1
|
Huynh MT, Erfani Z, Al Nemri S, Chirayil S, Kovacs Z, Park JM. Enhanced Solubility and Polarization of 13C-Fumarate with Meglumine Allows for In Vivo Detection of Gluconeogenic Metabolism in Kidneys. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37435-37444. [PMID: 38984763 PMCID: PMC11272437 DOI: 10.1021/acsami.4c03163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Hyperpolarized 13C-labeled fumarate probes tissue necrosis via the production of 13C-malate. Despite its promises in detecting tumor necrosis and kidney injuries, its clinical translation has been limited, primarily due to the low solubility in conventional glassing solvents. In this study, we introduce a new formulation of fumarate for dissolution dynamic nuclear polarization (DNP) by using meglumine as a counterion, a nonmetabolizable derivative of sorbitol. We have found that meglumine fumarate vitrifies by itself with enhanced water solubility (4.8 M), which is expected to overcome the solubility-restricted maximum concentration of hyperpolarized fumarate after dissolution. The achievable liquid-state polarization level of meglumine-fumarate is more than doubled (29.4 ± 1.3%) as compared to conventional dimethyl sulfoxide (DMSO)-mixed fumarate (13.5 ± 2.4%). In vivo comparison of DMSO- and meglumine-prepared 50-mM hyperpolarized [1,4-13C2]fumarate shows that the signal sensitivity in rat kidneys increases by 10-fold. As a result, [1,4-13C2]aspartate and [13C]bicarbonate in addition to [1,4-13C2]malate can be detected in healthy rat kidneys in vivo using hyperpolarized meglumine [1,4-13C2]fumarate. In particular, the appearance of [13C]bicarbonate indicates that hyperpolarized meglumine [1,4-13C2]fumarate can be used to investigate phosphoenolpyruvate carboxykinase, a key regulatory enzyme in gluconeogenesis.
Collapse
Affiliation(s)
- Mai T Huynh
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Zohreh Erfani
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Sarah Al Nemri
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Sara Chirayil
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Zoltan Kovacs
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jae Mo Park
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
2
|
Římal V, Bunyatova EI, Štěpánková H. Efficient Scavenging of TEMPOL Radical by Ascorbic Acid in Solution and Related Prolongation of 13C and 1H Nuclear Spin Relaxation Times of the Solute. Molecules 2024; 29:738. [PMID: 38338481 PMCID: PMC10856727 DOI: 10.3390/molecules29030738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Dynamic nuclear polarization for nuclear magnetic resonance (NMR) spectroscopy and imaging uses free radicals to strongly enhance the NMR signal of a compound under investigation. At the same time, the radicals shorten significantly its nuclear spin relaxation times which reduces the time window available for the experiments. Radical scavenging can overcome this drawback. Our work presents a detailed study of the reduction of the TEMPOL radical by ascorbic acid in solution by high-resolution NMR. Carbon-13 and hydrogen-1 nuclear spin relaxations are confirmed to be restored to their values without TEMPOL. Reaction mechanism, kinetics, and the influence of pD and viscosity are thoroughly discussed. The detailed investigation conducted in this work should help with choosing suitable concentrations in the samples for dynamic nuclear polarization and optimizing the measurement protocols.
Collapse
Affiliation(s)
- Václav Římal
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic;
| | | | - Helena Štěpánková
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic;
| |
Collapse
|
3
|
Sannelli F, Wang KC, Jensen PR, Meier S. Rapid probing of glucose influx into cancer cell metabolism: using adjuvant and a pH-dependent collection of central metabolites to improve in-cell D-DNP NMR. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4870-4882. [PMID: 37702554 DOI: 10.1039/d3ay01120h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Changes to metabolism are a hallmark of many diseases. Disease metabolism under physiological conditions can be probed in real time with in-cell NMR assays. Here, we pursued a systematic approach towards improved in-cell NMR assays. Unambiguous identifications of metabolites and of intracellular pH are afforded by a comprehensive, downloadable collection of spectral data for central carbon metabolites in the physiological pH range (4.0-8.0). Chemical shifts of glycolytic intermediates provide unique pH dependent patterns akin to a barcode. Using hyperpolarized 13C1 enriched glucose as the probe molecule of central metabolism in cancer, we find that early glycolytic intermediates are detectable in PC-3 prostate cancer cell lines, concurrently yielding intracellular pH. Using non-enriched and non-enhanced pyruvate as an adjuvant, reactions of the pentose phosphate pathway become additionally detectable, without significant changes to the barriers in upper glycolysis and to intracellular pH. The scope of tracers for in-cell observations can thus be improved by the presence of adjuvants, showing that a recently proposed effect of pyruvate in the tumor environment is paralleled by a rerouting of cancer cell metabolism towards producing building blocks for proliferation. Overall, the combined use of reference data for compound identification, site specific labelling for reducing overlap, and use of adjuvant afford increasingly detailed insight into disease metabolism.
Collapse
Affiliation(s)
- Francesca Sannelli
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Bygning 207, 2800 Kgs Lyngby, Denmark.
| | - Ke-Chuan Wang
- Department of Health Technology, Technical University of Denmark, Elektrovej 349, 2800-Kgs Lyngby, Denmark
| | - Pernille Rose Jensen
- Department of Health Technology, Technical University of Denmark, Elektrovej 349, 2800-Kgs Lyngby, Denmark
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Bygning 207, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
4
|
Rooney CHE, Gamliel A, Shaul D, Tyler DJ, Grist JT, Katz‐Brull R. Directly Bound Deuterons Increase X-Nuclei Hyperpolarization using Dynamic Nuclear Polarization. Chemphyschem 2023; 24:e202300144. [PMID: 37431622 PMCID: PMC10947409 DOI: 10.1002/cphc.202300144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Deuterated 13 C sites in sugars (D-glucose and 2-deoxy-D-glucose) showed 6.3-to-17.5-fold higher solid-state dynamic nuclear polarization (DNP) levels than their respective protonated sites at 3.35T. This effect was found to be unrelated to the protonation of the bath. Deuterated 15 N in sites bound to exchangeable protons ([15 N2 ]urea) showed a 1.3-fold higher polarization than their respective protonated sites at the same magnetic field. This relatively smaller effect was attributed to incomplete deuteration of the 15 N sites due to the solvent mixture. For a 15 N site that is not bound to protons or deuterons ([15 N]nitrate), deuteration of the bath did not affect the polarization level. These findings suggest a phenomenon related to DNP of X-nuclei directly bound to deuteron(s) as opposed to proton(s). It appears that direct binding to deuterons increases the solid-state DNP polarization level of X-nuclei which are otherwise bound to protons.
Collapse
Affiliation(s)
| | - Ayelet Gamliel
- Department of RadiologyHadassah Medical Organization and Faculty of MedicineHebrew University of JerusalemJerusalem9112011Israel
- The Wohl Institute for Translational MedicineHadassah Medical OrganizationJerusalemIsrael
| | - David Shaul
- Department of RadiologyHadassah Medical Organization and Faculty of MedicineHebrew University of JerusalemJerusalem9112011Israel
- The Wohl Institute for Translational MedicineHadassah Medical OrganizationJerusalemIsrael
| | - Damian J. Tyler
- Department of PhysiologyAnatomy and GeneticsUniversity of OxfordOxfordUK
- Oxford Centre for Clinical Magnetic Resonance ResearchDivision of Cardiovascular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - James T. Grist
- Department of PhysiologyAnatomy and GeneticsUniversity of OxfordOxfordUK
- Oxford Centre for Clinical Magnetic Resonance ResearchDivision of Cardiovascular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
- Department of RadiologyOxford University HospitalsOxfordUK
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Rachel Katz‐Brull
- Department of RadiologyHadassah Medical Organization and Faculty of MedicineHebrew University of JerusalemJerusalem9112011Israel
- The Wohl Institute for Translational MedicineHadassah Medical OrganizationJerusalemIsrael
| |
Collapse
|
5
|
Chen Ming Low J, Wright AJ, Hesse F, Cao J, Brindle KM. Metabolic imaging with deuterium labeled substrates. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 134-135:39-51. [PMID: 37321757 DOI: 10.1016/j.pnmrs.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/12/2023] [Accepted: 02/07/2023] [Indexed: 06/17/2023]
Abstract
Deuterium metabolic imaging (DMI) is an emerging clinically-applicable technique for the non-invasive investigation of tissue metabolism. The generally short T1 values of 2H-labeled metabolites in vivo can compensate for the relatively low sensitivity of detection by allowing rapid signal acquisition in the absence of significant signal saturation. Studies with deuterated substrates, including [6,6'-2H2]glucose, [2H3]acetate, [2H9]choline and [2,3-2H2]fumarate have demonstrated the considerable potential of DMI for imaging tissue metabolism and cell death in vivo. The technique is evaluated here in comparison with established metabolic imaging techniques, including PET measurements of 2-deoxy-2-[18F]fluoro-d-glucose (FDG) uptake and 13C MR imaging of the metabolism of hyperpolarized 13C-labeled substrates.
