1
|
Mobbs D, Wise T, Tashjian S, Zhang J, Friston K, Headley D. Survival in a world of complex dangers. Neurosci Biobehav Rev 2024; 167:105924. [PMID: 39424109 DOI: 10.1016/j.neubiorev.2024.105924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/03/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
How did our nomadic ancestors continually adapt to the seemingly limitless and unpredictable number of dangers in the natural world? We argue that human defensive behaviors are dynamically constructed to facilitate survival in capricious and itinerant environments. We first hypothesize that internal and external states result in state constructions that combine to form a meta-representation. When a threat is detected, it triggers the action construction. Action constructions are formed through two contiguous survival strategies: generalization strategies, which are used when encountering new threats and ecologies. Generalization strategies are associated with cognitive representations that have high dimensionality and which furnish flexible psychological constructs, including relations between threats, and imagination, and which converge through the construction of defensive states. We posit that generalization strategies drive 'explorative' behaviors including information seeking, where the goal is to increase knowledge that can be used to mitigate current and future threats. Conversely, specialization strategies entail lower dimensional representations, which underpin specialized, sometimes reflexive, or habitual survival behaviors that are 'exploitative'. Together, these strategies capture a central adaptive feature of human survival systems: self-preservation in response to a myriad of threats.
Collapse
Affiliation(s)
- Dean Mobbs
- Department of Humanities and Social Sciences, USA; Computation and Neural Systems Program at the California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
| | - Toby Wise
- Department of Neuroimaging, King's College London, London, UK
| | | | - JiaJin Zhang
- Department of Humanities and Social Sciences, USA
| | - Karl Friston
- Institute of Neurology, and The Wellcome Centre for Human Imaging, University College London, London WC1N 3AR, UK
| | - Drew Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, 197 University Avenue, Newark, NJ 07102, USA
| |
Collapse
|
2
|
Wilson BM, Soulsbury CD, Mills DS. Problem Behaviours and Relinquishment: Challenges Faced by Clinical Animal Behaviourists When Assessing Fear and Frustration. Animals (Basel) 2024; 14:2718. [PMID: 39335307 PMCID: PMC11428939 DOI: 10.3390/ani14182718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Fear and frustration are two emotions thought to frequently contribute to problem behaviour, often leading to relinquishment. Inferring these emotions is challenging as they may present with some similar general signs, but they potentially require different treatment approaches to efficiently address the behaviour of concern. Although behavioural assessment frameworks have been proposed, it is largely unknown how clinical animal behaviourists (CABs) assimilate information about the emotional state of an animal to inform their behavioural assessment. In other fields (such as both in human and veterinary medicine), the use of intuition and gut feelings, without the concurrent use of an assessment framework, can lead to higher rates of error and misdiagnosis. Therefore, this study used semi-structured interviews of ten CABs and qualitative methods to explore the ways they conceptualise, recognise and differentiate fear and frustration in dogs. Although interviewees perceived fear and frustration as negative affective states that lead to changes in an animal's behaviour, there was little consensus on the definition or identification or differentiation of these emotions. The use of a scientific approach (i.e., hypothesis-driven and based on falsification of competing hypotheses) for behavioural assessment was highly variable, with individual assessment processes often characterised by tautology, intuition, circular reasoning and confirmation bias. Assessment was typically based on professional judgment, amalgamating information on interpretation of communicative signals, motivation, learning history, breed, genetics and temperament. Given the lack of consensus in the definition of these states, it is clearly important that authors and clinicians define their interpretation of key concepts, such as fear and frustration, when trying to communicate with others.
Collapse
Affiliation(s)
- Beverley M. Wilson
- Animal Behaviour, Cognition and Welfare Group, School of Natural Sciences, University of Lincoln, Lincoln LN6 7DL, UK; (C.D.S.); (D.S.M.)
| | | | | |
Collapse
|
3
|
Lyons AL, Andries M, Ferstl RM, Greening SG. Suffering more in imagination than in reality? Mental imagery and fear generalization. Behav Brain Res 2024; 472:115146. [PMID: 39009189 DOI: 10.1016/j.bbr.2024.115146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
Mental imagery may represent a weaker form of perception and, thus, mental images may be more ambiguous than visual percepts. If correct, the acquisition of fear would be less specific for imagined fears in comparison to perceptual fears, perhaps facilitating broader fear generalization. To test this idea, a two-day differential fear conditioning experiment (N = 98) was conducted. On day one, two groups of participants underwent differential fear conditioning such that a specific Gabor patch orientation (CS+) was paired with mild shocks (US) while a second Gabor patch of orthogonal orientation (CS-) was never paired with shock. Critically, one group imagined the Gabor patches and the other group was visually presented the Gabor patches. Next, both groups were presented visual Gabor patches of similar orientations (GCS) to the CS+. On day two, to assess the persistence of imagined fear, participants returned to the lab and were tested on the GCS devoid of shock. For day one, in contrast to our primary hypothesis, both self-report and skin conductance response measures did not show a significant interaction between the GCS and groups. On day two, both measures demonstrated a persistence of imagined fear, without US delivery. Taken together, rather than demonstrating an overgeneralization effect, the results from this study suggest that imagery-based fear conditioning generalizes to a similar extent as perceptually acquired fear conditioning. Further, the persistence of imagery-based fear may have unique extinction qualities in comparison to perceptual-based fear.
Collapse
Affiliation(s)
- Andrew L Lyons
- Brain & Cognitive Sciences, Dept. of Psychology, University of Manitoba, Canada
| | - McKenzie Andries
- Brain & Cognitive Sciences, Dept. of Psychology, University of Manitoba, Canada
| | - Ryan M Ferstl
- Brain & Cognitive Sciences, Dept. of Psychology, University of Manitoba, Canada
| | - Steven G Greening
- Brain & Cognitive Sciences, Dept. of Psychology, University of Manitoba, Canada; Centre on Aging, University of Manitoba, Canada.
| |
Collapse
|
4
|
Cornwell BR, Didier PR, Grogans SE, Anderson AS, Islam S, Kim HC, Kuhn M, Tillman RM, Hur J, Scott ZS, Fox AS, DeYoung KA, Smith JF, Shackman AJ. A shared threat-anticipation circuit is dynamically engaged at different moments by certain and uncertain threat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602972. [PMID: 39026814 PMCID: PMC11257510 DOI: 10.1101/2024.07.10.602972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Temporal dynamics play a central role in models of emotion: "fear" is widely conceptualized as a phasic response to certain-and-imminent danger, whereas "anxiety" is a sustained response to uncertain-or-distal harm. Yet the underlying human neurobiology remains contentious. Leveraging an ethnoracially diverse sample, translationally relevant paradigm, and theory-driven modeling approach, we demonstrate that certain and uncertain threat recruit a shared threat-anticipation circuit. This cortico-subcortical circuit exhibits persistently elevated activation when anticipating uncertain-threat encounters and a transient burst of activation in the moments before certain encounters. For many scientists and clinicians, feelings are the defining feature of human fear and anxiety. Here we used an independently validated brain signature to covertly decode the momentary dynamics of anticipatory distress for the first time. Results mirrored the dynamics of neural activation. These observations provide fresh insights into the neurobiology of threat-elicited emotions and set the stage for more ambitious clinical and mechanistic research.
Collapse
Affiliation(s)
- Brian R. Cornwell
- Department of Psychological & Brain Sciences, George Washington University, Washington, DC 20006 USA
| | - Paige R. Didier
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Shannon E. Grogans
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Allegra S. Anderson
- Department of Psychiatry and Human Behavior, Brown University, Providence, RI 02912 USA
| | - Samiha Islam
- Department of Psychology, University of Pennsylvania, Philadelphia, PA USA
| | - Hyung Cho Kim
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
- Department of Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742 USA
| | - Manuel Kuhn
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA 02478 USA
| | | | - Juyoen Hur
- Department of Psychology, Yonsei University, Seoul 03722, Republic of Korea
| | - Zachary S. Scott
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Andrew S. Fox
- Department of Psychology, University of California, Davis, CA 95616 USA
- California National Primate Research Center, University of California, Davis, CA 95616 USA
| | - Kathryn A. DeYoung
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Jason F. Smith
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Alexander J. Shackman
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
- Department of Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742 USA
- Department of Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
5
|
Pavy F, Zaman J, Van den Noortgate W, Scarpa A, von Leupoldt A, Torta DM. The effect of unpredictability on the perception of pain: a systematic review and meta-analysis. Pain 2024; 165:1702-1718. [PMID: 38422488 DOI: 10.1097/j.pain.0000000000003199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/11/2024] [Indexed: 03/02/2024]
Abstract
ABSTRACT Despite being widely assumed, the worsening impact of unpredictability on pain perception remains unclear because of conflicting empirical evidence, and a lack of systematic integration of past research findings. To fill this gap, we conducted a systematic review and meta-analysis focusing on the effect of unpredictability on pain perception. We also conducted meta-regression analyses to examine the moderating effect of several moderators associated with pain and unpredictability: stimulus duration, calibrated stimulus pain intensity, pain intensity expectation, controllability, anticipation delay, state and trait negative affectivity, sex/gender and age of the participants, type of unpredictability (intensity, onset, duration, location), and method of pain induction (thermal, electrical, mechanical pressure, mechanical distention). We included 73 experimental studies with adult volunteers manipulating the (un)predictability of painful stimuli and measuring perceived pain intensity and pain unpleasantness in predictable and unpredictable contexts. Because there are insufficient studies with patients, we focused on healthy volunteers. Our results did not reveal any effect of unpredictability on pain perception. However, several significant moderators were found, ie, targeted stimulus pain intensity, expected pain intensity, and state negative affectivity. Trait negative affectivity and uncontrollability showed no significant effect, presumably because of the low number of included studies. Thus, further investigation is necessary to clearly determine their role in unpredictable pain perception.
Collapse
Affiliation(s)
- Fabien Pavy
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | - Jonas Zaman
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
- School of Social Sciences, Hasselt University, Hasselt, Belgium
| | - Wim Van den Noortgate
- Methodology of Educational Sciences, Faculty of Psychology and Educational Sciences, & Itec, an Imec Research Group, KU Leuven, Belgium
| | - Aurelia Scarpa
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | - Andreas von Leupoldt
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | - Diana M Torta
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| |
Collapse
|
6
|
Grogans SE, Hur J, Barstead MG, Anderson AS, Islam S, Kim HC, Kuhn M, Tillman RM, Fox AS, Smith JF, DeYoung KA, Shackman AJ. Neuroticism/negative emotionality is associated with increased reactivity to uncertain threat in the bed nucleus of the stria terminalis, not the amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.09.527767. [PMID: 36798350 PMCID: PMC9934698 DOI: 10.1101/2023.02.09.527767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Neuroticism/Negative Emotionality (N/NE)-the tendency to experience anxiety, fear, and other negative emotions-is a fundamental dimension of temperament with profound consequences for health, wealth, and wellbeing. Elevated N/NE is associated with a panoply of adverse outcomes, from reduced socioeconomic attainment to psychiatric illness. Animal research suggests that N/NE reflects heightened reactivity to uncertain threat in the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce), but the relevance of these discoveries to humans has remained unclear. Here we used a novel combination of psychometric, psychophysiological, and neuroimaging approaches to rigorously test this hypothesis in an ethnoracially diverse, sex-balanced sample of 220 emerging adults selectively recruited to encompass a broad spectrum of N/NE. Cross-validated robust-regression analyses demonstrated that N/NE is preferentially associated with heightened BST activation during the uncertain anticipation of a genuinely distressing threat (aversive multimodal stimulation), whereas N/NE was unrelated to BST activation during certain-threat anticipation, Ce activation during either type of threat anticipation, or BST/Ce reactivity to threat-related faces. It is often assumed that different threat paradigms are interchangeable assays of individual differences in brain function, yet this has rarely been tested. Our results revealed negligible associations between BST/Ce reactivity to the anticipation of threat and the presentation of threat-related faces, indicating that the two tasks are non-fungible. These observations provide a framework for conceptualizing emotional traits and disorders; for guiding the design and interpretation of biobank and other neuroimaging studies of psychiatric risk, disease, and treatment; and for informing mechanistic research.
Collapse
Affiliation(s)
- Shannon E. Grogans
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Juyoen Hur
- Department of Psychology, Yonsei University, Seoul 03722, Republic of Korea
| | | | - Allegra S. Anderson
- Department of Psychological Sciences, Vanderbilt University, Nashville, TN 37240 USA
| | - Samiha Islam
- Department of Psychology, University of Pennsylvania, Philadelphia, PA USA
| | - Hyung Cho Kim
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
- Department of Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742 USA
| | - Manuel Kuhn
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA 02478 USA
| | | | - Andrew S. Fox
- Department of Psychology, University of California, Davis, CA 95616 USA
- California National Primate Research Center, University of California, Davis, CA 95616 USA
| | - Jason F. Smith
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Kathryn A. DeYoung
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Alexander J. Shackman
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
- Department of Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742 USA
- Department of Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
7
|
Zhao H, Liu J, Shao Y, Feng X, Zhao B, Sun L, Liu Y, Zeng L, Li XM, Yang H, Duan S, Yu YQ. Control of defensive behavior by the nucleus of Darkschewitsch GABAergic neurons. Natl Sci Rev 2024; 11:nwae082. [PMID: 38686177 PMCID: PMC11057443 DOI: 10.1093/nsr/nwae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/22/2024] [Accepted: 02/25/2024] [Indexed: 05/02/2024] Open
Abstract
The nucleus of Darkschewitsch (ND), mainly composed of GABAergic neurons, is widely recognized as a component of the eye-movement controlling system. However, the functional contribution of ND GABAergic neurons (NDGABA) in animal behavior is largely unknown. Here, we show that NDGABA neurons were selectively activated by different types of fear stimuli, such as predator odor and foot shock. Optogenetic and chemogenetic manipulations revealed that NDGABA neurons mediate freezing behavior. Moreover, using circuit-based optogenetic and neuroanatomical tracing methods, we identified an excitatory pathway from the lateral periaqueductal gray (lPAG) to the ND that induces freezing by exciting ND inhibitory outputs to the motor-related gigantocellular reticular nucleus, ventral part (GiV). Together, these findings indicate the NDGABA population as a novel hub for controlling defensive response by relaying fearful information from the lPAG to GiV, a mechanism critical for understanding how the freezing behavior is encoded in the mammalian brain.
