1
|
Gulati GS, D'Silva JP, Liu Y, Wang L, Newman AM. Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics. Nat Rev Mol Cell Biol 2025; 26:11-31. [PMID: 39169166 DOI: 10.1038/s41580-024-00768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Single-cell transcriptomics has broadened our understanding of cellular diversity and gene expression dynamics in healthy and diseased tissues. Recently, spatial transcriptomics has emerged as a tool to contextualize single cells in multicellular neighbourhoods and to identify spatially recurrent phenotypes, or ecotypes. These technologies have generated vast datasets with targeted-transcriptome and whole-transcriptome profiles of hundreds to millions of cells. Such data have provided new insights into developmental hierarchies, cellular plasticity and diverse tissue microenvironments, and spurred a burst of innovation in computational methods for single-cell analysis. In this Review, we discuss recent advancements, ongoing challenges and prospects in identifying and characterizing cell states and multicellular neighbourhoods. We discuss recent progress in sample processing, data integration, identification of subtle cell states, trajectory modelling, deconvolution and spatial analysis. Furthermore, we discuss the increasing application of deep learning, including foundation models, in analysing single-cell and spatial transcriptomics data. Finally, we discuss recent applications of these tools in the fields of stem cell biology, immunology, and tumour biology, and the future of single-cell and spatial transcriptomics in biological research and its translation to the clinic.
Collapse
Affiliation(s)
- Gunsagar S Gulati
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Yunhe Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Aaron M Newman
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Das SC, Schulmann A, Callor WB, Jerominski L, Panicker MM, Christensen ED, Bunney WE, Williams ME, Coon H, Vawter MP. Altered transcriptomes, cell type proportions, and dendritic spine morphology in hippocampus of suicide decedents. J Affect Disord 2024; 367:118-128. [PMID: 39191313 DOI: 10.1016/j.jad.2024.08.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 08/03/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Suicide is a manner of death resulting from complex environmental and genetic risks that affect millions of people globally. Both structural and functional studies identified the hippocampus as one of the vulnerable brain regions contributing to suicide risk. METHODS We have identified the hippocampal tissue transcriptomes, gene ontology, cell type proportions, and dendritic spine morphology in controls (n = 28) and suicide decedents (n = 22). In addition, the transcriptomic signature in iPSC-derived neuronal precursor cells (NPCs) and neurons were also investigated in controls (n = 2) and suicide decedents (n = 2). RESULTS The hippocampal tissue transcriptomic data revealed that NPAS4 gene expression was downregulated while ALDH1A2, NAAA, and MLXIPL gene expressions were upregulated in hippocampal tissue of suicide decedents. The gene ontology identified 29 significant pathways including NPAS4-associated gene ontology terms "excitatory post-synaptic potential", "regulation of postsynaptic membrane potential" and "long-term memory" indicating alteration of glutamatergic synapses in the hippocampus of suicide decedents. The cell type deconvolution identified decreased excitatory neuron proportion and an increased inhibitory neuron proportion providing evidence of excitation/inhibition imbalance in the hippocampus of suicide decedents. In addition, suicide decedents had increased dendric spine density in the hippocampus, due to an increase of thin (relatively unstable) dendritic spines, compared to controls. The transcriptomes of iPSC-derived hippocampal-like NPCs and neurons revealed 31 and 33 differentially expressed genes in NPC and neurons, respectively, of suicide decedents. CONCLUSIONS Our findings will provide new insights into the hippocampal neuropathology of suicide.
Collapse
Affiliation(s)
- Sujan C Das
- Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA, USA
| | | | - William B Callor
- Office of Medical Examiner, Utah Department of Health and Human Services, Salt Lake City, UT, USA
| | - Leslie Jerominski
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mitradas M Panicker
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, USA
| | - Erik D Christensen
- Office of Medical Examiner, Utah Department of Health and Human Services, Salt Lake City, UT, USA
| | - William E Bunney
- Department of Psychiatry & Human Behavior, University of California, Irvine, CA, USA
| | - Megan E Williams
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, UT, USA
| | - Hilary Coon
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Marquis P Vawter
- Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA, USA.
| |
Collapse
|
3
|
Hrovatin K, Sikkema L, Shitov VA, Heimberg G, Shulman M, Oliver AJ, Mueller MF, Ibarra IL, Wang H, Ramírez-Suástegui C, He P, Schaar AC, Teichmann SA, Theis FJ, Luecken MD. Considerations for building and using integrated single-cell atlases. Nat Methods 2024:10.1038/s41592-024-02532-y. [PMID: 39672979 DOI: 10.1038/s41592-024-02532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 10/22/2024] [Indexed: 12/15/2024]
Abstract
The rapid adoption of single-cell technologies has created an opportunity to build single-cell 'atlases' integrating diverse datasets across many laboratories. Such atlases can serve as a reference for analyzing and interpreting current and future data. However, it has become apparent that atlasing approaches differ, and the impact of these differences are often unclear. Here we review the current atlasing literature and present considerations for building and using atlases. Importantly, we find that no one-size-fits-all protocol for atlas building exists, but rather we discuss context-specific considerations and workflows, including atlas conceptualization, data collection, curation and integration, atlas evaluation and atlas sharing. We further highlight the benefits of integrated atlases for analyses of new datasets and deriving biological insights beyond what is possible from individual datasets. Our overview of current practices and associated recommendations will improve the quality of atlases to come, facilitating the shift to a unified, reference-based understanding of single-cell biology.
Collapse
Affiliation(s)
- Karin Hrovatin
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Lisa Sikkema
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Vladimir A Shitov
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive / Institute of Lung Health and Immunity (LHI), Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Graham Heimberg
- Department of OMNI Bioinformatics, Genentech, South San Francisco, CA, USA
- Department of Biological Research | AI Development, Genentech, South San Francisco, CA, USA
| | - Maiia Shulman
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Michaela F Mueller
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
| | - Ignacio L Ibarra
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
| | - Hanchen Wang
- Department of Biological Research | AI Development, Genentech, South San Francisco, CA, USA
- Department of Computer Science, Stanford University, Palo Alto, CA, USA
| | - Ciro Ramírez-Suástegui
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Peng He
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Anna C Schaar
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Theory of Condensed Matter Group, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
- CIFAR MacMillan Multiscale Human Programme, Toronto, Ontario, Canada
| | - Fabian J Theis
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- Department of Mathematics, Technical University of Munich, Garching, Germany.
| | - Malte D Luecken
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany.
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive / Institute of Lung Health and Immunity (LHI), Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
4
|
Payne AN, Prayugo V, Dolezal AG. A honey bee-associated virus remains infectious and quantifiable in postmortem hosts. J Invertebr Pathol 2024; 209:108258. [PMID: 39667616 DOI: 10.1016/j.jip.2024.108258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Corpse-mediated pathogen transmission is a viable route through which naïve hosts can become infected, but its likelihood for honey bee-associated viruses is largely unknown. While these viruses can be easily detected in deceased bees, it remains unclear if they stay infectious within postmortem hosts or if enough viral RNA degradation-and subsequently virus inactivation-occurs post-host death to render these viruses inviable. This knowledge gap has important implications for how researchers perform honey bee virus studies and for our general understanding of honey bee virus transmission. To better understand the resiliency of honey bee-associated viruses within deceased hosts, we first tested the hypothesis that postmortem specimens, stored in colony-normal temperature and humidity conditions, can be reliably used to quantify virus abundance. To determine this, we experimentally-infected adult honey bees with Israeli acute paralysis virus (IAPV) and then measured the virus levels of individuals sampled live or at different postmortem time points (4, 12, 24, and 48 hours post-death) using RT-qPCR and a standard curve absolute quantification method. We found no significant differences based on when bees were sampled, indicating that postmortem honey bees are statistically comparable to using live-sampled bees and can be reliably used to quantify absolute IAPV abundance. We then performed a follow-up experiment that determined whether or not the IAPV detected in postmortem bees remained infectious over time. We found that IAPV extracted from postmortem bees remained highly infectious for at least 48 hours post-death, indicating that any viral RNA degradation that may have occurred during the postmortem interval did not adversely affect IAPV's overall infectivity. The results from this study suggest that IAPV is more resilient to degradation than previously assumed, support the use of postmortem bees for downstream IAPV analyses, and indicate that postmortem hosts can act as sources of IAPV infection for susceptible individuals.
Collapse
Affiliation(s)
- Alexandria N Payne
- University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; USDA-ARS Honey Bee Breeding, Genetics, and Physiology Unit, Baton Rouge, LA 70820, United States.
| | - Vincent Prayugo
- University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Adam G Dolezal
- University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
5
|
Yang LY, Tang DR, Luo SQ, Li WW, Jiang YH, Lin LB, Zhang QL. Time-dependent changes in genome-wide gene expression and post-transcriptional regulation across the post-death process in silkworm. DNA Res 2024; 31:dsae031. [PMID: 39546332 PMCID: PMC11605879 DOI: 10.1093/dnares/dsae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
Despite death marking the end of life, several gene expression and miRNA-mediated post-transcriptional regulation events may persist or be initiated. The silkworm (Bombyx mori) is a valuable model for exploring life processes, including death. In this study, we combined transcriptomics and miRNAomics analyses of young, old, and post-mortem silkworms across the entire process after death to unravel the dynamics of gene expression and miRNA-mediated post-transcriptional regulation. In total, 171 genes exhibited sustained differential expression in post-mortem silkworms compared to the pre-death state, which are primarily involved in nerve signalling, transport, and immune response. Post-mortem time-specific genes were associated with cell cycle regulation, thermogenesis, immunity, and zinc ion homeostasis. We found that the down-regulated expression of 36 genes related to transcription, epigenetic modification, and homeostasis resulted in a significant shift in global gene expression patterns at 2 h post-death. We also identified 5 mRNA-miRNA pairs (i.e. bmo-miR-2795-mhca, 2784-achi, 2762-oa1, 277-5p-creb, and 1000-tcb1) associated with stress hormone regulation, transcription activity, and signal transduction. The roles of these pairs were validated through in vivo experiments using miRNA mimics in silkworms. The findings provide valuable insights into the intricate mechanisms underlying the transcriptional and miRNA-mediated post-transcriptional regulation events in animals after death.
Collapse
Affiliation(s)
- Lin-Yu Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Da-Rui Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Shi-Qi Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei-Wei Li
- Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
| | - Yu-Hang Jiang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
6
|
Wang S, Du J, Shen Q, Haas C, Neubauer J. Interpretation of molecular autopsy findings in 45 sudden unexplained death cases: from coding region to untranslated region. Int J Legal Med 2024:10.1007/s00414-024-03329-6. [PMID: 39266800 DOI: 10.1007/s00414-024-03329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Sudden unexplained death (SUD) can affect apparently healthy adolescents and young adults with no prior clinical symptoms and no clear diagnostic findings at autopsy. Although primary cardiac arrhythmias have been shown to be the direct cause of death in the majority of SUD cases, the genetic predisposition contributing to SUD remains incompletely understood. Currently, molecular autopsy is considered to be an effective diagnostic tool in the multidisciplinary management of SUD, but the analysis focuses mainly on the coding region and the significance of many identified variants remains unclear. Recent studies have demonstrated the strong association between human disease and genetic variants in untranslated regions (UTRs), highlighting the potential role of UTR variants in the genetic predisposition to SUD. In this study, we searched for UTR variants with likely functional effects in the exome data of 45 SUD cases. Among 244 genes associated with cardiac diseases, three candidate variants with high confidence of pathogenicity were identified in the UTRs of SCO2, CALM2 and TBX3 based on a rigorous filtering strategy. A functional assay further validated the effect of these candidate variants on gene transcriptional activity. In addition, the constraint metrics, intolerance indexes, and dosage sensitivity scores of genes affected by the candidate variants were considered when estimating the consequence of aberrant gene expression. In conclusion, our study presents a practical strategy for UTR variant prioritization and functional annotation, which could improve the interpretation of molecular autopsy findings in SUD cohorts.
Collapse
Affiliation(s)
- Shouyu Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianghua Du
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qi Shen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.
| | - Jacqueline Neubauer
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Martins-Ferreira R, Calafell-Segura J, Chaves J, Ciudad L, Martins da Silva A, Pinho e Costa P, Leal B, Ballestar E. Purinergic exposure induces epigenomic and transcriptomic-mediated preconditioning resembling epilepsy-associated microglial states. iScience 2024; 27:110546. [PMID: 39184445 PMCID: PMC11342283 DOI: 10.1016/j.isci.2024.110546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/10/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024] Open
Abstract
Microglia play a crucial role in a range of neuropathologies through exacerbated activation. Microglial inflammatory responses can be influenced by prior exposures to noxious stimuli, like increased levels of extracellular adenosine and ATP. These are characteristic of brain insults like epileptic seizures and could potentially shape subsequent responses through epigenetic regulation. We investigated DNA methylation and expression changes in human microglia-like cells differentiated from monocytes following ATP-mediated preconditioning. We demonstrate that microglia-like cells display homeostatic microglial features, shown by surface markers, transcriptome, and DNA methylome. After exposure to ATP, TLR-mediated activation leads to an exacerbated pro-inflammatory response. These changes are accompanied by methylation and transcriptional reprogramming associated with enhanced immune-related functions. The reprogramming associated with ATP-mediated preconditioning leads to profiles found in microglial subsets linked to epilepsy. Purine-driven microglia immune preconditioning drives epigenetic and transcriptional changes that could contribute to altered functions of microglia during seizure development and progression.
