1
|
Ramos-Roman MA. Comparison Between SGLT2 Inhibitors and Lactation: Implications for Cardiometabolic Health in Parous Women. Metab Syndr Relat Disord 2024. [PMID: 39431925 DOI: 10.1089/met.2024.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibition and lactation result in the excretion of large amounts of glucose in urine or milk and are associated with a lower risk of cardiovascular events. The respective mechanisms behind this association with cardiovascular protection are not clear. This review compares the contribution of noninsulin-mediated glucose transport during pharmacologic inhibition of SGLT2 with noninsulin-mediated glucose transport during lactation in terms of the implications for the cardiometabolic health of parous women. The search topics used to obtain information on SGLT2 inhibitors included mechanisms of action, atherosclerosis, and heart failure. The search topics used to obtain information on lactation included cardiovascular health and milk composition. Subsequent reference searches of retrieved articles were also used. Active treatment with SGLT2 inhibitors affects glucose and sodium transport in the kidneys and predominantly protects against hospitalization for heart failure soon after the onset of therapy. Active lactation stimulates glucose transport into the mammary gland and improves subclinical and clinical atherosclerotic vascular disease years after delivery. Both SGLT2 inhibitors and lactation have effects on a variety of glucose transporters. Several mechanisms have been proposed to explain the cardiometabolic benefits of SGLT2 inhibition and lactation. Learning from the similarities and differences between both processes will advance our understanding of cardiometabolic health for all people.
Collapse
Affiliation(s)
- Maria A Ramos-Roman
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
2
|
Gautheron G, Péraldi-Roux S, Vaillé J, Belhadj S, Patyra A, Bayle M, Youl E, Omhmmed S, Guyot M, Cros G, Guichou JF, Uzan B, Movassat J, Quignard JF, Neasta J, Oiry C. The flavonoid resokaempferol improves insulin secretion from healthy and dysfunctional pancreatic β-cells. Br J Pharmacol 2024. [PMID: 39327688 DOI: 10.1111/bph.17304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND AND PURPOSE The pharmacology of flavonoids on β-cell function is largely undefined especially in the context of defective secretion of insulin. We sought to identify flavonoids that increased the insulin-secreting function of β-cells and to explore the underlying mechanisms. EXPERIMENTAL APPROACH INS-1 β-cells in culture and islets of Langerhans isolated from control and diabetic male rats were used for insulin secretion experiments. Pharmacological and electrophysiological approaches were used for mechanistic studies. KEY RESULTS Among a set of flavonoids, exposure of INS-1 β-cells to resokaempferol (ResoK) enhanced glucose-stimulated insulin secretion and therefore we further characterised its activity and its pharmacological mechanism. ResoK glucose-dependently enhanced insulin secretion in INS-1 β-cells and pancreatic islets isolated from rats. Mechanistically, whole cell patch clamp recordings in INS-1 cells showed that ResoK rapidly and dose-dependently enhanced the L-type Ca2+ current whereas it was inactive towards T-type Ca2+ current. Accordingly, pharmacological inhibition of L-type Ca2+ current but not T-type Ca2+ current blocked the effects of ResoK on glucose-stimulated insulin secretion. ResoK was still active on dysfunctional β-cells as it ameliorated glucose-stimulated insulin secretion in glucotoxicity-induced dysfunctional INS-1 cells and in pancreatic islets isolated from diabetic rats. CONCLUSION AND IMPLICATIONS ResoK is a glucose-dependent activator of insulin secretion. Our results indicated that the effects of ResoK on insulin secretion involved its capacity to stimulate L-type Ca2+ currents in cultured β-cells. As ResoK was also effective on dysfunctional β-cells, our work provides a new approach to stimulating insulin secretion, using compounds based on the structure of ResoK.
