1
|
Chung HC, Keiller DR, Waterworth SP, McManus CJ, Roberts JD, Gordon DA. Genotypic Variations Associated with Changes in Body Mass in Response to Endurance Training. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024:1-11. [PMID: 39292756 DOI: 10.1080/02701367.2024.2404981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
This study investigates the extent to which different genotypes can explain changes in body mass following an 8-week running program, in a UK population. Participants were randomly assigned to either a training (n = 17) or control group (n = 21). Participants' diets were not altered, only the exercise regime was manipulated to isolate effects. The exercise group completed a periodized running program consisting of 20-30 min, over an agreed route, three times per-week, whilst the control groups refrained from daily exercise. Participants were screened at the end of the study for 1,000 gene variants using a DNA test kit. Results demonstrated a significant reduction in body mass, within the exercise, compared to the control group (p = .002). This reduction in body mass varied significantly (p = .024) between individuals within the exercise group. Moreover, genetic analysis identified 17 single nucleotide polymorphisms (SNPs) associated with this variation (r2 = .74; p < .001). These findings indicate that individuals with specific alleles are better predisposed to weight-management, compared to their counterparts, following an exercise program. This study helps to bridge the gap between population health and exercise science and can inform research in the application of genetics to help develop individually tailored health interventions.
Collapse
|
2
|
Gancheva S, Roden M, Castera L. Diabetes as a risk factor for MASH progression. Diabetes Res Clin Pract 2024; 217:111846. [PMID: 39245423 DOI: 10.1016/j.diabres.2024.111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Non-alcoholic (now: metabolic) steatohepatitis (MASH) is the progressive inflammatory form of metabolic dysfunction-associated steatotic liver disease (MASLD), which often coexists and mutually interacts with type 2 diabetes (T2D), resulting in worse hepatic and cardiovascular outcomes. Understanding the intricate mechanisms of diabetes-related MASH progression is crucial for effective therapeutic strategies. This review delineates the multifaceted pathways involved in this interplay and explores potential therapeutic implications. The synergy between adipose tissue, gut microbiota, and hepatic alterations plays a pivotal role in disease progression. Adipose tissue dysfunction, particularly in the visceral depot, coupled with dysbiosis in the gut microbiota, exacerbates hepatic injury and insulin resistance. Hepatic lipid accumulation, oxidative stress, and endoplasmic reticulum stress further potentiate inflammation and fibrosis, contributing to disease severity. Dietary modification with weight reduction and exercise prove crucial in managing T2D-related MASH. Additionally, various well-known but also novel anti-hyperglycemic medications exhibit potential in reducing liver lipid content and, in some cases, improving MASH histology. Therapies targeting incretin receptors show promise in managing T2D-related MASH, while thyroid hormone receptor-β agonism has proven effective as a treatment of MASH and fibrosis.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany.
| | - Laurent Castera
- Department of Hepatology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France; Université Paris-Cité, INSERM UMR 1149, Centre de Recherche sur l'Inflammation Paris, Montmartre, Paris, France.
| |
Collapse
|
3
|
Arsenault BJ, Carpentier AC, Poirier P, Després JP. Adiposity, type 2 diabetes and atherosclerotic cardiovascular disease risk: Use and abuse of the body mass index. Atherosclerosis 2024; 394:117546. [PMID: 38692978 DOI: 10.1016/j.atherosclerosis.2024.117546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 05/03/2024]
Abstract
The worldwide prevalence of individuals with an elevated body weight has increased steadily over the past five decades. Billions of research dollars have been invested to improve our understanding of the causes and consequences of having an elevated body weight. All this knowledge has, however, failed to influence populational body weight trajectories of most countries around the world. Research on the definition of "obesity" has also evolved. Body mass index (BMI), the most commonly used tool to make its diagnosis, has major limitations. In this review article, we will highlight evidence from observational studies, genetic association studies and randomized clinical trials that have shown the remarkable inter-individual differences in the way humans store energy as body fat. Increasing evidence also suggests that, as opposed to weight inclusive, lifestyle-based approaches, weight-centric approaches advising people to simply eat less and move more are not sustainable for most people for long-term weight loss and maintenance. It is time to recognize that this outdated approach may have produced more harm than good. On the basis of pathophysiological, genetic and clinical evidence presented in this review, we propose that it may be time to shift away from the traditional clinical approach, which is BMI-centric. Rather, emphasis should be placed on actionable lifestyle-related risk factors aiming at improving overall diet quality and increasing physical activity level in the general population.
Collapse
Affiliation(s)
- Benoit J Arsenault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec (QC), Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec (QC), Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke (QC), Canada
| | - Paul Poirier
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec (QC), Canada; Faculté de pharmacie, Université Laval, Québec (QC), Canada
| | - Jean-Pierre Després
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec (QC), Canada; VITAM - Centre de recherche en santé durable, CIUSSS de la Capitale-Nationale, Québec (QC), Canada; Department of Kinesiology, Faculty of Medicine, Université Laval, Québec (QC), Canada.
| |
Collapse
|
4
|
Zou Y, Zhang Y, Li M, Cao K, Song C, Zhang Z, Cai K, Geng D, Chen S, Wu Y, Zhang N, Sun G, Wang J, Zhang Y, Sun Y. Regulation of lipid metabolism by E3 ubiquitin ligases in lipid-associated metabolic diseases. Int J Biol Macromol 2024; 265:130961. [PMID: 38508558 DOI: 10.1016/j.ijbiomac.2024.130961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Previous studies have progressively elucidated the involvement of E3 ubiquitin (Ub) ligases in regulating lipid metabolism. Ubiquitination, facilitated by E3 Ub ligases, modifies critical enzymes in lipid metabolism, enabling them to respond to specific signals. In this review, we aim to present a comprehensive analysis of the role of E3 Ub ligases in lipid metabolism, which includes lipid synthesis and lipolysis, and their influence on cellular lipid homeostasis through the modulation of lipid uptake and efflux. Furthermore, it explores how the ubiquitination process governs the degradation or activation of pivotal enzymes, thereby regulating lipid metabolism at the transcriptional level. Perturbations in lipid metabolism have been implicated in various diseases, including hepatic lipid metabolism disorders, atherosclerosis, diabetes, and cancer. Therefore, this review focuses on the association between E3 Ub ligases and lipid metabolism in lipid-related diseases, highlighting enzymes critically involved in lipid synthesis and catabolism, transcriptional regulators, lipid uptake translocators, and transporters. Overall, this review aims to identify gaps in current knowledge, highlight areas requiring further research, offer potential targeted therapeutic approaches, and provide a comprehensive outlook on clinical conditions associated with lipid metabolic diseases.
Collapse
Affiliation(s)
- Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Mohan Li
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Guozhe Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Jing Wang
- Department of Hematology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| |
Collapse
|
5
|
Aruwa CE, Sabiu S. Adipose tissue inflammation linked to obesity: A review of current understanding, therapies and relevance of phyto-therapeutics. Heliyon 2024; 10:e23114. [PMID: 38163110 PMCID: PMC10755291 DOI: 10.1016/j.heliyon.2023.e23114] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Obesity is a current global challenge affecting all ages and is characterized by the up-regulated secretion of bioactive factors/pathways which result in adipose tissue inflammation (ATI). Current obesity therapies are mainly focused on lifestyle (diet/nutrition) changes. This is because many chemosynthetic anti-obesogenic medications cause adverse effects like diarrhoea, dyspepsia, and faecal incontinence, among others. As such, it is necessary to appraise the efficacies and mechanisms of action of safer, natural alternatives like plant-sourced compounds, extracts [extractable phenol (EP) and macromolecular antioxidant (MA) extracts], and anti-inflammatory peptides, among others, with a view to providing a unique approach to obesity care. These natural alternatives may constitute potent therapies for ATI linked to obesity. The potential of MA compounds (analysed for the first time in this review) and extracts in ATI and obesity management is elucidated upon, while also highlighting research gaps and future prospects. Furthermore, immune cells, signalling pathways, genes, and adipocyte cytokines play key roles in ATI responses and are targeted in certain therapies. As a result, this review gives an in-depth appraisal of ATI linked to obesity, its causes, mechanisms, and effects of past, present, and future therapies for reversal and alleviation of ATI. Achieving a significant decrease in morbidity and mortality rates attributed to ATI linked to obesity and related comorbidities is possible as research improves our understanding over time.
