further summarize evidence that neuronal ApoE may be part of a gene regulatory network that normally promotes competitive plasticity, explaining the selective vulnerability of ApoE expressing neurons in AD brains. Lastly, I discuss evidence that sleep may be key to Aβ-orchestrated plasticity, in which sleep is not only induced by Aβ but is also required for Aβ-mediated plasticity, underlining the link between sleep and AD. Together, these results strongly argue that AD is a disease of competitive synaptic plasticity gone awry, a novel perspective that may promote AD research.
Collapse
Affiliation(s)
- Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
33
|
Fang F, Usselman R, Reijo Pera R. Aging and neuronal death. Aging (Albany NY) 2023; 15:13579-13580. [PMID: 38095614 PMCID: PMC10756123 DOI: 10.18632/aging.205433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 12/21/2023]
Affiliation(s)
- Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China
| | - Robert Usselman
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | | |
Collapse
|
34
|
Hollingsworth EW, Liu TA, Jacinto SH, Chen CX, Alcantara JA, Kvon EZ. Rapid and Quantitative Functional Interrogation of Human Enhancer Variant Activity in Live Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570890. [PMID: 38105996 PMCID: PMC10723448 DOI: 10.1101/2023.12.10.570890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Functional analysis of non-coding variants associated with human congenital disorders remains challenging due to the lack of efficient in vivo models. Here we introduce dual-enSERT, a robust Cas9-based two-color fluorescent reporter system which enables rapid, quantitative comparison of enhancer allele activities in live mice of any genetic background. We use this new technology to examine and measure the gain- and loss-of-function effects of enhancer variants linked to limb polydactyly, autism, and craniofacial malformation. By combining dual-enSERT with single-cell transcriptomics, we characterize variant enhancer alleles at cellular resolution, thereby implicating candidate molecular pathways in pathogenic enhancer misregulation. We further show that independent, polydactyly-linked enhancer variants lead to ectopic expression in the same cell populations, indicating shared genetic mechanisms underlying non-coding variant pathogenesis. Finally, we streamline dual-enSERT for analysis in F0 animals by placing both reporters on the same transgene separated by a synthetic insulator. Dual-enSERT allows researchers to go from identifying candidate enhancer variants to analysis of comparative enhancer activity in live embryos in under two weeks.
Collapse
Affiliation(s)
- Ethan W. Hollingsworth
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Medical Scientist Training Program, University of California, Irvine School of Medicine, Irvine, CA 92697, USA
| | - Taryn A. Liu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Sandra H. Jacinto
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Cindy X. Chen
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Joshua A. Alcantara
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Evgeny Z. Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
35
|
Smalheiser NR. Mobile circular DNAs regulating memory and communication in CNS neurons. Front Mol Neurosci 2023; 16:1304667. [PMID: 38125007 PMCID: PMC10730651 DOI: 10.3389/fnmol.2023.1304667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Stimuli that stimulate neurons elicit transcription of immediate-early genes, a process which requires local sites of chromosomal DNA to form double-strand breaks (DSBs) generated by topoisomerase IIb within a few minutes, followed by repair within a few hours. Wakefulness, exploring a novel environment, and contextual fear conditioning also elicit turn-on of synaptic genes requiring DSBs and repair. It has been reported (in non-neuronal cells) that extrachromosomal circular DNA can form at DSBs as the sites are repaired. I propose that activated neurons may generate extrachromosomal circular DNAs during repair at DSB sites, thus creating long-lasting "markers" of that activity pattern which contain sequences from their sites of origin and which regulate long-term gene expression. Although the population of extrachromosomal DNAs is diverse and overall associated with pathology, a subclass of small circular DNAs ("microDNAs," ∼100-400 bases long), largely derives from unique genomic sequences and has attractive features to act as stable, mobile circular DNAs to regulate gene expression in a sequence-specific manner. Circular DNAs can be templates for the transcription of RNAs, particularly small inhibitory siRNAs, circular RNAs and other non-coding RNAs that interact with microRNAs. These may regulate translation and transcription of other genes involved in synaptic plasticity, learning and memory. Another possible fate for mobile DNAs is to be inserted stably into chromosomes after new DSB sites are generated in response to subsequent activation events. Thus, the insertions of mobile DNAs into activity-induced genes may tend to inactivate them and aid in homeostatic regulation to avoid over-excitation, as well as providing a "counter" for a neuron's activation history. Moreover, activated neurons release secretory exosomes that can be transferred to recipient cells to regulate their gene expression. Mobile DNAs may be packaged into exosomes, released in an activity-dependent manner, and transferred to recipient cells, where they may be templates for regulatory RNAs and possibly incorporated into chromosomes. Finally, aging and neurodegenerative diseases (including Alzheimer's disease) are also associated with an increase in DSBs in neurons. It will become important in the future to assess how pathology-associated DSBs may relate to activity-induced mobile DNAs, and whether the latter may potentially contribute to pathogenesis.