Collapse
Affiliation(s)
- Huiying Zhao
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Jinrong Liu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Yujin Shao
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Xiang Feng
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Binhan Zhao
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Li Sun
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yijun Liu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Xiao-Ming Li
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Hongbin Yang
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Shumin Duan
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Yan-Qin Yu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| |
Collapse
|
8
|
Neville V, Mendl M, Paul ES, Seriès P, Dayan P. A primer on the use of computational modelling to investigate affective states, affective disorders and animal welfare in non-human animals. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:370-383. [PMID: 38036937 PMCID: PMC11039423 DOI: 10.3758/s13415-023-01137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Objective measures of animal emotion-like and mood-like states are essential for preclinical studies of affective disorders and for assessing the welfare of laboratory and other animals. However, the development and validation of measures of these affective states poses a challenge partly because the relationships between affect and its behavioural, physiological and cognitive signatures are complex. Here, we suggest that the crisp characterisations offered by computational modelling of the underlying, but unobservable, processes that mediate these signatures should provide better insights. Although this computational psychiatry approach has been widely used in human research in both health and disease, translational computational psychiatry studies remain few and far between. We explain how building computational models with data from animal studies could play a pivotal role in furthering our understanding of the aetiology of affective disorders, associated affective states and the likely underlying cognitive processes involved. We end by outlining the basic steps involved in a simple computational analysis.
Collapse
Affiliation(s)
- Vikki Neville
- Bristol Veterinary School, University of Bristol, Langford, UK.
| | - Michael Mendl
- Bristol Veterinary School, University of Bristol, Langford, UK
| | | | - Peggy Seriès
- Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, UK
| | - Peter Dayan
- Max Planck Institute for Biological Cybernetics & University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Alemany-González M, Wokke ME, Chiba T, Narumi T, Kaneko N, Yokoyama H, Watanabe K, Nakazawa K, Imamizu H, Koizumi A. Fear in action: Fear conditioning and alleviation through body movements. iScience 2024; 27:109099. [PMID: 38414854 PMCID: PMC10897899 DOI: 10.1016/j.isci.2024.109099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/11/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Fear memories enhance survival especially when the memories guide defensive movements to minimize harm. Accordingly, fear memories and body movements have tight relationships in animals: Fear memory acquisition results in adapting reactive defense movements, while training active defense movements reduces fear memory. However, evidence in humans is scarce because their movements are typically suppressed in experiments. Here, we tracked adult participants' body motions while they underwent ecologically valid fear conditioning in a 3D virtual space. First, with body motion tracking, we revealed that distinct spatiotemporal body movement patterns emerge through fear conditioning. Second, subsequent training to actively avoid threats with naturalistic defensive actions led to a long-term (24 h) reduction of physiological and embodied conditioned responses, while extinction or vicarious training only transiently reduced the responses. Together, our results highlight the role of body movements in human fear memory and its intervention.
Collapse
Affiliation(s)
| | - Martijn E. Wokke
- Sony Computer Science Laboratories, Inc., Tokyo, Japan
- Centre for Mind, Brain and Behavior, University of Granada, Granada, Spain
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Toshinori Chiba
- The Department of Decoded Neurofeedback, Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
- The Department of Psychiatry, Self-Defense Forces Hanshin Hospital, Kawanishi, Japan
- The Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuji Narumi
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hikaru Yokoyama
- Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Katsumi Watanabe
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
- Department of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Imamizu
- Research Into Artifacts, Center for Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
- Department of Cognitive Neuroscience, Cognitive Mechanisms Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Ai Koizumi
- Sony Computer Science Laboratories, Inc., Tokyo, Japan
| |
Collapse
|
10
|
Schiller D, Yu ANC, Alia-Klein N, Becker S, Cromwell HC, Dolcos F, Eslinger PJ, Frewen P, Kemp AH, Pace-Schott EF, Raber J, Silton RL, Stefanova E, Williams JHG, Abe N, Aghajani M, Albrecht F, Alexander R, Anders S, Aragón OR, Arias JA, Arzy S, Aue T, Baez S, Balconi M, Ballarini T, Bannister S, Banta MC, Barrett KC, Belzung C, Bensafi M, Booij L, Bookwala J, Boulanger-Bertolus J, Boutros SW, Bräscher AK, Bruno A, Busatto G, Bylsma LM, Caldwell-Harris C, Chan RCK, Cherbuin N, Chiarella J, Cipresso P, Critchley H, Croote DE, Demaree HA, Denson TF, Depue B, Derntl B, Dickson JM, Dolcos S, Drach-Zahavy A, Dubljević O, Eerola T, Ellingsen DM, Fairfield B, Ferdenzi C, Friedman BH, Fu CHY, Gatt JM, de Gelder B, Gendolla GHE, Gilam G, Goldblatt H, Gooding AEK, Gosseries O, Hamm AO, Hanson JL, Hendler T, Herbert C, Hofmann SG, Ibanez A, Joffily M, Jovanovic T, Kahrilas IJ, Kangas M, Katsumi Y, Kensinger E, Kirby LAJ, Koncz R, Koster EHW, Kozlowska K, Krach S, Kret ME, Krippl M, Kusi-Mensah K, Ladouceur CD, Laureys S, Lawrence A, Li CSR, Liddell BJ, Lidhar NK, Lowry CA, Magee K, Marin MF, Mariotti V, Martin LJ, Marusak HA, Mayer AV, Merner AR, Minnier J, Moll J, Morrison RG, Moore M, Mouly AM, Mueller SC, Mühlberger A, Murphy NA, Muscatello MRA, Musser ED, Newton TL, Noll-Hussong M, Norrholm SD, Northoff G, Nusslock R, Okon-Singer H, Olino TM, Ortner C, Owolabi M, Padulo C, Palermo R, Palumbo R, Palumbo S, Papadelis C, Pegna AJ, Pellegrini S, Peltonen K, Penninx BWJH, Pietrini P, Pinna G, Lobo RP, Polnaszek KL, Polyakova M, Rabinak C, Helene Richter S, Richter T, Riva G, Rizzo A, Robinson JL, Rosa P, Sachdev PS, Sato W, Schroeter ML, Schweizer S, Shiban Y, Siddharthan A, Siedlecka E, Smith RC, Soreq H, Spangler DP, Stern ER, Styliadis C, Sullivan GB, Swain JE, Urben S, Van den Stock J, Vander Kooij MA, van Overveld M, Van Rheenen TE, VanElzakker MB, Ventura-Bort C, Verona E, Volk T, Wang Y, Weingast LT, Weymar M, Williams C, Willis ML, Yamashita P, Zahn R, Zupan B, Lowe L. The Human Affectome. Neurosci Biobehav Rev 2024; 158:105450. [PMID: 37925091 PMCID: PMC11003721 DOI: 10.1016/j.neubiorev.2023.105450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Over the last decades, theoretical perspectives in the interdisciplinary field of the affective sciences have proliferated rather than converged due to differing assumptions about what human affective phenomena are and how they work. These metaphysical and mechanistic assumptions, shaped by academic context and values, have dictated affective constructs and operationalizations. However, an assumption about the purpose of affective phenomena can guide us to a common set of metaphysical and mechanistic assumptions. In this capstone paper, we home in on a nested teleological principle for human affective phenomena in order to synthesize metaphysical and mechanistic assumptions. Under this framework, human affective phenomena can collectively be considered algorithms that either adjust based on the human comfort zone (affective concerns) or monitor those adaptive processes (affective features). This teleologically-grounded framework offers a principled agenda and launchpad for both organizing existing perspectives and generating new ones. Ultimately, we hope the Human Affectome brings us a step closer to not only an integrated understanding of human affective phenomena, but an integrated field for affective research.
Collapse
Affiliation(s)
- Daniela Schiller
- Department of Psychiatry, the Nash Family Department of Neuroscience, and the Friedman Brain Institute, at the Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Alessandra N C Yu
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Nelly Alia-Klein
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Susanne Becker
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany; Integrative Spinal Research Group, Department of Chiropractic Medicine, University Hospital Balgrist, University of Zurich, Balgrist Campus, Lengghalde 5, 8008 Zurich, Switzerland
| | - Howard C Cromwell
- J.P. Scott Center for Neuroscience, Mind and Behavior, Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, United States
| | - Florin Dolcos
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Paul J Eslinger
- Departments of Neurology, Neural & Behavioral Science, Radiology, and Public Health Sciences, Penn State Hershey Medical Center and College of Medicine, Hershey, PA, United States
| | - Paul Frewen
- Departments of Psychiatry, Psychology and Neuroscience at the University of Western Ontario, London, Ontario, Canada
| | - Andrew H Kemp
- School of Psychology, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, United Kingdom
| | - Edward F Pace-Schott
- Harvard Medical School and Massachusetts General Hospital, Department of Psychiatry, Boston, MA, United States; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Departments of Neurology, Radiation Medicine, Psychiatry, and Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, United States
| | - Rebecca L Silton
- Department of Psychology, Loyola University Chicago, Chicago, IL, United States
| | - Elka Stefanova
- Faculty of Medicine, University of Belgrade, Serbia; Neurology Clinic, Clinical Center of Serbia, Serbia
| | - Justin H G Williams
- Griffith University, Gold Coast Campus, 1 Parklands Dr, Southport, QLD 4215, Australia
| | - Nobuhito Abe
- Institute for the Future of Human Society, Kyoto University, 46 Shimoadachi-cho, Yoshida Sakyo-ku, Kyoto, Japan
| | - Moji Aghajani
- Institute of Education & Child Studies, Section Forensic Family & Youth Care, Leiden University, the Netherlands; Department of Psychiatry, Amsterdam UMC, Location VUMC, GGZ InGeest Research & Innovation, Amsterdam Neuroscience, the Netherlands
| | - Franziska Albrecht
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany; Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Karolinska University Hospital, Women's Health and Allied Health Professionals Theme, Medical unit Occupational Therapy & Physiotherapy, Stockholm, Sweden
| | - Rebecca Alexander
- Neuroscience Research Australia, Randwick, Sydney, NSW, Australia; Australian National University, Canberra, ACT, Australia
| | - Silke Anders
- Department of Neurology, University of Lübeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Oriana R Aragón
- Yale University, 2 Hillhouse Ave, New Haven, CT, United States; Cincinnati University, Marketing Department, 2906 Woodside Drive, Cincinnati, OH 45221-0145, United States
| | - Juan A Arias
- School of Psychology, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, United Kingdom; Department of Statistics, Mathematical Analysis, and Operational Research, Universidade de Santiago de Compostela, Spain; The Galician Center for Mathematical Research and Technology (CITMAga), 15782 Santiago de Compostela, Spain
| | - Shahar Arzy
- Department of Medical Neurobiology, Hebrew University, Jerusalem, Israel
| | - Tatjana Aue
- Institute of Psychology, University of Bern, Fabrikstr. 8, 3012 Bern, Switzerland
| | | | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience, Catholic University of Milan, Milan, Italy
| | - Tommaso Ballarini
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Scott Bannister
- Durham University, Palace Green, DH1 RL3 Durham, United Kingdom
| | | | - Karen Caplovitz Barrett
- Department of Human Development & Family Studies, Colorado State University, Fort Collins, CO, United States; Department of Community & Behavioral Health, Colorado School of Public Health, Denver, CO, United States
| | | | - Moustafa Bensafi
- Research Center in Neurosciences of Lyon, CNRS UMR5292, INSERM U1028, Claude Bernard University Lyon 1, Lyon, Centre Hospitalier Le Vinatier, 95 bd Pinel, 69675 Bron Cedex, France
| | - Linda Booij
- Department of Psychology, Concordia University, Montreal, Canada; CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - Jamila Bookwala
- Department of Psychology, Lafayette College, Easton, PA, United States
| | - Julie Boulanger-Bertolus
- Department of Anesthesiology and Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| | - Sydney Weber Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - Anne-Kathrin Bräscher
- Department of Clinical Psychology, Psychotherapy and Experimental Psychopathology, University of Mainz, Wallstr. 3, 55122 Mainz, Germany; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Antonio Bruno
- Department of Biomedical, Dental Sciences and Morpho-Functional Imaging - University of Messina, Italy
| | - Geraldo Busatto
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Lauren M Bylsma
- Departments of Psychiatry and Psychology; and the Center for Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health, and Wellbeing, Australian National University, Canberra, ACT, Australia
| | - Julian Chiarella
- Department of Psychology, Concordia University, Montreal, Canada; CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - Pietro Cipresso
- Applied Technology for Neuro-Psychology Lab., Istituto Auxologico Italiano (IRCCS), Milan, Italy; Department of Psychology, University of Turin, Turin, Italy
| | - Hugo Critchley
- Psychiatry, Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Sussex, United Kingdom
| | - Denise E Croote
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai and Friedman Brain Institute, New York, NY 10029, United States; Hospital Universitário Gaffrée e Guinle, Universidade do Rio de Janeiro, Brazil
| | - Heath A Demaree
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas F Denson
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Brendan Depue
- Departments of Psychological and Brain Sciences and Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - Joanne M Dickson
- Edith Cowan University, Psychology Discipline, School of Arts and Humanities, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| | - Sanda Dolcos
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Anat Drach-Zahavy
- The Faculty of Health and Welfare Sciences, University of Haifa, Haifa, Israel
| | - Olga Dubljević
- Neurology Clinic, Clinical Center of Serbia, Serbia; Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Belgrade, Serbia
| | - Tuomas Eerola
- Durham University, Palace Green, DH1 RL3 Durham, United Kingdom
| | - Dan-Mikael Ellingsen
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Beth Fairfield
- Department of Humanistic Studies, University of Naples Federico II, Naples, Italy; UniCamillus, International Medical University, Rome, Italy
| | - Camille Ferdenzi
- Research Center in Neurosciences of Lyon, CNRS UMR5292, INSERM U1028, Claude Bernard University Lyon 1, Lyon, Centre Hospitalier Le Vinatier, 95 bd Pinel, 69675 Bron Cedex, France
| | - Bruce H Friedman
- Department of Psychology, Virginia Tech, Blacksburg, VA, United States
| | - Cynthia H Y Fu
- School of Psychology, University of East London, United Kingdom; Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Justine M Gatt
- Neuroscience Research Australia, Randwick, Sydney, NSW, Australia; School of Psychology, University of New South Wales, Randwick, Sydney, NSW, Australia
| | - Beatrice de Gelder
- Department of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Guido H E Gendolla
- Geneva Motivation Lab, University of Geneva, FPSE, Section of Psychology, CH-1211 Geneva 4, Switzerland