Collapse
Affiliation(s)
- Christiana Eleojo Aruwa
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| |
Collapse
|
6
|
Seo H, Park JH, Hwang JT, Choi HK, Park SH, Lee J. Epigenetic Profiling of Type 2 Diabetes Mellitus: An Epigenome-Wide Association Study of DNA Methylation in the Korean Genome and Epidemiology Study. Genes (Basel) 2023; 14:2207. [PMID: 38137029 PMCID: PMC10743302 DOI: 10.3390/genes14122207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes is characterized by persistently high blood glucose levels and severe complications and affects millions of people worldwide. In this study, we explored the epigenetic landscape of diabetes using data from the Korean Genome and Epidemiology Study (KoGES), specifically the Ansung-Ansan (AS-AS) cohort. Using epigenome-wide association studies, we investigated DNA methylation patterns in patients with type 2 diabetes mellitus (T2DM) and those with normal glucose regulation. Differential methylation analysis revealed 106 differentially methylated probes (DMPs), with the 10 top DMPs prominently associated with TXNIP, PDK4, NBPF20, ARRDC4, UFM1, PFKFB2, C7orf50, and ABCG1, indicating significant changes in methylation. Correlation analysis highlighted the association between the leading DMPs (e.g., cg19693031 and cg26974062 for TXNIP and cg26823705 for NBPF20) and key glycemic markers (fasting plasma glucose and hemoglobin A1c), confirming their relevance in T2DM. Moreover, we identified 62 significantly differentially methylated regions (DMRs) spanning 61 genes. A DMR associated with PDE1C showed hypermethylation, whereas DMRs associated with DIP2C, FLJ90757, PRSS50, and TDRD9 showed hypomethylation. PDE1C and TDRD9 showed a strong positive correlation between the CpG sites included in each DMR, which have previously been implicated in T2DM-related processes. This study contributes to the understanding of epigenetic modifications in T2DM. These valuable insights can be utilized in identifying potential biomarkers and therapeutic targets for effective management and prevention of diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | - Jangho Lee
- Korea Food Research Institute, Wanju-gun 55365, Jeollabuk-do, Republic of Korea; (H.S.); (J.-H.P.); (J.-T.H.); (H.-K.C.); (S.-H.P.)
| |
Collapse
|
7
|
Ky A, McCoy AJ, Flesher CG, Friend NE, Li J, Akinleye K, Patsalis C, Lumeng CN, Putnam AJ, O’Rourke RW. Matrix density regulates adipocyte phenotype. Adipocyte 2023; 12:2268261. [PMID: 37815174 PMCID: PMC10566443 DOI: 10.1080/21623945.2023.2268261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023] Open
Abstract
Alterations of the extracellular matrix contribute to adipose tissue dysfunction in metabolic disease. We studied the role of matrix density in regulating human adipocyte phenotype in a tunable hydrogel culture system. Lipid accumulation was maximal in intermediate hydrogel density of 5 weight %, relative to 3% and 10%. Adipogenesis and lipid and oxidative metabolic gene pathways were enriched in adipocytes in 5% relative to 3% hydrogels, while fibrotic gene pathways were enriched in 3% hydrogels. These data demonstrate that the intermediate density matrix promotes a more adipogenic, less fibrotic adipocyte phenotype geared towards increased lipid and aerobic metabolism. These observations contribute to a growing literature describing the role of matrix density in regulating adipose tissue function.
Collapse
Affiliation(s)
- Alexander Ky
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Atticus J. McCoy
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Carmen G. Flesher
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole E. Friend
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jie Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kore Akinleye
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Christopher Patsalis
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Carey N. Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew J. Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Robert W. O’Rourke
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Osorio-Conles Ó, Jiménez A, Ibarzabal A, Balibrea JM, de Hollanda A, Vidal J. Limited Bariatric Surgery-induced Weight Loss in Subjects With Type 2 Diabetes: Predictor Variables in Adipose Tissue. J Clin Endocrinol Metab 2023; 108:e1205-e1213. [PMID: 37249080 DOI: 10.1210/clinem/dgad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Indexed: 05/31/2023]
Abstract
CONTEXT The impact of type 2 diabetes mellitus (T2D) at baseline on limited weight loss (WL) after bariatric surgery (BS) remains controversial, and the potential underlying mechanisms incompletely understood. OBJECTIVE We aimed at gaining further insight on this relationship and identifying novel associations between adipose tissue (AT) parameters and short-term WL outcomes in subjects with or without T2D undergoing BS. METHODS Mid-term WL trajectories after BS have been evaluated in a cohort of 1659 subjects (cohort 1) with (n = 543) and without T2D (n = 1116). Paired subcutaneous and visceral AT samples were obtained from a cohort of 48 pairs of subjects with and without T2D matched for age, sex, BMI, and type of BS (cohort 2). Differences in AT parameters between groups were evaluated and potential associations with WL response explored. RESULTS T2D was independently associated with a 5% lesser mid-term WL in cohort 1, while HbA1c, insulin treatment, and number of T2D medications prior to BS were only related to short-term WL outcomes. In cohort 2, a number of differentially expressed genes in AT were identified between groups, while fat cell size and fibrosis were comparable. Subcutaneous ATG7 expression was found as an independent predictor of limited WL 1 year after surgery (β: -12.21 ± 4.41, P = .008) and its addition to a clinical model significantly improved the amount of WL variability explained (R2 = 0.131 vs R2 = 0.248, F change P = .009). CONCLUSION Our results highlight the importance of T2D as determinant of limited WL following BS and suggest that dysregulated macroautophagy in subcutaneous AT may contribute to this association.