Collapse
Affiliation(s)
| | | | - Justine Vaillé
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Sahla Belhadj
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Andrzej Patyra
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmaceutical Biology, Medical University of Warsaw, Warsaw, Poland
| | - Morgane Bayle
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Estelle Youl
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Mélanie Guyot
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Gérard Cros
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Benjamin Uzan
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Jamileh Movassat
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Jean-François Quignard
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
| | - Jérémie Neasta
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Catherine Oiry
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
3
|
Hill TG, Gao R, Benrick A, Kothegala L, Rorsman N, Santos C, Acreman S, Briant LJ, Dou H, Gandasi NR, Guida C, Haythorne E, Wallace M, Knudsen JG, Miranda C, Tolö J, Clark A, Davison L, Størling J, Tarasov A, Ashcroft FM, Rorsman P, Zhang Q. Loss of electrical β-cell to δ-cell coupling underlies impaired hypoglycaemia-induced glucagon secretion in type-1 diabetes. Nat Metab 2024:10.1038/s42255-024-01139-z. [PMID: 39313541 DOI: 10.1038/s42255-024-01139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
Diabetes mellitus involves both insufficient insulin secretion and dysregulation of glucagon secretion1. In healthy people, a fall in plasma glucose stimulates glucagon release and thereby increases counter-regulatory hepatic glucose production. This response is absent in many patients with type-1 diabetes (T1D)2, which predisposes to severe hypoglycaemia that may be fatal and accounts for up to 10% of the mortality in patients with T1D3. In rats with chemically induced or autoimmune diabetes, counter-regulatory glucagon secretion can be restored by SSTR antagonists4-7 but both the underlying cellular mechanism and whether it can be extended to humans remain unestablished. Here, we show that glucagon secretion is not stimulated by low glucose in isolated human islets from donors with T1D, a defect recapitulated in non-obese diabetic mice with T1D. This occurs because of hypersecretion of somatostatin, leading to aberrant paracrine inhibition of glucagon secretion. Normally, KATP channel-dependent hyperpolarization of β-cells at low glucose extends into the δ-cells through gap junctions, culminating in suppression of action potential firing and inhibition of somatostatin secretion. This 'electric brake' is lost following autoimmune destruction of the β-cells, resulting in impaired counter-regulation. This scenario accounts for the clinical observation that residual β-cell function correlates with reduced hypoglycaemia risk8.
Collapse
Affiliation(s)
- Thomas G Hill
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Rui Gao
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Anna Benrick
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Lakshmi Kothegala
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
- Department of Developmental Biology and Genetics (DBG), Indian Institute of Science (IISc), Bengaluru, India
| | - Nils Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Cristiano Santos
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Samuel Acreman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Linford J Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Haiqiang Dou
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Nikhil R Gandasi
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
- Department of Developmental Biology and Genetics (DBG), Indian Institute of Science (IISc), Bengaluru, India
| | - Claudia Guida
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Elizabeth Haythorne
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Marsha Wallace
- Nuffield Department of Clinical Medicine, University of Oxford, Roosevelt Drive, Oxford, UK
- The Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Jakob G Knudsen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Miranda
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Johan Tolö
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Lucy Davison
- Nuffield Department of Clinical Medicine, University of Oxford, Roosevelt Drive, Oxford, UK
- The Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Joachim Størling
- Steno Diabetes Center Copenhagen, Translational Type 1 Diabetes Research, Herlev, Denmark
| | - Andrei Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden.
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK.
- Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
- Center for Neuroscience and Cell Biology (CNC), Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
4
|
Félix-Martínez GJ, Osorio-Londoño D, Godínez-Fernández JR. Impact of oxygen and glucose availability on the viability and connectivity of islet cells: A computational study of reconstructed avascular human islets. PLoS Comput Biol 2024; 20:e1012357. [PMID: 39137218 PMCID: PMC11343470 DOI: 10.1371/journal.pcbi.1012357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/23/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
The experimental study and transplantation of pancreatic islets requires their isolation from the surrounding tissue, and therefore, from the vasculature. Under these conditions, avascular islets rely on the diffusion of peripheral oxygen and nutrients to comply with the requirements of islet cells while responding to changes in body glucose. As a complement to the experimental work, computational models have been widely used to estimate how avascular islets would be affected by the hypoxic conditions found both in culture and transplant sites. However, previous models have been based on simplified representations of pancreatic islets which has limited the reach of the simulations performed. Aiming to contribute with a more realistic model of avascular human islets, in this work we used architectures of human islets reconstructed from experimental data to simulate the availability of oxygen for α, β and δ-cells, emulating culture and transplant conditions at different glucose concentrations. The modeling approach proposed allowed us to quantitatively estimate how the loss of cells due to severe hypoxia would impact interactions between islet cells, ultimately segregating the islet into disconnected subnetworks. According to the simulations performed, islet encapsulation, by reducing the oxygen available within the islets, could severely compromise cell viability. Moreover, our model suggests that even without encapsulation, only microislets composed of less than 100 cells would remain viable in oxygenation conditions found in transplant sites. Overall, in this article we delineate a novel modeling methodology to simulate detailed avascular islets in experimental and transplant conditions with potential applications in the field of islet encapsulation.