| | - Gadi Gilam
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Systems Neuroscience and Pain Laboratory, Stanford University School of Medicine, CA, United States
| | - Hadass Goldblatt
- Department of Nursing, Faculty of Social Welfare & Health Sciences, University of Haifa, Haifa, Israel
| | | | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness & Centre du Cerveau2, University and University Hospital of Liege, Liege, Belgium
| | - Alfons O Hamm
- Department of Biological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| | - Jamie L Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15206, United States
| | - Talma Hendler
- Tel Aviv Center for Brain Function, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; School of Psychological Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Cornelia Herbert
- Department of Applied Emotion and Motivation Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Stefan G Hofmann
- Department of Clinical Psychology, Philipps University Marburg, Germany
| | - Agustin Ibanez
- Universidad de San Andres, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), United States and Trinity Collegue Dublin (TCD), Ireland
| | - Mateus Joffily
- Groupe d'Analyse et de Théorie Economique (GATE), 93 Chemin des Mouilles, 69130 Écully, France
| | - Tanja Jovanovic
- Department of Psychiatry and Behavaioral Neurosciences, Wayne State University, Detroit, MI, United States
| | - Ian J Kahrilas
- Department of Psychology, Loyola University Chicago, Chicago, IL, United States
| | - Maria Kangas
- Department of Psychology, Macquarie University, Sydney, Australia
| | - Yuta Katsumi
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, United States; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Elizabeth Kensinger
- Department of Psychology and Neuroscience, Boston College, Boston, MA, United States
| | - Lauren A J Kirby
- Department of Psychology and Counseling, University of Texas at Tyler, Tyler, TX, United States
| | - Rebecca Koncz
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, Australia; Specialty of Psychiatry, The University of Sydney, Concord, New South Wales, Australia
| | - Ernst H W Koster
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | | | - Sören Krach
- Social Neuroscience Lab, Translational Psychiatry Unit, University of Lübeck, Lübeck, Germany
| | - Mariska E Kret
- Leiden University, Cognitive Psychology, Pieter de la Court, Waassenaarseweg 52, Leiden 2333 AK, the Netherlands
| | - Martin Krippl
- Faculty of Natural Sciences, Department of Psychology, Otto von Guericke University Magdeburg, Universitätsplatz 2, Magdeburg, Germany
| | - Kwabena Kusi-Mensah
- Department of Psychiatry, Komfo Anokye Teaching Hospital, P. O. Box 1934, Kumasi, Ghana; Department of Psychiatry, University of Cambridge, Darwin College, Silver Street, CB3 9EU Cambridge, United Kingdom; Behavioural Sciences Department, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Cecile D Ladouceur
- Departments of Psychiatry and Psychology and the Center for Neural Basis of Cognition (CNBC), University of Pittsburgh, Pittsburgh, PA, United States
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness & Centre du Cerveau2, University and University Hospital of Liege, Liege, Belgium
| | - Alistair Lawrence
- Scotland's Rural College, King's Buildings, Edinburgh, Scotland; The Roslin Institute, University of Edinburgh, Easter Bush, Scotland
| | - Chiang-Shan R Li
- Connecticut Mental Health Centre, Yale University, New Haven, CT, United States
| | - Belinda J Liddell
- School of Psychology, University of New South Wales, Randwick, Sydney, NSW, Australia
| | - Navdeep K Lidhar
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Kelsey Magee
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Marie-France Marin
- Department of Psychology, Université du Québec à Montréal, Montreal, Canada; Research Center, Institut universitaire en santé mentale de Montréal, Montreal, Canada
| | - Veronica Mariotti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Loren J Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Hilary A Marusak
- Department of Psychiatry and Behavaioral Neurosciences, Wayne State University, Detroit, MI, United States; Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, MI, United States
| | - Annalina V Mayer
- Social Neuroscience Lab, Translational Psychiatry Unit, University of Lübeck, Lübeck, Germany
| | - Amanda R Merner
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Jessica Minnier
- School of Public Health, Oregon Health & Science University, Portland, OR, United States
| | - Jorge Moll
- Cognitive Neuroscience and Neuroinformatics Unit, D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Robert G Morrison
- Department of Psychology, Loyola University Chicago, Chicago, IL, United States
| | - Matthew Moore
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, United States; War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, CNRS-UMR 5292, INSERM U1028, Universite Lyon, Lyon, France
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Andreas Mühlberger
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany
| | - Nora A Murphy
- Department of Psychology, Loyola Marymount University, Los Angeles, CA, United States
| | | | - Erica D Musser
- Center for Children and Families, Department of Psychology, Florida International University, Miami, FL, United States
| | - Tamara L Newton
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, United States
| | - Michael Noll-Hussong
- Psychosomatic Medicine and Psychotherapy, TU Muenchen, Langerstrasse 3, D-81675 Muenchen, Germany
| | - Seth Davin Norrholm
- Department of Psychiatry and Behavaioral Neurosciences, Wayne State University, Detroit, MI, United States
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa Institute of Mental Health Research, Royal Ottawa Mental Health Centre, Canada
| | - Robin Nusslock
- Department of Psychology and Institute for Policy Research, Northwestern University, 2029 Sheridan Road, Evanston, IL, United States
| | - Hadas Okon-Singer
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Thomas M Olino
- Department of Psychology, Temple University, 1701N. 13th St, Philadelphia, PA, United States
| | - Catherine Ortner
- Thompson Rivers University, Department of Psychology, 805 TRU Way, Kamloops, BC, Canada
| | - Mayowa Owolabi
- Department of Medicine and Center for Genomic and Precision Medicine, College of Medicine, University of Ibadan; University College Hospital, Ibadan, Oyo State, Nigeria; Blossom Specialist Medical Center Ibadan, Oyo State, Nigeria
| | - Caterina Padulo
- Department of Psychological, Health and Territorial Sciences, University of Chieti, Chieti, Italy
| | - Romina Palermo
- School of Psychological Science, University of Western Australia, Perth, WA, Australia
| | - Rocco Palumbo
- Department of Psychological, Health and Territorial Sciences, University of Chieti, Chieti, Italy
| | - Sara Palumbo
- Department of Surgical, Medical and Molecular Pathology and of Critical Care, University of Pisa, Pisa, Italy
| | - Christos Papadelis
- Jane and John Justin Neuroscience Center, Cook Children's Health Care System, Fort Worth, TX, United States; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Alan J Pegna
- School of Psychology, University of Queensland, Saint Lucia, Queensland, Australia
| | - Silvia Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Kirsi Peltonen
- Research Centre for Child Psychiatry, University of Turku, Turku, Finland; INVEST Research Flagship, University of Turku, Turku, Finland
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Location VUMC, GGZ InGeest Research & Innovation, Amsterdam Neuroscience, the Netherlands
| | | | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Rosario Pintos Lobo
- Center for Children and Families, Department of Psychology, Florida International University, Miami, FL, United States
| | - Kelly L Polnaszek
- Department of Psychology, Loyola University Chicago, Chicago, IL, United States
| | - Maryna Polyakova
- Neurology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christine Rabinak
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, United States
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Badestraße 13, Münster, Germany
| | - Thalia Richter
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab., Istituto Auxologico Italiano (IRCCS), Milan, Italy; Humane Technology Lab., Università Cattolica del Sacro Cuore, Milan, Italy
| | - Amelia Rizzo
- Department of Biomedical, Dental Sciences and Morpho-Functional Imaging - University of Messina, Italy
| | | | - Pedro Rosa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, Australia; Neuropsychiatric Institute, The Prince of Wales Hospital, Sydney, Australia
| | - Wataru Sato
- Psychological Process Research Team, Guardian Robot Project, RIKEN, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Susanne Schweizer
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom; School of Psychology, University of New South Wales, Sydney, Australia
| | - Youssef Shiban
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany; Department of Psychology (Clinical Psychology and Psychotherapy Research), PFH - Private University of Applied Sciences, Gottingen, Germany
| | - Advaith Siddharthan
- Knowledge Media Institute, The Open University, Milton Keynes MK7 6AA, United Kingdom
| | - Ewa Siedlecka
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Robert C Smith
- Departments of Medicine and Psychiatry, Michigan State University, East Lansing, MI, United States
| | - Hermona Soreq
- Department of Biological Chemistry, Edmond and Lily Safra Center of Brain Science and The Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Derek P Spangler
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, United States
| | - Emily R Stern
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States; New York University School of Medicine, New York, NY, United States
| | - Charis Styliadis
- Neuroscience of Cognition and Affection group, Lab of Medical Physics and Digital Innovation, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - James E Swain
- Departments of Psychiatry & Behavioral Health, Psychology, Obstetrics, Gynecology & Reproductive Medicine, and Program in Public Health, Renaissance School of Medicine at Stony Brook University, New York, United States
| | - Sébastien Urben
- Division of Child and Adolescent Psychiatry, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Jan Van den Stock
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Michael A Vander Kooij
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Universitatsmedizin der Johannes Guttenberg University Medical Center, Mainz, Germany
| | | | - Tamsyn E Van Rheenen
- University of Melbourne, Melbourne Neuropsychiatry Centre, Department of Psychiatry, 161 Barry Street, Carlton, VIC, Australia
| | - Michael B VanElzakker
- Division of Neurotherapeutics, Massachusetts General Hospital, Boston, MA, United States
| | - Carlos Ventura-Bort
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | - Edelyn Verona
- Department of Psychology, University of South Florida, Tampa, FL, United States
| | - Tyler Volk
- Professor Emeritus of Biology and Environmental Studies, New York University, New York, NY, United States
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Leah T Weingast
- Department of Social Work and Human Services and the Department of Psychological Sciences, Center for Young Adult Addiction and Recovery, Kennesaw State University, Kennesaw, GA, United States
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany; Faculty of Health Sciences Brandenburg, University of Potsdam, Germany
| | - Claire Williams
- School of Psychology, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, United Kingdom; Elysium Neurological Services, Elysium Healthcare, The Avalon Centre, United Kingdom
| | - Megan L Willis
- School of Behavioural and Health Sciences, Australian Catholic University, Sydney, NSW, Australia
| | - Paula Yamashita
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Roland Zahn
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Barbra Zupan
- Central Queensland University, School of Health, Medical and Applied Sciences, Bruce Highway, Rockhampton, QLD, Australia
| | - Leroy Lowe
- Neuroqualia (NGO), Truro, Nova Scotia, Canada.
| |
Collapse
|
11
|
McVeigh K, Kleckner IR, Quigley KS, Satpute AB. Fear-related psychophysiological patterns are situation and individual dependent: A Bayesian model comparison approach. Emotion 2024; 24:506-521. [PMID: 37603002 PMCID: PMC10882564 DOI: 10.1037/emo0001265] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Is there a universal mapping of physiology to emotion, or do these mappings vary substantially by person or situation? Psychologists, philosophers, and neuroscientists have debated this question for decades. Most previous studies have focused on differentiating emotions on the basis of accompanying autonomic responses using analytical approaches that often assume within-category homogeneity. In the present study, we took an alternative approach to this question. We determined the extent to which the relationship between subjective experience and autonomic reactivity generalizes across, or depends upon, the individual and situation for instances of a single emotion category, specifically, fear. Electrodermal activity and cardiac activity-two autonomic measures that are often assumed to show robust relationships with instances of fear-were recorded while participants reported fear experience in response to dozens of fear-evoking videos related to three distinct situations: spiders, heights, and social encounters. We formally translated assumptions from diverse theoretical models into a common framework for model comparison analyses. Results exceedingly favored a model that assumed situation-dependency in the relationship between fear experience and autonomic reactivity, with subject variance also significant but constrained by situation. Models that assumed generalization across situations and/or individuals performed much worse by comparison. These results call into question the assumption of generalizability of autonomic-subjective mappings across instances of fear, as required in translational research from nonhuman animals to humans, and advance a situated approach to understanding the autonomic correlates of fear experience. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Kieran McVeigh
- Department of Psychology, Northeastern University, 360 Huntington Ave, 125 NI, Boston, MA 02115
| | | | - Karen S. Quigley
- Department of Psychology, Northeastern University, 360 Huntington Ave, 125 NI, Boston, MA 02115
| | - Ajay B. Satpute
- Department of Psychology, Northeastern University, 360 Huntington Ave, 125 NI, Boston, MA 02115
| |
Collapse
|
12
|
Liu X, Jiao G, Zhou F, Kendrick KM, Yao D, Gong Q, Xiang S, Jia T, Zhang XY, Zhang J, Feng J, Becker B. A neural signature for the subjective experience of threat anticipation under uncertainty. Nat Commun 2024; 15:1544. [PMID: 38378947 PMCID: PMC10879105 DOI: 10.1038/s41467-024-45433-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Uncertainty about potential future threats and the associated anxious anticipation represents a key feature of anxiety. However, the neural systems that underlie the subjective experience of threat anticipation under uncertainty remain unclear. Combining an uncertainty-variation threat anticipation paradigm that allows precise modulation of the level of momentary anxious arousal during functional magnetic resonance imaging (fMRI) with multivariate predictive modeling, we train a brain model that accurately predicts subjective anxious arousal intensity during anticipation and test it across 9 samples (total n = 572, both gender). Using publicly available datasets, we demonstrate that the whole-brain signature specifically predicts anxious anticipation and is not sensitive in predicting pain, general anticipation or unspecific emotional and autonomic arousal. The signature is also functionally and spatially distinguishable from representations of subjective fear or negative affect. We develop a sensitive, generalizable, and specific neuroimaging marker for the subjective experience of uncertain threat anticipation that can facilitate model development.