Collapse
Affiliation(s)
- Jacob Chen Ming Low
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Alan J Wright
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Friederike Hesse
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Jianbo Cao
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
6
|
Gaunt AP, Lewis JS, Hesse F, Cheng T, Marco‐Rius I, Brindle KM, Comment A. Labile Photo-Induced Free Radical in α-Ketoglutaric Acid: a Universal Endogenous Polarizing Agent for In Vivo Hyperpolarized 13 C Magnetic Resonance. Angew Chem Int Ed Engl 2022; 61:e202112982. [PMID: 34679201 PMCID: PMC7612908 DOI: 10.1002/anie.202112982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 12/25/2022]
Abstract
Hyperpolarized (HP) 13 C magnetic resonance enables non-invasive probing of metabolism in vivo. To date, only 13 C-molecules hyperpolarized with persistent trityl radicals have been injected in humans. We show here that the free radical photo-induced in alpha-ketoglutaric acid (α-KG) can be used to hyperpolarize photo-inactive 13 C-molecules such as [1-13 C]lactate. α-KG is an endogenous molecule with an exceptionally high radical yield under photo-irradiation, up to 50 %, and its breakdown product, succinic acid, is also endogenous. This radical precursor therefore exhibits an excellent safety profile for translation to human studies. The labile nature of the radical means that no filtration is required prior to injection while also offering the opportunity to extend the 13 C relaxation time in frozen HP 13 C-molecules for storage and transport. The potential for in vivo metabolic studies is demonstrated in the rat liver following the injection of a physiological dose of HP [1-13 C]lactate.
Collapse
Affiliation(s)
- Adam P. Gaunt
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Jennifer S. Lewis
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Friederike Hesse
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Tian Cheng
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Irene Marco‐Rius
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Kevin M. Brindle
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Arnaud Comment
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
- General Electric HealthcarePollards Wood, Nightingales LaneChalfont St GilesHP8 4SPUK
| |
Collapse
|
7
|
Gaunt AP, Lewis JS, Hesse F, Cheng T, Marco‐Rius I, Brindle KM, Comment A. Labile Photo-Induced Free Radical in α-Ketoglutaric Acid: a Universal Endogenous Polarizing Agent for In Vivo Hyperpolarized 13C Magnetic Resonance. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202112982. [PMID: 38505340 PMCID: PMC10947361 DOI: 10.1002/ange.202112982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 11/11/2022]
Abstract
Hyperpolarized (HP) 13C magnetic resonance enables non-invasive probing of metabolism in vivo. To date, only 13C-molecules hyperpolarized with persistent trityl radicals have been injected in humans. We show here that the free radical photo-induced in alpha-ketoglutaric acid (α-KG) can be used to hyperpolarize photo-inactive 13C-molecules such as [1-13C]lactate. α-KG is an endogenous molecule with an exceptionally high radical yield under photo-irradiation, up to 50 %, and its breakdown product, succinic acid, is also endogenous. This radical precursor therefore exhibits an excellent safety profile for translation to human studies. The labile nature of the radical means that no filtration is required prior to injection while also offering the opportunity to extend the 13C relaxation time in frozen HP 13C-molecules for storage and transport. The potential for in vivo metabolic studies is demonstrated in the rat liver following the injection of a physiological dose of HP [1-13C]lactate.
Collapse
Affiliation(s)
- Adam P. Gaunt
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Jennifer S. Lewis
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Friederike Hesse
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Tian Cheng
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Irene Marco‐Rius
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Kevin M. Brindle
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Arnaud Comment
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
- General Electric HealthcarePollards Wood, Nightingales LaneChalfont St GilesHP8 4SPUK
| |
Collapse
|
8
|
Li Y, Vigneron DB, Xu D. Current human brain applications and challenges of dynamic hyperpolarized carbon-13 labeled pyruvate MR metabolic imaging. Eur J Nucl Med Mol Imaging 2021; 48:4225-4235. [PMID: 34432118 PMCID: PMC8566394 DOI: 10.1007/s00259-021-05508-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022]
Abstract
The ability of hyperpolarized carbon-13 MR metabolic imaging to acquire dynamic metabolic information in real time is crucial to gain mechanistic insights into metabolic pathways, which are complementary to anatomic and other functional imaging methods. This review presents the advantages of this emerging functional imaging technology, describes considerations in clinical translations, and summarizes current human brain applications. Despite rapid development in methodologies, significant technological and physiological related challenges continue to impede broader clinical translation.
Collapse
Affiliation(s)
- Yan Li
- Department of Radiology and Biomedical Imaging, UCSF Radiology, University of California, 185 Berry Street, Ste 350, Box 0946, San Francisco, CA, 94107, USA.
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, UCSF Radiology, University of California, 185 Berry Street, Ste 350, Box 0946, San Francisco, CA, 94107, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, UCSF Radiology, University of California, 185 Berry Street, Ste 350, Box 0946, San Francisco, CA, 94107, USA
| |
Collapse
|
9
|
Zanella CC, Capozzi A, Yoshihara HAI, Radaelli A, Mackowiak ALC, Arn LP, Gruetter R, Bastiaansen JAM. Radical-free hyperpolarized MRI using endogenously occurring pyruvate analogues and UV-induced nonpersistent radicals. NMR IN BIOMEDICINE 2021; 34:e4584. [PMID: 34245482 PMCID: PMC8518970 DOI: 10.1002/nbm.4584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
It was recently demonstrated that nonpersistent radicals can be generated in frozen solutions of metabolites such as pyruvate by irradiation with UV light, enabling radical-free dissolution dynamic nuclear polarization. Although pyruvate is endogenous, the presence of pyruvate may interfere with metabolic processes or the detection of pyruvate as a metabolic product, making it potentially unsuitable as a polarizing agent. Therefore, the aim of the current study was to characterize solutions containing endogenously occurring alternatives to pyruvate as UV-induced nonpersistent radical precursors for in vivo hyperpolarized MRI. The metabolites alpha-ketovalerate (αkV) and alpha-ketobutyrate (αkB) are analogues of pyruvate and were chosen as potential radical precursors. Sample formulations containing αkV and αkB were studied with UV-visible spectroscopy, irradiated with UV light, and their nonpersistent radical yields were quantified with electron spin resonance and compared with pyruvate. The addition of 13 C-labeled substrates to the sample matrix altered the radical yield of the precursors. Using αkB increased the 13 C-labeled glucose liquid-state polarization to 16.3% ± 1.3% compared with 13.3% ± 1.5% obtained with pyruvate, and 8.9% ± 2.1% with αkV. For [1-13 C]butyric acid, polarization levels of 12.1% ± 1.1% for αkV, 12.9% ± 1.7% for αkB, 1.5% ± 0.2% for OX063 and 18.7% ± 0.7% for Finland trityl, were achieved. Hyperpolarized [1-13 C]butyrate metabolism in the heart revealed label incorporation into [1-13 C]acetylcarnitine, [1-13 C]acetoacetate, [1-13 C]butyrylcarnitine, [5-13 C]glutamate and [5-13 C]citrate. This study demonstrates the potential of αkV and αkB as endogenous polarizing agents for in vivo radical-free hyperpolarized MRI. UV-induced, nonpersistent radicals generated in endogenous metabolites enable high polarization without requiring radical filtration, thus simplifying the quality-control tests in clinical applications.
Collapse
Affiliation(s)
| | - Andrea Capozzi
- Laboratory of Functional and Metabolic Imaging, EPFLLausanneSwitzerland
| | | | - Alice Radaelli
- Laboratory of Functional and Metabolic Imaging, EPFLLausanneSwitzerland
| | - Adèle L. C. Mackowiak
- Department of Diagnostic and Interventional RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Lionel P. Arn
- Department of Diagnostic and Interventional RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Rolf Gruetter
- Laboratory of Functional and Metabolic Imaging, EPFLLausanneSwitzerland
| | - Jessica A. M. Bastiaansen
- Department of Diagnostic and Interventional RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| |
Collapse
|
10
|
Fiedorowicz M, Wieteska M, Rylewicz K, Kossowski B, Piątkowska-Janko E, Czarnecka AM, Toczylowska B, Bogorodzki P. Hyperpolarized 13C tracers: Technical advancements and perspectives for clinical applications. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Kim Y, Chen HY, Autry AW, Villanueva-Meyer J, Chang SM, Li Y, Larson PEZ, Brender JR, Krishna MC, Xu D, Vigneron DB, Gordon JW. Denoising of hyperpolarized 13 C MR images of the human brain using patch-based higher-order singular value decomposition. Magn Reson Med 2021; 86:2497-2511. [PMID: 34173268 DOI: 10.1002/mrm.28887] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/23/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE To improve hyperpolarized 13 C (HP-13 C) MRI by image denoising with a new approach, patch-based higher-order singular value decomposition (HOSVD). METHODS The benefit of using a patch-based HOSVD method to denoise dynamic HP-13 C MR imaging data was investigated. Image quality and the accuracy of quantitative analyses following denoising were evaluated first using simulated data of [1-13 C]pyruvate and its metabolic product, [1-13 C]lactate, and compared the results to a global HOSVD method. The patch-based HOSVD method was then applied to healthy volunteer HP [1-13 C]pyruvate EPI studies. Voxel-wise kinetic modeling was performed on both non-denoised and denoised data to compare the number of voxels quantifiable based on SNR criteria and fitting error. RESULTS Simulation results demonstrated an 8-fold increase in the calculated SNR of [1-13 C]pyruvate and [1-13 C]lactate with the patch-based HOSVD denoising. The voxel-wise quantification of kPL (pyruvate-to-lactate conversion rate) showed a 9-fold decrease in standard errors for the fitted kPL after denoising. The patch-based denoising performed superior to the global denoising in recovering kPL information. In volunteer data sets, [1-13 C]lactate and [13 C]bicarbonate signals became distinguishable from noise across captured time points with over a 5-fold apparent SNR gain. This resulted in >3-fold increase in the number of voxels quantifiable for mapping kPB (pyruvate-to-bicarbonate conversion rate) and whole brain coverage for mapping kPL . CONCLUSIONS Sensitivity enhancement provided by this denoising significantly improved quantification of metabolite dynamics and could benefit future studies by improving image quality, enabling higher spatial resolution, and facilitating the extraction of metabolic information for clinical research.