Collapse
Affiliation(s)
- Neil R. Smalheiser
- Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL, United States
| |
Collapse
|
36
|
Lobos P, Vega-Vásquez I, Bruna B, Gleitze S, Toledo J, Härtel S, Hidalgo C, Paula-Lima A. Amyloid β-Oligomers Inhibit the Nuclear Ca 2+ Signals and the Neuroprotective Gene Expression Induced by Gabazine in Hippocampal Neurons. Antioxidants (Basel) 2023; 12:1972. [PMID: 38001825 PMCID: PMC10669355 DOI: 10.3390/antiox12111972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Hippocampal neuronal activity generates dendritic and somatic Ca2+ signals, which, depending on stimulus intensity, rapidly propagate to the nucleus and induce the expression of transcription factors and genes with crucial roles in cognitive functions. Soluble amyloid-beta oligomers (AβOs), the main synaptotoxins engaged in the pathogenesis of Alzheimer's disease, generate aberrant Ca2+ signals in primary hippocampal neurons, increase their oxidative tone and disrupt structural plasticity. Here, we explored the effects of sub-lethal AβOs concentrations on activity-generated nuclear Ca2+ signals and on the Ca2+-dependent expression of neuroprotective genes. To induce neuronal activity, neuron-enriched primary hippocampal cultures were treated with the GABAA receptor blocker gabazine (GBZ), and nuclear Ca2+ signals were measured in AβOs-treated or control neurons transfected with a genetically encoded nuclear Ca2+ sensor. Incubation (6 h) with AβOs significantly reduced the nuclear Ca2+ signals and the enhanced phosphorylation of cyclic AMP response element-binding protein (CREB) induced by GBZ. Likewise, incubation (6 h) with AβOs significantly reduced the GBZ-induced increases in the mRNA levels of neuronal Per-Arnt-Sim domain protein 4 (Npas4), brain-derived neurotrophic factor (BDNF), ryanodine receptor type-2 (RyR2), and the antioxidant enzyme NADPH-quinone oxidoreductase (Nqo1). Based on these findings we propose that AβOs, by inhibiting the generation of activity-induced nuclear Ca2+ signals, disrupt key neuroprotective gene expression pathways required for hippocampal-dependent learning and memory processes.
Collapse
Affiliation(s)
- Pedro Lobos
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Advanced Clinical Research Center, Clinical Hospital, Universidad de Chile, Santiago 8380456, Chile; (B.B.); (J.T.)
| | - Ignacio Vega-Vásquez
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Advanced Scientific Equipment Network (REDECA), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Barbara Bruna
- Advanced Clinical Research Center, Clinical Hospital, Universidad de Chile, Santiago 8380456, Chile; (B.B.); (J.T.)
| | - Silvia Gleitze
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
| | - Jorge Toledo
- Advanced Clinical Research Center, Clinical Hospital, Universidad de Chile, Santiago 8380456, Chile; (B.B.); (J.T.)
