1
|
Sescil J, Havens SM, Wang W. Principles and Design of Molecular Tools for Sensing and Perturbing Cell Surface Receptor Activity. Chem Rev 2025. [PMID: 39999110 DOI: 10.1021/acs.chemrev.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Cell-surface receptors are vital for controlling numerous cellular processes with their dysregulation being linked to disease states. Therefore, it is necessary to develop tools to study receptors and the signaling pathways they control. This Review broadly describes molecular approaches that enable 1) the visualization of receptors to determine their localization and distribution; 2) sensing receptor activation with permanent readouts as well as readouts in real time; and 3) perturbing receptor activity and mimicking receptor-controlled processes to learn more about these processes. Together, these tools have provided valuable insight into fundamental receptor biology and helped to characterize therapeutics that target receptors.
Collapse
Affiliation(s)
- Jennifer Sescil
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Steven M Havens
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wenjing Wang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Poboży K, Poboży T, Domański P, Derczyński M, Konarski W, Domańska-Poboża J. Evolution of Light-Sensitive Proteins in Optogenetic Approaches for Vision Restoration: A Comprehensive Review. Biomedicines 2025; 13:429. [PMID: 40002842 PMCID: PMC11853388 DOI: 10.3390/biomedicines13020429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/18/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Retinal degenerations, such as age-related macular degeneration and retinitis pigmentosa, present significant challenges due to genetic heterogeneity, limited therapeutic options, and the progressive loss of photoreceptors in advanced stages. These challenges are compounded by difficulties in precisely targeting residual retinal neurons and ensuring the sustained efficacy of interventions. Optogenetics offers a novel approach to vision restoration by inducing light sensitivity in residual retinal neurons through gene delivery of light-sensitive opsins. This review traces the evolution of opsins in optogenetic therapies, highlighting advancements from early research on channelrhodopsin-2 (ChR2) to engineered variants addressing key limitations. Red-shifted opsins, including ReaChR and ChrimsonR, reduced phototoxicity by enabling activation under longer wavelengths, while Chronos introduced superior temporal kinetics for dynamic visual tracking. Further innovations, such as Multi-Characteristic Opsin 1 (MCO1), optimized opsin performance under ambient light, bridging the gap to real-world applications. Key milestones include the first partial vision restoration in a human patient using ChrimsonR with light-amplifying goggles and ongoing clinical trials exploring the efficacy of opsin-based therapies for advanced retinal degeneration. While significant progress has been made, challenges remain in achieving sufficient light sensitivity for functional vision under normal ambient lighting conditions in a manner that is both effective and safe, eliminating the need for external light-enhancing devices. As research progresses, optogenetic therapies are positioned to redefine the management of retinal degenerative diseases, offering new hope for millions affected by vision loss.
Collapse
Affiliation(s)
- Kamil Poboży
- Department of Neurosurgery, Brodnowski Masovian Hospital, 03-242 Warsaw, Poland;
| | - Tomasz Poboży
- Department of Orthopedic Surgery, Ciechanów Hospital, 06-400 Ciechanów, Poland;
| | - Paweł Domański
- Department of Orthopedic Surgery, Ciechanów Hospital, 06-400 Ciechanów, Poland;
| | | | | | - Julia Domańska-Poboża
- Department of Rheumatology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| |
Collapse
|
3
|
Velez-Angel N, Lu S, Fabella B, Reagor CC, Brown HR, Vázquez Y, Jacobo A, Hudspeth AJ. Optogenetic interrogation of the lateral-line sensory system reveals mechanisms of pattern separation in the zebrafish brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637118. [PMID: 39975109 PMCID: PMC11839093 DOI: 10.1101/2025.02.07.637118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The ability of animals to interact with their environment hinges on the brain's capacity to distinguish between patterns of sensory information and accurately attribute them to specific sensory organs. The mechanisms by which neuronal circuits discriminate and encode the source of sensory signals remain elusive. To address this, we utilized as a model the posterior lateral line system of larval zebrafish, which is used to detect water currents. This system comprises a series of mechanosensory organs called neuromasts, which are innervated by neurons from the posterior lateral line ganglion. By combining single-neuromast optogenetic stimulation with whole-brain calcium imaging, we developed a novel approach to investigate how inputs from neuromasts are processed. Upon stimulating individual neuromasts, we observed that neurons in the brain of the zebrafish show diverse selectivity properties despite a lack of topographic organization in second-order circuits. We further demonstrated that complex combinations of neuromast stimulation are represented by sparse ensembles of neurons within the medial octavolateralis nucleus (MON) and found that neuromast input can be integrated nonlinearly. Our approach offers an innovative method for spatiotemporally interrogating the zebrafish lateral line system and presents a valuable model for studying whole-brain sensory encoding.
Collapse
Affiliation(s)
- Nicolas Velez-Angel
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
| | - Sihao Lu
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
| | - Brian Fabella
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Caleb C. Reagor
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Holland R. Brown
- Sackler Institute of Developmental Psychobiology, Weill Cornell Medicine, New York, NY, USA
| | - Yuriria Vázquez
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
| | | | - A. J. Hudspeth
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
4
|
Yu Y, Jeffreys LN, Poddar H, Hill A, Johannissen L, Dai F, Sakuma M, Leys D, Heyes DJ, Zhang S, Scrutton NS. SignatureFinder enables sequence mining to identify cobalamin-dependent photoreceptor proteins. FEBS J 2025; 292:635-652. [PMID: 39718193 PMCID: PMC11796333 DOI: 10.1111/febs.17377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/28/2024] [Accepted: 11/21/2024] [Indexed: 12/25/2024]
Abstract
Photoreceptors control cellular processes in response to light. Most photoreceptors sense blue or red light, but the recent discovery of the cobalamin-dependent photoreceptor, CarH, has expanded the wavelength range of photoreception to other regions of the electromagnetic spectrum to include the green light region. Further identification of cobalamin-dependent green light-sensitive photoreceptors has been hampered owing to poor annotation of the light responsiveness of cobalamin-binding domains (CBDs) in public databases. Here we report a computational workflow, SignatureFinder, that uses a combination of sequence and structural analyses to identify new light-responsive CBD-containing proteins. The light response of exemplar proteins containing the proposed signature were confirmed experimentally. A structural analysis of these new photoreceptors, including the crystal structure of a new CBD domain, highlights how the signature elements interact with the cobalamin chromophore to sense light. Database mining of 128 000 CBD-containing sequences using the identified signature revealed more diverse CBD-containing photoreceptors, thereby expanding the family of green-light photoreceptors. A SignatureFinder web server is available (https://enzymeevolver.com) for wider applications, including the identification of signature sequences of other biological ligands of interest.
Collapse
Affiliation(s)
- Yuqi Yu
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
- Present address:
Astra ZenecaCambridgeUK
| | - Laura N. Jeffreys
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| | - Harshwardhan Poddar
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| | - Adam Hill
- Department of ChemistryThe University of ManchesterUK
| | - Linus Johannissen
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| | - Fanzhuo Dai
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| | - Michiyo Sakuma
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| | - David Leys
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| | - Derren J. Heyes
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| | - Shaowei Zhang
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
- Present address:
Department of Biology and Chemistry, College of SciencesNational University of Defense TechnologyChangshaChina
| | - Nigel S. Scrutton
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| |
Collapse
|
5
|
Tian F, Liu Y, Chen M, Schriver KE, Roe AW. Selective activation of mesoscale functional circuits via multichannel infrared stimulation of cortical columns in ultra-high-field 7T MRI. CELL REPORTS METHODS 2025; 5:100961. [PMID: 39874948 PMCID: PMC11840946 DOI: 10.1016/j.crmeth.2024.100961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/13/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025]
Abstract
To restore vision in the blind, advances in visual cortical prosthetics (VCPs) have offered high-channel-count electrical interfaces. Here, we design a 100-fiber optical bundle interface apposed to known feature-specific (color, shape, motion, and depth) functional columns that populate the visual cortex in humans, primates, and cats. Based on a non-viral optical stimulation method (INS, infrared neural stimulation; 1,875 nm), it can deliver dynamic patterns of stimulation, is non-penetrating and non-damaging to tissue, and is movable and removable. In addition, its magnetic resonance (MR) compatibility (INS-fMRI) permits systematic mapping of brain-wide circuits. In the MRI, we illustrate (1) the single-point activation of functionally specific networks, (2) shifting cortical networks activated via shifting points of stimulation, and (3) "moving dot" stimulation-evoked activation of higher-order motion-selective areas. We suggest that, by mimicking patterns of columnar activation normally activated by visual stimuli, a columnar VCP opens doors for the planned activation of feature-specific circuits and their associated visual percepts.
Collapse
Affiliation(s)
- Feiyan Tian
- Department of Neurosurgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China; Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Key Laboratory of Brain and Computer Intelligence, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Yipeng Liu
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Meixuan Chen
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Kenneth Edward Schriver
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310012, China
| | - Anna Wang Roe
- Department of Neurosurgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China; Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Key Laboratory of Brain and Computer Intelligence, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310012, China.
| |
Collapse
|
6
|
Chau HY, Miller KD, Palmigiano A. Exact linear theory of perturbation response in a space- and feature-dependent cortical circuit model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.27.630558. [PMID: 39896520 PMCID: PMC11785077 DOI: 10.1101/2024.12.27.630558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
What are the principles that govern the responses of cortical networks to their inputs and the emergence of these responses from recurrent connectivity? Recent experiments have probed these questions by measuring cortical responses to two-photon optogenetic perturbations of single cells in the mouse primary visual cortex. A robust theoretical framework is needed to determine the implications of these responses for cortical recurrence. Here we propose a novel analytical approach: a formulation of the dependence of cell-type-specific connectivity on spatial distance that yields an exact solution for the linear perturbation response of a model with multiple cell types and space- and feature-dependent connectivity. Importantly and unlike previous approaches, the solution is valid in regimes of strong as well as weak intra-cortical coupling. Analysis reveals the structure of connectivity implied by various features of single-cell perturbation responses, such as the surprisingly narrow spatial radius of nearby excitation beyond which inhibition dominates, the number of transitions between mean excitation and inhibition thereafter, and the dependence of these responses on feature preferences. Comparison of these results to existing optogenetic perturbation data yields constraints on cell-type-specific connection strengths and their tuning dependence. Finally, we provide experimental predictions regarding the response of inhibitory neurons to single-cell perturbations and the modulation of perturbation response by neuronal gain; the latter can explain observed differences in the feature-tuning of perturbation responses in the presence vs. absence of visual stimuli.