Collapse
Affiliation(s)
- Xiqin Liu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Guojuan Jiao
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing, China
- MOE Key Laboratory of Cognition and Personality, Chongqing, China
| | - Keith M Kendrick
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Dezhong Yao
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Shitong Xiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, China
| | - Tianye Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, China
- The Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai, China
- SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Xiao-Yong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
- Department of Psychology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Lu H, Yang J, Zhao K, Jin Z, Wen X, Hu N, Yang H, Sun Z, Chen H, Huang Y, Wang DB, Wu Y. Perceived risk of COVID-19 hurts mental health: the mediating role of fear of COVID-19 and the moderating role of resilience. BMC Psychiatry 2024; 24:58. [PMID: 38254008 PMCID: PMC10802027 DOI: 10.1186/s12888-024-05511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Depression and anxiety have been found prevalent during all phases of the COVID-19 pandemic. In late December 2022, almost all COVID-19 control measures were lifted in China, leading to a surge in COVID-19 infections. The public's perceived risk and fear of COVID-19 would be increased. This study aims to examine the prevalence of depression and anxiety in the Chinese general population and explores the mediating role of fear of COVID-19 between COVID-19 perceived risk and depression/anxiety and the moderating role of resilience between fear of COVID-19 and depression/anxiety. METHODS A cross-sectional online survey was conducted in Wenzhou, China, immediately following almost all COVID-19 control measures lifted. The 9-item Patient Health Questionnaire (PHQ-9), Generalized Anxiety Disorder-7 (GAD-7), the COVID-19 Risk Perception Scale, the Fear of COVID-19 Scale, and the Connor-Davidson Resilience Scale (CD-RISC) were used to evaluate depression, anxiety, COVID-19 perceived risk, fear of COVID-19, and resilience, respectively. Structural Equation Modeling (SEM) with Maximum Likelihood (ML) estimator and adjusted for significant background factors was performed to test the moderated mediation. Data obtained from 935 participants were analyzed. RESULTS The prevalence of moderate to severe depression and anxiety was 23.7% and 9.5%, respectively. The present study revealed positive associations among COVID-19 perceived risk, fear of COVID-19 and depression/anxiety, and negative associations between resilience and fear of COVID-19/depression/anxiety. Fear of COVID-19 partially mediated the association between COVID-19 perceived risk and depression/anxiety. Furthermore, resilience significantly moderated the association between fear of COVID-19 and depression/anxiety. Two moderated mediation models were constructed. CONCLUSION Depression and anxiety were prevalent among Chinese adults during the final phase of the pandemic in China. The significant mediation role of fear of COVID-19 implies that reducing fear of COVID-19 may effectively alleviate depression and anxiety symptoms. Moreover, enhancing public resilience during an epidemic crisis is crucial for promoting mental health.
Collapse
Affiliation(s)
- Hui Lu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Institute of Aging, Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jialin Yang
- Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, 32500, China
| | - Kejie Zhao
- Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, 32500, China
| | - Zhou Jin
- Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, 32500, China
| | - Xin Wen
- Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, 32500, China
| | - Nuonuo Hu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, 32500, China
| | - Hongshen Yang
- Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, 32500, China
| | - Zhiyu Sun
- Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, 32500, China
| | - Haitao Chen
- Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, 32500, China
| | - Yili Huang
- Lyons Insights Consulting, Chicago, United States of America.
| | - Deborah Baofeng Wang
- Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, 32500, China.
| | - Yili Wu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, 32500, China.
| |
Collapse
|
14
|
Kitamura T, Ramesh K, Terranova JI. Understanding Others' Distress Through Past Experiences: The Role of Memory Engram Cells in Observational Fear. ADVANCES IN NEUROBIOLOGY 2024; 38:215-234. [PMID: 39008018 DOI: 10.1007/978-3-031-62983-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
For individuals to survive and function in society, it is essential that they recognize, interact with, and learn from other conspecifics. Observational fear (OF) is the well-conserved empathic ability of individuals to understand the other's aversive situation. While it is widely known that factors such as prior similar aversive experience and social familiarity with the demonstrator facilitate OF, the neural circuit mechanisms that explicitly regulate experience-dependent OF (Exp OF) were unclear. In this review, we examine the neural circuit mechanisms that regulate OF, with an emphasis on rodent models, and then discuss emerging evidence for the role of fear memory engram cells in the regulation of Exp OF. First, we examine the neural circuit mechanisms that underlie Naive OF, which is when an observer lacks prior experiences relevant to OF. In particular, the anterior cingulate cortex to basolateral amygdala (BLA) neural circuit is essential for Naive OF. Next, we discuss a recent study that developed a behavioral paradigm in mice to examine the neural circuit mechanisms that underlie Exp OF. This study found that fear memory engram cells in the BLA of observers, which form during a prior similar aversive experience with shock, are reactivated by ventral hippocampal neurons in response to shock delivery to the familiar demonstrator to elicit Exp OF. Finally, we discuss the implications of fear memory engram cells in Exp OF and directions of future research that are of both translational and basic interest.
Collapse
Affiliation(s)
- Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Kritika Ramesh
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
15
|
Martin-Fernandez M, Menegolla AP, Lopez-Fernandez G, Winke N, Jercog D, Kim HR, Girard D, Dejean C, Herry C. Prefrontal circuits encode both general danger and specific threat representations. Nat Neurosci 2023; 26:2147-2157. [PMID: 37904042 DOI: 10.1038/s41593-023-01472-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 09/25/2023] [Indexed: 11/01/2023]
Abstract
Behavioral adaptation to potential threats requires both a global representation of danger to prepare the organism to react in a timely manner but also the identification of specific threatening situations to select the appropriate behavioral responses. The prefrontal cortex is known to control threat-related behaviors, yet it is unknown whether it encodes global defensive states and/or the identity of specific threatening encounters. Using a new behavioral paradigm that exposes mice to different threatening situations, we show that the dorsomedial prefrontal cortex (dmPFC) encodes a general representation of danger while simultaneously encoding a specific neuronal representation of each threat. Importantly, the global representation of danger persisted in error trials that instead lacked specific threat identity representations. Consistently, optogenetic prefrontal inhibition impaired overall behavioral performance and discrimination of different threatening situations without any bias toward active or passive behaviors. Together, these data indicate that the prefrontal cortex encodes both a global representation of danger and specific representations of threat identity to control the selection of defensive behaviors.
Collapse
Affiliation(s)
- Mario Martin-Fernandez
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France.
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.
| | - Ana Paula Menegolla
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Guillem Lopez-Fernandez
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Nanci Winke
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Daniel Jercog
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Ha-Rang Kim
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Delphine Girard
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Cyril Dejean
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Cyril Herry
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France.
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.
| |
Collapse
|
16
|
Ke S, Hartmann J, Ressler KJ, Liu YY, Koenen KC. The emerging role of the gut microbiome in posttraumatic stress disorder. Brain Behav Immun 2023; 114:360-370. [PMID: 37689277 PMCID: PMC10591863 DOI: 10.1016/j.bbi.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) occurs in some people following exposure to a terrifying or catastrophic event involving actual/threatened death, serious injury, or sexual violence. PTSD is a common and debilitating mental disorder that imposes a significant burden on individuals, their families, health services, and society. Moreover, PTSD is a risk factor for chronic diseases such as coronary heart disease, stroke, diabetes, as well as premature mortality. Furthermore, PTSD is associated with dysregulated immune function. Despite the high prevalence of PTSD, the mechanisms underlying its etiology and manifestations remain poorly understood. Compelling evidence indicates that the human gut microbiome, a complex community of microorganisms living in the gastrointestinal tract, plays a crucial role in the development and function of the host nervous system, complex behaviors, and brain circuits. The gut microbiome may contribute to PTSD by influencing inflammation, stress responses, and neurotransmitter signaling, while bidirectional communication between the gut and brain involves mechanisms such as microbial metabolites, immune system activation, and the vagus nerve. In this literature review, we summarize recent findings on the role of the gut microbiome in PTSD in both human and animal studies. We discuss the methodological limitations of existing studies and suggest future research directions to further understand the role of the gut microbiome in PTSD.
Collapse
Affiliation(s)
- Shanlin Ke
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jakob Hartmann
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Center for Artificial Intelligence and Modeling, The Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Bramson B, Toni I, Roelofs K. Emotion regulation from an action-control perspective. Neurosci Biobehav Rev 2023; 153:105397. [PMID: 37739325 DOI: 10.1016/j.neubiorev.2023.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Despite increasing interest in emotional processes in cognitive science, theories on emotion regulation have remained rather isolated, predominantly focused on cognitive regulation strategies such as reappraisal. However, recent neurocognitive evidence suggests that early emotion regulation may involve sensorimotor control in addition to other emotion-regulation processes. We propose an action-oriented view of emotion regulation, in which feedforward predictions develop from action-selection mechanisms. Those can account for acute emotional-action control as well as more abstract instances of emotion regulation such as cognitive reappraisal. We argue the latter occurs in absence of overt motor output, yet in the presence of full-blown autonomic, visceral, and subjective changes. This provides an integrated framework with testable neuro-computational predictions and concrete starting points for intervention to improve emotion control in affective disorders.
Collapse
Affiliation(s)
- Bob Bramson
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands; Behavioural Science Institute (BSI), Radboud University Nijmegen, 6525 HR Nijmegen, the Netherlands.
| | - Ivan Toni
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands
| | - Karin Roelofs
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands; Behavioural Science Institute (BSI), Radboud University Nijmegen, 6525 HR Nijmegen, the Netherlands
| |
Collapse
|
18
|
Sun Y, Qian L, Xu L, Hunt S, Sah P. Somatostatin neurons in the central amygdala mediate anxiety by disinhibition of the central sublenticular extended amygdala. Mol Psychiatry 2023; 28:4163-4174. [PMID: 33005027 DOI: 10.1038/s41380-020-00894-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 07/29/2020] [Accepted: 09/16/2020] [Indexed: 11/09/2022]
Abstract
Fear and anxiety are two defensive emotional states evoked by threats in the environment. Fear can be initiated by either imminent or future threats, but experimentally, it is typically studied as a phasic response initiated by imminent danger that subsides when the threats is removed. In contrast, anxiety is a sustained response, initiated by imagined or potential threats. The central amygdala (CeA) is a key structure active during both fear and anxiety but thought to engage different neural systems. Fear responses are triggered by activation of somatostatin (SOM) expressing neurons in the lateral division of the CeA (CeL), and downstream projections from the medial division. Anxiety responses engage the central extended amygdala that includes the CeA, central sublenticular extended amygdala (SLEAc) and bed nucleus of the stria terminalis, but the nature of connections between these regions is not understood. Here using a combination of tract tracing, electrophysiology, and behavioral analysis in mice, we show that a population of SOM+ neurons in the CeL project to the SLEAc where they inhibit local GABAergic interneurons. Optogenetic activation of this input to the SLEAc has no effect on movement, but is anxiogenic in both open field and elevated plus maze. Our results define the inhibitory connections between CeL and SLEAc and establish a specific CeL to SLEAc projection as a circuit element in mediating anxiety.
Collapse
Affiliation(s)
- Yajie Sun
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Lei Qian
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Li Xu
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Sarah Hunt
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Nanshan District, Shenzhen, Guangdong Province, PR China.
| |
Collapse
|
19
|
Sawka AM, Ghai S, Rotstein L, Irish JC, Pasternak JD, Gullane PJ, Monteiro E, Zahedi A, Gooden E, Eskander A, Chung J, Devon K, Su J, Xu W, Jones JM, Gafni A, Baxter NN, Goldstein DP. Gender Differences in Fears Related to Low-Risk Papillary Thyroid Cancer and Its Treatment. JAMA Otolaryngol Head Neck Surg 2023; 149:803-810. [PMID: 37410454 PMCID: PMC10326729 DOI: 10.1001/jamaoto.2023.1642] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/16/2023] [Indexed: 07/07/2023]
Abstract
Importance Fear is commonly experienced by individuals newly diagnosed with papillary thyroid cancer (PTC). Objective To explore the association between gender and fears of low-risk PTC disease progression, as well as its potential surgical treatment. Design, Setting, and Participants This single-center prospective cohort study was conducted at a tertiary care referral hospital in Toronto, Canada, and enrolled patients with untreated small low risk PTC (<2 cm in maximal diameter) that was confined to the thyroid. All patients had a surgical consultation. Study participants were enrolled between May 2016 and February 2021. Data analysis was performed from December 16, 2022, to May 8, 2023. Exposures Gender was self-reported by patients with low-risk PTC who were offered the choice of thyroidectomy or active surveillance. Baseline data were collected prior to the patient deciding on disease management. Main Outcomes and Measures Baseline patient questionnaires included the Fear of Progression-Short Form and Surgical Fear (referring to thyroidectomy) questionnaires. The fears of women and men were compared after adjustment for age. Decision-related variables, including Decision Self-Efficacy, and the ultimate treatment decisions were also compared between genders. Results The study included 153 women (mean [SD] age, 50.7 [15.0] years) and 47 men (mean [SD] age, 56.3 [13.8] years). There were no significant differences in primary tumor size, marital status, education, parental status, or employment status between the women and men. After adjustment for age, there was no significant difference observed in the level of fear of disease progression between men and women. However, women reported greater surgical fear compared with men. There was no meaningful difference observed between women and men with respect to decision self-efficacy or the ultimate treatment choice. Conclusions and Relevance In this cohort study of patients with low-risk PTC, women reported a higher level of surgical fear but not fear of the disease compared with men (after adjustment for age). Women and men were similarly confident and satisfied with their disease management choice. Furthermore, the decisions of women and men were generally not significantly different. The context of gender may contribute to the emotional experience of being diagnosed with thyroid cancer and its treatment perception.