Collapse
Affiliation(s)
- Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Adam W Autry
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Javier Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Jeffrey R Brender
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Murali C Krishna
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.,Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| |
Collapse
|
12
|
Capozzi A, Kilund J, Karlsson M, Patel S, Pinon AC, Vibert F, Ouari O, Lerche MH, Ardenkjær-Larsen JH. Metabolic contrast agents produced from transported solid 13C-glucose hyperpolarized via dynamic nuclear polarization. Commun Chem 2021; 4:95. [PMID: 36697707 PMCID: PMC9814755 DOI: 10.1038/s42004-021-00536-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/08/2021] [Indexed: 01/28/2023] Open
Abstract
Magnetic Resonance Imaging combined with hyperpolarized 13C-labelled metabolic contrast agents produced via dissolution Dynamic Nuclear Polarization can, non-invasively and in real-time, report on tissue specific aberrant metabolism. However, hyperpolarization equipment is expensive, technically demanding and needs to be installed on-site for the end-user. In this work, we provide a robust methodology that allows remote production of the hyperpolarized 13C-labelled metabolic contrast agents. The methodology, built on photo-induced thermally labile radicals, allows solid sample extraction from the hyperpolarization equipment and several hours' lifetime of the 13C-labelled metabolic contrast agents at appropriate storage/transport conditions. Exemplified with [U-13C, d7]-D-glucose, we remotely produce hyperpolarized 13C-labelled metabolic contrast agents and generate above 10,000-fold liquid-state Magnetic Resonance signal enhancement at 9.4 T, keeping on-site only a simple dissolution device.
Collapse
Affiliation(s)
- Andrea Capozzi
- LIFMET, Department of Physics, EPFL, Station 6 (Batiment CH), Lausanne, Switzerland.
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.
| | - Jan Kilund
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Magnus Karlsson
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Saket Patel
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Arthur Cesar Pinon
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - François Vibert
- Institut de Chimie Radicalire Aix-Marseille Université, CNRS, ICR UMR 7273, Marseille, Cedex 20, France
| | - Olivier Ouari
- Institut de Chimie Radicalire Aix-Marseille Université, CNRS, ICR UMR 7273, Marseille, Cedex 20, France
| | - Mathilde H Lerche
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | |
Collapse
|
13
|
Measuring Glycolytic Activity with Hyperpolarized [ 2H 7, U- 13C 6] D-Glucose in the Naive Mouse Brain under Different Anesthetic Conditions. Metabolites 2021; 11:metabo11070413. [PMID: 34201777 PMCID: PMC8303162 DOI: 10.3390/metabo11070413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/01/2021] [Accepted: 06/19/2021] [Indexed: 12/30/2022] Open
Abstract
Glucose is the primary fuel for the brain; its metabolism is linked with cerebral function. Different magnetic resonance spectroscopy (MRS) techniques are available to assess glucose metabolism, providing complementary information. Our first aim was to investigate the difference between hyperpolarized 13C-glucose MRS and non-hyperpolarized 2H-glucose MRS to interrogate cerebral glycolysis. Isoflurane anesthesia is commonly employed in preclinical MRS, but it affects cerebral hemodynamics and functional connectivity. A combination of low doses of isoflurane and medetomidine is routinely used in rodent functional magnetic resonance imaging (fMRI) and shows similar functional connectivity, as in awake animals. As glucose metabolism is tightly linked to neuronal activity, our second aim was to assess the impact of these two anesthetic conditions on the cerebral metabolism of glucose. Brain metabolism of hyperpolarized 13C-glucose and non-hyperpolaized 2H-glucose was monitored in two groups of mice in a 9.4 T MRI system. We found that the very different duration and temporal resolution of the two techniques enable highlighting the different aspects in glucose metabolism. We demonstrate (by numerical simulations) that hyperpolarized 13C-glucose reports on de novo lactate synthesis and is sensitive to cerebral metabolic rate of glucose (CMRGlc). We show that variations in cerebral glucose metabolism, under different anesthesia, are reflected differently in hyperpolarized and non-hyperpolarized X-nuclei glucose MRS.
Collapse
|
14
|
Feuerecker B, Biechl P, Veltkamp C, Saur D, Eisenreich W. Metabolic Response of Pancreatic Carcinoma Cells under Treatment with Dichloroacetate. Metabolites 2021; 11:metabo11060350. [PMID: 34070873 PMCID: PMC8228235 DOI: 10.3390/metabo11060350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
In modern oncology, the analysis and evaluation of treatment response are still challenging. Hence, we used a 13C-guided approach to study the impacts of the small molecule dichloroacetate (DCA) upon the metabolic response of pancreatic cancer cells. Two different oncogenic PI3K-driven pancreatic cancer cell lines, 9580 and 10,158, respectively, were treated with 75 mM DCA for 18 h. In the presence of [U-13C6]glucose, the effects of DCA treatment in the core carbon metabolism were analyzed in these cells using gas chromatography-mass spectrometry (GC/MS). 13C-enrichments and isotopologue profiles of key amino acids revealed considerable effects of the DCA treatment upon glucose metabolism. The DCA treatment of the two pancreatic cell lines resulted in a significantly decreased incorporation of [U-13C6]glucose into the amino acids alanine, aspartate, glutamate, glycine, proline and serine in treated, but not in untreated, cancer cells. For both cell lines, the data indicated some activation of pyruvate dehydrogenase with increased carbon flux via the TCA cycle, but also massive inhibition of glycolytic flux and amino acid biosynthesis presumably by inhibition of the PI3K/Akt/mTORC axis. Together, it appears worthwhile to study the early treatment response in DCA-guided or accompanied cancer therapy in more detail, since it could open new avenues for improved diagnosis and therapeutic protocols of cancer.
Collapse
Affiliation(s)
- Benedikt Feuerecker
- Department of Nuclear Medicine, School of Medicine, Technische Universität München, 81675 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site München, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Radiology, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Correspondence: (B.F.); (W.E.)
| | - Philipp Biechl
- Bavarian NMR Center—Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, 85748 Garching, Germany;
| | - Christian Veltkamp
- Department of Internal Medicine II, School of Medicine, Technische Universität München, 81675 Munich, Germany; (C.V.); (D.S.)
| | - Dieter Saur
- Department of Internal Medicine II, School of Medicine, Technische Universität München, 81675 Munich, Germany; (C.V.); (D.S.)
| | - Wolfgang Eisenreich
- Bavarian NMR Center—Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, 85748 Garching, Germany;
- Correspondence: (B.F.); (W.E.)
| |
Collapse
|
15
|
Viswanath P, Batsios G, Ayyappan V, Taglang C, Gillespie AM, Larson PEZ, Luchman HA, Costello JF, Pieper RO, Ronen SM. Metabolic imaging detects elevated glucose flux through the pentose phosphate pathway associated with TERT expression in low-grade gliomas. Neuro Oncol 2021; 23:1509-1522. [PMID: 33864084 DOI: 10.1093/neuonc/noab093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Telomerase reverse transcriptase (TERT) is essential for tumor proliferation, including in low-grade oligodendrogliomas (LGOGs). Since TERT is silenced in normal cells, it is also a therapeutic target. Therefore, non-invasive methods of imaging TERT are needed. Here, we examined the link between TERT expression and metabolism in LGOGs, with the goal of leveraging this information for non-invasive magnetic resonance spectroscopy (MRS)-based metabolic imaging of LGOGs. METHODS Immortalized normal human astrocytes with doxycycline-inducible TERT silencing, patient-derived LGOG cells, orthotopic tumors and LGOG patient biopsies were studied to determine the mechanistic link between TERT expression and glucose metabolism. The ability of hyperpolarized [U- 13C, U- 2H]-glucose to non-invasively assess TERT expression was tested in live cells and orthotopic tumors. RESULTS TERT expression was associated with elevated glucose flux through the pentose phosphate pathway (PPP), elevated NADPH, which is a major product of the PPP, and elevated GSH, which is maintained in a reduced state by NADPH. Importantly, hyperpolarized [U- 13C, U- 2H]-glucose metabolism via the PPP non-invasively reported on TERT expression and response to TERT inhibition in patient-derived LGOG cells and orthotopic tumors. Mechanistically, TERT acted via the sirtuin SIRT2 to upregulate the glucose transporter GLUT1 and the rate-limiting PPP enzyme glucose-6-phosphate dehydrogenase. CONCLUSIONS We have, for the first time, leveraged a mechanistic understanding of TERT-associated metabolic reprogramming for non-invasive imaging of LGOGs using hyperpolarized [U- 13C, U- 2H]-glucose. Our findings provide a novel way of imaging a hallmark of tumor immortality and have the potential to improve diagnosis and treatment response assessment for LGOG patients.