- Advanced Scientific Equipment Network (REDECA), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Steffen Härtel
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Laboratory for Scientific Image Analysis, Center for Medical Informatics and Telemedicine, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Anatomy and Biology of Development Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Physiology and Biophysics Program, Institute of Biomedical Sciences and Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Interuniversity Center for Healthy Aging (CIES), Santiago 8380000, Chile
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile
| |
Collapse
|
37
|
Dyakonova VE. DNA Instability in Neurons: Lifespan Clock and Driver of Evolution. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1719-1731. [PMID: 38105193 DOI: 10.1134/s0006297923110044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023]
Abstract
In the last ten years, the discovery of neuronal DNA postmitotic instability has changed the theoretical landscape in neuroscience and, more broadly, biology. In 2003, A. M. Olovnikov suggested that neuronal DNA is the "initial substrate of aging". Recent experimental data have significantly increased the likelihood of this hypothesis. How does neuronal DNA accumulate damage and in what genome regions? What factors contribute to this process and how are they associated with aging and lifespan? These questions will be discussed in the review. In the course of Metazoan evolution, the instability of neuronal DNA has been accompanied by searching for the pathways to reduce the biological cost of brain activity. Various processes and activities, such as sleep, evolutionary increase in the number of neurons in the vertebrate brain, adult neurogenesis, distribution of neuronal activity, somatic polyploidy, and RNA editing in cephalopods, can be reconsidered in the light of the trade-off between neuronal plasticity and DNA instability in neurons. This topic is of considerable importance for both fundamental neuroscience and translational medicine.
Collapse
Affiliation(s)
- Varvara E Dyakonova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
38
|
Goetzl EJ. An emerging spectrum of therapeutic targets for Alzheimer's disease. FASEB J 2023; 37:e23238. [PMID: 37795882 DOI: 10.1096/fj.202301461r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
Development of effective preventative and therapeutic measures for Alzheimer's disease has been unsuccessful because of the long and subtly symptomatic preclinical period, difficulties obtaining tissue and biochemical data from living patients, and the many complex underlying pathogenic processes. Recent applications of sensitive specific bioimaging techniques, analyses of RNAs and proteins of neural cell-derived extracellular vesicles in blood, and sophisticated genetic procedures in cellular and rodent models have yielded hopeful new therapeutic targets. These newer targets are described here in relation to their neural cellular location, potential genetic modifications and possible pharmacological approaches.
Collapse
Affiliation(s)
- Edward J Goetzl
- Department of Medicine, University of California Medical Center, San Francisco, California, USA
- Research Department, Campus for Jewish Living, San Francisco, California, USA
| |
Collapse
|
39
|
Dileep V, Boix CA, Mathys H, Marco A, Welch GM, Meharena HS, Loon A, Jeloka R, Peng Z, Bennett DA, Kellis M, Tsai LH. Neuronal DNA double-strand breaks lead to genome structural variations and 3D genome disruption in neurodegeneration. Cell 2023; 186:4404-4421.e20. [PMID: 37774679 PMCID: PMC10697236 DOI: 10.1016/j.cell.2023.08.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/02/2023] [Accepted: 08/29/2023] [Indexed: 10/01/2023]
Abstract
Persistent DNA double-strand breaks (DSBs) in neurons are an early pathological hallmark of neurodegenerative diseases including Alzheimer's disease (AD), with the potential to disrupt genome integrity. We used single-nucleus RNA-seq in human postmortem prefrontal cortex samples and found that excitatory neurons in AD were enriched for somatic mosaic gene fusions. Gene fusions were particularly enriched in excitatory neurons with DNA damage repair and senescence gene signatures. In addition, somatic genome structural variations and gene fusions were enriched in neurons burdened with DSBs in the CK-p25 mouse model of neurodegeneration. Neurons enriched for DSBs also had elevated levels of cohesin along with progressive multiscale disruption of the 3D genome organization aligned with transcriptional changes in synaptic, neuronal development, and histone genes. Overall, this study demonstrates the disruption of genome stability and the 3D genome organization by DSBs in neurons as pathological steps in the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Vishnu Dileep
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Carles A Boix