Collapse
Affiliation(s)
- Gerardo J. Félix-Martínez
- Investigadoras e investigadores por México, Consejo Nacional de Humanidades, Ciencias y Tecnologías, México City, México
- Department of Electrical Engineering, Universidad Autónoma Metropolitana, Iztapalapa, México City, México
| | - Diana Osorio-Londoño
- Department of Electrical Engineering, Universidad Autónoma Metropolitana, Iztapalapa, México City, México
| | | |
Collapse
|
5
|
Noguchi GM, Castillo VC, Donaldson CJ, Flisher MR, Momen AT, Saghatelian A, Huising MO. Urocortin 3 contributes to paracrine inhibition of islet alpha cells in mice. J Endocrinol 2024; 261:e240018. [PMID: 38593829 PMCID: PMC11095665 DOI: 10.1530/joe-24-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
Pancreatic alpha cell activity and glucagon secretion lower as glucose levels increase. While part of the decrease is regulated by glucose itself, paracrine signaling by their neighboring beta and delta cells also plays an important role. Somatostatin from delta cells is an important local inhibitor of alpha cells at high glucose. Additionally, urocortin 3 (UCN3) is a hormone that is co-released from beta cells with insulin and acts locally to potentiate somatostatin secretion from delta cells. UCN3 thus inhibits insulin secretion via a negative feedback loop with delta cells, but its role with respect to alpha cells and glucagon secretion is not understood. We hypothesize that the somatostatin-driven glucagon inhibition at high glucose is regulated in part by UCN3 from beta cells. Here, we use a combination of live functional Ca2+ and cAMP imaging as well as direct glucagon secretion measurement, all from alpha cells in intact mouse islets, to determine the contributions of UCN3 to alpha cell behavior. Exogenous UCN3 treatment decreased alpha cell Ca2+ and cAMP levels and inhibited glucagon release. Blocking endogenous UCN3 signaling increased alpha cell Ca2+ by 26.8 ± 7.6%, but this did not result in increased glucagon release at high glucose. Furthermore, constitutive deletion of Ucn3 did not increase Ca2+ activity or glucagon secretion relative to controls. UCN3 is thus capable of inhibiting mouse alpha cells, but, given the subtle effects of endogenous UCN3 signaling on alpha cells, we propose that UCN3-driven somatostatin may serve to regulate local paracrine glucagon levels in the islet instead of inhibiting gross systemic glucagon release.
Collapse
Affiliation(s)
- Glyn M. Noguchi
- Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, USA
| | - Vincent C. Castillo
- Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, USA
| | | | - Marcus R. Flisher
- Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, USA
| | - Ariana T. Momen
- Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, USA
| | | | - Mark O. Huising
- Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, USA
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
6
|
Andreozzi F, Mancuso E, Rubino M, Salvatori B, Morettini M, Monea G, Göbl C, Mannino GC, Tura A. Glucagon kinetics assessed by mathematical modelling during oral glucose administration in people spanning from normal glucose tolerance to type 2 diabetes. Front Endocrinol (Lausanne) 2024; 15:1376530. [PMID: 38681771 PMCID: PMC11045965 DOI: 10.3389/fendo.2024.1376530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Background/Objectives Glucagon is important in the maintenance of glucose homeostasis, with also effects on lipids. In this study, we aimed to apply a recently developed model of glucagon kinetics to determine the sensitivity of glucagon variations (especially, glucagon inhibition) to insulin levels ("alpha-cell insulin sensitivity"), during oral glucose administration. Subjects/Methods We studied 50 participants (spanning from normal glucose tolerance to type 2 diabetes) undergoing frequently sampled 5-hr oral glucose tolerance test (OGTT). The alpha-cell insulin sensitivity and the glucagon kinetics were assessed by a mathematical model that we developed previously. Results The alpha-cell insulin sensitivity parameter (named SGLUCA; "GLUCA": "glucagon") was remarkably variable among participants (CV=221%). SGLUCA was found inversely correlated with the mean glycemic values, as well as with 2-hr glycemia of the OGTT. When stratifying participants into two groups (normal glucose tolerance, NGT, N=28, and impaired glucose regulation/type 2 diabetes, IGR_T2D, N=22), we found that SGLUCA was lower in the latter (1.50 ± 0.50·10-2 vs. 0.26 ± 0.14·10-2 ng·L-1 GLUCA/pmol·L-1 INS, in NGT and IGR_T2D, respectively, p=0.009; "INS": "insulin"). Conclusions The alpha-cell insulin sensitivity is highly variable among subjects, and it is different in groups at different glucose tolerance. This may be relevant for defining personalized treatment schemes, in terms of dietary prescriptions but also for treatments with glucagon-related agents.
