1
|
Brügger M, Machahua C, Zumkehr T, Cismaru C, Jandrasits D, Trüeb B, Ezzat S, Oliveira Esteves BI, Dorn P, Marti TM, Zimmer G, Thiel V, Funke-Chambour M, Alves MP. Aging shapes infection profiles of influenza A virus and SARS-CoV-2 in human precision-cut lung slices. Respir Res 2025; 26:112. [PMID: 40128814 PMCID: PMC11934781 DOI: 10.1186/s12931-025-03190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) outbreak revealed the susceptibility of elderly patients to respiratory virus infections, showing cell senescence or subclinical persistent inflammatory profiles and favoring the development of severe pneumonia. METHODS In our study, we evaluated the potential influence of lung aging on the efficiency of replication of influenza A virus (IAV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as well as determining the pro-inflammatory and antiviral responses of the distal lung tissue. RESULTS Using precision-cut lung slices (PCLS) from donors of different ages, we found that pandemic H1N1 and avian H5N1 IAV replicated in the lung parenchyma with high efficacy. In contrast to these IAV strains, SARS-CoV-2 Early isolate and Delta variant of concern (VOC) replicated less efficiently in PCLS. Interestingly, both viruses showed reduced replication in PCLS from older compared to younger donors, suggesting that aged lung tissue represents a suboptimal environment for viral replication. Regardless of the age-dependent viral loads, PCLS responded to H5N1 IAV infection by an induction of IL-6 and IP10/CXCL10, both at the mRNA and protein levels, and to H1N1 IAV infection by induction of IP10/CXCL10 mRNA. Finally, while SARS-CoV-2 and H1N1 IAV infection were not causing detectable cell death, H5N1 IAV infection led to more cytotoxicity and induced significant early interferon responses. CONCLUSIONS In summary, our findings suggest that aged lung tissue might not favor viral dissemination, pointing to a determinant role of dysregulated immune mechanisms in the development of severe disease.
Collapse
Affiliation(s)
- Melanie Brügger
- Institute of Virology and Immunology, Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Carlos Machahua
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Trix Zumkehr
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Christiana Cismaru
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute of Virology, Freie Universitaet Berlin, Berlin, Germany
| | - Damian Jandrasits
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Bettina Trüeb
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sara Ezzat
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Blandina I Oliveira Esteves
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas M Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center, Jena, Germany
| | - Manuela Funke-Chambour
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Marco P Alves
- Institute of Virology and Immunology, Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Khan R, Ji W, Guzman Rivera J, Madhvi A, Andrews T, Richlin B, Suarez C, Gaur S, Hasan UN, Cuddy W, Singh AR, Bukulmez H, Kaelber D, Kimura Y, Ganapathi U, Michailidis IE, Ukey R, Moroso-Fela S, Kuster JK, Casseus M, Roy J, Burns JC, Kleinman LC, Horton DB, Lakhani SA, Gennaro ML. A genetically modulated Toll-like receptor-tolerant phenotype in peripheral blood cells of children with multisystem inflammatory syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:vkaf006. [PMID: 40101747 PMCID: PMC11952872 DOI: 10.1093/jimmun/vkaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/02/2025] [Indexed: 03/20/2025]
Abstract
Dysregulated innate immune responses contribute to multisystem inflammatory syndrome in children (MIS-C), characterized by gastrointestinal, mucocutaneous, and/or cardiovascular injury occurring weeks after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure. To investigate innate immune functions, we stimulated ex vivo peripheral blood cells from MIS-C patients with agonists of Toll-like receptors (TLR), key innate immune response initiators. We found severely dampened cytokine responses and elevated gene expression of negative regulators of TLR signaling. Increased plasma levels of zonulin, a gut leakage marker, were also detected. These effects were also observed in fully convalescent children months after MIS-C recovery. When we investigated the genetic background of patients in relation to TLR responsiveness, we found that cells from MIS-C children carrying rare heterozygous variants of lysosomal trafficking regulator (LYST) were less refractory to TLR stimulation and exhibited lysosomal and mitochondrial abnormalities with altered energy metabolism. Moreover, these rare LYST variant heterozygous carriers tended to exhibit unfavorable clinical laboratory indicators of inflammation, including more profound lymphopenia. The results of our observational study have several implications. First, TLR hyporesponsiveness may be associated with hyperinflammation and/or excessive or prolonged stimulation with gut-originated TLR ligands. Second, TLR hyporesponsiveness during MIS-C may be protective, since LYST variant heterozygous carriers exhibited reduced TLR hyporesponsiveness and unfavorable clinical laboratory indicators of inflammation. Thus, links may exist between genetic background, ability to establish a refractory immune state, and MIS-C clinical spectrum. Third, the possibility exists that prolonged TLR hyporesponsiveness is one of the mechanisms driving long coronavirus disease (COVID), which highlights the need to monitor long-term consequences of MIS-C.
Collapse
Affiliation(s)
- Rehan Khan
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| | - Jeisac Guzman Rivera
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Abhilasha Madhvi
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Tracy Andrews
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Benjamin Richlin
- Pediatric Clinical Research Center, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Christian Suarez
- Pediatric Clinical Research Center, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Sunanda Gaur
- Department of Pediatrics, Clinical Research Center, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Uzma N Hasan
- Department of Pediatrics, Cooperman Barnabas Medical Center, Livingston, NJ, United States
| | - William Cuddy
- Maria Fareri Children’s Hospital, Valhalla, NY, United States
| | - Aalok R Singh
- Maria Fareri Children’s Hospital, Valhalla, NY, United States
- New York Medical College, Touro University, Valhalla, NY, United States
| | - Hulya Bukulmez
- Department of Pediatrics, Division of Rheumatology, MetroHealth System, Cleveland, OH, United States
| | - David Kaelber
- Department of Pediatrics, Division of Rheumatology, MetroHealth System, Cleveland, OH, United States
- Center for Clinical Informatics Research and Education, MetroHealth System, Cleveland, OH, United States
- Department of Internal Medicine, Pediatrics, and Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Yukiko Kimura
- Hackensack University Medical Center, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Usha Ganapathi
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Ioannis E Michailidis
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Rahul Ukey
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Sandra Moroso-Fela
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - John K Kuster
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| | - Myriam Casseus
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Jason Roy
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Jane C Burns
- Department of Pediatrics, University of California, San Diego, CA, United States
- Rady Children’s Hospital-San Diego, University of California, San Diego School of Medicine, San Diego, CA, United States
| | - Lawrence C Kleinman
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
- Department of Global Urban Health, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Daniel B Horton
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, United States
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
- Rutgers Center for Pharmacoepidemiology and Treatment Science, Institute for Health, Health Care Policy and Aging Research, New Brunswick, NJ, United States
| | - Saquib A Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| | - Maria Laura Gennaro
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
- Department of Medicine, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| |
Collapse
|
3
|
Sobh A, Elnagdy MH, Mosa DM, Korkor MS, Alawfi AD, Alshengeti AM, Al-Mazroea AH, Bafail R, Samman WA, El-Agamy DS, Abo-Haded HM. Longitudinal cytokine profile in severe COVID-19 and multisystem inflammatory syndrome in children: A single centre study from Egypt. J Paediatr Child Health 2025; 61:249-261. [PMID: 39679634 DOI: 10.1111/jpc.16746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/22/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024]
Abstract
AIM The severity of COVID-19 is influenced by uncontrolled hyper-inflammatory response with excessive release of many cytokines and chemokines. The understanding of the temporal change in the cytokine levels that underlies the diverse clinical presentations of COVID-19 can help in the prediction of the disease outcome and in the design of proper treatment strategies. METHOD Data were collected from children (<18 years old) hospitalised with severe COVID-19 or severe MIS-C who were compared to a group of healthy control children. Patient demographics, clinical, laboratory data and cytokines profiles were evaluated. Blood samples were collected within 24 h of admission for all enrolled children and on Day 14. RESULTS Twenty-five children with severe COVID-19 and 23 cases with severe MIS-C were included in the study. The biochemical and inflammatory markers tend to be elevated in MIS-C group. There was a significant difference between studied cases and the control group in the following cytokines: G-CSF, IL-10, HMGB1, TNF-α, IL-6, IL-8 and INF-gamma (P < 0.05). While there was a significant difference between severe COVID-19 and MIS-C groups in the following cytokines at Day 1 of admission; IL-10, IL-6, IL-8 and INF-gamma; while at Day 14, there was a significant difference only for G-CSF, IL-10 and IL-6, all other cytokines were comparable. CONCLUSION Our study underpinned patterns of cytokine response in severe COVID-19 and MIS-C. There is a significant upregulation in pro-inflammatory cytokines (mainly G-CSF, IL-10, HMGB1, TNF-α, IL-6, IL-8 and INF-gamma). These biomarkers that could imply on the severity rating and treatment strategies, should be preferentially assessed in SARS-CoV-2 associated immunological events.
Collapse
Affiliation(s)
- Ali Sobh
- Department of Pediatrics, Mansoura University Children's Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Marwa H Elnagdy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Doaa Mosad Mosa
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mai S Korkor
- Department of Pediatrics, Mansoura University Children's Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Abdulsalam D Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Amer M Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | | | - Rawan Bafail
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Waad A Samman
- Department of Pharmacology & Toxicology, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Dina S El-Agamy
- Department of Pharmacology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Hany M Abo-Haded
- Department of Pediatrics, Mansoura University Children's Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Goel AR, Yalcindag A. An Update on Multi-System Inflammatory Syndrome in Children. Curr Rheumatol Rep 2025; 27:16. [PMID: 39883190 DOI: 10.1007/s11926-025-01182-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2025] [Indexed: 01/31/2025]
Abstract
PURPOSE To summarize the latest research on the epidemiology, pathogenesis, diagnosis, and treatment of multisystem inflammatory syndrome in children (MIS-C). RECENT FINDINGS The epidemiology of MIS-C has been dynamic since its initial description. The pathogenesis remains poorly understood. Case definitions of MIS-C have evolved over time, and practice patterns for treating MIS-C are variable with generally positive long-term outcomes yet persistent changes noted. MIS-C has become less prevalent and less severe over time, yet racial and ethnic disparities persist, and vaccination against COVID-19 is highly effective in preventing this disease. The link between acute infection and subsequent inflammation is not well understood, with growing evidence describing its immunologic signature. Newer case definitions require excluding other inflammatory conditions, including Kawasaki Disease (KD), before diagnosing MIS-C. Corticosteroid monotherapy may be non-inferior to IVIg alone or combination IVIg plus corticosteroids for initial treatment, distinguishing the approaches to MIS-C and KD. A wide range of biologic therapies have been employed for rescue therapy with general success and no clear benefit of one over another. Despite reports of a high rate of coronary artery abnormality regression and resolution of heart failure, long-term studies suggest persistent changes to cardiac function. The long-term effects of MIS-C continue to be active areas of research.
Collapse
Affiliation(s)
- Anurag Ratan Goel
- Department of Internal Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ali Yalcindag
- Division of Rheumatology, Department of Pediatrics, The Warren Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI, 02903, USA.
| |
Collapse
|
5
|
Ulu K, Çağlayan Ş, Coşkuner T, Vazgeçer EO, Öner T, Sözeri B. Differentiating Kawasaki Disease and Multisystem Inflammatory Syndrome in Children Using Blood Composite Scores: Insights into Clinical Outcomes and Predictive Indices. Pediatr Cardiol 2025:10.1007/s00246-025-03785-w. [PMID: 39875620 DOI: 10.1007/s00246-025-03785-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
The study sought to assess the clinical utility of complete blood count-derived composite scores, suggesting their potential as markers of inflammation and disease severity in Kawasaki disease (KD) and multisystem inflammatory syndrome in children (MIS-C) with Kawasaki-like features. This retrospective study analyzed data from 71 KD and 73 MIS-C patients and 70 healthy controls. The KD group showed a higher rate of coronary involvement (26.7% vs. 10.9%), while the MIS-C group had a higher intensive care unit (ICU) admission rate (34.2% vs. 2.8%). Platelet counts, lymphocyte counts, mean platelet volume (MPV), MPV/Lymphocyte (MPVLR), and MPV/Platelet (MPVPR) ratios demonstrated the highest specificities in distinguishing MIS-C than KD (84.5%, 83.1%, 91.1%, 88.7%, and 88.7%, respectively). Monocyte counts, MPV, and MPVPR demonstrated the highest specificities to predictive ICU admission in the MIS-C group (83.3%, 89.6%, and 89.6%, respectively). Lymphocyte counts, platelet/lymphocyte ratio (PLR), neutrophil/lymphocyte ratio (NLR), MPVLR, and Systemic Immune-Inflammation Index (SII) parameters were found to have high negative predictive values for predicting KD patients without coronary artery lesions (CALs) (85.7%, 86.1%, 87.1%, 87.1%, and 85.7%, respectively)., Systemic Inflammation Response Index (SIRI), MPVPR, and CRP were independently predictive of ICU admission in the MIS-C group, and lymphocyte count and IVIG resistance were also identified as significant predictors of CALs in the KD group. NLR, MPVLR, MPVPR, and NPR indices effectively differentiate MIS-C from KD and predict ICU admission in MIS-C. NLR, PLR, MPVLR, and SII are valuable in excluding CALs in KD with high negative predictive values. In addition, SIRI and MPVLR were independent predictors of ICU admission in MIS-C, and lymphocyte count was identified as an independent predictor of CALs in KD.
Collapse
Affiliation(s)
- Kadir Ulu
- Department of Pediatric Rheumatology, Şehit Prof. Dr. İlhan Varank Sancaktepe Training and Research Hospital, University of Health Sciences, Emek-Namık Kemal Avenue No. 54, 34785, Sancaktepe, Istanbul, Turkey.
| | - Şengül Çağlayan
- Department of Pediatric Rheumatology, Ümraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Taner Coşkuner
- Department of Pediatric Rheumatology, Ümraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Ebru Oğultekin Vazgeçer
- Department of Social Pediatrics, Ümraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Taliha Öner
- Department of Pediatric Cardiology, Ümraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Betül Sözeri
- Department of Pediatric Rheumatology, Ümraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
6
|
de Farias ECF, do Nascimento LMPP, Pavão Junior MJC, Pavão DCA, Pinheiro APS, Pinheiro AHO, Alves MCB, Ferraro KMMM, Aires LFQ, Dias LG, Machado MMM, Serrão MJD, Gomes RR, de Moraes SMP, Pontes GCL, Carvalho RDFP, Silva CTC, Neves CMAD, dos Santos JCL, de Sousa AMB, da Silva LL, de Mello MLFMF, Carvalho PB, Braga RDB, Harada KDO, Justino MCA, Costa IB, Brasil-Costa I, Monteiro MC, Clemente G, Terreri MT. Plasma IL-17A is increased in patients with critical MIS-C and associated to in-hospital mortality. Front Immunol 2025; 15:1485009. [PMID: 39931580 PMCID: PMC11807959 DOI: 10.3389/fimmu.2024.1485009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/23/2024] [Indexed: 02/13/2025] Open
Abstract
Background Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe post-COVID-19 complication with multiple phenotypes. Objectives The aim of this study is to study inflammatory biomarkers (cytokines and oxidative stress) in critical MIS-C patients and to observe if there is association between these biomarkers and mortality. Methods A single-center prospective study enrolled patients with MIS-C (with positive molecular test), aged between 1 month and 18 years of age. Data was collected from 20 pediatric intensive care unit (PICU)'s bed. Inflammatory biomarkers (cytokines and oxidative stress markers) were performed on day 1 and 3 after hospitalization. Survival rate was calculated, and Kaplan-Meier curves were plotted. Univariate and multivariate Cox regression analyses were conducted. The ROC (Receiver Operating Characteristic) curve analysis was performed. Results and conclusions A total of 41 patients out of 109 patients admitted at PICU with suspected MIS-C during the study period were included, of which 33 (80.5%) were male, 9 (22%) were under one year old, and 30 (73.2%) presented comorbidities. Among them, 16 (39%) did not survive. The mean survival time was shorter in patients with higher levels of IL-17A (≥ 19.71 pg/mL) on day 1 (115 vs 323 days, p = 0.004). Higher levels of IL-17A on day 1 were associated with mortality in both the crude model (HR 1.03, CI95% 1.004-1.057, p = 0.022) and the adjusted model (HR 1.043, CI95% 1.013-1.075, p = 0.012). ROC analysis revealed a cut-off value for the IL-17A of 14.32 pg/ml. The other immunological and inflammatory markers did not demonstrate an association with survival (p>0.05). Our findings suggest that patients with high levels of IL-17A are at greater risk for death.