Collapse
Affiliation(s)
- Óscar Osorio-Conles
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Amanda Jiménez
- Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ainitze Ibarzabal
- Gastrointestinal Surgery Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - José María Balibrea
- Gastrointestinal Surgery Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Ana de Hollanda
- Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Josep Vidal
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
9
|
Nieman DC, Sakaguchi CA, Pelleigrini M, Thompson MJ, Sumner S, Zhang Q. Healthy lifestyle linked to innate immunity and lipoprotein metabolism: a cross-sectional comparison using untargeted proteomics. Sci Rep 2023; 13:16728. [PMID: 37794065 PMCID: PMC10550951 DOI: 10.1038/s41598-023-44068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023] Open
Abstract
This study used untargeted proteomics to compare blood proteomic profiles in two groups of adults that differed widely in lifestyle habits. A total of 52 subjects in the lifestyle group (LIFE) (28 males, 24 females) and 52 in the control group (CON) (27 males, 25 females) participated in this cross-sectional study. Age, education level, marital status, and height did not differ significantly between LIFE and CON groups. The LIFE and CON groups differed markedly in body composition, physical activity patterns, dietary intake patterns, disease risk factor prevalence, blood measures of inflammation, triglycerides, HDL-cholesterol, glucose, and insulin, weight-adjusted leg/back and handgrip strength, and mood states. The proteomics analysis showed strong group differences for 39 of 725 proteins identified in dried blood spot samples. Of these, 18 were downregulated in the LIFE group and collectively indicated a lower innate immune activation signature. A total of 21 proteins were upregulated in the LIFE group and supported greater lipoprotein metabolism and HDL remodeling. Lifestyle-related habits and biomarkers were probed and the variance (> 50%) in proteomic profiles was best explained by group contrasts in indicators of adiposity. This cross-sectional study established that a relatively small number of proteins are associated with good lifestyle habits.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Biology Department, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, USA.
| | - Camila A Sakaguchi
- Human Performance Laboratory, Biology Department, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Matteo Pelleigrini
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael J Thompson
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Susan Sumner
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA
| | - Qibin Zhang
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| |
Collapse
|
10
|
Wen S, Gong M, Wang T, Zhou M, Dong M, Li Y, Xu C, Yuan Y, Zhou L. The Rapid Changes in Bodyweight and Glycemic Control Are Determined by Pre-status After Bariatric Surgery in Both Genders in Young Chinese Individuals. Cureus 2023; 15:e46603. [PMID: 37937018 PMCID: PMC10626214 DOI: 10.7759/cureus.46603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
PURPOSES The primary aim of this clinical study is to identify the factors associated with rapid glycemic, bodyweight, and lipid profile remission in young obese patients following bariatric surgery. MATERIALS AND METHODS In a total of 131 Chinese in-patients at Shanghai Pudong Hospital, China, we retrospectively analyzed in-patient data of metabolic parameters, including BMI, waist circumference, blood pressure (BP), and blood laboratory tests, such as plasma lipids and lipoprotein, hemoglobulin A1c (HbA1c), and oral glucose tolerance tests (OGTT) before bariatric surgery. We followed up these indices at the first month, third months, half-year, and one year later. RESULTS The results showed that bodyweight, BP, fasting plasma glucose (FPG), HbA1c, and triglyceride (TG) levels decreased significantly in one to three months following surgery in both male and female patients (p<0.05). We demonstrated that age (male: β=-0.181; female: β=-0.292) and the pre-operation HbA1c levels (male: β=0.935; female: β=0.919) were independent predictors of HbA1c reduction in both young obese male and female patients in three months after surgery. For body weight loss, age (β=-0.229) and pre-operation bodyweight (β=0.735) are the predictors in females, but only pre-operation body weight (β=0.798) is the independent predictor in obese young male patients. CONCLUSION This study discovered that changes in bodyweight were determined by age, pre-operation status of bodyweight, and HbA1C in obese young Chinese.
Collapse
Affiliation(s)
- Song Wen
- Endocrinology, Shanghai Pudong Hospital, Shanghai, CHN
| | - Min Gong
- Endocrinology, Shanghai Pudong Hospital, Shanghai, CHN
| | | | - Mingyue Zhou
- Gynecology, University of California San Francisco, San Francisco, USA
| | - Meiyuan Dong
- Endocrinology, Shanghai Pudong Hospital, Shanghai, CHN
| | - Yanyan Li
- Endocrinology, Shanghai Pudong Hospital, Shanghai, CHN
| | - Chenglin Xu
- Endocrinology, Shanghai Pudong Hospital, Shanghai, CHN
| | - Yue Yuan
- Endocrinology, Shanghai Pudong Hospital, Shanghai, CHN
| | - Ligang Zhou
- Endocrinology, Shanghai Pudong Hospital, Shanghai, CHN
| |
Collapse
|
11
|
Kurek JM, Mikołajczyk-Stecyna J, Krejpcio Z. Steviol glycosides from Stevia rebaudiana Bertoni mitigate lipid metabolism abnormalities in diabetes by modulating selected gene expression - An in vivo study. Biomed Pharmacother 2023; 166:115424. [PMID: 37677968 DOI: 10.1016/j.biopha.2023.115424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
In diabetes, in parallel to hyperglycaemia, elevated serum lipids are also diagnosed, representing a high-risk factor for coronary heart disease and cardiovascular complications. The objective of this study was to unravel the mechanisms that underlie the potential of steviol glycosides (stevioside or rebaudioside A) administered at two doses (500 or 2500 mg/kg body weight for 5 weeks) to regulate lipid metabolism. In this paper, the expression of selected genes responsible for glucose and lipid metabolism (Glut4, Pparγ, Cebpa, Fasn, Lpl and Egr1) in the peripheral tissues (adipose, liver and muscle tissue) was determined using quantitative real-time PCR method. It was found that the supplementation of steviol glycosides affected the expression of Glut4, Cebpa and Fasn genes, depending on the type of the glycoside and its dose, as well as the type of tissue, whish in part may explain the lipid-regulatory potential of steviol glycosides in hyperglycaemic conditions. Nevertheless, more in-depth studies, including human trials, are needed to confirm these effects, before steviol glycosides can be used in the therapy of type 2 diabetes.
Collapse
Affiliation(s)
- Jakub Michał Kurek
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Joanna Mikołajczyk-Stecyna
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Zbigniew Krejpcio
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| |
Collapse
|
12
|
Prausmüller S, Weidenhammer A, Heitzinger G, Spinka G, Goliasch G, Arfsten H, Abdel Mawgoud R, Gabler C, Strunk G, Hengstenberg C, Hülsmann M, Bartko PE, Pavo N. Obesity in heart failure with preserved ejection fraction with and without diabetes: risk factor or innocent bystander? Eur J Prev Cardiol 2023; 30:1247-1254. [PMID: 37210596 DOI: 10.1093/eurjpc/zwad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
AIMS Heart failure with preserved ejection fraction (HFpEF) is a condition that commonly coexists with type 2 diabetes mellitus (T2DM) and obesity. Whether the obesity-related survival benefit generally observed in HFpEF extends to individuals with concomitant T2DM is unclear. This study sought to examine the prognostic role of overweight and obesity in a large cohort of HFpEF with and without T2DM. METHODS AND RESULTS This large-scale cohort study included patients with HFpEF enrolled between 2010 and 2020. The relationship between body mass index (BMI), T2DM, and survival was assessed. A total of 6744 individuals with HFpEF were included, of which 1702 (25%) had T2DM. Patients with T2DM had higher BMI values (29.4 kg/m2 vs. 27.1 kg/m2, P < 0.001), higher N-terminal pro-brain natriuretic peptide values (864 mg/dL vs. 724 mg/dL, P < 0.001), and a higher prevalence of numerous risk factors/comorbidities than those without T2DM. During a median follow-up time of 47 months (Q1-Q3: 20-80), 2014 (30%) patients died. Patients with T2DM had a higher incidence of fatal events compared with those without T2DM, with a mortality rate of 39.2% and 26.7%, respectively (P < 0.001). In the overall cohort, using the BMI category 22.5-24.9 kg/m2 as the reference group, the unadjusted hazard ratio (HR) for all-cause death was increased in patients with BMI <22.5 kg/m2 [HR: 1.27 (confidence interval 1.09-1.48), P = 0.003] and decreased in BMI categories ≥25 kg/m2. After multivariate adjustment, BMI remained significantly inversely associated with survival in non-T2DM, whereas survival was unaltered at a wide range of BMI in patients with T2DM. CONCLUSION Among the various phenotypes of HFpEF, the T2DM phenotype is specifically associated with a greater disease burden. Higher BMI is linked to improved survival in HFpEF overall, while this effect neutralises in patients with concomitant T2DM. Advising BMI-based weight targets and weight loss may be pursued with different intensity in the management of HFpEF, particularly in the presence of T2DM.