Collapse
Affiliation(s)
- Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Vinay Ayyappan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Celiné Taglang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - H Artee Luchman
- Department of Cell Biology and Anatomy and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Joseph F Costello
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Russell O Pieper
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
16
|
Feuerecker B, Biechl P, Seidl C, Bruchertseifer F, Morgenstern A, Schwaiger M, Eisenreich W. Diverse metabolic response of cancer cells treated with a 213Bi-anti-EGFR-immunoconjugate. Sci Rep 2021; 11:6227. [PMID: 33737524 PMCID: PMC7973706 DOI: 10.1038/s41598-021-84421-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
Evaluation of treatment response is among the major challenges in modern oncology. We herein used a monoclonal antibody targeting the EGF receptor (EGFR) labelled with the alpha emitter 213Bi (213Bi-anti-EGFR-MAb). EJ28Luc (bladder) and LN18 (glioma) cancer cells, both overexpressing EGFR, were incubated for 3 h with the radioimmunoconjugate. To assess the responses in the core carbon metabolism upon this treatment, these cancer cell lines were subsequently cultivated for 18 h in the presence of [U-13C6]glucose. 13C-enrichment and isotopologue profiles of key amino acids were monitored by gas chromatography–mass spectrometry (GC/MS), in order to monitor the impacts of the radionuclide-treatment upon glucose metabolism. In comparison to untreated controls, treatment of EJ28Luc cells with 213Bi-anti-EGFR-MAb resulted in a significantly decreased incorporation of 13C from [U-13C6]glucose into alanine, aspartate, glutamate, glycine, proline and serine. In sharp contrast, the same amino acids did not display less 13C-enrichments during treatment of the LN18 cells. The data indicate early treatment response of the bladder cancer cells, but not of the glioma cells though cell lines were killed following 213Bi-anti-EGFR-MAb treatment. The pilot study shows that the 13C-labelling approach is a valid tool to assess the responsiveness of cancer cells upon radionuclide-treatment in considerable metabolic detail.
Collapse
Affiliation(s)
- Benedikt Feuerecker
- Department of Nuclear Medicine, School of Medicine, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany. .,Deutsches Konsortium für translationale Krebsforschung (DKTK), Heidelberg, partnersite München and German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Department of Radiology, School of Medicine, Technische Universität München, Munich, Germany.
| | - Philipp Biechl
- Department of Chemistry, Bavarian NMR Center-Structural Membrane Biochemistry, Technische Universität München, Garching, Germany
| | - Christof Seidl
- Department of Nuclear Medicine, School of Medicine, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, School of Medicine, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany
| | - Wolfgang Eisenreich
- Department of Chemistry, Bavarian NMR Center-Structural Membrane Biochemistry, Technische Universität München, Garching, Germany
| |
Collapse
|
17
|
Mishkovsky M, Gusyatiner O, Lanz B, Cudalbu C, Vassallo I, Hamou MF, Bloch J, Comment A, Gruetter R, Hegi ME. Hyperpolarized 13C-glucose magnetic resonance highlights reduced aerobic glycolysis in vivo in infiltrative glioblastoma. Sci Rep 2021; 11:5771. [PMID: 33707647 PMCID: PMC7952603 DOI: 10.1038/s41598-021-85339-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/28/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor type in adults. GBM is heterogeneous, with a compact core lesion surrounded by an invasive tumor front. This front is highly relevant for tumor recurrence but is generally non-detectable using standard imaging techniques. Recent studies demonstrated distinct metabolic profiles of the invasive phenotype in GBM. Magnetic resonance (MR) of hyperpolarized 13C-labeled probes is a rapidly advancing field that provides real-time metabolic information. Here, we applied hyperpolarized 13C-glucose MR to mouse GBM models. Compared to controls, the amount of lactate produced from hyperpolarized glucose was higher in the compact GBM model, consistent with the accepted "Warburg effect". However, the opposite response was observed in models reflecting the invasive zone, with less lactate produced than in controls, implying a reduction in aerobic glycolysis. These striking differences could be used to map the metabolic heterogeneity in GBM and to visualize the infiltrative front of GBM.
Collapse
Affiliation(s)
- Mor Mishkovsky
- Laboratory of Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Olga Gusyatiner
- Neuroscience Research Center, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Service of Neurosurgery Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Bernard Lanz
- Laboratory of Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cristina Cudalbu
- Center for Biomedical Imaging (CIBM), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Irene Vassallo
- Neuroscience Research Center, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Service of Neurosurgery Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Marie-France Hamou
- Neuroscience Research Center, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Service of Neurosurgery Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jocelyne Bloch
- Neuroscience Research Center, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Service of Neurosurgery Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Arnaud Comment
- General Electric Healthcare, Chalfont St Giles, Buckinghamshire, HP8 4SP, UK
| | - Rolf Gruetter
- Laboratory of Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Radiology, University of Geneva (UNIGE), Geneva, Switzerland
- Department of Radiology, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Monika E Hegi
- Neuroscience Research Center, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Service of Neurosurgery Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
18
|
Teleanu F, Sadet A, Vasos PR. Symmetry versus entropy: Long-lived states and coherences. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 122:63-75. [PMID: 33632418 DOI: 10.1016/j.pnmrs.2020.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/28/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
In recent years, new molecular symmetry-based approaches for magnetic resonance have been invented. The implications of these discoveries will be significant for molecular imaging via magnetic resonance, in vitro as well as in vivo, for quantum computing and for other fields. Since the initial observation in 2004 in Southampton that effective spin symmetry can be instilled in a molecule during magnetic resonance experiments, spin states that are resilient to relaxation mechanisms have been increasingly used. Most of these states are related to the nuclear singlet in a pair of J-coupled spins. Tailored relaxation rate constants for magnetization became available in molecules of different sizes and structures, as experimental developments broadened the scope of symmetry-adapted spin states. The ensuing access to timescales longer than the classically-attained ones by circa one order of magnitude allows the study of processes such as slow diffusion or slow exchange that were previously beyond reach. Long-lived states formed by differences between populations of singlets and triplets have overcome the limitations imposed by longitudinal relaxation times (T1) by factors up to 40. Long-lived coherences formed by superpositions of singlets and triplets have overcome the limit of classical transverse coherence (T2) by a factor 9. We present here an overview of the development and applications of long-lived states (LLS) and long-lived coherences (LLC's) and considerations on future perspectives.
Collapse
Affiliation(s)
- Florin Teleanu
- Extreme Light Infrastructure - Nuclear Physics ELI-NP, Laser Gamma Experiments Department (LGED), "Horia Hulubei" National Institute for Physics and Nuclear Engineering IFIN-HH, 30 Reactorului Street, RO-077125 Bucharest-Măgurele, Romania; College for Advanced Performance Studies, Babeș-Bolyai University, Mihail Kogălniceanu Street 1, Cluj-Napoca, Romania; Interdisciplinary School of Doctoral Studies, University of Bucharest, B-dul Regina Elisabeta, Bucharest, Romania
| | - Aude Sadet
- Extreme Light Infrastructure - Nuclear Physics ELI-NP, Laser Gamma Experiments Department (LGED), "Horia Hulubei" National Institute for Physics and Nuclear Engineering IFIN-HH, 30 Reactorului Street, RO-077125 Bucharest-Măgurele, Romania
| | - Paul R Vasos
- Extreme Light Infrastructure - Nuclear Physics ELI-NP, Laser Gamma Experiments Department (LGED), "Horia Hulubei" National Institute for Physics and Nuclear Engineering IFIN-HH, 30 Reactorului Street, RO-077125 Bucharest-Măgurele, Romania; Interdisciplinary School of Doctoral Studies, University of Bucharest, B-dul Regina Elisabeta, Bucharest, Romania.
| |
Collapse
|
19
|
Ruiz-Rodado V, Brender JR, Cherukuri MK, Gilbert MR, Larion M. Magnetic resonance spectroscopy for the study of cns malignancies. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 122:23-41. [PMID: 33632416 PMCID: PMC7910526 DOI: 10.1016/j.pnmrs.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 05/04/2023]
Abstract
Despite intensive research, brain tumors are amongst the malignancies with the worst prognosis; therefore, a prompt diagnosis and thoughtful assessment of the disease is required. The resistance of brain tumors to most forms of conventional therapy has led researchers to explore the underlying biology in search of new vulnerabilities and biomarkers. The unique metabolism of brain tumors represents one potential vulnerability and the basis for a system of classification. Profiling this aberrant metabolism requires a method to accurately measure and report differences in metabolite concentrations. Magnetic resonance-based techniques provide a framework for examining tumor tissue and the evolution of disease. Nuclear Magnetic Resonance (NMR) analysis of biofluids collected from patients suffering from brain cancer can provide biological information about disease status. In particular, urine and plasma can serve to monitor the evolution of disease through the changes observed in the metabolic profiles. Moreover, cerebrospinal fluid can be utilized as a direct reporter of cerebral activity since it carries the chemicals exchanged with the brain tissue and the tumor mass. Metabolic reprogramming has recently been included as one of the hallmarks of cancer. Accordingly, the metabolic rewiring experienced by these tumors to sustain rapid growth and proliferation can also serve as a potential therapeutic target. The combination of 13C tracing approaches with the utilization of different NMR spectral modalities has allowed investigations of the upregulation of glycolysis in the aggressive forms of brain tumors, including glioblastomas, and the discovery of the utilization of acetate as an alternative cellular fuel in brain metastasis and gliomas. One of the major contributions of magnetic resonance to the assessment of brain tumors has been the non-invasive determination of 2-hydroxyglutarate (2HG) in tumors harboring a mutation in isocitrate dehydrogenase 1 (IDH1). The mutational status of this enzyme already serves as a key feature in the clinical classification of brain neoplasia in routine clinical practice and pilot studies have established the use of in vivo magnetic resonance spectroscopy (MRS) for monitoring disease progression and treatment response in IDH mutant gliomas. However, the development of bespoke methods for 2HG detection by MRS has been required, and this has prevented the wider implementation of MRS methodology into the clinic. One of the main challenges for improving the management of the disease is to obtain an accurate insight into the response to treatment, so that the patient can be promptly diverted into a new therapy if resistant or maintained on the original therapy if responsive. The implementation of 13C hyperpolarized magnetic resonance spectroscopic imaging (MRSI) has allowed detection of changes in tumor metabolism associated with a treatment, and as such has been revealed as a remarkable tool for monitoring response to therapeutic strategies. In summary, the application of magnetic resonance-based methodologies to the diagnosis and management of brain tumor patients, in addition to its utilization in the investigation of its tumor-associated metabolic rewiring, is helping to unravel the biological basis of malignancies of the central nervous system.