Collapse
Affiliation(s)
- Anna M. Sawka
- Division of Endocrinology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Sangeet Ghai
- Joint Department of Medical Imaging, University Health Network–Mount Sinai Hospital–Women’s College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Lorne Rotstein
- Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Jonathan C. Irish
- Department of Otolaryngology–Head and Neck Surgery/Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Jesse D. Pasternak
- Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Patrick J. Gullane
- Department of Otolaryngology–Head and Neck Surgery/Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Eric Monteiro
- Department of Otolaryngology and Head and Neck Surgery, Mount Sinai Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Afshan Zahedi
- Division of Endocrinology, Women’s College Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Everton Gooden
- Department of Otolaryngology and Head and Neck Surgery, North York General Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Antoine Eskander
- Department of Otolaryngology and Head and Neck Surgery, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, Ontario, Canada
| | - Janet Chung
- Department of Otolaryngology and Head and Neck Surgery, Trillium Health Partners and University of Toronto, Toronto, Ontario, Canada
| | - Karen Devon
- Division of Endocrinology, Women’s College Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Jie Su
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer M. Jones
- Department of Psychosocial Oncology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Amiram Gafni
- Centre for Health Economics and Policy Analysis, Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Nancy N. Baxter
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - David P. Goldstein
- Department of Otolaryngology–Head and Neck Surgery/Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Abend R. Understanding anxiety symptoms as aberrant defensive responding along the threat imminence continuum. Neurosci Biobehav Rev 2023; 152:105305. [PMID: 37414377 PMCID: PMC10528507 DOI: 10.1016/j.neubiorev.2023.105305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Threat-anticipatory defensive responses have evolved to promote survival in a dynamic world. While inherently adaptive, aberrant expression of defensive responses to potential threat could manifest as pathological anxiety, which is prevalent, impairing, and associated with adverse outcomes. Extensive translational neuroscience research indicates that normative defensive responses are organized by threat imminence, such that distinct response patterns are observed in each phase of threat encounter and orchestrated by partially conserved neural circuitry. Anxiety symptoms, such as excessive and pervasive worry, physiological arousal, and avoidance behavior, may reflect aberrant expression of otherwise normative defensive responses, and therefore follow the same imminence-based organization. Here, empirical evidence linking aberrant expression of specific, imminence-dependent defensive responding to distinct anxiety symptoms is reviewed, and plausible contributing neural circuitry is highlighted. Drawing from translational and clinical research, the proposed framework informs our understanding of pathological anxiety by grounding anxiety symptoms in conserved psychobiological mechanisms. Potential implications for research and treatment are discussed.
Collapse
Affiliation(s)
- Rany Abend
- School of Psychology, Reichman University, P.O. Box 167, Herzliya 4610101, Israel; Section on Development and Affective Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Grogans SE, Bliss-Moreau E, Buss KA, Clark LA, Fox AS, Keltner D, Cowen AS, Kim JJ, Kragel PA, MacLeod C, Mobbs D, Naragon-Gainey K, Fullana MA, Shackman AJ. The nature and neurobiology of fear and anxiety: State of the science and opportunities for accelerating discovery. Neurosci Biobehav Rev 2023; 151:105237. [PMID: 37209932 PMCID: PMC10330657 DOI: 10.1016/j.neubiorev.2023.105237] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Fear and anxiety play a central role in mammalian life, and there is considerable interest in clarifying their nature, identifying their biological underpinnings, and determining their consequences for health and disease. Here we provide a roundtable discussion on the nature and biological bases of fear- and anxiety-related states, traits, and disorders. The discussants include scientists familiar with a wide variety of populations and a broad spectrum of techniques. The goal of the roundtable was to take stock of the state of the science and provide a roadmap to the next generation of fear and anxiety research. Much of the discussion centered on the key challenges facing the field, the most fruitful avenues for future research, and emerging opportunities for accelerating discovery, with implications for scientists, funders, and other stakeholders. Understanding fear and anxiety is a matter of practical importance. Anxiety disorders are a leading burden on public health and existing treatments are far from curative, underscoring the urgency of developing a deeper understanding of the factors governing threat-related emotions.
Collapse
Affiliation(s)
- Shannon E Grogans
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Eliza Bliss-Moreau
- Department of Psychology, University of California, Davis, CA 95616, USA; California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Kristin A Buss
- Department of Psychology, The Pennsylvania State University, University Park, PA 16802 USA
| | - Lee Anna Clark
- Department of Psychology, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Andrew S Fox
- Department of Psychology, University of California, Davis, CA 95616, USA; California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Dacher Keltner
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Jeansok J Kim
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
| | - Philip A Kragel
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Colin MacLeod
- Centre for the Advancement of Research on Emotion, School of Psychological Science, The University of Western Australia, Perth, WA 6009, Australia
| | - Dean Mobbs
- Department of Humanities and Social Sciences, California Institute of Technology, Pasadena, California 91125, USA; Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kristin Naragon-Gainey
- School of Psychological Science, University of Western Australia, Perth, WA 6009, Australia
| | - Miquel A Fullana
- Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clinic, Barcelona, Spain; Imaging of Mood, and Anxiety-Related Disorders Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, University of Barcelona, Barcelona, Spain
| | - Alexander J Shackman
- Department of Psychology, University of Maryland, College Park, MD 20742, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA; Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
22
|
Kim HC, Kaplan CM, Islam S, Anderson AS, Piper ME, Bradford DE, Curtin JJ, DeYoung KA, Smith JF, Fox AS, Shackman AJ. Acute nicotine abstinence amplifies subjective withdrawal symptoms and threat-evoked fear and anxiety, but not extended amygdala reactivity. PLoS One 2023; 18:e0288544. [PMID: 37471317 PMCID: PMC10358993 DOI: 10.1371/journal.pone.0288544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
Tobacco smoking imposes a staggering burden on public health, underscoring the urgency of developing a deeper understanding of the processes that maintain addiction. Clinical and experience-sampling data highlight the importance of anxious withdrawal symptoms, but the underlying neurobiology has remained elusive. Mechanistic work in animals implicates the central extended amygdala (EAc)-including the central nucleus of the amygdala and the neighboring bed nucleus of the stria terminalis-but the translational relevance of these discoveries remains unexplored. Here we leveraged a randomized trial design, well-established threat-anticipation paradigm, and multidimensional battery of assessments to understand the consequences of 24-hour nicotine abstinence. The threat-anticipation paradigm had the expected consequences, amplifying subjective distress and arousal, and recruiting the canonical threat-anticipation network. Abstinence increased smoking urges and withdrawal symptoms, and potentiated threat-evoked distress, but had negligible consequences for EAc threat reactivity, raising questions about the translational relevance of prominent animal and human models of addiction. These observations provide a framework for conceptualizing nicotine abstinence and withdrawal, with implications for basic, translational, and clinical science.
Collapse
Affiliation(s)
- Hyung Cho Kim
- Department of Psychology, University of Maryland, College Park, Maryland, United States of America
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, United States of America
| | - Claire M. Kaplan
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Samiha Islam
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Allegra S. Anderson
- Department of Psychological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Megan E. Piper
- Center for Tobacco Research and Intervention and Department of Medicine, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, United States of America
| | - Daniel E. Bradford
- School of Psychological Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - John J. Curtin
- Department of Psychology, University of Wisconsin—Madison, Madison, Wisconsin, United States of America
| | - Kathryn A. DeYoung
- Department of Psychology, University of Maryland, College Park, Maryland, United States of America
| | - Jason F. Smith
- Department of Psychology, University of Maryland, College Park, Maryland, United States of America
| | - Andrew S. Fox
- Department of Psychology, University of California, Davis, California, United States of America
- California National Primate Research Center, University of California, Davis, California, United States of America
| | - Alexander J. Shackman
- Department of Psychology, University of Maryland, College Park, Maryland, United States of America
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, United States of America
- Maryland Neuroimaging Center, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
23
|
Ellmers TJ, Wilson MR, Kal EC, Young WR. The perceived control model of falling: developing a unified framework to understand and assess maladaptive fear of falling. Age Ageing 2023; 52:afad093. [PMID: 37466642 PMCID: PMC10355179 DOI: 10.1093/ageing/afad093] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND fear of falling is common in older adults and can have a profound influence on a variety of behaviours that increase fall risk. However, fear of falling can also have potentially positive outcomes for certain individuals. Without progressing our understanding of mechanisms underlying these contrasting outcomes, it is difficult to clinically manage fear of falling. METHODS this paper first summarises recent findings on the topic of fear of falling, balance and fall risk-including work highlighting the protective effects of fear. Specific focus is placed on describing how fear of falling influences perceptual, cognitive and motor process in ways that might either increase or reduce fall risk. Finally, it reports the development and validation of a new clinical tool that can be used to assess the maladaptive components of fear of falling. RESULTS we present a new conceptual framework-the Perceived Control Model of Falling-that describes specific mechanisms through which fear of falling can influence fall risk. The key conceptual advance is the identification of perceived control over situations that threaten one's balance as the crucial factor mediating the relationship between fear and increased fall risk. The new 4-item scale that we develop-the Updated Perceived Control over Falling Scale (UP-COF)-is a valid and reliable tool to clinically assess perceived control. CONCLUSION this new conceptualisation and tool (UP-COF) allows clinicians to identify individuals for whom fear of falling is likely to increase fall risk, and target specific underlying maladaptive processes such as low perceived control.
Collapse
Affiliation(s)
| | - Mark R Wilson
- Department of Public Health and Sports Sciences, University of Exeter, Exeter, UK
| | - Elmar C Kal
- Centre for Cognitive Neuroscience, Brunel University London, London, UK
| | - William R Young
- Centre for Cognitive Neuroscience, Brunel University London, London, UK
- Department of Public Health and Sports Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
24
|
Rolls ET. Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala. Brain Struct Funct 2023; 228:1201-1257. [PMID: 37178232 PMCID: PMC10250292 DOI: 10.1007/s00429-023-02644-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
The orbitofrontal cortex and amygdala are involved in emotion and in motivation, but the relationship between these functions performed by these brain structures is not clear. To address this, a unified theory of emotion and motivation is described in which motivational states are states in which instrumental goal-directed actions are performed to obtain rewards or avoid punishers, and emotional states are states that are elicited when the reward or punisher is or is not received. This greatly simplifies our understanding of emotion and motivation, for the same set of genes and associated brain systems can define the primary or unlearned rewards and punishers such as sweet taste or pain. Recent evidence on the connectivity of human brain systems involved in emotion and motivation indicates that the orbitofrontal cortex is involved in reward value and experienced emotion with outputs to cortical regions including those involved in language, and is a key brain region involved in depression and the associated changes in motivation. The amygdala has weak effective connectivity back to the cortex in humans, and is implicated in brainstem-mediated responses to stimuli such as freezing and autonomic activity, rather than in declarative emotion. The anterior cingulate cortex is involved in learning actions to obtain rewards, and with the orbitofrontal cortex and ventromedial prefrontal cortex in providing the goals for navigation and in reward-related effects on memory consolidation mediated partly via the cholinergic system.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.
- Department of Computer Science, University of Warwick, Coventry, UK.
| |
Collapse
|
25
|
Wang Z, Nan T, Goerlich KS, Li Y, Aleman A, Luo Y, Xu P. Neurocomputational mechanisms underlying fear-biased adaptation learning in changing environments. PLoS Biol 2023; 21:e3001724. [PMID: 37126501 PMCID: PMC10174591 DOI: 10.1371/journal.pbio.3001724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 05/11/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Humans are able to adapt to the fast-changing world by estimating statistical regularities of the environment. Although fear can profoundly impact adaptive behaviors, the computational and neural mechanisms underlying this phenomenon remain elusive. Here, we conducted a behavioral experiment (n = 21) and a functional magnetic resonance imaging experiment (n = 37) with a novel cue-biased adaptation learning task, during which we simultaneously manipulated emotional valence (fearful/neutral expressions of the cue) and environmental volatility (frequent/infrequent reversals of reward probabilities). Across 2 experiments, computational modeling consistently revealed a higher learning rate for the environment with frequent versus infrequent reversals following neutral cues. In contrast, this flexible adjustment was absent in the environment with fearful cues, suggesting a suppressive role of fear in adaptation to environmental volatility. This suppressive effect was underpinned by activity of the ventral striatum, hippocampus, and dorsal anterior cingulate cortex (dACC) as well as increased functional connectivity between the dACC and temporal-parietal junction (TPJ) for fear with environmental volatility. Dynamic causal modeling identified that the driving effect was located in the TPJ and was associated with dACC activation, suggesting that the suppression of fear on adaptive behaviors occurs at the early stage of bottom-up processing. These findings provide a neuro-computational account of how fear interferes with adaptation to volatility during dynamic environments.
Collapse
Affiliation(s)
- Zhihao Wang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing, China
- CNRS-Centre d'Economie de la Sorbonne, Panthéon-Sorbonne University, France
| | - Tian Nan
- School of Psychology, Sichuan Center of Applied Psychology, Chengdu Medical College, Chengdu, China
| | - Katharina S Goerlich
- University of Groningen, Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neuroscience, University Medical Center Groningen, Groningen, the Netherlands
| | - Yiman Li
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Magnetic Resonance Imaging, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
| | - André Aleman
- University of Groningen, Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neuroscience, University Medical Center Groningen, Groningen, the Netherlands
| | - Yuejia Luo
- School of Psychology, Sichuan Center of Applied Psychology, Chengdu Medical College, Chengdu, China
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Magnetic Resonance Imaging, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- The State Key Lab of Cognitive and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Pengfei Xu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing, China
- Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China
| |
Collapse
|
26
|
D'Aniello B, Pinelli C, Scandurra A, Di Lucrezia A, Aria M, Semin GR. When are puppies receptive to emotion-induced human chemosignals? The cases of fear and happiness. Anim Cogn 2023:10.1007/s10071-023-01771-4. [PMID: 37010698 DOI: 10.1007/s10071-023-01771-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
We report an observational, double-blind, experimental study that examines the effects of human emotional odors on puppies between 3 and 6 months and adult dogs (one year and upwards). Both groups were exposed to control, human fear, and happiness odors in a between subjects' design. The duration of all behaviors directed to the apparatus, the door, the owner, a stranger, and stress behaviors was recorded. A discriminant analysis showed that the fear odor activates consistent behavior patterns for both puppies and adult dogs. However, no behavioral differences between the control and happiness odor conditions were found in the case of puppies. In contrast, adult dogs reveal distinctive patterns for all three odor conditions. We argue that responses to human fear chemosignals systematically influence the behaviors displayed by puppies and adult dogs, which could be genetically prefigured. In contrast, the effects of happiness odors constitute cues that require learning during early socialization processes, which yield consistent patterns only in adulthood.