Collapse
Affiliation(s)
- Ho Yin Chau
- Center for Theoretical Neuroscience, College of Physicians and Surgeons and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
| | - Kenneth D. Miller
- Center for Theoretical Neuroscience, College of Physicians and Surgeons and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
- Dept. of Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, College of Physicians and Surgeons and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York
| | - Agostina Palmigiano
- Center for Theoretical Neuroscience, College of Physicians and Surgeons and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
- Gatsby Computational Neuroscience Unit, University College London
| |
Collapse
|
7
|
Chou CY, Wong HH, Guo C, Boukoulou KE, Huang C, Jannat J, Klimenko T, Li VY, Liang TA, Wu VC, Sjöström PJ. Principles of visual cortex excitatory microcircuit organization. Innovation (N Y) 2025; 6:100735. [PMID: 39872485 PMCID: PMC11763898 DOI: 10.1016/j.xinn.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 11/13/2024] [Indexed: 01/30/2025] Open
Abstract
Synapse-specific connectivity and dynamics determine microcircuit function but are challenging to explore with classic paired recordings due to their low throughput. We therefore implemented optomapping, a ∼100-fold faster two-photon optogenetic method. In mouse primary visual cortex (V1), we optomapped 30,454 candidate inputs to reveal 1,790 excitatory inputs to pyramidal, basket, and Martinotti cells. Across these cell types, log-normal distribution of synaptic efficacies emerged as a principle. For pyramidal cells, optomapping reproduced the canonical circuit but unexpectedly uncovered that the excitation of basket cells concentrated to layer 5 and that of Martinotti cells dominated in layer 2/3. The excitation of basket cells was stronger and reached farther than the excitation of pyramidal cells, which may promote stability. Short-term plasticity surprisingly depended on cortical layer in addition to target cell. Finally, optomapping revealed an overrepresentation of shared inputs for interconnected layer-6 pyramidal cells. Thus, by resolving the throughput problem, optomapping uncovered hitherto unappreciated principles of V1 structure.
Collapse
Affiliation(s)
- Christina Y.C. Chou
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hovy H.W. Wong
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Connie Guo
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Kiminou E. Boukoulou
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Cleo Huang
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Javid Jannat
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Tal Klimenko
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Vivian Y. Li
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Tasha A. Liang
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Vivian C. Wu
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - P. Jesper Sjöström
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| |
Collapse
|
8
|
Ly A, Karnosky R, Prévost ED, Hotchkiss H, Pelletier J, Spencer RL, Ford CP, Root DH. VGluT3 BNST neurons transmit GABA and restrict feeding without affecting rewarding or aversive processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.01.631003. [PMID: 39803518 PMCID: PMC11722381 DOI: 10.1101/2025.01.01.631003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
The bed nucleus of the stria terminalis (BNST) is involved in feeding, reward, aversion, and anxiety-like behavior. We identify BNST neurons defined by the expression of vesicular glutamate transporter 3, VGluT3. VGluT3 neurons were localized to anteromedial BNST, were molecularly distinct from accumbal VGluT3 neurons, and co-express vesicular GABA transporter (VGaT). Cell-type specific presynaptic processes were identified in arcuate nucleus (ARC) and the paraventricular nucleus of the hypothalamus (PVN), regions critical for feeding and homeostatic regulation. Whole-cell patch-clamp electrophysiology revealed that, while these neurons co-express VGluT3 and VGaT, they functionally transmit GABA to both ARC and PVN, with rare glutamate co-transmission to ARC. Neuronal recordings of VGluT3 BNST neurons showed greater calcium-dependent signaling in response to sucrose consumption while sated compared with fasted. When fasted, optogenetic stimulation of BNST VGluT3 neurons decreased sucrose consumption using several stimulation conditions but not when stimulation occurred prior to sucrose access, suggesting that BNST VGluT3 activation concurrent with consumption in the fasted state reduces feeding. BNST VGluT3 activation during anxiety-like paradigms (novelty-suppressed feeding, open field, and elevated zero maze) and real-time place conditioning resulted in no changes in anxiety-like or reward/aversion behavior. We interpret these data such that VGluT3 BNST neurons represent a unique cellular population within the BNST that provides inhibitory input to hypothalamic regions to decrease feeding without affecting anxiety-like or reward/aversion behavior.
Collapse
Affiliation(s)
- Annie Ly
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Rachel Karnosky
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Emily D. Prévost
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Hayden Hotchkiss
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Julianne Pelletier
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Robert L. Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Christopher P. Ford
- Deparment of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045
| | - David H. Root
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| |
Collapse
|
9
|
Chen FD, Sharma A, Xue T, Jung Y, Govdeli A, Mak JCC, Chameh HM, Movahed M, Brunk MGK, Luo X, Chua H, Lo PGQ, Valiante TA, Sacher WD, Poon JKS. Implantable silicon neural probes with nanophotonic phased arrays for single-lobe beam steering. COMMUNICATIONS ENGINEERING 2024; 3:182. [PMID: 39695300 DOI: 10.1038/s44172-024-00328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
In brain activity mapping with optogenetics, patterned illumination is crucial for targeted neural stimulation. However, due to optical scattering in brain tissue, light-emitting implants are needed to bring patterned illumination to deep brain regions. A promising solution is silicon neural probes with integrated nanophotonic circuits that form tailored beam patterns without lenses. Here we propose neural probes with grating-based light emitters that generate a single steerable beam. The light emitters, optimized for blue or amber light, combine end-fire optical phased arrays with slab gratings to suppress higher-order sidelobes. In vivo experiments in mice demonstrated that the optical phased array provided sufficient power for optogenetic stimulation. While beam steering performance in tissue reveals challenges, including beam broadening from scattering and the need for a wider steering range, this proof-of-concept demonstration illustrates the design principles for realizing compact optical phased arrays capable of continuous single-beam scanning, laying the groundwork for advancing optical phased arrays toward targeted optogenetic stimulation.
Collapse
Affiliation(s)
- Fu-Der Chen
- Max Planck Institute of Microstructure Physics, Halle, Germany.
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada.
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada.
| | - Ankita Sharma
- Max Planck Institute of Microstructure Physics, Halle, Germany.
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada.
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada.
| | - Tianyuan Xue
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Youngho Jung
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Alperen Govdeli
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Jason C C Mak
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | | | - Mandana Movahed
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Michael G K Brunk
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada
| | - Xianshu Luo
- Advanced Micro Foundry Pte. Ltd., Singapore Science Park II, Singapore
| | - Hongyao Chua
- Advanced Micro Foundry Pte. Ltd., Singapore Science Park II, Singapore
| | | | - Taufik A Valiante
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Wesley D Sacher
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada
| | - Joyce K S Poon
- Max Planck Institute of Microstructure Physics, Halle, Germany.
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada.
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada.
| |
Collapse
|
10
|
Berling D, Baroni L, Chaffiol A, Gauvain G, Picaud S, Antolík J. Optogenetic Stimulation Recruits Cortical Neurons in a Morphology-Dependent Manner. J Neurosci 2024; 44:e1215242024. [PMID: 39424369 PMCID: PMC11622177 DOI: 10.1523/jneurosci.1215-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/21/2024] Open
Abstract
Single-photon optogenetics enables precise, cell-type-specific modulation of neuronal circuits, making it a crucial tool in neuroscience. Its miniaturization in the form of fully implantable wide-field stimulator arrays enables long-term interrogation of cortical circuits and bears promise for brain-machine interfaces for sensory and motor function restoration. However, achieving selective activation of functional cortical representations poses a challenge, as studies show that targeted optogenetic stimulation results in activity spread beyond one functional domain. While recurrent network mechanisms contribute to activity spread, here we demonstrate with detailed simulations of isolated pyramidal neurons from cats of unknown sex that already neuron morphology causes a complex spread of optogenetic activity at the scale of one cortical column. Since the shape of a neuron impacts its optogenetic response, we find that a single stimulator at the cortical surface recruits a complex spatial distribution of neurons that can be inhomogeneous and vary with stimulation intensity and neuronal morphology across layers. We explore strategies to enhance stimulation precision, finding that optimizing stimulator optics may offer more significant improvements than the preferentially somatic expression of the opsin through genetic targeting. Our results indicate that, with the right optical setup, single-photon optogenetics can precisely activate isolated neurons at the scale of functional cortical domains spanning several hundred micrometers.
Collapse
Affiliation(s)
- David Berling
- Faculty of Mathematics and Physics, Charles University, Prague 118 00, Czechia
| | - Luca Baroni
- Faculty of Mathematics and Physics, Charles University, Prague 118 00, Czechia
| | | | - Gregory Gauvain
- Institut de la Vision, Sorbonne Université, Paris 75012, France
| | - Serge Picaud
- Institut de la Vision, Sorbonne Université, Paris 75012, France
| | - Ján Antolík
- Faculty of Mathematics and Physics, Charles University, Prague 118 00, Czechia
| |
Collapse
|
11
|
Airaghi Leccardi MJI, Desbiolles BXE, Haddad AY, Joy BC, Song C, Sarkar D. Light-induced rolling of azobenzene polymer thin films for wrapping subcellular neuronal structures. Commun Chem 2024; 7:249. [PMID: 39478057 PMCID: PMC11525480 DOI: 10.1038/s42004-024-01335-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Neurons are essential cells composing our nervous system and orchestrating our body, thoughts, and emotions. Recently, research efforts have been focused on studying not only their collective structure and functions but also the single-cell properties as an individual complex system. Nanoscale technology has the potential to unravel mysteries in neuroscience and provide support to the neuron by measuring and influencing several aspects of the cell. As wearable devices interact with different parts of our body, we could envision a thousand times smaller interface to conform on and around subcellular regions of the neurons for unprecedented contact, probing, and control. However, a major challenge is to develop an interface that can morph to the extreme curvatures of subcellular structures. Here, we address this challenge with the development of a platform that conforms even to small neuronal processes. To achieve this, we produced a wireless platform made of an azobenzene polymer that undergoes on-demand light-induced folding with sub-micrometer radius of curvature. We show that these platforms can be fabricated with an adjustable form factor, micro-injected onto neuronal cultures, and can delicately wrap various morphologies of neuronal processes in vitro, toward obtaining seamless biointerfaces with an increased coupling with the cell membrane. Our in vitro testings did not show any adverse effects of the platforms in contact with the neurons. Additionally, for future functionality, nanoparticles or optoelectronic materials could be blended with the azobenzene polymer, and 2D materials on the platform surface could be safely folded to the high curvatures without mechanical failure, as per our calculations. Ultimately, this technology could lay the foundation for future integration of wirelessly actuated materials within or on its platform for neuromodulation, recording, and neuroprotection at the subcellular level.
