1
|
Shilnikova K, Kang KA, Piao MJ, Herath HMUL, Fernando PDSM, Boo HJ, Yoon SP, Hyun JW. Shikonin protects skin cells against oxidative stress and cellular dysfunction induced by fine particulate matter. Cell Biol Int 2024; 48:1836-1848. [PMID: 39169545 DOI: 10.1002/cbin.12233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/02/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Shikonin, an herbal naphthoquinone, demonstrates a broad spectrum of pharmacological properties. Owing to increasingly adverse environmental conditions, human skin is vulnerable to harmful influences from dust particles. This study explored the antioxidant capabilities of shikonin and its ability to protect human keratinocytes from oxidative stress induced by fine particulate matter (PM2.5). We found that shikonin at a concentration of 3 µM was nontoxic to human keratinocytes and effectively scavenged reactive oxygen species (ROS) while increasing the production of reduced glutathione (GSH). Furthermore, shikonin enhanced GSH level by upregulating glutamate-cysteine ligase catalytic subunit and glutathione synthetase mediated by nuclear factor-erythroid 2-related factor. Shikonin reduced ROS levels induced by PM2.5, leading to recovering PM2.5-impaired cellular biomolecules and cell viability. Shikonin restored the GSH level in PM2.5-exposed keratinocytes via enhancing the expression of GSH-synthesizing enzymes. Notably, buthionine sulphoximine, an inhibitor of GSH synthesis, diminished effect of shikonin against PM2.5-induced cell damage, confirming the role of GSH in shikonin-induced cytoprotection. Collectively, these findings indicated that shikonin could provide substantial cytoprotection against the adverse effects of PM2.5 through direct ROS scavenging and modulation of cellular antioxidant system.
Collapse
Affiliation(s)
- Kristina Shilnikova
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Herath Mudiyanselage Udari Lakmini Herath
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Pincha Devage Sameera Madushan Fernando
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Hye-Jin Boo
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Sang Pil Yoon
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| |
Collapse
|
2
|
Masselot P, Kan H, Kharol SK, Bell ML, Sera F, Lavigne E, Breitner S, das Neves Pereira da Silva S, Burnett RT, Gasparrini A, Brook JR. Air pollution mixture complexity and its effect on PM 2.5-related mortality: A multicountry time-series study in 264 cities. Environ Epidemiol 2024; 8:e342. [PMID: 39483640 PMCID: PMC11527422 DOI: 10.1097/ee9.0000000000000342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/23/2024] [Indexed: 11/03/2024] Open
Abstract
Background Fine particulate matter (PM2.5) occurs within a mixture of other pollutant gases that interact and impact its composition and toxicity. To characterize the local toxicity of PM2.5, it is useful to have an index that accounts for the whole pollutant mix, including gaseous pollutants. We consider a recently proposed pollutant mixture complexity index (PMCI) to evaluate to which extent it relates to PM2.5 toxicity. Methods The PMCI is constructed as an index spanning seven different pollutants, relative to the PM2.5 levels. We consider a standard two-stage analysis using data from 264 cities in the Northern Hemisphere. The first stage estimates the city-specific relative risks between daily PM2.5 and all-cause mortality, which are then pooled into a second-stage meta-regression model with which we estimate the effect modification from the PMCI. Results We estimate a relative excess risk of 1.0042 (95% confidence interval: 1.0023, 1.0061) for an interquartile range increase (from 1.09 to 1.95) of the PMCI. The PMCI predicts a substantial part of within-country relative risk heterogeneity with much less between-country heterogeneity explained. The Akaike information criterion and Bayesian information criterion of the main model are lower than those of alternative meta-regression models considering the oxidative capacity of PM2.5 or its composition. Conclusions The PMCI represents an efficient and simple predictor of local PM2.5-related mortality, providing evidence that PM2.5 toxicity depends on the surrounding gaseous pollutant mix. With the advent of remote sensing for pollutants, the PMCI can provide a useful index to track air quality.
Collapse
Affiliation(s)
- Pierre Masselot
- Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Shailesh K. Kharol
- Environment and Climate Change Canada, Toronto, Ontario, Canada
- AtmoAnalytics Inc., Brampton, Ontario, Canada
| | - Michelle L. Bell
- School of the Environment, Yale University, New Haven, Connecticut
- School of Health Policy and Management, College of Health Sciences, Korea University, Seoul, Republic of Korea
| | - Francesco Sera
- Department of Statistics, Computer Science and Applications “G. Parenti,” University of Florence, Florence, Italy
| | - Eric Lavigne
- School of Epidemiology & Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Air Health Science Division, Heatlh Canada, Ottawa, Canada
| | - Susanne Breitner
- IBE-Chair of Epidemiology, LMU Munich, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | | | | | - Antonio Gasparrini
- Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
3
|
Panda S, Mallik C, Babu SS, Sharma SK, Mandal TK, Das T, Boopathy R. Vehicular pollution as the primary source of oxidative potential of PM 2.5 in Bhubaneswar, a non-attainment city in eastern India. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1716-1735. [PMID: 39136396 DOI: 10.1039/d4em00150h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2024]
Abstract
We assessed the oxidative potential (OP) of PM2.5 (n = 230) using dithiothreitol (DTT) assay to identify the major emission sources in Bhubaneswar (20.20°N, 85.80°E), one of the non-attainment cities under the National Clean Air Program, situated on the eastern coast of India. Continuous day and night PM2.5 samples were collected during periods influenced by marine airmass (MAM; April-May 2019) as well as continental airmass (CAM; October 2019-December 2019). Volume normalized DTT (DDTv) activities were approximately two times higher during CAM compared to MAM periods. In contrast, mass normalized DTT activity (DDTm) showed insignificant variations between CAM and MAM periods. This might be due to particulate organic matter, which accounted for more than one-fifth of the PM2.5 mass loading and remained surprisingly invariant during the study periods. Positive matrix factorization (PMF) identified secondary aerosols (MAM: 26% and CAM: 33%) as dominant contributors to PM2.5 mass in both periods. OP, is, however, dominated by vehicular emissions (21%) as identified through multiple linear regression. Conditional Bivariate Probability Function (CBPF) analysis indicated that local sources were the primary drivers for the catalytic activity of PM2.5 in the study region. Additionally, stagnant meteorological conditions, combined with the chemical aging of species during regional transport of pollutants, likely enhanced redox activity of PM2.5 during the CAM period. The study highlights that increasing traffic congestion is primarily responsible for adverse health outcomes in the region. Therefore, it is important to regulate mobility and vehicular movement to mitigate the hazardous impact of PM2.5 in Bhubaneswar.
Collapse
Affiliation(s)
- Subhasmita Panda
- Environment & Sustainability Department, Aerosol & Trace Gases Laboratory, CSIR-Institute of Minerals & Materials Technology (CSIR-IMMT), Odisha-751013, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Chinmay Mallik
- Department of Atmospheric Science, Central University of Rajasthan, Ajmer-305801, India
| | - S Suresh Babu
- Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram, Kerala-695 022, India
| | - Sudhir Kumar Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Environmental Sciences and Biomedical Metrology Division, CSIR-National Physical Laboratory (CSIR-NPL), Dr K. S. Krishnan Road, New Delhi-110012, India
| | - Tuhin Kumar Mandal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Environmental Sciences and Biomedical Metrology Division, CSIR-National Physical Laboratory (CSIR-NPL), Dr K. S. Krishnan Road, New Delhi-110012, India
| | - Trupti Das
- Environment & Sustainability Department, Aerosol & Trace Gases Laboratory, CSIR-Institute of Minerals & Materials Technology (CSIR-IMMT), Odisha-751013, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - R Boopathy
- Environment & Sustainability Department, Aerosol & Trace Gases Laboratory, CSIR-Institute of Minerals & Materials Technology (CSIR-IMMT), Odisha-751013, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
4
|
Ahbil K, Sellami F, Baati H, Gautam S, Azri C. Influence of localized sources and meteorological conditions on dry-deposited particles: A case study of Gabès, Tunisia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176726. [PMID: 39383970 DOI: 10.1016/j.scitotenv.2024.176726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
This study investigates the spatial and temporal variations of dry-deposited particles on the surface (by turbulence or gravity) in various sites within Gabès city and its surroundings, South-eastern Tunisia. Monthly samples were collected from five distinct locations: suburban-industrial (S2), suburban-residential (S3), and urban sites (S1, S4, and S5). The average monthly particle deposition flows ranged from 7.35 ± 4.24 g/m2 to 14.41 ± 6.09 g/m2, with the suburban-industrial site (S2) exhibiting the highest deposition rates. They are lower than the reference value of 30 g/m2 in the AFNOR NF-X43-007, but much higher than the Swiss OPair standard (6 g/m2). Compared to the German standard (TALUFT; 10.5 g/m2), only S2 showed significant exceedances. Hierarchical cluster analysis revealed notable statistical affinities among the study sites. Heavy metal analysis indicated fluctuating concentrations across sites, with Zn being the most abundant, followed by Pb, Cu, Ni, and Cd. The enrichment factor (EF) and geoaccumulation index (Igeo) suggested varying degrees of contamination and pollution, highlighting the impact of anthropogenic sources. The findings underscore the need for targeted mitigation strategies to address particle deposition and heavy metal contamination in Gabès and similar regions globally.
Collapse
Affiliation(s)
- Khaoula Ahbil
- Research Laboratory of Environmental Sciences and Sustainable Development "LASED", LR18ES32, University of Sfax, Sfax, Tunisia
| | - Fatma Sellami
- Research Laboratory of Environmental Sciences and Sustainable Development "LASED", LR18ES32, University of Sfax, Sfax, Tunisia
| | - Houda Baati
- Research Laboratory of Environmental Sciences and Sustainable Development "LASED", LR18ES32, University of Sfax, Sfax, Tunisia
| | - Sneha Gautam
- Division of Civil Engineering, Karunya Institute of Technology and Sciences, Deemed University, Karunya Nagar, Coimbatore 641114, Tamil Nadu, India.
| | - Chafai Azri
- Research Laboratory of Environmental Sciences and Sustainable Development "LASED", LR18ES32, University of Sfax, Sfax, Tunisia
| |
Collapse
|
5
|
Santoro M, Costabile F, Gualtieri M, Rinaldi M, Paglione M, Busetto M, Di Iulio G, Di Liberto L, Gherardi M, Pelliccioni A, Monti P, Barbara B, Grollino MG. Associations between fine particulate matter, gene expression, and promoter methylation in human bronchial epithelial cells exposed within a classroom under air-liquid interface. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124471. [PMID: 38950846 DOI: 10.1016/j.envpol.2024.124471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Associations between indoor air pollution from fine particulate matter (PM with aerodynamic diameter dp < 2.5 μm) and human health are poorly understood. Here, we analyse the concentration-response curves for fine and ultrafine PM, the gene expression, and the methylation patterns in human bronchial epithelial cells (BEAS-2B) exposed at the air-liquid interface (ALI) within a classroom in downtown Rome. Our results document the upregulation of aryl hydrocarbon receptor (AhR) and genes associated with xenobiotic metabolism (CYP1A1 and CYP1B1) in response to single exposure of cells to fresh urban aerosols at low fine PM mass concentrations within the classroom. This is evidenced by concentrations of ultrafine particles (UFPs, dp < 0.1 μm), polycyclic aromatic hydrocarbons (PAH), and ratios of black carbon (BC) to organic aerosol (OA). Additionally, an interleukin 18 (IL-18) down-regulation was found during periods of high human occupancy. Despite the observed gene expression dysregulation, no changes were detected in the methylation levels of the promoter regions of these genes, indicating that the altered gene expression is not linked to changes in DNA methylation and suggesting the involvement of another epigenetic mechanism in the gene regulation. Gene expression changes at low exposure doses have been previously reported. Here, we add the possibility that lung epithelial cells, when singly exposed to real environmental concentrations of fine PM that translate into ultra-low doses of treatment, may undergo epigenetic alteration in the expression of genes related to xenobiotic metabolism. Our findings provide a perspective for future indoor air quality regulations. We underscore the potential role of indoor UFPs as carriers of toxic molecules with low-pressure weather conditions, when rainfall and strong winds may favour low levels of fine PM.
Collapse
Affiliation(s)
- Massimo Santoro
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123, Rome, Italy
| | - Francesca Costabile
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133, Rome, Italy; NBFC - National Biodiversity Future Center, NBFC, 90133, Palermo, Italy.
| | - Maurizio Gualtieri
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Matteo Rinaldi
- NBFC - National Biodiversity Future Center, NBFC, 90133, Palermo, Italy; Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129, Bologna, Italy
| | - Marco Paglione
- NBFC - National Biodiversity Future Center, NBFC, 90133, Palermo, Italy; Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129, Bologna, Italy
| | - Maurizio Busetto
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129, Bologna, Italy
| | - Gianluca Di Iulio
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133, Rome, Italy; Department of Public Health and Infectious Disease - University of Rome "La Sapienza", via Eudossiana 18, 00184, Rome, Italy
| | - Luca Di Liberto
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133, Rome, Italy
| | - Monica Gherardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Monte Porzio Catone, 00078, Rome, Italy
| | - Armando Pelliccioni
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Monte Porzio Catone, 00078, Rome, Italy
| | - Paolo Monti
- Department of Civil, Building and Environmental Engineering - University of Rome "La Sapienza", via Eudossiana 18, 00184, Rome, Italy
| | - Benassi Barbara
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123, Rome, Italy
| | - Maria Giuseppa Grollino
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123, Rome, Italy
| |
Collapse
|
6
|
Geldsetzer P, Fridljand D, Kiang MV, Bendavid E, Heft-Neal S, Burke M, Thieme AH, Benmarhnia T. Disparities in air pollution attributable mortality in the US population by race/ethnicity and sociodemographic factors. Nat Med 2024; 30:2821-2829. [PMID: 38951636 DOI: 10.1038/s41591-024-03117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024]
Abstract
There are large differences in premature mortality in the USA by race/ethnicity, education, rurality and social vulnerability index groups. Using existing concentration-response functions, published particulate matter (PM2.5) air pollution estimates, population estimates at the census tract level and county-level mortality data from the US National Vital Statistics System, we estimated the degree to which these mortality discrepancies can be attributed to differences in exposure and susceptibility to PM2.5. We show that differences in PM2.5-attributable mortality were consistently more pronounced by race/ethnicity than by education, rurality or social vulnerability index, with the Black American population having the highest proportion of deaths attributable to PM2.5 in all years from 1990 to 2016. Our model estimates that over half of the difference in age-adjusted all-cause mortality between the Black American and non-Hispanic white population was attributable to PM2.5 in the years 2000 to 2011. This difference decreased only marginally between 2000 and 2015, from 53.4% (95% confidence interval 51.2-55.9%) to 49.9% (95% confidence interval 47.8-52.2%), respectively. Our findings underscore the need for targeted air quality interventions to address environmental health disparities.