Collapse
Affiliation(s)
- Biagio D'Aniello
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Claudia Pinelli
- Department of Environmental, Biological and Pharmaceutical Sciences & Technologies, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Anna Scandurra
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Alfredo Di Lucrezia
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Massimo Aria
- Department of Economics and Statistics, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Gün R Semin
- William James Center for Research, ISPA-Instituto Universitario, 1149-041, Lisbon, Portugal.
- Faculty of Social and Behavioral Sciences, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
27
|
Allen MT. Weaker situations: Uncertainty reveals individual differences in learning: Implications for PTSD. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-023-01077-5. [PMID: 36944865 DOI: 10.3758/s13415-023-01077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/23/2023]
Abstract
Few individuals who experience trauma develop posttraumatic stress disorder (PTSD). Therefore, the identification of individual differences that signal increased risk for PTSD is important. Lissek et al. (2006) proposed using a weak rather than a strong situation to identify individual differences. A weak situation involves less-salient cues as well as some degree of uncertainty, which reveal individual differences. A strong situation involves salient cues with little uncertainty, which produce consistently strong responses. Results from fear conditioning studies that support this hypothesis are discussed briefly. This review focuses on recent findings from three learning tasks: classical eyeblink conditioning, avoidance learning, and a computer-based task. These tasks are interpreted as weaker learning situations in that they involve some degree of uncertainty. Individual differences in learning based on behavioral inhibition, which is a risk factor for PTSD, are explored. Specifically, behaviorally inhibited individuals and rodents (i.e., Wistar Kyoto rats), as well as individuals expressing PTSD symptoms, exhibit enhanced eyeblink conditioning. Behaviorally inhibited rodents also demonstrate enhanced avoidance responding (i.e., lever pressing). Both enhanced eyeblink conditioning and avoidance are most evident with schedules of partial reinforcement. Behaviorally inhibited individuals also performed better on reward and punishment trials than noninhibited controls in a probabilistic category learning task. Overall, the use of weaker situations with uncertain relationships may be more ecologically valid than learning tasks in which the aversive event occurs on every trial and may provide more sensitivity for identifying individual differences in learning for those at risk for, or expressing, PTSD symptoms.
Collapse
Affiliation(s)
- M Todd Allen
- School of Psychological Sciences, University of Northern Colorado, Greeley, CO, USA.
| |
Collapse
|
28
|
Mayiwar L, Björklund F. Fear and anxiety differ in construal level and scope. Cogn Emot 2023:1-13. [PMID: 36876645 DOI: 10.1080/02699931.2023.2184775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The fear-anxiety distinction has been extensively discussed and debated among emotion researchers. In this study, we tested this distinction from a social-cognitive perspective. Drawing on construal level theory and regulatory scope theory, we examined whether fear and anxiety differ in their underlying level of construal and scope. Results from a preregistered autobiographical recall study (N = 200) that concerned either a fear situation or an anxiety situation and a large dataset from Twitter (N = 104,949) indicated that anxiety was associated with a higher level of construal and a more expansive scope than fear. These findings support the notion that emotions serve as mental tools that deal with different challenges. While fear prompts people to seek immediate solutions to concrete threats in the here and now (contractive scope), anxiety prompts them to deal with distant and unknown threats that require more expansive and flexible solutions (expansive scope). Our study contributes to a growing literature on emotions and construal level and points to interesting avenues for further research.
Collapse
Affiliation(s)
- Lewend Mayiwar
- Department of Leadership and Organizational Behaviour, BI Norwegian Business School, Oslo, Norway
| | | |
Collapse
|
29
|
Shemesh Y, Chen A. A paradigm shift in translational psychiatry through rodent neuroethology. Mol Psychiatry 2023; 28:993-1003. [PMID: 36635579 PMCID: PMC10005947 DOI: 10.1038/s41380-022-01913-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 01/14/2023]
Abstract
Mental disorders are a significant cause of disability worldwide. They profoundly affect individuals' well-being and impose a substantial financial burden on societies and governments. However, despite decades of extensive research, the effectiveness of current therapeutics for mental disorders is often not satisfactory or well tolerated by the patient. Moreover, most novel therapeutic candidates fail in clinical testing during the most expensive phases (II and III), which results in the withdrawal of pharma companies from investing in the field. It also brings into question the effectiveness of using animal models in preclinical studies to discover new therapeutic agents and predict their potential for treating mental illnesses in humans. Here, we focus on rodents as animal models and propose that they are essential for preclinical investigations of candidate therapeutic agents' mechanisms of action and for testing their safety and efficiency. Nevertheless, we argue that there is a need for a paradigm shift in the methodologies used to measure animal behavior in laboratory settings. Specifically, behavioral readouts obtained from short, highly controlled tests in impoverished environments and social contexts as proxies for complex human behavioral disorders might be of limited face validity. Conversely, animal models that are monitored in more naturalistic environments over long periods display complex and ethologically relevant behaviors that reflect evolutionarily conserved endophenotypes of translational value. We present how semi-natural setups in which groups of mice are individually tagged, and video recorded continuously can be attainable and affordable. Moreover, novel open-source machine-learning techniques for pose estimation enable continuous and automatic tracking of individual body parts in groups of rodents over long periods. The trajectories of each individual animal can further be subjected to supervised machine learning algorithms for automatic detection of specific behaviors (e.g., chasing, biting, or fleeing) or unsupervised automatic detection of behavioral motifs (e.g., stereotypical movements that might be harder to name or label manually). Compared to studies of animals in the wild, semi-natural environments are more compatible with neural and genetic manipulation techniques. As such, they can be used to study the neurobiological mechanisms underlying naturalistic behavior. Hence, we suggest that such a paradigm possesses the best out of classical ethology and the reductive behaviorist approach and may provide a breakthrough in discovering new efficient therapies for mental illnesses.
Collapse
Affiliation(s)
- Yair Shemesh
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Alon Chen
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel.
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| |
Collapse
|
30
|
Integrated cardio-behavioral responses to threat define defensive states. Nat Neurosci 2023; 26:447-457. [PMID: 36759559 PMCID: PMC9991919 DOI: 10.1038/s41593-022-01252-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/21/2022] [Indexed: 02/11/2023]
Abstract
Fear and anxiety are brain states that evolved to mediate defensive responses to threats. The defense reaction includes multiple interacting behavioral, autonomic and endocrine adjustments, but their integrative nature is poorly understood. In particular, although threat has been associated with various cardiac changes, there is no clear consensus regarding the relevance of these changes for the integrated defense reaction. Here we identify rapid microstates that are associated with specific behaviors and heart rate dynamics, which are affected by long-lasting macrostates and reflect context-dependent threat levels. In addition, we demonstrate that one of the most commonly used defensive behavioral responses-freezing as measured by immobility-is part of an integrated cardio-behavioral microstate mediated by Chx10+ neurons in the periaqueductal gray. Our framework for systematic integration of cardiac and behavioral readouts presents the basis for a better understanding of complex neural defensive states and their associated systemic functions.
Collapse
|
31
|
Beckers T, Hermans D, Lange I, Luyten L, Scheveneels S, Vervliet B. Understanding clinical fear and anxiety through the lens of human fear conditioning. NATURE REVIEWS PSYCHOLOGY 2023; 2:233-245. [PMID: 36811021 PMCID: PMC9933844 DOI: 10.1038/s44159-023-00156-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/18/2023]
Abstract
Fear is an adaptive emotion that mobilizes defensive resources upon confrontation with danger. However, fear becomes maladaptive and can give rise to the development of clinical anxiety when it exceeds the degree of threat, generalizes broadly across stimuli and contexts, persists after the danger is gone or promotes excessive avoidance behaviour. Pavlovian fear conditioning has been the prime research instrument that has led to substantial progress in understanding the multi-faceted psychological and neurobiological mechanisms of fear in past decades. In this Perspective, we suggest that fruitful use of Pavlovian fear conditioning as a laboratory model of clinical anxiety requires moving beyond the study of fear acquisition to associated fear conditioning phenomena: fear extinction, generalization of conditioned fear and fearful avoidance. Understanding individual differences in each of these phenomena, not only in isolation but also in how they interact, will further strengthen the external validity of the fear conditioning model as a tool with which to study maladaptive fear as it manifests in clinical anxiety.
Collapse
Affiliation(s)
- Tom Beckers
- grid.5596.f0000 0001 0668 7884Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Dirk Hermans
- grid.5596.f0000 0001 0668 7884Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Iris Lange
- grid.5596.f0000 0001 0668 7884Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Laura Luyten
- grid.5596.f0000 0001 0668 7884Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Sara Scheveneels
- grid.5596.f0000 0001 0668 7884Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Bram Vervliet
- grid.5596.f0000 0001 0668 7884Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Iglesias LP, Fernandes HB, de Miranda AS, Perez MM, Faccioli LH, Sorgi CA, Bertoglio LJ, Aguiar DC, Wotjak CT, Moreira FA. TRPV1 modulation of contextual fear memory depends on stimulus intensity and endocannabinoid signalling in the dorsal hippocampus. Neuropharmacology 2023; 224:109314. [PMID: 36336070 DOI: 10.1016/j.neuropharm.2022.109314] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
The transient receptor potential vanilloid type-1 (TRPV1) channels have been implicated in the modulation of aversive responses. The endocannabinoid anandamide acts as an endogenous TRPV1 agonist, exerting opposite functions at TRPV1 and type-1 cannabinoid receptors (CB1R). Here we tested the hypothesis that hippocampal TRPV1 modulates contextual fear memory retrieval and investigated the influence of the aversive stimulus intensity as well as the role of endocannabinoid signaling. Male C57BL/6J mice were tested for contextual fear memory after low-, moderate-, or high-intensity shock protocols. The selective TRPV1 blockers SB366791 (1-10 nmol) and 6-I-NC (2 nmol) were infused via intra-dorsal hippocampus before the retrieval test session. The local levels of endocannabinoids and Arc and Zif268 mRNAs, involved in synaptic plasticity and memory, were quantified. First, both TRPV1 blockers reduced memory retrieval in animals exposed to moderate or high (but not low) intensity training protocols. In the second series of results, the magnitude of the freezing responses positively correlated with the hippocampal anandamide levels; TRPV1 and CB1R were found co-localized in this brain region; and the CB1R antagonist, AM251, prevented the effects of SB366791. Thus, endocannabinoid signaling possibly mediates the effects of TRPV1 blockers. Finally, inhibition of memory retrieval by TRPV1 blockers increased Arc and Zif268 mRNAs and impaired fear memory reinstatement. In conclusion, the modulation of fear memories by dorsal hippocampal TRPV1 channels may depend on the aversive stimulus intensity and occur via anandamide/CB1 signaling. Moreover, TRPV1 blockers promote Arc and Zif268 transcription, with subsequent attenuation of aversive memory reinstatement.
Collapse
Affiliation(s)
- Lia P Iglesias
- Graduate School in Neuroscience and Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Heliana B Fernandes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline S de Miranda
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Malena M Perez
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucia H Faccioli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos A Sorgi
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Leandro J Bertoglio
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Daniele C Aguiar
- Graduate School in Neuroscience and Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carsten T Wotjak
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach Riß, Germany
| | - Fabrício A Moreira
- Graduate School in Neuroscience and Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
33
|
Cain CK. Beyond Fear, Extinction, and Freezing: Strategies for Improving the Translational Value of Animal Conditioning Research. Curr Top Behav Neurosci 2023; 64:19-57. [PMID: 37532965 PMCID: PMC10840073 DOI: 10.1007/7854_2023_434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Translational neuroscience for anxiety has had limited success despite great progress in understanding the neurobiology of Pavlovian fear conditioning and extinction. This chapter explores the idea that conditioning paradigms have had a modest impact on translation because studies in animals and humans are misaligned in important ways. For instance, animal conditioning studies typically use imminent threats to assess short-duration fear states with single behavioral measures (e.g., freezing), whereas human studies typically assess weaker or more prolonged anxiety states with physiological (e.g., skin conductance) and self-report measures. A path forward may be more animal research on conditioned anxiety phenomena measuring dynamic behavioral and physiological responses in more complex environments. Exploring transitions between defensive brain states during extinction, looming threats, and post-threat recovery may be particularly informative. If care is taken to align paradigms, threat levels, and measures, this strategy may reveal stable patterns of non-conscious defense in animals and humans that correlate better with conscious anxiety. This shift in focus is also warranted because anxiety is a bigger problem than fear, even in disorders defined by dysfunctional fear or panic reactions.
Collapse
Affiliation(s)
- Christopher K Cain
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY, USA.