Collapse
Affiliation(s)
- Ricardo Martins-Ferreira
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
- Immunogenetics Laboratory, Molecular Pathology and Immunology Department, Instituto de Ciências Biomédicas Abel Salazar – Universidade do Porto (ICBAS-UPorto), 4050-313 Porto, Portugal
- Autoimmunity and Neuroscience Group. Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Josep Calafell-Segura
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - João Chaves
- Autoimmunity and Neuroscience Group. Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
- Neurology Service, Centro Hospitalar Universitário de Santo António (CHUdSA), 4099-001 Porto, Portugal
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - António Martins da Silva
- Autoimmunity and Neuroscience Group. Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
- Neurophysiology Service, CHUdSA 4099-001 Porto, Portugal
| | - Paulo Pinho e Costa
- Immunogenetics Laboratory, Molecular Pathology and Immunology Department, Instituto de Ciências Biomédicas Abel Salazar – Universidade do Porto (ICBAS-UPorto), 4050-313 Porto, Portugal
- Autoimmunity and Neuroscience Group. Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
- Department of Human Genetics, Instituto Nacional de Saúde Dr. Ricardo Jorge 4000-055 Porto, Portugal
| | - Bárbara Leal
- Immunogenetics Laboratory, Molecular Pathology and Immunology Department, Instituto de Ciências Biomédicas Abel Salazar – Universidade do Porto (ICBAS-UPorto), 4050-313 Porto, Portugal
- Autoimmunity and Neuroscience Group. Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai 200241, China
| |
Collapse
|
8
|
Berdygulova Z, Maltseva E, Perfilyeva Y, Nizkorodova A, Zhigailov A, Naizabayeva D, Ostapchuk YO, Kuatbekova S, Dosmagambet Z, Kuatbek M, Bissenbay A, Cherusheva A, Mashzhan A, Abdolla N, Ashimbekov S, Ismagulova G, Dmitrovskiy A, Mamadaliyev S, Skiba Y. RT-qPCR investigation of post-mortem tissues during COVID-19. J Appl Biomed 2024; 22:115-122. [PMID: 38912867 DOI: 10.32725/jab.2024.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/20/2024] [Indexed: 06/25/2024] Open
Abstract
In 2020, there were numerous cases in Kazakhstan with clinical symptoms of COVID-19 but negative PCR results in nasopharyngeal and oropharyngeal swabs. The diagnosis was confirmed clinically and by CT scans (computed tomography). The problem with such negative PCR results for SARS-CoV-2 infection confirmation still exists and indicates the need to confirm the diagnosis in the bronchoalveolar lavage in such cases. There is also a lack of information about confirmation of SARS-CoV-2 infection in deceased patients. In this study, various tissue materials, including lungs, bronchi, and trachea, were examined from eight patients who died, presumably from SARS-CoV-2 infection, between 2020 and 2022. Naso/oropharyngeal swabs taken from these patients in hospitals tested PCR negative for SARS-CoV-2. This study presents a modified RNA isolation method based on a comparison of the most used methods for RNA isolation in laboratories: QIAamp Viral RNA Mini Kit and TRIzol-based method. This modified nucleic acid extraction protocol can be used to confirm SARS-CoV-2 infection by RT-qPCR in the tissues of deceased patients in disputed cases. RT-qPCR with RNA of SARS-CoV-2 re-extracted with such method from post-mortem tissues that were stored at -80 °C for more than 32 months still demonstrated high-yielding positive results.
Collapse
Affiliation(s)
- Zhanna Berdygulova
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, Almaty, Kazakhstan
- M. A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Elina Maltseva
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, Almaty, Kazakhstan
- M. A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Tethys Scientific Society, Almaty, Kazakhstan
| | - Yuliya Perfilyeva
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, Almaty, Kazakhstan
- M. A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Anna Nizkorodova
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, Almaty, Kazakhstan
- M. A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Andrey Zhigailov
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, Almaty, Kazakhstan
- M. A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Dinara Naizabayeva
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, Almaty, Kazakhstan
- M. A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Tethys Scientific Society, Almaty, Kazakhstan
| | - Yekaterina O Ostapchuk
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, Almaty, Kazakhstan
- M. A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Saltanat Kuatbekova
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, Almaty, Kazakhstan
| | - Zhaniya Dosmagambet
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, Almaty, Kazakhstan
- Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Moldir Kuatbek
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, Almaty, Kazakhstan
- Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Akerke Bissenbay
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, Almaty, Kazakhstan
- M. A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Alena Cherusheva
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, Almaty, Kazakhstan
| | - Akzhigit Mashzhan
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, Almaty, Kazakhstan
| | - Nurshat Abdolla
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, Almaty, Kazakhstan
- M. A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | | - Gulnara Ismagulova
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, Almaty, Kazakhstan
- M. A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Andrey Dmitrovskiy
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, Almaty, Kazakhstan
| | - Seidigapbar Mamadaliyev
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, Almaty, Kazakhstan
| | - Yuriy Skiba
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, Almaty, Kazakhstan
- M. A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Tethys Scientific Society, Almaty, Kazakhstan
| |
Collapse
|
9
|
Gerra MC, Dallabona C, Cecchi R. Epigenetic analyses in forensic medicine: future and challenges. Int J Legal Med 2024; 138:701-719. [PMID: 38242965 PMCID: PMC11003920 DOI: 10.1007/s00414-024-03165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
The possibility of using epigenetics in forensic investigation has gradually risen over the last few years. Epigenetic changes with their dynamic nature can either be inherited or accumulated throughout a lifetime and be reversible, prompting investigation of their use across various fields. In forensic sciences, multiple applications have been proposed, such as the discrimination of monozygotic twins, identifying the source of a biological trace left at a crime scene, age prediction, determination of body fluids and tissues, human behavior association, wound healing progression, and determination of the post-mortem interval (PMI). Despite all these applications, not all the studies considered the impact of PMI and post-sampling effects on the epigenetic modifications and the tissue-specificity of the epigenetic marks.This review aims to highlight the substantial forensic significance that epigenetics could support in various forensic investigations. First, basic concepts in epigenetics, describing the main epigenetic modifications and their functions, in particular, DNA methylation, histone modifications, and non-coding RNA, with a particular focus on forensic applications, were covered. For each epigenetic marker, post-mortem stability and tissue-specificity, factors that should be carefully considered in the study of epigenetic biomarkers in the forensic context, have been discussed. The advantages and limitations of using post-mortem tissues have been also addressed, proposing directions for these innovative strategies to analyze forensic specimens.
Collapse
Affiliation(s)
- Maria Carla Gerra
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11a, Viale Delle Scienze 11a, 43124, Parma, PR, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11a, Viale Delle Scienze 11a, 43124, Parma, PR, Italy.
| | - Rossana Cecchi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, PR, Italy
| |
Collapse
|
10
|
Javan GT, Singh K, Finley SJ, Green RL, Sen CK. Complexity of human death: its physiological, transcriptomic, and microbiological implications. Front Microbiol 2024; 14:1345633. [PMID: 38282739 PMCID: PMC10822681 DOI: 10.3389/fmicb.2023.1345633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Human death is a complex, time-governed phenomenon that leads to the irreversible cessation of all bodily functions. Recent molecular and genetic studies have revealed remarkable experimental evidence of genetically programmed cellular death characterized by several physiological processes; however, the basic physiological function that occurs during the immediate postmortem period remains inadequately described. There is a paucity of knowledge connecting necrotic pathologies occurring in human organ tissues to complete functional loss of the human organism. Cells, tissues, organs, and organ systems show a range of differential resilience and endurance responses that occur during organismal death. Intriguingly, a persistent ambiguity in the study of postmortem physiological systems is the determination of the trajectory of a complex multicellular human body, far from life-sustaining homeostasis, following the gradual or sudden expiry of its regulatory systems. Recent groundbreaking investigations have resulted in a paradigm shift in understanding the cell biology and physiology of death. Two significant findings are that (i) most cells in the human body are microbial, and (ii) microbial cell abundance significantly increases after death. By addressing the physiological as well as the microbiological aspects of death, future investigations are poised to reveal innovative insights into the enigmatic biological activities associated with death and human decomposition. Understanding the elaborate crosstalk of abiotic and biotic factors in the context of death has implications for scientific discoveries important to informing translational knowledge regarding the transition from living to the non-living. There are important and practical needs for a transformative reestablishment of accepted models of biological death (i.e., artificial intelligence, AI) for more precise determinations of when the regulatory mechanisms for homeostasis of a living individual have ceased. In this review, we summarize mechanisms of physiological, genetic, and microbiological processes that define the biological changes and pathways associated with human organismal death and decomposition.
Collapse
Affiliation(s)
- Gulnaz T. Javan
- Department of Physical and Forensic Sciences, Alabama State University, Montgomery, AL, United States
| | - Kanhaiya Singh
- Department of Surgery, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sheree J. Finley
- Department of Physical and Forensic Sciences, Alabama State University, Montgomery, AL, United States
| | - Robert L. Green
- Department of Physical and Forensic Sciences, Alabama State University, Montgomery, AL, United States
| | - Chandan K. Sen
- Department of Surgery, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Magaki S, Zhang T, Han K, Hilda M, Yong WH, Achim C, Fishbein G, Fishbein MC, Garner O, Salamon N, Williams CK, Valdes-Sueiras MA, Hsu JJ, Kelesidis T, Mathisen GE, Lavretsky H, Singer EJ, Vinters HV. HIV and COVID-19: two pandemics with significant (but different) central nervous system complications. FREE NEUROPATHOLOGY 2024; 5:5-5. [PMID: 38469363 PMCID: PMC10925920 DOI: 10.17879/freeneuropathology-2024-5343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/02/2024] [Indexed: 03/13/2024]
Abstract
Human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause significant neurologic disease. Central nervous system (CNS) involvement of HIV has been extensively studied, with well-documented invasion of HIV into the brain in the initial stage of infection, while the acute effects of SARS-CoV-2 in the brain are unclear. Neuropathologic features of active HIV infection in the brain are well characterized whereas neuropathologic findings in acute COVID-19 are largely non-specific. On the other hand, neuropathologic substrates of chronic dysfunction in both infections, as HIV-associated neurocognitive disorders (HAND) and post-COVID conditions (PCC)/long COVID are unknown. Thus far, neuropathologic studies on patients with HAND in the era of combined antiretroviral therapy have been inconclusive, and autopsy studies on patients diagnosed with PCC have yet to be published. Further longitudinal, multidisciplinary studies on patients with HAND and PCC and neuropathologic studies in comparison to controls are warranted to help elucidate the mechanisms of CNS dysfunction in both conditions.
Collapse
Affiliation(s)
- Shino Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Ting Zhang
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Karam Han
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Mirbaha Hilda
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - William H. Yong
- Department of Pathology and Laboratory Medicine, University of California-Irvine School of Medicine, Irvine, CA, USA
| | - Cristian Achim
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Gregory Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Omai Garner
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher K. Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Miguel A. Valdes-Sueiras
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeffrey J. Hsu
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Glenn E. Mathisen
- Department of Infectious Diseases, Olive View-University of California Los Angeles Medical Center, Sylmar, CA, USA
| | - Helen Lavretsky
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Elyse J. Singer
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Harry V. Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
12
|
Larriba Y, Mason IC, Saxena R, Scheer FAJL, Rueda C. CIRCUST: A novel methodology for temporal order reconstruction of molecular rhythms; validation and application towards a daily rhythm gene expression atlas in humans. PLoS Comput Biol 2023; 19:e1011510. [PMID: 37769026 PMCID: PMC10564179 DOI: 10.1371/journal.pcbi.1011510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 10/10/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
The circadian system drives near-24-h oscillations in behaviors and biological processes. The underlying core molecular clock regulates the expression of other genes, and it has been shown that the expression of more than 50 percent of genes in mammals displays 24-h rhythmic patterns, with the specific genes that cycle varying from one tissue to another. Determining rhythmic gene expression patterns in human tissues sampled as single timepoints has several challenges, including the reconstruction of temporal order of highly noisy data. Previous methodologies have attempted to address these challenges in one or a small number of tissues for which rhythmic gene evolutionary conservation is assumed to be preserved. Here we introduce CIRCUST, a novel CIRCular-robUST methodology for analyzing molecular rhythms, that relies on circular statistics, is robust against noise, and requires fewer assumptions than existing methodologies. Next, we validated the method against four controlled experiments in which sampling times were known, and finally, CIRCUST was applied to 34 tissues from the Genotype-Tissue Expression (GTEx) dataset with the aim towards building a comprehensive daily rhythm gene expression atlas in humans. The validation and application shown here indicate that CIRCUST provides a flexible framework to formulate and solve the issues related to the analysis of molecular rhythms in human tissues. CIRCUST methodology is publicly available at https://github.com/yolandalago/CIRCUST/.
Collapse
Affiliation(s)
- Yolanda Larriba
- Department of Statistics and Operational Research, University of Valladolid, Valladolid, Spain
- Mathematics Research Institute of the University of Valladolid, University of Valladolid, Valladolid, Spain
| | - Ivy C. Mason
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richa Saxena
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Genomic Medicine and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Division of Anesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, United States of America
| | - Frank A. J. L. Scheer
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, United States of America
| | - Cristina Rueda
- Department of Statistics and Operational Research, University of Valladolid, Valladolid, Spain
- Mathematics Research Institute of the University of Valladolid, University of Valladolid, Valladolid, Spain
| |
Collapse
|
13
|
Sorokin M, Buzdin AA, Guryanova A, Efimov V, Suntsova MV, Zolotovskaia MA, Koroleva EV, Sekacheva MI, Tkachev VS, Garazha A, Kremenchutckaya K, Drobyshev A, Seryakov A, Gudkov A, Alekseenko IV, Rakitina O, Kostina MB, Vladimirova U, Moisseev A, Bulgin D, Radomskaya E, Shestakov V, Baklaushev VP, Prassolov V, Shegay PV, Li X, Poddubskaya EV, Gaifullin N. Large-scale assessment of pros and cons of autopsy-derived or tumor-matched tissues as the norms for gene expression analysis in cancers. Comput Struct Biotechnol J 2023; 21:3964-3986. [PMID: 37635765 PMCID: PMC10448432 DOI: 10.1016/j.csbj.2023.07.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/17/2023] [Accepted: 07/30/2023] [Indexed: 08/29/2023] Open
Abstract
Normal tissues are essential for studying disease-specific differential gene expression. However, healthy human controls are typically available only in postmortal/autopsy settings. In cancer research, fragments of pathologically normal tissue adjacent to tumor site are frequently used as the controls. However, it is largely underexplored how cancers can systematically influence gene expression of the neighboring tissues. Here we performed a comprehensive pan-cancer comparison of molecular profiles of solid tumor-adjacent and autopsy-derived "healthy" normal tissues. We found a number of systemic molecular differences related to activation of the immune cells, intracellular transport and autophagy, cellular respiration, telomerase activation, p38 signaling, cytoskeleton remodeling, and reorganization of the extracellular matrix. The tumor-adjacent tissues were deficient in apoptotic signaling and negative regulation of cell growth including G2/M cell cycle transition checkpoint. We also detected an extensive rearrangement of the chemical perception network. Molecular targets of 32 and 37 cancer drugs were over- or underexpressed, respectively, in the tumor-adjacent norms. These processes may be driven by molecular events that are correlated between the paired cancer and adjacent normal tissues, that mostly relate to inflammation and regulation of intracellular molecular pathways such as the p38, MAPK, Notch, and IGF1 signaling. However, using a model of macaque postmortal tissues we showed that for the 30 min - 24-hour time frame at 4ºC, an RNA degradation pattern in lung biosamples resulted in an artifact "differential" expression profile for 1140 genes, although no differences could be detected in liver. Thus, such concerns should be addressed in practice.