Collapse
Affiliation(s)
- Pascal Geldsetzer
- Division of Primary Care and Population Health, Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| | - Daniel Fridljand
- Division of Primary Care and Population Health, Department of Medicine, Stanford University, Stanford, CA, USA
- Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany
- Department of Mathematics, Yale University, New Haven, CT, USA
| | - Mathew V Kiang
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Eran Bendavid
- Division of Primary Care and Population Health, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Health Policy, Stanford University, Stanford, CA, USA
| | - Sam Heft-Neal
- Center on Food Security and the Environment, Stanford University, Stanford, CA, USA
| | - Marshall Burke
- Center on Food Security and the Environment, Stanford University, Stanford, CA, USA
- Doerr School of Sustainability, Stanford University, Stanford, CA, USA
| | - Alexander H Thieme
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santéenvironnement et travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
7
|
Zeldin J, Ratley G, Shobnam N, Myles IA. The clinical, mechanistic, and social impacts of air pollution on atopic dermatitis. J Allergy Clin Immunol 2024; 154:861-873. [PMID: 39151477 PMCID: PMC11456380 DOI: 10.1016/j.jaci.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
Atopic dermatitis (AD) is a complex disease characterized by dry, pruritic skin and significant atopic and psychological sequelae. Although AD has always been viewed as multifactorial, early research was dominated by overlapping genetic determinist views of either innate barrier defects leading to inflammation or innate inflammation eroding skin barrier function. Since 1970, however, the incidence of AD in the United States has increased at a pace that far exceeds genetic drift, thus suggesting a modern, environmental etiology. Another implicated factor is Staphylococcus aureus; however, a highly contagious microorganism is unlikely to be the primary etiology of a noncommunicable disease. Recently, the roles of the skin and gut microbiomes have received greater attention as potentially targetable drivers of AD. Here too, however, dysbiosis on a population scale would require induction by an environmental factor. In this review, we describe the evidence supporting the environmental hypothesis of AD etiology and detail the molecular mechanisms of each of the AD-relevant toxins. We also outline how a pollution-focused paradigm demands earnest engagement with environmental injustice if the field is to meaningfully address racial and geographic disparities. Identifying specific toxins and their mechanisms can also inform in-home and national mitigation strategies.
Collapse
Affiliation(s)
- Jordan Zeldin
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Grace Ratley
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Nadia Shobnam
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Ian A Myles
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
8
|
Liu C, Liu G, Yu L, Hu L, Wang D. The association between ambient PM 2.5's constituents exposure and cervical cancer survival. ENVIRONMENTAL RESEARCH 2024; 263:119928. [PMID: 39332794 DOI: 10.1016/j.envres.2024.119928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/25/2024] [Accepted: 09/02/2024] [Indexed: 09/29/2024]
Abstract
Increasing evidence links exposure to ambient particulate matter with a diameter less than 2.5 μm (PM2.5) with reduced survival in cancer survivors, but little was known about the association between PM2.5 exposure and cervical cancer survival. We analyzed data from 5144 cervical cancer patients diagnosed between January 2014 and December 2020, who completed recommended treatments. Exposure levels were determined by the monthly average concentration of ambient PM2.5 and its five constituents, obtained from Tracking Air Pollution in China (TAP) based on individual residential addresses. Log-rank tests and multivariate Cox Proportional Hazardous regression were performed to examine the impacts of PM2.5 and its constituents on overall survival (OS) of cervical cancer patients. We observed that for every increase of 1 μg/m3 in average individual exposure, the hazard ratios (95%CI) for ambient PM2.5, sulfate (SO42-), ammonium (NH4+), and nitrates (NO3-) were 1.078(1.069-1.086), 6.755(5.707-7.996), 2.123(1.935-2.329), and 3.717(3.237-4.267), respectively. Subgroups with longer OS had larger HRs of PM2.5 and its constituents, which might attributed to more cumulative exposure. No evidence of a threshold for the hazardous effects of PM2.5 on the OS of cervical cancer patients was identified. Furthermore, long-term exposure to PM2.5 was negatively associated with pretreatment counts of monocytes, neutrophils, and lymphocytes in peripheral blood of cervical cancer patients. In conclusion, elevated levels of PM2.5 mass, SO42-, NH4+, and NO3- in ambient PM2.5 exposure were associated with reduced OS among cervical cancer patients. There may be no discernible threshold effect of PM2.5 on the risk for cervical cancer patients.
Collapse
Affiliation(s)
- Chang Liu
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, People's Republic of China.
| | - Guangcong Liu
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, People's Republic of China.
| | - Lianzheng Yu
- Department of Environmental Health, Liaoning Center for Disease Control and Prevention, Shenyang, People's Republic of China.
| | - Liwen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| | - Danbo Wang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, People's Republic of China.
| |
Collapse
|
9
|
Offer S, Di Bucchianico S, Czech H, Pardo M, Pantzke J, Bisig C, Schneider E, Bauer S, Zimmermann EJ, Oeder S, Hartner E, Gröger T, Alsaleh R, Kersch C, Ziehm T, Hohaus T, Rüger CP, Schmitz-Spanke S, Schnelle-Kreis J, Sklorz M, Kiendler-Scharr A, Rudich Y, Zimmermann R. The chemical composition of secondary organic aerosols regulates transcriptomic and metabolomic signaling in an epithelial-endothelial in vitro coculture. Part Fibre Toxicol 2024; 21:38. [PMID: 39300536 DOI: 10.1186/s12989-024-00600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The formation of secondary organic aerosols (SOA) by atmospheric oxidation reactions substantially contributes to the burden of fine particulate matter (PM2.5), which has been associated with adverse health effects (e.g., cardiovascular diseases). However, the molecular and cellular effects of atmospheric aging on aerosol toxicity have not been fully elucidated, especially in model systems that enable cell-to-cell signaling. METHODS In this study, we aimed to elucidate the complexity of atmospheric aerosol toxicology by exposing a coculture model system consisting of an alveolar (A549) and an endothelial (EA.hy926) cell line seeded in a 3D orientation at the air‒liquid interface for 4 h to model aerosols. Simulation of atmospheric aging was performed on volatile biogenic (β-pinene) or anthropogenic (naphthalene) precursors of SOA condensing on soot particles. The similar physical properties for both SOA, but distinct differences in chemical composition (e.g., aromatic compounds, oxidation state, unsaturated carbonyls) enabled to determine specifically induced toxic effects of SOA. RESULTS In A549 cells, exposure to naphthalene-derived SOA induced stress-related airway remodeling and an early type I immune response to a greater extent. Transcriptomic analysis of EA.hy926 cells not directly exposed to aerosol and integration with metabolome data indicated generalized systemic effects resulting from the activation of early response genes and the involvement of cardiovascular disease (CVD) -related pathways, such as the intracellular signal transduction pathway (PI3K/AKT) and pathways associated with endothelial dysfunction (iNOS; PDGF). Greater induction following anthropogenic SOA exposure might be causative for the observed secondary genotoxicity. CONCLUSION Our findings revealed that the specific effects of SOA on directly exposed epithelial cells are highly dependent on the chemical identity, whereas non directly exposed endothelial cells exhibit more generalized systemic effects with the activation of early stress response genes and the involvement of CVD-related pathways. However, a greater correlation was made between the exposure to the anthropogenic SOA compared to the biogenic SOA. In summary, our study highlights the importance of chemical aerosol composition and the use of cell systems with cell-to-cell interplay on toxicological outcomes.
Collapse
Affiliation(s)
- Svenja Offer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany.
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany.
| | - Hendryk Czech
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Michal Pardo
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot, ISR-7610001, Israel
| | - Jana Pantzke
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Eric Schneider
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Elias J Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Elena Hartner
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Thomas Gröger
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Rasha Alsaleh
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Christian Kersch
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Till Ziehm
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Thorsten Hohaus
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Christopher P Rüger
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Astrid Kiendler-Scharr
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot, ISR-7610001, Israel
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| |
Collapse
|
10
|
Mabeleng K, Rathebe PC, Masekameni MD. A cross-sectional study on domestic use of biomass fuel and the prevalence of respiratory illnesses in a rural community in Thaba-Tseka district of Lesotho. Heliyon 2024; 10:e36628. [PMID: 39263078 PMCID: PMC11386013 DOI: 10.1016/j.heliyon.2024.e36628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
The domestic utilization of biomass fuel for purposes such as cooking, space heating, and water heating has been linked to a number of respiratory ailments, particularly when burned inefficiently. However, there is an existing knowledge gap on the impact of this practice on the health of Basotho. This study aims to explore the impact of biomass fuels use on the prevalence of respiratory illnesses among residents of two rural communities in Thaba-Tseka. A quantitative, cross-sectional design was adopted, using a structured questionnaire, to assess the correlation between biomass fuel use and the prevalence of respiratory symptoms and diseases. Data were collected from 326 randomly selected individuals aged 18 and above. The major source of fuel energy used was firewood (39.6 %), followed by paraffin (29.1 %) and animal dung (15.6 %). The most prevalent respiratory symptom reported was cough, among 27.6 % of participants (n = 326), followed by sneezing (n = 326, 23.0 %), and fever (n = 326, 17.5 %). The lowest prevalent respiratory disease was pneumonia (0.9 %) while lung cancer was not reported. The reporting of respiratory symptoms and diseases was most prevalent in January. A greater prevalence of cough was reported by participants with a higher level of education (r (5) = 1.746, p = 0.008). More male participants reported to have tuberculosis (7.8 %) compared to females (3 %) (r (1) = 3.809, p = 0.051). Asthma was noted to be more prevalent among high income earners (r (3) = 8.169, p = 0.043) and those reported to have an employment (r (1) = 4.277, p = 0.039). Surprisingly, there was no association between respiratory diseases and symptoms, and the type of domestic fuel used. In the rural communities of Thaba-Tseka, about 4 in 10 Basotho rural communities, relied on firewood for cooking, space heating and water heating. Respiratory symptoms and diseases were observed mostly in the month of January. Several factors, including education level, marital status, gender, and income level, were significantly associated with specific respiratory symptoms and diseases. Targeted public health interventions are urgently needed to mitigate respiratory symptoms and diseases in the rural communities of Lesotho. More focus should be directed to health behavioral change and provision of improved stoves for exposure reduction of biomass emissions.
Collapse
Affiliation(s)
- Kekeletso Mabeleng
- Department of Environmental Health, Faculty of Health Sciences, University of Johannesburg, South Africa
| | - Phoka C Rathebe
- Department of Environmental Health, Faculty of Health Sciences, University of Johannesburg, South Africa
| | - Masilu Daniel Masekameni
- Department of Environmental Health, Faculty of Health Sciences, University of Johannesburg, South Africa
- Developmental Studies, School of Social Sciences, University of South Africa, Pretoria, South Africa
| |
Collapse
|
11
|
Allaouat S, Yli-Tuomi T, Tiittanen P, Kukkonen J, Kangas L, Mikkonen S, Tiia N, Jousilahti P, Siponen T, Zeller T, Lanki T. Long-term exposures to low concentrations of source-specific air pollution, road-traffic noise, and systemic inflammation and cardiovascular disease biomarkers. ENVIRONMENTAL RESEARCH 2024:119846. [PMID: 39187149 DOI: 10.1016/j.envres.2024.119846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 08/28/2024]
Abstract
OBJECTIVES Air pollution and traffic noise are detrimental to cardiovascular health. However, the effects of different sources of these exposures on cardiovascular biomarkers remain unclear. We explored the associations of long-term exposure to source-specific air pollution (vehicular exhausts and residential woodsmoke) at low concentrations and road-traffic noise with systemic inflammation and cardiovascular disease biomarkers. MATERIAL AND METHODS Modeled outdoor exposure to fine particulate matter (aerodynamic diameter ≤ 2.5 μm; PM2.5) from vehicular exhausts and residential woodsmoke, nitrogen dioxide (NO2) from road traffic, and road-traffic noise were linked to the home addresses of the participants (Finnish residents aged 25-74) in the FINRISK study 1997-2012. The participants were located in the cities of Helsinki, Vantaa, and the region of Turku, Finland. The outcomes were high-sensitivity C-reactive protein (CRP), a biomarker for systemic inflammation, and cardiovascular disease biomarkers N-terminal pro-B-type natriuretic peptide (NT-proBNP) and troponin I. We performed cross-sectional analyses with linear and additive models and adjusted for potential confounders. RESULTS We found no association between PM2.5 from vehicular exhausts (% CRP difference for 1 μg/m3 increase in PM2.5: -0.9, 95% confidence interval, CI: -7.2, 5.8), or from residential woodsmoke (% difference: -8.1, 95% CI: -21.7, 7.9) and CRP (N = 4147). Road-traffic noise > 70 dB tended to be positively associated with CRP (% CRP difference versus noise reference category of ≤ 45 decibels: 18.3, 95% CI: -0.5, 40.6), but the association lacked significance and robustness (N = 7142). Otherwise, we found no association between road-traffic noise and CRP, nor between NO2 from road traffic and NT-proBNP (N = 1907) or troponin I (N = 1951). CONCLUSION Long-term exposures to source-specific, fairly low-level air pollution from vehicular exhausts and residential woodsmoke, or road-traffic noise were not associated with systemic inflammation and cardiovascular disease biomarkers in this urban area.
Collapse
Affiliation(s)
- Sara Allaouat
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Lifestyles and Living Environments Unit, Department of Public Health Finnish Institute for Health and Welfare, Kuopio, Finland.
| | - Tarja Yli-Tuomi
- Lifestyles and Living Environments Unit, Department of Public Health Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Pekka Tiittanen
- Lifestyles and Living Environments Unit, Department of Public Health Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Jaakko Kukkonen
- Finnish Meteorological Institute, Helsinki, Finland; Centre for Climate Change Research (C3R), University of Hertfordshire, Hatfield, UK
| | - Leena Kangas
- Finnish Meteorological Institute, Helsinki, Finland
| | - Santtu Mikkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ngandu Tiia
- Lifestyles and Living Environments Unit, Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Pekka Jousilahti
- Lifestyles and Living Environments Unit, Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Taina Siponen
- Lifestyles and Living Environments Unit, Department of Public Health Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Tanja Zeller
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, Germany; Department of Cardiology, University Heart and Vascular Center Hamburg, Medical University Hamburg-Eppendorf, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Hamburg, Germany
| | - Timo Lanki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Lifestyles and Living Environments Unit, Department of Public Health Finnish Institute for Health and Welfare, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
12
|
Borlaza-Lacoste L, Mardoñez V, Marsal A, Hough I, Dinh VNT, Dominutti P, Jaffrezo JL, Alastuey A, Besombes JL, Močnik G, Moreno I, Velarde F, Gardon J, Cornejo A, Andrade M, Laj P, Uzu G. Oxidative potential of particulate matter and its association to respiratory health endpoints in high-altitude cities in Bolivia. ENVIRONMENTAL RESEARCH 2024; 255:119179. [PMID: 38768882 DOI: 10.1016/j.envres.2024.119179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Exposure to particulate matter (PM) pollution is a significant health risk, driving the search for innovative metrics that more accurately reflect the potential harm to human health. Among these, oxidative potential (OP) has emerged as a promising health-based metric, yet its application and relevance across different environments remain to be further explored. This study, set in two high-altitude Bolivian cities, aims to identify the most significant sources of PM-induced oxidation in the lungs and assess the utility of OP in assessing PM health impacts. Utilizing two distinct assays, OPDTT and OPDCFH, we measured the OP of PM samples, while also examining the associations between PM mass, OP, and black carbon (BC) concentrations with hospital visits for acute respiratory infections (ARI) and pneumonia over a range of exposure lags (0-2 weeks) using a Poisson regression model adjusted for meteorological conditions. The analysis also leveraged Positive Matrix Factorization (PMF) to link these health outcomes to specific PM sources, building on a prior source apportionment study utilizing the same dataset. Our findings highlight anthropogenic combustion, particularly from traffic and biomass burning, as the primary contributors to OP in these urban sites. Significant correlations were observed between both OPDTT and PM2.5 concentration exposure and ARI hospital visits, alongside a notable association with pneumonia cases and OPDTT levels. Furthermore, PMF analysis demonstrated a clear link between traffic-related pollution and increased hospital admissions for respiratory issues, affirming the health impact of these sources. These results underscore the potential of OPDTT as a valuable metric for assessing the health risks associated with acute PM exposure, showcasing its broader application in environmental health studies.