Collapse
Affiliation(s)
- Victor Ruiz-Rodado
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, United States.
| | - Jeffery R Brender
- Radiation Biology Branch, Center for Cancer Research, National Institute of Health, Bethesda, United States
| | - Murali K Cherukuri
- Radiation Biology Branch, Center for Cancer Research, National Institute of Health, Bethesda, United States
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, United States
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, United States.
| |
Collapse
|
20
|
de Graaf RA, Thomas MA, Behar KL, De Feyter HM. Characterization of Kinetic Isotope Effects and Label Loss in Deuterium-Based Isotopic Labeling Studies. ACS Chem Neurosci 2021; 12:234-243. [PMID: 33319987 PMCID: PMC9890388 DOI: 10.1021/acschemneuro.0c00711] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Deuterium metabolic imaging (DMI) is a novel, 3D, magnetic resonance (MR)-based method to map metabolism of deuterated substrates in vivo. The replacement of protons with deuterons could potentially lead to kinetic isotope effects (KIEs) in which metabolic rates of deuterated substrates are reduced due to the presence of a heavier isotope. Knowledge of the extent of KIE in vivo and 2H label loss due to exchange reactions is required for DMI-based measurements of absolute metabolic rates. Here the deuterium KIE and label loss in vivo are investigated for glucose and acetate using a double substrate/double labeling strategy and 1H-decoupled 13C NMR in rat glioma cells and rat brain tissue metabolite extracts. The unique spectral patterns due to extensive 2H-13C and 13C-13C scalar couplings allow the identification of all possible metabolic products. The 2H label loss observed in lactate, glutamate, and glutamine of rat brain was 15.7 ± 2.6, 37.9 ± 1.1, and 41.5 ± 5.2% when using [6,6-2H2]-glucose as the metabolic substrate. For [2-2H3]-acetate, the 2H label loss in glutamate and glutamine was 14.4 ± 3.4 and 13.6 ± 2.2%, respectively, in excellent agreement with predicted values. Steady-state 2H label accumulation in the C4 position of glutamate and glutamine was contrasted by the absence of label accumulation in the C2 or C3 positions, indicating that during a full turn of the tricarboxylic acid cycle all 2H label is lost. The measured KIE was relatively small (4-6%) for both substrates and all measured metabolic products. These results pave the way for further development of quantitative DMI studies to generate metabolic flux maps in vivo.
Collapse
Affiliation(s)
- Robin A. de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, 300 Cedar Street, P.O. Box 208043, New Haven, Connecticut 06520-8043, United States
| | - Monique A. Thomas
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, 300 Cedar Street, P.O. Box 208043, New Haven, Connecticut 06520-8043, United States
| | - Kevin L. Behar
- Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, 300 Cedar Street, P.O. Box 208043, New Haven, Connecticut 06520-8043, United States
| | - Henk M. De Feyter
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, 300 Cedar Street, P.O. Box 208043, New Haven, Connecticut 06520-8043, United States
| |
Collapse
|
21
|
Ardenkjaer-Larsen JH. Hyperpolarized Magnetic Resonance With Dissolution Dynamic Nuclear Polarization: Principles and Applications. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
22
|
Hyperpolarized 15N-labeled, deuterated tris (2-pyridylmethyl)amine as an MRI sensor of freely available Zn 2. Commun Chem 2020; 3. [PMID: 34212118 PMCID: PMC8244538 DOI: 10.1038/s42004-020-00426-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Dynamic nuclear polarization (DNP) coupled with 15N magnetic resonance imaging (MRI) provides an opportunity to image quantitative levels of biologically important metal ions such as Zn2+, Mg2+ or Ca2+ using appropriately designed 15N enriched probes. For example, a Zn-specific probe could prove particularly valuable for imaging the tissue distribution of freely available Zn2+ ions, an important known metal ion biomarker in the pancreas, in prostate cancer, and in several neurodegenerative diseases. In the present study, we prepare the cell-permeable, 15N-enriched, d6-deuterated version of the well-known Zn2+ chelator, tris(2-pyridylmethyl)amine (TPA) and demonstrate that the polarized ligand had favorable T1 and linewidth characteristics for 15N MRI. Examples of how polarized TPA can be used to quantify freely available Zn2+ in homogenized human prostate tissue and intact cells are presented.
Collapse
|
23
|
von Morze C, Engelbach JA, Blazey T, Quirk JD, Reed GD, Ippolito JE, Garbow JR. Comparison of hyperpolarized 13 C and non-hyperpolarized deuterium MRI approaches for imaging cerebral glucose metabolism at 4.7 T. Magn Reson Med 2020; 85:1795-1804. [PMID: 33247884 DOI: 10.1002/mrm.28612] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE The purpose of this study was to directly compare two isotopic metabolic imaging approaches, hyperpolarized (HP) 13 C MRI and deuterium metabolic imaging (DMI), for imaging specific closely related segments of cerebral glucose metabolism at 4.7 T. METHODS Comparative HP-13 C and DMI neuroimaging experiments were conducted consecutively in normal rats during the same scanning session. Localized conversions of [1-13 C]pyruvate and [6,6-2 H2 ]glucose to their respective downstream metabolic products were measured by spectroscopic imaging, using an identical 2D-CSI sequence with parameters optimized for the respective experiments. To facilitate direct comparison, a pair of substantially equivalent 2.5-cm double-tuned X/1 H RF surface coils was developed. For improved results, multidimensional low-rank reconstruction was applied to denoise the raw DMI data. RESULTS Localized conversion of HP [1-13 C]pyruvate to [1-13 C]lactate, and [6,6-2 H2 ]glucose to [3,3-2 H2 ]lactate and Glx-d (glutamate and glutamine), was detected in rat brain by spectroscopic imaging at 4.7 T. The SNR and spatial resolution of HP-13 C MRI was superior to DMI but limited to a short time window, whereas the lengthy DMI acquisition yielded maps of not only lactate, but also Glx production, albeit with relatively poor spectral discrimination between metabolites at this field strength. Across the individual rats, there was an apparent inverse correlation between cerebral production of HP [1-13 C]lactate and Glx-d, along with a trend toward increased [3,3-2 H2 ]lactate. CONCLUSION The HP-13 C MRI and DMI methods are both feasible at 4.7 T and have significant potential for metabolic imaging of specific segments of glucose metabolism.
Collapse
Affiliation(s)
- Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - John A Engelbach
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - Tyler Blazey
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - James D Quirk
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | | | - Joseph E Ippolito
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - Joel R Garbow
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
24
|
Le Page LM, Guglielmetti C, Taglang C, Chaumeil MM. Imaging Brain Metabolism Using Hyperpolarized 13C Magnetic Resonance Spectroscopy. Trends Neurosci 2020; 43:343-354. [PMID: 32353337 DOI: 10.1016/j.tins.2020.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 12/28/2022]
Abstract
Aberrant metabolism is a key factor in many neurological disorders. The ability to measure such metabolic impairment could lead to improved detection of disease progression, and development and monitoring of new therapeutic approaches. Hyperpolarized 13C magnetic resonance spectroscopy (MRS) is a developing imaging technique that enables non-invasive measurement of enzymatic activity in real time in living organisms. Primarily applied in the fields of cancer and cardiac disease so far, this metabolic imaging method has recently been used to investigate neurological disorders. In this review, we summarize the preclinical research developments in this emerging field, and discuss future prospects for this exciting technology, which has the potential to change the clinical paradigm for patients with neurological disorders.
Collapse
Affiliation(s)
- Lydia M Le Page
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Celine Taglang
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| |
Collapse
|
25
|
Hyacinthe JN, Buscemi L, Lê TP, Lepore M, Hirt L, Mishkovsky M. Evaluating the potential of hyperpolarised [1- 13C] L-lactate as a neuroprotectant metabolic biosensor for stroke. Sci Rep 2020; 10:5507. [PMID: 32218474 PMCID: PMC7099080 DOI: 10.1038/s41598-020-62319-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 03/05/2020] [Indexed: 01/06/2023] Open
Abstract
Cerebral metabolism, which can be monitored by magnetic resonance spectroscopy (MRS), changes rapidly after brain ischaemic injury. Hyperpolarisation techniques boost 13C MRS sensitivity by several orders of magnitude, thereby enabling in vivo monitoring of biochemical transformations of hyperpolarised (HP) 13C-labelled precursors with a time resolution of seconds. The exogenous administration of the metabolite L-lactate was shown to decrease lesion size and ameliorate neurological outcome in preclinical studies in rodent stroke models, as well as influencing brain metabolism in clinical pilot studies of acute brain injury patients. The aim of this study was to demonstrate the feasibility of measuring HP [1-13C] L-lactate metabolism in real-time in the mouse brain after ischaemic stroke when administered after reperfusion at a therapeutic dose. We showed a rapid, time-after-reperfusion-dependent conversion of [1-13C] L-lactate to [1-13C] pyruvate and [13C] bicarbonate that brings new insights into the neuroprotection mechanism of L-lactate. Moreover, this study paves the way for the use of HP [1-13C] L-lactate as a sensitive molecular-imaging biosensor in ischaemic stroke patients after endovascular clot removal.