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| |
Collapse
|
34
|
Fear memory in humans is consolidated over time independently of sleep. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:100-113. [PMID: 36241964 PMCID: PMC9925495 DOI: 10.3758/s13415-022-01037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 02/15/2023]
Abstract
Fear memories can be altered after acquisition by processes, such as fear memory consolidation or fear extinction, even without further exposure to the fear-eliciting stimuli, but factors contributing to these processes are not well understood. Sleep is known to consolidate, strengthen, and change newly acquired declarative and procedural memories. However, evidence on the role of time and sleep in the consolidation of fear memories is inconclusive. We used highly sensitive electrophysiological measures to examine the development of fear-conditioned responses over time and sleep in humans. We assessed event-related brain potentials (ERP) in 18 healthy, young individuals during fear conditioning before and after a 2-hour afternoon nap or a corresponding wake interval in a counterbalanced within-subject design. The procedure involved pairing a neutral tone (CS+) with a highly unpleasant sound. As a control, another neutral tone (CS-) was paired with a neutral sound. Fear responses were examined before the interval during a habituation phase and an acquisition phase as well as after the interval during an extinction phase and a reacquisition phase. Differential fear conditioning during acquisition was evidenced by a more negative slow ERP component (stimulus-preceding negativity) developing before the unconditioned stimulus (loud noise). This differential fear response was even stronger after the interval during reacquisition compared with initial acquisition, but this effect was similarly pronounced after sleep and wakefulness. These findings suggest that fear memories are consolidated over time, with this effect being independent of intervening sleep.
Collapse
|
35
|
Trevor C, Renner M, Frühholz S. Acoustic and structural differences between musically portrayed subtypes of fear. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:384. [PMID: 36732275 DOI: 10.1121/10.0016857] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Fear is a frequently studied emotion category in music and emotion research. However, research in music theory suggests that music can convey finer-grained subtypes of fear, such as terror and anxiety. Previous research on musically expressed emotions has neglected to investigate subtypes of fearful emotions. This study seeks to fill this gap in the literature. To that end, 99 participants rated the emotional impression of short excerpts of horror film music predicted to convey terror and anxiety, respectively. Then, the excerpts that most effectively conveyed these target emotions were analyzed descriptively and acoustically to demonstrate the sonic differences between musically conveyed terror and anxiety. The results support the hypothesis that music conveys terror and anxiety with markedly different musical structures and acoustic features. Terrifying music has a brighter, rougher, harsher timbre, is musically denser, and may be faster and louder than anxious music. Anxious music has a greater degree of loudness variability. Both types of fearful music tend towards minor modalities and are rhythmically unpredictable. These findings further support the application of emotional granularity in music and emotion research.
Collapse
Affiliation(s)
- Caitlyn Trevor
- Department of Psychology, University of Zürich, 8050 Zürich, Switzerland
| | - Marina Renner
- Department of Psychology, University of Zürich, 8050 Zürich, Switzerland
| | - Sascha Frühholz
- Department of Psychology, University of Zürich, 8050 Zürich, Switzerland
| |
Collapse
|
36
|
Catley P, Claydon L. Why neuroscience changes some things but not everything for the law. HANDBOOK OF CLINICAL NEUROLOGY 2023; 197:251-264. [PMID: 37633714 DOI: 10.1016/b978-0-12-821375-9.00016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
Neuroenthusiasts and neuroskeptics both exaggerate the strength of their positions. Neuroscience is already having a significant impact in the courts in many jurisdictions and as knowledge from the cognitive sciences expands, that knowledge, wherever relevant, should continue to inform legal systems. However, neuroscience will only ever be one influence among many. In certain areas, for example, our understanding of fear responses or the reliability of memory evidence, the cognitive sciences may help challenge errors of folk psychology and assist the law to adopt better approaches. In other areas such as juvenile responsibility, developmental neuroscience may prove decisive in reinforcing messages from educational psychology and the behavioral sciences both in persuading legislators and judges but also importantly in altering public attitudes. Drawing on examples from a range of countries including Argentina, Australia, Canada, England, the Netherlands, Scotland, Slovenia, and the United States, we argue that legal systems must be open to and learn from science and must not be afraid to engage with science even where there is no clear scientific consensus.
Collapse
Affiliation(s)
- Paul Catley
- The Open University Law School, The Open University, Milton Keynes, United Kingdom. //
| | - Lisa Claydon
- The Open University Law School, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
37
|
Rolls ET, Deco G, Huang CC, Feng J. Human amygdala compared to orbitofrontal cortex connectivity, and emotion. Prog Neurobiol 2023; 220:102385. [PMID: 36442728 DOI: 10.1016/j.pneurobio.2022.102385] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022]
Abstract
The amygdala and orbitofrontal cortex have been implicated in emotion. To understand these regions better in humans, their effective connectivity with 360 cortical regions was measured in 171 humans from the Human Connectome Project, and complemented with functional connectivity and diffusion tractography. The human amygdala has effective connectivity from few cortical regions compared to the orbitofrontal cortex: primarily from auditory cortex A5 and the related superior temporal gyrus and temporal pole regions; the piriform (olfactory) cortex; the lateral orbitofrontal cortex 47m; somatosensory cortex; the hippocampus, entorhinal cortex, perirhinal cortex, and parahippocampal TF; and from the cholinergic nucleus basalis. The amygdala has effective connectivity to the hippocampus, entorhinal and perirhinal cortex; to the temporal pole; and to the lateral orbitofrontal cortex. The orbitofrontal cortex has effective connectivity from gustatory, olfactory, and temporal visual, auditory and pole cortex, and to the pregenual anterior and posterior cingulate cortex, hippocampal system, and prefrontal cortex, and provides for rewards and punishers to be used in reported emotions, and memory and navigation to goals. Given the paucity of amygdalo-neocortical connectivity in humans, it is proposed that the human amygdala is involved primarily in autonomic and conditioned responses via brainstem connectivity, rather than in reported (declarative) emotion.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; Department of Computer Science, University of Warwick, Coventry, UK; Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China.
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain Brain and Cognition, Pompeu Fabra University, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry, UK; Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Ostergaard JR. Etiology of anxious and fearful behavior in juvenile neuronal ceroid lipofuscinosis (CLN3 disease). Front Psychiatry 2023; 14:1059082. [PMID: 37113550 PMCID: PMC10126397 DOI: 10.3389/fpsyt.2023.1059082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Background Juvenile neuronal ceroid lipofuscinosis (JNCL, CLN3) is a childhood-onset neurodegenerative disease with prominent symptoms comprising a pediatric dementia syndrome. As in adult dementia, behavioral symptoms like mood disturbances and anxiety are common. In contrast to in adult dementia, however, the anxious behavioral symptoms increase during the terminal phase of JNCL disease. In the present study, the current understanding of the neurobiological mechanisms of anxiety and anxious behavior in general is addressed as will a discussion of the mechanism of the anxious behavior seen in young JNCL patients. Based on developmental behavioral points of view, known neurobiological mechanisms, and the clinical presentation of the anxious behavior, a theory of its etiology is described. Result and discussion During the terminal phase, the cognitive developmental age of JNCL patients is below 2 years. At this stage of mental development individuals act primarily from a concrete world of consciousness and do not have the cognitive ability to encounter a normal anxiety response. Instead, they experience the evolutionary basic emotion of fear, and as the episodes typically are provoked when the adolescent JNCL patient is exposed to either loud sounds, is lifted from the ground, or separated from the mother/known caregiver, the fear can best be perceived as the developmental natural fear-response that appears in children 0-2 years of age. The efferent pathways of the neural fear circuits are mediated through autonomic, neuroendocrine, and skeletal-motor responses. The autonomic activation occurs early, is mediated through the sympathetic and parasympathetic neural systems, and as JNCL patients beyond puberty have an autonomic imbalance with a significant sympathetic hyperactivity, the activation of the autonomic nervous system results in a disproportionate high sympathetic activity resulting in tachycardia, tachypnea, excessive sweating, hyperthermia, and an increased atypical muscle activity. The episodes are thus phenotypically similar to what is seen as Paroxysmal Sympathetic Hyperactivity (PSH) following an acute traumatic brain injury. As in PSH, treatment is difficult and so far, no consensus of a treatment algorithm exists. Use of sedative and analgesic medication and minimizing or avoiding provocative stimuli may partly reduce the frequency and intensity of the attacks. Transcutaneous vagal nerve stimulation might be an option worth to investigate rebalancing the sympathetic-parasympathetic disproportion.
Collapse
|
39
|
Erfaninejad M, Salahshouri A, Amirrajab N. Barriers and facilitators of adherence to treatment among women with vulvovaginal candidiasis: a qualitative study. Eur J Med Res 2022; 27:303. [PMID: 36539841 PMCID: PMC9767851 DOI: 10.1186/s40001-022-00938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Non-adherence of patients with vulvovaginal candidiasis (VVC) to treatment recommendations leads to treatment failure and recurrence of infection. Therefore, this qualitative study was conducted to identify barriers and facilitators of observance of treatment among women afflicted with vulvovaginal candidiasis. METHODS This qualitative study was conducted through 26 in-depth unstructured interviews with 24 patients and 2 gynecologists using purposeful sampling with maximum variation in Ahvaz, southwest Iran. Interviews were conducted in person at health centers and the gynecologist's offices. MAXQDA 10 software and conventional content analysis were used for data analysis. RESULTS The findings showed barriers and facilitator factors of adherence to treatment in women with VVC. Some of these factors lead to an increase in adherence to treatment, and others play the role of hindering factors. These factors were classified into two main categories: patients' beliefs and patients' fears and concerns. CONCLUSION The results of this study showed that many of the behaviors of patients from the acceptance of the diagnosis process to treatment are rooted in the patient's beliefs and fears. Therefore, it seems necessary to design and carry out interventions based on the findings of this study, which can be used in the development of appropriate solutions, treatment guidelines, and adopting a policy for treatment adherence.
Collapse
Affiliation(s)
- Maryam Erfaninejad
- grid.411230.50000 0000 9296 6873Medical Mycology, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arash Salahshouri
- grid.411230.50000 0000 9296 6873Department of Health Education & Promotion, School of Health, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Nasrin Amirrajab
- grid.411230.50000 0000 9296 6873Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
40
|
Sklivanioti Greenfield M, Wang Y, Msghina M. Similarities and differences in the induction and regulation of the negative emotions fear and disgust: A functional near infrared spectroscopy study. Scand J Psychol 2022; 63:581-593. [PMID: 35634652 PMCID: PMC9796661 DOI: 10.1111/sjop.12836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/09/2022] [Indexed: 01/07/2023]
Abstract
Affective processing, including induction and regulation of emotion, activates neural networks, induces physiological responses, and generates subjective experience. Dysregulation of these processes can lead to maladaptive behavior and even psychiatric morbidity. Multimodal studies of emotion thus not only help elucidate the nature of emotion, but also contribute to important clinical insights. In the present study, we compared the induction (EI) and effortful regulation (ER) with reappraisal of fear and disgust in healthy subjects using functional near infrared spectroscopy (fNIRS) in conjunction with electrodermal activity (EDA). During EI, there was significant activation in medial prefrontal cortex (PFC) for fear and more widespread activation for disgust, with right lateral PFC significantly more active during disgust compared to fear. ER was equally effective for fear and disgust reducing subjective emotion rating by roughly 45%. Compared to baseline, there was no increased PFC activity for fear during ER, while for disgust lateral PFC was significantly more active. Significant differences between the two negative emotions were also observed in sympathetic nerve activity as reflected in EDA during EI, but not during ER. Lastly, compared to men, women had higher emotion rating for both fear and disgust without corresponding differences in EDA. In conclusion, in the present study we show that emotion induction was associated with differential activation in both PFC and sympathetic nerve activity for fear and disgust. These differences were however less prominent during emotion regulation. We discuss the potential interpretation of our results and their implications regarding our understanding of negative emotion processing.
Collapse
Affiliation(s)
| | - Yanlu Wang
- Department of Clinical ScienceIntervention, and Technology, Karolinska InstituteStockholmSweden
- MR Physics, Medical Radiation Physics and Nuclear MedicineKarolinska University HospitalStockholmSweden
| | - Mussie Msghina
- Department of Clinical Neuroscience (CNS)Karolinska InstituteStockholmSweden
- Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| |
Collapse
|
41
|
Meiyi Z, Liu Y. Impact of fear of COVID-19 on students' performance, moderating role of mindfulness: HSK students' perception-based view. Front Public Health 2022; 10:967125. [PMID: 36420013 PMCID: PMC9677726 DOI: 10.3389/fpubh.2022.967125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022] Open
Abstract
COVID-19 created difficulties and problems in almost everyone's daily life routine. Educational institutions too had to reschedule their academic activities. This shift caused attitudinal and behavioral changes in students' learning patterns. Using stress theory, the present study tries to determine the association of fear of COVID-19 with students' performance. In addition, the present study also attempts to check the impact of fear of COVID-19 on anxiety. Further, this study tries to find the association of anxiety with students' performance. This study also attempts to determine the mediating role of anxiety and the moderating role of mindfulness. For empirical investigation, the current study collected data from 320 HSK students from different colleges and universities in China. The present study applied partial least square structural equation modeling for the empirical investigation of hypotheses by using Smart-PLS software. The present study's findings confirmed that fear of COVID-19 negatively affects students' performance, and it positively correlates with anxiety. The study's outcomes revealed that anxiety negatively affects students' performance. The outcomes also confirmed that anxiety negatively mediates the relationship between fear of COVID-19 and students' performance. The present study's findings acknowledged that mindfulness does not moderate the relationship between fear of COVID-19 and student performance and has a positive moderation between anxiety and student performance. The present study offers important practical, theoretical, and managerial implications.
Collapse
Affiliation(s)
- Zhang Meiyi
- School of International Education, Shandong University of Finance and Economics, Jinan, China
| | - Yang Liu
- Department of General Courses, Shanghai Information Technology College, Shanghai, China
| |
Collapse
|
42
|
Watson D, Clark LA, Simms LJ, Kotov R. Classification and assessment of fear and anxiety in personality and psychopathology. Neurosci Biobehav Rev 2022; 142:104878. [PMID: 36116575 DOI: 10.1016/j.neubiorev.2022.104878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 02/06/2023]
Abstract
We examine fear and anxiety in the context of structural models of personality (the five-factor model, or FFM) and psychopathology (the Hierarchical Taxonomy of Psychopathology, or HiTOP); we also highlight important issues related to their assessment. Anxiety is a sustained, future-oriented response to potential threat. Trait measures of anxiety represent a core facet within the broader domain of neuroticism in the FFM. Anxiety-related symptoms are indicators of the distress subfactor within the internalizing spectrum in HiTOP. In contrast, fear is a brief, present-focused response to an acute threat. We distinguish between two ways of assessing individual differences in fear. The first type assesses phobic responses to specific stimuli. Phobia measures are moderately correlated with measures of neuroticism in the FFM and define the fear subfactor of internalizing in HiTOP. The second type assesses individual differences in harm avoidance versus risk taking. Measures of risk taking (i.e., low fear) are moderately related to disinhibition/low conscientiousness and antagonism/low agreeableness in the FFM and are indicators of the externalizing superspectrum in HiTOP.