Collapse
Affiliation(s)
- Lucille Borlaza-Lacoste
- Institute des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Valeria Mardoñez
- Institute des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France; Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Anouk Marsal
- Institute des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Ian Hough
- Institute des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Vy Ngoc Thuy Dinh
- Institute des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Pamela Dominutti
- Institute des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Jean-Luc Jaffrezo
- Institute des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Jean-Luc Besombes
- Université Savoie Mont Blanc, CNRS, EDYTEM (UMR 5204), Chambéry, 73000, France
| | - Griša Močnik
- Center for Atmospheric Research, University of Nova Gorica, 5270, Ajdovščina, Slovenia; Haze Instruments d.o.o., 1000, Ljubljana, Slovenia; Department of Condensed Matter Physics, Jozef Stefan Institute, 1000, Ljubljana, Slovenia
| | - Isabel Moreno
- Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Fernando Velarde
- Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Jacques Gardon
- Hydrosciences Montpellier, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Alex Cornejo
- Viceministerio de Promoción, Vigilancia Epidemiológica y Medicina Tradicional (VPVEyMT), La Paz, Bolivia
| | - Marcos Andrade
- Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia; Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA
| | - Paolo Laj
- Institute des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France; Institute for Atmospheric and Earth System Research (INAR), and Department of Physics, University of Helsinki, 00014, Helsinki, Finland
| | - Gaëlle Uzu
- Institute des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France.
| |
Collapse
|
13
|
Pearson JF, Jacobson C, Riss C, Strickland M, Lee L, Wan N, Benney TM, Pace NL, Goodrich B, Gabry J, Kartchner C, Andreae MH. Preoperative Exposure to Fine Particulate Matter and Risk of Postoperative Complications: A Single Center Observational Cohort Bayesian Analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.13.24311943. [PMID: 39211893 PMCID: PMC11361263 DOI: 10.1101/2024.08.13.24311943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background & Objectives While exposure to fine particulate matter air pollution (PM 2.5 ) is known to cause adverse health effects, its impact on postoperative outcomes in US adults remains understudied. Perioperative exposure to PM 2.5 may induce inflammation that insidiously interacts with the systemic inflammatory response after surgery, leading to higher postoperative complications. Methods We conducted a single center, retrospective cohort study using data from 64,313 surgical patients living along Utah's Wasatch Front and undergoing elective surgical procedures at a single academic medical center from 2016-2018. Patients' addresses were geocoded and linked to daily Census-tract level PM 2.5 estimates preoperatively. We hypothesized that elevated PM 2.5 concentrations in the seven days prior to surgery would be associated with an increase in a bundle of major postoperative complications. A hierarchical Bayesians regression model was fit adjusting for age, sex, season, neighborhood disadvantage, and the Elixhauser index of comorbidities. Results Postoperative complications increased in a dose-dependent manner with higher concentrations of PM 2.5 exposure, with a relative increase of 7% in the odds of complications for every 10ug/m3 increase in the highest single-day 24-hr PM 2.5 exposure during the 7 days prior to surgery. The association persisted after controlling for comorbidities and potential confounders; our inferences were robust to modeling choices and sensitivity analysis. Discussion & Conclusion In this large Utah cohort, exposure to elevated PM 2.5 concentrations in the week before surgery was associated with increased postoperative complications in a dose-dependent manner, suggesting a potential impact of air pollution on surgical outcomes. These findings merit replication in larger datasets to identify populations at risk and to define the interaction and impact of different pollutants. PM 2.5 exposure is a potential perioperative risk factor and, given the unmitigated air pollution in urban areas, a global health concern.
Collapse
|
14
|
Sun Y, Jiang Y, Xing J, Ou Y, Wang S, Loughlin DH, Yu S, Ren L, Li S, Dong Z, Zheng H, Zhao B, Ding D, Zhang F, Zhang H, Song Q, Liu K, Klimont Z, Woo JH, Lu X, Li S, Hao J. Air Quality, Health, and Equity Benefits of Carbon Neutrality and Clean Air Pathways in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39133145 DOI: 10.1021/acs.est.3c10076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
In the pursuit of carbon neutrality, China's 2060 targets have been largely anchored in reducing greenhouse gas emissions, with less emphasis on the consequential benefits for air quality and public health. This study pivots to this critical nexus, exploring how China's carbon neutrality aligns with the World Health Organization's air quality guidelines (WHO AQG) regarding fine particulate matter (PM2.5) exposure. Coupling a technology-rich integrated assessment model, an emission-concentration response surface model, and exposure and health assessment, we find that decarbonization reduces sulfur dioxide (SO2), nitrogen oxides (NOx), and PM2.5 emissions by more than 90%; reduces nonmethane volatile organic compounds (NMVOCs) by more than 50%; and simultaneously reduces the disparities across regions. Critically, our analysis reveals that further targeted reductions in air pollutants, notably NH3 and non-energy-related NMVOCs, could bring most Chinese cities into attainment of WHO AQG for PM2.5 5 to 10 years earlier than the pathway focused solely on carbon neutrality. Thus, the integration of air pollution control measures into carbon neutrality strategies will present a significant opportunity for China to attain health and environmental equality.
Collapse
Affiliation(s)
- Yisheng Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Yueqi Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Jia Xing
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Yang Ou
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
- Institute of Carbon Neutrality, Peking University, Beijing 100871, P. R. China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Daniel H Loughlin
- U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Sha Yu
- Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, Maryland 20740, United States
- Center for Global Sustainability, University of Maryland, College Park , Maryland 20742, United States
| | - Lu Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Shengyue Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Zhaoxin Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Haotian Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Bin Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Dian Ding
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Fenfen Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Haowen Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Qian Song
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Kaiyun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Zbigniew Klimont
- International Institute for Applied Systems Analysis (IIASA), Laxenburg 2361, Austria
| | - Jung-Hun Woo
- Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Xi Lu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Siwei Li
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, P. R. China
| | - Jiming Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| |
Collapse
|
15
|
Stanimirova I, Rich DQ, Russell AG, Hopke PK. Spatial variability of pollution source contributions during two (2012-2013 and 2018-2019) sampling campaigns at ten sites in Los Angeles basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 354:124244. [PMID: 38810681 DOI: 10.1016/j.envpol.2024.124244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
This study assessed the spatial variability of PM2.5 source contributions across ten sites located in the South Coast Air Basin, California. Eight pollution sources and their contributions were obtained using positive matrix factorization (PMF) from the PM2.5 compositional data collected during the two sampling campaigns (2012/13 and 2018/19) of the Multiple Air Toxics Exposure Study (MATES). The identified sources were "gasoline vehicles", "aged sea salt", "biomass burning", "secondary nitrate", "secondary sulfate", "diesel vehicles", "soil/road dust" and "OP-rich". Among them, "gasoline vehicle" was the largest contributor to the PM2.5 mass. The spatial distributions of source contributions to PM2.5 at the sites were characterized by the Pearson correlation coefficients as well as coefficients of determination and divergence. The highest spatial variability was found for the contributions from the "OP-rich" source in both MATES campaigns suggesting varying influences of the wildfires in the Los Angeles Basin. Alternatively, the smallest spatial variabilities were observed for the contributions of the "secondary sulfate" and "aged sea salt" sources resolved for the MATES campaign in 2012/13. The "soil/road dust" contributions of the sites from the 2018/19 campaign were also highly correlated. Compared to the other sites, the source contribution patterns observed for Inland Valley and Rubidoux were the most diverse from the others likely due to their remote locations from the other sites, the major urban area, and the Pacific Ocean.
Collapse
Affiliation(s)
- Ivana Stanimirova
- Institute of Chemistry, University of Silesia in Katowice, Katowice, 40-006, Poland; Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA.
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Institute for Sustainable Environment, Clarkson University, Potsdam, NY, 13699, USA
| |
Collapse
|
16
|
Wang S, Qin T, Tu R, Li T, Chen GI, Green DC, Zhang X, Feng J, Liu H, Hu M, Fu Q. Indoor air quality in subway microenvironments: Pollutant characteristics, adverse health impacts, and population inequity. ENVIRONMENT INTERNATIONAL 2024; 190:108873. [PMID: 39024827 DOI: 10.1016/j.envint.2024.108873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Rapidly increasing urbanization in recent decades has elevated the subway as the primary public transportation mode in metropolitan areas. Indoor air quality (IAQ) inside subways is an important factor that influences the health of commuters and subway workers. This review discusses the subway IAQ in different cities worldwide by comparing the sources and abundance of particulate matter (PM2.5 and PM10) in these environments. Factors that affect PM concentration and chemical composition were found to be associated with the subway internal structure, train frequency, passenger volume, and geographical location. Special attention was paid to air pollutants, such as transition metals, volatile/semi-volatile organic compounds (VOCs and SVOCs), and bioaerosols, due to their potential roles in indoor chemistry and causing adverse health impacts. In addition, given that the IAQ of subway systems is a public health issue worldwide, we calculated the Gini coefficient of urban subway exposure via meta-analysis. A value of 0.56 showed a significant inequity among different cities. Developed regions with higher per capita income tend to have higher exposure. By reviewing the current advances and challenges in subway IAQ with a focus on indoor chemistry and health impacts, future research is proposed toward a sustainable urban transportation systems.
Collapse
Affiliation(s)
- Shunyao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Tianchen Qin
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ran Tu
- School of Transportation, Southeast University, Nanjing 210096, China; The Key Laboratory of Transport Industry of Comprehensive Transportation Theory (Nanjing Modern Multimodal Transportation Laboratory), Nanjing, China.
| | - Tianyuan Li
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Gang I Chen
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
| | - David C Green
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK; NIRH HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
| | - Xin Zhang
- School of Transportation, Southeast University, Nanjing 210096, China
| | - Jialiang Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haobing Liu
- School of Transportation Engineering, Tongji University, Shanghai 201804, China
| | - Ming Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Qingyan Fu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| |
Collapse
|
17
|
Tutsak E, Alfoldy B, Mahfouz MM, Al-Thani JA, Yigiterhan O, Shahid I, Isaifan RJ, Koçak M. Chemical composition of indoor and outdoor PM 2.5 in the eastern Arabian Peninsula. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49589-49600. [PMID: 39080166 PMCID: PMC11324777 DOI: 10.1007/s11356-024-34482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
Water-soluble and trace metal species in fine particulate matter (PM2.5) were determined for indoor and outdoor environments in Doha, Qatar. During the study period, PM2.5 concentrations showed significant variability across several indoor locations ranging from 7.1 to 75.8 μg m-3, while the outdoor mass concentration range was 34.7-154.4 µg m-3. The indoor and outdoor PM2.5 levels did not exhibit statistically significant correlation, suggesting efficient building envelope protection against outdoor PM2.5 pollution. Rather than outdoor sources, human activities such as cooking, cleaning, and smoking were the most significant influence on chemical composition of indoor PM2.5. NH4+ concentration was insufficient to neutralize SO42- indoors and outdoors, indicating the predominant presence of NH4HSO4. The enrichment factors indicated that outdoor Fe, Mn, Co, Cr, and Ni in PM2.5 mostly originated from crustal sources. In contrast, the remaining outdoor trace metals (Cu, Zn, As, Cd, Pb, and V) were mainly derived from anthropogenic sources. The indoor/outdoor concentration ratios revealed significant indoor sources for NH4+ and Cu. The crustal matter, water-soluble ions, and sea salt explained 42%, 21%, and 1% of the indoor PM2.5 mass, respectively. The same groups sequentially constituted 41%, 16%, and 1% of the outdoor PM2.5 mass.
Collapse
Affiliation(s)
- Ersin Tutsak
- Environmental Science Center, Qatar University, Doha, Qatar.
| | | | | | | | | | - Imran Shahid
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Rima J Isaifan
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | | |
Collapse
|
18
|
Leonetti A, Peansukwech U, Charnnarong J, Cha'on U, Suttiprapa S, Anutrakulchai S. Effects of particulate matter (PM2.5) concentration and components on mortality in chronic kidney disease patients: a nationwide spatial-temporal analysis. Sci Rep 2024; 14:16810. [PMID: 39039106 PMCID: PMC11263396 DOI: 10.1038/s41598-024-67642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
Chronic kidney disease (CKD) is a major global public health issue and the leading cause of death in Thailand. This study investigated the spatial-temporal association between PM2.5 and its components (organic carbon, black carbon, dust, sulfate, and sea salt) and CKD mortality in Thailand from 2012 to 2021. The Modern-Era Retrospective analysis for Research and Application version 2 (MERRA-2), a NASA atmospheric satellite model, was assessed for the temporal data of PM2.5 concentration and aerosol components. Spatial resources of 77 provinces were integrated using the Geographical Information System (GIS). Multivariate Poisson regression and Bayesian inference analyses were conducted to explore the effects of PM2.5 on CKD mortality across the provinces. Our analysis included 718,686 CKD-related deaths, resulting in a mortality rate of 1107 cases per 100,000 population where was the highest rate in Northeast region. The average age of the deceased was 72.43 ± 13.10 years, with males comprising 50.46% of the cases. Adjusting for age, sex, underlying diseases, co-morbidities, CKD complications, replacement therapy, population density, and income, each 1 µg/m3 increase in PM2.5, black carbon, dust, sulfate, and organic carbon was significantly associated with increased CKD mortality across 77 provinces. Incidence rate ratios were 1.04 (95% CI 1.03-1.04) for PM2.5, 1.11 (95% CI 1.10-1.13) for black carbon, 1.24 (95% CI 1.22-1.25) for dust, 1.16 (95% CI 1.16-1.17) for sulfate, and 1.05 (95% CI 1.04-1.05) for organic carbon. These findings emphasize the significant impact of PM2.5 on CKD mortality and underscore the need for strategies to reduce PM emissions and manage CKD co-morbidities effectively.
Collapse
Affiliation(s)
- Alessia Leonetti
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Udomlack Peansukwech
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Khon Kaen University, Khon Kaen, Thailand
| | | | - Ubon Cha'on
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| | - Sirirat Anutrakulchai
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Khon Kaen University, Khon Kaen, Thailand.