Collapse
Affiliation(s)
- Jean-Noël Hyacinthe
- Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland.,Image Guided Intervention Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lara Buscemi
- Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Thanh Phong Lê
- Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland.,Laboratory of Functional and Metabolic Imaging, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mario Lepore
- Centre d'Imagerie Biomédicale (CIBM), École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lorenz Hirt
- Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Mor Mishkovsky
- Laboratory of Functional and Metabolic Imaging, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
26
|
Harris T, Gamliel A, Nardi-Schreiber A, Sosna J, Gomori JM, Katz-Brull R. The Effect of Gadolinium Doping in [ 13 C 6 , 2 H 7 ]Glucose Formulations on 13 C Dynamic Nuclear Polarization at 3.35 T. Chemphyschem 2020; 21:251-256. [PMID: 31922367 DOI: 10.1002/cphc.201900946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 12/10/2019] [Indexed: 12/27/2022]
Abstract
The promise of hyperpolarized glucose as a non-radioactive imaging agent capable of reporting on multiple metabolic routes has led to recent advances in its dissolution-DNP (dDNP) driven polarization using UV-light induced radicals and trityl radicals at high field (6.7 T) and 1.1 K. However, most preclinical dDNP polarizers operate at the field of 3.35 T and 1.4-1.5 K. Minute amounts of Gd3+ complexes have shown large improvements in solid-state polarization, which can be translated to improved hyperpolarization in solution. However, this Gd3+ effect seems to depend on magnetic field strength, metal ion concentration, and sample formulation. The effect of varying Gd3+ concentrations at 3.35 T has been described for 13 C-labeled pyruvic acid and acetate. However, it has not been studied for other compounds at this field. The results presented here suggest that Gd3+ doping can lead to various concentration and temperature dependent effects on the polarization of [13 C6 ,2 H7 ]glucose, not necessarily similar to the effects observed in pyruvic acid or acetate in size or direction. The maximal polarization for [13 C6 ,2 H7 ]glucose appears to be at a Gd3+ concentration of 2 mM, when irradiating for more than 2 h at the negative maximum of the DNP intensity profile. Surprisingly, for shorter irradiation times, higher polarization levels were determined at 1.50 K compared to 1.45 K, at a [Gd3+ ]=1.3 mM. This was explained by the build-up time constant and maximum at these temperatures.
Collapse
Affiliation(s)
- Talia Harris
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Ayelet Gamliel
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Atara Nardi-Schreiber
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - J Moshe Gomori
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
27
|
Can E, Mishkovsky M, Yoshihara HAI, Kunz N, Couturier DL, Petrausch U, Doucey MA, Comment A. Noninvasive rapid detection of metabolic adaptation in activated human T lymphocytes by hyperpolarized 13C magnetic resonance. Sci Rep 2020; 10:200. [PMID: 31932697 PMCID: PMC6957688 DOI: 10.1038/s41598-019-57026-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/18/2019] [Indexed: 11/18/2022] Open
Abstract
The metabolic shift induced in human CD4+ T lymphocytes by stimulation is characterized by an upregulation of glycolysis, leading to an augmentation in lactate production. This adaptation has already been highlighted with various techniques and reported in several previous studies. We herein propose a method to rapidly and noninvasively detect the associated increase in flux from pyruvate to lactate catalyzed by lactate dehydrogenase using hyperpolarized 13C magnetic resonance, a technique which can be used for in vivo imaging. It was shown that the conversion of hyperpolarized 13C-pyruvate to 13C-lactate during the one-minute measurement increased by a mean factor of 3.6 in T cells stimulated for 5 days as compared to resting T cells. This method can be extended to other metabolic substrates and is therefore a powerful tool to noninvasively analyze T cell metabolism, possibly in vivo.
Collapse
Affiliation(s)
- Emine Can
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Mor Mishkovsky
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Hikari A I Yoshihara
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Nicolas Kunz
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Dominique-Laurent Couturier
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shin Center, Robinson Way, Cambridge, CB2 0RE, United Kingdom
| | | | - Marie-Agnès Doucey
- Department of Oncology, University Hospital Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Arnaud Comment
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shin Center, Robinson Way, Cambridge, CB2 0RE, United Kingdom. .,General Electric Healthcare, Chalfont St Giles, Buckinghamshire, HP8 4SP, United Kingdom.
| |
Collapse
|
28
|
Sapir G, Harris T, Uppala S, Nardi-Schreiber A, Sosna J, Gomori JM, Katz-Brull R. [ 13C 6,D 8]2-deoxyglucose phosphorylation by hexokinase shows selectivity for the β-anomer. Sci Rep 2019; 9:19683. [PMID: 31873121 PMCID: PMC6928223 DOI: 10.1038/s41598-019-56063-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/06/2019] [Indexed: 12/27/2022] Open
Abstract
A non-radioactive 2-deoxyglucose (2DG) analog has been developed here for hyperpolarized magnetic resonance investigations. The analog, [13C6,D8]2DG, showed 13% polarization in solution (27,000-fold signal enhancement at the C1 site), following a dissolution-DNP hyperpolarization process. The phosphorylation of this analog by yeast hexokinase (yHK) was monitored in real-time with a temporal resolution of 1 s. We show that yHK selectively utilizes the β anomer of the 2DG analog, thus revealing a surprising anomeric specificity of this reaction. Such anomeric selectivity was not observed for the reaction of yHK or bacterial glucokinase with a hyperpolarized glucose analog. yHK is highly similar to the human HK-2, which is overexpressed in malignancy. Thus, the current finding may shed a new light on a fundamental enzyme activity which is utilized in the most widespread molecular imaging technology for cancer detection - positron-emission tomography with 18F-2DG.
Collapse
Affiliation(s)
- Gal Sapir
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Talia Harris
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Sivaranjan Uppala
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Atara Nardi-Schreiber
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - J Moshe Gomori
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel.
| |
Collapse
|
29
|
Singh J, Suh EH, Sharma G, Khemtong C, Sherry AD, Kovacs Z. Probing carbohydrate metabolism using hyperpolarized 13 C-labeled molecules. NMR IN BIOMEDICINE 2019; 32:e4018. [PMID: 30474153 PMCID: PMC6579721 DOI: 10.1002/nbm.4018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/03/2018] [Accepted: 08/11/2018] [Indexed: 05/05/2023]
Abstract
Glycolysis is a fundamental metabolic process in all organisms. Anomalies in glucose metabolism are linked to various pathological conditions. In particular, elevated aerobic glycolysis is a characteristic feature of rapidly growing cells. Glycolysis and the closely related pentose phosphate pathway can be monitored in real time by hyperpolarized 13 C-labeled metabolic substrates such as 13 C-enriched, deuterated D-glucose derivatives, [2-13 C]-D-fructose, [2-13 C] dihydroxyacetone, [1-13 C]-D-glycerate, [1-13 C]-D-glucono-δ-lactone and [1-13 C] pyruvate in healthy and diseased tissues. Elevated glycolysis in tumors (the Warburg effect) was also successfully imaged using hyperpolarized [U-13 C6 , U-2 H7 ]-D-glucose, while the size of the preexisting lactate pool can be measured by 13 C MRS and/or MRI with hyperpolarized [1-13 C]pyruvate. This review summarizes the application of various hyperpolarized 13 C-labeled metabolites to the real-time monitoring of glycolysis and related metabolic processes in normal and diseased tissues.
Collapse
Affiliation(s)
- Jaspal Singh
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eul Hyun Suh
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gaurav Sharma
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chalermchai Khemtong
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - A. Dean Sherry
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
30
|
Capozzi A, Patel S, Wenckebach WT, Karlsson M, Lerche MH, Ardenkjær-Larsen JH. Gadolinium Effect at High-Magnetic-Field DNP: 70% 13C Polarization of [U- 13C] Glucose Using Trityl. J Phys Chem Lett 2019; 10:3420-3425. [PMID: 31181932 DOI: 10.1021/acs.jpclett.9b01306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We show that the trityl electron spin resonance (ESR) features, crucial for an efficient dynamic nuclear polarization (DNP) process, are sample-composition-dependent. Working at 6.7 T and 1.1 K with a generally applicable DNP sample solvent mixture such as water/glycerol plus trityl, the addition of Gd3+ leads to a dramatic increase in [U-13C] glucose polarization from 37 ± 4% to 69 ± 3%. This is the highest value reported to date and is comparable to what can be achieved on pyruvic acid. Moreover, performing ESR measurements under actual DNP conditions, we provide experimental evidence that gadolinium doping not only shortens the trityl electron spin-lattice relaxation time but also modifies the radical g-tensor. The latter yielded a considerable narrowing of the ESR spectrum line width. Finally, in the frame of the spin temperature theory, we discuss how these two phenomena affect the DNP performance.
Collapse
Affiliation(s)
- Andrea Capozzi
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology , Technical University of Denmark , Building 349 , 2800 Kongens Lyngby , Denmark
| | - Saket Patel
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology , Technical University of Denmark , Building 349 , 2800 Kongens Lyngby , Denmark
| | - W Thomas Wenckebach
- Paul Scherrer Institute , CH-5232 Villigen , Switzerland
- National High Magnetic Field Laboratory, UF, AMRIS , Gainesville , Florida 32611 , United States
| | - Magnus Karlsson
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology , Technical University of Denmark , Building 349 , 2800 Kongens Lyngby , Denmark
| | - Mathilde H Lerche
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology , Technical University of Denmark , Building 349 , 2800 Kongens Lyngby , Denmark
| | - Jan Henrik Ardenkjær-Larsen
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology , Technical University of Denmark , Building 349 , 2800 Kongens Lyngby , Denmark
- GE Healthcare , Park Alle 295 , 2605 Brøndby , Denmark
| |
Collapse
|
31
|
Ntziachristos V, Pleitez MA, Aime S, Brindle KM. Emerging Technologies to Image Tissue Metabolism. Cell Metab 2019; 29:518-538. [PMID: 30269982 DOI: 10.1016/j.cmet.2018.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/24/2018] [Accepted: 09/02/2018] [Indexed: 12/19/2022]
Abstract
Due to the implication of altered metabolism in a large spectrum of tissue function and disease, assessment of metabolic processes becomes essential in managing health. In this regard, imaging can play a critical role in allowing observation of biochemical and physiological processes. Nuclear imaging methods, in particular positron emission tomography, have been widely employed for imaging metabolism but are mainly limited by the use of ionizing radiation and the sensing of only one parameter at each scanning session. Observations in healthy individuals or longitudinal studies of disease could markedly benefit from non-ionizing, multi-parameter imaging methods. We therefore focus this review on progress with the non-ionizing radiation methods of MRI, hyperpolarized magnetic resonance and magnetic resonance spectroscopy, chemical exchange saturation transfer, and emerging optoacoustic (photoacoustic) imaging. We also briefly discuss the role of nuclear and optical imaging methods for research and clinical protocols.