Collapse
Affiliation(s)
- Emmerson C. F. de Farias
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Luciana M. P. P. do Nascimento
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Manoel J. C. Pavão Junior
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Dalila C. A. Pavão
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Ana P. S. Pinheiro
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Andreza H. O. Pinheiro
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Marília C. B. Alves
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Kíssila M. M. M. Ferraro
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Larisse F. Q. Aires
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Luana G. Dias
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Mayara M. M. Machado
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Michaelle J. D. Serrão
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Raphaella R. Gomes
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Sara M. P. de Moraes
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Gabriela C. L. Pontes
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Railana D. F. P. Carvalho
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Cristiane T. C. Silva
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Carla M. A. das Neves
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Joyce C. L. dos Santos
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Adriana M. B. de Sousa
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Leda L. da Silva
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Mary L. F. M. F. de Mello
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Patricia B. Carvalho
- Division of Pediatric Intensive Care, Departament of Pediatrics, Fundação Hospital das Clínicas Gaspar Viana, Belém, Brazil
| | - Renata de B. Braga
- Division of Pediatric Intensive Care, Departament of Pediatrics, Fundação Hospital das Clínicas Gaspar Viana, Belém, Brazil
| | - Kathia de O. Harada
- Division of Pediatric Intensive Care, Departament of Pediatrics, Fundação Hospital das Clínicas Gaspar Viana, Belém, Brazil
| | - Maria C. A. Justino
- Clinical Research Unit, Health Surveillance Secretariat, Brazilian Ministry of Health, Instituto Evandro Chagas, Ananindeua, Brazil
| | - Iran B. Costa
- Immunology Laboratory, Virology Unit, Instituto Evandro Chagas, Ananindeua, Brazil
| | - Igor Brasil-Costa
- Immunology Laboratory, Virology Unit, Instituto Evandro Chagas, Ananindeua, Brazil
| | - Marta C. Monteiro
- Pharmaceutical Science Post-Graduation Program and Neuroscience and Cell Biology Graduate Program, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Gleice Clemente
- Division of Pediatric Rheumatology, Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Teresa Terreri
- Division of Pediatric Rheumatology, Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Avrusin IS, Bregel LV, Efremova OS, Kostik MM. Development of Preliminary Criteria of Macrophage Activation Syndrome in Multisystem Inflammatory Syndrome Associated with COVID-19 in Children. Biomedicines 2024; 12:2868. [PMID: 39767774 PMCID: PMC11673122 DOI: 10.3390/biomedicines12122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Macrophage activation syndrome (MAS) can be regarded as a key factor determining the severity of multisystem inflammatory syndrome associated with COVID-19 in children (MIS-C), and often requires treatment in the intensive care unit (ICU) to avoid life-threatening complications. No reputable specific criteria for the diagnosis of MAS in MIS-C patients have yet been identified, and criteria currently used for the diagnosis of hemophagocytic syndromes, such as HLH-2004, MAS-2005, and MAS-2016, are not sufficient for MAS in MIS-C. Our goal in this study was to work out the criteria for the early diagnosis of MAS in MIS-C. Methods: One hundred and sixty-six (166) patients with MIS-C were assessed retrospectively. The two most experienced experts independently identified patients with MAS. The patients were divided into three cohorts: MAS (n = 19), without MAS (n = 78), and probable MAS (n = 67). The latter included patients diagnosed with MAS by only one expert, and it was excluded from the analysis. Results: The age of patients with MAS was much higher, and they more frequently had edematous syndrome, hypotension and/or shock, splenomegaly, and CNS involvement. In their blood tests, thrombocytopenia, hypoalbuminemia, and hypertriglyceridemia occurred more often. The level of biomarkers of inflammation, such as ferritin, CRP, troponin, AST, and ALT, was also higher in this group. Increased fibrinogen and D-dimer were also found, demonstrating hypercoagulation in the MAS-MIS-C group. We chose 21 continuous and categorical variables with statistical significance, out of which 2-ferritin > 469 μg/L or platelets < 114 × 109/L-allowed us to discriminate MAS patients. Conclusions: Ferritin > 469 μg/L or platelets < 114 × 109/L can be regarded as key signs to differentiate MAS in MIS-C patients with a sensitivity of 100% and specificity of 94.9%, and they can be used along with other diagnostic methods.
Collapse
Affiliation(s)
- Ilia S. Avrusin
- Hospital Pediatrics, Saint Petersburg State Pediatric Medical University, Saint Petersburg 194100, Russia;
| | - Liudmila V. Bregel
- Department of Pediatrics, Irkutsk State Medical Academy of Postgraduate Education, A Branch of the Russian Medical Academy of Continuous Professional Education, Irkutsk 664049, Russia;
- Department of Cardiology, Irkutsk Regional Children’s Clinical Hospital, Irkutsk 664022, Russia;
| | - Olesya S. Efremova
- Department of Cardiology, Irkutsk Regional Children’s Clinical Hospital, Irkutsk 664022, Russia;
| | - Mikhail M. Kostik
- Hospital Pediatrics, Saint Petersburg State Pediatric Medical University, Saint Petersburg 194100, Russia;
| |
Collapse
|
8
|
Barreto TMM, Souza RS, São Pedro RB, Paiva IM, Silva AS, Nogueira AL, Bellinat APN, Dias NLS, Nunes S, Britto GSG, Amaral EHB, Rocha GD, Silva-Carvalho C, Lyra R, Kehdy FSG, Campos TL, Moura PMMF, Tarazona-Santos E, Cunha TM, Tavares NM, Oliveira-Sá MVB, Ramos RCF, Carmo RF, Vasconcelos LRS, Oliveira PRS. Rare Genetic Variants of NLRP12 in Admixed Latino-American Children With SARS-CoV-2-Related Multisystem Inflammatory Syndrome. J Infect Dis 2024; 230:1400-1409. [PMID: 39328079 DOI: 10.1093/infdis/jiae480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a rare, potentially fatal complication of SARS-CoV-2 infection. Genetic defects in inflammation-related pathways have been linked to MIS-C, but additional research is needed, especially in diverse ethnic groups. The present study aimed to identify genetic variants underlying MIS-C in Brazilian patients. Whole exome sequencing was performed, focusing on genes involved in the host immune response to SARS-CoV-2. Functional assays assessed the impact of selected variants on nuclear factor-κB signaling. Nine rare, potentially deleterious variants were found in 8 of 21 patients, located in the IL17RC, IFNA10, or NLRP12 gene. Unlike the wild type NLRP12 protein, which inhibits nuclear factor-κB activation in HEK 293T cells, the mutant NLRP12 proteins have significantly reduced inhibitory properties. In conclusion, our results indicate that rare autosomal variants in immune-related genes may underlie MIS-C, highlighting the potential role of NLRP12 in its predisposition. These findings provide new insights for the appropriate management of MIS-C.
Collapse
Affiliation(s)
- Thaís M M Barreto
- Instituto de Biologia, Universidade Federal da Bahia, Salvador
- Emergência Pediátrica, Instituto Couto Maia, Salvador
| | | | | | - Isadora M Paiva
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto
| | - Andréia S Silva
- Departamento de Infectologia Pediátrica, Hospital Universitário Oswaldo Cruz, Recife
| | - Ana L Nogueira
- Departamento de Infectologia Pediátrica, Hospital Universitário Oswaldo Cruz, Recife
| | | | | | - Sara Nunes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador
| | | | | | - Gabriela D Rocha
- Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife
| | - Carolina Silva-Carvalho
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte
| | - Ricardo Lyra
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte
| | | | - Túlio L Campos
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife
| | - Patrícia M M F Moura
- Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife
- Faculdade de Ciências Médicas, Universidade de Pernambuco, Recife
| | - Eduardo Tarazona-Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte
| | - Thiago M Cunha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto
| | | | | | - Regina C F Ramos
- Departamento de Infectologia Pediátrica, Hospital Universitário Oswaldo Cruz, Recife
| | - Rodrigo F Carmo
- Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife
- Colegiado de Medicina, Universidade Federal do Vale do São Francisco, Petrolina
| | | | | |
Collapse
|
9
|
Bellos E, Santillo D, Vantourout P, Jackson HR, Duret A, Hearn H, Seeleuthner Y, Talouarn E, Hodeib S, Patel H, Powell O, Yeoh S, Mustafa S, Habgood-Coote D, Nichols S, Estramiana Elorrieta L, D’Souza G, Wright VJ, Estrada-Rivadeneyra D, Tremoulet AH, Dummer KB, Netea SA, Condino-Neto A, Lau YL, Núñez Cuadros E, Toubiana J, Holanda Pena M, Rieux-Laucat F, Luyt CE, Haerynck F, Mège JL, Chakravorty S, Haddad E, Morin MP, Metin Akcan Ö, Keles S, Emiroglu M, Alkan G, Tüter Öz SK, Elmas Bozdemir S, Morelle G, Volokha A, Kendir-Demirkol Y, Sözeri B, Coskuner T, Yahsi A, Gulhan B, Kanik-Yuksek S, Bayhan GI, Ozkaya-Parlakay A, Yesilbas O, Hatipoglu N, Ozcelik T, Belot A, Chopin E, Barlogis V, Sevketoglu E, Menentoglu E, Gayretli Aydin ZG, Bloomfield M, AlKhater SA, Cyrus C, Stepanovskiy Y, Bondarenko A, Öz FN, Polat M, Fremuth J, Lebl J, Geraldo A, Jouanguy E, Carter MJ, Wellman P, Peters M, Pérez de Diego R, Edwards LA, Chiu C, Noursadeghi M, Bolze A, Shimizu C, Kaforou M, Hamilton MS, Herberg JA, Schmitt EG, Rodriguez-Palmero A, Pujol A, Kim J, Cobat A, Abel L, Zhang SY, Casanova JL, Kuijpers TW, Burns JC, Levin M, Hayday AC, Sancho-Shimizu V. Heterozygous BTNL8 variants in individuals with multisystem inflammatory syndrome in children (MIS-C). J Exp Med 2024; 221:e920240699. [PMID: 39576310 PMCID: PMC11586762 DOI: 10.1084/jem.20240699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 11/24/2024] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a rare condition following SARS-CoV-2 infection associated with intestinal manifestations. Genetic predisposition, including inborn errors of the OAS-RNAseL pathway, has been reported. We sequenced 154 MIS-C patients and utilized a novel statistical framework of gene burden analysis, "burdenMC," which identified an enrichment for rare predicted-deleterious variants in BTNL8 (OR = 4.2, 95% CI: 3.5-5.3, P < 10-6). BTNL8 encodes an intestinal epithelial regulator of Vγ4+γδ T cells implicated in regulating gut homeostasis. Enrichment was exclusive to MIS-C, being absent in patients with COVID-19 or bacterial disease. Using an available functional test for BTNL8, rare variants from a larger cohort of MIS-C patients (n = 835) were tested which identified eight variants in 18 patients (2.2%) with impaired engagement of Vγ4+γδ T cells. Most of these variants were in the B30.2 domain of BTNL8 implicated in sensing epithelial cell status. These findings were associated with altered intestinal permeability, suggesting a possible link between disrupted gut homeostasis and MIS-C-associated enteropathy triggered by SARS-CoV-2.
Collapse
Affiliation(s)
- Evangelos Bellos
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Dilys Santillo
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
- Section of Virology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Pierre Vantourout
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Heather R. Jackson
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Amedine Duret
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Henry Hearn
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
| | - Estelle Talouarn
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
| | - Stephanie Hodeib
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
- Section of Virology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Harsita Patel
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Oliver Powell
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Sophya Yeoh
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Sobia Mustafa
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Dominic Habgood-Coote
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Samuel Nichols
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Leire Estramiana Elorrieta
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Giselle D’Souza
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Victoria J. Wright
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Diego Estrada-Rivadeneyra
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Adriana H. Tremoulet
- Department of Pediatrics, Kawasaki Disease Research Center, University of California San Diego, La Jolla, CA, USA
- Rady Children’s Hospital-San Diego, San Diego, CA, USA
| | - Kirsten B. Dummer
- Department of Pediatrics, Kawasaki Disease Research Center, University of California San Diego, La Jolla, CA, USA
- Rady Children’s Hospital-San Diego, San Diego, CA, USA
| | - Stejara A. Netea
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children’s Hospital, Amsterdam University Medical Center (AmsterdamUMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Esmeralda Núñez Cuadros
- Department of Pediatrics, Regional University Hospital of Málaga, IBIMA Research Institute, Málaga, Spain
| | - Julie Toubiana
- Department of General Pediatrics and Infectious Diseases, Necker-Enfants Malades University Hospital, AP-HP, Université Paris Cité, Paris, France
| | | | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163-Institut Imagine, Paris, France
- Imagine Institute, Paris Descartes-Sorbonne Université Paris Cité, Paris, France
| | - Charles-Edouard Luyt
- Intensive Care Unit, AP-HP Pitié-Salpêtrière Hospital, Paris University, Paris, France
| | | | | | - Samya Chakravorty
- Biocon Bristol Myers Squibb Research and Development Center, Syngene Intl. Ltd., Bengaluru, India
- Bristol Myers Squibb, Lawrenceville, NJ, USA
- Emory University Department of Pediatrics and Human Genetics, Atlanta GA, USA
| | - Elie Haddad
- CHU Sainte-Justine Azrieli Research Center, Montreal, Canada
- Department of Microbiology, Infectious Diseases and Immunology, University of Montreal, Montreal, Canada
- Department of Pediatrics, University of Montreal, Montreal, Canada
| | | | - Özge Metin Akcan
- Division of Pediatric Infectious Diseases, Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Melike Emiroglu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Gulsum Alkan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Sadiye Kübra Tüter Öz
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Sefika Elmas Bozdemir
- Division of Pediatric Allergy and Immunology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Guillaume Morelle
- Department of General Paediatrics, Hôpital Bicêtre, AP-HP, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Alla Volokha
- Pediatric Infectious Disease and Pediatric Immunology Department, Shupyk National Healthcare University, Kyiv, Ukraine
| | - Yasemin Kendir-Demirkol
- Department of Pediatric Genetics, Umraniye Education and Research Hospital, Health Sciences University, İstanbul, Turkey
| | - Betul Sözeri
- Division of Pediatric Rheumatology, Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Taner Coskuner
- Division of Pediatric Rheumatology, Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Aysun Yahsi
- Department of Pediatric Infectious Diseases, Ankara City Hospital, Ankara, Turkey
| | - Belgin Gulhan
- Department of Pediatric Infectious Diseases, Ankara City Hospital, Ankara, Turkey
| | - Saliha Kanik-Yuksek
- Department of Pediatric Infectious Diseases, Ankara City Hospital, Ankara, Turkey
| | | | | | - Osman Yesilbas
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Nevin Hatipoglu
- Pediatric Infectious Diseases Unit, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Alexandre Belot
- Service de Rhumatologie Pédiatrique, Hôpital Femme-Mère-Enfant, Groupement Hospitalier Est – Bâtiment “Pinel”, Bron, France
| | - Emilie Chopin
- CBC BIOTEC Biobank, GHE, Hospices Civils de Lyon, Lyon, France
| | - Vincent Barlogis
- La Timone Children Hospital, Aix-Marseille University, APHM, Marseille, France
| | - Esra Sevketoglu
- Univeristy of Health Sciences Turkiye Bakirkoy Dr. Sadi Konuk Research and Training Hospital Pediatirc Intensive Care Department, Istanbul, Türkiye
| | - Emin Menentoglu
- Univeristy of Health Sciences Turkiye Bakirkoy Dr. Sadi Konuk Research and Training Hospital Pediatirc Intensive Care Department, Istanbul, Türkiye
| | - Zeynep Gokce Gayretli Aydin
- Division of Pediatric Infectious Disease, Department of Pediatrics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Marketa Bloomfield
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
- Department of Paediatrics, 1st Faculty of Medicine, Charles University in Prague and Thomayer University Hospital, Prague, Czech Republic
| | - Suzan A. AlKhater
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Department of Pediatrics, King Fahad Hospital of the University, Al-Khobar, Saudi Arabia
| | - Cyril Cyrus
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Yuriy Stepanovskiy
- Department of Pediatrics, Immunology, Infectious, and Rare Diseases at the International European University, Kyiv, Ukraine
| | - Anastasiia Bondarenko
- Department of Pediatrics, Immunology, Infectious, and Rare Diseases at the International European University, Kyiv, Ukraine
| | - Fatma Nur Öz
- Department of Pediatric Infectious Disease, SBU Ankara Dr. Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Meltem Polat
- Department of Pediatric Infectious Diseases, Gazi University School of Medicine, Ankara, Turkey
| | - Jiří Fremuth
- Department of Pediatrics - PICU, Faculty of Medicine in Pilsen, Charles University in Prague, Prague, Czech Republic
| | - Jan Lebl
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Amyrath Geraldo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
- Department of Pediatircs, Germans Trias i Pujol Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
- Department of Pediatircs, Germans Trias i Pujol Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Michael J. Carter
- Paediatric Intensive Care, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, St Thomas’ Hospital, London, UK
| | - Paul Wellman
- Paediatric Intensive Care, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Mark Peters
- Paediatric Intensive Care Unit, Great Ormond Street Hospital for Children NHS Foundation Trust and NIHR Biomedical Research Centre, London, UK
- University College London Great Ormond St Institute of Child Health, London, UK
| | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, University Hospital “La Paz”, Madrid, Spain
| | - Lindsey Ann Edwards
- Centre Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Guy’s Tower, Guy’s Hospital, London, UK
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, UK
| | | | - Chisato Shimizu
- Department of Pediatrics, Kawasaki Disease Research Center, University of California San Diego, La Jolla, CA, USA
- Rady Children’s Hospital-San Diego, San Diego, CA, USA
| | - Myrsini Kaforou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Melissa Shea Hamilton
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Jethro A. Herberg
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Erica G. Schmitt
- Division of Rheumatology and Immunology, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Agusti Rodriguez-Palmero
- Department of Pediatircs, Germans Trias i Pujol Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
- Catalan Institution of Research and Advanced Studies, Barcelona, Spain
| | - Jihoon Kim
- Department of Biomedical Informatics, University of California, San Diego, CA, USA
- Section of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Taco W. Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children’s Hospital, Amsterdam University Medical Center (AmsterdamUMC), University of Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory at the AmsterdamUMC, Amsterdam Institute for Infection and Immunity, AmsterdamUMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jane C. Burns
- Department of Pediatrics, Kawasaki Disease Research Center, University of California San Diego, La Jolla, CA, USA
- Rady Children’s Hospital-San Diego, San Diego, CA, USA
| | - Michael Levin
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Vanessa Sancho-Shimizu
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
- Section of Virology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
10
|
Wu T, Liu D, Liu S, Xiao H, Xiong B, Zhou Y, Xiong Y, Cui Q, Wu J, Liu M, Liu H, Li Y, Wang M, Bao X, Li Y, Zhou F. Chemotherapy plus therapeutic plasmapheresis with 4% human albumin solution in multiple myeloma patients with acute kidney injury: a prospective, open-label, proof-of-concept study. Ren Fail 2024; 46:2356708. [PMID: 38803220 PMCID: PMC11136471 DOI: 10.1080/0886022x.2024.2356708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
As no unified treatment protocol or evidence yet exists for plasmapheresis without plasma, this study explored the outcomes of using 4% human albumin (ALB) solution as a replacement solution in patients undergoing plasma exchange for multiple myeloma (MM) patients with acute kidney injury (AKI). This study was prospectively registered (ChiCTR2000030640 and NCT05251896). Bortezomib-based chemotherapy plus therapeutic plasmapheresis (TPP) with 4% human ALB solution was assessed for three years in patients with MM aged >18 years, with AKI according to the Kidney Disease Improving Global Outcomes criteria, and without previous renal impairment from other causes. The primary endpoints were changes in renal function over 18 weeks and survival outcomes at 36 months. The secondary endpoints were the incidence of adverse reactions and symptom improvement. Among the 119 patients included in the analysis, 108 experienced renal reactions. The M protein (absolute changes: median -12.12%, interquartile ranges (IQRs) -18.62 to -5.626) and creatine (median -46.91 μmol/L, IQR -64.70 to -29.12) levels decreased, whereas the estimated glomerular filtration rate (eGFR) increased (median 20.66 mL/(min·1.73 m2), IQR 16.03-25.29). Regarding patient survival, 68.1% and 35.3% of patients survived for >12 and >36 months, respectively. The three symptoms with the greatest relief were urine foam, poor appetite, and blurred vision. All 11 patients (7.6%) who experienced mild adverse reactions achieved remission. In conclusion, in MM patients with AKI, plasma-free plasmapheresis with 4% human ALB solution and bortezomib-based chemotherapy effectively alleviated light chain damage to kidney function while improving patient quality of life.