- Anandamahidol Foundation, Bangkok, Thailand.
- Division of Nephrology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
19
|
Buljat A, Čargonja M, Mekterović D. Source Apportionment of Particulate Matter in a Metal Workshop. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:768. [PMID: 38929014 PMCID: PMC11203473 DOI: 10.3390/ijerph21060768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Metal workshops are workplaces with the substantial production of particulate matter (PM) with high metal content, which poses a significant health risk to workers. The PM produced by different metal processing techniques differs considerably in its elemental composition and size distribution and therefore poses different health risks. In some previous studies, the pollution sources were isolated under controlled conditions, while, in this study, we present a valuable alternative to characterize the pollution sources that can be applied to real working environments. Fine PM was sampled in five units (partially specializing in different techniques) of the same workshop. A total of 53 samples were collected with a temporal resolution of 30 min and 1 h. The mass concentrations were determined gravimetrically, and the elemental analysis, in which the concentrations of 14 elements were determined, was carried out using the X-ray fluorescence technique. Five sources of pollution were identified: background, steel grinding, metal active gas welding, tungsten inert gas welding, and machining. The sources were identified by positive matrix factorization, a statistical method for source apportionment. The identified sources corresponded well with the work activities in the workshop and with the actual sources described in previous studies. It is shown that positive matrix factorization can be a valuable tool for the identification and characterization of indoor sources.
Collapse
Affiliation(s)
| | | | - Darko Mekterović
- Faculty of Physics, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (A.B.); (M.Č.)
| |
Collapse
|
20
|
Connolly R, Marlier ME, Garcia-Gonzales DA, Wilkins J, Su J, Bekker C, Jung J, Bonilla E, Burnett RT, Zhu Y, Jerrett M. Mortality attributable to PM 2.5 from wildland fires in California from 2008 to 2018. SCIENCE ADVANCES 2024; 10:eadl1252. [PMID: 38848356 PMCID: PMC11160451 DOI: 10.1126/sciadv.adl1252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/06/2024] [Indexed: 06/09/2024]
Abstract
In California, wildfire risk and severity have grown substantially in the last several decades. Research has characterized extensive adverse health impacts from exposure to wildfire-attributable fine particulate matter (PM2.5), but few studies have quantified long-term outcomes, and none have used a wildfire-specific chronic dose-response mortality coefficient. Here, we quantified the mortality burden for PM2.5 exposure from California fires from 2008 to 2018 using Community Multiscale Air Quality modeling system wildland fire PM2.5 estimates. We used a concentration-response function for PM2.5, applying ZIP code-level mortality data and an estimated wildfire-specific dose-response coefficient accounting for the likely toxicity of wildfire smoke. We estimate a total of 52,480 to 55,710 premature deaths are attributable to wildland fire PM2.5 over the 11-year period with respect to two exposure scenarios, equating to an economic impact of $432 to $456 billion. These findings extend evidence on climate-related health impacts, suggesting that wildfires account for a greater mortality and economic burden than indicated by earlier studies.
Collapse
Affiliation(s)
- Rachel Connolly
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
- Luskin Center for Innovation, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miriam E. Marlier
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Diane A. Garcia-Gonzales
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph Wilkins
- Department of Earth, Environment and Equity, Howard University, Washington, DC, USA
| | - Jason Su
- Department of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Claire Bekker
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jihoon Jung
- Department of City and Regional Planning, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eimy Bonilla
- Department of Earth, Environment and Equity, Howard University, Washington, DC, USA
| | - Richard T. Burnett
- Institute of Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Yifang Zhu
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael Jerrett
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
21
|
Wei Y, Chen Y, Hong Y, Chen J, Li HB, Li H, Yao X, Mehmood T, Feng X, Luo XS. Comparative in vitro toxicological effects of water-soluble and insoluble components of atmospheric PM 2.5 on human lung cells. Toxicol In Vitro 2024; 98:105828. [PMID: 38621549 DOI: 10.1016/j.tiv.2024.105828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Fine particulates in city air significantly impact human health, but the hazardous compositional mechanisms are still unclear. Besides the toxicity of environmental PM2.5 to in vitro human lung epithelial cells (A549), the independent cytotoxicity of PM2.5-bound water-soluble (WS-PM2.5) and water-insoluble (WIS-PM2.5) fractions were also compared by cell viability, oxidative stress (reactive oxygen species, ROS), and inflammatory injury (IL-6 and TNF-α). The cytotoxicity of PM2.5 varied significantly by sampling season and place, with degrees greater in winter and spring than in summer and autumn, related to corresponding trend of air PM2.5 level, and also higher in industrial than urban site, although their PM2.5 pollution levels were comparable. The PM2.5 bound metals (Ni, Cr, Fe, and Mn) may contribute to cellular injury. Both WS-PM2.5 and WIS-PM2.5 posed significant cytotoxicity, that WS-PM2.5 was more harmful than WIS-PM2.5 in terms of decreasing cell viability and increasing inflammatory cytokines production. In particular, industrial samples were usually more toxic than urban samples, and those from summer were generally less toxic than other seasons. Hence, in order to mitigate the health risks of PM2.5 pollution, the crucial targets might be components of heavy metals and soluble fractions, and sources in industrial areas, especially during the cold seasons.
Collapse
Affiliation(s)
- Yaqian Wei
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yan Chen
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210036, China
| | - Youwei Hong
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hanhan Li
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xuewen Yao
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tariq Mehmood
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, Leipzig D-04318, Germany
| | - Xinyuan Feng
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiao-San Luo
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
22
|
Techapichetvanich P, Sillapaprayoon S, Vivithanaporn P, Pimtong W, Khemawoot P. Assessing developmental and transcriptional effects of PM2.5 on zebrafish embryos. Toxicol Rep 2024; 12:397-403. [PMID: 38590343 PMCID: PMC10999492 DOI: 10.1016/j.toxrep.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Investigating fine particulate matter (PM2.5) toxicity is crucial for health risk assessment and pollution control. This study explores the developmental toxicity of two PM2.5 sources: standard reference material 2786 (NIST, USA) and PM2.5 from Chakri Naruebodindra Medical Institute (CNMI, Thailand) located in the Bangkok Metropolitan area. Zebrafish embryos exposed to these samples exhibited embryonic mortality, with 50% lethal concentration (LC50) values of 1476 µg/mL for standard PM2.5 and 512 µg/mL for CNMI PM2.5. Morphological analysis revealed malformations, including pericardial and yolk sac edema, and blood clotting in both groups. Gene expression analysis highlighted source-specific effects. Standard PM2.5 downregulated sod1 and cat while upregulating gstp2. Inflammatory genes tnf-α and il-1b were upregulated, and nfkbi-αa was downregulated. Apoptosis-related genes bax, bcl-2, and casp3a were downregulated. CNMI PM2.5 consistently downregulated all examined genes. These findings underscore PM2.5 source variability's significance in biological system impact assessment, providing insights into pollutant-gene expression interactions. The study emphasizes the need for source-specific risk assessment and interventions to address PM2.5 exposure's health impacts effectively.
Collapse
Affiliation(s)
- Pinnakarn Techapichetvanich
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Chakri Naruebodindra Medical Institute (CNMI), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan 10540, Thailand
| | - Siwapech Sillapaprayoon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Chakri Naruebodindra Medical Institute (CNMI), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan 10540, Thailand
| | - Pornpun Vivithanaporn
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Chakri Naruebodindra Medical Institute (CNMI), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan 10540, Thailand
| | - Wittaya Pimtong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Chakri Naruebodindra Medical Institute (CNMI), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan 10540, Thailand
| | - Phisit Khemawoot
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Chakri Naruebodindra Medical Institute (CNMI), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan 10540, Thailand
| |
Collapse
|
23
|
Aryal A, Harmon AC, Varner KJ, Noël A, Cormier SA, Nde DB, Mottram P, Maxie J, Dugas TR. Inhalation of particulate matter containing environmentally persistent free radicals induces endothelial dysfunction mediated via AhR activation at the air-blood interface. Toxicol Sci 2024; 199:246-260. [PMID: 38310335 DOI: 10.1093/toxsci/kfae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024] Open
Abstract
Particulate matter (PM) containing environmentally persistent free radicals (EPFR) is formed by the incomplete combustion of organic wastes, resulting in the chemisorption of pollutants to the surface of PM containing redox-active transition metals. In prior studies in mice, EPFR inhalation impaired endothelium-dependent vasodilation. These findings were associated with aryl hydrocarbon receptor (AhR) activation in the alveolar type-II (AT-II) cells that form the air-blood interface in the lung. We thus hypothesized that AhR activation in AT-II cells promotes the systemic release of mediators that promote endothelium dysfunction peripheral to the lung. To test our hypothesis, we knocked down AhR in AT-II cells of male and female mice and exposed them to 280 µg/m3 EPFR lo (2.7e + 16 radicals/g) or EPFR (5.5e + 17 radicals/g) compared with filtered air for 4 h/day for 1 day or 5 days. AT-II-AhR activation-induced EPFR-mediated endothelial dysfunction, reducing endothelium-dependent vasorelaxation by 59%, and eNOS expression by 50%. It also increased endothelin-1 mRNA levels in the lungs and peptide levels in the plasma in a paracrine fashion, along with soluble vascular cell adhesion molecule-1 and iNOS mRNA expression, possibly via NF-kB activation. Finally, AhR-dependent increases in antioxidant response signaling, coupled to increased levels of 3-nitrotyrosine in the lungs of EPFR-exposed littermate control but not AT-II AhR KO mice suggested that ATII-specific AhR activation promotes oxidative and nitrative stress. Thus, AhR activation at the air-blood interface mediates endothelial dysfunction observed peripheral to the lung, potentially via release of systemic mediators.
Collapse
Affiliation(s)
- Ankit Aryal
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Ashlyn C Harmon
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Kurt J Varner
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University A&M College and Pennington Biomedical Research Institute, Baton Rouge, Louisiana 70803, USA
| | - Divine B Nde
- Department of Chemistry, Louisiana State University A&M College, Baton Rouge, Louisiana 70803, USA
| | - Peter Mottram
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Jemiah Maxie
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Tammy R Dugas
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
24
|
Glasgow G, Ramkrishnan B, Smith AE. Model misspecification, measurement error, and apparent supralinearity in the concentration-response relationship between PM2.5 and mortality. PLoS One 2024; 19:e0303640. [PMID: 38781233 PMCID: PMC11115258 DOI: 10.1371/journal.pone.0303640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
A growing number of studies have produced results that suggest the shape of the concentration-response (C-R) relationship between PM2.5 exposure and mortality is "supralinear" such that incremental risk is higher at the lowest exposure levels than at the highest exposure levels. If the C-R function is in fact supralinear, then there may be significant health benefits associated with reductions in PM2.5 below the current US National Ambient Air Quality Standards (NAAQS), as each incremental tightening of the PM2.5 NAAQS would be expected to produce ever-greater reductions in mortality risk. In this paper we undertake a series of tests with simulated cohort data to examine whether there are alternative explanations for apparent supralinearity in PM2.5 C-R functions. Our results show that a linear C-R function for PM2.5 can falsely appear to be supralinear in a statistical estimation process for a variety of reasons, such as spatial variation in the composition of total PM2.5 mass, the presence of confounders that are correlated with PM2.5 exposure, and some types of measurement error in estimates of PM2.5 exposure. To the best of our knowledge, this is the first simulation-based study to examine alternative explanations for apparent supralinearity in C-R functions.
Collapse
Affiliation(s)
- Garrett Glasgow
- NERA Economic Consulting, San Francisco, California, United States of America
| | - Bharat Ramkrishnan
- NERA Economic Consulting, Washington, District of Columbia, United States of America
| | - Anne E. Smith
- NERA Economic Consulting, Washington, District of Columbia, United States of America
| |
Collapse
|
25
|
Khan RN, Saporito AF, Zenon J, Goodman L, Zelikoff JT. Traffic-related air pollution in marginalized neighborhoods: a community perspective. Inhal Toxicol 2024; 36:343-354. [PMID: 38618680 DOI: 10.1080/08958378.2024.2331259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/10/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVES Marginalized communities are exposed to higher levels of traffic-related air pollution (TRAP) than the general population. TRAP exposure is linked to pulmonary toxicity, neurotoxicity, and cardiovascular toxicity often through mechanisms of inflammation and oxidative stress. Early life exposure to TRAP is also implicated in higher rates of asthma in these same communities. There is a critical need for additional epidemiological, in vivo, and in vitro studies to define the health risks of TRAP exposure affecting the most vulnerable groups to set strict, protective air pollution standards in these communities. MATERIALS AND METHODS A literature review was conducted to summarize recent findings (2010-2024) concerning TRAP exposure and toxic mechanisms that are relevant to the most affected underserved communities. CONCLUSIONS Guided by the perspectives of NYC community scientists, this contemporary review of toxicological and epidemiological studies considers how the exposome could lead to disproportionate exposures and health effects in underserved populations.
Collapse
Affiliation(s)
- Rahanna N Khan
- Division of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Antonio F Saporito
- Division of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Jania Zenon
- Division of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Judith T Zelikoff
- Division of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
26
|
Chowdhury S, Hänninen R, Sofiev M, Aunan K. Fires as a source of annual ambient PM 2.5 exposure and chronic health impacts in Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171314. [PMID: 38423313 DOI: 10.1016/j.scitotenv.2024.171314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Chronic exposure to ambient PM2.5 is the largest environmental health risk in Europe. We used a chemical transport model and recent exposure response functions to simulate ambient PM2.5, contribution from fires and related health impacts over Europe from 1990 to 2019. Our estimation indicates that the excess death burden from exposure to ambient PM2.5 declined across Europe at a rate of 10,000 deaths per year, from 0.57 million (95 % confidence intervals: 0.44-0.75 million) in 1990 to 0.28 million (0.19-0.42 million) in the specified period. Among these excess deaths, approximately 99 % were among adults, while only around 1 % occurred among children. Our findings reveal a steady increase in fire mortality fractions (excess deaths from fires per 1000 deaths from ambient PM2.5) from 2 in 1990 to 13 in 2019. Notably, countries in Eastern Europe exhibited significantly higher fire mortality fractions and experienced more pronounced increases compared to those in Western and Central Europe. We performed sensitivity analyses by considering fire PM2.5 to be more toxic as compared to other sources, as indicated by recent studies. By considering fire PM2.5 to be more toxic than other PM2.5 sources results in an increased relative contribution of fires to excess deaths, reaching 2.5-13 % in 2019. Our results indicate the requirement of larger mitigation and adaptation efforts and more sustainable forest management policies to avert the rising health burden from fires.