Collapse
Affiliation(s)
- Maksim Sorokin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- Omicsway Corp., Walnut, CA 91789, USA
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Anton A. Buzdin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium
| | - Anastasia Guryanova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
| | - Victor Efimov
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria V. Suntsova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Marianna A. Zolotovskaia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- Omicsway Corp., Walnut, CA 91789, USA
| | - Elena V. Koroleva
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
| | - Marina I. Sekacheva
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Victor S. Tkachev
- Omicsway Corp., Walnut, CA 91789, USA
- Oncobox Ltd., Moscow 121205, Russia
| | - Andrew Garazha
- Omicsway Corp., Walnut, CA 91789, USA
- Oncobox Ltd., Moscow 121205, Russia
| | | | - Aleksey Drobyshev
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | | | - Alexander Gudkov
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Irina V. Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", 2, Kurchatov Square, Moscow 123182, Russian
- FSBI "National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov" Ministry of Healthcare of the Russian Federation, Moscow 117198, Russia
| | - Olga Rakitina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Maria B. Kostina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Uliana Vladimirova
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Oncobox Ltd., Moscow 121205, Russia
| | - Aleksey Moisseev
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Dmitry Bulgin
- Research Institute of Medical Primatology, 177 Mira str., Veseloye, Sochi 354376, Russia
| | - Elena Radomskaya
- Research Institute of Medical Primatology, 177 Mira str., Veseloye, Sochi 354376, Russia
| | - Viktor Shestakov
- Research Institute of Medical Primatology, 177 Mira str., Veseloye, Sochi 354376, Russia
| | | | - Vladimir Prassolov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow 119991, Russia
| | - Petr V. Shegay
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia
| | - Xinmin Li
- UCLA Technology Center for Genomics & Bioinformatics, Department of Pathology & Laboratory Medicine, 650 Charles E Young Dr., Los Angeles, CA 90095, USA
| | | | - Nurshat Gaifullin
- Department of Physiology and General Pathology, Faculty of Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
14
|
Williamson A, Norris DM, Yin X, Broadaway KA, Moxley AH, Vadlamudi S, Wilson EP, Jackson AU, Ahuja V, Andersen MK, Arzumanyan Z, Bonnycastle LL, Bornstein SR, Bretschneider MP, Buchanan TA, Chang YC, Chuang LM, Chung RH, Clausen TD, Damm P, Delgado GE, de Mello VD, Dupuis J, Dwivedi OP, Erdos MR, Fernandes Silva L, Frayling TM, Gieger C, Goodarzi MO, Guo X, Gustafsson S, Hakaste L, Hammar U, Hatem G, Herrmann S, Højlund K, Horn K, Hsueh WA, Hung YJ, Hwu CM, Jonsson A, Kårhus LL, Kleber ME, Kovacs P, Lakka TA, Lauzon M, Lee IT, Lindgren CM, Lindström J, Linneberg A, Liu CT, Luan J, Aly DM, Mathiesen E, Moissl AP, Morris AP, Narisu N, Perakakis N, Peters A, Prasad RB, Rodionov RN, Roll K, Rundsten CF, Sarnowski C, Savonen K, Scholz M, Sharma S, Stinson SE, Suleman S, Tan J, Taylor KD, Uusitupa M, Vistisen D, Witte DR, Walther R, Wu P, Xiang AH, Zethelius B, Ahlqvist E, Bergman RN, Chen YDI, Collins FS, Fall T, Florez JC, Fritsche A, Grallert H, Groop L, Hansen T, Koistinen HA, Komulainen P, Laakso M, Lind L, Loeffler M, März W, Meigs JB, Raffel LJ, Rauramaa R, Rotter JI, Schwarz PEH, Stumvoll M, Sundström J, Tönjes A, Tuomi T, Tuomilehto J, Wagner R, Barroso I, Walker M, Grarup N, Boehnke M, Wareham NJ, Mohlke KL, Wheeler E, O'Rahilly S, Fazakerley DJ, Langenberg C. Genome-wide association study and functional characterization identifies candidate genes for insulin-stimulated glucose uptake. Nat Genet 2023; 55:973-983. [PMID: 37291194 PMCID: PMC7614755 DOI: 10.1038/s41588-023-01408-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/26/2023] [Indexed: 06/10/2023]
Abstract
Distinct tissue-specific mechanisms mediate insulin action in fasting and postprandial states. Previous genetic studies have largely focused on insulin resistance in the fasting state, where hepatic insulin action dominates. Here we studied genetic variants influencing insulin levels measured 2 h after a glucose challenge in >55,000 participants from three ancestry groups. We identified ten new loci (P < 5 × 10-8) not previously associated with postchallenge insulin resistance, eight of which were shown to share their genetic architecture with type 2 diabetes in colocalization analyses. We investigated candidate genes at a subset of associated loci in cultured cells and identified nine candidate genes newly implicated in the expression or trafficking of GLUT4, the key glucose transporter in postprandial glucose uptake in muscle and fat. By focusing on postprandial insulin resistance, we highlighted the mechanisms of action at type 2 diabetes loci that are not adequately captured by studies of fasting glycemic traits.
Collapse
Affiliation(s)
- Alice Williamson
- MRC Epidemiology Unit Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
| | - Dougall M Norris
- Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
| | - Xianyong Yin
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - K Alaine Broadaway
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Anne H Moxley
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | | | - Emma P Wilson
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Anne U Jackson
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Vasudha Ahuja
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Mette K Andersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zorayr Arzumanyan
- Department of Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Lori L Bonnycastle
- Center for Precision Health Research National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stefan R Bornstein
- Department of Internal Medicine III, Metabolic and Vascular Medicine, Medical Faculty Carl Gustav Carus, Dresden, Germany
- Helmholtz Zentrum München Paul Langerhans Institute Dresden (PLID), University Hospital and Faculty of Medicine TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Maxi P Bretschneider
- Department of Internal Medicine III, Metabolic and Vascular Medicine, Medical Faculty Carl Gustav Carus, Dresden, Germany
- Helmholtz Zentrum München Paul Langerhans Institute Dresden (PLID), University Hospital and Faculty of Medicine TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Thomas A Buchanan
- Department of Medicine, Division of Endocrinology and Diabetes, Keck School of Medicine USC, Los Angeles, CA, USA
| | - Yi-Cheng Chang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei City, Taiwan
- Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, Division of Endocrinology and Metabolism, National Taiwan University Hospital, Taipei City, Taiwan
| | - Ren-Hua Chung
- Institute of Population Health Sciences, National Health Research Institutes, Toufen, Taiwan
| | - Tine D Clausen
- Department of Gynecology and Obstetrics, Nordsjaellands Hospital, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Damm
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark
- Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
| | - Graciela E Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Vanessa D de Mello
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Quebec, Canada
| | - Om P Dwivedi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Michael R Erdos
- Center for Precision Health Research National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Christian Gieger
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Mark O Goodarzi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiuqing Guo
- Department of Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stefan Gustafsson
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Liisa Hakaste
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Ulf Hammar
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Gad Hatem
- Clinical Sciences Malmö, Genomics, Diabetes and Endocrinology, Lund University, Malmö, Sweden
| | - Sandra Herrmann
- Helmholtz Zentrum München Paul Langerhans Institute Dresden (PLID), University Hospital and Faculty of Medicine TU Dresden, Dresden, Germany
- Department of Internal Medicine III, Prevention and Care of Diabetes, Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Katrin Horn
- Medical Faculty Institute for Medical Informatics, Statistics and Epidemiology, Leipzig, Germany
- LIFE Leipzig Research Center for Civilization Diseases, Medical Faculty, Leipzig, Germany
| | - Willa A Hsueh
- Internal Medicine, Endocrinology, Diabetes and Metabolism, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yi-Jen Hung
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan
| | - Chii-Min Hwu
- Department of Medicine Section of Endocrinology and Metabolism, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Anna Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Line L Kårhus
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Marcus E Kleber
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Peter Kovacs
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Timo A Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Marie Lauzon
- Department of Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - I-Te Lee
- Department of Internal Medicine Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, Taichung City, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| | - Cecilia M Lindgren
- Big Data Institute Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
- Broad Institute, Cambridge, MA, USA
| | | | - Allan Linneberg
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jian'an Luan
- MRC Epidemiology Unit Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Dina Mansour Aly
- Clinical Sciences Malmö, Genomics, Diabetes and Endocrinology, Lund University, Malmö, Sweden
| | - Elisabeth Mathiesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark
- Department of Endocrinology Rigshospitalet, Copenhagen, Denmark
| | - Angela P Moissl
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Institute of Nutritional Sciences, Friedrich-Schiller-University, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena, Jena, Germany
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Narisu Narisu
- Center for Precision Health Research National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nikolaos Perakakis
- Department of Internal Medicine III, Metabolic and Vascular Medicine, Medical Faculty Carl Gustav Carus, Dresden, Germany
- Helmholtz Zentrum München Paul Langerhans Institute Dresden (PLID), University Hospital and Faculty of Medicine TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Annette Peters
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Rashmi B Prasad
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Clinical Sciences Malmö, Genomics, Diabetes and Endocrinology, Lund University, Malmö, Sweden
| | - Roman N Rodionov
- Department of Internal Medicine III, University Center for Vascular Medicine, Medical Faculty Carl Gustav Carus, Dresden, Germany
- College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - Kathryn Roll
- Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Carsten F Rundsten
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chloé Sarnowski
- Department of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center, Houston, TX, USA
| | - Kai Savonen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Markus Scholz
- Medical Faculty Institute for Medical Informatics, Statistics and Epidemiology, Leipzig, Germany
- LIFE Leipzig Research Center for Civilization Diseases, Medical Faculty, Leipzig, Germany
| | - Sapna Sharma
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Food Chemistry and Molecular and Sensory Science, Technical University of Munich, Freising-Weihenstephan, München, Germany
| | - Sara E Stinson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sufyan Suleman
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jingyi Tan
- Department of Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D Taylor
- Department of Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Matti Uusitupa
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Dorte Vistisen
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Daniel R Witte
- Steno Diabetes Center Aarhus, Aarhus, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Romy Walther
- Helmholtz Zentrum München Paul Langerhans Institute Dresden (PLID), University Hospital and Faculty of Medicine TU Dresden, Dresden, Germany
- Department of Internal Medicine III, Pathobiochemistry, Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Peitao Wu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Anny H Xiang
- Research and Evaluation, Division of Biostatistics, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Björn Zethelius
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Emma Ahlqvist
- Clinical Sciences Malmö, Genomics, Diabetes and Endocrinology, Lund University, Malmö, Sweden
| | - Richard N Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yii-Der Ida Chen
- Department of Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Francis S Collins
- Center for Precision Health Research National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tove Fall
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Jose C Florez
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Programs in Metabolism and Medical and Population Genetics, The Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Andreas Fritsche
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
| | - Harald Grallert
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Leif Groop
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Clinical Sciences Malmö, Genomics, Diabetes and Endocrinology, Lund University, Lund, Sweden
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Heikki A Koistinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Pirjo Komulainen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Markus Loeffler
- Medical Faculty Institute for Medical Informatics, Statistics and Epidemiology, Leipzig, Germany
- LIFE Leipzig Research Center for Civilization Diseases, Medical Faculty, Leipzig, Germany
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Synlab Academy, SYNLAB Holding Deutschland GmbH, Mannheim, Germany
| | - James B Meigs
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
- Clinical Sciences Malmö, Genomics, Diabetes and Endocrinology, Lund University, Lund, Sweden
- Department of Medicine Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Leslie J Raffel
- Department of Pediatrics, Genetic and Genomic Medicine, University of California, Irvine, CA, USA
| | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Peter E H Schwarz
- Helmholtz Zentrum München Paul Langerhans Institute Dresden (PLID), University Hospital and Faculty of Medicine TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Department of Internal Medicine III, Prevention and Care of Diabetes, Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Michael Stumvoll
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Johan Sundström
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Anke Tönjes
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Jaakko Tuomilehto
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Robert Wagner
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
| | - Inês Barroso
- Exeter Centre of Excellence for Diabetes Research (EXCEED), Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Mark Walker
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Boehnke
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas J Wareham
- MRC Epidemiology Unit Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
| | - Eleanor Wheeler
- MRC Epidemiology Unit Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK.
| | - Stephen O'Rahilly
- Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK.
| | - Daniel J Fazakerley
- Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK.
| | - Claudia Langenberg
- MRC Epidemiology Unit Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK.
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin, Berlin, Germany.
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
15
|
Anderson AG, Rogers BB, Loupe JM, Rodriguez-Nunez I, Roberts SC, White LM, Brazell JN, Bunney WE, Bunney BG, Watson SJ, Cochran JN, Myers RM, Rizzardi LF. Single nucleus multiomics identifies ZEB1 and MAFB as candidate regulators of Alzheimer's disease-specific cis-regulatory elements. CELL GENOMICS 2023; 3:100263. [PMID: 36950385 PMCID: PMC10025452 DOI: 10.1016/j.xgen.2023.100263] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/06/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
Cell type-specific transcriptional differences between brain tissues from donors with Alzheimer's disease (AD) and unaffected controls have been well documented, but few studies have rigorously interrogated the regulatory mechanisms responsible for these alterations. We performed single nucleus multiomics (snRNA-seq plus snATAC-seq) on 105,332 nuclei isolated from cortical tissues from 7 AD and 8 unaffected donors to identify candidate cis-regulatory elements (CREs) involved in AD-associated transcriptional changes. We detected 319,861 significant correlations, or links, between gene expression and cell type-specific transposase accessible regions enriched for active CREs. Among these, 40,831 were unique to AD tissues. Validation experiments confirmed the activity of many regions, including several candidate regulators of APP expression. We identified ZEB1 and MAFB as candidate transcription factors playing important roles in AD-specific gene regulation in neurons and microglia, respectively. Microglia links were globally enriched for heritability of AD risk and previously identified active regulatory regions.