Collapse
Affiliation(s)
- Suriya Prausmüller
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Annika Weidenhammer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Gregor Heitzinger
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Georg Spinka
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Georg Goliasch
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Henrike Arfsten
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Ramy Abdel Mawgoud
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Cornelia Gabler
- IT Systems and Communications, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Guido Strunk
- Complexity Research, Schönbrunner Straße 32, Vienna 1050, Austria
| | - Christian Hengstenberg
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Martin Hülsmann
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Philipp E Bartko
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Noemi Pavo
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| |
Collapse
|
13
|
Grigoraș A, Amalinei C. Multi-Faceted Role of Cancer-Associated Adipocytes in Colorectal Cancer. Biomedicines 2023; 11:2401. [PMID: 37760840 PMCID: PMC10525260 DOI: 10.3390/biomedicines11092401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed types of cancer, especially in obese patients, and the second cause of cancer-related death worldwide. Based on these data, extensive research has been performed over the last decades to decipher the pivotal role of the tumor microenvironment (TME) and its cellular and molecular components in CRC development and progression. In this regard, substantial progress has been made in the identification of cancer-associated adipocytes' (CAAs) characteristics, considering their active role in the CCR tumor niche, by releasing a panel of metabolites, growth factors, and inflammatory adipokines, which assist the cancer cells' development. Disposed in the tumor invasion front, CAAs exhibit a fibroblastic-like phenotype and establish a bidirectional molecular dialogue with colorectal tumor cells, which leads to functional changes in both cell types and contributes to tumor progression. CAAs also modulate the antitumor immune cells' response and promote metabolic reprogramming and chemotherapeutic resistance in colon cancer cells. This review aims to report recent cumulative data regarding the molecular mechanisms of CAAs' differentiation and their activity spectrum in the TME of CRC. A better understanding of CAAs and the molecular interplay between CAAs and tumor cells will provide insights into tumor biology and may open the perspective of new therapeutic opportunities in CRC patients.
Collapse
Affiliation(s)
- Adriana Grigoraș
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Histopathology, Institute of Legal Medicine, 700455 Iasi, Romania
| | - Cornelia Amalinei
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Histopathology, Institute of Legal Medicine, 700455 Iasi, Romania
| |
Collapse
|
14
|
Chen L, Zhou M, Li H, Liu D, Liao P, Zong Y, Zhang C, Zou W, Gao J. Mitochondrial heterogeneity in diseases. Signal Transduct Target Ther 2023; 8:311. [PMID: 37607925 PMCID: PMC10444818 DOI: 10.1038/s41392-023-01546-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023] Open
Abstract
As key organelles involved in cellular metabolism, mitochondria frequently undergo adaptive changes in morphology, components and functions in response to various environmental stresses and cellular demands. Previous studies of mitochondria research have gradually evolved, from focusing on morphological change analysis to systematic multiomics, thereby revealing the mitochondrial variation between cells or within the mitochondrial population within a single cell. The phenomenon of mitochondrial variation features is defined as mitochondrial heterogeneity. Moreover, mitochondrial heterogeneity has been reported to influence a variety of physiological processes, including tissue homeostasis, tissue repair, immunoregulation, and tumor progression. Here, we comprehensively review the mitochondrial heterogeneity in different tissues under pathological states, involving variant features of mitochondrial DNA, RNA, protein and lipid components. Then, the mechanisms that contribute to mitochondrial heterogeneity are also summarized, such as the mutation of the mitochondrial genome and the import of mitochondrial proteins that result in the heterogeneity of mitochondrial DNA and protein components. Additionally, multiple perspectives are investigated to better comprehend the mysteries of mitochondrial heterogeneity between cells. Finally, we summarize the prospective mitochondrial heterogeneity-targeting therapies in terms of alleviating mitochondrial oxidative damage, reducing mitochondrial carbon stress and enhancing mitochondrial biogenesis to relieve various pathological conditions. The possibility of recent technological advances in targeted mitochondrial gene editing is also discussed.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengnan Zhou
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China.
| |
Collapse
|
15
|
Guo Y, Zhang Q, Zheng L, Shou J, Zhuang S, Xiao W, Chen P. Depot-specific adaption of adipose tissue for different exercise approaches in high-fat diet/streptozocin-induced diabetic mice. Front Physiol 2023; 14:1189528. [PMID: 37485056 PMCID: PMC10358987 DOI: 10.3389/fphys.2023.1189528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
Background: Adipose tissue pathology plays a crucial role in the pathogenesis of type 2 diabetes mellitus. Understanding the impact of exercise training on adipose tissue adaptation is of paramount importance in enhancing metabolic health. In this study, we aimed to investigate the effects of various exercise modalities on three distinct adipose tissue depots, namely, interscapular brown adipose tissue (iBAT), subcutaneous white adipose tissue (sWAT), and epididymal white adipose tissue (eWAT), in a murine model of diabetes. Methods: Male C57BL/6J mice received a 12-week high-fat diet and a single injection of streptozotocin, followed by an 8-week exercise intervention. The exercise intervention included swimming, resistance training, aerobic exercise, and high-intensity interval training (HIIT). Results: We found that exercise training reduced body weight and body fat percentage, diminished adipocyte size and increased the expression of mitochondria-related genes (PGC1, COX4, and COX8B) in three adipose tissue depots. The effects of exercise on inflammatory status include a reduction in crown-like structures and the expression of inflammatory factors, mainly in eWAT. Besides, exercise only induces the browning of sWAT, which may be related to the expression of the sympathetic marker tyrosine hydroxylase. Among the four forms of exercise, HIIT was the most effective in reducing body fat percentage, increasing muscle mass and reducing eWAT adipocyte size. The expression of oxidative phosphorylation and thermogenesis-related genes in sWAT and eWAT was highest in the HIIT group. Conclusion: When targeting adipose tissue to improve diabetes, HIIT may offer superior benefits and thus represents a more advantageous choice.
Collapse
Affiliation(s)
- Yifan Guo
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Qilong Zhang
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Lifang Zheng
- College of Physical Education, Shanghai University, Shanghai, China
| | - Jian Shou
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuzhao Zhuang
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Peijie Chen
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
16
|
Zhang X, Ha S, Lau HCH, Yu J. Excess body weight: Novel insights into its roles in obesity comorbidities. Semin Cancer Biol 2023; 92:16-27. [PMID: 36965839 DOI: 10.1016/j.semcancer.2023.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
Excess body weight is a global health problem due to sedentary lifestyle and unhealthy diet, affecting 2 billion population worldwide. Obesity is a major risk factor for metabolic diseases. Notably, the metabolic risk of obesity largely depends on body weight distribution, of which visceral adipose tissues but not subcutaneous fats are closely associated with obesity comorbidities, including type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease and certain types of cancer. Latest multi-omics and mechanistical studies reported the crucial involvement of genetic and epigenetic alterations, adipokines dysregulation, immunity changes, imbalance of white and brown adipose tissues, and gut microbial dysbiosis in mediating the pathogenic association between visceral adipose tissues and comorbidities. In this review, we explore the epidemiology of excess body weight and the up-to-date mechanism of how excess body weight and obesity lead to chronic complications. We also examine the utilization of visceral fat measurement as an accurate clinical parameter for risk assessment in healthy individuals and clinical outcome prediction in obese subjects. In addition, current approaches for the prevention and treatment of excess body weight and its related metabolic comorbidities are further discussed. DATA AVAILABILITY: No data was used for the research described in the article.