Collapse
Affiliation(s)
| | | | | | - Kristin Aunan
- CICERO Center for International Climate Research, Oslo, Norway
| |
Collapse
|
27
|
Geldsetzer P, Fridljand D, Kiang MV, Bendavid E, Heft-Neal S, Burke M, Thieme AH, Benmarhnia T. Sociodemographic and geographic variation in mortality attributable to air pollution in the United States. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.17.24305943. [PMID: 38699349 PMCID: PMC11065005 DOI: 10.1101/2024.04.17.24305943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
There are large differences in premature mortality in the USA by racial/ethnic, education, rurality, and social vulnerability index groups. Using existing concentration-response functions, particulate matter (PM2.5) air pollution, population estimates at the tract level, and county-level mortality data, we estimated the degree to which these mortality discrepancies can be attributed to differences in exposure and susceptibility to PM2.5. We show that differences in mortality attributable to PM2.5 were consistently more pronounced between racial/ethnic groups than by education, rurality, or social vulnerability index, with the Black American population having by far the highest proportion of deaths attributable to PM2.5 in all years from 1990 to 2016. Over half of the difference in age-adjusted all-cause mortality between the Black American and non-Hispanic White population was attributable to PM2.5 in the years 2000 to 2011.
Collapse
Affiliation(s)
- Pascal Geldsetzer
- Division of Primary Care and Population Health, Department of Medicine, Stanford University; Stanford, CA 94305, USA
- Department of Epidemiology and Population Health, Stanford University; Stanford, CA 94305, USA
- Chan Zuckerberg Biohub; San Francisco, CA 94158, USA
| | - Daniel Fridljand
- Division of Primary Care and Population Health, Department of Medicine, Stanford University; Stanford, CA 94305, USA
- Heidelberg Institute of Global Health (HIGH), Heidelberg University; 69120 Heidelberg, Germany
- Department of Mathematics, Yale University; New Haven, CT 06511, USA
| | - Mathew V. Kiang
- Department of Epidemiology and Population Health, Stanford University; Stanford, CA 94305, USA
| | - Eran Bendavid
- Division of Primary Care and Population Health, Department of Medicine, Stanford University; Stanford, CA 94305, USA
| | - Sam Heft-Neal
- Center on Food Security and the Environment, Stanford University; Stanford, CA 94305, USA
| | - Marshall Burke
- Center on Food Security and the Environment, Stanford University; Stanford, CA 94305, USA
- Department of Earth System Science, Stanford University; Stanford, CA 94305, USA
| | - Alexander H. Thieme
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University; Stanford, CA 94305, USA
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin; 10117 Berlin, Germany
- Berlin Institute of Health at Charité — Universitätsmedizin Berlin; 10117 Berlin, Germany
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California, San Diego; La Jolla, CA 92093, USA
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
28
|
Farnan J, Eck A, Kearney A, Dorman FL, Ismail H, Chase E, Liu X, Warner NR, Burgos WD. Oil and gas produced waters fail to meet beneficial reuse recommendations for use as dust suppressants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170807. [PMID: 38336068 DOI: 10.1016/j.scitotenv.2024.170807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Produced water from conventional oil and gas wells (O&G PW) is beneficially reused as an inexpensive alternative to commercial dust suppressants which minimize inhalable particulate matter (PM10) from unpaved roads. The efficacy and environmental impacts of using O&G PW instead of commercial products have not been extensively investigated, although O&G PW has been used for dust suppression for decades and often has elevated concentrations of environmental pollutants. In this study, the effectiveness of O&G PW is compared to commercial products under variable humidity conditions by measuring total generated PM10 emissions from treated road aggregate discs. To measure environmental impacts, model roadbeds were treated with six O&G PW and commercial products then subjected to a simulated two-year, 24-h storm event. Generated runoff water was collected and characterized. In efficacy studies, O&G PW offered variable dust reduction (10-85 %) compared to rainwater controls under high humidity (50 %) conditions but performed similarly or worse than controls when humidity was low (20 %). Conversely, all but two commercial products reduced dust emissions by over 90 % regardless of humidity. In rainfall-runoff experiments, roads treated with O&G PWs and CaCl2 Brine generated runoff that was hypersaline, indicating that mobilization of soluble salts could contribute to freshwater salinization. Though most runoff concentrations were highest from roadbeds treated with CaCl2 Brine, runoff from roadbeds treated with O&G PW had the highest concentrations of combined radium (83.6 pCi/L), sodium (3560 mg/L), and suspended solids (5330 mg/L). High sodium concentrations likely dispersed clay particles, which increased road mass loss by 47.2 kg solids/km/storm event compared to rainwater controls. Roadbeds treated with CaCl2 Brine, which had low sodium concentrations, reduced solid road mass loss by 98.1 kg solids/km/storm event. Based on this study, O&G PW do not perform as well as commercial products and pose unique risks to environmental health.
Collapse
Affiliation(s)
- James Farnan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Andrew Eck
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Andrew Kearney
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Frank L Dorman
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Hassan Ismail
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Eric Chase
- Center for Dirt and Gravel Road Studies, Larson Transportation Institute, Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Xiaofeng Liu
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Nathaniel R Warner
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - William D Burgos
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
29
|
Vashist M, Kumar TV, Singh SK. A comprehensive review of urban vegetation as a Nature-based Solution for sustainable management of particulate matter in ambient air. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26480-26496. [PMID: 38570430 DOI: 10.1007/s11356-024-33089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Air pollution is one of the most pressing environmental threats worldwide, resulting in several health issues such as cardiovascular and respiratory disorders, as well as premature mortality. The harmful effects of air pollution are particularly concerning in urban areas, where mismanaged anthropogenic activities, such as growth in the global population, increase in the number of vehicles, and industrial activities, have led to an increase in the concentration of pollutants in the ambient air. Among air pollutants, particulate matter is responsible for most adverse impacts. Several techniques have been implemented to reduce particulate matter concentrations in the ambient air. However, despite all the threats and awareness, efforts to improve air quality remain inadequate. In recent years, urban vegetation has emerged as an efficient Nature-based Solution for managing environmental air pollution due to its ability to filter air, thereby reducing the atmospheric concentrations of particulate matter. This review characterizes the various mitigation mechanisms for particulate matter by urban vegetation (deposition, dispersion, and modification) and identifies key areas for further improvements within each mechanism. Through a systematic assessment of existing literature, this review also highlights the existing gaps in the present literature that need to be addressed to maximize the utility of urban vegetation in reducing particulate matter levels. In conclusion, the review emphasizes the urgent need for proper air pollution management through urban vegetation by integrating different fields, multiple stakeholders, and policymakers to support better implementation.
Collapse
Affiliation(s)
- Mallika Vashist
- Department of Environmental Engineering, Delhi Technological University, Bawana Road, Shahbad Daulatpur, Delhi, India, 110042.
| | | | - Santosh Kumar Singh
- Department of Environmental Engineering, Delhi Technological University, Bawana Road, Shahbad Daulatpur, Delhi, India, 110042
- Rajasthan Technical University, Kota (Rajasthan), India
| |
Collapse
|
30
|
Chatterjee N, González-Durruthy M, Costa MD, Ribeiro AR, Vilas-Boas V, Vilasboas-Campos D, Maciel P, Alfaro-Moreno E. Differential impact of diesel exhaust particles on glutamatergic and dopaminergic neurons in Caenorhabditis elegans: A neurodegenerative perspective. ENVIRONMENT INTERNATIONAL 2024; 186:108597. [PMID: 38579453 DOI: 10.1016/j.envint.2024.108597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024]
Abstract
The growing body of evidence links exposure to particulate matter pollutants with an increased risk of neurodegenerative diseases. In the present study, we investigated whether diesel exhaust particles can induce neurobehavioral alterations associated with neurodegenerative effects on glutamatergic and dopaminergic neurons in Caenorhabditis elegans (C. elegans). Exposure to DEP at concentrations of 0.167 µg/cm2 and 1.67 µg/cm2 resulted in significant developmental delays and altered locomotion behaviour. These effects were accompanied by discernible alterations in the expressions of antioxidant genes sod-3 and gst-4 observed in transgenic strains. Behaviour analysis demonstrated a significant reduction in average speed (p < 0.001), altered paths, and decreased swimming activities (p < 0.01), particularly at mid and high doses. Subsequent assessment of neurodegeneration markers in glutamatergic (DA1240) and dopaminergic (BZ555) transgenic worms revealed notable glutamatergic neuron degeneration at 0.167 μg/cm2 (∼30 % moderate, ∼20 % advanced) and 1.67 μg/cm2 (∼28 % moderate, ∼24 % advanced, p < 0.0001), while dopaminergic neurons exhibited structural deformities (∼16 %) without significant degeneration in terms of blebs and breaks. Furthermore, in silico docking simulations suggest the presence of an antagonistic competitive inhibition induced by DEP in the evaluated neuro-targets, stronger for the glutamatergic transporter than for the dopaminergic receptor from the comparative binding affinity point of view. The results underscore DEP's distinctive neurodegenerative effects and suggest a link between locomotion defects and glutamatergic neurodegeneration in C. elegans, providing insights into environmental health risks assessment.
Collapse
Affiliation(s)
- Nivedita Chatterjee
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal.
| | | | - Marta Daniela Costa
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimaraes, Portugal
| | - Ana R Ribeiro
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Vânia Vilas-Boas
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Daniela Vilasboas-Campos
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimaraes, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimaraes, Portugal
| | - Ernesto Alfaro-Moreno
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal.
| |
Collapse
|
31
|
Melzi G, Massimi L, Frezzini MA, Iulini M, Tarallo N, Rinaldi M, Paglione M, Nozza E, Crova F, Valentini S, Valli G, Costabile F, Canepari S, Decesari S, Vecchi R, Marinovich M, Corsini E. Redox-activity and in vitro effects of regional atmospheric aerosol pollution: Seasonal differences and correlation between oxidative potential and in vitro toxicity of PM 1. Toxicol Appl Pharmacol 2024; 485:116913. [PMID: 38522584 DOI: 10.1016/j.taap.2024.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Particulate Matter (PM) is a complex and heterogeneous mixture of atmospheric particles recognized as a threat to human health. Oxidative Potential (OP) measurement is a promising and integrative method for estimating PM-induced health impacts since it is recognized as more closely associated with adverse health effects than ordinarily used PM mass concentrations. OP measurements could be introduced in the air quality monitoring, along with the parameters currently evaluated. PM deposition in the lungs induces oxidative stress, inflammation, and DNA damage. The study aimed to compare the OP measurements with toxicological effects on BEAS-2B and THP-1 cells of winter and summer PM1 collected in the Po Valley (Italy) during 2021. PM1 was extracted in deionized water by mechanical agitation and tested for OP and, in parallel, used to treat cells. Cytotoxicity, genotoxicity, oxidative stress, and inflammatory responses were assessed by MTT test, DCFH-DA assay, micronucleus, γ-H2AX, comet assay modified with endonucleases, ELISA, and Real-Time PCR. The evaluation of OP was performed by applying three different assays: dithiothreitol (OPDTT), ascorbic acid (OPAA), and 2',7'-dichlorofluorescein (OPDCFH), in addition, the reducing potential was also analysed (RPDPPH). Seasonal differences were detected in all the parameters investigated. The amount of DNA damage detected with the Comet assay and ROS formation highlights the presence of oxidative damage both in winter and in summer samples, while DNA damage (micronucleus) and genes regulation were mainly detected in winter samples. A positive correlation with OPDCFH (Spearman's analysis, p < 0.05) was detected for IL-8 secretion and γ-H2AX. These results provide a biological support to the implementation in air quality monitoring of OP measurements as a useful proxy to estimate PM-induced cellular toxicological responses. In addition, these results provide new insights for the assessment of the ability of secondary aerosol in the background atmosphere to induce oxidative stress and health effects.
Collapse
Affiliation(s)
- Gloria Melzi
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy.
| | - Lorenzo Massimi
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy; Institute of Atmospheric Pollution Research, National Research Council, Via Salaria, Km 29,300, Monterotondo St., 00015 Rome, Italy
| | - Maria Agostina Frezzini
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy; ARPA Lazio, Regional Environmental Protection Agency, Via Boncompagni 101, 00187 Rome, Italy
| | - Martina Iulini
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Naima Tarallo
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Matteo Rinaldi
- Institute of Atmospheric Sciences and Climate, National Research Council, 40129 Bologna, Italy; National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
| | - Marco Paglione
- Institute of Atmospheric Sciences and Climate, National Research Council, 40129 Bologna, Italy; National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
| | - Emma Nozza
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Experimental Medicine, Università degli Studi di Milano, Via L. Vanvitelli 32, 20129 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via della Commenda 19, 20122 Milan, Italy
| | - Federica Crova
- Department of Physics, Università degli Studi di Milano & INFN-Milano, Via Celoria 16, 20133 Milan, Italy
| | - Sara Valentini
- Department of Physics, Università degli Studi di Milano & INFN-Milano, Via Celoria 16, 20133 Milan, Italy
| | - Gianluigi Valli
- Department of Physics, Università degli Studi di Milano & INFN-Milano, Via Celoria 16, 20133 Milan, Italy
| | - Francesca Costabile
- National Biodiversity Future Center, NBFC, 90133 Palermo, Italy; Institute of Atmospheric Sciences and Climate, National Research Council, Via Fosso del Cavaliere 100, Rome, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy; Institute of Atmospheric Pollution Research, National Research Council, Via Salaria, Km 29,300, Monterotondo St., 00015 Rome, Italy
| | - Stefano Decesari
- Institute of Atmospheric Sciences and Climate, National Research Council, 40129 Bologna, Italy; National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
| | - Roberta Vecchi
- Department of Physics, Università degli Studi di Milano & INFN-Milano, Via Celoria 16, 20133 Milan, Italy
| | - Marina Marinovich
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
32
|
Wu X, Wei D, Liu X, Yuchi Y, Liao W, Wang C, Huo W, Mao Z. The relationship between cooking fuel use and sex hormone levels: A cross-sectional study and Mendelian randomization study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170621. [PMID: 38316302 DOI: 10.1016/j.scitotenv.2024.170621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
PURPOSE The aim of this study was to investigate the effect of solid fuel use on serum sex hormone levels. Furthermore, the effects of improved kitchen ventilation and duration of cooking time on the relationship between solid fuel use and serum sex hormone levels will be further explored. METHODS In this cross-sectional study, 5386 individuals were recruited. Gender and menopausal status modified associations between solid fuel type and serum sex hormone levels was investigated through generalized linear models and further analyzed by improving kitchen ventilation and length of cooking time on the relationship between solid fuel use and serum sex hormone levels. To identify the causal association, mendelian randomization of two-sample was performed. RESULTS In observational analyses, for ln-17-hydroxyprogesterone, ln-testosterone, and ln-androstenedione among premenopausal women, the estimated β and 95 % CI of sex hormone levels for the effect of solid fuel users was -0.337 (-0.657, -0.017), -0.233 (-0.47, 0.005), and - 0.240 (-0.452, -0.028) respectively, and - 0.150 (-0.296, -0.004) in ln-progesterone among postmenopausal women. It was found that combining solid fuels with long cooking periods or no ventilation more effectively reduced testosterone and androstenedione in premenopausal women. We further found the adverse effects of using solid fuel on progesterone, testosterone, and androstenedione levels were enhanced with the increases of PM1, PM2.5, PM10, and NO2. Corresponding genetic, the causal risk effect of solid fuel were - 0.056 (-0.513, 0.4) and 0.026 (-3.495, 3.547) for testosterone levels and sex hormone binding globulin, respectively. CONCLUSION Using gas or solid fuel was negatively related to sex hormone levels. A combination of using solid fuels, cooking for a long time, or cooking without ventilation had a stronger effect on sex hormone levels. However, genetic evidence did not support causality for the associations. WHAT IS ALREADY KNOWN ON THIS TOPIC?: The mechanisms underlying these associations household air pollution (HAP) from incomplete combustion of such fuels and occurrence of chronic diseases remained obscure. Recent years, extensive evidences from animal as well as human researches have suggested that progestogen and androgen hormones are involved in the development of diabetes, hypertension, and cardiovascular disease, which indicated that changes in serum progestogen and androgen hormones levels might play a role in these pathological mechanisms. However, limited evidence exists examining the effect of HAP from solid fuel use on serum sex hormone levels.