Collapse
Affiliation(s)
| | - Brianne B. Rogers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacob M. Loupe
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | | | - Lauren M. White
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - William E. Bunney
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Blynn G. Bunney
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Stanley J. Watson
- Mental Health Research Institute, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
16
|
Grave-to-cradle: human embryonic lineage tracing from the postmortem body. Exp Mol Med 2023; 55:13-21. [PMID: 36599930 PMCID: PMC9898511 DOI: 10.1038/s12276-022-00912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/02/2022] [Accepted: 10/13/2022] [Indexed: 01/06/2023] Open
Abstract
Curiosity concerning the process of human creation has been around for a long time. Relevant questions seemed to be resolved with the knowledge of how cells divide after fertilization obtained through in vitro fertilization experiments. However, we still do not know how human life is created at the cellular level. Recently, the value of cadavers as a resource from which to obtain "normal" cells and tissues has been established, and human research using postmortem bodies has attracted growing scientific attention. As the human genome can be analyzed at the level of nucleotides through whole-genome sequencing, individual cells in a postmortem body can be traced back to determine what developmental processes have transpired from fertilization. These retrospective lineage tracing studies have answered several unsolved questions on how humans are created. This review covers the methodologies utilized in lineage tracing research in a historical context and the conceptual basis for reconstructing the division history of cells in a retrospective manner using postzygotic somatic variants in postmortem tissue. We further highlight answers that postmortem research could potentially address and discuss issues that wait to be solved in the future.
Collapse
|
17
|
Kamalipour A, Ashraf MA, Moghimi S, Moattari A, Ashraf MJ, Abbasi F, Azodi F, Oboudi S, Pirbonyeh N, Mokhtaryan M, Roshanshad A, Do JL, Weinreb RN. Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) RNA in the Human Eye. Ocul Immunol Inflamm 2023; 31:32-38. [PMID: 34637665 DOI: 10.1080/09273948.2021.1980810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE To determine the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in postmortem ocular specimens of patients with severe COVID-19 disease. PATIENTS AND METHODS Postmortem conjunctival (28 samples), aqueous humor (30 samples) and vitreous humor (30 samples) specimens were obtained bilaterally from the eyes of 15 deceased COVID-19 patients within one hour of death. The presence of viral RNA was evaluated in samples using Real-time reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS Positive RT-PCR SARS-COV-2 results were found in one conjunctival and 2 vitreous humor samples. All aqueous humor samples tested negative for the presence of SARS-COV-2 RNA. Of note, three positive samples were obtained from three different patients. The overall prevalence of positive RT-PCR ocular samples was 3.4% among all samples and 20% at the patient level. CONCLUSION SARS-CoV-2 RNA is detectable in postmortem conjunctival and vitreous humor samples of patients with severe COVID-19.
Collapse
Affiliation(s)
- Alireza Kamalipour
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, California, USA
| | - Mohammad Ali Ashraf
- Poostchi Ophthalmology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sasan Moghimi
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, California, USA
| | - Afagh Moattari
- Department of Virology and Bacteriology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Bioinformatics and Computational Biology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Ashraf
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Abbasi
- Department of Infectious Diseases, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farzan Azodi
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Shadi Oboudi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Pirbonyeh
- Department of Virology and Bacteriology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Microbiology, Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mokhtaryan
- Department of Internal Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Roshanshad
- Poostchi Ophthalmology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jiun L Do
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, California, USA
| | - Robert N Weinreb
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, California, USA
| |
Collapse
|
18
|
Cuevas-Diaz Duran R, González-Orozco JC, Velasco I, Wu JQ. Single-cell and single-nuclei RNA sequencing as powerful tools to decipher cellular heterogeneity and dysregulation in neurodegenerative diseases. Front Cell Dev Biol 2022; 10:884748. [PMID: 36353512 PMCID: PMC9637968 DOI: 10.3389/fcell.2022.884748] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 10/06/2022] [Indexed: 08/10/2023] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide and there are currently no cures. Two types of common neurodegenerative diseases are Alzheimer's (AD) and Parkinson's disease (PD). Single-cell and single-nuclei RNA sequencing (scRNA-seq and snRNA-seq) have become powerful tools to elucidate the inherent complexity and dynamics of the central nervous system at cellular resolution. This technology has allowed the identification of cell types and states, providing new insights into cellular susceptibilities and molecular mechanisms underlying neurodegenerative conditions. Exciting research using high throughput scRNA-seq and snRNA-seq technologies to study AD and PD is emerging. Herein we review the recent progress in understanding these neurodegenerative diseases using these state-of-the-art technologies. We discuss the fundamental principles and implications of single-cell sequencing of the human brain. Moreover, we review some examples of the computational and analytical tools required to interpret the extensive amount of data generated from these assays. We conclude by highlighting challenges and limitations in the application of these technologies in the study of AD and PD.
Collapse
Affiliation(s)
| | | | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, United States
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
19
|
Hlynialuk C, Kemper L, Leinonen-Wright K, Petersen RC, Ashe K, Smith B. Caspase-2 mRNA levels are not elevated in mild cognitive impairment, Alzheimer's disease, Huntington's disease, or Lewy Body dementia. PLoS One 2022; 17:e0274784. [PMID: 36129947 PMCID: PMC9491574 DOI: 10.1371/journal.pone.0274784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Caspase-2 is a member of the caspase family that exhibits both apoptotic and non-apoptotic properties, and has been shown to mediate synaptic deficits in models of several neurological conditions, including Alzheimer's disease (AD), Huntington's disease (HD), and Lewy Body dementia (LBD). Our lab previously reported that caspase-2 protein levels are elevated in these diseases, leading us to hypothesize that elevated caspase-2 protein levels are due to increased transcription of caspase-2 mRNA. There are two major isoforms of caspase-2 mRNA, caspase-2L and caspase-2S. We tested our hypothesis by measuring the levels of these mRNA isoforms normalized to levels of RPL13 mRNA, a reference gene that showed no disease-associated changes. Here, we report no increases in caspase-2L mRNA levels in any of the three diseases studied, AD (with mild cognitive impairment (MCI)), HD and LBD, disproving our hypothesis. Caspase-2S mRNA showed a non-significant downward trend in AD. We also analyzed expression levels of SNAP25 and βIII-tubulin mRNA. SNAP25 mRNA was significantly lower in AD and there were downward trends in MCI, LBD, and HD. βIII-tubulin mRNA expression remained unchanged between disease groups and controls. These findings indicate that factors besides transcriptional regulation cause increases in caspase-2 protein levels. The reduction of SNAP25 mRNA expression suggests that presynaptic dysfunction contributes to cognitive deficits in neurodegeneration.
Collapse
Affiliation(s)
- Chris Hlynialuk
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, United States of America
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States of America
| | - Lisa Kemper
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, United States of America
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States of America
| | - Kailee Leinonen-Wright
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, United States of America
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States of America
| | - Ronald C. Petersen
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Karen Ashe
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, United States of America
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States of America
- Minneapolis VA Medical Center, Minneapolis, MN, United States of America
| | - Benjamin Smith
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, United States of America
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
20
|
Brusletto BS, Hellerud BC, Olstad OK, Øvstebø R, Brandtzaeg P. Transcriptomic changes in the large organs in lethal meningococcal shock are reflected in a porcine shock model. Front Cell Infect Microbiol 2022; 12:908204. [PMID: 36034711 PMCID: PMC9413276 DOI: 10.3389/fcimb.2022.908204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022] Open
Abstract
Background Fulminant meningococcal sepsis with shock and multiple organ failure is associated with a massive systemic inflammatory response involving solid organs. We have previously established a porcine model of the disease to study pathophysiologic and possible therapeutic strategies. Objective This study examined whether the organ specific gene expression profile in such a large animal model reflects the profile seen in patients with fulminant meningococcal sepsis. Patients and methods Data from gene expression profiles induced in organs from patients (n=5) and the porcine model (n=8) were imported into the Ingenuity pathway analysis (IPA) software for comparison analysis. The number of meningococci in the organs were quantified by real time-PCR. Results The all-over transcriptional activation between different organs revealed a striking concordance between the patients and the pigs regarding the pattern of transcriptional activation and activated pathways. Comparison analysis demonstrated similar pattern of upregulation of genes being associated with a large range of inflammatory biofunctions in the patients and the porcine model. Genes associated with biofunctions such as organismal death, morbidity and mortality were similarly downregulated in the patients and the porcine model. Comparison analysis of main predicted canonical pathways also demonstrated a high degree of similarity regarding up- and downregulation in both groups. Core analysis revealed different top-upstream regulators in the different organs in the patients. In the patients pro-inflammatory regulators were most activated in the lungs. In the other organs up-stream factors that regulate signaling pathways involved in development, growth, repair and homeostasis and triglyceride synthesis were most activated. In the porcine model, the top-upstream regulators were pro-inflammatory in all organs. The difference may reflect the shorter duration of the porcine experiment than the duration of the patient’s infection before death. Conclusion The inflammatory responses measured on the transcriptomic level in organs in patients with fulminant meningococcal sepsis is reproduced in the porcine model of the disease, although some differences may exist regarding the top-upregulated factors in individual organs. Thus, this large animal model reproduces important immunological features of meningococcal sepsis and can be a valuable tool in further investigations of inflammatory aspects and possible treatment options
Collapse
Affiliation(s)
- Berit Sletbakk Brusletto
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- *Correspondence: Berit Sletbakk Brusletto,
| | | | | | - Reidun Øvstebø
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Petter Brandtzaeg
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Pediatrics, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
21
|
Lu W, Zhou Q, Chen Y. Impact of RNA degradation on next-generation sequencing transcriptome data. Genomics 2022; 114:110429. [PMID: 35810931 DOI: 10.1016/j.ygeno.2022.110429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 11/04/2022]
Abstract
RNA sequencing is an innovative technology to study transcriptomes in both biological and clinical research. However, clinical specimens from patients undergoing surgical operations have a major challenge due to sample degradation. This study replicated the process of RNA degradation by maintaining cells at room temperature to achieve none, slight, middle, and high levels of RNA degradation with decreasing RNA integrity numbers (RIN) of approximately 9.8, 6.7, 4.4, and 2.5, respectively. Next, the differential expression of mRNA and long non-coding RNA (lncRNA) was analyzed in the four degradation groups along with pathway enrichment analysis. The results showed that the similarity of lncRNAs exhibited significant differences even for a slight level of RNA degradation compared with the non-degraded RNA sample. Also, the RNA degradation process was found to be universal, global, and random; the differentially expressed genes increased with an increase in degradation but the pathway enrichment phenomenon was not significantly observed.
Collapse
Affiliation(s)
- Wenxiang Lu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Qin Zhou
- Department of Obstetrics and Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan 215300, China
| | - Yi Chen
- Department of Obstetrics and Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan 215300, China.
| |
Collapse
|
22
|
Rauch J, Steffen JF, Muntau B, Gisbrecht J, Pörtner K, Herden C, Niller HH, Bauswein M, Rubbenstroth D, Mehlhoop U, Allartz P, Tappe D. Human Borna disease virus 1 encephalitis shows marked pro-inflammatory biomarker and tissue immunoactivation during the course of disease. Emerg Microbes Infect 2022; 11:1843-1856. [PMID: 35788177 PMCID: PMC9336484 DOI: 10.1080/22221751.2022.2098831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human Borna disease virus 1 (BoDV-1) encephalitis is a severe emerging disease with a very high case-fatality rate. While the clinical disease, case definitions, diagnostic algorithms and neuropathology have been described, very little is known about the immunological processes of human BoDV-1 encephalitis. Here, we analyzed serum and cerebrospinal fluid (CSF) samples from 10 patients with fatal BoDV-1 encephalitis for changes of different cytokines, chemokines, growth factors and other biomarkers over time. From one of these individuals, also autoptic formalin-fixed brain tissue was analyzed for the expression of inflammatory biomarkers by mRNA levels and immunostaining; in a further patient, only formalin-fixed brain tissue was available and examined in addition. A marked and increasing immune activation from the initial phase to the last phase of acute BoDV-1 encephalitis is shown in serum and CSF, characterized by cytokine concentration changes (IFNγ, IL-5, IL-6, IL-9, IL-10, IL-12p40, IL-13, IL-18, TGF-β1) with a predominantly pro-inflammatory pattern over time. IFNγ production was demonstrated in endothelial cells, astrocytes and microglia, IL-6 in activated microglia, and TGF-β1 in endothelial cells, activated astrocytes and microglia. This was paralleled by an increase of chemokines (CCL-2, CCL-5, CXCL-10, IL-8) to attract immune cells to the site of infection, contributing to inflammation and tissue damage. Pathologically low growth factor levels (BDNF, β-NGF, PDGF) were seen. Changed levels of arginase and sTREM further fostered the pro-inflammatory state. This dysbalanced, pro-inflammatory state likely contributes importantly to the fatal outcome of human BoDV-1 encephalitis, and might be a key target for possible treatment attempts.
Collapse
Affiliation(s)
- Jessica Rauch
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Birgit Muntau
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jana Gisbrecht
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Kirsten Pörtner
- Robert Koch Institute, Department of Infectious Disease Epidemiology, Berlin, Germany
| | - Christiane Herden
- Institute for Veterinary Pathology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Hans Helmut Niller
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Markus Bauswein
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Dennis Rubbenstroth
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ute Mehlhoop
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Petra Allartz
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
23
|
Willsey HR, Willsey AJ, Wang B, State MW. Genomics, convergent neuroscience and progress in understanding autism spectrum disorder. Nat Rev Neurosci 2022; 23:323-341. [PMID: 35440779 PMCID: PMC10693992 DOI: 10.1038/s41583-022-00576-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 12/31/2022]
Abstract
More than a hundred genes have been identified that, when disrupted, impart large risk for autism spectrum disorder (ASD). Current knowledge about the encoded proteins - although incomplete - points to a very wide range of developmentally dynamic and diverse biological processes. Moreover, the core symptoms of ASD involve distinctly human characteristics, presenting challenges to interpreting evolutionarily distant model systems. Indeed, despite a decade of striking progress in gene discovery, an actionable understanding of pathobiology remains elusive. Increasingly, convergent neuroscience approaches have been recognized as an important complement to traditional uses of genetics to illuminate the biology of human disorders. These methods seek to identify intersection among molecular-level, cellular-level and circuit-level functions across multiple risk genes and have highlighted developing excitatory neurons in the human mid-gestational prefrontal cortex as an important pathobiological nexus in ASD. In addition, neurogenesis, chromatin modification and synaptic function have emerged as key potential mediators of genetic vulnerability. The continued expansion of foundational 'omics' data sets, the application of higher-throughput model systems and incorporating developmental trajectories and sex differences into future analyses will refine and extend these results. Ultimately, a systems-level understanding of ASD genetic risk holds promise for clarifying pathobiology and advancing therapeutics.