Collapse
Affiliation(s)
| | | | - Anna Y Haddad
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Baju C Joy
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chen Song
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Deblina Sarkar
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
12
|
He Y, Chou XL, Lavoie A, Liu J, Russo M, Liu BH. Brainstem inhibitory neurons enhance behavioral feature selectivity by sharpening the tuning of excitatory neurons. Curr Biol 2024; 34:4623-4638.e8. [PMID: 39303712 DOI: 10.1016/j.cub.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
The brainstem is a hub for sensorimotor integration, which mediates crucial innate behaviors. This brain region is characterized by a rich population of GABAergic inhibitory neurons, required for the proper expression of these innate behaviors. However, what roles these inhibitory neurons play in innate behaviors and how they function are still not fully understood. Here, we show that inhibitory neurons in the nucleus of the optic tract and dorsal-terminal nuclei (NOT-DTN) of the mouse can modulate the innate eye movement optokinetic reflex (OKR) by shaping the tuning properties of excitatory NOT-DTN neurons. Specifically, we demonstrate that although these inhibitory neurons do not directly induce OKR, they enhance the visual feature selectivity of OKR behavior, which is mediated by the activity of excitatory NOT-DTN neurons. Moreover, consistent with the sharpening role of inhibitory neurons in OKR behavior, they have broader tuning relative to excitatory neurons. Last, we demonstrate that inhibitory NOT-DTN neurons directly provide synaptic inhibition to nearby excitatory neurons and sharpen their tuning in a sustained manner, accounting for the enhanced feature selectivity of OKR behavior. In summary, our findings uncover a fundamental principle underlying the computational role of inhibitory neurons in brainstem sensorimotor circuits.
Collapse
Affiliation(s)
- Yingtian He
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Xiao-Lin Chou
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Andreanne Lavoie
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jiashu Liu
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Milena Russo
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Bao-Hua Liu
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
13
|
Turrini L, Ricci P, Sorelli M, de Vito G, Marchetti M, Vanzi F, Pavone FS. Two-photon all-optical neurophysiology for the dissection of larval zebrafish brain functional and effective connectivity. Commun Biol 2024; 7:1261. [PMID: 39367042 PMCID: PMC11452506 DOI: 10.1038/s42003-024-06731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/13/2024] [Indexed: 10/06/2024] Open
Abstract
One of the most audacious goals of modern neuroscience is unraveling the complex web of causal relations underlying the activity of neuronal populations on a whole-brain scale. This endeavor, which was prohibitive only a couple of decades ago, has recently become within reach owing to the advancements in optical methods and the advent of genetically encoded indicators/actuators. These techniques, applied to the translucent larval zebrafish have enabled recording and manipulation of the activity of extensive neuronal populations spanning the entire vertebrate brain. Here, we present a custom two-photon optical system that couples light-sheet imaging and 3D excitation with acousto-optic deflectors for simultaneous high-speed volumetric recording and optogenetic stimulation. By employing a zebrafish line with pan-neuronal expression of both the calcium reporter GCaMP6s and the red-shifted opsin ReaChR, we implemented a crosstalk-free, noninvasive all-optical approach and applied it to reconstruct the functional and effective connectivity of the left habenula.
Collapse
Affiliation(s)
- Lapo Turrini
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.
| | - Pietro Ricci
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- Department of Applied Physics, University of Barcelona, Barcelona, Spain
| | - Michele Sorelli
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | | | - Francesco Vanzi
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
14
|
Dumas N, Pecchi E, O'Connor R, Bos R, Moreau D. Infrared neuroglial modulation of spinal locomotor networks. Sci Rep 2024; 14:22282. [PMID: 39333287 PMCID: PMC11437012 DOI: 10.1038/s41598-024-73577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Infrared neural stimulation (INS) emerges as a promising tool for stimulating the nervous system by its high spatial precision and absence of the use of exogenous agents into the tissue, which led to the first successful proof of concept in human brain. While neural networks have been the focal point of INS research, this technique is also non cell type specific as it triggers activity in non electrically excitable cells. Despite increasing interest, there remains to demonstrate well defined simultaneous astrocytic and neuronal signals in response to INS. Using calcium imaging, we show that INS has the capacity to initiate calcium signaling in both astrocytes and neurons simultaneously from the rostral lumbar spinal cord, each exhibiting distinct temporal and amplitude characteristics. Importantly, the mechanism underlying infrared-induced neuronal and astrocytic calcium signaling differ, with neuronal activity relying on sodium channels, whereas induced astrocytic signaling is predominantly influenced by extracellular calcium and TRPV4 channels. Furthermore, our findings demonstrate the frequency shift of neuronal calcium oscillations through infrared stimulation. By deepening our understanding in INS fundamentals, this technique holds great promise for advancing neuroscience, deepening our understanding of pathologies, and potentially paving the way for future clinical applications.
Collapse
Affiliation(s)
- Nathan Dumas
- Mines Saint-Etienne, Centre CMP, Département BEL, 13541, Gardanne, France
| | - Emilie Pecchi
- Institut de Neurosciences de la Timone, CNRS UMR 7289 et Aix- Marseille Université, 13005, Marseille, France
| | - Rodney O'Connor
- Mines Saint-Etienne, Centre CMP, Département BEL, 13541, Gardanne, France
| | - Rémi Bos
- Institut de Neurosciences de la Timone, CNRS UMR 7289 et Aix- Marseille Université, 13005, Marseille, France
| | - David Moreau
- Mines Saint-Etienne, Centre CMP, Département BEL, 13541, Gardanne, France.
| |
Collapse
|
15
|
Lewis CM, Hoffmann A, Helmchen F. Linking brain activity across scales with simultaneous opto- and electrophysiology. NEUROPHOTONICS 2024; 11:033403. [PMID: 37662552 PMCID: PMC10472193 DOI: 10.1117/1.nph.11.3.033403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
The brain enables adaptive behavior via the dynamic coordination of diverse neuronal signals across spatial and temporal scales: from fast action potential patterns in microcircuits to slower patterns of distributed activity in brain-wide networks. Understanding principles of multiscale dynamics requires simultaneous monitoring of signals in multiple, distributed network nodes. Combining optical and electrical recordings of brain activity is promising for collecting data across multiple scales and can reveal aspects of coordinated dynamics invisible to standard, single-modality approaches. We review recent progress in combining opto- and electrophysiology, focusing on mouse studies that shed new light on the function of single neurons by embedding their activity in the context of brain-wide activity patterns. Optical and electrical readouts can be tailored to desired scales to tackle specific questions. For example, fast dynamics in single cells or local populations recorded with multi-electrode arrays can be related to simultaneously acquired optical signals that report activity in specified subpopulations of neurons, in non-neuronal cells, or in neuromodulatory pathways. Conversely, two-photon imaging can be used to densely monitor activity in local circuits while sampling electrical activity in distant brain areas at the same time. The refinement of combined approaches will continue to reveal previously inaccessible and under-appreciated aspects of coordinated brain activity.
Collapse
Affiliation(s)
| | - Adrian Hoffmann
- University of Zurich, Brain Research Institute, Zurich, Switzerland
- University of Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- University of Zurich, Brain Research Institute, Zurich, Switzerland
- University of Zurich, Neuroscience Center Zurich, Zurich, Switzerland
- University of Zurich, University Research Priority Program, Adaptive Brain Circuits in Development and Learning, Zurich, Switzerland
| |
Collapse
|
16
|
Du Y, Dylda E, Stibůrek M, Gomes AD, Turtaev S, Pakan JMP, Čižmár T. Advancing the path to in-vivo imaging in freely moving mice via multimode-multicore fiber based holographic endoscopy. NEUROPHOTONICS 2024; 11:S11506. [PMID: 38352728 PMCID: PMC10863504 DOI: 10.1117/1.nph.11.s1.s11506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Significance Hair-thin multimode optical fiber-based holographic endoscopes have gained considerable interest in modern neuroscience for their ability to achieve cellular and even subcellular resolution during in-vivo deep brain imaging. However, the application of multimode fibers in freely moving animals presents a persistent challenge as it is difficult to maintain optimal imaging performance while the fiber undergoes deformations. Aim We propose a fiber solution for challenging in-vivo applications with the capability of deep brain high spatial resolution imaging and neuronal activity monitoring in anesthetized as well as awake behaving mice. Approach We used our previously developed M 3 CF multimode-multicore fiber to record fluorescently labeled neurons in anesthetized mice. Our M 3 CF exhibits a cascaded refractive index structure, enabling two distinct regimes of light transport that imitate either a multimode or a multicore fiber. The M 3 CF has been specifically designed for use in the initial phase of an in-vivo experiment, allowing for the navigation of the endoscope's distal end toward the targeted brain structure. The multicore regime enables the transfer of light to and from each individual neuron within the field of view. For chronic experiments in awake behaving mice, it is crucial to allow for disconnecting the fiber and the animal between experiments. Therefore, we provide here an effective solution and establish a protocol for reconnection of two segments of M 3 CF with hexagonally arranged corelets. Results We successfully utilized the M 3 CF to image neurons in anaesthetized transgenic mice expressing enhanced green fluorescent protein. Additionally, we compared imaging results obtained with the M 3 CF with larger numerical aperture (NA) fibers in fixed whole-brain tissue. Conclusions This study focuses on addressing challenges and providing insights into the use of multimode-multicore fibers as imaging solutions for in-vivo applications. We suggest that the upcoming version of the M 3 CF increases the overall NA between the two cladding layers to allow for access to high resolution spatial imaging. As the NA increases in the multimode regime, the fiber diameter and ring structure must be reduced to minimize the computational burden and invasiveness.
Collapse
Affiliation(s)
- Yang Du
- University of Chinese Academy of Sciences, Hangzhou Institute for Advanced Study, Hangzhou, China
- Leibniz Institute of Photonic Technology, Jena, Germany
| | - Evelyn Dylda
- Otto-von-Guericke-University Magdeburg, Institute of Cognitive Neurology and Dementia Research, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | | | - André D Gomes
- Leibniz Institute of Photonic Technology, Jena, Germany
| | | | - Janelle M. P. Pakan
- Otto-von-Guericke-University Magdeburg, Institute of Cognitive Neurology and Dementia Research, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Centre for Neurodegenerative Diseases, Magdeburg, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Tomáš Čižmár
- Leibniz Institute of Photonic Technology, Jena, Germany
- Institute of Scientific Instruments of CAS, Brno, Czechia
- Friedrich Schiller University Jena, Institute of Applied Optics, Jena, Germany
| |
Collapse
|
17
|
Sheng CQ, Wu SS, Cheng YK, Wu Y, Li YM. Comprehensive review of indicators and techniques for optical mapping of intracellular calcium ions. Cereb Cortex 2024; 34:bhae346. [PMID: 39191664 DOI: 10.1093/cercor/bhae346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/27/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Calcium ions (Ca2+) play crucial roles in almost every cellular process, making the detection of changes in intracellular Ca2+ essential to understanding cell function. The fluorescence indicator method has garnered widespread application due to its exceptional sensitivity, rapid analysis, cost-effectiveness, and user-friendly nature. It has successfully delineated the spatial and temporal dynamics of Ca2+ signaling across diverse cell types. However, it is vital to understand that different indicators have varying levels of accuracy, sensitivity, and stability, making choosing the right inspection method crucial. As optical detection technologies advance, they continually broaden the horizons of scientific inquiry. This primer offers a systematic synthesis of the current fluorescence indicators and optical imaging modalities utilized for the detection of intracellular Ca2+. It elucidates their practical applications and inherent limitations, serving as an essential reference for researchers seeking to identify the most suitable detection methodologies for their calcium-centric investigations.