Collapse
Affiliation(s)
- Xiang Zhang
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Suki Ha
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
17
|
Dou J, Thangaraj SV, Puttabyatappa M, Elangovan VR, Bakulski K, Padmanabhan V. Developmental programming: Adipose depot-specific regulation of non-coding RNAs and their relation to coding RNA expression in prenatal testosterone and prenatal bisphenol-A -treated female sheep. Mol Cell Endocrinol 2023; 564:111868. [PMID: 36708980 PMCID: PMC10069610 DOI: 10.1016/j.mce.2023.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Inappropriate developmental exposure to steroids is linked to metabolic disorders. Prenatal testosterone excess or bisphenol A (BPA, an environmental estrogen mimic) leads to insulin resistance and adipocyte disruptions in female lambs. Adipocytes are key regulators of insulin sensitivity. Metabolic tissue-specific differences in insulin sensitivity coupled with adipose depot-specific changes in key mRNAs, were previously observed with prenatal steroid exposure. We hypothesized that depot-specific changes in the non-coding RNA (ncRNA) - regulators of gene expression would account for the direction of changes seen in mRNAs. Non-coding RNA (lncRNA, miRNA, snoRNA, snRNA) from various adipose depots of prenatal testosterone and BPA-treated animals were sequenced. Adipose depot-specific changes in the ncRNA that are consistent with the depot-specific mRNA expression in terms of directionality of changes and functional implications in insulin resistance, adipocyte differentiation and cardiac hypertrophy were found. Importantly, the adipose depot-specific ncRNA changes were model-specific and mutually exclusive, suggestive of different regulatory entry points in this regulation.
Collapse
Affiliation(s)
- John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | - Kelly Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
18
|
Rose TD, Köhler N, Falk L, Klischat L, Lazareva OE, Pauling JK. Lipid network and moiety analysis for revealing enzymatic dysregulation and mechanistic alterations from lipidomics data. Brief Bioinform 2023; 24:bbac572. [PMID: 36592059 PMCID: PMC9851308 DOI: 10.1093/bib/bbac572] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 01/03/2023] Open
Abstract
Lipidomics is of growing importance for clinical and biomedical research due to many associations between lipid metabolism and diseases. The discovery of these associations is facilitated by improved lipid identification and quantification. Sophisticated computational methods are advantageous for interpreting such large-scale data for understanding metabolic processes and their underlying (patho)mechanisms. To generate hypothesis about these mechanisms, the combination of metabolic networks and graph algorithms is a powerful option to pinpoint molecular disease drivers and their interactions. Here we present lipid network explorer (LINEX$^2$), a lipid network analysis framework that fuels biological interpretation of alterations in lipid compositions. By integrating lipid-metabolic reactions from public databases, we generate dataset-specific lipid interaction networks. To aid interpretation of these networks, we present an enrichment graph algorithm that infers changes in enzymatic activity in the context of their multispecificity from lipidomics data. Our inference method successfully recovered the MBOAT7 enzyme from knock-out data. Furthermore, we mechanistically interpret lipidomic alterations of adipocytes in obesity by leveraging network enrichment and lipid moieties. We address the general lack of lipidomics data mining options to elucidate potential disease mechanisms and make lipidomics more clinically relevant.
Collapse
Affiliation(s)
- Tim D Rose
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Nikolai Köhler
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Lisa Falk
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Lucie Klischat
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Olga E Lazareva
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Junior Clinical Cooperation Unit Multiparametric methods for early detection of prostate cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
19
|
García-Pérez R, Ramirez JM, Ripoll-Cladellas A, Chazarra-Gil R, Oliveros W, Soldatkina O, Bosio M, Rognon PJ, Capella-Gutierrez S, Calvo M, Reverter F, Guigó R, Aguet F, Ferreira PG, Ardlie KG, Melé M. The landscape of expression and alternative splicing variation across human traits. CELL GENOMICS 2023; 3:100244. [PMID: 36777183 PMCID: PMC9903719 DOI: 10.1016/j.xgen.2022.100244] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/08/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022]
Abstract
Understanding the consequences of individual transcriptome variation is fundamental to deciphering human biology and disease. We implement a statistical framework to quantify the contributions of 21 individual traits as drivers of gene expression and alternative splicing variation across 46 human tissues and 781 individuals from the Genotype-Tissue Expression project. We demonstrate that ancestry, sex, age, and BMI make additive and tissue-specific contributions to expression variability, whereas interactions are rare. Variation in splicing is dominated by ancestry and is under genetic control in most tissues, with ribosomal proteins showing a strong enrichment of tissue-shared splicing events. Our analyses reveal a systemic contribution of types 1 and 2 diabetes to tissue transcriptome variation with the strongest signal in the nerve, where histopathology image analysis identifies novel genes related to diabetic neuropathy. Our multi-tissue and multi-trait approach provides an extensive characterization of the main drivers of human transcriptome variation in health and disease.
Collapse
Affiliation(s)
- Raquel García-Pérez
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Jose Miguel Ramirez
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Aida Ripoll-Cladellas
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Ruben Chazarra-Gil
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Winona Oliveros
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Oleksandra Soldatkina
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Mattia Bosio
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Paul Joris Rognon
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
- Department of Economics and Business, Universitat Pompeu Fabra, Barcelona, Catalonia 08005, Spain
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya, Barcelona, Catalonia 08034, Spain
| | - Salvador Capella-Gutierrez
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Miquel Calvo
- Statistics Section, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Catalonia 08028, Spain
| | - Ferran Reverter
- Statistics Section, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Catalonia 08028, Spain
| | - Roderic Guigó
- Bioinformatics and Genomics, Center for Genomic Regulation, Barcelona, Catalonia 08003, Spain
| | | | - Pedro G. Ferreira
- Department of Computer Science, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Laboratory of Artificial Intelligence and Decision Support, INESC TEC, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto, Institute for Research and Innovation in Health (i3s), R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | | | - Marta Melé
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| |
Collapse
|
20
|
Bensussen A, Torres-Magallanes JA, Roces de Álvarez-Buylla E. Molecular tracking of insulin resistance and inflammation development on visceral adipose tissue. Front Immunol 2023; 14:1014778. [PMID: 37026009 PMCID: PMC10070947 DOI: 10.3389/fimmu.2023.1014778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Background Visceral adipose tissue (VAT) is one of the most important sources of proinflammatory molecules in obese people and it conditions the appearance of insulin resistance and diabetes. Thus, understanding the synergies between adipocytes and VAT-resident immune cells is essential for the treatment of insulin resistance and diabetes. Methods We collected information available on databases and specialized literature to construct regulatory networks of VAT resident cells, such as adipocytes, CD4+ T lymphocytes and macrophages. These networks were used to build stochastic models based on Markov chains to visualize phenotypic changes on VAT resident cells under several physiological contexts, including obesity and diabetes mellitus. Results Stochastic models showed that in lean people, insulin produces inflammation in adipocytes as a homeostatic mechanism to downregulate glucose intake. However, when the VAT tolerance to inflammation is exceeded, adipocytes lose insulin sensitivity according to severity of the inflammatory condition. Molecularly, insulin resistance is initiated by inflammatory pathways and sustained by intracellular ceramide signaling. Furthermore, our data show that insulin resistance potentiates the effector response of immune cells, which suggests its role in the mechanism of nutrient redirection. Finally, our models show that insulin resistance cannot be inhibited by anti-inflammatory therapies alone. Conclusion Insulin resistance controls adipocyte glucose intake under homeostatic conditions. However, metabolic alterations such as obesity, enhances insulin resistance in adipocytes, redirecting nutrients to immune cells, permanently sustaining local inflammation in the VAT.