Collapse
Affiliation(s)
- Tianzhi Wu
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Dandan Liu
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Shangqin Liu
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hui Xiao
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Bei Xiong
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yi Zhou
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yafen Xiong
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Qin Cui
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jiang Wu
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Minghui Liu
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hongli Liu
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yiming Li
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Meixin Wang
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xueqin Bao
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Ye Li
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Fuling Zhou
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Dick JK, Sangala JA, Krishna VD, Khaimraj A, Hamel L, Erickson SM, Hicks D, Soigner Y, Covill LE, Johnson AK, Ehrhardt MJ, Ernste K, Brodin P, Koup RA, Khaitan A, Baehr C, Thielen BK, Henzler CM, Skipper C, Miller JS, Bryceson YT, Wu J, John CC, Panoskaltsis-Mortari A, Orioles A, Steiner ME, Cheeran MCJ, Pravetoni M, Hart GT. NK Cell and Monocyte Dysfunction in Multisystem Inflammatory Syndrome in Children. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1452-1466. [PMID: 39392378 PMCID: PMC11533154 DOI: 10.4049/jimmunol.2400395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a severe complication of SARS-CoV-2 infection characterized by multiorgan involvement and inflammation. Testing of cellular function ex vivo to understand the aberrant immune response in MIS-C is limited. Despite strong Ab production in MIS-C, SARS-CoV-2 nucleic acid testing can remain positive for 4-6 wk postinfection. Therefore, we hypothesized that dysfunctional cell-mediated Ab responses downstream of Ab production may be responsible for delayed clearance of viral products in MIS-C. In MIS-C, monocytes were hyperfunctional for phagocytosis and cytokine production, whereas NK cells were hypofunctional for both killing and cytokine production. The decreased NK cell cytotoxicity correlated with an NK exhaustion marker signature and systemic IL-6 levels. Potentially providing a therapeutic option, cellular engagers of CD16 and SARS-CoV-2 proteins were found to rescue NK cell function in vitro. Taken together, our results reveal dysregulation in Ab-mediated cellular responses of myeloid and NK cells that likely contribute to the immune pathology of this disease.
Collapse
Affiliation(s)
- Jenna K. Dick
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
- Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Jules A. Sangala
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
- Center for Immunology, University of Minnesota, Minneapolis, MN
| | | | - Aaron Khaimraj
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | - Lydia Hamel
- Division of Critical Care, Children’s Hospital and Clinics of Minnesota, Minneapolis, MN
| | - Spencer M. Erickson
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Dustin Hicks
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | - Yvette Soigner
- Division of Hematology, Oncology, and Transplant, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Laura E. Covill
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Alexander K. Johnson
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Michael J. Ehrhardt
- Division of Bone Marrow Transplantation and Cellular Therapy, Department of Pediatrics, M Health Fairview Masonic Children’s Hospital, Minneapolis, MN
| | - Keenan Ernste
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Petter Brodin
- Unit for Clinical Pediatrics, Department of Women’s and Children’s Health, Karolinska Institute, Solna, Sweden
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Richard A. Koup
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Alka Khaitan
- Ryan White Center for Pediatric Infectious Diseases & Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Carly Baehr
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | - Beth K. Thielen
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | | | - Caleb Skipper
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Jeffrey S. Miller
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Division of Hematology, Oncology, and Transplant, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Yenan T. Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Broegelmann Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Chandy C. John
- Ryan White Center for Pediatric Infectious Diseases & Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Angela Panoskaltsis-Mortari
- Division of Bone Marrow Transplantation and Cellular Therapy, Department of Pediatrics, M Health Fairview Masonic Children’s Hospital, Minneapolis, MN
| | - Alberto Orioles
- Division of Critical Care, Children’s Hospital and Clinics of Minnesota, Minneapolis, MN
| | - Marie E. Steiner
- Divisions of Pediatric Critical Care and Pediatric Hematology/Oncology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Maxim C. J. Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA
| | - Geoffrey T. Hart
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
- Center for Immunology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
12
|
Durá-Travé T, Gallinas-Victoriano F. COVID-19 in Children and Vitamin D. Int J Mol Sci 2024; 25:12205. [PMID: 39596272 PMCID: PMC11594876 DOI: 10.3390/ijms252212205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
In December 2019, the so-called "coronavirus disease 2019" (COVID-19) began. This disease is characterized by heterogeneous clinical manifestations, ranging from an asymptomatic process to life-threatening conditions associated with a "cytokine storm". This article (narrative review) summarizes the epidemiologic characteristics and clinical manifestations of COVID-19 and multi-system inflammatory syndrome in children (MIS-C). The effect of the pandemic confinement on vitamin D status and the hypotheses proposed to explain the age-related difference in the severity of COVID-19 are discussed. The role of vitamin D as a critical regulator of both innate and adaptive immune responses and the COVID-19 cytokine storm is analyzed. Vitamin D and its links to both COVID-19 (low levels of vitamin D appear to worsen COVID-19 outcomes) and the cytokine storm (anti-inflammatory activity) are detailed. Finally, the efficacy of vitamin D supplementation in COVID-19 is evaluated, but the evidence supporting vitamin D supplementation as an adjuvant treatment for COVID-19 remains uncertain.
Collapse
Affiliation(s)
- Teodoro Durá-Travé
- Department of Pediatrics, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Navarrabiomed (Biomedical Research Center), 31008 Pamplona, Spain;
| | - Fidel Gallinas-Victoriano
- Navarrabiomed (Biomedical Research Center), 31008 Pamplona, Spain;
- Department of Pediatrics, Navarra Hospital Universitary, 31008 Pamplona, Spain
| |
Collapse
|
13
|
Sherman JD, Karmali V, Kumar B, Simon TW, Bechnak S, Panjwani A, Ciric CR, Wang D, Huerta C, Johnson B, Anderson EJ, Rouphael N, Collins MH, Rostad CA, Azadi P, Scherer EM. Altered Spike Immunoglobulin G Fc N-Linked Glycans Are Associated With Hyperinflammatory State in Adult Coronavirus Disease 2019 and Multisystem Inflammatory Syndrome in Children. Open Forum Infect Dis 2024; 11:ofae626. [PMID: 39494457 PMCID: PMC11528514 DOI: 10.1093/ofid/ofae626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024] Open
Abstract
Background Severe coronavirus disease 2019 (COVID-19) and multisystem inflammatory syndrome (MIS-C) are characterized by excessive inflammatory cytokines/chemokines. In adults, disease severity is associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immunoglobulin G (IgG) Fc afucosylation, which induces proinflammatory cytokine secretion from innate immune cells. This study aimed to define spike IgG Fc glycosylation following SARS-CoV-2 infection in adults and children and following SARS-CoV-2 vaccination in adults and the relationships between glycan modifications and cytokines/chemokines. Methods We analyzed longitudinal (n = 146) and cross-sectional (n = 49) serum/plasma samples from adult and pediatric COVID-19 patients, MIS-C patients, adult vaccinees, and adult and pediatric controls. We developed methods for characterizing bulk and spike IgG Fc glycosylation by capillary electrophoresis and measured levels of 10 inflammatory cytokines/chemokines by multiplexed enzyme-linked immunosorbent assay. Results Spike IgG was more afucosylated than bulk IgG during acute adult COVID-19 and MIS-C. We observed an opposite trend following vaccination, but it was not significant. Spike IgG was more galactosylated and sialylated and less bisected than bulk IgG during adult COVID-19, with similar trends observed during pediatric COVID-19/MIS-C and following SARS-CoV-2 vaccination. Spike IgG glycosylation changed with time following adult COVID-19 or vaccination. Afucosylated spike IgG exhibited inverse and positive correlations with inflammatory markers in MIS-C and following vaccination, respectively; galactosylated and sialylated spike IgG inversely correlated with proinflammatory cytokines in adult COVID-19 and MIS-C; and bisected spike IgG positively correlated with inflammatory cytokines/chemokines in multiple groups. Conclusions We identified previously undescribed relationships between spike IgG glycan modifications and inflammatory cytokines/chemokines that expand our understanding of IgG glycosylation changes that may impact COVID-19 and MIS-C immunopathology.
Collapse
Affiliation(s)
- Jacob D Sherman
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vinit Karmali
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bhoj Kumar
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Trevor W Simon
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarah Bechnak
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anusha Panjwani
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Caroline R Ciric
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dongli Wang
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christopher Huerta
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Brandi Johnson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Evan J Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nadine Rouphael
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Matthew H Collins
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christina A Rostad
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Erin M Scherer
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Filippatos F, Tzanoudaki M, Tatsi EB, Dessypris N, Koukou DM, Georgokosta C, Syriopoulou V, Michos A. Comparison οf Immune Responses Through Multiparametric T-Cell Cytokine Expression Profile Between Children with Convalescent COVID-19 or Multisystem Inflammatory Syndrome. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1278. [PMID: 39594853 PMCID: PMC11592800 DOI: 10.3390/children11111278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND/OBJECTIVES The immunological pathways that cause Multisystem Inflammatory Syndrome after SARS-CoV-2 infection in children (MIS-C) remain under investigation. METHODS The aim of this study was to prospectively compare the T-cell cytokine expression profile in unvaccinated children with acute MIS-C (MISC_A) before immunosuppression, convalescent MIS-C (one month after syndrome onset, MISC_C), convalescent COVID-19 (one month after hospitalization), and in healthy, unvaccinated controls. The intracellular expression of IL-4, IL-2, IL-17, IFNγ, TNF-α and Granzyme B, and the post SARS-CoV-2-Spike antigenic mix stimulation of T-cell subsets was analyzed by 13-color flow cytometry. RESULTS Twenty children with a median age (IQR) of 11.5 (7.25-14) years were included in the study. From the comparison of the flow cytometry analysis of the 14 markers of MISC_A with the other three groups (MISC_C, post-COVID-19 and controls), significant differences were identified as follows: 1. CD4+IL-17+/million CD3+: 293.0(256.4-870.9) vs. 50.7(8.4-140.5); p-value: 0.03, vs. 96.7(89.2-135.4); p-value: 0.03 and vs. 8.7(0.0-82.4); p-value: 0.03, respectively; 2. CD8+IL-17+/million CD3+: 335.2(225.8-429.9) vs. 78.0(31.9-128.9) vs. 84.1(0.0-204.6) vs. 33.2(0.0-114.6); p-value: 0.05, respectively; 3. CD8+IFNγ+/million CD3+: 162.2(91.6-273.4) vs. 41.5(0.0-77.4); p-value: 0.03 vs. 30.3(0.0-92.8); p-value: 0.08, respectively. CONCLUSIONS In children presenting with MIS-C one month after COVID-19 infection, T cells were found to be polarized towards IL-17 and IFNγ production compared to those with uncomplicated convalescent COVID-19, a finding that could provide possible immunological biomarkers for MIS-C detection.
Collapse
Affiliation(s)
- Filippos Filippatos
- Infectious Diseases and Chemotherapy Research Laboratory, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (F.F.); (D.-M.K.); (C.G.); (V.S.)
| | - Marianna Tzanoudaki
- Department of Immunology and Histocompatibility, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - Elizabeth-Barbara Tatsi
- University Research Institute for Maternal and Child Health and Precision Medicine, 11527 Athens, Greece;
| | - Nick Dessypris
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11572 Athens, Greece;
| | - Dimitra-Maria Koukou
- Infectious Diseases and Chemotherapy Research Laboratory, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (F.F.); (D.-M.K.); (C.G.); (V.S.)
| | - Chrysa Georgokosta
- Infectious Diseases and Chemotherapy Research Laboratory, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (F.F.); (D.-M.K.); (C.G.); (V.S.)
| | - Vasiliki Syriopoulou
- Infectious Diseases and Chemotherapy Research Laboratory, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (F.F.); (D.-M.K.); (C.G.); (V.S.)
| | - Athanasios Michos
- Infectious Diseases and Chemotherapy Research Laboratory, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (F.F.); (D.-M.K.); (C.G.); (V.S.)
| |
Collapse
|
15
|
Johnson SM, Penner J, Issitt R, Kmentt L, Grant K, Pandey A, Champsas D, Abdel-Mannan O, Maillard S, McKenzie K, Golding E, Kucera F, Hacohen Y, Moshal K. One- and Two-year Multidisciplinary Follow-Up of MIS-C at a Tertiary Hospital: A Retrospective Cohort Study. Pediatr Infect Dis J 2024; 43:980-986. [PMID: 38900060 DOI: 10.1097/inf.0000000000004430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
BACKGROUND Although 6-month follow-up of patients with multisystem inflammatory syndrome in children (MIS-C) was reassuring, there is scant data on long-term sequelae, including whether changing variants affect clinical severity and outcomes. METHODS Children (<18 years of age) admitted to Great Ormond Street Hospital between April 4, 2020, and January 2023, meeting diagnostic criteria for MIS-C were included. Admission and follow-up data were categorized by the predominant SARS-CoV-2 circulating variant in the United Kingdom. RESULTS One hundred and sixty children [median age, 10.1 (interquartile range, 7.9-12.6) years] were included. There was no difference in the time of symptom onset to diagnosis between waves ( P =0.23) or hospitalization days across all waves ( P =0.32). Inflammatory markers were normal for up to 2 years in all patients except one. Eleven patients (6.9%) remain in follow-up: cardiology (n=5), gastroenterology (n=5) and nephrology (n=1). The main self-reported symptoms at 2 years were abdominal pain (n=5) and myalgia (n=2). Fatigue was present in approximately a quarter of patients at admission; this reduced to 14 (9%), (2%) and 1 (2%) at 6-month, 1-year and 2-year follow-ups, respectively. Chronic fatigue or long-COVID symptomatology was rare (n=1) even with high rates of concurrent Epstein-Barr virus positivity (49/134). All patients had sustained neurological recovery with no new neurological pathology observed. CONCLUSIONS Patients with MIS-C have a sustained recovery, which is reassuring for positive long-term outcomes. Across waves, time from symptom onset to diagnosis and treatment, symptomatology and length of stay were similar. Sustained recovery is reassuring for clinicians and parents alike. Differentiating long-COVID symptomatology from that of MIS-C is important in formulating an individualized treatment plan.
Collapse
Affiliation(s)
- Sarah May Johnson
- From theDepartment of Paediatric Infectious Diseases, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Justin Penner
- From theDepartment of Paediatric Infectious Diseases, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Richard Issitt
- Great Ormond Street Hospital and Great Ormond Street Institute of Child Health and NIHR GOSH Biomedical Research Centre, London, United Kingdom
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Laura Kmentt
- From theDepartment of Paediatric Infectious Diseases, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Karlie Grant
- From theDepartment of Paediatric Infectious Diseases, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Ashwin Pandey
- From theDepartment of Paediatric Infectious Diseases, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Dimitrios Champsas
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Omar Abdel-Mannan
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
- Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Sue Maillard
- Department of Physiotherapy and Rehabilitation Services, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Kim McKenzie
- Department of Physiotherapy and Rehabilitation Services, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Emily Golding
- Psychology and Mental Health Services at Great Ormond Street Hospital for Children, London, United Kingdom
| | - Filip Kucera
- Department of Paediatric Cardiology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Yael Hacohen
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
- Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Karyn Moshal
- From theDepartment of Paediatric Infectious Diseases, Great Ormond Street Hospital for Children, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
16
|
Domitien Payet L, Bedin AS, Desselas É, Marie-Jeanne C, Mollevi C, Malergue F, Bourgoin P, Van de Perre P, Tuaillon É, Jeziorski É. Leukocyte activation patterns in hospitalized children: comparing SARS-CoV-2, bacterial infections, and inflammatory pathologies. J Leukoc Biol 2024; 116:830-837. [PMID: 38648502 DOI: 10.1093/jleuko/qiae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/14/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
In adults, monocytes and neutrophils play important roles in the hyperinflammatory responses characteristic of severe forms of SARS-CoV-2 infection. We assessed leukocyte activation in 55 children attending the emergency department for acute fever between March 2020 and September 2021. The following markers were analyzed by flow cytometry: CD169 and HLA-DR on monocytes, CD64 and CD16 on neutrophils, and CD38 on lymphocytes TCD8. Fifteen of the children had SARS-CoV-2 infection, 15 had bacterial infections, and 15 had inflammatory diseases. We observed overexpression of CD169 on monocytes and CD38 on T lymphocytes in all patients with a diagnosis of SARS-CoV-2, while overexpression of CD64 on neutrophils was observed with bacterial infections and inflammatory diseases. There was a decrease in the expression of HLA-DR on monocytes in the bacterial infection and inflammatory pathology groups. Leukocyte analysis identifies distinct activation patterns in children during SARS-CoV-2 infections, bacterial infections, and inflammatory diseases.