Collapse
Affiliation(s)
- David Watson
- Department of Psychology, University of Notre Dame, United States.
| | - Lee Anna Clark
- Department of Psychology, University of Notre Dame, United States
| | - Leonard J Simms
- Department of Psychology, University at Buffalo, United States
| | - Roman Kotov
- Department of Psychiatry, Stony Brook University, United States
| |
Collapse
|
43
|
Book A, Visser B, Wattam T. The effect of fear-inducing stimuli on risk taking in people with psychopathic traits. Cogn Emot 2022; 36:1313-1326. [PMID: 35913789 DOI: 10.1080/02699931.2022.2106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Research suggests that people with psychopathic traits experience fear-inducing stimuli differently from others, seeming to interpret fear as more positive and less negative. We expected that this reaction, termed fear enjoyment, would impact the effect of fear-inducing stimuli on self-report risk-taking behaviour. Risk-taking was measured before and after viewing excitement- and fear-inducing videos (N = 825). As expected from research showing that fear induction tends to reduce risk-taking tendencies, participants showed reduced risk-taking scores following a fear-inducing stimulus. Importantly, this relationship was moderated by psychopathic traits. Participants who did not decrease their risk-taking tendencies following the video scored significantly higher on psychopathic traits. Also, some of the variance in the relationship between psychopathic traits and change in risk-taking was partly accounted for by fear enjoyment, suggesting that future research should examine whether fear enjoyment may play a role in the relationship between psychopathy and risk-taking.
Collapse
Affiliation(s)
- Angela Book
- Department of Psychology, Brock University, St. Catharines, Canada
| | - Beth Visser
- Department of Psychology, Lakehead University, Thunder Bay, Canada
| | - Tori Wattam
- Department of Psychology, Brock University, St. Catharines, Canada
| |
Collapse
|
44
|
Padilla-Coreano N, Tye KM, Zelikowsky M. Dynamic influences on the neural encoding of social valence. Nat Rev Neurosci 2022; 23:535-550. [PMID: 35831442 PMCID: PMC9997616 DOI: 10.1038/s41583-022-00609-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/09/2022]
Abstract
Social signals can serve as potent emotional triggers with powerful impacts on processes from cognition to valence processing. How are social signals dynamically and flexibly associated with positive or negative valence? How do our past social experiences and present social standing shape our motivation to seek or avoid social contact? We discuss a model in which social attributes, social history, social memory, social rank and social isolation can flexibly influence valence assignment to social stimuli, termed here as 'social valence'. We emphasize how the brain encodes each of these four factors and highlight the neural circuits and mechanisms that play a part in the perception of social attributes, social memory and social rank, as well as how these factors affect valence systems associated with social stimuli. We highlight the impact of social isolation, dissecting the neural and behavioural mechanisms that mediate the effects of acute versus prolonged periods of social isolation. Importantly, we discuss conceptual models that may account for the potential shift in valence of social stimuli from positive to negative as the period of isolation extends in time. Collectively, this Review identifies factors that control the formation and attribution of social valence - integrating diverse areas of research and emphasizing their unique contributions to the categorization of social stimuli as positive or negative.
Collapse
Affiliation(s)
- Nancy Padilla-Coreano
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kay M Tye
- HHMI-Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Moriel Zelikowsky
- Department of Neurobiology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
45
|
Jungilligens J, Paredes-Echeverri S, Popkirov S, Barrett LF, Perez DL. A new science of emotion: implications for functional neurological disorder. Brain 2022; 145:2648-2663. [PMID: 35653495 PMCID: PMC9905015 DOI: 10.1093/brain/awac204] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/28/2022] [Accepted: 05/20/2022] [Indexed: 01/11/2023] Open
Abstract
Functional neurological disorder reflects impairments in brain networks leading to distressing motor, sensory and/or cognitive symptoms that demonstrate positive clinical signs on examination incongruent with other conditions. A central issue in historical and contemporary formulations of functional neurological disorder has been the mechanistic and aetiological role of emotions. However, the debate has mostly omitted fundamental questions about the nature of emotions in the first place. In this perspective article, we first outline a set of relevant working principles of the brain (e.g. allostasis, predictive processing, interoception and affect), followed by a focused review of the theory of constructed emotion to introduce a new understanding of what emotions are. Building on this theoretical framework, we formulate how altered emotion category construction can be an integral component of the pathophysiology of functional neurological disorder and related functional somatic symptoms. In doing so, we address several themes for the functional neurological disorder field including: (i) how energy regulation and the process of emotion category construction relate to symptom generation, including revisiting alexithymia, 'panic attack without panic', dissociation, insecure attachment and the influential role of life experiences; (ii) re-interpret select neurobiological research findings in functional neurological disorder cohorts through the lens of the theory of constructed emotion to illustrate its potential mechanistic relevance; and (iii) discuss therapeutic implications. While we continue to support that functional neurological disorder is mechanistically and aetiologically heterogenous, consideration of how the theory of constructed emotion relates to the generation and maintenance of functional neurological and functional somatic symptoms offers an integrated viewpoint that cuts across neurology, psychiatry, psychology and cognitive-affective neuroscience.
Collapse
Affiliation(s)
- Johannes Jungilligens
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
- Functional Neurological Disorder Unit, Division of Cognitive Behavioral Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara Paredes-Echeverri
- Functional Neurological Disorder Unit, Division of Cognitive Behavioral Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Stoyan Popkirov
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA, USA
- Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David L Perez
- Functional Neurological Disorder Unit, Division of Cognitive Behavioral Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Neuropsychiatry, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Flavell SW, Gogolla N, Lovett-Barron M, Zelikowsky M. The emergence and influence of internal states. Neuron 2022; 110:2545-2570. [PMID: 35643077 PMCID: PMC9391310 DOI: 10.1016/j.neuron.2022.04.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/11/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023]
Abstract
Animal behavior is shaped by a variety of "internal states"-partially hidden variables that profoundly shape perception, cognition, and action. The neural basis of internal states, such as fear, arousal, hunger, motivation, aggression, and many others, is a prominent focus of research efforts across animal phyla. Internal states can be inferred from changes in behavior, physiology, and neural dynamics and are characterized by properties such as pleiotropy, persistence, scalability, generalizability, and valence. To date, it remains unclear how internal states and their properties are generated by nervous systems. Here, we review recent progress, which has been driven by advances in behavioral quantification, cellular manipulations, and neural population recordings. We synthesize research implicating defined subsets of state-inducing cell types, widespread changes in neural activity, and neuromodulation in the formation and updating of internal states. In addition to highlighting the significance of these findings, our review advocates for new approaches to clarify the underpinnings of internal brain states across the animal kingdom.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Nadine Gogolla
- Emotion Research Department, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany.
| | - Matthew Lovett-Barron
- Division of Biological Sciences-Neurobiology Section, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Moriel Zelikowsky
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
47
|
The Effect of Expertise during Simulated Flight Emergencies on the Autonomic Response and Operative Performance in Military Pilots. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159141. [PMID: 35897511 PMCID: PMC9332753 DOI: 10.3390/ijerph19159141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023]
Abstract
Heart rate variability (HRV) and performance response during emergency flight maneuvers were analyzed. Two expert pilots (ages 35 and 33) and two rookie pilots (ages 25) from the Portuguese Air Force participated in this case-control report study. Participants had to complete the following emergency protocols in a flight simulator: (1) take-off engine failure, (2) flight engine failure close to the base, (3) flight engine failure far away from the base, and (4) alternator failure. The HRV was collected during all these maneuvers, as well as the performance data (the time it took to go through the emergency protocol and the subjective information from the flight simulator operator). Results regarding autonomic modulation showed a higher sympathetic response during the emergency maneuvers when compared to baseline. In some cases, there was also a higher sympathetic response during the emergency maneuvers when compared with the take-off protocol. Regarding performance data, the expert pilots accomplished the missions in less time than the rookie pilots. Autonomic modulation measured from HRV through portable devices can easily relay important information. This information is relevant since characterizing these maneuvers can provide helpful information to design training strategies to improve those psychophysiological responses.
Collapse
|
48
|
Keysers C, Knapska E, Moita MA, Gazzola V. Emotional contagion and prosocial behavior in rodents. Trends Cogn Sci 2022; 26:688-706. [PMID: 35667978 DOI: 10.1016/j.tics.2022.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023]
Abstract
Empathy is critical to adjusting our behavior to the state of others. The past decade dramatically deepened our understanding of the biological origin of this capacity. We now understand that rodents robustly show emotional contagion for the distress of others via neural structures homologous to those involved in human empathy. Their propensity to approach others in distress strengthens this effect. Although rodents can also learn to favor behaviors that benefit others via structures overlapping with those of emotional contagion, they do so less reliably and more selectively. Together, this suggests evolution selected mechanisms for emotional contagion to prepare animals for dangers by using others as sentinels. Such shared emotions additionally can, under certain circumstances, promote prosocial behavior.
Collapse
Affiliation(s)
- Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands.
| | - Ewelina Knapska
- Laboratory of Emotions' Neurobiology, Center of Excellence for Neural Plasticity and Brain Disorders BRAINCITY, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta A Moita
- Champalimaud Neuroscience Progamme, Champalimaud Foundation, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
49
|
Hur J, Kuhn M, Grogans SE, Anderson AS, Islam S, Kim HC, Tillman RM, Fox AS, Smith JF, DeYoung KA, Shackman AJ. Anxiety-Related Frontocortical Activity Is Associated With Dampened Stressor Reactivity in the Real World. Psychol Sci 2022; 33:906-924. [PMID: 35657777 PMCID: PMC9343891 DOI: 10.1177/09567976211056635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/28/2021] [Indexed: 01/18/2023] Open
Abstract
Negative affect is a fundamental dimension of human emotion. When extreme, it contributes to a variety of adverse outcomes, from physical and mental illness to divorce and premature death. Mechanistic work in animals and neuroimaging research in humans and monkeys have begun to reveal the broad contours of the neural circuits governing negative affect, but the relevance of these discoveries to everyday distress remains incompletely understood. Here, we used a combination of approaches-including neuroimaging assays of threat anticipation and emotional-face perception and more than 10,000 momentary assessments of emotional experience-to demonstrate that individuals who showed greater activation in a cingulo-opercular circuit during an anxiety-eliciting laboratory paradigm experienced lower levels of stressor-dependent distress in their daily lives (ns = 202-208 university students). Extended amygdala activation was not significantly related to momentary negative affect. These observations provide a framework for understanding the neurobiology of negative affect in the laboratory and in the real world.
Collapse
Affiliation(s)
- Juyoen Hur
- Department of Psychology, Yonsei
University
| | - Manuel Kuhn
- Center for Depression, Anxiety
and Stress Research, McLean Hospital, Harvard Medical School, Harvard
University
| | | | | | - Samiha Islam
- Department of Psychology,
University of Pennsylvania
| | - Hyung Cho Kim
- Department of Psychology,
University of Maryland
- Neuroscience and Cognitive
Science Program, University of Maryland
| | | | - Andrew S. Fox
- Department of Psychology,
University of California, Davis
- California National Primate
Research Center, University of California, Davis
| | | | | | - Alexander J. Shackman
- Department of Psychology,
University of Maryland
- Neuroscience and Cognitive
Science Program, University of Maryland
- Maryland Neuroimaging Center,
University of Maryland, College Park
| |
Collapse
|
50
|
Dunsmoor JE, Cisler JM, Fonzo GA, Creech SK, Nemeroff CB. Laboratory models of post-traumatic stress disorder: The elusive bridge to translation. Neuron 2022; 110:1754-1776. [PMID: 35325617 PMCID: PMC9167267 DOI: 10.1016/j.neuron.2022.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating mental illness composed of a heterogeneous collection of symptom clusters. The unique nature of PTSD as arising from a precipitating traumatic event helps simplify cross-species translational research modeling the neurobehavioral effects of stress and fear. However, the neurobiological progress on these complex neural circuits informed by animal models has yet to produce novel, evidence-based clinical treatment for PTSD. Here, we provide a comprehensive overview of popular laboratory models of PTSD and provide concrete ideas for improving the validity and clinical translational value of basic research efforts in humans. We detail modifications to simplified animal paradigms to account for myriad cognitive factors affected in PTSD, which may contribute to abnormalities in regulating fear. We further describe new avenues for integrating different areas of psychological research underserved by animal models of PTSD. This includes incorporating emerging trends in the cognitive neuroscience of episodic memory, emotion regulation, social-emotional processes, and PTSD subtyping to provide a more comprehensive recapitulation of the human experience to trauma in laboratory research.
Collapse
Affiliation(s)
- Joseph E Dunsmoor
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin Dell Medical School, Austin, TX, USA; Center for Psychedelic Research and Therapy, University of Texas at Austin Dell Medical School, Austin, TX, USA.
| | - Josh M Cisler
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin Dell Medical School, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA; Center for Psychedelic Research and Therapy, University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Gregory A Fonzo
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin Dell Medical School, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA; Center for Psychedelic Research and Therapy, University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Suzannah K Creech
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin Dell Medical School, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA
| | - Charles B Nemeroff
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin Dell Medical School, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA; Center for Psychedelic Research and Therapy, University of Texas at Austin Dell Medical School, Austin, TX, USA.
| |
Collapse
|