Collapse
Affiliation(s)
- Antonio Bensussen
- *Correspondence: Antonio Bensussen, ; Elena Roces de Álvarez-Buylla,
| | | | | |
Collapse
|
21
|
Strieder-Barboza, Flesher CG, Geletka LM, Eichler T, Akinleye O, Ky A, Ehlers AP, Lumeng CN, O’Rourke RW. Lumican modulates adipocyte function in obesity-associated type 2 diabetes. Adipocyte 2022; 11:665-675. [PMID: 36457256 PMCID: PMC9728465 DOI: 10.1080/21623945.2022.2154112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Obesity-associated type 2 diabetes (DM) leads to adipose tissue dysfunction. Lumican is a proteoglycan implicated in obesity, insulin resistance (IR), and adipocyte dysfunction. Using human visceral adipose tissue (VAT) from subjects with and without DM, we studied lumican effects on adipocyte function. Lumican was increased in VAT and adipocytes in DM. Lumican knockdown in adipocytes decreased lipolysis and improved adipogenesis and insulin sensitivity in VAT adipocytes in DM, while treatment with human recombinant lumican increased lipolysis and impaired insulin-sensitivity in an ERK-dependent manner. We demonstrate that lumican impairs adipocyte metabolism, partially via ERK signalling, and is a potential target for developing adipose tissue-targeted therapeutics in DM.
Collapse
Affiliation(s)
- Strieder-Barboza
- Department of Surgery , University of Michigan Medical School, MI, USA
- Department of Veterinary Sciences, Texas Tech University, Lubbock , TX, USA
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, USA
| | - Carmen G. Flesher
- Department of Surgery , University of Michigan Medical School, MI, USA
| | - Lynn M. Geletka
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Tad Eichler
- Department of Surgery , University of Michigan Medical School, MI, USA
| | - Olukemi Akinleye
- Department of Surgery , University of Michigan Medical School, MI, USA
| | - Alexander Ky
- Department of Surgery , University of Michigan Medical School, MI, USA
| | - Anne P. Ehlers
- Department of Surgery , University of Michigan Medical School, MI, USA
- Department of Surgery, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Carey N. Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI ,USA
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert W. O’Rourke
- Department of Surgery , University of Michigan Medical School, MI, USA
- Department of Surgery, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Pafili K, Kahl S, Mastrototaro L, Strassburger K, Pesta D, Herder C, Pützer J, Dewidar B, Hendlinger M, Granata C, Saatmann N, Yavas A, Gancheva S, Heilmann G, Esposito I, Schlensak M, Roden M. Mitochondrial respiration is decreased in visceral but not subcutaneous adipose tissue in obese individuals with fatty liver disease. J Hepatol 2022; 77:1504-1514. [PMID: 35988689 DOI: 10.1016/j.jhep.2022.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Adipose tissue dysfunction is involved in the development of insulin resistance and is responsible for excessive lipid delivery to other organs such as the liver. We tested the hypothesis that impaired mitochondrial function is a common feature of subcutaneous (SAT) and visceral adipose tissue (VAT), but may differently contribute to adipose tissue insulin resistance (IR) in obesity, non-alcoholic fatty liver (NAFL) and steatohepatitis (NASH). METHODS In this cross-sectional study, we analyzed tissue-specific insulin sensitivity using stable isotope dilution and hyperinsulinemic-normoglycemic clamp tests. We also assessed mitochondrial respiration, mRNA and protein expression, and tissue morphology in biopsies of SAT and VAT from obese humans without NAFL, with NAFL or with NASH (n = 22/group). RESULTS Compared to individuals without liver disease, persons with NAFL and NASH had about 30% (p = 0.010) and 33% (p = 0.002) lower maximal mitochondrial respiration, respectively, in VAT, but not in SAT. The lower maximal mitochondrial respiration of VAT was associated with lower adipose tissue insulin sensitivity (β = 0.985, p = 0.041) and with increased VAT protein expression of tumor necrosis factor A across all groups (β = -0.085, p = 0.040). VAT from individuals with NASH was characterized by lower expression of oxidative phosphorylation complex IV (p = 0.042) and higher mRNA expression of the macrophage marker CD68 (p = 0.002) than VAT from participants without NAFL. CONCLUSIONS Humans with non-alcoholic fatty liver disease have distinct abnormalities of VAT energy metabolism, which correlate with adipose tissue dysfunction and may favor progression of NAFL to NASH. LAY SUMMARY Adipose tissue (commonly called body fat) can be found under the skin (subcutaneous) or around internal organs (visceral). Dysfunction of adipose tissue can cause insulin resistance and lead to excess delivery of fat to other organs such as the liver. Herein, we show that dysfunction specifically in visceral adipose tissue was associated with fatty liver disease. CLINICAL TRIAL NUMBER NCT01477957.
Collapse
Affiliation(s)
- Kalliopi Pafili
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Aerospace Center (DLR), Institute of Aerospace Medicine, 51147, Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50931, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jennifer Pützer
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Bedair Dewidar
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Mona Hendlinger
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Cesare Granata
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Nina Saatmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Aslihan Yavas
- Institute of Pathology, University Hospital and Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Sofiya Gancheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Geronimo Heilmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Irene Esposito
- Institute of Pathology, University Hospital and Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Matthias Schlensak
- Department of General and Visceral Surgery, Neuwerk Hospital, 41066, Mönchengladbach, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
23
|
Latorre J, Mayneris-Perxachs J, Oliveras-Cañellas N, Ortega F, Comas F, Fernández-Real JM, Moreno-Navarrete JM. Adipose tissue cysteine dioxygenase type 1 is associated with an anti-inflammatory profile, impacting on systemic metabolic traits. EBioMedicine 2022; 85:104302. [PMID: 36206624 PMCID: PMC9535416 DOI: 10.1016/j.ebiom.2022.104302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/11/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Adipose tissue is a source of multiple factors that modulate systemic insulin sensitivity and cardiovascular risk. Taurine is obtained from the diet but it is less known that it is endogenously synthesized by cysteine dioxygenase type 1 (CDO1). CDO1 exerts a role in adipose tissue from rodent models, but the potential translational value in humans is not available in the literature. METHODS CDO1 gene expression was analysed in visceral and subcutaneous adipose tissue samples in association with metabolic traits in participants with different degrees of obesity in four independent cohorts. CDO1 was also evaluated in isolated human adipocytes in vitro. Mechanistically, CDO1gene knockdown (KD) of human preadipocytes and adipose-derived mesenchymal stem cells (ASC52telo) (using lentiviral particles) was also evaluated. Mitochondrial respiratory function of adipocytes was evaluated using Seahorse. FINDINGS Both visceral (VAT) and subcutaneous adipose tissue (SAT) CDO1 mRNA was associated with gene expression markers of adipose tissue function in the four cohorts. Higher CDO1 expression was linked to decreased fasting triglycerides and blood HbA1c even after adjusting by age, BMI and sex. In addition, CDO1 mRNA positively correlated with the expression of genes involved in adipogenesis and negatively with different inflammatory markers. Both VAT and SAT CDO1 mRNA was mainly expressed in adipocytes and significantly increased during adipocyte differentiation, but attenuated under inflammatory conditions. Mechanistically, CDO1 gene KD reduced taurine biosynthesis, evidencing lower CDO1 activity. In both human preadipocytes and ASC52telo cells, CDO1 gene KD resulted in decreased gene expression markers of adipogenesis (ADIPOQ, FABP4, FASN, SLC2A4, CEBPA) and increased inflammatory genes (TNF and IL6) during adipocyte differentiation. Of note, CDO1 gene KD led to decreased mitochondrial respiratory function in parallel to decreased expression of mitochondrial function-, but not biogenesis-related genes. INTERPRETATION Current findings show the relevance of CDO1 in adipose tissue physiology, suggesting its contribution to an improved systemic metabolic profile. FUNDING This work was partially supported by research grants PI16/01173, PI19/01712, PI20/01090 and PI21/01361 from the Instituto de Salud Carlos III from Spain, Fondo Europeo de Desarrollo Regional (FEDER) funds, and VII Spanish Diabetes Association grants to Basic Diabetes Research Projects led by young researchers.