Collapse
Affiliation(s)
- Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany; Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Ismaningerstr. 22, Munich 81675, Germany.
| | - Miguel A Pleitez
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany; Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Ismaningerstr. 22, Munich 81675, Germany
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin 10126, Italy
| | - Kevin M Brindle
- Department of Biochemistry, University of Cambridge, Old Addenbrooke's Site, Cambridge CB2 1GA, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
32
|
Capozzi A, Patel S, Gunnarsson CP, Marco-Rius I, Comment A, Karlsson M, Lerche MH, Ouari O, Ardenkjær-Larsen JH. Efficient Hyperpolarization of U- 13 C-Glucose Using Narrow-Line UV-Generated Labile Free Radicals. Angew Chem Int Ed Engl 2019; 58:1334-1339. [PMID: 30515929 PMCID: PMC6531289 DOI: 10.1002/anie.201810522] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/21/2018] [Indexed: 11/06/2022]
Abstract
Free radicals generated by UV-light irradiation of a frozen solution containing a fraction of pyruvic acid (PA) have demonstrated their dissolution dynamic nuclear polarization (dDNP) potential, providing up to 30 % [1-13 C]PA liquid-state polarization. Moreover, their labile nature has proven to pave a way to nuclear polarization storage and transport. Herein, differently from the case of PA, the issue of providing dDNP UV-radical precursors (trimethylpyruvic acid and its methyl-deuterated form) not involved in any metabolic pathway was investigated. The 13 C dDNP performance was evaluated for hyperpolarization of [U-13 C6 ,1,2,3,4,5,6,6-d7 ]-d-glucose. The generated UV-radicals proved to be versatile and highly efficient polarizing agents, providing, after dissolution and transfer (10 s), a 13 C liquid-state polarization of up to 32 %.
Collapse
Affiliation(s)
- Andrea Capozzi
- Center for Hyperpolarization in Magnetic Resonance, Department of Electrical Engineering, Technical University of Denmark, Building 349, 2800 Kgs Lyngby (Denmark)
| | - Saket Patel
- Institut de Chimie Radicalire, Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille Cedex 20 (France)
| | - Christine Pepke Gunnarsson
- Center for Hyperpolarization in Magnetic Resonance, Department of Electrical Engineering, Technical University of Denmark, Building 349, 2800 Kgs Lyngby (Denmark)
| | - Irene Marco-Rius
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge (United Kingdom)
| | - Arnaud Comment
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge (United Kingdom)
- General Electric Healthcare, Chalfont St Giles, Buckinghamshire HP8 4SP (United Kingdom)
| | - Magnus Karlsson
- Center for Hyperpolarization in Magnetic Resonance, Department of Electrical Engineering, Technical University of Denmark, Building 349, 2800 Kgs Lyngby (Denmark)
| | - Mathilde H. Lerche
- Center for Hyperpolarization in Magnetic Resonance, Department of Electrical Engineering, Technical University of Denmark, Building 349, 2800 Kgs Lyngby (Denmark)
| | - Olivier Ouari
- Institut de Chimie Radicalire, Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille Cedex 20 (France)
| | - Jan Henrik Ardenkjær-Larsen
- Center for Hyperpolarization in Magnetic Resonance, Department of Electrical Engineering, Technical University of Denmark, Building 349, 2800 Kgs Lyngby (Denmark)
| |
Collapse
|
33
|
Capozzi A, Patel S, Gunnarsson CP, Marco-Rius I, Comment A, Karlsson M, Lerche MH, Ouari O, Ardenkjaer-Larsen JH. Efficient Hyperpolarization of U-13
C-Glucose Using Narrow-Line UV-Generated Labile Free Radicals. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andrea Capozzi
- Center for Hyperpolarization in Magnetic Resonance; Department of Electrical Engineering; Technical University of Denmark; Building 349 2800 Kgs Lyngby Denmark
| | - Saket Patel
- Institut de Chimie Radicalaire; Aix-Marseille Université; CNRS, ICR UMR 7273; 13397 Marseille Cedex 20 France
| | - Christine Pepke Gunnarsson
- Center for Hyperpolarization in Magnetic Resonance; Department of Electrical Engineering; Technical University of Denmark; Building 349 2800 Kgs Lyngby Denmark
| | - Irene Marco-Rius
- Cancer Research (UK) Cambridge Institute; University of Cambridge; Li Ka Shing Centre Cambridge United Kingdom
| | - Arnaud Comment
- Cancer Research (UK) Cambridge Institute; University of Cambridge; Li Ka Shing Centre Cambridge United Kingdom
- General Electric Healthcare; Chalfont St Giles Buckinghamshire HP8 4SP UK
| | - Magnus Karlsson
- Center for Hyperpolarization in Magnetic Resonance; Department of Electrical Engineering; Technical University of Denmark; Building 349 2800 Kgs Lyngby Denmark
| | - Mathilde H. Lerche
- Center for Hyperpolarization in Magnetic Resonance; Department of Electrical Engineering; Technical University of Denmark; Building 349 2800 Kgs Lyngby Denmark
| | - Olivier Ouari
- Institut de Chimie Radicalaire; Aix-Marseille Université; CNRS, ICR UMR 7273; 13397 Marseille Cedex 20 France
| | - Jan Henrik Ardenkjaer-Larsen
- Center for Hyperpolarization in Magnetic Resonance; Department of Electrical Engineering; Technical University of Denmark; Building 349 2800 Kgs Lyngby Denmark
| |
Collapse
|
34
|
Marco-Rius I, Cheng T, Gaunt AP, Patel S, Kreis F, Capozzi A, Wright AJ, Brindle KM, Ouari O, Comment A. Photogenerated Radical in Phenylglyoxylic Acid for in Vivo Hyperpolarized 13C MR with Photosensitive Metabolic Substrates. J Am Chem Soc 2018; 140:14455-14463. [PMID: 30346733 PMCID: PMC6217999 DOI: 10.1021/jacs.8b09326] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 02/08/2023]
Abstract
Whether for 13C magnetic resonance studies in chemistry, biochemistry, or biomedicine, hyperpolarization methods based on dynamic nuclear polarization (DNP) have become ubiquitous. DNP requires a source of unpaired electrons, which are commonly added to the sample to be hyperpolarized in the form of stable free radicals. Once polarized, the presence of these radicals is unwanted. These radicals can be replaced by nonpersistent radicals created by the photoirradiation of pyruvic acid (PA), which are annihilated upon dissolution or thermalization in the solid state. However, since PA is readily metabolized by most cells, its presence may be undesirable for some metabolic studies. In addition, some 13C substrates are photosensitive and therefore may degrade during the photogeneration of a PA radical, which requires ultraviolet (UV) light. We show here that the photoirradiation of phenylglyoxylic acid (PhGA) using visible light produces a nonpersistent radical that, in principle, can be used to hyperpolarize any molecule. We compare radical yields in samples containing PA and PhGA upon photoirradiation with broadband and narrowband UV-visible light sources. To demonstrate the suitability of PhGA as a radical precursor for DNP, we polarized the gluconeogenic probe 13C-dihydroxyacetone, which is UV-sensitive, using a commercial 3.35 T DNP polarizer and then injected this into a mouse and followed its metabolism in vivo.
Collapse
Affiliation(s)
- Irene Marco-Rius
- Cancer Research
UK Cambridge Institute, University of Cambridge, Li Ka Shin Center, Robinson Way, Cambridge CB2 0RE, U.K.
| | - Tian Cheng
- Cancer Research
UK Cambridge Institute, University of Cambridge, Li Ka Shin Center, Robinson Way, Cambridge CB2 0RE, U.K.
| | - Adam P. Gaunt
- Cancer Research
UK Cambridge Institute, University of Cambridge, Li Ka Shin Center, Robinson Way, Cambridge CB2 0RE, U.K.
| | - Saket Patel
- Aix-Marseille
University, CNRS, ICR, 13007 Marseille, France
| | - Felix Kreis
- Cancer Research
UK Cambridge Institute, University of Cambridge, Li Ka Shin Center, Robinson Way, Cambridge CB2 0RE, U.K.
| | - Andrea Capozzi
- Department
of Electrical Engineering, Center for Hyperpolarization in Magnetic
Resonance, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Alan J. Wright
- Cancer Research
UK Cambridge Institute, University of Cambridge, Li Ka Shin Center, Robinson Way, Cambridge CB2 0RE, U.K.
| | - Kevin M. Brindle
- Cancer Research
UK Cambridge Institute, University of Cambridge, Li Ka Shin Center, Robinson Way, Cambridge CB2 0RE, U.K.
| | - Olivier Ouari
- Aix-Marseille
University, CNRS, ICR, 13007 Marseille, France
| | - Arnaud Comment
- Cancer Research
UK Cambridge Institute, University of Cambridge, Li Ka Shin Center, Robinson Way, Cambridge CB2 0RE, U.K.