Collapse
Affiliation(s)
- Léa Domitien Payet
- Department of General Pediatrics, Infectiology and Clinical Immunology, Arnaud de Villeneuve UHC, 371 Avenue du Doyen Gaston GIRAUD, 34295 Montpellier Cedex 5, France
- Pathogenesis and Control of Chronic Infections, INSERM U1058, Montpellier UHC, University of Montpellier, 60 rue de Navacelles, 34394 Montpellier Cedex 5, France
| | - Anne Sophie Bedin
- Pathogenesis and Control of Chronic Infections, INSERM U1058, Montpellier UHC, University of Montpellier, 60 rue de Navacelles, 34394 Montpellier Cedex 5, France
| | - Émilie Desselas
- Department of General Pediatrics, Infectiology and Clinical Immunology, Arnaud de Villeneuve UHC, 371 Avenue du Doyen Gaston GIRAUD, 34295 Montpellier Cedex 5, France
| | - Carole Marie-Jeanne
- Department of General Pediatrics, Infectiology and Clinical Immunology, Arnaud de Villeneuve UHC, 371 Avenue du Doyen Gaston GIRAUD, 34295 Montpellier Cedex 5, France
| | - Caroline Mollevi
- France Institute Desbrest of Epidemiology and Public Health, University Montpellier, INSERM, CHU Montpellier, 641 Avenue du Doyen Gaston GIRAUD, 34090 Montpellier, France
| | - Fabrice Malergue
- Department of Research and Development, Immunotech-Beckman Coulter, 130 Avenue du Maréchal de Lattre de Tassigny, 13276 Marseille, France
| | - Penelope Bourgoin
- Department of Research and Development, Immunotech-Beckman Coulter, 130 Avenue du Maréchal de Lattre de Tassigny, 13276 Marseille, France
| | - Philippe Van de Perre
- Virology Laboratory at Montpellier University Hospital, Lapeyronie UHC, 191 Avenue du Doyen Gaston GIRAUD, 34295 Montpellier Cedex 5, France
| | - Édouard Tuaillon
- Pathogenesis and Control of Chronic Infections, INSERM U1058, Montpellier UHC, University of Montpellier, 60 rue de Navacelles, 34394 Montpellier Cedex 5, France
- Virology Laboratory at Montpellier University Hospital, Lapeyronie UHC, 191 Avenue du Doyen Gaston GIRAUD, 34295 Montpellier Cedex 5, France
| | - Éric Jeziorski
- Pathogenesis and Control of Chronic Infections, INSERM U1058, Montpellier UHC, University of Montpellier, 60 rue de Navacelles, 34394 Montpellier Cedex 5, France
- Department of General Pediatrics, Infectiology, and Clinical Immunology, Department of Emergency, Post-Emergency Department, University Hospital of Montpellier, 371 Avenue du Doyen Gaston GIRAUD, 34295 Montpellier Cedex 5, France
| |
Collapse
|
17
|
Patel H, Carter MJ, Jackson H, Powell O, Fish M, Terranova-Barberio M, Spada F, Petrov N, Wellman P, Darnell S, Mustafa S, Todd K, Bishop C, Cohen JM, Kenny J, van den Berg S, Sun T, Davis F, Jennings A, Timms E, Thomas J, Nyirendra M, Nichols S, Estamiana Elorieta L, D'Souza G, Wright V, De T, Habgood-Coote D, Ramnarayan P, Tissières P, Whittaker E, Herberg J, Cunnington A, Kaforou M, Ellis R, Malim MH, Tibby SM, Shankar-Hari M, Levin M. Shared neutrophil and T cell dysfunction is accompanied by a distinct interferon signature during severe febrile illnesses in children. Nat Commun 2024; 15:8224. [PMID: 39300098 DOI: 10.1038/s41467-024-52246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
Severe febrile illnesses in children encompass life-threatening organ dysfunction caused by diverse pathogens and other severe inflammatory syndromes. A comparative approach to these illnesses may identify shared and distinct features of host immune dysfunction amenable to immunomodulation. Here, using immunophenotyping with mass cytometry and cell stimulation experiments, we illustrate trajectories of immune dysfunction in 74 children with multi-system inflammatory syndrome in children (MIS-C) associated with SARS-CoV-2, 30 with bacterial infection, 16 with viral infection, 8 with Kawasaki disease, and 42 controls. We explore these findings in a secondary cohort of 500 children with these illnesses and 134 controls. We show that neutrophil activation and apoptosis are prominent in multi-system inflammatory syndrome, and that this is partially shared with bacterial infection. We show that memory T cells from patients with multi-system inflammatory syndrome and bacterial infection are exhausted. In contrast, we show viral infection to be characterized by a distinct signature of decreased interferon signaling and lower interferon receptor gene expression. Improved understanding of immune dysfunction may improve approaches to immunomodulator therapy in severe febrile illnesses in children.
Collapse
Affiliation(s)
- Harsita Patel
- Section of Infectious Diseases, Department of Medicine, St Mary's Hospital Campus, Imperial College London, Praed Street, London, UK
| | - Michael J Carter
- Department of Women and Children's Health, School of Life Course and Population Sciences, King's College London, St Thomas' Hospital, Westminster Bridge Road, London, UK
- Paediatric Intensive Care, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London, UK
| | - Heather Jackson
- Section of Infectious Diseases, Department of Medicine, St Mary's Hospital Campus, Imperial College London, Praed Street, London, UK
| | - Oliver Powell
- Section of Infectious Diseases, Department of Medicine, St Mary's Hospital Campus, Imperial College London, Praed Street, London, UK
| | - Matthew Fish
- School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, Great Maze Pond, London, UK
| | - Manuela Terranova-Barberio
- Advanced Cytometry Platform (Flow Core), Research and Development Department at Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, Great Maze Pond, London, UK
- Flow Cytometry Core, Barts Cancer Centre, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, UK
| | - Filomena Spada
- Advanced Cytometry Platform (Flow Core), Research and Development Department at Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, Great Maze Pond, London, UK
| | - Nedyalko Petrov
- Advanced Cytometry Platform (Flow Core), Research and Development Department at Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, Great Maze Pond, London, UK
| | - Paul Wellman
- Paediatric Intensive Care, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London, UK
| | - Sarah Darnell
- Section of Infectious Diseases, Department of Medicine, St Mary's Hospital Campus, Imperial College London, Praed Street, London, UK
| | - Sobia Mustafa
- Section of Infectious Diseases, Department of Medicine, St Mary's Hospital Campus, Imperial College London, Praed Street, London, UK
| | - Katrina Todd
- Advanced Cytometry Platform (Flow Core), Research and Development Department at Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, Great Maze Pond, London, UK
| | - Cynthia Bishop
- Advanced Cytometry Platform (Flow Core), Research and Development Department at Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, Great Maze Pond, London, UK
| | - Jonathan M Cohen
- Paediatric Immunology and Infectious Diseases, Evelina London Children's Hospital, Westminster Bridge Road, London, UK
| | - Julia Kenny
- Paediatric Immunology and Infectious Diseases, Evelina London Children's Hospital, Westminster Bridge Road, London, UK
| | - Sarah van den Berg
- Paediatric Intensive Care, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London, UK
| | - Thomas Sun
- Paediatric Intensive Care, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London, UK
| | - Francesca Davis
- Paediatric Immunology and Infectious Diseases, Evelina London Children's Hospital, Westminster Bridge Road, London, UK
| | - Aislinn Jennings
- Department of Women and Children's Health, School of Life Course and Population Sciences, King's College London, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Emma Timms
- School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, Great Maze Pond, London, UK
| | - Jessica Thomas
- Children's Services, Lewisham and Greenwich NHS Foundation Trust, London, UK
| | - Maggie Nyirendra
- Children's Services, Lewisham and Greenwich NHS Foundation Trust, London, UK
| | - Samuel Nichols
- Section of Infectious Diseases, Department of Medicine, St Mary's Hospital Campus, Imperial College London, Praed Street, London, UK
| | - Leire Estamiana Elorieta
- Section of Infectious Diseases, Department of Medicine, St Mary's Hospital Campus, Imperial College London, Praed Street, London, UK
| | - Giselle D'Souza
- Section of Infectious Diseases, Department of Medicine, St Mary's Hospital Campus, Imperial College London, Praed Street, London, UK
| | - Victoria Wright
- Section of Infectious Diseases, Department of Medicine, St Mary's Hospital Campus, Imperial College London, Praed Street, London, UK
| | - Tisham De
- Section of Infectious Diseases, Department of Medicine, St Mary's Hospital Campus, Imperial College London, Praed Street, London, UK
| | - Dominic Habgood-Coote
- Section of Infectious Diseases, Department of Medicine, St Mary's Hospital Campus, Imperial College London, Praed Street, London, UK
| | - Padmanabhan Ramnarayan
- Department of Surgery and Cancer, St Mary's Hospital Campus, Imperial College London, London, UK
| | - Pierre Tissières
- Institut de la Biologie de la cellule, Université Paris Saclay, Gif-sur-Yvette, Departement de l'Essone, Gif-sur-Yvette, France
| | - Elizabeth Whittaker
- Section of Infectious Diseases, Department of Medicine, St Mary's Hospital Campus, Imperial College London, Praed Street, London, UK
| | - Jethro Herberg
- Section of Infectious Diseases, Department of Medicine, St Mary's Hospital Campus, Imperial College London, Praed Street, London, UK
| | - Aubrey Cunnington
- Section of Infectious Diseases, Department of Medicine, St Mary's Hospital Campus, Imperial College London, Praed Street, London, UK
| | - Myrsini Kaforou
- Section of Infectious Diseases, Department of Medicine, St Mary's Hospital Campus, Imperial College London, Praed Street, London, UK
| | - Richard Ellis
- Advanced Cytometry Platform (Flow Core), Research and Development Department at Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, Great Maze Pond, London, UK
| | - Michael H Malim
- School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, Great Maze Pond, London, UK
| | - Shane M Tibby
- Department of Women and Children's Health, School of Life Course and Population Sciences, King's College London, St Thomas' Hospital, Westminster Bridge Road, London, UK
- Paediatric Intensive Care, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London, UK
| | - Manu Shankar-Hari
- Institute for Regeneration and Repair, Centre for Inflammation Research, University of Edinburgh, Edinburgh Royal Infirmary, Little France Crescent, Edinburgh, UK.
| | - Michael Levin
- Section of Infectious Diseases, Department of Medicine, St Mary's Hospital Campus, Imperial College London, Praed Street, London, UK.
| |
Collapse
|
18
|
Chien KJ, Wei CCJ, Huang SH, Chen CY, Kuo HC, Hung YM, Liao PL, Huang JY, Cheng MF, Weng KP. Risks of Kawasaki disease and multisystem inflammatory syndrome in pediatric patients with COVID-19 infection: A TriNetX based cohort study. J Chin Med Assoc 2024; 87:861-869. [PMID: 39017646 DOI: 10.1097/jcma.0000000000001137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND The associations of coronavirus disease (COVID-19) with Kawasaki disease (KD) and multisystem inflammatory syndrome in children (MIS-C) remain unclear. Few large-scale studies have estimated the cumulative incidence of MIS-C and KD after COVID-19 in children. METHODS Data were obtained from TriNetX. After propensity score matching was completed, data from 258 645 patients with COVID-19 (COVID-19 group) and 258 645 patients without COVID-19 (non-COVID-19 group) were analyzed using Cox regression. Hazard ratio (HR), 95% CI, and cumulative incidence of MIS-C and KD were calculated for both groups. A stratified analysis was performed to validate the results. RESULTS After matching for age at baseline and sex, the risks of MIS-C and KD were higher in the COVID-19 group than in the non-COVID-19 group (HR: 3.023 [95% CI, 2.323-3.933] and 1.736 [95% CI, 1.273-2.369], respectively). After matching for age at baseline, sex, race, ethnicity, and comorbidities, the risks of MIS-C and KD remained significantly higher in the COVID-19 group than in the non-COVID-19 group (HR: 2.899 [95% CI, 2.173-3.868] and 1.435 [95% CI, 1.030-2.000]). When stratified by age, the risk of MIS-C was higher in the COVID-19 group-for patients aged >5 years and ≤5 years (HR: 2.399 [95% CI, 1.683-3.418] and 2.673 [95% CI, 1.737-4.112], respectively)-than in the non-COVID-19 group. However, the risk of KD was elevated only in patients aged ≤5 years (HR: 1.808; 95% CI, 1.203-2.716). When stratified by COVID-19 vaccination status, the risks of MIS-C and KD were elevated in unvaccinated patients with COVID-19 (HR: 2.406 and 1.835, respectively). CONCLUSION Patients with COVID-19 who are aged <18 and ≤5 years have increased risks of MIS-C and KD, respectively. Further studies are required to confirm the role of COVID-19 in the pathogenesis of MIS-C and KD.
Collapse
Affiliation(s)
- Kuang-Jen Chien
- Congenital Structural Heart Disease Center, Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| | - Cheng-Chung James Wei
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
- Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan, ROC
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Shih-Hui Huang
- Department of Nursing, Fooyin University, Kaohsiung, Taiwan, ROC
| | - Chun-Yu Chen
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan, ROC
| | - Ho-Chang Kuo
- Department of Pediatrics, Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, ROC
| | - Yao-Min Hung
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital Taitung Branch, Taitung, Taiwan, ROC
| | - Pei-Lun Liao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
- Center for Health Data Science, Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Jing-Yang Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
- Center for Health Data Science, Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Ming-Fang Cheng
- Congenital Structural Heart Disease Center, Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| | - Ken-Pen Weng
- Congenital Structural Heart Disease Center, Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
19
|
Rao AP, Patro D. The Intricate Dance of Infections and Autoimmunity: An Interesting Paradox. Indian J Pediatr 2024; 91:941-948. [PMID: 38085415 DOI: 10.1007/s12098-023-04928-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 08/22/2024]
Abstract
Besides genetic susceptibility, infections due to viruses, bacteria and protozoa have been implicated in the development of autoimmune diseases (AD). AD can be triggered in a genetically susceptible individual by infections that disrupt immunological tolerance towards self-antigens. Pathogens can initiate autoimmunity by way of molecular mimicry, bystander activation, epitope spreading or persistent infection with polyclonal activation. This review covers two main topics: (i) the mechanisms by which an infectious agent can trigger or worsen autoimmunity; and (ii) the correlation between specific infectious agents and AD in humans with special emphasis on multisystem inflammatory syndrome in children (MIS-C).
Collapse
Affiliation(s)
- Anand Prahalad Rao
- Department of Pediatric Rheumatology, Manipal Hospital, HAL Airport Road, Bengaluru, Karnataka, India.
| | - Debasis Patro
- Department of Pediatric Rheumatology, Manipal Hospital, HAL Airport Road, Bengaluru, Karnataka, India
| |
Collapse
|
20
|
Kane AS, Godfrey M, Noval Rivas M, Arditi M, Fasano A, Yonker LM. The Spectrum of Postacute Sequelae of COVID-19 in Children: From MIS-C to Long COVID. Annu Rev Virol 2024; 11:327-341. [PMID: 38631806 DOI: 10.1146/annurev-virology-093022-011839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The effects of SARS-CoV-2 infection on children continue to evolve following the onset of the COVID-19 pandemic. Although life-threatening multisystem inflammatory syndrome in children (MIS-C) has become rare, long-standing symptoms stemming from persistent immune activation beyond the resolution of acute SARS-CoV-2 infection contribute to major health sequelae and continue to pose an economic burden. Shared pathophysiologic mechanisms place MIS-C and long COVID within a vast spectrum of postinfectious conditions characterized by intestinal dysbiosis, increased gut permeability, and varying degrees of immune dysregulation. Insights obtained from MIS-C will help shape our understanding of the more indolent and prevalent postacute sequelae of COVID and ultimately guide efforts to improve diagnosis and management of postinfectious complications of SARS-CoV-2 infection in children.