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - A Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
24
|
Andirkó A, Boeckx C. Brain region-specific effects of nearly fixed sapiens-derived alleles. BMC Genom Data 2022; 23:36. [PMID: 35546225 PMCID: PMC9097168 DOI: 10.1186/s12863-022-01048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
The availability of high-coverage genomes of our extinct relatives, the Neanderthals and Denisovans, and the emergence of large, tissue-specific databases of modern human genetic variation, offer the possibility of probing the effects of modern-derived alleles in specific tissues, such as the brain, and its specific regions. While previous research has explored the effects of introgressed variants in gene expression, the effects of Homo sapiens-specific gene expression variability are still understudied. Here we identify derived, Homo sapiens-specific high-frequency (≥90%) alleles that are associated with differential gene expression across 15 brain structures derived from the GTEx database. We show that regulation by these derived variants targets regions under positive selection more often than expected by chance, and that high-frequency derived alleles lie in functional categories related to transcriptional regulation. Our results highlight the role of these variants in gene regulation in specific regions like the cerebellum and pituitary.
Collapse
Affiliation(s)
- Alejandro Andirkó
- University of Barcelona, Barcelona, Spain.,University of Barcelona Institute of Complex Systems, Barcelona, Spain
| | - Cedric Boeckx
- University of Barcelona, Barcelona, Spain. .,University of Barcelona Institute of Complex Systems, Barcelona, Spain. .,ICREA, Barcelona, Spain.
| |
Collapse
|
25
|
Yoon S, Kim SE, Ko Y, Jeong GH, Lee KH, Lee J, Solmi M, Jacob L, Smith L, Stickley A, Carvalho AF, Dragioti E, Kronbichler A, Koyanagi A, Hong SH, Thompson T, Oh H, Salazar de Pablo G, Radua J, Shin JI, Fusar-Poli P. Differential expression of MicroRNAs in Alzheimer's disease: a systematic review and meta-analysis. Mol Psychiatry 2022; 27:2405-2413. [PMID: 35264731 DOI: 10.1038/s41380-022-01476-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 11/10/2022]
Abstract
Alzheimer's disease (AD) results in progressive cognitive decline owing to the accumulation of amyloid plaques and hyperphosphorylated tau. MicroRNAs (miRNAs) have attracted attention as a putative diagnostic and therapeutic target for neurodegenerative diseases. However, existing meta-analyses on AD and its association with miRNAs have produced inconsistent results. The primary objective of this study is to evaluate the magnitude and consistency of differences in miRNA levels between AD patients, mild cognitive impairment (MCI) patients and healthy controls (HC). Articles investigating miRNA levels in blood, brain tissue, or cerebrospinal fluid (CSF) of AD and MCI patients versus HC were systematically searched in PubMed/Medline from inception to February 16th, 2021. Fixed- and random-effects meta-analyses were complemented with the I2 statistic to measure the heterogeneity, assessment of publication bias, sensitivity subgroup analyses (AD severity, brain region, post-mortem versus ante-mortem specimen for CSF and type of analysis used to quantify miRNA) and functional enrichment pathway analysis. Of the 1512 miRNAs included in 61 articles, 425 meta-analyses were performed on 334 miRNAs. Fifty-six miRNAs were significantly upregulated (n = 40) or downregulated (n = 16) in AD versus HC and all five miRNAs were significantly upregulated in MCI versus HC. Functional enrichment analysis confirmed that pathways related to apoptosis, immune response and inflammation were statistically enriched with upregulated pathways in participants with AD relative to HC. This study confirms that miRNAs' expression is altered in AD and MCI compared to HC. These findings open new diagnostic and therapeutic perspectives for this disorder.
Collapse
Affiliation(s)
- Sojung Yoon
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Eun Kim
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Younhee Ko
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Kyoungki-do, Republic of Korea
| | - Gwang Hun Jeong
- College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinhee Lee
- Department of Psychiatry, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ontario, ON, Canada.,Department of Mental Health, The Ottawa Hospital, Ontario, ON, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute (OHRI), Ottawa, ON, Canada.,School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Louis Jacob
- Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France.,Parc Sanitari Sant Joan de Déu/CIBERSAM, Universitat de Barcelona, Fundació Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain
| | - Lee Smith
- Centre for Health, Performance, and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Andrew Stickley
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.,Stockholm Center for Health and Social Change (SCOHOST), Södertörn University, Huddinge, Sweden
| | - Andre F Carvalho
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Elena Dragioti
- Pain and Rehabilitation Centre and Department of Health, Medicine and Caring Sciences, Linkoping University, Linkoping, Sweden
| | | | - Ai Koyanagi
- Parc Sanitari Sant Joan de Déu/CIBERSAM, Universitat de Barcelona, Fundació Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain.,ICREA, Pg. Lluis Companys 23, Barcelona, Spain
| | - Sung Hwi Hong
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Trevor Thompson
- Centre of Chronic Illness and Ageing, University of Greenwich, London, UK
| | - Hans Oh
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, 90015, USA
| | - Gonzalo Salazar de Pablo
- Early Psychosis: Interventions and Clinical-detection (EPIC) lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Institute of Psychiatry and Mental Health. Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERSAM, Madrid, Spain
| | - Joaquim Radua
- Early Psychosis: Interventions and Clinical-detection (EPIC) lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain.,Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-detection (EPIC) lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.,OASIS service, South London and Maudsley NHS Foundation Trust, London, UK.,National Institute of Health Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
26
|
Ramos‐Mucci L, Sarmiento P, Little D, Snelling S. Research perspectives-Pipelines to human tendon transcriptomics. J Orthop Res 2022; 40:993-1005. [PMID: 35239195 PMCID: PMC9007907 DOI: 10.1002/jor.25315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023]
Abstract
Tendon transcriptomics is a rapidly growing field in musculoskeletal biology. The ultimate aim of many current tendon transcriptomic studies is characterization of in vitro, ex vivo, or in vivo, healthy, and diseased tendon microenvironments to identify the underlying pathways driving human tendon pathology. The transcriptome interfaces between genomic, proteomic, and metabolomic signatures of the tendon cellular niche and the response of this niche to stimuli. Some of the greatest bottlenecks in tendon transcriptomics relate to the availability and quality of human tendon tissue, hence animal tissues are frequently used even though human tissue is most translationally relevant. Here, we review the variability associated with human donor and procurement factors, such as whether the tendon is cadaveric or a clinical remnant, and how these variables affect the quality and relevance of the transcriptomes obtained. Moreover, age, sex, and health demographic variables impact the human tendon transcriptome. Tendons present tissue-specific challenges for cell, nuclei, and RNA extraction that include a dense extracellular matrix, low cellularity, and therefore low RNA yield of variable quality. Consideration of these factors is particularly important for single-cell and single-nuclei resolution transcriptomics due to the necessity for unbiased and representative cell or nuclei populations. Different cell, nuclei, and RNA extraction methods, library preparation, and quality control methods are used by the tendon research community and attention should be paid to these when designing and reporting studies. We discuss the different components and challenges of human tendon transcriptomics, and propose pipelines, quality control, and reporting guidelines for future work in the field.
Collapse
Affiliation(s)
- Lorenzo Ramos‐Mucci
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal ScienceUniversity of OxfordOxfordUK
| | - Paula Sarmiento
- Department of Biomedical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Dianne Little
- Department of Biomedical EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Department of Basic Medical SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Sarah Snelling
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal ScienceUniversity of OxfordOxfordUK
| |
Collapse
|
27
|
Verma S, Kumar A, Narang R, Bisoi AK, Mitra DK. Signature transcriptome analysis of stage specific atherosclerotic plaques of patients. BMC Med Genomics 2022; 15:99. [PMID: 35488341 PMCID: PMC9055692 DOI: 10.1186/s12920-022-01250-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Inflammation plays an important role in all the stages of atherosclerotic plaque development. The current study aimed at assessing the altered expression of genes functioning in inflammation within the early stage (ES) and advanced stage (AS) atherosclerotic plaques obtained from patients undergoing coronary artery bypass grafting (CABG) surgery and identifying biomarker panel/s that may detect the status of plaque stages using peripheral blood samples. METHODS A section of ES and AS plaques and normal left internal mammary arteries (LIMA) were obtained from 8 patients undergoing the CABG surgery. Total RNA isolated was analyzed for mRNA and miRNA expression profile by Affymetrix arrays. A significant number of mRNAs was found to be differentially expressed in ES and AS plaque tissues relative to LIMA. The pathway analysis of differentially expressed mRNAs in the two plaque stages was also performed using DAVID Bioinformatics Database. RESULTS The mRNAs were found to be involved in critical inflammatory processes such as the toll-like receptor signaling pathway and cytokine-cytokine receptor interaction. Few miRNAs targeting these mRNAs were also altered in the two plaque conditions. QRT-PCR results showed a similar expression pattern of a few of the mRNAs and miRNAs in peripheral blood of the same patients relative to healthy controls. CONCLUSION Changes in mRNA and miRNA expression associated with various inflammatory processes occur in different atherosclerotic stage plaques as well as peripheral blood. Detection of such variations in patients' blood can be used as a possible prognostic tool to detect and/or predict the risk and stage of atherosclerosis.
Collapse
Affiliation(s)
- Sonia Verma
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Abhay Kumar
- Department of Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, India
| | - Rajiv Narang
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Akshya K Bisoi
- Department of Cardiothoracic and Vascular Surgery, Cardio, and Neurosciences Center, AIIMS, New Delhi, India
| | - Dipendra K Mitra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences (AIIMS), Room No-75, New Delhi, 110029, India.
| |
Collapse
|
28
|
Analysis of human brain tissue derived from DBS surgery. Transl Neurodegener 2022; 11:22. [PMID: 35418104 PMCID: PMC9006459 DOI: 10.1186/s40035-022-00297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background Transcriptomic and proteomic profiling of human brain tissue is hindered by the availability of fresh samples from living patients. Postmortem samples usually represent the advanced disease stage of the patient. Furthermore, the postmortem interval can affect the transcriptomic and proteomic profiles. Therefore, fresh brain tissue samples from living patients represent a valuable resource of metabolically intact tissue. Implantation of deep brain stimulation (DBS) electrodes into the human brain is a neurosurgical treatment for, e.g., movement disorders. Here, we describe an improved approach to collecting brain tissues from surgical instruments used in implantation of DBS device for transcriptomics and proteomics analyses. Methods Samples were extracted from guide tubes and recording electrodes used in routine DBS implantation procedure to treat patients with Parkinson’s disease, genetic dystonia and tremor. RNA sequencing was performed in tissues extracted from the recording microelectrodes and liquid chromatography-mass spectrometry (LC-MS) performed in tissues from guide tubes. To assess the performance of the current approach, the obtained datasets were compared with previously published datasets representing brain tissues. Results Altogether, 32,034 RNA transcripts representing the unique Ensembl gene identifiers were detected from eight samples representing both hemispheres of four patients. By using LC-MS, we identified 734 unique proteins from 31 samples collected from 14 patients. The datasets are available in the BioStudies database (accession number S-BSST667). Our results indicate that surgical instruments used in DBS installation retain brain material sufficient for protein and gene expression studies. Comparison with previously published datasets obtained with similar approach proved the robustness and reproducibility of the protocol. Conclusions The instruments used during routine DBS surgery are a useful source for obtaining fresh brain tissues from living patients. This approach overcomes the issues that arise from using postmortem tissues, such as the effect of postmortem interval on transcriptomic and proteomic landscape of the brain, and can be used for studying molecular aspects of DBS-treatable diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-022-00297-y.
Collapse
|
29
|
Robinson EL, Baker AH, Brittan M, McCracken I, Condorelli G, Emanueli C, Srivastava PK, Gaetano C, Thum T, Vanhaverbeke M, Angione C, Heymans S, Devaux Y, Pedrazzini T, Martelli F. Dissecting the transcriptome in cardiovascular disease. Cardiovasc Res 2022; 118:1004-1019. [PMID: 33757121 PMCID: PMC8930073 DOI: 10.1093/cvr/cvab117] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
The human transcriptome comprises a complex network of coding and non-coding RNAs implicated in a myriad of biological functions. Non-coding RNAs exhibit highly organized spatial and temporal expression patterns and are emerging as critical regulators of differentiation, homeostasis, and pathological states, including in the cardiovascular system. This review defines the current knowledge gaps, unmet methodological needs, and describes the challenges in dissecting and understanding the role and regulation of the non-coding transcriptome in cardiovascular disease. These challenges include poor annotation of the non-coding genome, determination of the cellular distribution of transcripts, assessment of the role of RNA processing and identification of cell-type specific changes in cardiovascular physiology and disease. We highlight similarities and differences in the hurdles associated with the analysis of the non-coding and protein-coding transcriptomes. In addition, we discuss how the lack of consensus and absence of standardized methods affect reproducibility of data. These shortcomings should be defeated in order to make significant scientific progress and foster the development of clinically applicable non-coding RNA-based therapeutic strategies to lessen the burden of cardiovascular disease.
Collapse
Affiliation(s)
- Emma L Robinson
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Universiteitssingel 50, 6229 Maastricht University, Maastricht, The Netherlands
- The Division of Cardiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew H Baker
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Mairi Brittan
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Ian McCracken
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - G Condorelli
- Humanitas Research Hospital, Humanitas University, Via Manzoni 113, Rozzano, MI 20089, Italy
| | - C Emanueli
- Imperial College, National Heart and Lung Institute, Hammersmith campus, Du Cane Road, London W12 0NN, UK
| | - P K Srivastava
- Imperial College, National Heart and Lung Institute, Hammersmith campus, Du Cane Road, London W12 0NN, UK
| | - C Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia 27100, Italy
| | - T Thum
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Carl-Neuberg-Straße 1 30625 Hannover, Germany
| | - M Vanhaverbeke
- UZ Gasthuisberg Campus, KU Leuven, Herestraat 49 3000 Leuven, Belgium
| | - C Angione
- Department of Computer Science and Information Systems, Teesside University, Middlesbrough, TS4 3BX, UK
| | - S Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Universiteitssingel 50, 6229 Maastricht University, Maastricht, The Netherlands
| | - Y Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - T Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, 1011 Lausanne, Switzerland
| | - F Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Piazza Edmondo Malan, 2, 20097 San Donato, Milan, Italy
| | | |
Collapse
|
30
|
Zhang Z, Zamojski M, Smith GR, Willis TL, Yianni V, Mendelev N, Pincas H, Seenarine N, Amper MAS, Vasoya M, Cheng WS, Zaslavsky E, Nair VD, Turgeon JL, Bernard DJ, Troyanskaya OG, Andoniadou CL, Sealfon SC, Ruf-Zamojski F. Single nucleus transcriptome and chromatin accessibility of postmortem human pituitaries reveal diverse stem cell regulatory mechanisms. Cell Rep 2022; 38:110467. [PMID: 35263594 PMCID: PMC8957708 DOI: 10.1016/j.celrep.2022.110467] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/23/2021] [Accepted: 02/09/2022] [Indexed: 01/07/2023] Open
Abstract
Despite their importance in tissue homeostasis and renewal, human pituitary stem cells (PSCs) are incompletely characterized. We describe a human single nucleus RNA-seq and ATAC-seq resource from pediatric, adult, and aged postmortem pituitaries (snpituitaryatlas.princeton.edu) and characterize cell-type-specific gene expression and chromatin accessibility programs for all major pituitary cell lineages. We identify uncommitted PSCs, committing progenitor cells, and sex differences. Pseudotime trajectory analysis indicates that early-life PSCs are distinct from the other age groups. Linear modeling of same-cell multiome data identifies regulatory domain accessibility sites and transcription factors that are significantly associated with gene expression in PSCs compared with other cell types and within PSCs. We identify distinct deterministic mechanisms that contribute to heterogeneous marker expression within PSCs. These findings characterize human stem cell lineages and reveal diverse mechanisms regulating key PSC genes and cell type identity. This study profiles the gene expression and chromatin accessibility landscapes in postmortem male and female pituitaries of different ages using single nucleus multiomics technologies. Zhang et al. characterize the pituitary stem cell population and develop computational methods, which allow us to elucidate regulatory mechanisms underlying pituitary stem cell identity.