- General
Electric Healthcare, HP7
9NA Chalfont St. Giles, U.K.
| |
Collapse
|
35
|
Cho A, Eskandari R, Miloushev VZ, Keshari KR. A non-synthetic approach to extending the lifetime of hyperpolarized molecules using D 2O solvation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 295:57-62. [PMID: 30099234 PMCID: PMC6131049 DOI: 10.1016/j.jmr.2018.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Although dissolution dynamic nuclear polarization is a robust technique to significantly increase magnetic resonance signal, the short T1 relaxation time of most 13C-nuclei limits the timescale of hyperpolarized experiments. To address this issue, we have characterized a non-synthetic approach to extend the hyperpolarized lifetime of 13C-nuclei in close proximity to solvent-exchangeable protons. Protons exhibit stronger dipolar relaxation than deuterium, so dissolving these compounds in D2O to exchange labile protons with solvating deuterons results in longer-lived hyperpolarization of the 13C-nucleus 2-bonds away. 13C T1 and T2 times were longer in D2O versus H2O for all molecules in this study. This phenomenon can be utilized to improve hyperpolarized signal-to-noise ratio as a function of longer T1, and enhanced spectral and imaging resolution via longer T2.
Collapse
Affiliation(s)
- Andrew Cho
- Department of Biochemistry & Structural Biology, Weill Cornell Graduate School, New York City, NY 10065, United States; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York City, NY 10065, United States.
| | - Roozbeh Eskandari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, United States.
| | - Vesselin Z Miloushev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, United States.
| | - Kayvan R Keshari
- Department of Biochemistry & Structural Biology, Weill Cornell Graduate School, New York City, NY 10065, United States; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, United States; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, United States.
| |
Collapse
|
36
|
Parish C, Niedbalski P, Kiswandhi A, Lumata L. Dynamic nuclear polarization of carbonyl and methyl 13C spins of acetate using 4-oxo-TEMPO free radical. J Chem Phys 2018; 149:054302. [PMID: 30089385 DOI: 10.1063/1.5043378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hyperpolarization of 13C-enriched biomolecules via dissolution dynamic nuclear polarization (DNP) has enabled real-time metabolic imaging of a variety of diseases with superb specificity and sensitivity. The source of the unprecedented liquid-state nuclear magnetic resonance spectroscopic or imaging signal enhancements of >10 000-fold is the microwave-driven DNP process that occurs at a relatively high magnetic field and cryogenic temperature. Herein, we have methodically investigated the relative efficiencies of 13C DNP of single or double 13C-labeled sodium acetate with or without 2H-enrichment of the methyl group and using a 4-oxo-TEMPO free radical as the polarizing agent at 3.35 T and 1.4 K. The main finding of this work is that not all 13C spins in acetate are polarized with equal DNP efficiency using this relatively wide electron spin resonance linewidth free radical. In fact, the carbonyl 13C spins have about twice the solid-state 13C polarization level of methyl 13C spins. Deuteration of the methyl group provides a DNP signal improvement of methyl 13C spins on a par with that of carbonyl 13C spins. On the other hand, both the double 13C-labeled [1,2-13C2] acetate and [1,2-13C2, 2H3] acetate have a relative solid-state 13C polarization at the level of [2-13C] acetate. Meanwhile, the solid-state 13C T1 relaxation times at 3.35 T and 1.4 K were essentially the same for all six isotopomers of 13C acetate. These results suggest that the intramolecular environment of 13C spins plays a prominent role in determining the 13C DNP efficiency, while the solid phase 13C T1 relaxation of these samples is dominated by the paramagnetic effect due to the relatively high concentration of free radicals.
Collapse
Affiliation(s)
- Christopher Parish
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - Peter Niedbalski
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - Andhika Kiswandhi
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - Lloyd Lumata
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| |
Collapse
|
37
|
De Feyter HM, Behar KL, Corbin ZA, Fulbright RK, Brown PB, McIntyre S, Nixon TW, Rothman DL, de Graaf RA. Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo. SCIENCE ADVANCES 2018; 4:eaat7314. [PMID: 30140744 PMCID: PMC6105304 DOI: 10.1126/sciadv.aat7314] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/18/2018] [Indexed: 05/04/2023]
Abstract
Currently, the only widely available metabolic imaging technique in the clinic is positron emission tomography (PET) detection of the radioactive glucose analog 2-18F-fluoro-2-deoxy-d-glucose (18FDG). However, 18FDG-PET does not inform on metabolism downstream of glucose uptake and often provides ambiguous results in organs with intrinsic high glucose uptake, such as the brain. Deuterium metabolic imaging (DMI) is a novel, noninvasive approach that combines deuterium magnetic resonance spectroscopic imaging with oral intake or intravenous infusion of nonradioactive 2H-labeled substrates to generate three-dimensional metabolic maps. DMI can reveal glucose metabolism beyond mere uptake and can be used with other 2H-labeled substrates as well. We demonstrate DMI by mapping metabolism in the brain and liver of animal models and human subjects using [6,6'-2H2]glucose or [2H3]acetate. In a rat glioma model, DMI revealed pronounced metabolic differences between normal brain and tumor tissue, with high-contrast metabolic maps depicting the Warburg effect. We observed similar metabolic patterns and image contrast in two patients with a high-grade brain tumor after oral intake of 2H-labeled glucose. Further, DMI used in rat and human livers showed [6,6'-2H2]glucose stored as labeled glycogen. DMI is a versatile, robust, and easy-to-implement technique that requires minimal modifications to existing clinical magnetic resonance imaging scanners. DMI has great potential to become a widespread method for metabolic imaging in both (pre)clinical research and the clinic.
Collapse
Affiliation(s)
- Henk M. De Feyter
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT 06520, USA
- Corresponding author. (H.M.D.F.); (R.A.d.G.)
| | - Kevin L. Behar
- Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zachary A. Corbin
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Robert K. Fulbright
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Peter B. Brown
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Scott McIntyre
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Terence W. Nixon
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Douglas L. Rothman
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University, New Haven, CT 06520, USA
| | - Robin A. de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University, New Haven, CT 06520, USA
- Corresponding author. (H.M.D.F.); (R.A.d.G.)
| |
Collapse
|
38
|
Timm KN, Miller JJ, Henry JA, Tyler DJ. Cardiac applications of hyperpolarised magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 106-107:66-87. [PMID: 31047602 DOI: 10.1016/j.pnmrs.2018.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 05/05/2023]
Abstract
Cardiovascular disease is the leading cause of death world-wide. It is increasingly recognised that cardiac pathologies show, or may even be caused by, changes in metabolism, leading to impaired cardiac energetics. The heart turns over 15 times its own weight in ATP every day and thus relies heavily on the availability of substrates and on efficient oxidation to generate this ATP. A number of old and emerging drugs that target different aspects of metabolism are showing promising results with regard to improved cardiac outcomes in patients. A non-invasive imaging technique that could assess the role of different aspects of metabolism in heart disease, as well as measure changes in cardiac energetics due to treatment, would be valuable in the routine clinical care of cardiac patients. Hyperpolarised magnetic resonance spectroscopy and imaging have revolutionised metabolic imaging, allowing real-time metabolic flux assessment in vivo for the first time. In this review we summarise metabolism in the healthy and diseased heart, give an introduction to the hyperpolarisation technique, 'dynamic nuclear polarisation' (DNP), and review the preclinical studies that have thus far explored healthy cardiac metabolism and different models of human heart disease. We furthermore show what advances have been made to translate this technique into the clinic, what technical challenges still remain and what unmet clinical needs and unexplored metabolic substrates still need to be assessed by researchers in this exciting and fast-moving field.
Collapse
Affiliation(s)
- Kerstin N Timm
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK; Clarendon Laboratory, Department of Physics, University of Oxford, UK.
| | - John A Henry
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
39
|
Taglang C, Korenchan DE, von Morze C, Yu J, Najac C, Wang S, Blecha JE, Subramaniam S, Bok R, VanBrocklin HF, Vigneron DB, Ronen SM, Sriram R, Kurhanewicz J, Wilson DM, Flavell RR. Late-stage deuteration of 13C-enriched substrates for T 1 prolongation in hyperpolarized 13C MRI. Chem Commun (Camb) 2018; 54:5233-5236. [PMID: 29726563 PMCID: PMC6054790 DOI: 10.1039/c8cc02246a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A robust and selective late-stage deuteration methodology was applied to 13C-enriched amino and alpha hydroxy acids to increase spin-lattice relaxation constant T1 for hyperpolarized 13C magnetic resonance imaging. For the five substrates with 13C-labeling on the C1-position ([1-13C]alanine, [1-13C]serine, [1-13C]lactate, [1-13C]glycine, and [1-13C]valine), significant increase of their T1 was observed at 3 T with deuterium labeling (+26%, 22%, +16%, +25% and +29%, respectively). Remarkably, in the case of [2-13C]alanine, [2-13C]serine and [2-13C]lactate, deuterium labeling led to a greater than four fold increase in T1. [1-13C,2-2H]alanine, produced using this method, was applied to in vitro enzyme assays with alanine aminotransferase, demonstrating a kinetic isotope effect.
Collapse
Affiliation(s)
- Céline Taglang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - David E. Korenchan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Justin Yu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Sinan Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Joseph E. Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Sukumar Subramaniam
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - David M. Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| |
Collapse
|