Collapse
Affiliation(s)
- Abigail S Kane
- Children's Hospital of Los Angeles, Los Angeles, California, USA
| | - Madeleine Godfrey
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA;
| | - Magali Noval Rivas
- Infectious and Immunologic Diseases Research Center and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Moshe Arditi
- Infectious and Immunologic Diseases Research Center and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alessio Fasano
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA;
| | - Lael M Yonker
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA;
| |
Collapse
|
21
|
Roznik K, Andargie TE, Johnston TS, Gordon O, Wang Y, Akindele NP, Persaud D, Antar AAR, Manabe YC, Zhou W, Ji H, Agbor-Enoh S, Karaba AH, Thompson EA, Cox AL. Emergency Myelopoiesis Distinguishes Multisystem Inflammatory Syndrome in Children From Pediatric Severe Coronavirus Disease 2019. J Infect Dis 2024; 230:e305-e317. [PMID: 38299308 PMCID: PMC11326850 DOI: 10.1093/infdis/jiae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/18/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Multisystem inflammatory syndrome in children (MIS-C) is a hyperinflammatory condition caused by recent infection with severe acute respiratory syndrome coronavirus 2, but the underlying immunological mechanisms driving this distinct syndrome are unknown. METHODS We utilized high-dimensional flow cytometry, cell-free (cf) DNA, and cytokine and chemokine profiling to identify mechanisms of critical illness distinguishing MIS-C from severe acute coronavirus disease 2019 (SAC). RESULTS Compared to SAC, MIS-C patients demonstrated profound innate immune cell death and features of emergency myelopoiesis (EM), an understudied phenomenon observed in severe inflammation. EM signatures were characterized by fewer mature myeloid cells in the periphery and decreased expression of HLA-DR and CD86 on antigen-presenting cells. Interleukin 27 (IL-27), a cytokine known to drive hematopoietic stem cells toward EM, was increased in MIS-C, and correlated with immature cell signatures in MIS-C. Upon recovery, EM signatures decreased and IL-27 plasma levels returned to normal levels. Despite profound lymphopenia, we report a lack of cfDNA released by adaptive immune cells and increased CCR7 expression on T cells indicative of egress out of peripheral blood. CONCLUSIONS Immune cell signatures of EM combined with elevated innate immune cell-derived cfDNA levels distinguish MIS-C from SAC in children and provide mechanistic insight into dysregulated immunity contributing toward MIS-C, offering potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Katerina Roznik
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Temesgen E Andargie
- Genomic Research Alliance for Transplantation and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Department of Biology, Howard University, Washington, District of Columbia
| | - T Scott Johnston
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Oren Gordon
- Infectious Diseases Unit, Department of Pediatrics, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Israel
- Department of Pediatrics, Johns Hopkins University School of Medicine
| | - Yi Wang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Nadine Peart Akindele
- Department of Pediatrics, Johns Hopkins University School of Medicine
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Deborah Persaud
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health
- Department of Pediatrics, Johns Hopkins University School of Medicine
| | - Annukka A R Antar
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Yukari C Manabe
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Sean Agbor-Enoh
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
- Genomic Research Alliance for Transplantation and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Andrew H Karaba
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Elizabeth A Thompson
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Andrea L Cox
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
22
|
Yang N, Liu Z, Jin T, Xin HW, Gu L, Zheng Y, Zhou HX, Li N, Liu XJ. Esophageal ulcer and multisystem inflammatory syndrome after COVID-19: A case report. World J Gastrointest Endosc 2024; 16:483-488. [PMID: 39155996 PMCID: PMC11325875 DOI: 10.4253/wjge.v16.i8.483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 08/01/2024] Open
Abstract
BACKGROUND Multisystem inflammatory syndrome in adults (MIS-A) is a rare but severe disease occurring several weeks after severe acute respiratory syndrome coronavirus 2 infection. It develops in adults with inflammation of different organs including the gastrointestinal tract, heart, kidneys, skin and hematopoietic system. CASE SUMMARY We present a 58-year-old Chinese man diagnosed with MIS-A. His chief complaints were fever, generalized fatigue and anorexia, accompanied with rashes on his back. Further examination showed cardiac, renal and liver injury. He had melena and gastroscopy indicated esophageal ulcer and severe esophagitis. Repeated blood and sputum culture did not show growth of bacteria or fungi. Antibiotic treatment was stopped due to unsatisfactory performance. His condition improved after prednisone and other supportive treatment. CONCLUSION Gastrointestinal involvement in MIS-A is not uncommon. Intestinal involvement predominates, and esophageal involvement is rarely reported. Esophageal ulcer with bleeding could also be a manifestation of MIS-A.
Collapse
Affiliation(s)
- Ni Yang
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital University of Medical Science, Beijing 100020, China
| | - Zhen Liu
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital University of Medical Science, Beijing 100020, China
| | - Tong Jin
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital University of Medical Science, Beijing 100020, China
| | - Hai-Wei Xin
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital University of Medical Science, Beijing 100020, China
| | - Li Gu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Capital University of Medical Science, Beijing 100020, China
| | - Yue Zheng
- Department of Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital University of Medical Science, Beijing 100020, China
| | - Hui-Xing Zhou
- Department of Hematology, Beijing Chao-Yang Hospital, Capital University of Medical Science, Beijing 100020, China
| | - Ning Li
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital University of Medical Science, Beijing 100020, China
| | - Xin-Juan Liu
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital University of Medical Science, Beijing 100020, China
| |
Collapse
|
23
|
van den Berg S, Sun T. Describing Elephants: An Update on the Immunopathology of Multisystem Inflammatory Syndrome in Children. Immunol Invest 2024; 53:962-974. [PMID: 38847319 DOI: 10.1080/08820139.2024.2363833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
First described in 2020, multi-system inflammatory syndrome in children (MIS-C) is an, initially life-threatening, disease characterised by severe inflammation and following exposure to SARS-CoV-2. The immunopathology of MIS-C involves a hyperinflammation characterised by a cytokine storm and activation of both the innate and adaptive immune system, eventually leading to multi-organ failure. Several etiological theories are described in literature. Firstly, it is suggested that the gut plays an important role in the translocation of microbial products to the systemic circulation. Additionally, the production of autoantibodies that develop after the initial infection with SARS-CoV-2 might lead to many of its broad clinical symptoms. Finally, the superantigen theory where non-specific binding of the SARS-CoV-2 spike glycoprotein to the T-cell receptor leads to a subsequent activation of T cells, generating a powerful immune response. Despite the sudden outbreak of MIS-C and alarming messages, as of 2024, cases have declined drastically and subsequently show a less severe clinical spectrum. However, subacute cases not meeting current diagnostic criteria might be overlooked even though they represent a valuable research population. In the future, research should focus on adjusting these criteria to better understand the broad pathophysiology of MIS-C, aiding early detection, therapy, and prediction.
Collapse
Affiliation(s)
- Sarah van den Berg
- Peadiatric Intensive Care Unit, Amsterdam Universitair Medische Centra, Amsterdam, Netherlands
| | - Thomas Sun
- Peadiatrics, Guy's and St. Thomas NHS Foundation Trust, London, UK
| |
Collapse
|
24
|
Tsai YH, Hong JJ, Cheng CM, Cheng MH, Chen CH, Hsieh ML, Hsieh KS, Shen CF. Case report: Cytokine and miRNA profiling in multisystem inflammatory syndrome in children. Front Med (Lausanne) 2024; 11:1422588. [PMID: 39149604 PMCID: PMC11324540 DOI: 10.3389/fmed.2024.1422588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is an imperative pediatric inflammatory condition closely linked to COVID-19, which garners substantial attention since the onset of the pandemic. Like Kawasaki illness, this condition is characterized by an overactive immune response, leading to symptoms including pyrexia, cardiac and renal complications. To elucidate the pathogenesis of MIS-C and identify potential biomarkers, we conducted an extensive examination of specific cytokines (IL-6, IL-1β, IL-6R, IL-10, and TNF-α) and microRNA (miRNA) expression profiles at various intervals (ranging from 3 to 20 days) in the peripheral blood sample of a severely affected MIS-C patient. Our investigation revealed a gradual decline in circulating levels of IL-6, IL-1β, IL-10, and TNF-α following intravenous immune globulin (IVIG) therapy. Notably, IL-6 exhibited a significant reduction from 74.30 to 1.49 pg./mL, while IL-6R levels remained consistently stable throughout the disease course. Furthermore, we observed an inverse correlation between the expression of hsa-miR-596 and hsa-miR-224-5p and the aforementioned cytokines. Our findings underscore a robust association between blood cytokine and miRNA concentrations and the severity of MIS-C. These insights enhance our understanding of the genetic regulatory mechanisms implicated in MIS-C pathogenesis, offering potential avenues for early biomarker detection and therapy monitoring through miRNA analysis.
Collapse
Affiliation(s)
- Yun-Hao Tsai
- School of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jun-Jie Hong
- Department of Taiwan Business Development, Inti Taiwan, Inc., Hsinchu, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, College of Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Mei-Hsiu Cheng
- Department of Taiwan Business Development, Inti Taiwan, Inc., Hsinchu, Taiwan
| | - Cheng-Han Chen
- Institute of Biomedical Engineering, College of Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Min-Ling Hsieh
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Kai-Sheng Hsieh
- Department of Pediatrics and Structural, Congenital Heart and Echocardiography Center, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
25
|
Bodansky A, Mettelman RC, Sabatino JJ, Vazquez SE, Chou J, Novak T, Moffitt KL, Miller HS, Kung AF, Rackaityte E, Zamecnik CR, Rajan JV, Kortbawi H, Mandel-Brehm C, Mitchell A, Wang CY, Saxena A, Zorn K, Yu DJL, Pogorelyy MV, Awad W, Kirk AM, Asaki J, Pluvinage JV, Wilson MR, Zambrano LD, Campbell AP, Thomas PG, Randolph AG, Anderson MS, DeRisi JL. Molecular mimicry in multisystem inflammatory syndrome in children. Nature 2024; 632:622-629. [PMID: 39112696 PMCID: PMC11324515 DOI: 10.1038/s41586-024-07722-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/14/2024] [Indexed: 08/16/2024]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a severe, post-infectious sequela of SARS-CoV-2 infection1,2, yet the pathophysiological mechanism connecting the infection to the broad inflammatory syndrome remains unknown. Here we leveraged a large set of samples from patients with MIS-C to identify a distinct set of host proteins targeted by patient autoantibodies including a particular autoreactive epitope within SNX8, a protein involved in regulating an antiviral pathway associated with MIS-C pathogenesis. In parallel, we also probed antibody responses from patients with MIS-C to the complete SARS-CoV-2 proteome and found enriched reactivity against a distinct domain of the SARS-CoV-2 nucleocapsid protein. The immunogenic regions of the viral nucleocapsid and host SNX8 proteins bear remarkable sequence similarity. Consequently, we found that many children with anti-SNX8 autoantibodies also have cross-reactive T cells engaging both the SNX8 and the SARS-CoV-2 nucleocapsid protein epitopes. Together, these findings suggest that patients with MIS-C develop a characteristic immune response to the SARS-CoV-2 nucleocapsid protein that is associated with cross-reactivity to the self-protein SNX8, demonstrating a mechanistic link between the infection and the inflammatory syndrome, with implications for better understanding a range of post-infectious autoinflammatory diseases.
Collapse
Affiliation(s)
- Aaron Bodansky
- Department of Pediatrics, Division of Critical Care, University of California San Francisco, San Francisco, CA, USA
| | - Robert C Mettelman
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joseph J Sabatino
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Sara E Vazquez
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Janet Chou
- Division of Immunology, Department of Pediatrics, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Tanya Novak
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Kristin L Moffitt
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Pediatric, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Haleigh S Miller
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Biological and Medical Informatics Program, University of California San Francisco, San Francisco, CA, USA
| | - Andrew F Kung
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Biological and Medical Informatics Program, University of California San Francisco, San Francisco, CA, USA
| | - Elze Rackaityte
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Colin R Zamecnik
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Jayant V Rajan
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Hannah Kortbawi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, USA
| | - Caleigh Mandel-Brehm
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Aditi Saxena
- Chan Zuckerberg Biohub SF, San Francisco, CA, USA
| | - Kelsey Zorn
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - David J L Yu
- Diabetes Center, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Mikhail V Pogorelyy
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Walid Awad
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Allison M Kirk
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - James Asaki
- Biomedical Sciences Program, University of California San Francisco, San Francisco, CA, USA
| | - John V Pluvinage
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Michael R Wilson
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Laura D Zambrano
- COVID-19 Response Team and Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Angela P Campbell
- COVID-19 Response Team and Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Paul G Thomas
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adrienne G Randolph
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Mark S Anderson
- Diabetes Center, School of Medicine, University of California San Francisco, San Francisco, CA, USA.
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Francisco, San Francisco, CA, USA.
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub SF, San Francisco, CA, USA.
| |
Collapse
|
26
|
Guo J, Wang L. The complex landscape of immune dysregulation in multisystem inflammatory syndrome in children with COVID-19. LIFE MEDICINE 2024; 3:lnae034. [PMID: 39872865 PMCID: PMC11749780 DOI: 10.1093/lifemedi/lnae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/12/2024] [Indexed: 01/30/2025]
Abstract
The immune responses following SARS-CoV-2 infection in children are still under investigation. While coronavirus disease 2019 (COVID-19) is usually mild in the paediatric population, some children develop severe clinical manifestations or multisystem inflammatory syndrome in children (MIS-C) after infection. MIS-C, typically emerging 2-6 weeks after SARS-CoV-2 exposure, is characterized by a hyperinflammatory response affecting multiple organs. This review aims to explore the complex landscape of immune dysregulation in MIS-C, focusing on innate, T cell-, and B cell-mediated immunity, and discusses the role of SARS-CoV-2 spike protein as a superantigen in MIS-C pathophysiology. Understanding these mechanisms is crucial for improving the management and outcomes for affected children.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lie Wang
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311100, China
| |
Collapse
|
27
|
Sherman JD, Karmali V, Kumar B, Simon TW, Bechnak S, Panjwani A, Ciric CR, Wang D, Huerta C, Johnson B, Anderson EJ, Rouphael N, Collins MH, Rostad CA, Azadi P, Scherer EM. Altered spike IgG Fc N-linked glycans are associated with hyperinflammatory state in adult COVID and Multisystem Inflammatory Syndrome in Children. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.14.24310381. [PMID: 39040211 PMCID: PMC11261911 DOI: 10.1101/2024.07.14.24310381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Background Severe COVID and multisystem inflammatory syndrome (MIS-C) are characterized by excessive inflammatory cytokines/chemokines. In adults, disease severity is associated with SARS-CoV-2-specific IgG Fc afucosylation, which induces pro-inflammatory cytokine secretion from innate immune cells. This study aimed to define spike IgG Fc glycosylation following SARS-CoV-2 infection in adults and children and following SARS-CoV-2 vaccination in adults and the relationships between glycan modifications and cytokine/chemokine levels. Methods We analyzed longitudinal (n=146) and cross-sectional (n=49) serum/plasma samples from adult and pediatric COVID patients, MIS-C patients, adult vaccinees, and adult and pediatric healthy controls. We developed methods for characterizing bulk and spike IgG Fc glycosylation by capillary electrophoresis (CE) and measured levels of ten inflammatory cytokines/chemokines by multiplexed ELISA. Results Spike IgG were more afucosylated than bulk IgG during acute adult COVID and MIS-C. We observed an opposite trend following vaccination, but it was not significant. Spike IgG were more galactosylated and sialylated and less bisected than bulk IgG during adult COVID, with similar trends observed during pediatric COVID/MIS-C and following SARS-CoV-2 vaccination. Spike IgG glycosylation changed with time following adult COVID or vaccination. Afucosylated spike IgG exhibited inverse and positive correlations with inflammatory markers in MIS-C and following vaccination, respectively; galactosylated and sialylated spike IgG inversely correlated with pro-inflammatory cytokines in adult COVID and MIS-C; and bisected spike IgG positively correlated with inflammatory cytokines/chemokines in multiple groups. Conclusions We identified previously undescribed relationships between spike IgG glycan modifications and inflammatory cytokines/chemokines that expand our understanding of IgG glycosylation changes that may impact COVID and MIS-C immunopathology.
Collapse
Affiliation(s)
- Jacob D. Sherman
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Vinit Karmali
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Bhoj Kumar
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Trevor W. Simon
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sarah Bechnak
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anusha Panjwani
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Caroline R. Ciric
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Dongli Wang
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Chris Huerta
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Brandi Johnson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Evan J. Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nadine Rouphael
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Matthew H. Collins
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Christina A. Rostad
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Erin M. Scherer
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
28
|
Pan T, Gallo ME, Donald KA, Webb K, Bath KG. Elevated risk for psychiatric outcomes in pediatric patients with Multisystem Inflammatory Syndrome (MIS-C): A review of neuroinflammatory and psychosocial stressors. Brain Behav Immun Health 2024; 38:100760. [PMID: 38586284 PMCID: PMC10992702 DOI: 10.1016/j.bbih.2024.100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/19/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024] Open
Abstract
Multisystem Inflammatory Syndrome in Children (MIS-C) is a secondary immune manifestation of COVID-19 involving multiple organ systems in the body, resulting in fever, skin rash, abdominal pain, nausea, shock, and cardiac dysfunction that often lead to hospitalization. Although many of these symptoms resolve following anti-inflammatory treatment, the long-term neurological and psychiatric sequelae of MIS-C are unknown. In this review, we will summarize two domains of the MIS-C disease course, 1) Neuroinflammation in the MIS-C brain and 2) Psychosocial disruptions resulting from stress and hospitalization. In both domains, we present existing clinical findings and hypothesize potential connections to psychiatric outcomes. This is the first review to conceptualize a holistic framework of psychiatric risk in MIS-C patients that includes neuroinflammatory and psychosocial risk factors. As cases of severe COVID-19 and MIS-C subside, it is important for clinicians to monitor outcomes in this vulnerable patient population.