Collapse
Affiliation(s)
- Chu-Qiao Sheng
- Department of Pediatric Intensive Care Unit, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699, Qianjin Street, Changchun, Jilin 130012, China
| | - Shuang-Shuang Wu
- Department of Pediatric Hematology, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yong-Kang Cheng
- Department of Pediatric Intensive Care Unit, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yao Wu
- Department of Pediatric Intensive Care Unit, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yu-Mei Li
- Department of Pediatric Intensive Care Unit, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
18
|
Zhang Q, Li T, Xu M, Islam B, Wang J. Application of Optogenetics in Neurodegenerative Diseases. Cell Mol Neurobiol 2024; 44:57. [PMID: 39060759 PMCID: PMC11281982 DOI: 10.1007/s10571-024-01486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/15/2024] [Indexed: 07/28/2024]
Abstract
Optogenetics, a revolutionary technique integrating optical and genetic methodologies, offers unparalleled precision in spatial targeting and temporal resolution for cellular control. This approach enables the selective manipulation of specific neuronal populations, inducing subtle electrical changes that significantly impact complex neural circuitry. As optogenetics precisely targets and modulates neuronal activity, it holds the potential for significant breakthroughs in understanding and potentially altering the course of neurodegenerative diseases, characterized by selective neuronal loss leading to functional deficits within the nervous system. The integration of optogenetics into neurodegenerative disease research has significantly advanced in the field, offering new insights and paving the way for innovative treatment strategies. Its application in clinical settings, although still in the nascent stages, suggests a promising future for addressing some of the most challenging aspects of neurodegenerative disorders. In this review, we provide a comprehensive overview of these research undertakings.
Collapse
Affiliation(s)
- Qian Zhang
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Tianjiao Li
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Mengying Xu
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Binish Islam
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, People's Republic of China.
| |
Collapse
|
19
|
Onishi T, Hirose K, Sakaba T. Molecular tools to capture active neural circuits. Front Neural Circuits 2024; 18:1449459. [PMID: 39100199 PMCID: PMC11294111 DOI: 10.3389/fncir.2024.1449459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
To understand how neurons and neural circuits function during behaviors, it is essential to record neuronal activity in the brain in vivo. Among the various technologies developed for recording neuronal activity, molecular tools that induce gene expression in an activity-dependent manner have attracted particular attention for their ability to clarify the causal relationships between neuronal activity and behavior. In this review, we summarize recently developed activity-dependent gene expression tools and their potential contributions to the study of neural circuits.
Collapse
Affiliation(s)
- Taichi Onishi
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo City, Bunkyo, Japan
| | - Kenzo Hirose
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo City, Bunkyo, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|
20
|
Yoshioka M, Takahashi M, Kershaw J, Handa M, Takada A, Takuwa H. Two-photon optogenetics-based assessment of neuronal connectivity in healthy and chronic hypoperfusion mice. NEUROPHOTONICS 2024; 11:035009. [PMID: 39345733 PMCID: PMC11436461 DOI: 10.1117/1.nph.11.3.035009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024]
Abstract
Significance Two-photon optogenetics and simultaneous calcium imaging can be used to visualize the response of surrounding neurons with respect to the activity of an optically stimulated target neuron, providing a direct method to assess neuronal connectivity. Aim We aim to develop a two-photon optogenetics-based method for evaluating neuronal connectivity, compare it to the existing indirect resting-state synchrony method, and investigate the application of the method to brain pathophysiology. Approach C1V1-mScarlet was introduced into GCaMP6s-expressing transgenic mice with an adeno-associated virus. Optical stimulation of a single target neuron and simultaneous calcium imaging of the target and surrounding cells were performed. Neuronal connectivity was evaluated from the correlation between the fluorescence intensity of the target and surrounding cells. Results The neuronal connectivity in the living brain was evaluated using two-photon optogenetics. However, resting-state synchrony was not always consistent with two-photon optogenetics-based connectivity. Comparison with neuronal synchrony measured during sensory stimulation suggested that the disagreement was due to external sensory input. Two-photon optogenetics-based connectivity significantly decreased in the common carotid artery occlusion model, whereas there was no significant change in the control group. Conclusions We successfully developed a direct method to evaluate neuronal connectivity in the living brain using two-photon optogenetics. The technique was successful in detecting connectivity impairment in hypoperfusion model mice.
Collapse
Affiliation(s)
- Masaki Yoshioka
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Medicine, Department of Neurological Surgery, Chiba, Japan
| | - Manami Takahashi
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
| | - Jeff Kershaw
- National Institutes for Quantum Science and Technology, Institute for Quantum Medical Science, Department of Molecular Imaging and Theranostics, Chiba, Japan
| | - Mariko Handa
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Science, Department of Quantum Life Science, Chiba, Japan
| | - Ayaka Takada
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Science, Department of Quantum Life Science, Chiba, Japan
| | - Hiroyuki Takuwa
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Science, Department of Quantum Life Science, Chiba, Japan
| |
Collapse
|
21
|
Antin B, Sadahiro M, Gajowa M, Triplett MA, Adesnik H, Paninski L. Removing direct photocurrent artifacts in optogenetic connectivity mapping data via constrained matrix factorization. PLoS Comput Biol 2024; 20:e1012053. [PMID: 38709828 PMCID: PMC11098512 DOI: 10.1371/journal.pcbi.1012053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/16/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024] Open
Abstract
Monosynaptic connectivity mapping is crucial for building circuit-level models of neural computation. Two-photon optogenetic stimulation, when combined with whole-cell recording, enables large-scale mapping of physiological circuit parameters. In this experimental setup, recorded postsynaptic currents are used to infer the presence and strength of connections. For many cell types, nearby connections are those we expect to be strongest. However, when the postsynaptic cell expresses opsin, optical excitation of nearby cells can induce direct photocurrents in the postsynaptic cell. These photocurrent artifacts contaminate synaptic currents, making it difficult or impossible to probe connectivity for nearby cells. To overcome this problem, we developed a computational tool, Photocurrent Removal with Constraints (PhoRC). Our method is based on a constrained matrix factorization model which leverages the fact that photocurrent kinetics are less variable than those of synaptic currents. We demonstrate on real and simulated data that PhoRC consistently removes photocurrents while preserving synaptic currents, despite variations in photocurrent kinetics across datasets. Our method allows the discovery of synaptic connections which would have been otherwise obscured by photocurrent artifacts, and may thus reveal a more complete picture of synaptic connectivity. PhoRC runs faster than real time and is available as open source software.
Collapse
Affiliation(s)
- Benjamin Antin
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Grossman Center for the Statistics of Mind, and Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
| | - Masato Sadahiro
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Marta Gajowa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Marcus A. Triplett
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Grossman Center for the Statistics of Mind, and Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
- Department of Statistics, Columbia University, New York, New York, United States of America
| | - Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Liam Paninski
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Grossman Center for the Statistics of Mind, and Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
- Department of Statistics, Columbia University, New York, New York, United States of America
| |
Collapse
|
22
|
Boulanger V, Olivier M, Morasse B, Trépanier F, Bernier M, Piché M. Femtosecond Mamyshev oscillator at 920 nm. OPTICS LETTERS 2024; 49:2201-2204. [PMID: 38621111 DOI: 10.1364/ol.522902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
A femtosecond all-PM-fiber Mamyshev oscillator (MO) at 920 nm is presented. It is based on a neodymium-doped fiber with a W-type index profile that effectively suppresses the emission around 1064 nm. The linear cavity is bounded by two near-zero dispersion fiber Bragg gratings with Gaussian reflectivity profiles. The laser is self-starting and generates up to 10-nJ pulses at a repetition rate of 41 MHz. The pulses can be compressed to 53 fs with a grating-pair compressor. To our knowledge, this is the first Mamyshev oscillator and also the highest energy femtosecond fiber oscillator demonstrated in this spectral region.
Collapse
|
23
|
Vlasova AD, Bukhalovich SM, Bagaeva DF, Polyakova AP, Ilyinsky NS, Nesterov SV, Tsybrov FM, Bogorodskiy AO, Zinovev EV, Mikhailov AE, Vlasov AV, Kuklin AI, Borshchevskiy VI, Bamberg E, Uversky VN, Gordeliy VI. Intracellular microbial rhodopsin-based optogenetics to control metabolism and cell signaling. Chem Soc Rev 2024; 53:3327-3349. [PMID: 38391026 DOI: 10.1039/d3cs00699a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Microbial rhodopsin (MRs) ion channels and pumps have become invaluable optogenetic tools for neuroscience as well as biomedical applications. Recently, MR-optogenetics expanded towards subcellular organelles opening principally new opportunities in optogenetic control of intracellular metabolism and signaling via precise manipulations of organelle ion gradients using light. This new optogenetic field expands the opportunities for basic and medical studies of cancer, cardiovascular, and metabolic disorders, providing more detailed and accurate control of cell physiology. This review summarizes recent advances in studies of the cellular metabolic processes and signaling mediated by optogenetic tools targeting mitochondria, endoplasmic reticulum (ER), lysosomes, and synaptic vesicles. Finally, we discuss perspectives of such an optogenetic approach in both fundamental and applied research.
Collapse
Affiliation(s)
- Anastasiia D Vlasova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Siarhei M Bukhalovich
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Diana F Bagaeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Aleksandra P Polyakova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Semen V Nesterov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Fedor M Tsybrov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Andrey O Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Egor V Zinovev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anatolii E Mikhailov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexey V Vlasov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Alexander I Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Valentin I Gordeliy
- Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, 38027 Grenoble, France.
| |
Collapse
|
24
|
Chen K, Ernst P, Kim S, Si Y, Varadkar T, Ringel MD, Liu X“M, Zhou L. An Innovative Mitochondrial-targeted Gene Therapy for Cancer Treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.24.584499. [PMID: 38585739 PMCID: PMC10996521 DOI: 10.1101/2024.03.24.584499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Targeting cancer cell mitochondria holds great therapeutic promise, yet current strategies to specifically and effectively destroy cancer mitochondria in vivo are limited. Here, we introduce mLumiOpto, an innovative mitochondrial-targeted luminoptogenetics gene therapy designed to directly disrupt the inner mitochondrial membrane (IMM) potential and induce cancer cell death. We synthesize a blue light-gated channelrhodopsin (CoChR) in the IMM and co-express a blue bioluminescence-emitting Nanoluciferase (NLuc) in the cytosol of the same cells. The mLumiOpto genes are selectively delivered to cancer cells in vivo by using adeno-associated virus (AAV) carrying a cancer-specific promoter or cancer-targeted monoclonal antibody-tagged exosome-associated AAV. Induction with NLuc luciferin elicits robust endogenous bioluminescence, which activates mitochondrial CoChR, triggering cancer cell IMM permeability disruption, mitochondrial damage, and subsequent cell death. Importantly, mLumiOpto demonstrates remarkable efficacy in reducing tumor burden and killing tumor cells in glioblastoma or triple-negative breast cancer xenografted mouse models. These findings establish mLumiOpto as a novel and promising therapeutic strategy by targeting cancer cell mitochondria in vivo.