Collapse
Affiliation(s)
- Zidong Zhang
- Lewis-Sigler Institute for Integrative Genomics and Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ, USA
| | - Michel Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Gregory R Smith
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Thea L Willis
- Center for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Val Yianni
- Center for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Natalia Mendelev
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Hanna Pincas
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Nitish Seenarine
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Mary Anne S Amper
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Mital Vasoya
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Wan Sze Cheng
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Elena Zaslavsky
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Venugopalan D Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Judith L Turgeon
- Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Olga G Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics and Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ, USA; Department of Computer Science, Princeton University, Princeton, NJ, USA; Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Cynthia L Andoniadou
- Center for Craniofacial and Regenerative Biology, King's College London, London, UK; Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Stuart C Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA.
| | - Frederique Ruf-Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA.
| |
Collapse
|
31
|
Post mortem computed tomography meets radiomics: a case series on fractal analysis of post mortem changes in the brain. Int J Legal Med 2022; 136:719-727. [PMID: 35239030 PMCID: PMC9005394 DOI: 10.1007/s00414-022-02801-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/14/2022] [Indexed: 10/26/2022]
Abstract
Estimating the post-mortem interval is a fundamental, albeit challenging task in forensic sciences. To this aim, forensic practitioners need to assess post-mortem changes through a plethora of different methods, most of which are inherently qualitative, thus providing broad time intervals rather than precise determinations. This challenging problem is further complicated by the influence of environmental factors, which modify the temporal dynamics of post-mortem changes, sometimes in a rather unpredictable fashion. In this context, the search for quantitative and objective descriptors of post-mortem changes is highly demanded. In this study, we used computed tomography (CT) to assess the post-mortem anatomical modifications occurring in the time interval 0-4 days after death in the brain of four corpses. Our results show that fractal analysis of CT brain slices provides a set of quantitative descriptors able to map post-mortem changes over time throughout the whole brain. Although incapable of producing a direct estimation of the PMI, these descriptors could be used in combination with other more established methods to improve the accuracy and reliability of PMI determination.
Collapse
|
32
|
Poma AM, Bonuccelli D, Giannini R, Macerola E, Vignali P, Ugolini C, Torregrossa L, Proietti A, Pistello M, Basolo A, Santini F, Toniolo A, Basolo F. COVID-19 autopsy cases: detection of virus in endocrine tissues. J Endocrinol Invest 2022; 45:209-214. [PMID: 34191258 PMCID: PMC8243303 DOI: 10.1007/s40618-021-01628-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/25/2021] [Indexed: 01/06/2023]
Abstract
PURPOSE The SARS-CoV-2 genome has been detected in a variety of human samples including blood, urine, semen, and faeces. However, evidence of virus presence in tissues other than lung are limited. METHODS We investigated whether SARS-CoV-2 could be detected in 50 autoptic specimens of endocrine organs from 29 patients who died of COVID-19. RESULTS The virus was detected in 25 specimens including ten abdominal subcutaneous adipose tissue samples (62%), six testes (67%), and nine thyroid (36%) samples. The analysis of multiple endocrine organ samples obtained from the same patients showed that, in virus-positive cases, the viral genome was consistently detected in all but two matched specimens. CONCLUSION Our findings show that the virus spread into endocrine organs is a common event in severe cases. Further studies should assess the rate of the phenomenon in clinically mild cases. The potential long-term effects of COVID-19 on endocrine functions should be taken into consideration.
Collapse
Affiliation(s)
- A M Poma
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi,10, 56126, Pisa, Italy
| | - D Bonuccelli
- Department of Forensic Medicine, Azienda USL Toscana Nordovest, Lucca, Italy
| | - R Giannini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi,10, 56126, Pisa, Italy
| | - E Macerola
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi,10, 56126, Pisa, Italy
| | - P Vignali
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi,10, 56126, Pisa, Italy
| | - C Ugolini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi,10, 56126, Pisa, Italy
| | - L Torregrossa
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi,10, 56126, Pisa, Italy
| | - A Proietti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi,10, 56126, Pisa, Italy
| | - M Pistello
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - A Basolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - F Santini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A Toniolo
- Global Virus Network, University of Insubria, Varese, Italy
| | - F Basolo
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi,10, 56126, Pisa, Italy.
| |
Collapse
|
33
|
Grima N, Henden L, Watson O, Blair IP, Williams KL. Simultaneous Isolation of High-Quality RNA and DNA From Postmortem Human Central Nervous System Tissues for Omics Studies. J Neuropathol Exp Neurol 2021; 81:135-145. [PMID: 34939123 DOI: 10.1093/jnen/nlab129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Multi-omics approaches are increasingly being adopted to understand the complex networks underlying disease. The coisolation of high-quality nucleotides from affected tissues is paramount for the parallel analysis of transcriptomic, genomic, and epigenomic data sets. Although nucleotides extracted from postmortem central nervous system (CNS) tissue are widely used in the study of neurodegenerative disease, assessment of methods for the simultaneous isolation of DNA and RNA is limited. Herein, we describe a strategy for the isolation of high-quality DNA and RNA from postmortem human tissue from 7 CNS regions. Motor cortex, frontal cortex, hippocampus, occipital cortex, anterior cingulate cortex, cerebellum, and spinal cord tissues were obtained from 22 individuals diagnosed with motor neuron disease (MND) and 13 neurologically normal controls (n = 245 tissues). We demonstrated that the Qiagen AllPrep DNA/RNA kit consistently isolated DNA and RNA of high yield and quality from all 6 brain regions. Importantly, phenol-chloroform-based extraction was required to isolate high-yield RNA from spinal cord. RNA sequencing using RNA extracted from 6 CNS regions (n = 60) generated high-quality transcriptomes. Hierarchical clustering of data from motor cortex, using an MND susceptibility gene panel and marker genes of disease-associated microglia, demonstrated that MND-specific gene expression signatures could be detected in the transcriptome data.
Collapse
Affiliation(s)
- Natalie Grima
- From the Faculty of Medicine, Health and Human Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, New South Wales, Australia
| | - Lyndal Henden
- From the Faculty of Medicine, Health and Human Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, New South Wales, Australia
| | - Owen Watson
- From the Faculty of Medicine, Health and Human Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, New South Wales, Australia
| | - Ian P Blair
- From the Faculty of Medicine, Health and Human Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, New South Wales, Australia
| | - Kelly L Williams
- From the Faculty of Medicine, Health and Human Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
34
|
Antiga LG, Sibbens L, Abakkouy Y, Decorte R, Van Den Bogaert W, Van de Voorde W, Bekaert B. Cell survival and DNA damage repair are promoted in the human blood thanatotranscriptome shortly after death. Sci Rep 2021; 11:16585. [PMID: 34400689 PMCID: PMC8368024 DOI: 10.1038/s41598-021-96095-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/30/2021] [Indexed: 11/09/2022] Open
Abstract
RNA analysis of post-mortem tissues, or thanatotranscriptomics, has become a topic of interest in forensic science due to the essential information it can provide in forensic investigations. Several studies have previously investigated the effect of death on gene transcription, but it has never been conducted with samples of the same individual. For the first time, a longitudinal mRNA expression analysis study was performed with post-mortem human blood samples from individuals with a known time of death. The results reveal that, after death, two clearly differentiated groups of up- and down-regulated genes can be detected. Pathway analysis suggests active processes that promote cell survival and DNA damage repair, rather than passive degradation, are the source of early post-mortem changes of gene expression in blood. In addition, a generalized linear model with an elastic net restriction predicted post-mortem interval with a root mean square error of 4.75 h. In conclusion, we demonstrate that post-mortem gene expression data can be used as biomarkers to estimate the post-mortem interval though further validation using independent sample sets is required before use in forensic casework.
Collapse
Affiliation(s)
- Laura G Antiga
- Forensic Biomedical Sciences, Department of Imaging and Pathology, KU Leuven, Herestraat 49, Box 7003 71, 3000, Leuven, Belgium
- Department of Experimental and Health Sciences (CEXS), University Pompeu Fabra (UPF), Barcelona, Spain
| | - Lode Sibbens
- Forensic Biomedical Sciences, Department of Imaging and Pathology, KU Leuven, Herestraat 49, Box 7003 71, 3000, Leuven, Belgium
| | - Yasmina Abakkouy
- Forensic Biomedical Sciences, Department of Imaging and Pathology, KU Leuven, Herestraat 49, Box 7003 71, 3000, Leuven, Belgium
| | - Ronny Decorte
- Forensic Biomedical Sciences, Department of Imaging and Pathology, KU Leuven, Herestraat 49, Box 7003 71, 3000, Leuven, Belgium
- Laboratory of Forensic Genetics, UZ Leuven, 3000, Leuven, Belgium
| | - Wouter Van Den Bogaert
- Forensic Biomedical Sciences, Department of Imaging and Pathology, KU Leuven, Herestraat 49, Box 7003 71, 3000, Leuven, Belgium
- Laboratory of Forensic Genetics, UZ Leuven, 3000, Leuven, Belgium
| | - Wim Van de Voorde
- Forensic Biomedical Sciences, Department of Imaging and Pathology, KU Leuven, Herestraat 49, Box 7003 71, 3000, Leuven, Belgium
- Laboratory of Forensic Genetics, UZ Leuven, 3000, Leuven, Belgium
| | - Bram Bekaert
- Forensic Biomedical Sciences, Department of Imaging and Pathology, KU Leuven, Herestraat 49, Box 7003 71, 3000, Leuven, Belgium.
- Laboratory of Forensic Genetics, UZ Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
35
|
Patel S, Howard D, French L. A pH-eQTL Interaction at the RIT2- SYT4 Parkinson's Disease Risk Locus in the Substantia Nigra. Front Aging Neurosci 2021; 13:690632. [PMID: 34305570 PMCID: PMC8299340 DOI: 10.3389/fnagi.2021.690632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease causes severe motor and cognitive disabilities that result from the progressive loss of dopamine neurons in the substantia nigra. The rs12456492 variant in the RIT2 gene has been repeatedly associated with increased risk for Parkinson's disease. From a transcriptomic perspective, a meta-analysis found that RIT2 gene expression is correlated with pH in the human brain. To assess these pH associations in relation to Parkinson's disease risk, we examined the two datasets that assayed rs12456492, gene expression, and pH in the postmortem human brain. Using the BrainEAC dataset, we replicate the positive correlation between RIT2 gene expression and pH in the human brain (n = 100). Furthermore, we found that the relationship between expression and pH is influenced by rs12456492. When tested across ten brain regions, this interaction is specifically found in the substantia nigra. A similar association was found for the co-localized SYT4 gene. In addition, SYT4 associations are stronger in a combined model with both genes, and the SYT4 interaction appears to be specific to males. In the Genotype-Tissue Expression (GTEx) dataset, the pH associations involving rs12456492 and expression of either SYT4 and RIT2 were not seen. This null finding may be due to the short postmortem intervals of the GTEx tissue samples. In the BrainEAC data, we tested the effect of postmortem interval and only observed the interactions in samples with the longer intervals. These previously unknown associations suggest novel roles for rs12456492, RIT2, and SYT4 in the regulation and response to pH in the substantia nigra.
Collapse
Affiliation(s)
- Sejal Patel
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Derek Howard
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Leon French
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute for Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
He H, Liyanarachchi S, Li W, Comiskey DF, Yan P, Bundschuh R, Turkoglu AM, Brock P, Ringel MD, de la Chapelle A. Transcriptome analysis discloses dysregulated genes in normal appearing tumor-adjacent thyroid tissues from patients with papillary thyroid carcinoma. Sci Rep 2021; 11:14126. [PMID: 34238982 PMCID: PMC8266864 DOI: 10.1038/s41598-021-93526-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 01/10/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. The molecular characteristics of histologically normal appearing tissue adjacent to the tumor (NAT) from PTC patients are not well characterized. The aim of this study was to characterize the global gene expression profile of NAT and compare it with those of normal and tumor thyroid tissues. We performed total RNA sequencing with fresh frozen thyroid tissues from a cohort of three categories of samples including NAT, normal thyroid (N), and PTC tumor (T). Transcriptome analysis shows that NAT presents a unique gene expression profile, which was not associated with sex or the presence of lymphocytic thyroiditis. Among the differentially expressed genes (DEGs) of NAT vs N, 256 coding genes and 5 noncoding genes have been reported as cancer genes involved in cell proliferation, apoptosis, and/or tumorigenesis. Bioinformatics analysis with Ingenuity Pathway Analysis software revealed that “Cancer, Organismal Injury and Abnormalities, Cellular Response to Therapeutics, and Cellular Movement” were major dysregulated pathways in the NAT tissues. This study provides improved insight into the complexity of gene expression changes in the thyroid glands of patients with PTC.