Collapse
Affiliation(s)
- Xueyan Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yinghao Yuchi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
33
|
Hartner E, Gawlitta N, Gröger T, Orasche J, Czech H, Geldenhuys GL, Jakobi G, Tiitta P, Yli-Pirilä P, Kortelainen M, Sippula O, Forbes P, Zimmermann R. Chemical Fingerprinting of Biomass Burning Organic Aerosols from Sugar Cane Combustion: Complementary Findings from Field and Laboratory Studies. ACS EARTH & SPACE CHEMISTRY 2024; 8:533-546. [PMID: 38533192 PMCID: PMC10961841 DOI: 10.1021/acsearthspacechem.3c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/28/2024]
Abstract
Agricultural fires are a major source of biomass-burning organic aerosols (BBOAs) with impacts on health, the environment, and climate. In this study, globally relevant BBOA emissions from the combustion of sugar cane in both field and laboratory experiments were analyzed using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. The derived chemical fingerprints of fresh emissions were evaluated using targeted and nontargeted evaluation approaches. The open-field sugar cane burning experiments revealed the high chemical complexity of combustion emissions, including compounds derived from the pyrolysis of (hemi)cellulose, lignin, and further biomass, such as pyridine and oxime derivatives, methoxyphenols, and methoxybenzenes, as well as triterpenoids. In comparison, laboratory experiments could only partially model the complexity of real combustion events. Our results showed high variability between the conducted field and laboratory experiments, which we, among others, discuss in terms of differences in combustion conditions, fuel composition, and atmospheric processing. We conclude that both field and laboratory studies have their merits and should be applied complementarily. While field studies under real-world conditions are essential to assess the general impact on air quality, climate, and environment, laboratory studies are better suited to investigate specific emissions of different biomass types under controlled conditions.
Collapse
Affiliation(s)
- Elena Hartner
- Joint
Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics
(CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Joint
Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 27, D-18059 Rostock, Germany
| | - Nadine Gawlitta
- Joint
Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics
(CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Thomas Gröger
- Joint
Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics
(CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Jürgen Orasche
- Joint
Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics
(CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Hendryk Czech
- Joint
Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics
(CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Joint
Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 27, D-18059 Rostock, Germany
| | - Genna-Leigh Geldenhuys
- Department
of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Gert Jakobi
- Joint
Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics
(CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Petri Tiitta
- Atmospheric
Research Centre of Eastern Finland, Finnish
Meteorological Institute, P.O. Box 1627, 70211 Kuopio, Finland
| | - Pasi Yli-Pirilä
- Department
of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta
1, P.O. Box 1627, FI-70210 Kuopio, Finland
| | - Miika Kortelainen
- Department
of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta
1, P.O. Box 1627, FI-70210 Kuopio, Finland
| | - Olli Sippula
- Department
of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta
1, P.O. Box 1627, FI-70210 Kuopio, Finland
- Department
of Chemistry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Patricia Forbes
- Department
of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Ralf Zimmermann
- Joint
Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics
(CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Joint
Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 27, D-18059 Rostock, Germany
| |
Collapse
|
34
|
Kim H, Jang H, Lee W, Oh J, Lee JY, Kim MH, Lee JW, Kim HS, Lee JH, Ha EH. Association between long-term PM 2.5 exposure and risk of Kawasaki disease in children: A nationwide longitudinal cohort study. ENVIRONMENTAL RESEARCH 2024; 244:117823. [PMID: 38072109 DOI: 10.1016/j.envres.2023.117823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/06/2023] [Accepted: 11/28/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Based on previous studies suggesting air pollution as a potential risk factor for Kawasaki Disease (KD), we examined the association of long-term exposure to childhood fine particulate matter (PM2.5) with the risk of KD. METHODS We used National Health Insurance Service-National Sample Cohort data from 2002 to 2019, which included beneficiaries aged 0 years at enrollment and followed-up until the onset of KD or age 5 years. The onset of KD was defined as the first hospital visit record with a primary diagnostic code of M30.3, based on the 10th revision of the International Classification of Diseases, and with an intravenous immunoglobulin (IVIG) prescription. We assigned PM2.5 concentrations to 226 districts, based on mean annual predictions from a machine learning-based ensemble prediction model. We performed Cox proportional-hazards modeling with time-varying exposures and confounders. RESULTS We identified 134,634 individuals aged five or less at enrollment and, of these, 1220 individuals who had a KD onset and an IVIG prescription during study period. The average annual concentration of PM2.5 exposed to the entire cohort was 28.2 μg/m³ (Standard Deviation 2.9). For each 5 μg/m³ increase in annual PM2.5 concentration, the hazard ratio of KD was 1.21 (95% CI 1.05-1.39). CONCLUSIONS In this nationwide, population-based, cohort study, long-term childhood exposure to PM2.5 was associated with an increased incidence of KD in children. The study highlights plausible mechanisms for the association between PM2.5 and KD, but further studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Hanna Kim
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea; Institute of Ewha-Seoul Clinical Laboratories for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea.
| | - Hyemin Jang
- Institute of Ewha-Seoul Clinical Laboratories for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea; Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Whanhee Lee
- Institute of Ewha-Seoul Clinical Laboratories for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea; School of Biomedical Convergence Engineering, College of Information and Biomedical Engineering, Pusan National University, Yangsan, 50612, Republic of Korea.
| | - Jongmin Oh
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea; Institute of Ewha-Seoul Clinical Laboratories for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea; Department of Human Systems Medicine, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Ji-Young Lee
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea.
| | - Min-Ho Kim
- Ewha Medical Data Organization, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea.
| | - Jung Won Lee
- Institute of Ewha-Seoul Clinical Laboratories for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea; Department of Pediatrics, College of Medicine, Ewha Womans University, 07804, Seoul, Republic of Korea.
| | - Hae Soon Kim
- Institute of Ewha-Seoul Clinical Laboratories for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea; Department of Pediatrics, College of Medicine, Ewha Womans University, 07804, Seoul, Republic of Korea.
| | - Ji Hyen Lee
- Institute of Ewha-Seoul Clinical Laboratories for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea; Department of Pediatrics, College of Medicine, Ewha Womans University, 07804, Seoul, Republic of Korea.
| | - Eun-Hee Ha
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea; Institute of Ewha-Seoul Clinical Laboratories for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, Ewha Medical Research Institute, College of Medicine, Seoul, 07804, Republic of Korea.
| |
Collapse
|
35
|
Cheng K, Chang Y, Lee X, Ji D, Qiao L, Zou Z, Duan Y, Huang RJ. Life-Course Health Risk Assessment of PM 2.5 Elements in China: Exposure Disparities by Species, Source, Age, Gender, and Location. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3629-3640. [PMID: 38354315 DOI: 10.1021/acs.est.3c05404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Key stages in people's lives have particular relevance for their health; the life-course approach stresses the importance of these stages. Here, we applied a life-course approach to analyze the health risks associated with PM2.5-bound elements, which were measured at three sites with varying environmental conditions in eastern China. Road traffic was found to be the primary source of PM2.5-bound elements at all three locations, but coal combustion was identified as the most important factor to induce both cancer risk (CR) and noncancer risk (NCR) across all age groups due to the higher toxicity of elements such as As and Pb associated with coal. Nearly half of NCR and over 90% of CR occurred in childhood (1-6 years) and adulthood (>18 years), respectively, and females have slightly higher NCR and lower CR than males. Rural population is found to be subject to the highest health risks. Synthesizing previous relevant studies and nationwide PM2.5 concentration measurements, we reveal ubiquitous and large urban-rural environmental exposure disparities over China.
Collapse
Affiliation(s)
- Kai Cheng
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Yunhua Chang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Xuhui Lee
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Dongsheng Ji
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Liping Qiao
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Zhong Zou
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
| | - Yusheng Duan
- Shanghai Environmental Monitoring Center, Shanghai 200030, China
| | - Ru-Jin Huang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth and Environment, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
36
|
Ahn Y, Yim YH, Yoo HM. Particulate Matter Induces Oxidative Stress and Ferroptosis in Human Lung Epithelial Cells. TOXICS 2024; 12:161. [PMID: 38393256 PMCID: PMC10893167 DOI: 10.3390/toxics12020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Numerous toxicological studies have highlighted the association between urban particulate matter (PM) and increased respiratory infections and lung diseases. The adverse impact on the lungs is directly linked to the complex composition of particulate matter, initiating reactive oxygen species (ROS) production and consequent lipid peroxidation. Excessive ROS, particularly within mitochondria, can destroy subcellular organelles through various pathways. In this study, we confirmed the induction of ferroptosis, an iron-dependent cell death, upon exposure to an urban PM using RT-qPCR and signaling pathway analysis. We used KRISS CRM 109-02-004, the certified reference material for the analysis of particulate matter, produced by the Korea Research Institute of Standards and Science (KRISS). To validate that ferroptosis causes lung endothelial toxicity, we assessed intracellular mitochondrial potential, ROS overproduction, lipid peroxidation, and specific ferroptosis biomarkers. Following exposure to the urban PM, a significant increase in ROS generation and a decrease in mitochondrial potential were observed. Furthermore, it induced hallmarks of ferroptosis, including the accumulation of lipid peroxidation, the loss of antioxidant defenses, and cellular iron accumulation. In addition, the occurrence of oxidative stress as a key feature of ferroptosis was confirmed by increased expression levels of specific oxidative stress markers such as NQO1, CYP1B1, FTH1, SOD2, and NRF. Finally, a significant increase in key ferroptosis markers was observed, including xCT/SLC7A11, NQO1, TRIM16, HMOX-1, FTL, FTH1, CYP1B1, CHAC1, and GPX4. This provides evidence that elevated ROS levels induce oxidative stress, which ultimately triggers ferroptosis. In conclusion, our results show that the urban PM, KRISS CRM, induces cellular and mitochondrial ROS production, leading to oxidative stress and subsequent ferroptosis. These results suggest that it may induce ferroptosis through ROS generation and may offer potential strategies for the treatment of lung diseases.
Collapse
Affiliation(s)
- Yujin Ahn
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Precision Measurement, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yong-Hyeon Yim
- Department of Precision Measurement, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Inorganic Metrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Hee Min Yoo
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Precision Measurement, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
37
|
Park J, Lee KH, Kim H, Woo J, Heo J, Jeon K, Lee CH, Yoo CG, Hopke PK, Koutrakis P, Yi SM. Analysis of PM 2.5 inorganic and organic constituents to resolve contributing sources in Seoul, South Korea and Beijing, China and their possible associations with cytokine IL-8. ENVIRONMENTAL RESEARCH 2024; 243:117860. [PMID: 38072108 DOI: 10.1016/j.envres.2023.117860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 02/06/2024]
Abstract
China and South Korea are the most polluted countries in East Asia due to significant urbanization and extensive industrial activities. As neighboring countries, collaborative management plans to maximize public health in both countries can be helpful in reducing transboundary air pollution. To support such planning, PM2.5 inorganic and organic species were determined in simultaneously collected PM2.5 integrated filters. The resulting data were used as inputs to positive matrix factorization, which identified nine sources at the ambient air monitoring sites in both sites. Secondary nitrate, secondary sulfate/oil combustion, soil, mobile, incinerator, biomass burning, and secondary organic carbon (SOC) were found to be sources at both sampling sites. Industry I and II were only identified in Seoul, whereas combustion and road dust sources were only identified in Beijing. A subset of samples was selected for exposure assessment. The expression levels of IL-8 were significantly higher in Beijing (167.7 pg/mL) than in Seoul (72.7 pg/mL). The associations between the PM2.5 chemical constituents and its contributing sources with PM2.5-induced inflammatory cytokine (interleukin-8, IL-8) levels in human bronchial epithelial cells were investigated. For Seoul, the soil followed by the secondary nitrate and the biomass burning showed increase with IL-8 production. However, for the Beijing, the secondary nitrate exhibited the highest association with IL-8 production and SOC and biomass burning showed modest increase with IL-8. As one of the highest contributing sources in both cities, secondary nitrate showed an association with IL-8 production. The soil source having the strongest association with IL-8 production was found only for Seoul, whereas SOC showed a modest association only for Beijing. This study can provide the scientific basis for identifying the sources to be prioritized for control to provide effective mitigation of particulate air pollution in each city and thereby improve public health.
Collapse
Affiliation(s)
- Jieun Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Boston, MA, 02215, USA
| | - Kyoung-Hee Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyewon Kim
- Incheon Regional Customs, Korea Customs Service, 70, Gonghangdong-ro 193 Beon-gil Jung-gu, Incheon, 22381, Republic of Korea
| | - Jisu Woo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jongbae Heo
- Busan Development Institute, 955 Jungangdae-ro, Busanjin-gu, Busan, 47210, Republic of Korea
| | - Kwonho Jeon
- Climate and Air Quality Research, Department Global Environment Research Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Chang-Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Chul-Gyu Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Philip K Hopke
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, 13699, USA; Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Boston, MA, 02215, USA
| | - Seung-Muk Yi
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Park M, Lee S, Lee H, Denna MCFJ, Jang J, Oh D, Bae MS, Jang KS, Park K. New health index derived from oxidative potential and cell toxicity of fine particulate matter to assess its potential health effect. Heliyon 2024; 10:e25310. [PMID: 38356560 PMCID: PMC10864913 DOI: 10.1016/j.heliyon.2024.e25310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Toxicological data and exposure levels of fine particulate matters (PM2.5) are necessary to better understand their health effects. Simultaneous measurements of PM2.5 oxidative potential (OP) and cell toxicity in urban areas (Beijing, China and Gwangju, Korea) reveal their dependence on chemical composition. Notably, acids (Polar), benzocarboxylic acids, and Pb were the chemical components that affected both OP and cell toxicity. OP varied more significantly among different locations and seasons (winter and summer) than cell toxicity. Using the measured OP, cell toxicity, and PM2.5 concentration, a health index was developed to better assess the potential health effects of PM2.5. The health index was related to the sources of PM2.5 derived from the measured chemical components. The contributions of secondary organic aerosols and dust to the proposed health index were more significant than their contributions to PM2.5 mass. The developed regression equation was used to predict the health effect of PM2.5 without further toxicity measurements. This new index could be a valuable health metric that provides information beyond just the PM2.5 concentration level.