Collapse
Affiliation(s)
- Kai Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Patrick Ernst
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Seulhee Kim
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Yingnan Si
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Tanvi Varadkar
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Matthew D. Ringel
- Department of Molecular Medicine and Therapeutics, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Xiaoguang “Margaret” Liu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Lufang Zhou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
25
|
Butscher JF, Hillebrandt S, Mischok A, Popczyk A, Booth JHH, Gather MC. Wireless magnetoelectrically powered organic light-emitting diodes. SCIENCE ADVANCES 2024; 10:eadm7613. [PMID: 38446883 PMCID: PMC10917343 DOI: 10.1126/sciadv.adm7613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Compact wireless light sources are a fundamental building block for applications ranging from wireless displays to optical implants. However, their realization remains challenging because of constraints in miniaturization and the integration of power harvesting and light-emission technologies. Here, we introduce a strategy for a compact wirelessly powered light-source that consists of a magnetoelectric transducer serving as power source and substrate and an antiparallel pair of custom-designed organic light-emitting diodes. The devices operate at low-frequency ac magnetic fields (~100 kHz), which has the added benefit of allowing operation multiple centimeters deep inside watery environments. By tuning the device resonance frequency, it is possible to separately address multiple devices, e.g., to produce light of distinct colors, to address individual display pixels, or for clustered operation. By simultaneously offering small size, individual addressing, and compatibility with challenging environments, our devices pave the way for a multitude of applications in wireless displays, deep tissue treatment, sensing, and imaging.
Collapse
Affiliation(s)
- Julian F. Butscher
- Centre of Biophotonics, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Sabina Hillebrandt
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Andreas Mischok
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Anna Popczyk
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Jonathan H. H. Booth
- Centre of Biophotonics, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Malte C. Gather
- Centre of Biophotonics, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| |
Collapse
|
26
|
Altahini S, Arnoux I, Stroh A. Optogenetics 2.0: challenges and solutions towards a quantitative probing of neural circuits. Biol Chem 2024; 405:43-54. [PMID: 37650383 DOI: 10.1515/hsz-2023-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
To exploit the full potential of optogenetics, we need to titrate and tailor optogenetic methods to emulate naturalistic circuit function. For that, the following prerequisites need to be met: first, we need to target opsin expression not only to genetically defined neurons per se, but to specifically target a functional node. Second, we need to assess the scope of optogenetic modulation, i.e. the fraction of optogenetically modulated neurons. Third, we need to integrate optogenetic control in a closed loop setting. Fourth, we need to further safe and stable gene expression and light delivery to bring optogenetics to the clinics. Here, we review these concepts for the human and rodent brain.
Collapse
Affiliation(s)
- Saleh Altahini
- Leibniz Institute for Resilience Research, D-55122 Mainz, Germany
| | - Isabelle Arnoux
- Cerebral Physiopathology Laboratory, Center for Interdisciplinary Research in Biology, College de France, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Université PSL, F-75005 Paris, France
| | - Albrecht Stroh
- Leibniz Institute for Resilience Research, D-55122 Mainz, Germany
- Institute of Pathophysiology, University Medical Center Mainz, D-55128 Mainz, Germany
| |
Collapse
|
27
|
Jia X, Wyart C. Holographic Optogenetic Activation of Neurons Eliciting Locomotion in Head-Embedded Larval Zebrafish. Methods Mol Biol 2024; 2707:125-140. [PMID: 37668909 DOI: 10.1007/978-1-0716-3401-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Understanding how motor circuits are organized and recruited in order to perform complex behavior is an essential question of neuroscience. Here we present an optogenetic protocol on larval zebrafish that allows spatial selective control of neuronal activity within a genetically defined population. We combine holographic illumination with the use of effective opsin transgenic lines, alongside high-speed behavioral monitoring to dissect the motor circuits of the larval zebrafish.
Collapse
Affiliation(s)
- Xinyu Jia
- Sorbonne Université, Institut du Cerveau (ICM), Paris, France
| | - Claire Wyart
- Sorbonne Université, Institut du Cerveau (ICM), Paris, France.
| |
Collapse
|
28
|
Lees RM, Pichler B, Packer AM. Contribution of optical resolution to the spatial precision of two-photon optogenetic photostimulation in vivo. NEUROPHOTONICS 2024; 11:015006. [PMID: 38322022 PMCID: PMC10846536 DOI: 10.1117/1.nph.11.1.015006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/08/2024]
Abstract
Significance Two-photon optogenetics combines nonlinear excitation with noninvasive activation of neurons to enable the manipulation of neural circuits with a high degree of spatial precision. Combined with two-photon population calcium imaging, these approaches comprise a flexible platform for all-optical interrogation of neural circuits. However, a multitude of optical and biological factors dictate the exact precision of this approach in vivo, where it is most usefully applied. Aim We aimed to assess how the optical point spread function (OPSF) contributes to the spatial precision of two-photon photostimulation in neurobiology. Approach We altered the axial spread of the OPSF of the photostimulation beam using a spatial light modulator. Subsequently, calcium imaging was used to monitor the axial spatial precision of two-photon photostimulation of layer 2 neurons in the mouse neocortex. Results We found that optical resolution is not always the limiting factor of the spatial precision of two-photon optogenetic photostimulation and, by doing so, reveal the key factors that must be improved to achieve maximal precision. Conclusions Our results enable future work to focus on the optimal factors by providing key insight from controlled experiments in a manner not previously reported. This research can be applied to advance the state-of-the-art of all-optical interrogation, extending the toolkit for neuroscience research to achieve spatiotemporal precision at the crucial levels in which neural circuits operate.
Collapse
Affiliation(s)
- Robert M. Lees
- Science and Technology Facilities Council, Octopus Imaging Facility, Oxfordshire, United Kingdom
- University of Oxford, Department of Physiology, Anatomy, and Genetics, Oxford, United Kingdom
| | - Bruno Pichler
- Independent NeuroScience Services INSS Ltd., East Sussex, United Kingdom
| | - Adam M. Packer
- University of Oxford, Department of Physiology, Anatomy, and Genetics, Oxford, United Kingdom
| |
Collapse
|
29
|
Wang Z, Zhang J, Symvoulidis P, Guo W, Zhang L, Wilson MA, Boyden ES. Imaging the voltage of neurons distributed across entire brains of larval zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571964. [PMID: 38168290 PMCID: PMC10760087 DOI: 10.1101/2023.12.15.571964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Neurons interact in networks distributed throughout the brain. Although much effort has focused on whole-brain calcium imaging, recent advances in genetically encoded voltage indicators (GEVIs) raise the possibility of imaging voltage of neurons distributed across brains. To achieve this, a microscope must image at high volumetric rate and signal-to-noise ratio. We present a remote scanning light-sheet microscope capable of imaging GEVI-expressing neurons distributed throughout entire brains of larval zebrafish at a volumetric rate of 200.8 Hz. We measured voltage of ∼1/3 of the neurons of the brain, distributed throughout. We observed that neurons firing at different times during a sequence were located at different brain locations, for sequences elicited by a visual stimulus, which mapped onto locations throughout the optic tectum, as well as during stimulus-independent bursts, which mapped onto locations in the cerebellum and medulla. Whole-brain voltage imaging may open up frontiers in the fundamental operation of neural systems.
Collapse
|
30
|
Brunstein M, Lubetzki J, Moutoussamy C, Li W, Barral J. Fast 2-photon stimulation using holographic patterns. OPTICS EXPRESS 2023; 31:39222-39238. [PMID: 38018006 DOI: 10.1364/oe.498644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/04/2023] [Indexed: 11/30/2023]
Abstract
Two decades after its introduction, optogenetics - a biological technique to control the activity of neurons or other cell types with light - remains a cutting edge and promising tool to study biological processes. Its increasing usage in research varies widely from causally exploring biological mechanisms and neural computations, to neurostimulation and sensory restauration. To stimulate neurons in the brain, a variety of approaches have been developed to generate precise spatiotemporal light patterns. Yet certain constrains still exists in the current optical techniques to activate a neuronal population with both cellular resolution and millisecond precision. Here, we describe an experimental setup allowing to stimulate a few tens of neurons in a plane at sub-millisecond rates using 2-photon activation. A liquid crystal on silicon spatial light modulator (LCoS-SLM) was used to generate spatial patterns in 2 dimensions. The image of the patterns was formed on the plane of a digital micromirror device (DMD) that was used as a fast temporal modulator of each region of interest. Using fluorescent microscopy and patch-clamp recording of neurons in culture expressing the light-gated ion channels, we characterized the temporal and spatial resolution of the microscope. We described the advantages of combining the LCoS-SLM with the DMD to maximize the temporal precision, modulate the illumination amplitude, and reduce background activation. Finally, we showed that this approach can be extended to patterns in 3 dimensions. We concluded that the methodology is well suited to address important questions about the role of temporal information in neuronal coding.
Collapse
|
31
|
Ciabatti E, González-Rueda A, de Malmazet D, Lee H, Morgese F, Tripodi M. Genomic stability of self-inactivating rabies. eLife 2023; 12:e83459. [PMID: 37921437 PMCID: PMC10666929 DOI: 10.7554/elife.83459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/02/2023] [Indexed: 11/04/2023] Open
Abstract
Transsynaptic viral vectors provide means to gain genetic access to neurons based on synaptic connectivity and are essential tools for the dissection of neural circuit function. Among them, the retrograde monosynaptic ΔG-Rabies has been widely used in neuroscience research. A recently developed engineered version of the ΔG-Rabies, the non-toxic self-inactivating (SiR) virus, allows the long term genetic manipulation of neural circuits. However, the high mutational rate of the rabies virus poses a risk that mutations targeting the key genetic regulatory element in the SiR genome could emerge and revert it to a canonical ΔG-Rabies. Such revertant mutations have recently been identified in a SiR batch. To address the origin, incidence and relevance of these mutations, we investigated the genomic stability of SiR in vitro and in vivo. We found that "revertant" mutations are rare and accumulate only when SiR is extensively amplified in vitro, particularly in suboptimal production cell lines that have insufficient levels of TEV protease activity. Moreover, we confirmed that SiR-CRE, unlike canonical ΔG-Rab-CRE or revertant-SiR-CRE, is non-toxic and that revertant mutations do not emerge in vivo during long-term experiments.