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hansruedi Mathys
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Asaf Marco
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gwyneth M Welch
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hiruy S Meharena
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anjanet Loon
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ritika Jeloka
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhuyu Peng
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
40
|
Xing J, Gumerov VM, Zhulin IB. Origin and functional diversification of PAS domain, a ubiquitous intracellular sensor. SCIENCE ADVANCES 2023; 9:eadi4517. [PMID: 37647406 PMCID: PMC10468136 DOI: 10.1126/sciadv.adi4517] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Signal perception is a key function in regulating biological activities and adapting to changing environments. Per-Arnt-Sim (PAS) domains are ubiquitous sensors found in diverse receptors in bacteria, archaea, and eukaryotes, but their origins, distribution across the tree of life, and extent of their functional diversity are not fully characterized. Here, we show that using sequence conservation and structural information, it is possible to propose specific and potential functions for a large portion of nearly 3 million PAS domains. Our analysis suggests that PAS domains originated in bacteria and were horizontally transferred to archaea and eukaryotes. We reveal that gas sensing via a heme cofactor evolved independently in several lineages, whereas redox and light sensing via flavin adenine dinucleotide and flavin mononucleotide cofactors have the same origin. The close relatedness of human PAS domains to those in bacteria provides an opportunity for drug design by exploring potential natural ligands and cofactors for bacterial homologs.
Collapse
Affiliation(s)
- Jiawei Xing
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH USA
| | - Vadim M. Gumerov
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH USA
| | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH USA
| |
Collapse
|
41
|
Briguglio S, Cambria C, Albizzati E, Marcello E, Provenzano G, Frasca A, Antonucci F. New Views of the DNA Repair Protein Ataxia-Telangiectasia Mutated in Central Neurons: Contribution in Synaptic Dysfunctions of Neurodevelopmental and Neurodegenerative Diseases. Cells 2023; 12:2181. [PMID: 37681912 PMCID: PMC10486624 DOI: 10.3390/cells12172181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023] Open
Abstract
Ataxia-Telangiectasia Mutated (ATM) is a serine/threonine protein kinase principally known to orchestrate DNA repair processes upon DNA double-strand breaks (DSBs). Mutations in the Atm gene lead to Ataxia-Telangiectasia (AT), a recessive disorder characterized by ataxic movements consequent to cerebellar atrophy or dysfunction, along with immune alterations, genomic instability, and predisposition to cancer. AT patients show variable phenotypes ranging from neurologic abnormalities and cognitive impairments to more recently described neuropsychiatric features pointing to symptoms hardly ascribable to the canonical functions of ATM in DNA damage response (DDR). Indeed, evidence suggests that cognitive abilities rely on the proper functioning of DSB machinery and specific synaptic changes in central neurons of ATM-deficient mice unveiled unexpected roles of ATM at the synapse. Thus, in the present review, upon a brief recall of DNA damage responses, we focus our attention on the role of ATM in neuronal physiology and pathology and we discuss recent findings showing structural and functional changes in hippocampal and cortical synapses of AT mouse models. Collectively, a deeper knowledge of ATM-dependent mechanisms in neurons is necessary not only for a better comprehension of AT neurological phenotypes, but also for a higher understanding of the pathological mechanisms in neurodevelopmental and degenerative disorders involving ATM dysfunctions.
Collapse
Affiliation(s)
- Sabrina Briguglio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via F.lli Cervi 93, 20129 Segrate (MI) and via Vanvitelli 32, 20129 Milan, MI, Italy; (S.B.); (C.C.); (A.F.)
| | - Clara Cambria
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via F.lli Cervi 93, 20129 Segrate (MI) and via Vanvitelli 32, 20129 Milan, MI, Italy; (S.B.); (C.C.); (A.F.)
| | - Elena Albizzati
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Giuseppe Balzaretti 9, 20133 Milan, MI, Italy;
| | - Giovanni Provenzano
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, Via Sommarive 9, 38068 Trento, TN, Italy;
| | - Angelisa Frasca
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via F.lli Cervi 93, 20129 Segrate (MI) and via Vanvitelli 32, 20129 Milan, MI, Italy; (S.B.); (C.C.); (A.F.)
| | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via F.lli Cervi 93, 20129 Segrate (MI) and via Vanvitelli 32, 20129 Milan, MI, Italy; (S.B.); (C.C.); (A.F.)