Collapse
Affiliation(s)
- Minhan Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Seunghye Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Haebum Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Ma. Cristine Faye J. Denna
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jiho Jang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Dahye Oh
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Min-Suk Bae
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Kihong Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| |
Collapse
|
39
|
Al-Abadleh HA. Iron content in aerosol particles and its impact on atmospheric chemistry. Chem Commun (Camb) 2024. [PMID: 38268472 DOI: 10.1039/d3cc04614a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Atmospheric aerosol effects on ecological and human health remain uncertain due to their highly complex and evolving nature when suspended in air. Atmospheric chemistry, global climate/oceanic and health exposure models need to incorporate more realistic representations of aerosol particles, especially their bulk and surface chemistry, to account for the evolution in aerosol physicochemical properties with time. (Photo)chemistry driven by iron (Fe) in atmospheric aerosol particles from natural and anthropogenic sources remains limited in these models, particularly under aerosol liquid water conditions. In this feature article, recent advances from our work on Fe (photo)reactivity in multicomponent aerosol systems are highlighted. More specifically, reactions of soluble Fe with aqueous extracts of biomass burning organic aerosols and proxies of humic like substances leading to brown carbon formation are presented. Some of these reactions produced nitrogen-containing gaseous and condensed phase products. For comparison, results from these bulk aqueous phase chemical studies were compared to those from heterogeneous reactions simulating atmospheric aging of Fe-containing reference materials. These materials include Arizona test dust (AZTD) and combustion fly ash particles. Also, dissolution of Fe and other trace elements is presented from simulated human exposure experiments to highlight the impact of aerosol aging on levels of trace metals. The impacts of these chemical reactions on aerosol optical, hygroscopic and morphological properties are also emphasized in light of their importance to aerosol-radiation and aerosol-cloud interactions, in addition to biogeochemical processes at the sea/ocean surface microlayer upon deposition. Future directions for laboratory studies on Fe-driven multiphase chemistry are proposed to advance knowledge and encourage collaborations for efficient utilization of expertise and resources among climate, ocean and health scientific communities.
Collapse
Affiliation(s)
- Hind A Al-Abadleh
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| |
Collapse
|
40
|
Paisi N, Kushta J, Pozzer A, Violaris A, Lelieveld J. Health effects of carbonaceous PM2.5 compounds from residential fuel combustion and road transport in Europe. Sci Rep 2024; 14:1530. [PMID: 38233477 PMCID: PMC10794246 DOI: 10.1038/s41598-024-51916-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
Exposure to fine particulate matter (PM2.5) is associated with an increased risk of morbidity and mortality. In Europe, residential fuel combustion and road transport emissions contribute significantly to PM2.5. Toxicological studies indicate that PM2.5 from these sources is relatively more hazardous, owing to its high content of black and organic carbon. Here, we study the contribution of the emissions from these sectors to long-term exposure and excess mortality in Europe. We quantified the impact of anthropogenic carbonaceous aerosols on excess mortality and performed a sensitivity analysis assuming that they are twice as toxic as inorganic particles. We find that total PM2.5 from residential combustion leads to 72,000 (95% confidence interval: 48,000-99,000) excess deaths per year, with about 40% attributed to carbonaceous aerosols. Similarly, road transport leads to about 35,000 (CI 23,000-47,000) excess deaths per year, with 6000 (CI 4000-9000) due to carbonaceous particles. Assuming that carbonaceous aerosols are twice as toxic as other PM2.5 components, they contribute 80% and 37%, respectively, to residential fuel combustion and road transport-related deaths. We uncover robust national variations in the contribution of each sector to excess mortality and emphasize the importance of country-specific emission reduction policies based on national characteristics and sectoral shares.
Collapse
Affiliation(s)
- Niki Paisi
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, 2121, Nicosia, Cyprus.
| | - Jonilda Kushta
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, 2121, Nicosia, Cyprus
| | - Andrea Pozzer
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, 2121, Nicosia, Cyprus
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, 55128, Mainz, Germany
| | - Angelos Violaris
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, 2121, Nicosia, Cyprus
| | - Jos Lelieveld
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, 2121, Nicosia, Cyprus.
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, 55128, Mainz, Germany.
| |
Collapse
|
41
|
Wang K, Lei L, Li G, Lan Y, Wang W, Zhu J, Liu Q, Ren L, Wu S. Association between Ambient Particulate Air Pollution and Soluble Biomarkers of Endothelial Function: A Meta-Analysis. TOXICS 2024; 12:76. [PMID: 38251031 PMCID: PMC10819696 DOI: 10.3390/toxics12010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND The burden of cardiovascular diseases caused by ambient particulate air pollution is universal. An increasing number of studies have investigated the potential effects of exposure to particulate air pollution on endothelial function, which is one of the important mechanisms for the onset and development of cardiovascular disease. However, no previous study has conducted a summary analysis of the potential effects of particulate air pollution on endothelial function. OBJECTIVES To summarize the evidence for the potential effects of short-term exposure to ambient particulate air pollution on endothelial function based on existing studies. METHODS A systematic literature search on the relationship between ambient particulate air pollution and biomarkers of endothelial function including endothelin-1 (ET-1), E-selectin, intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) was conducted in PubMed, Scopus, EMBASE, and Web of Science up to 20 May 2023. Subsequently, a meta-analysis was conducted using a random effects model. RESULTS A total of 18 studies were included in this meta-analysis. A 10 μg/m3 increase in short-term exposure to ambient PM2.5 was associated with a 1.55% (95% CI: 0.89%, 2.22%) increase in ICAM-1 and a 1.97% (95% CI: 0.86%, 3.08%) increase in VCAM-1. The associations of ET-1 (0.22%, 95% CI: -4.94%, 5.65%) and E-selectin (3.21%, 95% CI: -0.90% 7.49%) with short-term exposure to ambient PM2.5 were statistically insignificant. CONCLUSION Short-term exposure to ambient PM2.5 pollution may significantly increase the levels of typical markers of endothelial function, including ICAM-1 and VCAM-1, suggesting potential endothelial dysfunction following ambient air pollution exposure.
Collapse
Affiliation(s)
- Kai Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Lei Lei
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Ge Li
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Yang Lan
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China;
| | - Jiaqi Zhu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Qisijing Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Lihua Ren
- School of Nursing, Peking University, Beijing 100191, China;
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| |
Collapse
|
42
|
Pietrodangelo A, Bove MC, Forello AC, Crova F, Bigi A, Brattich E, Riccio A, Becagli S, Bertinetti S, Calzolai G, Canepari S, Cappelletti D, Catrambone M, Cesari D, Colombi C, Contini D, Cuccia E, De Gennaro G, Genga A, Ielpo P, Lucarelli F, Malandrino M, Masiol M, Massabò D, Perrino C, Prati P, Siciliano T, Tositti L, Venturini E, Vecchi R. A PM10 chemically characterized nation-wide dataset for Italy. Geographical influence on urban air pollution and source apportionment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:167891. [PMID: 37852492 DOI: 10.1016/j.scitotenv.2023.167891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Urban textures of the Italian cities are peculiarly shaped by the local geography generating similarities among cities placed in different regions but comparable topographical districts. This suggested the following scientific question: can different topographies generate significant differences on the PM10 chemical composition at Italian urban sites that share similar geography despite being in different regions? To investigate whether such communalities can be found and are applicable at Country-scale, we propose here a novel methodological approach. A dataset comprising season-averages of PM10 mass concentration and chemical composition data was built, covering the decade 2005-2016 and referring to urban sites only (21 cities). Statistical analyses, estimation of missing data, identification of latent clusters and source apportionment modeling by Positive Matrix Factorization (PMF) were performed on this unique dataset. The first original result is the demonstration that a dataset with atypical time resolution can be successfully exploited as an input matrix for PMF obtaining Country-scale representative chemical profiles, whose physical consistency has been assessed by different tests of modeling performance. Secondly, this dataset can be considered a reference repository of season averages of chemical species over the Italian territory and the chemical profiles obtained by PMF for urban Italian agglomerations could contribute to emission repositories. These findings indicate that our approach is powerful, and it could be further employed with datasets typically available in the air pollution monitoring networks.
Collapse
Affiliation(s)
- Adriana Pietrodangelo
- C.N.R. Institute of Atmospheric Pollution Research, Monterotondo St., Rome 00015, Italy.
| | - Maria Chiara Bove
- Ligurian Regional Agency for Environmental Protection (ARPAL), Genoa 16149, Italy
| | | | - Federica Crova
- Department of Physics, University of Milan and INFN-Milan, 20133 Milan, Italy
| | - Alessandro Bigi
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Erika Brattich
- Department of Physics and Astronomy "Augusto Righi", University of Bologna, Bologna 40126, Italy
| | - Angelo Riccio
- Department of Science and Technology, University of Naples Parthenope, Naples 80143, Italy
| | - Silvia Becagli
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | | | - Giulia Calzolai
- National Institute of Nuclear Physics (INFN), Sesto Fiorentino, Florence 50019, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - David Cappelletti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | | | - Daniela Cesari
- C.N.R. Institute of Atmospheric Sciences and Climate, ISAC-CNR, Lecce 73100, Italy
| | - Cristina Colombi
- Regional Agency for Environmental Protection of Lombardy (ARPA Lombardia), Milan 20124, Italy
| | - Daniele Contini
- C.N.R. Institute of Atmospheric Sciences and Climate, ISAC-CNR, Lecce 73100, Italy
| | - Eleonora Cuccia
- Regional Agency for Environmental Protection of Lombardy (ARPA Lombardia), Milan 20124, Italy
| | | | - Alessandra Genga
- Department of Biological and Environmental Sciences and Technologies DISTeBA, University of Salento, Lecce 73100, Italy
| | - Pierina Ielpo
- C.N.R. Institute of Atmospheric Sciences and Climate, ISAC-CNR, Lecce 73100, Italy
| | - Franco Lucarelli
- Department of Physics and Astrophysics, University of Florence and INFN-Florence, Sesto Fiorentino, Florence, 50019, Italy
| | - Mery Malandrino
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Mauro Masiol
- Department of Environmental Science, Informatics and Statistics, University Ca' Foscari, 30172 Mestre-Venezia, Italy
| | - Dario Massabò
- Department of Physics, University of Genoa and INFN-Genoa, 16146 Genoa, Italy
| | - Cinzia Perrino
- C.N.R. Institute of Atmospheric Pollution Research, Monterotondo St., Rome 00015, Italy
| | - Paolo Prati
- Department of Physics, University of Genoa and INFN-Genoa, 16146 Genoa, Italy
| | - Tiziana Siciliano
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Lecce 73100, Italy
| | - Laura Tositti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, 40126, Italy
| | - Elisa Venturini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna 40126, Italy
| | - Roberta Vecchi
- Department of Physics, University of Milan and INFN-Milan, 20133 Milan, Italy
| |
Collapse
|
43
|
Kwon D, Paul KC, Yu Y, Zhang K, Folle AD, Wu J, Bronstein JM, Ritz B. Traffic-related air pollution and Parkinson's disease in central California. ENVIRONMENTAL RESEARCH 2024; 240:117434. [PMID: 37858688 PMCID: PMC11232690 DOI: 10.1016/j.envres.2023.117434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Prior studies suggested that air pollution exposure may increase the risk of Parkinson's Disease (PD). We investigated the long-term impacts of traffic-related and multiple sources of particulate air pollution on PD in central California. METHODS Our case-control analysis included 761 PD patients and 910 population controls. We assessed exposure at residential and occupational locations from 1981 to 2016, estimating annual average carbon monoxide (CO) concentrations - a traffic pollution marker - based on the California Line Source Dispersion Model, version 4. Additionally, particulate matter (PM2.5) concentrations were based on a nationwide geospatial chemical transport model. Exposures were assessed as 10-year averages with a 5-year lag time prior to a PD diagnosis for cases and an interview date for controls, subsequently categorized into tertiles. Logistic regression models were used, adjusting for various factors. RESULTS Traffic-related CO was associated with an increased odds ratio for PD at residences (OR for T3 vs. T1: 1.58; 95% CI: 1.20, 2.10; p-trend = 0.02) and workplaces (OR for T3 vs. T1: 1.91; 95% CI: 1.22, 3.00; p-trend <0.01). PM2.5 was also positively associated with PD at residences (OR for T3 vs. T1: 1.62; 95% CI: 1.22, 2.15; p-trend <0.01) and workplaces (OR for T3 vs. T1: 1.85; 95% CI: 1.21, 2.85; p-trend <0.01). Associations remained robust after additional adjustments for smoking status and pesticide exposure and were consistent across different exposure periods. CONCLUSION We found that long-term modeled exposure to local traffic-related air pollution (CO) and fine particulates from multiple sources (PM2.5) at homes and workplaces in central California was associated with an increased risk of PD.
Collapse
Affiliation(s)
- Dayoon Kwon
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, United States
| | - Kimberly C Paul
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Yu Yu
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, United States; UCLA Center for Health Policy Research, University of California, Los Angeles, United States
| | - Keren Zhang
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, United States
| | - Aline D Folle
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, United States
| | - Jun Wu
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, United States
| | - Jeff M Bronstein
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, United States; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, United States.
| |
Collapse
|
44
|
Shi JH, Olson NE, Birbeck JA, Pan J, Peraino NJ, Holen AL, Ledsky IR, Jacquemin SJ, Marr LC, Schmale DG, Westrick JA, Ault AP. Aerosolized Cyanobacterial Harmful Algal Bloom Toxins: Microcystin Congeners Quantified in the Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21801-21814. [PMID: 38078756 PMCID: PMC11406202 DOI: 10.1021/acs.est.3c03297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Cyanobacterial harmful algal blooms (cHABs) have the potential to adversely affect public health through the production of toxins such as microcystins, which consist of numerous molecularly distinct congeners. Microcystins have been observed in the atmosphere after emission from freshwater lakes, but little is known about the health effects of inhaling microcystins and the factors contributing to microcystin aerosolization. This study quantified total microcystin concentrations in water and aerosol samples collected around Grand Lake St. Marys (GLSM), Ohio. Microcystin concentrations in water samples collected on the same day ranged from 13 to 23 μg/L, dominated by the d-Asp3-MC-RR congener. In particulate matter <2.5 μm (PM2.5), microcystin concentrations up to 156 pg/m3 were detected; the microcystins were composed primarily of d-Asp3-MC-RR, with additional congeners (d-Asp3-MC-HtyR and d-Asp3-MC-LR) observed in a sample collected prior to a storm event. The PM size fraction containing the highest aerosolized MC concentration ranged from 0.44 to 2.5 μm. Analysis of total bacteria by qPCR targeting 16S rDNA revealed concentrations up to 9.4 × 104 gc/m3 in aerosol samples (≤3 μm), while a marker specific to cyanobacteria was not detected in any aerosol samples. Concentrations of aerosolized microcystins varied even when concentrations in water were relatively constant, demonstrating the importance of meteorological conditions (wind speed and direction) and aerosol generation mechanism(s) (wave breaking, spillway, and aeration systems) when evaluating inhalation exposure to microcystins and subsequent impacts on human health.