Collapse
Affiliation(s)
- Tracy Pan
- Stanford University School of Medicine, Stanford, CA, USA
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 029112, USA
- The Neuroscience Institute, University of Cape Town, South Africa
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Meghan E. Gallo
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 029112, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Psychiatry, Columbia University Irving Medical College, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Kirsten A. Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- The Neuroscience Institute, University of Cape Town, South Africa
| | - Kate Webb
- Division of Paediatric Rheumatology, School of Child and Adolescent Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, 7700, South Africa
- Crick African Network, Francis Crick Institute, London, UK
| | - Kevin G. Bath
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Psychiatry, Columbia University Irving Medical College, New York, NY, 10032, USA
| |
Collapse
|
29
|
Nelson CE, Foreman TW, Fukutani ER, Kauffman KD, Sakai S, Fleegle JD, Gomez F, Gould ST, Le Nouën C, Liu X, Burdette TL, Garza NL, Lafont BAP, Brooks K, Lindestam Arlehamn CS, Weiskopf D, Sette A, Hickman HD, Buchholz UJ, Johnson RF, Brenchley JM, Oberman JP, Quieroz ATL, Andrade BB, Via LE, Barber DL. IL-10 suppresses T cell expansion while promoting tissue-resident memory cell formation during SARS-CoV-2 infection in rhesus macaques. PLoS Pathog 2024; 20:e1012339. [PMID: 38950078 PMCID: PMC11244803 DOI: 10.1371/journal.ppat.1012339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/12/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
The regulation of inflammatory responses and pulmonary disease during SARS-CoV-2 infection is incompletely understood. Here we examine the roles of the prototypic pro- and anti-inflammatory cytokines IFNγ and IL-10 using the rhesus macaque model of mild COVID-19. We find that IFNγ drives the development of 18fluorodeoxyglucose (FDG)-avid lesions in the lungs as measured by PET/CT imaging but is not required for suppression of viral replication. In contrast, IL-10 limits the duration of acute pulmonary lesions, serum markers of inflammation and the magnitude of virus-specific T cell expansion but does not impair viral clearance. We also show that IL-10 induces the subsequent differentiation of virus-specific effector T cells into CD69+CD103+ tissue resident memory cells (Trm) in the airways and maintains Trm cells in nasal mucosal surfaces, highlighting an unexpected role for IL-10 in promoting airway memory T cells during SARS-CoV-2 infection of macaques.
Collapse
Affiliation(s)
- Christine E. Nelson
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Taylor W. Foreman
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eduardo R. Fukutani
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Keith D. Kauffman
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shunsuke Sakai
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joel D. Fleegle
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Felipe Gomez
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - NIAID/DIR Tuberculosis Imaging Program
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sydnee T. Gould
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cyril Le Nouën
- RNA Viruses Section, Laboratory of Infectious Disease, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xueqiao Liu
- RNA Viruses Section, Laboratory of Infectious Disease, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tracey L. Burdette
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicole L. Garza
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bernard A. P. Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cecilia S. Lindestam Arlehamn
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, United States of America
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, United States of America
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, California, United States of America
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ursula J. Buchholz
- RNA Viruses Section, Laboratory of Infectious Disease, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Reed F. Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James P. Oberman
- Holy Cross Germantown Hospital, Affiliate of National Breathe Free Sinus and ENT Center, Frederick Breathe Free Sinus and ENT Center, Frederick, Maryland, United States of America
| | - Artur T. L. Quieroz
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Bruno B. Andrade
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laura E. Via
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
- Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Daniel L. Barber
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
30
|
Theel ES, Kirby JE, Pollock NR. Testing for SARS-CoV-2: lessons learned and current use cases. Clin Microbiol Rev 2024; 37:e0007223. [PMID: 38488364 PMCID: PMC11237512 DOI: 10.1128/cmr.00072-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYThe emergence and worldwide dissemination of SARS-CoV-2 required both urgent development of new diagnostic tests and expansion of diagnostic testing capacity on an unprecedented scale. The rapid evolution of technologies that allowed testing to move out of traditional laboratories and into point-of-care testing centers and the home transformed the diagnostic landscape. Four years later, with the end of the formal public health emergency but continued global circulation of the virus, it is important to take a fresh look at available SARS-CoV-2 testing technologies and consider how they should be used going forward. This review considers current use case scenarios for SARS-CoV-2 antigen, nucleic acid amplification, and immunologic tests, incorporating the latest evidence for analytical/clinical performance characteristics and advantages/limitations for each test type to inform current debates about how tests should or should not be used.
Collapse
Affiliation(s)
- Elitza S. Theel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - James E. Kirby
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Nira R. Pollock
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Tane M, Kosako H, Sonoki T, Hosoi H. TAFRO Syndrome and COVID-19. Biomedicines 2024; 12:1287. [PMID: 38927495 PMCID: PMC11200813 DOI: 10.3390/biomedicines12061287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
TAFRO syndrome is a systemic inflammatory disease characterized by thrombocytopenia and anasarca. It results from hyperinflammation and produces severe cytokine storms. Severe acute respiratory syndrome coronavirus 2, which led to the coronavirus disease 2019 (COVID-19) pandemic, also causes cytokine storms. COVID-19 was reported to be associated with various immune-related manifestations, including multisystem inflammatory syndrome, hemophagocytic syndrome, vasculitis, and immune thrombocytopenia. Although the pathogenesis and complications of COVID-19 have not been fully elucidated, the pathogeneses of excessive immunoreaction after COVID-19 and TAFRO syndrome both involve cytokine storms. Since the COVID-19 pandemic, there have been a few case reports about the onset of TAFRO syndrome after COVID-19 or COVID-19 vaccination. Castleman disease also presents with excessive cytokine production. We reviewed the literature about the association between TAFRO syndrome or Castleman disease and COVID-19 or vaccination against it. While the similarities and differences between the pathogeneses of TAFRO syndrome and COVID-19 have not been investigated previously, the cytokines and genetic factors associated with TAFRO syndrome and COVID-19 were reviewed by examining case reports. Investigation of TAFRO-like manifestations after COVID-19 or vaccination against COVID-19 may contribute to understanding the pathogenesis of TAFRO syndrome.
Collapse
Affiliation(s)
- Misato Tane
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama 641-8509, Japan; (M.T.)
- Department of Hematology, Kinan Hospital, Wakayama 646-8588, Japan
| | - Hideki Kosako
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama 641-8509, Japan; (M.T.)
- Department of Hematology, Kinan Hospital, Wakayama 646-8588, Japan
| | - Takashi Sonoki
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama 641-8509, Japan; (M.T.)
- Department of Transfusion Medicine, Wakayama Medical University Hospital, Wakayama 641-8510, Japan
| | - Hiroki Hosoi
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama 641-8509, Japan; (M.T.)
- Department of Transfusion Medicine, Wakayama Medical University Hospital, Wakayama 641-8510, Japan
| |
Collapse
|
32
|
Wu J, Zheng Y, Zhang LN, Gu CL, Chen WL, Chang MQ. Advanced nanomedicines and immunotherapeutics to treat respiratory diseases especially COVID-19 induced thrombosis. World J Clin Cases 2024; 12:2704-2712. [PMID: 38899301 PMCID: PMC11185334 DOI: 10.12998/wjcc.v12.i16.2704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/06/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Immunotherapy and associated immune regulation strategies gained huge attraction in order to be utilized for treatment and prevention of respiratory diseases. Engineering specifically nanomedicines can be used to regulate host immunity in lungs in the case of respiratory diseases including coronavirus disease 2019 (COVID-19) infection. COVID-19 causes pulmonary embolisms, thus new therapeutic options are required to target thrombosis, as conventional treatment options are either not effective due to the complexity of the immune-thrombosis pathophysiology. In this review, we discuss regulation of immune response in respiratory diseases especially COVID-19. We further discuss thrombosis and provide an overview of some antithrombotic nanoparticles, which can be used to develop nanomedicine against thrombo-inflammation induced by COVID-19 and other respiratory infectious diseases. We also elaborate the importance of immunomodulatory nanomedicines that can block pro-inflammatory signalling pathways, and thus can be recommended to treat respiratory infectious diseases.
Collapse
Affiliation(s)
- Jie Wu
- Department of Respiratory and Oncology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| | - Ying Zheng
- Department of Respiratory and Oncology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| | - Li-Na Zhang
- Department of Respiratory and Oncology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| | - Cai-Li Gu
- Department of Respiratory and Oncology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| | - Wang-Li Chen
- Department of Respiratory and Oncology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| | - Min-Qiang Chang
- Department of Otorhinolaryngology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| |
Collapse
|
33
|
Zhou Y, Cheng T, Tang K, Li H, Luo C, Yu F, Xiao F, Jin L, Hung IFN, Lu L, Yuen KY, Chan JFW, Yuan S, Sun H. Integration of metalloproteome and immunoproteome reveals a tight link of iron-related proteins with COVID-19 pathogenesis and immunity. Clin Immunol 2024; 263:110205. [PMID: 38575044 DOI: 10.1016/j.clim.2024.110205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Increasing clinical data show that the imbalance of host metallome is closely associated with different kinds of disease, however, the intrinsic mechanisms of action of metals in immunity and pathogenesis of disease remain largely undefined. There is lack of multiplexed profiling system to integrate the metalloproteome-immunoproteome information at systemic level for exploring the roles of metals in immunity and disease pathogenesis. In this study, we build up a metal-coding assisted multiplexed proteome assay platform for serum metalloproteomic and immunoproteomic profiling. By taking COVID-19 as a showcase, we unbiasedly uncovered the most evident modulation of iron-related proteins, i.e., Ft and Tf, in serum of severe COVID-19 patients, and the value of Ft/Tf could work as a robust biomarker for COVID-19 severity stratification, which overtakes the well-established clinical risk factors (cytokines). We further uncovered a tight association of transferrin with inflammation mediator IL-10 in COVID-19 patients, which was proved to be mainly governed by the monocyte/macrophage of liver, shedding light on new pathophysiological and immune regulatory mechanisms of COVID-19 disease. We finally validated the beneficial effects of iron chelators as anti-viral agents in SARS-CoV-2-infected K18-hACE2 mice through modulation of iron dyshomeostasis and alleviating inflammation response. Our findings highlight the critical role of liver-mediated iron dysregulation in COVID-19 disease severity, providing solid evidence on the involvement of iron-related proteins in COVID-19 pathophysiology and immunity.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China
| | - Tianfan Cheng
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, PR China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China
| | - Hongyan Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China
| | - Cuiting Luo
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China
| | - Fu Yu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, PR China
| | - Ivan Fan-Ngai Hung
- Division of Infectious Diseases, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China; Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, PR China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, PR China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, PR China; Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China; Guangzhou Laboratory, Guangdong Province, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China; Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, PR China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, PR China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, PR China; Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China; Guangzhou Laboratory, Guangdong Province, China.
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China; Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, PR China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, PR China.
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China.
| |
Collapse
|
34
|
Golino M, Harding D, Del Buono MG, Fanti S, Mohiddin S, Toldo S, Smyth J, Sanna T, Marelli-Berg F, Abbate A. Innate and adaptive immunity in acute myocarditis. Int J Cardiol 2024; 404:131901. [PMID: 38403204 PMCID: PMC11450758 DOI: 10.1016/j.ijcard.2024.131901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Acute myocarditis is an acute inflammatory cardiomyopathy associated with cardiac damage triggered by a virus or a pathological immune activation. It may present with a wide range of clinical presentations, ranging from mild symptoms to severe forms like fulminant myocarditis, characterized by hemodynamic compromise and cardiogenic shock. The immune system plays a central role in the pathogenesis of myocarditis. In fact, while its function is primarily protective, aberrant responses can be detrimental. In this context, both innate and adaptive immunity play pivotal roles; notably, the innate system offers a non-specific and immediate defense, while the adaptive provides specialized protection with immunological memory. However, dysregulation in these systems can misidentify cardiac tissue, triggering autoimmune reactions and possibly leading to significant cardiac tissue damage. This review highlights the importance of innate and adaptive immune responses in the progression and treatment of acute myocarditis.
Collapse
Affiliation(s)
- Michele Golino
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America; Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Daniel Harding
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Marco Giuseppe Del Buono
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Silvia Fanti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Saidi Mohiddin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom; Barts Heart Centre, London, United Kingdom
| | - Stefano Toldo
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America
| | - James Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carillion, Roanoke, VA, United States of America; Virginia Tech Carilion School of Medicine, Roanoke, VA, United States of America; Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Tommaso Sanna
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Federica Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom.
| | - Antonio Abbate
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America.
| |
Collapse
|
35
|
Okarska-Napierała M, Woźniak W, Mańdziuk J, Ludwikowska KM, Feleszko W, Grzybowski J, Panczyk M, Berdej-Szczot E, Zaryczański J, Górnicka B, Szenborn L, Kuchar E. Pathologic Analysis of Twenty-one Appendices From Children With Multisystem Inflammatory Syndrome Compared to Specimens of Acute Appendicitis: A Cross-sectional Study. Pediatr Infect Dis J 2024; 43:525-531. [PMID: 38753993 DOI: 10.1097/inf.0000000000004264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
BACKGROUND Multisystem inflammatory syndrome in children (MIS-C) is a rare, severe complication of coronavirus disease 2019, commonly involving the gastrointestinal tract. Some children with MIS-C undergo appendectomy before the final diagnosis. There are several hypotheses explaining the pathomechanism of MIS-C, including the central role of the viral antigen persistence in the gut, associated with lymphocyte exhaustion. We aimed to examine appendectomy specimens from MIS-C patients and assess their pathologic features, as well as the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens. METHODS In this cross-sectional study we included 21 children with MIS-C who underwent appendectomy. The control group included 21 sex- and age-matched children with acute appendicitis (AA) unrelated to SARS-CoV-2 infection. Histologic evaluation of appendiceal specimens included hematoxylin and eosin staining and immunohistochemical identification of lymphocyte subpopulations, programmed cell death protein-1 (PD-1) and SARS-CoV-2 nucleocapsid antigen. RESULTS Appendices of MIS-C patients lacked neutrophilic infiltrate of muscularis propria typical for AA (14% vs. 95%, P < 0.001). The proportion of CD20+ to CD5+ cells was higher in patients with MIS-C (P = 0.04), as was the proportion of CD4+ to CD8+ (P < 0.001). We found no proof of SARS-CoV-2 antigen presence, nor lymphocyte exhaustion, in the appendices of MIS-C patients. CONCLUSIONS The appendiceal muscularis of patients with MIS-C lack edema and neutrophilic infiltration typical for AA. SARS-CoV-2 antigens and PD-1 are absent in the appendices of children with MIS-C. These findings argue against the central role of SARS-CoV-2 persistence in the gut and lymphocyte exhaustion as the major triggers of MIS-C.
Collapse
Affiliation(s)
- Magdalena Okarska-Napierała
- From the Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Warsaw, Poland
| | - Weronika Woźniak
- From the Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Mańdziuk
- From the Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | - Mariusz Panczyk
- Department of Education and Research in Health Sciences, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Elżbieta Berdej-Szczot
- Department of Paediatrics and Paediatric Endocrinology, Upper-Silesian Paediatric Health Center School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Janusz Zaryczański
- Department of Pediatrics, University Clinical Hospital in Opole, Opole, Poland
| | | | - Leszek Szenborn
- Department of Pediatric Infectious Diseases, Wroclaw Medical University, Wrocław, Poland
| | - Ernest Kuchar
- From the Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
36
|
Shen S, Wang M, Li X, Wang B, Hong W, Li W, Xu B, Guo Z, Han R, Yi S, Wu Z, He X, Wang L, Zhu Q, Yang G, Wang H, Deng Q, Chen J, Gao S, Jiang C, Gao R. The gonadal niche safeguards human fetal germline cell development following maternal SARS-CoV-2 infection. Cell Rep Med 2024; 5:101515. [PMID: 38631348 PMCID: PMC11148563 DOI: 10.1016/j.xcrm.2024.101515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/08/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
During pregnancy, germline development is vital for maintaining the continuation of species. Recent studies have shown increased pregnancy risks in COVID-19 patients at the perinatal stage. However, the potential consequence of infection for reproductive quality in developing fetuses remains unclear. Here, we analyze the transcriptome and DNA methylome of the fetal germline following maternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We find that infection at early gestational age, a critical period of human primordial germ cell specification and epigenetic reprogramming, trivially affects fetal germ cell (FGC) development. Additionally, FGC-niche communications are not compromised by maternal infection. Strikingly, both general and SARS-CoV-2-specific immune pathways are greatly activated in gonadal niche cells to protect FGCs from maternal infection. Notably, there occurs an "in advance" development tendency in FGCs after maternal infection. Our study provides insights into the impacts of maternal SARS-CoV-2 infection on fetal germline development and serves as potential clinical guidance for future pandemics.