Collapse
Affiliation(s)
- Huiling He
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, McCampbell Hall South Room 565, 1581 Dodd Drive, Columbus, OH, 43210, USA
| | - Sandya Liyanarachchi
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, McCampbell Hall South Room 565, 1581 Dodd Drive, Columbus, OH, 43210, USA
| | - Wei Li
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, McCampbell Hall South Room 565, 1581 Dodd Drive, Columbus, OH, 43210, USA
| | - Daniel F Comiskey
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, McCampbell Hall South Room 565, 1581 Dodd Drive, Columbus, OH, 43210, USA
| | - Pearlly Yan
- Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, McCampbell Hall South Room 565, 1581 Dodd Drive, Columbus, OH, 43210, USA
| | - Ralf Bundschuh
- Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physics, The Ohio State University, Columbus, OH, 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Altan M Turkoglu
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Pamela Brock
- Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, McCampbell Hall South Room 565, 1581 Dodd Drive, Columbus, OH, 43210, USA
| | - Matthew D Ringel
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA. .,The Ohio State University Comprehensive Cancer Center, The Ohio State University, McCampbell Hall South Room 565, 1581 Dodd Drive, Columbus, OH, 43210, USA.
| | - Albert de la Chapelle
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, McCampbell Hall South Room 565, 1581 Dodd Drive, Columbus, OH, 43210, USA
| |
Collapse
|
37
|
Bonadio RS, Nunes LB, Moretti PNS, Mazzeu JF, Cagnin S, Pic-Taylor A, de Oliveira SF. Insights into how environment shapes post-mortem RNA transcription in mouse brain. Sci Rep 2021; 11:13008. [PMID: 34155272 PMCID: PMC8217559 DOI: 10.1038/s41598-021-92268-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
Most biological features that occur on the body after death were already deciphered by traditional medicine. However, the molecular mechanisms triggered in the cellular microenvironment are not fully comprehended yet. Previous studies reported gene expression alterations in the post-mortem condition, but little is known about how the environment could influence RNA degradation and transcriptional regulation. In this work, we analysed the transcriptome of mouse brain after death under three concealment simulations (air exposed, buried, and submerged). Our analyses identified 2,103 genes differentially expressed in all tested groups 48 h after death. Moreover, we identified 111 commonly upregulated and 497 commonly downregulated genes in mice from the concealment simulations. The gene functions shared by the individuals from the tested environments were associated with RNA homeostasis, inflammation, developmental processes, cell communication, cell proliferation, and lipid metabolism. Regarding the altered biological processes, we identified that the macroautophagy process was enriched in the upregulated genes and lipid metabolism was enriched in the downregulated genes. On the other hand, we also described a list of biomarkers associated with the submerged and buried groups, indicating that these environments can influence the post-mortem RNA abundance in its particular way.
Collapse
Affiliation(s)
- Raphael Severino Bonadio
- grid.7632.00000 0001 2238 5157Department of Genetics and Morphology, University of Brasilia, Brasilia, Brazil ,grid.5608.b0000 0004 1757 3470Department of Biology and CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | - Larissa Barbosa Nunes
- grid.7632.00000 0001 2238 5157Department of Genetics and Morphology, University of Brasilia, Brasilia, Brazil
| | | | - Juliana Forte Mazzeu
- grid.7632.00000 0001 2238 5157Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Stefano Cagnin
- grid.5608.b0000 0004 1757 3470Department of Biology and CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | - Aline Pic-Taylor
- grid.7632.00000 0001 2238 5157Department of Genetics and Morphology, University of Brasilia, Brasilia, Brazil
| | | |
Collapse
|
38
|
Mondello C, Stassi C, Minutoli L, Baldino G, Alibrandi A, Spatola GF, Uzzo ML, Micali A, Puzzolo D, Asmundo A, Ventura Spagnolo E. Caspase 9 and Caspase 3 Immunohistochemical Pattern in Skeletal and Cardiac Muscles at Different Times after Death: An Experimental Study on PMI Estimation. Diagnostics (Basel) 2021; 11:diagnostics11061062. [PMID: 34207610 PMCID: PMC8229155 DOI: 10.3390/diagnostics11061062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The estimation of the post mortem interval (PMI) is a challenge for forensic pathologists because data emerging from methods commonly applied are not always conclusive, since several conditions exist that may affect the reliability of these parameters. Thus, new approaches have been proposed to overcome such a limit. In recent years, several studies have been performed on proteins analyzing their expression/degradation patterns in relation to the progressing of the post mortem interval. (2) Methods: The immunoreactivity patterns of two apoptosis mediators—Caspase 9 and Caspase 3—have been tested in order to evaluate their potential role as markers of the post mortem interval. The immunohistochemical analysis was performed on samples of skeletal and cardiac muscles obtained from rats at 0, 4, 8, 12, 24 and 72 h after death. (3) Results: The observed immunoreactivity patterns of both Caspase 9 and Caspase 3 showed a significant correlation with increasing post mortem interval either in skeletal or cardiac muscles, while the comparison of the immunoreactivity patterns of the two apoptotic mediators within each tissue appeared consistent with a preliminary activation of the “initiator” Caspase 9, which, in turn, subsequently activates the “executioner” Caspase 3. (4) Conclusion: The different expressions and decrease immunohistochemically observed on both caspases with progressing PMI support the usefulness of the combined analysis for post mortem interval estimation.
Collapse
Affiliation(s)
- Cristina Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (C.M.); (A.M.); (D.P.); (A.A.)
| | - Chiara Stassi
- Legal Medicine Section, Department for Health Promotion and Mother-Child Care, University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (C.S.); (G.B.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy;
| | - Gennaro Baldino
- Legal Medicine Section, Department for Health Promotion and Mother-Child Care, University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (C.S.); (G.B.)
| | - Angela Alibrandi
- Unit of Statistical and Mathematical Sciences, Department of Economics, University of Messina, Via dei Verdi 75, 98122 Messina, Italy;
| | - Giovanni Francesco Spatola
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (G.F.S.); (M.L.U.)
| | - Maria Laura Uzzo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (G.F.S.); (M.L.U.)
| | - Antonio Micali
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (C.M.); (A.M.); (D.P.); (A.A.)
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (C.M.); (A.M.); (D.P.); (A.A.)
| | - Alessio Asmundo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (C.M.); (A.M.); (D.P.); (A.A.)
| | - Elvira Ventura Spagnolo
- Legal Medicine Section, Department for Health Promotion and Mother-Child Care, University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (C.S.); (G.B.)
- Correspondence: ; Tel.: +39-3496465532
| |
Collapse
|
39
|
Lam S, Kommadath A, López-Campos Ó, Prieto N, Aalhus J, Juárez M, Dugan MER, Vahmani P. Evaluation of RNA quality and functional transcriptome of beef longissimus thoracis over time post-mortem. PLoS One 2021; 16:e0251868. [PMID: 34033656 PMCID: PMC8148330 DOI: 10.1371/journal.pone.0251868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
Evaluating RNA quality and transcriptomic profile of beef muscle over time post-mortem may provide insight into RNA degradation and underlying biological and functional mechanisms that accompany biochemical changes occurring post-mortem during transformation of muscle to meat. RNA was extracted from longissimus thoracis (LT) sampled from British Continental crossbred heifer carcasses (n = 7) stored at 4°C in an abattoir drip cooler at 5 time points post-mortem, i.e., 45 min (0 h), 6 h, 24 h, 48 h, and 72 h. Following RNA-Sequencing, processed reads were aligned to the ARS-UCD1.2 bovine genome assembly. Subsequent differential expression (DE) analysis identified from 51 to 1434 upregulated and 27 to 2256 downregulated DE genes at individual time points compared to time 0 h, showing a trend for increasing counts of both upregulated and downregulated genes over time. Gene ontology and biological pathway term enrichment analyses on sets of DE genes revealed several processes and their timelines of activation/deactivation that accompanied or were involved with muscle transformation to meat. Although the quality of RNA in refrigerated LT remained high for several days post-mortem, the expression levels of several known biomarker genes for meat quality began to change from 24 h onwards. Therefore, to ensure accuracy of predictions on meat quality traits based on the expression levels of those biomarker genes in refrigerated beef muscle tissue, it is crucial that those expression measurements be made on RNA sampled within 24 h post-mortem. The present study also highlighted the need for more research on the roles of mitochondrial genes and non-coding genes in orchestrating muscle tissue processes after death, and how pre-mortem immune status might influence post-mortem meat quality.
Collapse
Affiliation(s)
- Stephanie Lam
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Arun Kommadath
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Óscar López-Campos
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Nuria Prieto
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Jennifer Aalhus
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Manuel Juárez
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Michael E. R. Dugan
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Payam Vahmani
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| |
Collapse
|
40
|
Martínez-Rivera V, Cárdenas-Monroy CA, Millan-Catalan O, González-Corona J, Huerta-Pacheco NS, Martínez-Gutiérrez A, Villavicencio-Queijeiro A, Pedraza-Lara C, Hidalgo-Miranda A, Bravo-Gómez ME, Pérez-Plasencia C, Guardado-Estrada M. Dysregulation of miR-381-3p and miR-23b-3p in skeletal muscle could be a possible estimator of early post-mortem interval in rats. PeerJ 2021; 9:e11102. [PMID: 33986977 PMCID: PMC8086579 DOI: 10.7717/peerj.11102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/22/2021] [Indexed: 01/01/2023] Open
Abstract
Background The post-mortem interval (PMI) is the time elapsed since the dead of an individual until the body is found, which is relevant for forensic purposes. The miRNAs regulate the expression of some genes; and due to their small size, they can better support degradation, which makes them suitable for forensic analysis. In the present work, we evaluated the gene expression of miR-381-3p, miR-23b-3p, and miR-144-3p in skeletal muscle in a murine model at the early PMI. Methods We designed a rat model to evaluate the early PMI under controlled conditions. This model consisted in 25 rats divided into five groups of rats, that correspond to the 0, 3, 6, 12 and 24 hours of PMI. The 0 h-PMI was considered as the control group. Muscle samples were taken from each rat to analyze the expression of miR-381-3p, miR-23b-3p, and miR-144-3p by quantitative RT-PCR. The gene expression of each miRNA was expressed as Fold Change (FC) and compared among groups. To find the targets of these miRNAs and the pathways where they participate, we performed an in-silico analysis. From the gene targets of miR-381-3p identified in the silico analysis, the EPC1 gene was selected for gene expression analysis by quantitative RT-PCR in these samples. Also, to evaluate if miR-381-3p could predict the early PMI, a mixed effects model was calculated using its gene expression. Results An upregulation of miR-381-3p was found at 24 h-PMI compared with the control group of 0 h-PMI and (FC = 1.02 vs. FC = 1.96; p = 0.0079). This was the opposite for miR-23b-3p, which had a down-regulation at 24 h-PMI compared to 0 h-PMI (FC = 1.22 vs. FC = 0.13; p = 0.0079). Moreover, the gene expression of miR-381-3p increased throughout the first 24 h of PMI, contrary to miR-23b-3p. The targets of these two miRNAs, participate in biological pathways related to hypoxia, apoptosis, and RNA metabolism. The gene expression of EPC1 was found downregulated at 3 and 12 h of PMI, whereas it remained unchanged at 6 h and 24 h of PMI. Using a multivariate analysis, it was possible to predict the FC of miR-381-3p of all but 6 h-PMI analyzed PMIs. Discussion The present results suggest that miR-23b-3p and miR-381-3p participate at the early PMI, probably regulating the expression of some genes related to the autolysis process as EPC1 gene. Although the miR-381-3p gene expression is a potential estimator of PMI, further studies will be required to obtain better estimates.
Collapse
Affiliation(s)
- Vanessa Martínez-Rivera
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Christian A Cárdenas-Monroy
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Oliver Millan-Catalan
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituo Nacional de Cancerologia, Ciudad de México, México.,Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jessica González-Corona
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - N Sofia Huerta-Pacheco
- Cátedras CONACYT-Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Antonio Martínez-Gutiérrez
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituo Nacional de Cancerologia, Ciudad de México, México
| | - Alexa Villavicencio-Queijeiro
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Carlos Pedraza-Lara
- Laboratorio de Entomología, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Nacional de Medicina Genomica, Ciudad de México, México
| | - María Elena Bravo-Gómez
- Laboratorio de Toxicología, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Carlos Pérez-Plasencia
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituo Nacional de Cancerologia, Ciudad de México, México.,Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mariano Guardado-Estrada
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
41
|
Felfeli T, Mazzulli T, Clark ST, El-Defrawy SR, Chan CC. SARS-CoV-2 Not Detectable in Ocular Specimens of a Patient with a Past Infection. Ocul Immunol Inflamm 2021; 29:681-683. [PMID: 33826479 DOI: 10.1080/09273948.2021.1894458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose: To present a a case study that aims to investigate the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the ocular tissue samples of a patient previously infected with COVID-19 and determine its transmissibility.Study Design: Case ReportResults: In this case study, SARS-CoV-2 was not detected in the vitreous and uveal tissue samples by RT-PCR for detection of three gene targets in a patient with a past COVID-19 infection 15 days prior to presention with a globe rupture.Conclusions: Our findings suggest that patients with long-term existence of SARS-CoV-2 at low detectable levels may not have active intraocular viral shedding. This is of particular importance as ophthalmic surgical procedures may potentiate virus spread from patients infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Tina Felfeli
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Tony Mazzulli
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Microbiology, University Health Network/Mount Sinai Hospital, Toronto, ON, Canada
| | - Shawn T Clark
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sherif R El-Defrawy
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada.,Kensington Vision and Research Centre, Kensington Eye Institute, University of Toronto, Toronto, ON, Canada
| | - Clara C Chan
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada.,Kensington Vision and Research Centre, Kensington Eye Institute, University of Toronto, Toronto, ON, Canada.,Department of Ophthalmology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Department of Ophthalmology, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
Ma SX, Lim SB. Single-Cell RNA Sequencing in Parkinson's Disease. Biomedicines 2021; 9:368. [PMID: 33916045 PMCID: PMC8066089 DOI: 10.3390/biomedicines9040368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Single-cell and single-nucleus RNA sequencing (sc/snRNA-seq) technologies have enhanced the understanding of the molecular pathogenesis of neurodegenerative disorders, including Parkinson's disease (PD). Nonetheless, their application in PD has been limited due mainly to the technical challenges resulting from the scarcity of postmortem brain tissue and low quality associated with RNA degradation. Despite such challenges, recent advances in animals and human in vitro models that recapitulate features of PD along with sequencing assays have fueled studies aiming to obtain an unbiased and global view of cellular composition and phenotype of PD at the single-cell resolution. Here, we reviewed recent sc/snRNA-seq efforts that have successfully characterized diverse cell-type populations and identified cell type-specific disease associations in PD. We also examined how these studies have employed computational and analytical tools to analyze and interpret the rich information derived from sc/snRNA-seq. Finally, we highlighted important limitations and emerging technologies for addressing key technical challenges currently limiting the integration of new findings into clinical practice.