- Institute of Neuroscience, IN-CNR, Via Raoul Follereau 3, 20854 Vedano al Lambro, MB, Italy
| |
Collapse
|
42
|
Rothschadl MJ, Sathyanesan M, Newton SS. Synergism of Carbamoylated Erythropoietin and Insulin-like Growth Factor-1 in Immediate Early Gene Expression. Life (Basel) 2023; 13:1826. [PMID: 37763230 PMCID: PMC10532867 DOI: 10.3390/life13091826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Trophic factors are secreted proteins that can modulate neuronal integrity, structure, and function. Previous preclinical studies have shown synergistic effects on decreasing apoptosis and improving behavioral performance after stroke when combining two such trophic factors, erythropoietin (EPO) and insulin-like growth factor-1 (IGF-1). However, EPO can elevate the hematocrit level, which can be life-threatening for non-anemic individuals. A chemically engineered derivative of EPO, carbamoylated EPO (CEPO), does not impact hematological parameters but retains neurotrophic effects similar to EPO. To obtain insight into CEPO and IGF-1 combination signaling, we examined immediate early gene (IEG) expression after treatment with CEPO, IGF-1, or CEPO + IGF-1 in rat pheochromocytoma (PC-12) cells and found that combining CEPO and IGF-1 produced a synergistic increase in IEG expression. An in vivo increase in the protein expression of Npas4 and Nptx2 was also observed in the rat hippocampus. We also examined which kinase signaling pathways might be mediating these effects and found that while AKT inhibition did not alter the pattern of IEG expression, both ERK and JAK2 inhibition significantly decreased IEG expression. These results begin to define the molecular effects of combining CEPO and IGF-1 and indicate the potential for these trophic factors to produce positive, synergistic effects.
Collapse
Affiliation(s)
| | | | - Samuel S. Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (M.J.R.); (M.S.)
| |
Collapse
|
43
|
Jiwaji Z, Márkus NM, McQueen J, Emelianova K, He X, Dando O, Chandran S, Hardingham GE. General anesthesia alters CNS and astrocyte expression of activity-dependent and activity-independent genes. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1216366. [PMID: 37670849 PMCID: PMC10476527 DOI: 10.3389/fnetp.2023.1216366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/21/2023] [Indexed: 09/07/2023]
Abstract
General anesthesia represents a common clinical intervention and yet can result in long-term adverse CNS effects particularly in the elderly or dementia patients. Suppression of cortical activity is a key feature of the anesthetic-induced unconscious state, with activity being a well-described regulator of pathways important for brain health. However, the extent to which the effects of anesthesia go beyond simple suppression of neuronal activity is incompletely understood. We found that general anesthesia lowered cortical expression of genes induced by physiological activity in vivo, and recapitulated additional patterns of gene regulation induced by total blockade of firing activity in vitro, including repression of neuroprotective genes and induction of pro-apoptotic genes. However, the influence of anesthesia extended beyond that which could be accounted for by activity modulation, including the induction of non activity-regulated genes associated with inflammation and cell death. We next focused on astrocytes, important integrators of both neuronal activity and inflammatory signaling. General anesthesia triggered gene expression changes consistent with astrocytes being in a low-activity environment, but additionally caused induction of a reactive profile, with transcriptional changes enriched in those triggered by stroke, neuroinflammation, and Aß/tau pathology. Thus, while the effects of general anesthesia on cortical gene expression are consistent with the strong repression of brain activity, further deleterious effects are apparent including a reactive astrocyte profile.