Collapse
Affiliation(s)
- Jèssica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010), 17190 Salt, Spain,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010), 17190 Salt, Spain,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Núria Oliveras-Cañellas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010), 17190 Salt, Spain,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010), 17190 Salt, Spain,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ferran Comas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010), 17190 Salt, Spain,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010), 17190 Salt, Spain,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain,Department of Medical Sciences, School of Medicine, University of Girona, 17071 Girona, Spain,Corresponding authors at: Section of Diabetes, Endocrinology and Nutrition Hospital of Girona “Dr Josep Trueta” Carretera de França s/n, 17007, Girona, Spain.
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010), 17190 Salt, Spain,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain,Corresponding authors at: Section of Nutrition, Eumetabolism and Health Biomedical Research Institute of Girona “Dr Josep Trueta”, C/ Dr. Castany s/n, 17190, Salt, Spain.
| |
Collapse
|
24
|
Overview of Transcriptomic Research on Type 2 Diabetes: Challenges and Perspectives. Genes (Basel) 2022; 13:genes13071176. [PMID: 35885959 PMCID: PMC9319211 DOI: 10.3390/genes13071176] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Type 2 diabetes (T2D) is a common chronic disease whose etiology is known to have a strong genetic component. Standard genetic approaches, although allowing for the detection of a number of gene variants associated with the disease as well as differentially expressed genes, cannot fully explain the hereditary factor in T2D. The explosive growth in the genomic sequencing technologies over the last decades provided an exceptional impetus for transcriptomic studies and new approaches to gene expression measurement, such as RNA-sequencing (RNA-seq) and single-cell technologies. The transcriptomic analysis has the potential to find new biomarkers to identify risk groups for developing T2D and its microvascular and macrovascular complications, which will significantly affect the strategies for early diagnosis, treatment, and preventing the development of complications. In this article, we focused on transcriptomic studies conducted using expression arrays, RNA-seq, and single-cell sequencing to highlight recent findings related to T2D and challenges associated with transcriptome experiments.
Collapse
|
25
|
de Sousa Neto IV, Durigan JLQ, da Silva ASR, de Cássia Marqueti R. Adipose Tissue Extracellular Matrix Remodeling in Response to Dietary Patterns and Exercise: Molecular Landscape, Mechanistic Insights, and Therapeutic Approaches. BIOLOGY 2022; 11:biology11050765. [PMID: 35625493 PMCID: PMC9138682 DOI: 10.3390/biology11050765] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 12/20/2022]
Abstract
Simple Summary Adipose tissue is considered a metabolic organ that adjusts overall energy homeostasis and critical hormones to the body’s needs. In conditions of caloric intake surpassing energy expenditure, lipid accumulation occurs with constant extracellular matrix deposition. Excess lipids and adipocyte hypertrophy may reduce extracellular matrix flexibility in conjunction with hypoxia and inflammation. These processes induce the development of adipose tissue fibrosis and correlated metabolic dysfunctions, such as insulin resistance. With the increasing rate of chronic diseases worldwide, it is essential to generate a more precise knowledge of fibrotic processes, as well as to create optimal models to study potential therapies to combat the harmful effects of extracellular matrix deposition. In this work, we focused on the physiological processes in the remodeling of adipose tissue fibrosis, along with their relevance to clinical indications. Furthermore, we emphasize understanding how lifestyle can alleviate adipocyte dysfunction. Several studies showed that a nutritionally balanced diet combined with exercise is a remarkable potential strategy for lipolytic activity, preventing rapid extracellular matrix expansion in parallel with insulin and glucose action improvements. Thus, the emerging beneficial role of exercise training and low-calorie diet on adipose tissue ECM remodeling is a topic that deserves attention from health professionals. Abstract The extracellular matrix (ECM) is a 3-dimensional network of molecules that play a central role in differentiation, migration, and survival for maintaining normal homeostasis. It seems that ECM remodeling is required for adipose tissue expansion. Despite evidence indicating that ECM is an essential component of tissue physiology, adipose tissue ECM has received limited attention. Hence, there is great interest in approaches to neutralize the harmful effects of ECM enlargement. This review compiles and discusses the current literature on adipose tissue ECM remodeling in response to different dietary patterns and exercise training. High-calorie diets result in substantial adipose tissue ECM remodeling, which in turn could lead to fibrosis (excess deposition of collagens, elastin, and fibronectin), inflammation, and the onset of metabolic dysfunction. However, combining a nutritionally balanced diet with exercise is a remarkable potential strategy for lipolytic activity, preventing rapid ECM expansion in different adipose tissue depots. Despite the distinct exercise modalities (aerobic or resistance exercise) reversing adipose tissue fibrosis in animal models, the beneficial effect on humans remains controversial. Defining molecular pathways and specific mechanisms that mediate the positive effects on adipose tissue, ECM is essential in developing optimized interventions to improve health and clinical outcomes.
Collapse
Affiliation(s)
- Ivo Vieira de Sousa Neto
- Molecular Analysis Laboratory, Faculty of Ceilândia, Universidade de Brasília, Brasília 70910-900, Brazil; or
- Correspondence:
| | | | - Adelino Sanchez Ramos da Silva
- Graduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil;
- School of Physical Education and Sport of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Rita de Cássia Marqueti
- Molecular Analysis Laboratory, Faculty of Ceilândia, Universidade de Brasília, Brasília 70910-900, Brazil; or
- Graduate Program in Rehabilitation Sciences, Universidade de Brasília, Brasília 70910-900, Brazil;
- Graduate Program in Health Sciences and Technology, Universidade de Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
26
|
Georgiev A, Granata C, Roden M. The role of mitochondria in the pathophysiology and treatment of common metabolic diseases in humans. Am J Physiol Cell Physiol 2022; 322:C1248-C1259. [PMID: 35508191 DOI: 10.1152/ajpcell.00035.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Common metabolic diseases such as obesity, type 2 diabetes mellitus and non-alcoholic fatty liver disease significantly contribute to morbidity and mortality worldwide. They frequently associate with insulin resistance and altered mitochondrial functionality. Insulin-responsive tissues can show changes in mitochondrial features such as oxidative capacity, mitochondrial content and turnover, which do not necessarily reflect abnormalities but rather adaption to a certain metabolic condition. Lifestyle modifications and classic or novel drugs can modify these alterations and help treating these metabolic diseases. This review addresses the role of mitochondria in human metabolic diseases and discusses potential future research directions.