Collapse
Affiliation(s)
- Jia H Shi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicole E Olson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Johnna A Birbeck
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Jin Pan
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nicholas J Peraino
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Andrew L Holen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Isabel R Ledsky
- Department of Chemistry, Carleton College, Northfield, Minnesota 55057, United States
| | - Stephen J Jacquemin
- Department of Biological Sciences, Wright State University, Lake Campus, Celina, Ohio 45822, United States
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - David G Schmale
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Judy A Westrick
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
45
|
Yan Z, Ge P, Lu Z, Liu X, Cao M, Chen W, Chen M. The Cytotoxic Effects of Fine Particulate Matter (PM 2.5) from Different Sources at the Air-Liquid Interface Exposure on A549 Cells. TOXICS 2023; 12:21. [PMID: 38250977 PMCID: PMC10821317 DOI: 10.3390/toxics12010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
The health of humans has been negatively impacted by PM2.5 exposure, but the chemical composition and toxicity of PM2.5 might vary depending on its source. To investigate the toxic effects of particulate matter from different sources on lung epithelial cells (A549), PM2.5 samples were collected from residential, industrial, and transportation areas in Nanjing, China. The chemical composition of PM2.5 was analyzed, and toxicological experiments were conducted. The A549 cells were exposed using an air-liquid interface (ALI) exposure system, and the cytotoxic indicators of the cells were detected. The research results indicated that acute exposure to different sources of particulate matter at the air-liquid interface caused damage to the cells, induced the production of ROS, caused apoptosis, inflammatory damage, and DNA damage, with a dose-effect relationship. The content of heavy metals and PAHs in PM2.5 from the traffic source was relatively high, and the toxic effect of the traffic-source samples on the cells was higher than that of the industrial- and residential-source samples. The cytotoxicity of particulate matter was mostly associated with water-soluble ions, carbon components, heavy metals, PAHs, and endotoxin, based on the analysis of the Pearson correlation. Oxidative stress played an important role in PM2.5-induced biological toxicity.
Collapse
Affiliation(s)
- Zhansheng Yan
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.Y.); (P.G.); (X.L.); (W.C.)
| | - Pengxiang Ge
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.Y.); (P.G.); (X.L.); (W.C.)
| | - Zhenyu Lu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.Y.); (P.G.); (X.L.); (W.C.)
| | - Xiaoming Liu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.Y.); (P.G.); (X.L.); (W.C.)
| | - Maoyu Cao
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China;
| | - Wankang Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.Y.); (P.G.); (X.L.); (W.C.)
| | - Mindong Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.Y.); (P.G.); (X.L.); (W.C.)
| |
Collapse
|
46
|
Liu S, Zhao J, Ye X, Fu M, Zhang K, Wang H, Zou Y, Yu K. Fine particulate matter and its constituent on ovarian reserve: Identifying susceptible windows of exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166744. [PMID: 37659528 DOI: 10.1016/j.scitotenv.2023.166744] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/12/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Little is known about the associations of exposure to fine particulate matter (PM2.5) and its constituents with ovarian reserve, and the potential susceptible window of exposure remains unclear. METHODS We performed a retrospective cohort study of 5189 women who attended a fertility center in Hubei, China, during 2019-2022, and estimated concentrations of PM2.5 and its major constituents during the development of follicles (4th-6th month [W1], 0-4th month [W2], 0-6th month [W3]) and 1-year before measurement (W4) based on Tracking Air Pollution in China database. We used multivariable linear regression and logistic regression models to examine the associations of PM2.5 and its constituent exposures with anti-Müllerian hormone (AMH), the preferred indicator of ovarian reserve. RESULTS We observed significantly decreased AMH levels associated with increasing PM2.5 concentrations, with the percent changes (95 % confidence intervals [CIs]) of 1.99 % (0.24 %-3.71 %) during W1 and 3.99 % (0.74 %-7.15 %) during W4 for per 10 μg/m3 increases in PM2.5.When PM2.5 exposure levels were equal to 50th percentile (32.6-42.3 μg/m3) or more, monotonically decreased AMH levels and increased risks of low AMH were seen with increasing PM2.5 concentrations during W1 and W4 (P < 0.05). Black carbon (BC), ammonium (NH4+), nitrate (NO3-), and organic matter (OM) during W1, and NH4+, NO3-, as well as sulfate (SO42-) during W4 were significantly associated with decreased AMH. Moreover, PM2.5 and SO42- exposures during W4 were positively associated with low AMH. Additionally, the associations were stronger among women aged <35 years, lived in urban regions, or measured AMH in cold-season (P for interaction <0.05). CONCLUSION PM2.5 and specific chemical components (particularly NH4+, NO3-, and SO42-) exposure during the secondary to antral follicle stage and 1-year before measurement were associated with diminished ovarian reserve (DOR), indicating the adverse impact of PM2.5 and its constituent exposures on female reproductive potential.
Collapse
Affiliation(s)
- Shuangyan Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Zhao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin Ye
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingjian Fu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kexin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Han Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujie Zou
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Kuai Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
47
|
In 't Veld M, Khare P, Hao Y, Reche C, Pérez N, Alastuey A, Yus-Díez J, Marchand N, Prevot ASH, Querol X, Daellenbach KR. Characterizing the sources of ambient PM 10 organic aerosol in urban and rural Catalonia, Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166440. [PMID: 37611714 DOI: 10.1016/j.scitotenv.2023.166440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/17/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023]
Abstract
Organic aerosols (OA) have recently been shown to be the dominant contributor to the oxidative potential of airborne particulate matter in northeastern Spain. We collected PM10 filter samples every fourth day from January 2017 to March 2018 at two sampling stations located in Barcelona city and Montseny Natural Park, representing urban and rural areas, respectively. The chemical composition of PM10 was analyzed offline using a broad set of analytical instruments, including high-resolution time-of-flight mass spectrometry (HR-ToF-AMS), a total organic carbon analyzer (TCA), inductively coupled plasma atomic emission spectrometry (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), ion chromatography (IC), and thermal-optical carbon analyzer. Source apportionment analysis of the water-soluble organic content of the samples measured via HR-ToF-AMS revealed two primary and two secondary sources of OA, which included biomass-burning OA (BBOA), sulfur-containing OA (SCOA), as well as summer- and winter‑oxygenated OA (SOOA and WOOA). The presence of hydrocarbon-like water-insoluble OA was also identified based on concentration trends in black carbon and nitrogen oxides. The results from the source apportionment analysis of the inorganic composition were correlated with different OA factors to assess potential source contributors. Barcelona showed significantly higher average water-soluble OA concentrations (5.63 ± 0.56 μg m-3) than Montseny (3.27 ± 0.37 μg m-3) over the sampling period. WOOA accounted for nearly 27 % of the averaged OA in Barcelona compared to only 7 % in Montseny. In contrast, SOOA had a greater contribution to OA in Montseny (47 %) than in Barcelona (24 %). SCOA and BBOA were responsible for 15-28 % of the OA at both sites. There were also seasonal variations in the relative contributions of different OA sources. Our overall results showed that local anthropogenic sources were primarily responsible for up to 70 % of ambient soluble OA in Barcelona, and regulating local-scale emissions could significantly improve air quality in urban Spain.
Collapse
Affiliation(s)
- Marten In 't Veld
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain; Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona 08034, Spain.
| | - Peeyush Khare
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Aargau, Switzerland
| | - Yufang Hao
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Aargau, Switzerland
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Noemi Pérez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Andres Alastuey
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Jesús Yus-Díez
- Centre for Atmospheric Research, University of Nova Gorica, Vipavska 11c, SI-5270 Ajdovščina, Slovenia
| | | | - Andre S H Prevot
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Aargau, Switzerland
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Kaspar R Daellenbach
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Aargau, Switzerland.
| |
Collapse
|
48
|
Li X, Wu H, Xing W, Xia W, Jia P, Yuan K, Guo F, Ran J, Wang X, Ren Y, Dong L, Sun S, Xu D, Li J. Short-term association of fine particulate matter and its constituents with oxidative stress, symptoms and quality of life in patients with allergic rhinitis: A panel study. ENVIRONMENT INTERNATIONAL 2023; 182:108319. [PMID: 37980881 DOI: 10.1016/j.envint.2023.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/10/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Short-term exposure to fine particulate matter (PM2.5) and its specific constituents might exacerbate allergic rhinitis (AR) conditions. However, the evidence is still inconclusive. METHOD We conducted a panel study of 49 patients diagnosed with AR > 1 year prior to the study in Taiyuan, China, to investigate associations of individual exposure to PM2.5 and its constituents with oxidative parameters, symptoms, and quality of life among AR patients. All participants underwent repeated assessments of health and PM exposure at 4 time points in both the heating and nonheating seasons from June 2017 to January 2018. AR patients' oxidative parameters were assessed using nasal lavage, and their subjective symptoms and quality of life were determined through in-person interviews using a structured questionnaire. Short-term personal exposure to PM2.5 and its constituents was estimated using the time-microenvironment-activity pattern and data from the nearest air sampler, respectively. We applied mixed-effects regression models to estimate the short-term effects of PM2.5 and its constituents. RESULTS The results showed that exposure to PM2.5 and its constituents, including BaP, PAHs, SO42-, NH4+, V, Cr, Cu, As, Se, Cd, and Pb, was significantly associated with increased oxidative stress, as indicated by an increase in the malondialdehyde (MDA) index. Exposure to PM2.5 and its components (V, Mn, Fe, Zn, As, and Se) was associated with decreased antioxidant activity, as indicated by a decrease in the superoxide dismutase (SOD) index. Additionally, increased visual analog scale (VAS) and rhinoconjunctivitis quality of life questionnaire (RQLQ) scores indicated that exposure to PM2.5 and its constituents exacerbated inflammatory symptoms and affected quality of life in AR patients. CONCLUSION Exposure to PM2.5 and specific constituents, could exacerbate AR patients' inflammatory symptoms and adversely affect their quality of life in the heavily industrialized city of Taiyuan, China. These findings may have potential biological and policy implications.
Collapse
Affiliation(s)
- Xin Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Haisheng Wu
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Weiwei Xing
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wenrong Xia
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Pingping Jia
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kun Yuan
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
| | - Fang Guo
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Wang
- Clinical Laboratory, Shanxi Academy of Traditional Chinese Medicine, Taiyuan, China
| | - Yanxin Ren
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lina Dong
- Core Laboratory, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Shengzhi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China.
| | - Donggang Xu
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Jinhui Li
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA.
| |
Collapse
|
49
|
Mutileni N, Mudau M, Edokpayi JN. Water quality, geochemistry and human health risk of groundwater in the Vyeboom region, Limpopo province, South Africa. Sci Rep 2023; 13:19071. [PMID: 37925585 PMCID: PMC10625575 DOI: 10.1038/s41598-023-46386-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023] Open
Abstract
This study focuses on the evaluation of trace metals as well as microbial contamination of groundwater. Groundwater samples were collected from 17 boreholes. The microbial quality was tested using membrane filtration method. Higher levels of contamination for both E. coli and total coliform was recorded in the wet season. Majority of the boreholes had nitrate levels above the regulatory guideline value of the World health Organisation and the South African National Standards. The water type was established by Piper plot which showed the predominance of a magnesium bicarbonate water type, with alkaline earth metals dominating the alkali metals, as well as the weaker acids (bicarbonates) dominating the stronger ones (Sulphates and chlorides). Most of the trace metals detected were in compliance with the regulatory standard except for aluminium (0.41-0.88 mg/L). The hazard quotient and Hazard indice exceeded 1 mostly for children in both season which implies a possible non-carcinogenic health risk is associated with the continuous consumption of the water resource. The estimations of carcinogenic risk (CRing) for Cr and Pb exceeded the carcinogenic indices of 10-6 and 10-4 which could pose adverse effects on human health for both children and adults. Therefore, it is recommended that measures should be implemented to reduce the risk.
Collapse
Affiliation(s)
- Ntwanano Mutileni
- Water and Environmental Management Research Group, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Mulalo Mudau
- Water and Environmental Management Research Group, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Joshua Nosa Edokpayi
- Water and Environmental Management Research Group, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.
| |
Collapse
|
50
|
Costabile F, Gualtieri M, Rinaldi M, Canepari S, Vecchi R, Massimi L, Di Iulio G, Paglione M, Di Liberto L, Corsini E, Facchini MC, Decesari S. Exposure to urban nanoparticles at low PM[Formula: see text] concentrations as a source of oxidative stress and inflammation. Sci Rep 2023; 13:18616. [PMID: 37903867 PMCID: PMC10616204 DOI: 10.1038/s41598-023-45230-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023] Open
Abstract
Exposures to fine particulate matter (PM[Formula: see text]) have been associated with health impacts, but the understanding of the PM[Formula: see text] concentration-response (PM[Formula: see text]-CR) relationships, especially at low PM[Formula: see text], remains incomplete. Here, we present novel data using a methodology to mimic lung exposure to ambient air (2[Formula: see text] 60 [Formula: see text]g m[Formula: see text]), with minimized sampling artifacts for nanoparticles. A reference model (Air Liquid Interface cultures of human bronchial epithelial cells, BEAS-2B) was used for aerosol exposure. Non-linearities observed in PM[Formula: see text]-CR curves are interpreted as a result of the interplay between the aerosol total oxidative potential (OP[Formula: see text]) and its distribution across particle size (d[Formula: see text]). A d[Formula: see text]-dependent condensation sink (CS) is assessed together with the distribution with d[Formula: see text] of reactive species . Urban ambient aerosol high in OP[Formula: see text], as indicated by the DTT assay, with (possibly copper-containing) nanoparticles, shows higher pro-inflammatory and oxidative responses, this occurring at lower PM[Formula: see text] concentrations (< 5 [Formula: see text]g m[Formula: see text]). Among the implications of this work, there are recommendations for global efforts to go toward the refinement of actual air quality standards with metrics considering the distribution of OP[Formula: see text] with d[Formula: see text] also at relatively low PM[Formula: see text].
Collapse
Affiliation(s)
- Francesca Costabile
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133 Rome, Italy
- National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
| | - Maurizio Gualtieri
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 26126 Milan, Italy
| | - Matteo Rinaldi
- National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129 Bologna, Italy
| | - Silvia Canepari
- Department of Environmental Biology, University of Rome Sapienza, 00185 Rome, Italy
| | - Roberta Vecchi
- Department of Physics, Università degli Studi di Milano,and INFN-Milan, 20133 Milan, Italy
| | - Lorenzo Massimi
- Department of Environmental Biology, University of Rome Sapienza, 00185 Rome, Italy
| | - Gianluca Di Iulio
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133 Rome, Italy
| | - Marco Paglione
- National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129 Bologna, Italy
| | - Luca Di Liberto
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133 Rome, Italy
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Maria Cristina Facchini
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129 Bologna, Italy
| | - Stefano Decesari
- National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129 Bologna, Italy
| |
Collapse
|