Collapse
Affiliation(s)
| | | | | | - Hassal Lee
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Fabio Morgese
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Marco Tripodi
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| |
Collapse
|
32
|
Lepperød ME, Stöber T, Hafting T, Fyhn M, Kording KP. Inferring causal connectivity from pairwise recordings and optogenetics. PLoS Comput Biol 2023; 19:e1011574. [PMID: 37934793 PMCID: PMC10656035 DOI: 10.1371/journal.pcbi.1011574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/17/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023] Open
Abstract
To understand the neural mechanisms underlying brain function, neuroscientists aim to quantify causal interactions between neurons, for instance by perturbing the activity of neuron A and measuring the effect on neuron B. Recently, manipulating neuron activity using light-sensitive opsins, optogenetics, has increased the specificity of neural perturbation. However, using widefield optogenetic interventions, multiple neurons are usually perturbed, producing a confound-any of the stimulated neurons can have affected the postsynaptic neuron making it challenging to discern which neurons produced the causal effect. Here, we show how such confounds produce large biases in interpretations. We explain how confounding can be reduced by combining instrumental variables (IV) and difference in differences (DiD) techniques from econometrics. Combined, these methods can estimate (causal) effective connectivity by exploiting the weak, approximately random signal resulting from the interaction between stimulation and the absolute refractory period of the neuron. In simulated neural networks, we find that estimates using ideas from IV and DiD outperform naïve techniques suggesting that methods from causal inference can be useful to disentangle neural interactions in the brain.
Collapse
Affiliation(s)
- Mikkel Elle Lepperød
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Simula Research Laboratory, Oslo, Norway
| | - Tristan Stöber
- Simula Research Laboratory, Oslo, Norway
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe University, Frankfurt, Germany
| | - Torkel Hafting
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marianne Fyhn
- Simula Research Laboratory, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Konrad Paul Kording
- Department of Neuroscience, University of Pennsylvania, Pennsylvania, United States of America
| |
Collapse
|
33
|
Triplett MA, Gajowa M, Adesnik H, Paninski L. Bayesian target optimisation for high-precision holographic optogenetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542307. [PMID: 37292661 PMCID: PMC10246014 DOI: 10.1101/2023.05.25.542307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-photon optogenetics has transformed our ability to probe the structure and function of neural circuits. However, achieving precise optogenetic control of neural ensemble activity has remained fundamentally constrained by the problem of off-target stimulation (OTS): the inadvertent activation of nearby non-target neurons due to imperfect confinement of light onto target neurons. Here we propose a novel computational approach to this problem called Bayesian target optimisation. Our approach uses nonparametric Bayesian inference to model neural responses to optogenetic stimulation, and then optimises the laser powers and optical target locations needed to achieve a desired activity pattern with minimal OTS. We validate our approach in simulations and using data from in vitro experiments, showing that Bayesian target optimisation considerably reduces OTS across all conditions we test. Together, these results establish our ability to overcome OTS, enabling optogenetic stimulation with substantially improved precision.
Collapse
Affiliation(s)
- Marcus A. Triplett
- Department of Statistics, Columbia University
- Zuckerman Mind Brain Behavior Institute, Columbia University
| | - Marta Gajowa
- Department of Molecular and Cell Biology, UC Berkeley
| | | | - Liam Paninski
- Department of Statistics, Columbia University
- Zuckerman Mind Brain Behavior Institute, Columbia University
| |
Collapse
|
34
|
Gupta P, Rathi P, Gupta R, Baldi H, Coquerel Q, Debnath A, Derami HG, Raman B, Singamaneni S. Neuronal maturation-dependent nano-neuro interaction and modulation. NANOSCALE HORIZONS 2023; 8:1537-1555. [PMID: 37672212 PMCID: PMC10615777 DOI: 10.1039/d3nh00258f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Nanotechnology-enabled neuromodulation is a promising minimally-invasive tool in neuroscience and engineering for both fundamental studies and clinical applications. However, the nano-neuro interaction at different stages of maturation of a neural network and its implications for the nano-neuromodulation remain unclear. Here, we report heterogeneous to homogeneous transformation of neuromodulation in a progressively maturing neural network. Utilizing plasmonic-fluors as ultrabright fluorescent nanolabels, we reveal that negative surface charge of nanoparticles renders selective nano-neuro interaction with a strong correlation between the maturation stage of the individual neurons in the neural network and the density of the nanoparticles bound on the neurons. In stark contrast to homogeneous neuromodulation in a mature neural network reported so far, the maturation-dependent density of the nanoparticles bound to neurons in a developing neural network resulted in a heterogeneous optical neuromodulation (i.e., simultaneous excitation and inhibition of neural network activity). This study advances our understanding of nano-neuro interactions and nano-neuromodulation with potential applications in minimally-invasive technologies for treating neuronal disorders in parts of the mammalian brain where neurogenesis persists throughout aging.
Collapse
Affiliation(s)
- Prashant Gupta
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Priya Rathi
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Rohit Gupta
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Harsh Baldi
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Quentin Coquerel
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Avishek Debnath
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Hamed Gholami Derami
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Baranidharan Raman
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
35
|
Tong L, Han S, Xue Y, Chen M, Chen F, Ke W, Shu Y, Ding N, Bewersdorf J, Zhou ZJ, Yuan P, Grutzendler J. Single cell in vivo optogenetic stimulation by two-photon excitation fluorescence transfer. iScience 2023; 26:107857. [PMID: 37752954 PMCID: PMC10518705 DOI: 10.1016/j.isci.2023.107857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/01/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Optogenetic manipulation with single-cell resolution can be achieved by two-photon excitation. However, this frequently requires relatively high laser powers. Here, we developed a novel strategy that can improve the efficiency of current two-photon stimulation technologies by positioning fluorescent proteins or small fluorescent molecules with high two-photon cross-sections in the vicinity of opsins. This generates a highly localized source of endogenous single-photon illumination that can be tailored to match the optimal opsin absorbance. Through neuronal and vascular stimulation in the live mouse brain, we demonstrate the utility of this technique to achieve efficient opsin stimulation, without loss of cellular resolution. We also provide a theoretical framework for understanding the potential advantages and constrains of this methodology, with directions for future improvements. Altogether, this fluorescence transfer illumination method opens new possibilities for experiments difficult to implement in the live brain such as all-optical neural interrogation and control of regional cerebral blood flow.
Collapse
Affiliation(s)
- Lei Tong
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Shanshan Han
- Department of Rehabilitation Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yao Xue
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT 06511, USA
| | - Minggang Chen
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT 06511, USA
| | - Fuyi Chen
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Wei Ke
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yousheng Shu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Ning Ding
- Department of Rehabilitation Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Z. Jimmy Zhou
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06511, USA
| | - Peng Yuan
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Rehabilitation Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
36
|
Piatkevich KD, Boyden ES. Optogenetic control of neural activity: The biophysics of microbial rhodopsins in neuroscience. Q Rev Biophys 2023; 57:e1. [PMID: 37831008 DOI: 10.1017/s0033583523000033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Optogenetics, the use of microbial rhodopsins to make the electrical activity of targeted neurons controllable by light, has swept through neuroscience, enabling thousands of scientists to study how specific neuron types contribute to behaviors and pathologies, and how they might serve as novel therapeutic targets. By activating a set of neurons, one can probe what functions they can initiate or sustain, and by silencing a set of neurons, one can probe the functions they are necessary for. We here review the biophysics of these molecules, asking why they became so useful in neuroscience for the study of brain circuitry. We review the history of the field, including early thinking, early experiments, applications of optogenetics, pre-optogenetics targeted neural control tools, and the history of discovering and characterizing microbial rhodopsins. We then review the biophysical attributes of rhodopsins that make them so useful to neuroscience - their classes and structure, their photocycles, their photocurrent magnitudes and kinetics, their action spectra, and their ion selectivity. Our hope is to convey to the reader how specific biophysical properties of these molecules made them especially useful to neuroscientists for a difficult problem - the control of high-speed electrical activity, with great precision and ease, in the brain.
Collapse
Affiliation(s)
- Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Edward S Boyden
- McGovern Institute and Koch Institute, Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, K. Lisa Yang Center for Bionics and Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| |
Collapse
|
37
|
Cai C, Dong C, Friedrich J, Rozsa M, Pnevmatikakis EA, Giovannucci A. FIOLA: an accelerated pipeline for fluorescence imaging online analysis. Nat Methods 2023; 20:1417-1425. [PMID: 37679524 DOI: 10.1038/s41592-023-01964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 06/19/2023] [Indexed: 09/09/2023]
Abstract
Optical microscopy methods such as calcium and voltage imaging enable fast activity readout of large neuronal populations using light. However, the lack of corresponding advances in online algorithms has slowed progress in retrieving information about neural activity during or shortly after an experiment. This gap not only prevents the execution of real-time closed-loop experiments, but also hampers fast experiment-analysis-theory turnover for high-throughput imaging modalities. Reliable extraction of neural activity from fluorescence imaging frames at speeds compatible with indicator dynamics and imaging modalities poses a challenge. We therefore developed FIOLA, a framework for fluorescence imaging online analysis that extracts neuronal activity from calcium and voltage imaging movies at speeds one order of magnitude faster than state-of-the-art methods. FIOLA exploits algorithms optimized for parallel processing on GPUs and CPUs. We demonstrate reliable and scalable performance of FIOLA on both simulated and real calcium and voltage imaging datasets. Finally, we present an online experimental scenario to provide guidance in setting FIOLA parameters and to highlight the trade-offs of our approach.
Collapse
Affiliation(s)
- Changjia Cai
- Joint Department of Biomedical Engineering UNC/NCSU, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cynthia Dong
- Joint Department of Biomedical Engineering UNC/NCSU, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Marton Rozsa
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Andrea Giovannucci
- Joint Department of Biomedical Engineering UNC/NCSU, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Closed-Loop Engineering for Advanced Rehabilitation (CLEAR), North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
38
|
Kaya L, Karatum O, Balamur R, Kaleli HN, Önal A, Vanalakar SA, Hasanreisoğlu M, Nizamoglu S. MnO 2 Nanoflower Integrated Optoelectronic Biointerfaces for Photostimulation of Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301854. [PMID: 37386797 PMCID: PMC10477844 DOI: 10.1002/advs.202301854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Indexed: 07/01/2023]
Abstract
Optoelectronic biointerfaces have gained significant interest for wireless and electrical control of neurons. Three-dimentional (3D) pseudocapacitive nanomaterials with large surface areas and interconnected porous structures have great potential for optoelectronic biointerfaces that can fulfill the requirement of high electrode-electrolyte capacitance to effectively transduce light into stimulating ionic currents. In this study, the integration of 3D manganese dioxide (MnO2 ) nanoflowers into flexible optoelectronic biointerfaces for safe and efficient photostimulation of neurons is demonstrated. MnO2 nanoflowers are grown via chemical bath deposition on the return electrode, which has a MnO2 seed layer deposited via cyclic voltammetry. They facilitate a high interfacial capacitance (larger than 10 mF cm-2 ) and photogenerated charge density (over 20 µC cm-2 ) under low light intensity (1 mW mm-2 ). MnO2 nanoflowers induce safe capacitive currents with reversible Faradaic reactions and do not cause any toxicity on hippocampal neurons in vitro, making them a promising material for biointerfacing with electrogenic cells. Patch-clamp electrophysiology is recorded in the whole-cell configuration of hippocampal neurons, and the optoelectronic biointerfaces trigger repetitive and rapid firing of action potentials in response to light pulse trains. This study points out the potential of electrochemically-deposited 3D pseudocapacitive nanomaterials as a robust building block for optoelectronic control of neurons.