Collapse
Affiliation(s)
- Asen Georgiev
- Institute for Clinical Diabetology, German, Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Cesare Granata
- Institute for Clinical Diabetology, German, Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
| | - Michael Roden
- Institute for Clinical Diabetology, German, Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.,Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
27
|
Yin X, Takov K, Straube R, Voit-Bak K, Graessler J, Julius U, Tselmin S, Rodionov RN, Barbir M, Walls M, Theofilatos K, Mayr M, Bornstein SR. Precision Medicine Approach for Cardiometabolic Risk Factors in Therapeutic Apheresis. Horm Metab Res 2022; 54:238-249. [PMID: 35413745 DOI: 10.1055/a-1776-7943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Lipoprotein apheresis (LA) is currently the most powerful intervention possible to reach a maximal reduction of lipids in patients with familial hypercholesterolemia and lipoprotein(a) hyperlipidemia. Although LA is an invasive method, it has few side effects and the best results in preventing further major cardiovascular events. It has been suggested that the highly significant reduction of cardiovascular complications in patients with severe lipid disorders achieved by LA is mediated not only by the potent reduction of lipid levels but also by the removal of other proinflammatory and proatherogenic factors. Here we performed a comprehensive proteomic analysis of patients on LA treatment using intra-individually a set of differently sized apheresis filters with the INUSpheresis system. This study revealed that proteomic analysis correlates well with routine clinical chemistry in these patients. The method is eminently suited to discover new biomarkers and risk factors for cardiovascular disease in these patients. Different filters achieve reduction and removal of proatherogenic proteins in different quantities. This includes not only apolipoproteins, C-reactive protein, fibrinogen, and plasminogen but also proteins like complement factor B (CFAB), protein AMBP, afamin, and the low affinity immunoglobulin gamma Fc region receptor III-A (FcγRIIIa) among others that have been described as atherosclerosis and metabolic vascular diseases promoting factors. We therefore conclude that future trials should be designed to develop an individualized therapy approach for patients on LA based on their metabolic and vascular risk profile. Furthermore, the power of such cascade filter treatment protocols may improve the prevention of cardiometabolic disease and its complications.
Collapse
Affiliation(s)
- X Yin
- Kings College London, London, UK
| | - K Takov
- Kings College London, London, UK
| | - R Straube
- Zentrum für Apherese- und Hämofiltration am INUS Tagesklinikum, Cham, Germany
| | - K Voit-Bak
- Zentrum für Apherese- und Hämofiltration am INUS Tagesklinikum, Cham, Germany
| | - J Graessler
- Department and Outpatient Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - U Julius
- Department and Outpatient Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - S Tselmin
- Department and Outpatient Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Roman N Rodionov
- Department and Outpatient Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - M Barbir
- Royal Brompton Hospital, London, UK
| | | | | | - M Mayr
- Kings College London, London, UK
- Technische Universität Dresden, Dresden, Germany
| | - S R Bornstein
- Kings College London, London, UK
- Department and Outpatient Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
28
|
Frühbeck G, Catalán V, Ramírez B, Valentí V, Becerril S, Rodríguez A, Moncada R, Baixauli J, Silva C, Escalada J, Gómez-Ambrosi J. Serum Levels of IL-1 RA Increase with Obesity and Type 2 Diabetes in Relation to Adipose Tissue Dysfunction and are Reduced After Bariatric Surgery in Parallel to Adiposity. J Inflamm Res 2022; 15:1331-1345. [PMID: 35237063 PMCID: PMC8884708 DOI: 10.2147/jir.s354095] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/15/2022] [Indexed: 12/22/2022] Open
Abstract
Background Excess adiposity leads to a dysfunctional adipose tissue that contributes to the development of obesity-associated comorbidities such as type 2 diabetes (T2D). Interleukin-1 receptor antagonist (IL-1RA) is a naturally occurring antagonist of the IL-1 receptor with anti-inflammatory properties. The aim of the present study was to compare the circulating concentrations of IL-1RA and its mRNA expression in visceral adipose tissue (VAT) in subjects with normal weight (NW), obesity with normoglycemia (OB-NG), or obesity with impaired glucose tolerance or T2D (OB-IGT&T2D) and to analyze the effect of changes in body fat percentage (BF%) on IL-1RA levels. Methods Serum concentrations of IL-1RA were measured in 156 volunteers. Expression of IL1RN mRNA in VAT obtained from 36 individuals was determined. In addition, the concentrations of IL-1RA were measured before and after weight gain as well as weight loss following a dietetic program or Roux-en-Y gastric bypass (RYGB). Results Serum levels of IL-1RA were significantly increased in individuals with obesity, being further increased in the OB-IGT&T2D group (NW 440 ± 316, OB-NG 899 ± 562, OB-IGT&T2D 1265 ± 739 pg/mL; P<0.001) and associated with markers of inflammation and fatty liver. IL1RN mRNA expression in VAT was significantly increased in the OB-IGT&T2D group and correlated in the global cohort with the mRNA expression of SPP1, CCL2, CD68, and MMP9. Levels of IL-1RA were not modified after modest changes in BF%, but RYGB-induced weight loss significantly decreased IL-1RA concentrations from 1233 ± 1009 to 660 ± 538 pg/mL (P<0.001). Conclusion Serum IL-1RA concentrations are increased in patients with obesity being further elevated in obesity-associated IGT and T2D in association with markers of adipose tissue dysfunction. The mRNA expression of IL1RN is markedly increased in VAT of subjects with obesity and T2D in relation with genes involved in macrophage recruitment, inflammation and matrix remodeling. Serum IL-1RA concentrations are reduced when a notable amount of BF% is loss. Measurement of IL-1RA is an excellent biomarker of adipose tissue dysfunction in obesity-associated metabolic alterations.
Collapse
Affiliation(s)
- Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Víctor Valentí
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Rafael Moncada
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Department of Anesthesia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jorge Baixauli
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Camilo Silva
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Escalada
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Correspondence: Javier Gómez-Ambrosi, Metabolic Research Laboratory, Clínica Universidad de Navarra, Irunlarrea 1, Pamplona, 31008, Spain, Tel +34 948 425600 (ext. 806567), Email
| |
Collapse
|
29
|
Martínez-Montoro JI, Damas-Fuentes M, Fernández-García JC, Tinahones FJ. Role of the Gut Microbiome in Beta Cell and Adipose Tissue Crosstalk: A Review. Front Endocrinol (Lausanne) 2022; 13:869951. [PMID: 35634505 PMCID: PMC9133559 DOI: 10.3389/fendo.2022.869951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
In the last decades, obesity has reached epidemic proportions worldwide. Obesity is a chronic disease associated with a wide range of comorbidities, including insulin resistance and type 2 diabetes mellitus (T2D), which results in significant burden of disease and major consequences on health care systems. Of note, intricate interactions, including different signaling pathways, are necessary for the establishment and progression of these two closely related conditions. Altered cell-to-cell communication among the different players implicated in this equation leads to the perpetuation of a vicious circle associated with an increased risk for the development of obesity-related complications, such as T2D, which in turn contributes to the development of cardiovascular disease. In this regard, the dialogue between the adipocyte and pancreatic beta cells has been extensively studied, although some connections are yet to be fully elucidated. In this review, we explore the potential pathological mechanisms linking adipocyte dysfunction and pancreatic beta cell impairment/insulin resistance. In addition, we evaluate the role of emerging actors, such as the gut microbiome, in this complex crosstalk.
Collapse
Affiliation(s)
- José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Málaga, Málaga, Spain
- *Correspondence: José Ignacio Martínez-Montoro, ; Francisco J. Tinahones,
| | - Miguel Damas-Fuentes
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - José Carlos Fernández-García
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Francisco J. Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: José Ignacio Martínez-Montoro, ; Francisco J. Tinahones,
| |
Collapse
|