Collapse
Affiliation(s)
- Shi-Xun Ma
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
43
|
Basova L, Lindsey A, McGovern AM, Ellis RJ, Marcondes MCG. Detection of H3K4me3 Identifies NeuroHIV Signatures, Genomic Effects of Methamphetamine and Addiction Pathways in Postmortem HIV+ Brain Specimens that Are Not Amenable to Transcriptome Analysis. Viruses 2021; 13:544. [PMID: 33805201 PMCID: PMC8064323 DOI: 10.3390/v13040544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
Human postmortem specimens are extremely valuable resources for investigating translational hypotheses. Tissue repositories collect clinically assessed specimens from people with and without HIV, including age, viral load, treatments, substance use patterns and cognitive functions. One challenge is the limited number of specimens suitable for transcriptional studies, mainly due to poor RNA quality resulting from long postmortem intervals. We hypothesized that epigenomic signatures would be more stable than RNA for assessing global changes associated with outcomes of interest. We found that H3K27Ac or RNA Polymerase (Pol) were not consistently detected by Chromatin Immunoprecipitation (ChIP), while the enhancer H3K4me3 histone modification was abundant and stable up to the 72 h postmortem. We tested our ability to use HeK4me3 in human prefrontal cortex from HIV+ individuals meeting criteria for methamphetamine use disorder or not (Meth +/-) which exhibited poor RNA quality and were not suitable for transcriptional profiling. Systems strategies that are typically used in transcriptional metadata were applied to H3K4me3 peaks revealing consistent genomic activity differences in regions where addiction and neuronal synapses pathway genes are represented, including genes of the dopaminergic system, as well as inflammatory pathways. The resulting comparisons mirrored previously observed effects of Meth on suppressing gene expression and provided insights on neurological processes affected by Meth. The results suggested that H3K4me3 detection in chromatin may reflect transcriptional patterns, thus providing opportunities for analysis of larger numbers of specimens from cases with substance use and neurological deficits. In conclusion, the detection of H3K4me3 in isolated chromatin can be an alternative to transcriptome strategies to increase the power of association using specimens with long postmortem intervals and low RNA quality.
Collapse
Affiliation(s)
- Liana Basova
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA; (L.B.); (A.L.); (A.M.M.)
| | - Alexander Lindsey
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA; (L.B.); (A.L.); (A.M.M.)
| | - Anne Marie McGovern
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA; (L.B.); (A.L.); (A.M.M.)
| | - Ronald J. Ellis
- Departments of Neurosciences and Psychiatry, University of California San Diego, San Diego, CA 92103, USA;
| | | |
Collapse
|
44
|
Dachet F, Brown JB, Valyi-Nagy T, Narayan KD, Serafini A, Boley N, Gingeras TR, Celniker SE, Mohapatra G, Loeb JA. Selective time-dependent changes in activity and cell-specific gene expression in human postmortem brain. Sci Rep 2021; 11:6078. [PMID: 33758256 PMCID: PMC7988150 DOI: 10.1038/s41598-021-85801-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
As a means to understand human neuropsychiatric disorders from human brain samples, we compared the transcription patterns and histological features of postmortem brain to fresh human neocortex isolated immediately following surgical removal. Compared to a number of neuropsychiatric disease-associated postmortem transcriptomes, the fresh human brain transcriptome had an entirely unique transcriptional pattern. To understand this difference, we measured genome-wide transcription as a function of time after fresh tissue removal to mimic the postmortem interval. Within a few hours, a selective reduction in the number of neuronal activity-dependent transcripts occurred with relative preservation of housekeeping genes commonly used as a reference for RNA normalization. Gene clustering indicated a rapid reduction in neuronal gene expression with a reciprocal time-dependent increase in astroglial and microglial gene expression that continued to increase for at least 24 h after tissue resection. Predicted transcriptional changes were confirmed histologically on the same tissue demonstrating that while neurons were degenerating, glial cells underwent an outgrowth of their processes. The rapid loss of neuronal genes and reciprocal expression of glial genes highlights highly dynamic transcriptional and cellular changes that occur during the postmortem interval. Understanding these time-dependent changes in gene expression in post mortem brain samples is critical for the interpretation of research studies on human brain disorders.
Collapse
Affiliation(s)
- Fabien Dachet
- University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - James B Brown
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | | | - Anna Serafini
- University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Nathan Boley
- University of California, Berkeley, CA, 94720, USA
| | | | | | | | - Jeffrey A Loeb
- University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
45
|
Haas C, Neubauer J, Salzmann AP, Hanson E, Ballantyne J. Forensic transcriptome analysis using massively parallel sequencing. Forensic Sci Int Genet 2021; 52:102486. [PMID: 33657509 DOI: 10.1016/j.fsigen.2021.102486] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
The application of transcriptome analyses in forensic genetics has experienced tremendous growth and development in the past decade. The earliest studies and main applications were body fluid and tissue identification, using targeted RNA transcripts and a reverse transcription endpoint PCR method. A number of markers have been identified for the forensically most relevant body fluids and tissues and the method has been successfully used in casework. The introduction of Massively Parallel Sequencing (MPS) opened up new perspectives and opportunities to advance the field. Contrary to genomic DNA where two copies of an autosomal DNA segment are present in a cell, abundant RNA species are expressed in high copy numbers. Even whole transcriptome sequencing (RNA-Seq) of forensically relevant body fluids and of postmortem material was shown to be possible. This review gives an overview on forensic transcriptome analyses and applications. The methods cover whole transcriptome as well as targeted MPS approaches. High resolution forensic transcriptome analyses using MPS are being applied to body fluid/ tissue identification, determination of the age of stains and the age of the donor, the estimation of the post-mortem interval and to post mortem death investigations.
Collapse
Affiliation(s)
- Cordula Haas
- University of Zurich, Zurich Institute of Forensic Medicine, Forensic Genetics, Winterthurerstrasse 190/52, CH-8057 Zurich, Switzerland.
| | - Jacqueline Neubauer
- University of Zurich, Zurich Institute of Forensic Medicine, Forensic Genetics, Winterthurerstrasse 190/52, CH-8057 Zurich, Switzerland
| | - Andrea Patrizia Salzmann
- University of Zurich, Zurich Institute of Forensic Medicine, Forensic Genetics, Winterthurerstrasse 190/52, CH-8057 Zurich, Switzerland
| | - Erin Hanson
- National Center for Forensic Science, University of Central Florida, 12354 Research Parkway, Suite 225, Orlando, FL 32826, USA
| | - Jack Ballantyne
- National Center for Forensic Science, University of Central Florida, 12354 Research Parkway, Suite 225, Orlando, FL 32826, USA; Department of Chemistry, National Center for Forensic Science, University of Central Florida, 12354 Research Parkway, Suite 225, Orlando, FL 32826, USA
| |
Collapse
|
46
|
Heng Y, Dubbelaar ML, Marie SKN, Boddeke EWGM, Eggen BJL. The effects of postmortem delay on mouse and human microglia gene expression. Glia 2020; 69:1053-1060. [PMID: 33296111 PMCID: PMC7898322 DOI: 10.1002/glia.23948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
Microglia are specialized macrophages of the central nervous system (CNS) and first to react to pathogens or injury. Over the last decade, transcriptional profiling of microglia significantly contributed to our understanding of their functions. In the case of human CNS samples, either potential CNS pathology in the case of surgery samples, or a postmortem delay (PMD) due to the time needed for tissue access and collection, are potential factors that affect gene expression profiles. To determine the effect of PMD on the microglia transcriptome, we first analyzed mouse microglia, where genotype, antemortem conditions and PMD can be controlled. Microglia were isolated from mice after different PMDs (0, 4, 6, 12, and 24 hr) using fluorescence‐activated cell sorting (FACS). The number of viable microglia significantly decreased with increasing PMD, but even after a 12 hr PMD, high‐quality RNA could be obtained. PMD had very limited effect on mouse microglia gene expression, only 50 genes were differentially expressed between different PMDs. These genes were related to mitochondrial, ribosomal, and protein binding functions. In human microglia transcriptomes we previously generated, 31 of the 50 PMD‐associated mouse genes had human homologs, and their relative expression was also affected by PMD. This study provides a set of genes that shows relative expression changes in relation to PMD, both in mouse and human microglia. Although the gene expression changes detected are subtle, these genes need to be accounted for when analyzing microglia transcriptomes generated from samples with variable PMDs.
Collapse
Affiliation(s)
- Yang Heng
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marissa L Dubbelaar
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Suely K N Marie
- Laboratory of Molecular and Cellular Biology (LIM 15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Erik W G M Boddeke
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Center for Healthy Ageing, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
47
|
Affiliation(s)
- Philippe Charlier
- Département de la recherche et de l'enseignement, musée du quai Branly-Jacques Chirac, 222 rue de l'Université, 75007 Paris, France. - Laboratoire anthropologie, archéologie, biologie (LAAB), université Paris-Saclay (UVSQ), UFR des sciences de la santé, 2 avenue de la source de la Bièvre, 78180 Montigny-Le-Bretonneux, France. - Fondation anthropologie, archéologie, biologie (FAAB) - Institut de France, 23 quai de Conti, 75007 Paris, France
| |
Collapse
|
48
|
Indiaminov SI, Zhumanov ZE, Blinova SA. [Problems of establishing the prescription of death]. Sud Med Ekspert 2020; 63:45-50. [PMID: 33180414 DOI: 10.17116/sudmed20206306145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Based on the analysis of literature data, demonstrated the relevance of further research to establish the prescription of death, including in a hot arid zone. Taking into account the climate of the seasons of Uzbekistan was stressed the importance of a comprehensive assessment of the dynamics of the development of cadaveric changes and supravital reactions, together with the results of biochemical, morphological and morphometric studies of the brain, other organs and tissues at different times of the postmortem period in certain groups. It could be used to develop additional criteria for establishing the onset of death in a hot arid zone.
Collapse
Affiliation(s)
- S I Indiaminov
- Samarkand State Medical Institute, Samarkand, Uzbekistan
| | - Z E Zhumanov
- Samarkand State Medical Institute, Samarkand, Uzbekistan
| | - S A Blinova
- Samarkand State Medical Institute, Samarkand, Uzbekistan
| |
Collapse
|
49
|
Locci E, Bazzano G, Chighine A, Locco F, Ferraro E, Demontis R, d'Aloja E. Forensic NMR metabolomics: one more arrow in the quiver. Metabolomics 2020; 16:118. [PMID: 33159593 PMCID: PMC7648736 DOI: 10.1007/s11306-020-01743-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION NMR metabolomics is increasingly used in forensics, due to the possibility of investigating both endogenous metabolic profiles and exogenous molecules that may help to describe metabolic patterns and their modifications associated to specific conditions of forensic interest. OBJECTIVES The aim of this work was to review the recent literature and depict the information provided by NMR metabolomics. Attention has been devoted to the identification of peculiar metabolic signatures and specific ante-mortem and post-mortem profiles or biomarkers related to different conditions of forensic concern, such as the identification of biological traces, the estimation of the time since death, and the exposure to drugs of abuse. RESULTS AND CONCLUSION The results of the described studies highlight how forensics can benefit from NMR metabolomics by gaining additional information that may help to shed light in several forensic issues that still deserve to be further elucidated.
Collapse
Affiliation(s)
- Emanuela Locci
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy.
- Department of Medical Sciences and Public Health, Legal Medicine Section, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, CA, Italy.
| | - Giovanni Bazzano
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| | - Alberto Chighine
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| | - Francesco Locco
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| | - Ernesto Ferraro
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| | - Roberto Demontis
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| | - Ernesto d'Aloja
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| |
Collapse
|
50
|
Pérez-Brocal V, Magne F, Ruiz-Ruiz S, Ponce CA, Bustamante R, Martin VS, Gutierrez M, Gatti G, Vargas SL, Moya A. Optimized DNA extraction and purification method for characterization of bacterial and fungal communities in lung tissue samples. Sci Rep 2020; 10:17377. [PMID: 33060634 PMCID: PMC7562954 DOI: 10.1038/s41598-020-74137-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Human lungs harbor a scarce microbial community, requiring to develop methods to enhance the recovery of nucleic acids from bacteria and fungi, leading to a more efficient analysis of the lung tissue microbiota. Here we describe five extraction protocols including pre-treatment, bead-beating and/or Phenol:Chloroform:Isoamyl alcohol steps, applied to lung tissue samples from autopsied individuals. The resulting total DNA yield and quality, bacterial and fungal DNA amount and the microbial community structure were analyzed by qPCR and Illumina sequencing of bacterial 16S rRNA and fungal ITS genes. Bioinformatic modeling revealed that a large part of microbiome from lung tissue is composed of microbial contaminants, although our controls clustered separately from biological samples. After removal of contaminant sequences, the effects of extraction protocols on the microbiota were assessed. The major differences among samples could be attributed to inter-individual variations rather than DNA extraction protocols. However, inclusion of the bead-beater and Phenol:Chloroform:Isoamyl alcohol steps resulted in changes in the relative abundance of some bacterial/fungal taxa. Furthermore, inclusion of a pre-treatment step increased microbial DNA concentration but not diversity and it may contribute to eliminate DNA fragments from dead microorganisms in lung tissue samples, making the microbial profile closer to the actual one.
Collapse
Affiliation(s)
- Vicente Pérez-Brocal
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Avda. Cataluña 21, 46020, València, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Fabien Magne
- Microbiology and Mycology Program, Biomedical Sciences Institute (ICBM), University of Chile School of Medicine, Av. Independencia 1027, Independencia, Santiago, Chile.
| | - Susana Ruiz-Ruiz
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Avda. Cataluña 21, 46020, València, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Carolina A Ponce
- Microbiology and Mycology Program, Biomedical Sciences Institute (ICBM), University of Chile School of Medicine, Av. Independencia 1027, Independencia, Santiago, Chile
| | - Rebeca Bustamante
- Microbiology and Mycology Program, Biomedical Sciences Institute (ICBM), University of Chile School of Medicine, Av. Independencia 1027, Independencia, Santiago, Chile
| | | | | | - Gianna Gatti
- Médico Legal Institute of Chile, Santiago, Chile
| | - Sergio L Vargas
- Microbiology and Mycology Program, Biomedical Sciences Institute (ICBM), University of Chile School of Medicine, Av. Independencia 1027, Independencia, Santiago, Chile.
| | - Andrés Moya
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Avda. Cataluña 21, 46020, València, Spain.
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain.
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish National Research Council (CSIC), València, Spain.
| |
Collapse
|