Collapse
Affiliation(s)
- Lokman Kaya
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
| | - Onuralp Karatum
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
| | - Rıdvan Balamur
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
| | - Hümeyra Nur Kaleli
- Research Center for Translational MedicineKoc University34450IstanbulTurkey
| | - Asım Önal
- Department of Biomedical Science and EngineeringKoc University34450IstanbulTurkey
| | | | - Murat Hasanreisoğlu
- Research Center for Translational MedicineKoc University34450IstanbulTurkey
- Department of OphthalmologySchool of MedicineKoc University34450IstanbulTurkey
| | - Sedat Nizamoglu
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
- Department of Biomedical Science and EngineeringKoc University34450IstanbulTurkey
| |
Collapse
|
39
|
Bounds HA, Sadahiro M, Hendricks WD, Gajowa M, Gopakumar K, Quintana D, Tasic B, Daigle TL, Zeng H, Oldenburg IA, Adesnik H. All-optical recreation of naturalistic neural activity with a multifunctional transgenic reporter mouse. Cell Rep 2023; 42:112909. [PMID: 37542722 PMCID: PMC10755854 DOI: 10.1016/j.celrep.2023.112909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 08/07/2023] Open
Abstract
Determining which features of the neural code drive behavior requires the ability to simultaneously read out and write in neural activity patterns with high precision across many neurons. All-optical systems that combine two-photon calcium imaging and targeted photostimulation enable the activation of specific, functionally defined groups of neurons. However, these techniques are unable to test how patterns of activity across a population contribute to computation because of an inability to both read and write cell-specific firing rates. To overcome this challenge, we make two advances: first, we introduce a genetic line of mice for Cre-dependent co-expression of a calcium indicator and a potent soma-targeted microbial opsin. Second, using this line, we develop a method for read-out and write-in of precise population vectors of neural activity by calibrating the photostimulation to each cell. These advances offer a powerful and convenient platform for investigating the neural codes of computation and behavior.
Collapse
Affiliation(s)
- Hayley A Bounds
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Masato Sadahiro
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - William D Hendricks
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Marta Gajowa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Karthika Gopakumar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Daniel Quintana
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Ian Antón Oldenburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| | - Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
40
|
Seki T, Takeuchi H, Ansai S. Optogenetic control of medaka behavior with channelrhodopsin. Dev Growth Differ 2023; 65:288-299. [PMID: 37354208 DOI: 10.1111/dgd.12872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Optogenetics enables the manipulation of neural activity with high spatiotemporal resolution in genetically defined neurons. The method is widely used in various model animals in the neuroscience and physiology fields. Channelrhodopsins are robust tools for optogenetic manipulation, but they have not yet been used for studies in medaka. In the present study, we used the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated knock-in approach to establish a transgenic medaka strain expressing the Chloromonas oogama channelrhodopsin (CoChR) in the ISL LIM homeobox 1 (isl1) locus. We demonstrated that light stimuli elicited specific behavioral responses, such as bending or turning locomotion in the embryos and pectoral fin movements in the larvae and adults. The response probabilities and intensities of these movements could be controlled by adjusting the intensity, duration, or wavelength of each light stimulus. Furthermore, we demonstrated that the pectoral fin movements in the adult stage could be elicited using a laser pointer to irradiate region including the caudal hind brain and the rostral spinal cord. Our results indicate that CoChR allows for manipulation of medaka behaviors by activating targeted neurons, which will further our understanding of the detailed neural mechanisms of motor control or social behaviors in medaka.
Collapse
Affiliation(s)
- Takahide Seki
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hideaki Takeuchi
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Laboratory of Genome Editing Breeding, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
Whiteley I, Song C, Howe GA, Knöpfel T, Rowlands CJ. DIRECT, a low-cost system for high-speed, low-noise imaging of fluorescent bio-samples. BIOMEDICAL OPTICS EXPRESS 2023; 14:2565-2575. [PMID: 37342684 PMCID: PMC10278627 DOI: 10.1364/boe.486507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 06/23/2023]
Abstract
A targeted imaging system has been developed for applications requiring recording from stationary samples at high spatiotemporal resolutions. It works by illuminating regions of interest in rapid sequence, and recording the signal from the whole field of view onto a single photodetector. It can be implemented at low cost on an existing microscope without compromising existing functionality. The system is characterized in terms of speed, spatial resolution, and tissue penetration depth, before being used to record individual action potentials from ASAP-3 expressing neurons in an ex vivo mouse brain slice preparation.
Collapse
Affiliation(s)
- Isabell Whiteley
- Department of Bioengineering, Imperial College London, London, UK
- Centre for Neurotechnology, Imperial College London, London, UK
| | - Chenchen Song
- Department of Brain Sciences, Imperial College London, London, UK
| | - Glenn A. Howe
- Department of Bioengineering, Imperial College London, London, UK
| | - Thomas Knöpfel
- Centre for Neurotechnology, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Christopher J. Rowlands
- Department of Bioengineering, Imperial College London, London, UK
- Centre for Neurotechnology, Imperial College London, London, UK
| |
Collapse
|
42
|
Ren X, Bok I, Vareberg A, Hai A. Stimulation-mediated reverse engineering of silent neural networks. J Neurophysiol 2023; 129:1505-1514. [PMID: 37222450 PMCID: PMC10311990 DOI: 10.1152/jn.00100.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023] Open
Abstract
Reconstructing connectivity of neuronal networks from single-cell activity is essential to understanding brain function, but the challenge of deciphering connections from populations of silent neurons has been largely unmet. We demonstrate a protocol for deriving connectivity of simulated silent neuronal networks using stimulation combined with a supervised learning algorithm, which enables inferring connection weights with high fidelity and predicting spike trains at the single-spike and single-cell levels with high accuracy. We apply our method on rat cortical recordings fed through a circuit of heterogeneously connected leaky integrate-and-fire neurons firing at typical lognormal distributions and demonstrate improved performance during stimulation for multiple subpopulations. These testable predictions about the number and protocol of the required stimulations are expected to enhance future efforts for deriving neuronal connectivity and drive new experiments to better understand brain function.NEW & NOTEWORTHY We introduce a new concept for reverse engineering silent neuronal networks using a supervised learning algorithm combined with stimulation. We quantify the performance of the algorithm and the precision of deriving synaptic weights in inhibitory and excitatory subpopulations. We then show that stimulation enables deciphering connectivity of heterogeneous circuits fed with real electrode array recordings, which could extend in the future to deciphering connectivity in broad biological and artificial neural networks.
Collapse
Affiliation(s)
- Xiaoxuan Ren
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ilhan Bok
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Adam Vareberg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, Wisconsin, United States
| |
Collapse
|
43
|
Fişek M, Herrmann D, Egea-Weiss A, Cloves M, Bauer L, Lee TY, Russell LE, Häusser M. Cortico-cortical feedback engages active dendrites in visual cortex. Nature 2023; 617:769-776. [PMID: 37138089 DOI: 10.1038/s41586-023-06007-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/23/2023] [Indexed: 05/05/2023]
Abstract
Sensory processing in the neocortex requires both feedforward and feedback information flow between cortical areas1. In feedback processing, higher-level representations provide contextual information to lower levels, and facilitate perceptual functions such as contour integration and figure-ground segmentation2,3. However, we have limited understanding of the circuit and cellular mechanisms that mediate feedback influence. Here we use long-range all-optical connectivity mapping in mice to show that feedback influence from the lateromedial higher visual area (LM) to the primary visual cortex (V1) is spatially organized. When the source and target of feedback represent the same area of visual space, feedback is relatively suppressive. By contrast, when the source is offset from the target in visual space, feedback is relatively facilitating. Two-photon calcium imaging data show that this facilitating feedback is nonlinearly integrated in the apical tuft dendrites of V1 pyramidal neurons: retinotopically offset (surround) visual stimuli drive local dendritic calcium signals indicative of regenerative events, and two-photon optogenetic activation of LM neurons projecting to identified feedback-recipient spines in V1 can drive similar branch-specific local calcium signals. Our results show how neocortical feedback connectivity and nonlinear dendritic integration can together form a substrate to support both predictive and cooperative contextual interactions.
Collapse
Affiliation(s)
- Mehmet Fişek
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Dustin Herrmann
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Alexander Egea-Weiss
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Matilda Cloves
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Lisa Bauer
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Tai-Ying Lee
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Lloyd E Russell
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Michael Häusser
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
44
|
Sun F, Shen H, Yang Q, Yuan Z, Chen Y, Guo W, Wang Y, Yang L, Bai Z, Liu Q, Jiang M, Lam JWY, Sun J, Ye R, Kwok RTK, Tang BZ. Dual Behavior Regulation: Tether-Free Deep-Brain Stimulation by Photothermal and Upconversion Hybrid Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210018. [PMID: 36864009 DOI: 10.1002/adma.202210018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/26/2023] [Indexed: 05/26/2023]
Abstract
Optogenetics has been plagued by invasive brain implants and thermal effects during photo-modulation. Here, two upconversion hybrid nanoparticles modified with photothermal agents, named PT-UCNP-B/G, which can modulate neuronal activities via photostimulation and thermo-stimulation under near-infrared laser irradiation at 980 nm and 808 nm, respectively, are demonstrated. PT-UCNP-B/G emits visible light (410-500 nm or 500-570 nm) through the upconversion process at 980 nm, while they exhibit efficient photothermal effect at 808 nm with no visible emission and tissue damage. Intriguingly, PT-UCNP-B significantly activates extracellular sodium currents in neuro2a cells expressing light-gated channelrhodopsin-2 (ChR2) ion channels under 980-nm irradiation, and inhibits potassium currents in human embryonic kidney 293 cells expressing the voltage-gated potassium channels (KCNQ1) under 808-nm irradiation in vitro. Furthermore, deep-brain bidirectional modulation of feeding behavior is achieved under tether-free 980 or 808-nm illumination (0.8 W cm-2 ) in mice stereotactically injected with PT-UCNP-B in the ChR2-expressing lateral hypothalamus region. Thus, PT-UCNP-B/G creates new possibility of utilizing both light and heat to modulate neural activities and provides a viable strategy to overcome the limits of optogenetics.