Collapse
Affiliation(s)
- Shijun Shen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Mengting Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Xiaocui Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China.
| | - Beiying Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Wei Hong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Wei Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Ben Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Zhenxiang Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Ruichen Han
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Shanru Yi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Zhiping Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Xiaoying He
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Liping Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Qianshu Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Guang Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Biomedicum B5, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Rui Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| |
Collapse
|
37
|
Zhang Z, Kean IRL, Dratva LM, Clark JA, Syrimi E, Khan N, Daubney E, White D, O'Neill L, Chisholm C, Payne C, Benkenstein S, Kupiec K, Galassini R, Wright V, Winmill H, Robbins C, Brown K, Ramnarayan P, Scholefield B, Peters M, Klein N, Montgomery H, Meyer KB, Teichmann SA, Bryant C, Taylor G, Pathan N. Enhanced CD95 and interleukin 18 signalling accompany T cell receptor Vβ21.3+ activation in multi-inflammatory syndrome in children. Nat Commun 2024; 15:4227. [PMID: 38762592 PMCID: PMC11102542 DOI: 10.1038/s41467-024-48699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Multisystem inflammatory syndrome in children is a post-infectious presentation SARS-CoV-2 associated with expansion of the T cell receptor Vβ21.3+ T-cell subgroup. Here we apply muti-single cell omics to compare the inflammatory process in children with acute respiratory COVID-19 and those presenting with non SARS-CoV-2 infections in children. Here we show that in Multi-Inflammatory Syndrome in Children (MIS-C), the natural killer cell and monocyte population demonstrate heightened CD95 (Fas) and Interleuking 18 receptor expression. Additionally, TCR Vβ21.3+ CD4+ T-cells exhibit skewed differentiation towards T helper 1, 17 and regulatory T cells, with increased expression of the co-stimulation receptors ICOS, CD28 and interleukin 18 receptor. We observe no functional evidence for NLRP3 inflammasome pathway overactivation, though MIS-C monocytes show elevated active caspase 8. This, coupled with raised IL18 mRNA expression in CD16- NK cells on single cell RNA sequencing analysis, suggests interleukin 18 and CD95 signalling may trigger activation of TCR Vβ21.3+ T-cells in MIS-C, driven by increased IL-18 production from activated monocytes and CD16- Natural Killer cells.
Collapse
MESH Headings
- Humans
- Interleukin-18/metabolism
- Child
- Signal Transduction
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- fas Receptor/metabolism
- fas Receptor/genetics
- Monocytes/immunology
- Monocytes/metabolism
- Systemic Inflammatory Response Syndrome/immunology
- Systemic Inflammatory Response Syndrome/metabolism
- COVID-19/immunology
- COVID-19/virology
- COVID-19/metabolism
- COVID-19/complications
- Inflammasomes/metabolism
- Inflammasomes/immunology
- SARS-CoV-2/immunology
- Adolescent
- Male
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Female
- Child, Preschool
- Single-Cell Analysis
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD28 Antigens/metabolism
- Lymphocyte Activation/immunology
- Receptors, Interleukin-18/metabolism
- Receptors, Interleukin-18/genetics
- Receptors, Interleukin-18/immunology
Collapse
Affiliation(s)
- Zhenguang Zhang
- Departments of Paediatrics, University of Cambridge, Cambridge, UK
| | - Iain R L Kean
- Departments of Paediatrics, University of Cambridge, Cambridge, UK
| | - Lisa M Dratva
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - John A Clark
- Departments of Paediatrics, University of Cambridge, Cambridge, UK
| | - Eleni Syrimi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Naeem Khan
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Esther Daubney
- Paediatric Intensive Care Unit, Addenbrookes Hospital, Cambridge, UK
| | - Deborah White
- Paediatric Intensive Care Unit, Addenbrookes Hospital, Cambridge, UK
| | - Lauran O'Neill
- Paediatric Intensive Care Unit, Great Ormond Street Hospital, London, UK
| | - Catherine Chisholm
- Paediatric Intensive Care Unit, Great Ormond Street Hospital, London, UK
| | - Caroline Payne
- Paediatric Intensive Care Unit, Great Ormond Street Hospital, London, UK
| | - Sarah Benkenstein
- Paediatric Intensive Care Unit, Great Ormond Street Hospital, London, UK
| | - Klaudia Kupiec
- Paediatric Intensive Care Unit, Great Ormond Street Hospital, London, UK
| | | | - Victoria Wright
- Department of Paediatrics, Imperial College London, London, UK
| | - Helen Winmill
- Paediatric Intensive Care Unit, Birmingham Children's Hospital, Birmingham, UK
| | - Ceri Robbins
- Paediatric Intensive Care Unit, Birmingham Children's Hospital, Birmingham, UK
| | - Katherine Brown
- Paediatric Intensive Care Unit, Great Ormond Street Hospital, London, UK
| | | | - Barnaby Scholefield
- Paediatric Intensive Care Unit, Birmingham Children's Hospital, Birmingham, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Mark Peters
- Paediatric Intensive Care Unit, Great Ormond Street Hospital, London, UK
- Departments of Paediatrics, University College London, London, UK
| | - Nigel Klein
- Paediatric Intensive Care Unit, Great Ormond Street Hospital, London, UK
- Departments of Paediatrics, University College London, London, UK
| | | | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Theory of Condensed Matter, Cavendish Laboratory, Department of Physics University of Cambridge, Cambridge, UK
| | - Clare Bryant
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Graham Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| | - Nazima Pathan
- Departments of Paediatrics, University of Cambridge, Cambridge, UK.
- Paediatric Intensive Care Unit, Addenbrookes Hospital, Cambridge, UK.
| |
Collapse
|
38
|
Tong T, Jin YH, Wang M, Gong FQ. Treatment of multisystem inflammatory syndrome in children. World J Pediatr 2024; 20:325-339. [PMID: 38509432 DOI: 10.1007/s12519-024-00798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/29/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Multisystem inflammatory syndrome in children (MIS-C), a relatively uncommon but severe pediatric complication, is associated with coronavirus disease 2019 (COVID-19). A variety of treatment approaches, including intravenous immunoglobulins (IVIGs), glucocorticoids (GCs) and biologic agents, such as anakinra and infliximab, have been described for the management of COVID-19-related MIS-C. Anticoagulant therapy is also important. However, a well-developed treatment system has not been established, and many issues remain controversial. Several recently published articles related to the treatment of MIS-C have been released. Hence, in this review, we identified relevant articles published recently and summarized the treatment of MIS-C more comprehensively and systematically. DATA SOURCES We reviewed the literature on the treatment of MIS-C through 20 September 2023. The PubMed/Medline, Web of Science, EMBASE, and Cochrane Library databases were searched with the combination of the terms "multisystem inflammatory syndrome", "MIS-C", "PIMS-TS", "therapy", "treatment", "drug", "IVIG", "GCs", "intravenous immunoglobulin", "corticosteroids", "biological agent", and "aspirin". RESULTS The severity of MIS-C varies, and different treatment schemes should be used according to the specific condition. Ongoing research and data collection are vital to better understand the pathophysiology and optimal management of MIS-C. CONCLUSIONS MIS-C is a disease involving multiple systems and has great heterogeneity. With the accumulation of additional experience, we have garnered fresh insights into its treatment strategies. However, there remains a critical need for greater standardization in treatment protocols, alongside the pressing necessity for more robust and meticulously conducted studies to deepen our understanding of these protocols. Supplementary file1 (MP4 208044 kb).
Collapse
Affiliation(s)
- Tong Tong
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Hangzhou, 310052, China
| | - Yi-Hua Jin
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Hangzhou, 310052, China
| | - Min Wang
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Hangzhou, 310052, China
| | - Fang-Qi Gong
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Hangzhou, 310052, China.
| |
Collapse
|
39
|
Sun YK, Wang C, Lin PQ, Hu L, Ye J, Gao ZG, Lin R, Li HM, Shu Q, Huang LS, Tan LH. Severe pediatric COVID-19: a review from the clinical and immunopathophysiological perspectives. World J Pediatr 2024; 20:307-324. [PMID: 38321331 PMCID: PMC11052880 DOI: 10.1007/s12519-023-00790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/14/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) tends to have mild presentations in children. However, severe and critical cases do arise in the pediatric population with debilitating systemic impacts and can be fatal at times, meriting further attention from clinicians. Meanwhile, the intricate interactions between the pathogen virulence factors and host defense mechanisms are believed to play indispensable roles in severe COVID-19 pathophysiology but remain incompletely understood. DATA SOURCES A comprehensive literature review was conducted for pertinent publications by reviewers independently using the PubMed, Embase, and Wanfang databases. Searched keywords included "COVID-19 in children", "severe pediatric COVID-19", and "critical illness in children with COVID-19". RESULTS Risks of developing severe COVID-19 in children escalate with increasing numbers of co-morbidities and an unvaccinated status. Acute respiratory distress stress and necrotizing pneumonia are prominent pulmonary manifestations, while various forms of cardiovascular and neurological involvement may also be seen. Multiple immunological processes are implicated in the host response to COVID-19 including the type I interferon and inflammasome pathways, whose dysregulation in severe and critical diseases translates into adverse clinical manifestations. Multisystem inflammatory syndrome in children (MIS-C), a potentially life-threatening immune-mediated condition chronologically associated with COVID-19 exposure, denotes another scientific and clinical conundrum that exemplifies the complexity of pediatric immunity. Despite the considerable dissimilarities between the pediatric and adult immune systems, clinical trials dedicated to children are lacking and current management recommendations are largely adapted from adult guidelines. CONCLUSIONS Severe pediatric COVID-19 can affect multiple organ systems. The dysregulated immune pathways in severe COVID-19 shape the disease course, epitomize the vast functional diversity of the pediatric immune system and highlight the immunophenotypical differences between children and adults. Consequently, further research may be warranted to adequately address them in pediatric-specific clinical practice guidelines.
Collapse
Affiliation(s)
- Yi-Kan Sun
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, China
| | - Can Wang
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Pei-Quan Lin
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Lei Hu
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Jing Ye
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Zhi-Gang Gao
- Department of General Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Ru Lin
- Department of Cardiopulmonary and Extracorporeal Life Support, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Hao-Min Li
- Clinical Data Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Qiang Shu
- Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Li-Su Huang
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
- Department of Infectious Diseases, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| | - Lin-Hua Tan
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
40
|
Lee S, Erdem G, Yasuhara J. Multisystem inflammatory syndrome in children associated with COVID-19: from pathophysiology to clinical management and outcomes. Minerva Pediatr (Torino) 2024; 76:268-280. [PMID: 37284807 DOI: 10.23736/s2724-5276.23.07205-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multisystem inflammatory syndrome in children (MIS-C), also known as pediatric inflammatory multisystem syndrome (PIMS), is a new postinfectious illness associated with COVID-19, affecting children after SARS-CoV-2 exposure. The hallmarks of this disorder are hyperinflammation and multisystem involvement, with gastrointestinal, cardiac, mucocutaneous, and hematologic disturbances seen most commonly. Cardiovascular involvement includes cardiogenic shock, ventricular dysfunction, coronary artery abnormalities, and myocarditis. Now entering the fourth year of the pandemic, clinicians have gained some familiarity with the clinical presentation, initial diagnosis, cardiac evaluation, and treatment of MIS-C. This has led to an updated definition from the Centers for Disease Control and Prevention in the USA driven by increased experience and clinical expertise. Furthermore, the available evidence established expert consensus treatment recommendations supporting a combination of immunoglobulin and steroids. However, the pathophysiology of the disorder and answers to what causes this remain under investigation. Fortunately, long-term outcomes continue to look promising, although continued follow-up is still needed. Recently, COVID-19 mRNA vaccination is reported to be associated with reduced risk of MIS-C, while further studies are warranted to understand the impact of COVID-19 vaccines on MIS-C. We review the findings and current literature on MIS-C, including pathophysiology, clinical features, evaluation, management, and medium- to long-term follow-up outcomes.
Collapse
Affiliation(s)
- Simon Lee
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Guliz Erdem
- Division of Infectious Diseases, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jun Yasuhara
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA -
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Cardiology, Royal Children's Hospital, Parkville, Australia
| |
Collapse
|
41
|
Bline KE, Wilt AL, Alexander RN, Andrews AN, Mertz SE, Ye F, Steele LM, Wolfe AL, Mejias A, Ramilo O. Myeloid-derived suppressor cells and T cell populations in children with Multisystem Inflammatory Syndrome. Pediatr Res 2024; 95:1288-1294. [PMID: 38042945 DOI: 10.1038/s41390-023-02919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Multisystem inflammatory syndrome in children (MIS-C) represents a hyperinflammatory state that can result in multi-organ dysfunction and death. Myeloid-derived suppressor cells (MDSC) are an immunosuppressive cell population that expands under inflammatory conditions and suppresses T cell function. We hypothesized that MDSC would be increased in children with MIS-C and that MDSC expansion would be associated with T cell lymphopenia. METHODS We conducted a prospective, observational study. Initial blood samples were collected within 48 h of admission. Age-matched healthy controls underwent sampling once. MDSC and T cell populations were identified by flow cytometric methods. RESULTS We enrolled 22 children with MIS-C (12 ICU, 10 ward) and 21 healthy controls (HC). Children with MIS-C demonstrated significantly higher MDSC compared to HC, and MDSC expansion persisted for >3 weeks in the ICU group. Children with MIS-C admitted to the ICU demonstrated significantly lower absolute numbers of T cells and natural killer cells. There were no significant associations between MDSC and cardiac dysfunction, duration of hospitalization, or vasoactive inotrope score. CONCLUSIONS Our study suggests that children critically ill with MIS-C have expansion of MDSC and associated decreased T cell and NK cell populations. Our results did not demonstrate associations between MDSC and clinical outcomes. IMPACT Multisystem inflammatory syndrome in children (MIS-C) is a dysregulated immune response occurring several weeks after SARS-CoV-2 infection that can result in multi-organ dysfunction and death. Children severely ill with MIS-C demonstrated increased myeloid-derived suppressor cells and decreased absolute numbers of CD4+ and CD8 + T cells and NK cells compared to healthy controls. There was no significant association between MDSC numbers and clinical outcomes; including cardiac dysfunction, length of stay, or requirement of vasoactive support, in children with MIS-C.
Collapse
Affiliation(s)
- Katherine E Bline
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH, USA.
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH, USA.
| | - Anna L Wilt
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH, USA
| | - Robin N Alexander
- Biostatistics Resource at Nationwide Children's Hospital, Columbus, OH, USA
| | - Angel N Andrews
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sara E Mertz
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH, USA
| | - Fang Ye
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Lisa M Steele
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Amber L Wolfe
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Asuncion Mejias
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Octavio Ramilo
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
42
|
Su S, Hu W, Chen X, Ren Y, Lu Y, Shi J, Zhang T, Zhang H, Wang M, Wang Y, Zhao F, Jin R, Liu Y, Zhang H, Liu G. Cardiac injury progression in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection: a review. Front Pediatr 2024; 12:1348016. [PMID: 38510081 PMCID: PMC10950994 DOI: 10.3389/fped.2024.1348016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
The symptoms and signs of infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are milder in children than in adults. However, in April 2020, British pediatricians first reported that coronavirus disease 2019 (COVID-19) may present as multisystem inflammatory syndrome in children and adolescents (MIS-C), similar to that observed in Kawasaki disease. MIS-C can be associated with multiple systemic injuries and even death in children. In addition to digestive system involvement, cardiac injury is prominent. This article reviews the pathogenesis, clinical manifestations, and treatment of cardiac injury caused by MIS-C, which may help clinicians in early diagnosis and timely commencement of treatment.
Collapse
Affiliation(s)
- Song Su
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Wandong Hu
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Xiao Chen
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Ying Ren
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Yi Lu
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Jianguo Shi
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Tong Zhang
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Huan Zhang
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Meng Wang
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Yaping Wang
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Fen Zhao
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Ruifeng Jin
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Yong Liu
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Hongwei Zhang
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Guohua Liu
- Department of Ophthalmology, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Department of Ophthalmology, Jinan Children's Hospital, Jinan, Shandong, China
| |
Collapse
|
43
|
Icoz M, Arıkan Yorgun M, Bayhan GI, Gurturk Icoz SG, Yahsi A. Assessment of the Choroidal Vascular Structure in Multisystem Inflammatory Syndrome in Children. J Pediatr Ophthalmol Strabismus 2024; 61:120-126. [PMID: 37882188 DOI: 10.3928/01913913-20230809-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
PURPOSE To evaluate the choroidal vascular structure in cases of multisystem inflammatory syndrome in children (MIS-C). METHODS This prospective study included 38 eyes of 19 patients with MIS-C and 60 eyes of 30 healthy participants. Optical coherence tomography (OCT) imaging was performed at 1 month after diagnosis in the MIS-C group. Using enhanced depth imaging OCT, choroidal thickness was measured in the subfoveal, nasal, and temporal quadrants at 500 and 1,500 µm distances from the fovea (SCT, N500CT, T500CT, N1500CT, and T1500CT, respectively). The luminal, stromal, and total choroidal areas were evaluated with the binarization method in ImageJ software (National Institutes of Health). The ratio of the luminal area to the total choroidal area was determined as the choroidal vascular index (CVI). RESULTS The age and sex distributions of the two groups without any ophthalmologic pathology were similar (P > .05). The choroidal thickness values in all quadrants except for T1500CT were similar between the two groups (P > .05). T1500CT was significantly lower in the MIS-C group (P = .02). The luminal choroidal area was 1.04 ± 0.10 mm2 in the MIS-C group and 1.26 ± 0.24 mm2 in the healthy control group (P < .001), and the CVI values were 0.52 ± 0.04 and 0.57 ± 0.09, respectively (P = .01). The stromal and total choroidal area values did not significantly differ between the two groups (P > .05). CONCLUSIONS This is the first study to evaluate CVI in patients with MIS-C. It was observed that the choroidal vascular structure could be affected in the early period of MIS-C, as shown by a decrease in the CVI value and luminal vascular area. OCT can be used to monitor ocular vascular changes in these patients. [J Pediatr Ophthalmol Strabismus. 2024;61(2):120-126.].