Collapse
Affiliation(s)
- Zoeb Jiwaji
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Department of Anaesthesia, Critical Care and Pain Medicine, Usher Institute, Edinburgh Royal Infirmary, Edinburgh, United Kingdom
| | - Nóra M. Márkus
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jamie McQueen
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Katie Emelianova
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Xin He
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Owen Dando
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharthan Chandran
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Giles E. Hardingham
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
44
|
Ateaque S, Merkouris S, Barde YA. Neurotrophin signalling in the human nervous system. Front Mol Neurosci 2023; 16:1225373. [PMID: 37470055 PMCID: PMC10352796 DOI: 10.3389/fnmol.2023.1225373] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
This review focuses on neurotrophins and their tyrosine kinase receptors, with an emphasis on their relevance to the function and dysfunction in the human nervous system. It also deals with measurements of BDNF levels and highlights recent findings from our laboratory on TrkB and TrkC signalling in human neurons. These include ligand selectivity and Trk activation by neurotrophins and non-neurotrophin ligands. The ligand-induced down-regulation and re-activation of Trk receptors is also discussed.
Collapse
Affiliation(s)
- Sarah Ateaque
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Spyros Merkouris
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Yves-Alain Barde
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
45
|
Talotta R. Molecular Mimicry and HLA Polymorphisms May Drive Autoimmunity in Recipients of the BNT-162b2 mRNA Vaccine: A Computational Analysis. Microorganisms 2023; 11:1686. [PMID: 37512859 PMCID: PMC10384367 DOI: 10.3390/microorganisms11071686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND After the start of the worldwide COVID-19 vaccination campaign, there were increased reports of autoimmune diseases occurring de novo after vaccination. This in silico analysis aimed to investigate the presence of protein epitopes encoded by the BNT-162b2 mRNA vaccine, one of the most widely administered COVID-19 vaccines, which could induce autoimmunity in predisposed individuals. METHODS The FASTA sequence of the protein encoded by the BNT-162b2 vaccine served as the key input to the Immune Epitope Database and Analysis Resource. Linear peptides with 90% BLAST homology were selected, and T-cell, B-cell, and MHC-ligand assays without MHC restriction were searched and analyzed. HLA disease associations were screened on the HLA-SPREAD platform by selecting only positive markers. RESULTS By 7 May 2023, a total of 5693 epitopes corresponding to 21 viral but also human proteins were found. The latter included CHL1, ENTPD1, MEAF6, SLC35G2, and ZFHX2. Importantly, some autoepitopes may be presented by HLA alleles positively associated with various immunological diseases. CONCLUSIONS The protein product of the BNT-162b2 mRNA vaccine contains immunogenic epitopes that may trigger autoimmune phenomena in predisposed individuals through a molecular mimicry mechanism. Genotyping for HLA alleles may help identify individuals at risk. However, further wet-lab studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Rossella Talotta
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital "G. Martino", 98124 Messina, Italy
| |
Collapse
|
46
|
Delint-Ramirez I, Madabhushi R. NPAS4 juggles neuronal activity-dependent transcription and DSB repair with NuA4. Mol Cell 2023; 83:1208-1209. [PMID: 37084713 DOI: 10.1016/j.molcel.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 04/23/2023]
Abstract
In a recent study, Pollina et al.1 discover a new neuron-specific NuA4-TIP60 chromatin remodeling complex that facilitates the repair of activity-induced DNA double-strand breaks (DSBs) in neurons and protects against mutations that accumulate with age and early death.
Collapse
Affiliation(s)
- Ilse Delint-Ramirez
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ram Madabhushi
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
47
|
Merlo D, Mollinari C. The Need for a Break. Curr Alzheimer Res 2023; 20:523-525. [PMID: 37921166 DOI: 10.2174/0115672050272291231013140116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 11/04/2023]
Affiliation(s)
- Daniela Merlo
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Cristiana Mollinari
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
- Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|