Collapse
Affiliation(s)
- Feiyi Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Kowloon, Hong Kong, 999077, P. R. China
| | - Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Kowloon, Hong Kong, 999077, P. R. China
| | - Qinghu Yang
- College of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, P. R. China
| | - Zhaoyue Yuan
- College of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, P. R. China
| | - Yuyang Chen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Kowloon, Hong Kong, 999077, P. R. China
| | - Weihua Guo
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yu Wang
- College of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, P. R. China
| | - Liang Yang
- College of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, P. R. China
| | - Zhantao Bai
- College of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, P. R. China
| | - Qingqing Liu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, P. R. China
| | - Ming Jiang
- College of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Kowloon, Hong Kong, 999077, P. R. China
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Kowloon, Hong Kong, 999077, P. R. China
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Kowloon, Hong Kong, 999077, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Kowloon, Hong Kong, 999077, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
- Center of Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
45
|
Faini G, Tanese D, Molinier C, Telliez C, Hamdani M, Blot F, Tourain C, de Sars V, Del Bene F, Forget BC, Ronzitti E, Emiliani V. Ultrafast light targeting for high-throughput precise control of neuronal networks. Nat Commun 2023; 14:1888. [PMID: 37019891 PMCID: PMC10074378 DOI: 10.1038/s41467-023-37416-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Two-photon, single-cell resolution optogenetics based on holographic light-targeting approaches enables the generation of precise spatiotemporal neuronal activity patterns and thus a broad range of experimental applications, such as high throughput connectivity mapping and probing neural codes for perception. Yet, current holographic approaches limit the resolution for tuning the relative spiking time of distinct cells to a few milliseconds, and the achievable number of targets to 100-200, depending on the working depth. To overcome these limitations and expand the capabilities of single-cell optogenetics, we introduce an ultra-fast sequential light targeting (FLiT) optical configuration based on the rapid switching of a temporally focused beam between holograms at kHz rates. We used FLiT to demonstrate two illumination protocols, termed hybrid- and cyclic-illumination, and achieve sub-millisecond control of sequential neuronal activation and high throughput multicell illumination in vitro (mouse organotypic and acute brain slices) and in vivo (zebrafish larvae and mice), while minimizing light-induced thermal rise. These approaches will be important for experiments that require rapid and precise cell stimulation with defined spatio-temporal activity patterns and optical control of large neuronal ensembles.
Collapse
Affiliation(s)
- Giulia Faini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Dimitrii Tanese
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Clément Molinier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Cécile Telliez
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Massilia Hamdani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Francois Blot
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Christophe Tourain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Vincent de Sars
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Benoît C Forget
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Emiliano Ronzitti
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.
| | - Valentina Emiliani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.
| |
Collapse
|
46
|
Printz Y, Patil P, Mahn M, Benjamin A, Litvin A, Levy R, Bringmann M, Yizhar O. Determinants of functional synaptic connectivity among amygdala-projecting prefrontal cortical neurons in male mice. Nat Commun 2023; 14:1667. [PMID: 36966143 PMCID: PMC10039875 DOI: 10.1038/s41467-023-37318-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/13/2023] [Indexed: 03/27/2023] Open
Abstract
The medial prefrontal cortex (mPFC) mediates a variety of complex cognitive functions via its vast and diverse connections with cortical and subcortical structures. Understanding the patterns of synaptic connectivity that comprise the mPFC local network is crucial for deciphering how this circuit processes information and relays it to downstream structures. To elucidate the synaptic organization of the mPFC, we developed a high-throughput optogenetic method for mapping large-scale functional synaptic connectivity in acute brain slices. We show that in male mice, mPFC neurons that project to the basolateral amygdala (BLA) display unique spatial patterns of local-circuit synaptic connectivity, which distinguish them from the general mPFC cell population. When considering synaptic connections between pairs of mPFC neurons, the intrinsic properties of the postsynaptic cell and the anatomical positions of both cells jointly account for ~7.5% of the variation in the probability of connection. Moreover, anatomical distance and laminar position explain most of this fraction in variation. Our findings reveal the factors determining connectivity in the mPFC and delineate the architecture of synaptic connections in the BLA-projecting subnetwork.
Collapse
Affiliation(s)
- Yoav Printz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Pritish Patil
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Mathias Mahn
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Asaf Benjamin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Anna Litvin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Rivka Levy
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Max Bringmann
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ofer Yizhar
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
47
|
Rodrigues AF, Rebelo C, Reis T, Simões S, Bernardino L, Peça J, Ferreira L. Engineering optical tools for remotely controlled brain stimulation and regeneration. Biomater Sci 2023; 11:3034-3050. [PMID: 36947145 DOI: 10.1039/d2bm02059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
Neurological disorders are one of the world's leading medical and societal challenges due to the lack of efficacy of the first line treatment. Although pharmacological and non-pharmacological interventions have been employed with the aim of regulating neuronal activity and survival, they have failed to avoid symptom relapse and disease progression in the vast majority of patients. In the last 5 years, advanced drug delivery systems delivering bioactive molecules and neuromodulation strategies have been developed to promote tissue regeneration and remodel neuronal circuitry. However, both approaches still have limited spatial and temporal precision over the desired target regions. While external stimuli such as electromagnetic fields and ultrasound have been employed in the clinic for non-invasive neuromodulation, they do not have the capability of offering single-cell spatial resolution as light stimulation. Herein, we review the latest progress in this area of study and discuss the prospects of using light-responsive nanomaterials to achieve on-demand delivery of drugs and neuromodulation, with the aim of achieving brain stimulation and regeneration.
Collapse
Affiliation(s)
- Artur Filipe Rodrigues
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Catarina Rebelo
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Tiago Reis
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Susana Simões
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Liliana Bernardino
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - João Peça
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Lino Ferreira
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| |
Collapse
|
48
|
LaFosse PK, Zhou Z, Friedman NG, Deng Y, Li AJ, Akitake B, Histed MH. Bicistronic Expression of a High-Performance Calcium Indicator and Opsin for All-Optical Stimulation and Imaging at Cellular Resolution. eNeuro 2023; 10:ENEURO.0378-22.2023. [PMID: 36858826 PMCID: PMC10062490 DOI: 10.1523/eneuro.0378-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
State-of-the-art all-optical systems promise unprecedented access to neural activity in vivo, using multiphoton optogenetics to allow simultaneous imaging and control of activity in selected neurons at cellular resolution. However, to achieve wide use of all-optical stimulation and imaging, simple strategies are needed to robustly and stably express opsins and indicators in the same cells. Here, we describe a bicistronic adeno-associated virus (AAV) that expresses both the fast and bright calcium indicator jGCaMP8s, and a soma-targeted (st) and two-photon-activatable opsin, ChrimsonR. With this method, stChrimsonR stimulation with two-photon holography in the visual cortex of mice drives robust spiking in targeted cells, and neural responses to visual sensory stimuli and spontaneous activity are strong and stable. Cells expressing this bicistronic construct show responses to both photostimulation and visual stimulation that are similar to responses measured from cells expressing the same opsin and indicator via separate viruses. This approach is a simple and robust way to prepare neurons in vivo for two-photon holography and imaging.
Collapse
Affiliation(s)
- Paul K LaFosse
- Intramural Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
- National Institutes of Health-University of Maryland Graduate Partnerships Program, Bethesda, MD 20892
- Neuroscience and Cognitive Science Program, University of Maryland College Park, College Park, MD 20742
| | - Zhishang Zhou
- Intramural Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Nina G Friedman
- Intramural Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
- National Institutes of Health-University of Maryland Graduate Partnerships Program, Bethesda, MD 20892
- Neuroscience and Cognitive Science Program, University of Maryland College Park, College Park, MD 20742
| | - Yanting Deng
- Intramural Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Anna J Li
- Intramural Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
- Department of Biological Structure, University of Washington, Seattle, WA 98195
| | - Bradley Akitake
- Intramural Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Mark H Histed
- Intramural Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
49
|
Wang Z, Chen T, Chen Q, Tu K, Feng Q, Lv G, Wang A, Ming H. Reducing crosstalk of a multi-plane holographic display by the time-multiplexing stochastic gradient descent. OPTICS EXPRESS 2023; 31:7413-7424. [PMID: 36859872 DOI: 10.1364/oe.483590] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Multi-plane reconstruction is essential for realizing a holographic three-dimensional (3D) display. One fundamental issue in conventional multi-plane Gerchberg-Saxton (GS) algorithm is the inter-plane crosstalk, mainly caused by the neglect of other planes' interference in the process of amplitude replacement at each object plane. In this paper, we proposed the time-multiplexing stochastic gradient descent (TM-SGD) optimization algorithm to reduce the multi-plane reconstruction crosstalk. First, the global optimization feature of stochastic gradient descent (SGD) was utilized to reduce the inter-plane crosstalk. However, the crosstalk optimization effect would degrade as the number of object planes increases, due to the imbalance between input and output information. Thus, we further introduced the time-multiplexing strategy into both the iteration and reconstruction process of multi-plane SGD to increase input information. In TM-SGD, multiple sub-holograms are obtained through multi-loop iteration and then sequentially refreshed on spatial light modulator (SLM). The optimization condition between the holograms and the object planes converts from one-to-many to many-to-many, improving the optimization of inter-plane crosstalk. During the persistence of vision, multiple sub-hologram jointly reconstruct the crosstalk-free multi-plane images. Through simulation and experiment, we confirmed that TM-SGD could effectively reduce the inter-plane crosstalk and improve image quality.The proposed TM-SGD-based holographic display has wide applications in tomographic 3D visualization for biology, medical science, and engineering design, which need to reconstruct multiple independent tomographic images without inter-plane crosstalk.
Collapse
|
50
|
Rodrigues AF, Tavares APM, Simões S, Silva RPFF, Sobrino T, Figueiredo BR, Sales G, Ferreira L. Engineering graphene-based electrodes for optical neural stimulation. NANOSCALE 2023; 15:687-706. [PMID: 36515425 DOI: 10.1039/d2nr05256c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Graphene-based materials (GBMs) have been investigated in recent years with the aim of developing flexible interfaces to address a range of neurological disorders, where electrical stimulation may improve brain function and tissue regeneration. The recent discovery that GBM electrodes can generate an electrical response upon light exposure has inspired the development of non-genetic approaches capable of selectively modulating brain cells without genetic manipulation (i.e., optogenetics). Here, we propose the conjugation of graphene with upconversion nanoparticles (UCNPs), which enable wireless transcranial activation using tissue-penetrating near-infrared (NIR) radiation. Following a design of experiments approach, we first investigated the influence of different host matrices and dopants commonly used to synthesize UCNPs in the electrical response of graphene. Two UCNP formulations achieving optimal enhancement of electrical conductivity upon NIR activation at λ = 780 or 980 nm were identified. These formulations were then covalently attached to graphene nanoplatelets following selective hydroxyl derivatization. The resulting nanocomposites were evaluated in vitro using SH-SY5Y human neuroblastoma cells. NIR activation at λ = 980 nm promoted cell proliferation and downregulated neuronal and glial differentiation markers, suggesting the potential application of GBMs in minimally invasive stimulation of cells for tissue regeneration.
Collapse
Affiliation(s)
- Artur Filipe Rodrigues
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, 3000-517 Coimbra, Portugal.
| | - Ana P M Tavares
- BioMark@UC, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Susana Simões
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, 3000-517 Coimbra, Portugal.
| | - Rui P F F Silva
- Graphenest S.A., Edifício Vouga Park, 3740-070 Paradela do Vouga, Portugal
| | - Tomás Sobrino
- NeuroAging Laboratory, Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Bruno R Figueiredo
- Graphenest S.A., Edifício Vouga Park, 3740-070 Paradela do Vouga, Portugal
| | - Goreti Sales
- BioMark@UC, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Lino Ferreira
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal
| |
Collapse
|