Collapse
|
44
|
Khan R, Ji W, Guzman-Rivera J, Madhvi A, Andrews T, Richlin B, Suarez C, Gaur S, Cuddy W, Singh AR, Bukulmez H, Kaelber D, Kimura Y, Ganapathi U, Michailidis IE, Ukey R, Moroso-Fela S, Kuster JK, Casseus M, Roy J, Kleinman LC, Horton DB, Lakhani SA, Gennaro ML. A genetically modulated Toll-like-receptor-tolerant phenotype in peripheral blood cells of children with multisystem inflammatory syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.02.24301686. [PMID: 38370700 PMCID: PMC10871447 DOI: 10.1101/2024.02.02.24301686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Dysregulated innate immune responses contribute to multisystem inflammatory syndrome in children (MIS-C), characterized by gastrointestinal, mucocutaneous, and/or cardiovascular injury occurring weeks after SARS-CoV-2 exposure. To investigate innate immune functions in MIS-C, we stimulated ex vivo peripheral blood cells from MIS-C patients with agonists of Toll-like receptors (TLR), key innate immune response initiators. We found severely dampened cytokine responses and elevated gene expression of negative regulators of TLR signaling. Increased plasma levels of zonulin, a gut leakage marker, were also detected. These effects were also observed in children enrolled months after MIS-C recovery. Moreover, cells from MIS-C children carrying rare genetic variants of lysosomal trafficking regulator (LYST) were less refractory to TLR stimulation and exhibited lysosomal and mitochondrial abnormalities with altered energy metabolism. Our results strongly suggest that MIS-C hyperinflammation and/or excessive or prolonged stimulation with gut-originated TLR ligands drive immune cells to a lasting refractory state. TLR hyporesponsiveness is likely beneficial, as suggested by excess lymphopenia among rare LYST variant carriers. Our findings point to cellular mechanisms underlying TLR hyporesponsiveness; identify genetic determinants that may explain the MIS-C clinical spectrum; suggest potential associations between innate refractory states and long COVID; and highlight the need to monitor long-term consequences of MIS-C.
Collapse
Affiliation(s)
- Rehan Khan
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510
| | - Jeisac Guzman-Rivera
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
| | - Abhilasha Madhvi
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
| | - Tracy Andrews
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ
| | - Benjamin Richlin
- Pediatric Clinical Research Center, and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Christian Suarez
- Pediatric Clinical Research Center, and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Sunanda Gaur
- Department of Pediatrics, Clinical Research Center, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | | | - Aalok R Singh
- Maria Fareri Children's Hospital, Valhalla, NY
- New York Medical College, Valhalla, NY
| | - Hulya Bukulmez
- Department of Pediatrics, Division of Rheumatology, MetroHealth System, Cleveland OH
| | - David Kaelber
- Department of Pediatrics, Division of Rheumatology, MetroHealth System, Cleveland OH
- Center for Clinical Informatics Research and Education, MetroHealth System, Cleveland OH
- Department of Internal Medicine, Pediatrics, and Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland OH
| | - Yukiko Kimura
- Hackensack University Medical Center, Hackensack Meridian School of Medicine, Nutley, NJ
| | - Usha Ganapathi
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
| | - Ioannis E Michailidis
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
| | - Rahul Ukey
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
| | - Sandra Moroso-Fela
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - John K Kuster
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510
| | - Myriam Casseus
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Jason Roy
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ
| | - Lawrence C Kleinman
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Department of Global Urban Health, Rutgers School of Public Health, Piscataway, NJ
| | - Daniel B Horton
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Rutgers Center for Pharmacoepidemiology and Treatment Science, Institute for Health, Health Care Policy and Aging Research, New Brunswick, NJ
| | - Saquib A Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510
| | - Maria Laura Gennaro
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
- Department of Medicine, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
| |
Collapse
|
45
|
Butters C, Benede N, Moyo-Gwete T, Richardson SI, Rohlwink U, Shey M, Ayres F, Manamela NP, Makhado Z, Balla SR, Madzivhandila M, Ngomti A, Baguma R, Facey-Thomas H, Spracklen TF, Day J, van der Ross H, Riou C, Burgers WA, Scott C, Zühlke L, Moore PL, Keeton RS, Webb K. Comparing the immune abnormalities in MIS-C to healthy children and those with inflammatory disease reveals distinct inflammatory cytokine production and a monofunctional T cell response. Clin Immunol 2024; 259:109877. [PMID: 38141746 DOI: 10.1016/j.clim.2023.109877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a severe, hyperinflammatory disease that occurs after exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The underlying immune pathology of MIS-C is incompletely understood, with limited data comparing MIS-C to clinically similar paediatric febrile diseases at presentation. SARS-CoV-2-specific T cell responses have not been compared in these groups to assess whether there is a T cell profile unique to MIS-C. In this study, we measured inflammatory cytokine concentration and SARS-CoV-2-specific humoral immunity and T cell responses in children with fever and suspected MIS-C at presentation (n = 83) where MIS-C was ultimately confirmed (n = 58) or another diagnosis was made (n = 25) and healthy children (n = 91). Children with confirmed MIS-C exhibited distinctly elevated serum IL-10, IL-6, and CRP at presentation. No differences were detected in SARS-CoV-2 spike IgG serum concentration, neutralisation capacity, antibody dependant cellular phagocytosis, antibody dependant cellular cytotoxicity or SARS-CoV-2-specific T cell frequency between the groups. Healthy SARS-CoV-2 seropositive children had a higher proportion of polyfunctional SARS-CoV-2-specific CD4+ T cells compared to children with MIS-C and those with other inflammatory or infectious diagnoses, who both presented a largely monofunctional SARS-CoV-2-specific CD4+ T cell profile. Treatment with steroids and/or intravenous immunoglobulins resulted in rapid reduction of inflammatory cytokines but did not affect the SARS-CoV-2-specific IgG or CD4+ T cell responses in MIS-C. In these data, MIS-C had a unique cytokine profile but not a unique SARS-CoV-2 specific humoral or T cell cytokine response.
Collapse
Affiliation(s)
- Claire Butters
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Ntombi Benede
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Thandeka Moyo-Gwete
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa.
| | - Simone I Richardson
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa.
| | - Ursula Rohlwink
- Division of Neurosurgery, Department of Surgery, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Crick African Network, The Francis Crick Institute, Midland Road, London NW1 1AT, United Kingdom.
| | - Muki Shey
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Department of Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Frances Ayres
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa.
| | - Nelia P Manamela
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa.
| | - Zanele Makhado
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa
| | - Sashkia R Balla
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa.
| | - Mashudu Madzivhandila
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa
| | - Amkele Ngomti
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Richard Baguma
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa
| | - Heidi Facey-Thomas
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa.
| | - Timothy F Spracklen
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa; Cape Heart Institute, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Jonathan Day
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa
| | - Hamza van der Ross
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa.
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Christiaan Scott
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa; Clinical Research Centre, University of Cape Town, Groote Schuur Hospital, Observatory, 7935 Cape Town, South Africa.
| | - Liesl Zühlke
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Cape Heart Institute, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; South African Medical Research Council, Francie Van Zijl Drive, Parow Valley, 7501 Cape Town, South Africa.
| | - Penny L Moore
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; Centre for the AIDS Programme of Research in South Africa, Umbilo Road, 4001 Durban, South Africa.
| | - Roanne S Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Kate Webb
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa; Crick African Network, The Francis Crick Institute, Midland Road, London NW1 1AT, United Kingdom.
| |
Collapse
|
46
|
Avrusin IS, Abramova NN, Belozerov KE, Bregel LV, Efremova OS, Vilnits AA, Konstantinova JE, Isupova EA, Kornishina TL, Masalova VV, Kalashnikova OV, Chasnyk VG, Aleksandrovich YS, Ivanov DO, Kostik MM. Using HScore for Evaluation of Hemophagocytosis in Multisystem Inflammatory Syndrome Associated with COVID-19 in Children. Biomedicines 2024; 12:294. [PMID: 38397896 PMCID: PMC10886863 DOI: 10.3390/biomedicines12020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Hemophagocytic syndrome is a key point in the pathogenesis of severe forms of multisystem inflammatory syndrome associated with COVID-19 in children (MIS-C). The factors associated with hemophagocytosis in patients with MIS-C were assessed in the present study of 94 boys and 64 girls ranging in age from 4 months to 17 years, each of whose HScore was calculated. In accordance with a previous analysis, patients with HScore ≤ 91 (n = 79) and HScore > 91 (n = 79) were compared. Patients with HScore > 91 had a higher frequency of symptoms such as cervical lymphadenopathy, dry cracked lips, bright mucous, erythema/swelling of hands and feet, peeling of fingers, edematous syndrome, hepatomegaly, splenomegaly, and hypotension/shock. They also had a higher erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and D-dimer levels, and a tendency to anemia, thrombocytopenia, and hypofibrinogenemia. They more often needed acetylsalicylic acid and biological treatment and were admitted to ICU in 70.9% of cases. Conclusion: The following signs of severe MIS-C were associated with HScore > 91: myocardial involvement, pericarditis, hypotension/shock, and ICU admission.
Collapse
Affiliation(s)
- Ilia S. Avrusin
- Hospital Pediatrics, Saint Petersburg State Pediatric Medical University, Saint Petersburg 194100, Russia; (K.E.B.); (E.A.I.); (T.L.K.); (V.V.M.); (O.V.K.); (V.G.C.)
| | - Natalia N. Abramova
- Intensive Care Unit Department, Saint Petersburg State Pediatric Medical University, Saint Petersburg 194100, Russia; (N.N.A.); (Y.S.A.)
| | - Konstantin E. Belozerov
- Hospital Pediatrics, Saint Petersburg State Pediatric Medical University, Saint Petersburg 194100, Russia; (K.E.B.); (E.A.I.); (T.L.K.); (V.V.M.); (O.V.K.); (V.G.C.)
| | - Liudmila V. Bregel
- Department of Pediatrics, Irkutsk State Medical Academy of Postgraduate Education, Branch of Russian Medical Academy of Continuous Professional Education, Irkutsk 664049, Russia; (L.V.B.); (O.S.E.)
- Department of Cardiology, Irkutsk Regional Children’s Hospital, Irkutsk 664022, Russia
| | - Olesya S. Efremova
- Department of Pediatrics, Irkutsk State Medical Academy of Postgraduate Education, Branch of Russian Medical Academy of Continuous Professional Education, Irkutsk 664049, Russia; (L.V.B.); (O.S.E.)
- Department of Cardiology, Irkutsk Regional Children’s Hospital, Irkutsk 664022, Russia
| | - Alla A. Vilnits
- Pediatric Infectious Department, Saint Petersburg State Pediatric Medical University, Saint Petersburg 194100, Russia;
- Pediatric Research and Clinical Center for Infection Diseases, Saint Petersburg 197022, Russia;
| | - Julia E. Konstantinova
- Pediatric Research and Clinical Center for Infection Diseases, Saint Petersburg 197022, Russia;
| | - Eugenia A. Isupova
- Hospital Pediatrics, Saint Petersburg State Pediatric Medical University, Saint Petersburg 194100, Russia; (K.E.B.); (E.A.I.); (T.L.K.); (V.V.M.); (O.V.K.); (V.G.C.)
| | - Tatiana L. Kornishina
- Hospital Pediatrics, Saint Petersburg State Pediatric Medical University, Saint Petersburg 194100, Russia; (K.E.B.); (E.A.I.); (T.L.K.); (V.V.M.); (O.V.K.); (V.G.C.)
| | - Vera V. Masalova
- Hospital Pediatrics, Saint Petersburg State Pediatric Medical University, Saint Petersburg 194100, Russia; (K.E.B.); (E.A.I.); (T.L.K.); (V.V.M.); (O.V.K.); (V.G.C.)
| | - Olga V. Kalashnikova
- Hospital Pediatrics, Saint Petersburg State Pediatric Medical University, Saint Petersburg 194100, Russia; (K.E.B.); (E.A.I.); (T.L.K.); (V.V.M.); (O.V.K.); (V.G.C.)
| | - Vyacheslav G. Chasnyk
- Hospital Pediatrics, Saint Petersburg State Pediatric Medical University, Saint Petersburg 194100, Russia; (K.E.B.); (E.A.I.); (T.L.K.); (V.V.M.); (O.V.K.); (V.G.C.)
| | - Yuriy S. Aleksandrovich
- Intensive Care Unit Department, Saint Petersburg State Pediatric Medical University, Saint Petersburg 194100, Russia; (N.N.A.); (Y.S.A.)
| | - Dmitri O. Ivanov
- Neonatology Department, Saint Petersburg State Pediatric Medical University, Saint Petersburg 194100, Russia
| | - Mikhail M. Kostik
- Hospital Pediatrics, Saint Petersburg State Pediatric Medical University, Saint Petersburg 194100, Russia; (K.E.B.); (E.A.I.); (T.L.K.); (V.V.M.); (O.V.K.); (V.G.C.)
| |
Collapse
|
47
|
Vella LA, Berna AZ, Blatz AM, Logan J, Sharma P, Liu Y, Tedesco J, Toland C, Babiker L, Hafertepe K, Kammerman S, Novacek J, Akaho E, Gonzalez AK, Taylor D, Diorio C, Balamuth F, Bassiri H, Odom John AR. Metabolomic and Immunologic Discriminators of MIS-C at Emergency Room Presentation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.11.24301110. [PMID: 38293197 PMCID: PMC10827247 DOI: 10.1101/2024.01.11.24301110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Multisystem Inflammatory Syndrome in Childhood (MIS-C) follows SARS-CoV-2 infection and frequently leads to intensive care unit admission. The inability to rapidly discriminate MIS-C from similar febrile illnesses delays treatment and leads to misdiagnosis. To identify diagnostic discriminators at the time of emergency department presentation, we enrolled 104 children who met MIS-C screening criteria, 14 of whom were eventually diagnosed with MIS-C. Before treatment, we collected breath samples for volatiles and peripheral blood for measurement of plasma proteins and immune cell features. Clinical and laboratory features were used as inputs for a machine learning model to determine diagnostic importance. MIS-C was associated with significant changes in breath volatile organic compound (VOC) composition as well as increased plasma levels of secretory phospholipase A2 (PLA2G2A) and lipopolysaccharide binding protein (LBP). In an integrated model of all analytes, the proportion of TCRVβ21.3+ non-naive CD4 T cells expressing Ki-67 had a high sensitivity and specificity for MIS-C, with diagnostic accuracy further enhanced by low sodium and high PLA2G2A. We anticipate that accurate diagnosis will become increasingly difficult as MIS-C becomes less common. Clinical validation and application of this diagnostic model may improve outcomes in children presenting with multisystem febrile illnesses.
Collapse
|
48
|
Henderson LA. COVID-19-Related Multi-systemic Inflammatory Syndrome in Children (MIS-C). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:409-425. [PMID: 39117830 DOI: 10.1007/978-3-031-59815-9_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a severe complication of SARS-CoV-2 infections in children. This syndrome manifests about a month after the initial viral infection and is characterized by fever, multiorgan dysfunction, and systemic inflammation. This chapter will review the emergence, epidemiology, clinical characteristics, diagnosis, pathophysiology, immunomodulatory treatment, prognosis, outcomes, and prevention of MIS-C. While the pathophysiology of MIS-C remains to be defined, it is a post-infection, hyperinflammatory syndrome of childhood with elevated inflammatory cytokines.
Collapse
Affiliation(s)
- Lauren A Henderson
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Karageorgos S, Platt AS, Bassiri H. Genetics of Primary Hemophagocytic Lymphohistiocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:75-101. [PMID: 39117809 DOI: 10.1007/978-3-031-59815-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) constitutes a rare, potentially life-threatening hyperinflammatory immune dysregulation syndrome that can present with a variety of clinical signs and symptoms, including fever, hepatosplenomegaly, and abnormal laboratory and immunological findings such as cytopenias, hyperferritinemia, hypofibrinogenemia, hypertriglyceridemia, elevated blood levels of soluble CD25 (interleukin (IL)-2 receptor α-chain), or diminished natural killer (NK)-cell cytotoxicity (reviewed in detail in Chapter 11 of this book). While HLH can be triggered by an inciting event (e.g., infections), certain monogenic causes have been associated with a significantly elevated risk of development of HLH, or recurrence of HLH in patients who have recovered from their disease episode. These monogenic predisposition syndromes are variably referred to as "familial" (FHL) or "primary" HLH (henceforth referred to as "pHLH") and are the focus of this chapter. Conversely, secondary HLH (sHLH) often occurs in the absence of monogenic etiologies that are commonly associated with pHLH and can be triggered by infections, malignancies, or rheumatological diseases; these triggers and the genetics associated with sHLH are discussed in more detail in other chapters in this book.
Collapse
Affiliation(s)
- Spyridon Karageorgos
- First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna S Platt
- Roberts Individualized Medical Genetics Center and Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hamid Bassiri
- Immune Dysregulation Program and Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
50
|
Tsoukas P, Yeung RSM. Kawasaki Disease-Associated Cytokine Storm Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:365-383. [PMID: 39117827 DOI: 10.1007/978-3-031-59815-9_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Kawasaki disease (KD) is a hyperinflammatory syndrome manifesting as an acute systemic vasculitis characterized by fever, nonsuppurative conjunctival injection, rash, oral mucositis, extremity changes, and cervical lymphadenopathy. KD predominantly affects young children and shares clinical features and immunobiology with other hyperinflammation syndromes including systemic juvenile idiopathic arthritis (sJIA) and multisystem inflammatory syndrome in children (MIS-C). Cytokine storm syndrome (CSS) is an acute complication in ~2% of KD patients; however, the incidence is likely underestimated as many clinical and laboratory features of both diseases overlap. CSS should be entertained when a child with KD is unresponsive to IVIG therapy with recalcitrant fever. Early recognition and prompt institution of immunomodulatory treatment can substantially reduce the mortality and morbidity of CSS in KD. Given the known pathogenetic role of IL-1β in both syndromes, the early use of IL-1 blockers in refractory KD with CSS deserves consideration.
Collapse
Affiliation(s)
- Paul Tsoukas
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rae S M Yeung
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Paediatrics, Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|