Collapse
Affiliation(s)
- Francesco Andreozzi
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Elettra Mancuso
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Mariangela Rubino
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | | | - Micaela Morettini
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| | - Giuseppe Monea
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Christian Göbl
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Andrea Tura
- CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
7
|
Fu Q, Qian Y, Jiang H, He Y, Dai H, Chen Y, Xia Z, Liang Y, Zhou Y, Gao R, Zheng S, Lv H, Sun M, Xu K, Yang T. Genetic lineage tracing identifies adaptive mechanisms of pancreatic islet β cells in various mouse models of diabetes with distinct age of initiation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:504-517. [PMID: 37930473 DOI: 10.1007/s11427-022-2372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/17/2023] [Indexed: 11/07/2023]
Abstract
During the pathogenesis of type 1 diabetes (T1D) and type 2 diabetes (T2D), pancreatic islets, especially the β cells, face significant challenges. These insulin-producing cells adopt a regeneration strategy to compensate for the shortage of insulin, but the exact mechanism needs to be defined. High-fat diet (HFD) and streptozotocin (STZ) treatment are well-established models to study islet damage in T2D and T1D respectively. Therefore, we applied these two diabetic mouse models, triggered at different ages, to pursue the cell fate transition of islet β cells. Cre-LoxP systems were used to generate islet cell type-specific (α, β, or δ) green fluorescent protein (GFP)-labeled mice for genetic lineage tracing, thereinto β-cell GFP-labeled mice were tamoxifen induced. Single-cell RNA sequencing (scRNA-seq) was used to investigate the evolutionary trajectories and molecular mechanisms of the GFP-labeled β cells in STZ-treated mice. STZ-induced diabetes caused extensive dedifferentiation of β cells and some of which transdifferentiated into a or δ cells in both youth- and adulthood-initiated mice while this phenomenon was barely observed in HFD models. β cells in HFD mice were expanded via self-replication rather than via transdifferentiation from α or δ cells, in contrast, α or δ cells were induced to transdifferentiate into β cells in STZ-treated mice (both youth- and adulthood-initiated). In addition to the re-dedifferentiation of β cells, it is also highly likely that these "α or δ" cells transdifferentiated from pre-existing β cells could also re-trans-differentiate into insulin-producing β cells and be beneficial to islet recovery. The analysis of ScRNA-seq revealed that several pathways including mitochondrial function, chromatin modification, and remodeling are crucial in the dynamic transition of β cells. Our findings shed light on how islet β cells overcome the deficit of insulin and the molecular mechanism of islet recovery in T1D and T2D pathogenesis.
Collapse
Affiliation(s)
- Qi Fu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yu Qian
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hemin Jiang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yunqiang He
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Dai
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yang Chen
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhiqing Xia
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yucheng Liang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuncai Zhou
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Rui Gao
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shuai Zheng
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hui Lv
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Min Sun
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Kuanfeng Xu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Tao Yang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
8
|
Hoffman EG, D’Souza NC, Liggins RT, Riddell MC. Pharmacologic inhibition of somatostatin receptor 2 to restore glucagon counterregulation in diabetes. Front Pharmacol 2024; 14:1295639. [PMID: 38298268 PMCID: PMC10829877 DOI: 10.3389/fphar.2023.1295639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/13/2023] [Indexed: 02/02/2024] Open
Abstract
Glucose homeostasis is primarily maintained by pancreatic hormones, insulin and glucagon, with an emerging role for a third islet hormone, somatostatin, in regulating insulin and glucagon responses. Under healthy conditions, somatostatin secreted from pancreatic islet δ-cells inhibits both insulin and glucagon release through somatostatin receptor- induced cAMP-mediated downregulation and paracrine inhibition of β- and α-cells, respectively. Since glucagon is the body's most important anti-hypoglycemic hormone, and because glucagon counterregulation to hypoglycemia is lost in diabetes, the study of somatostatin biology has led to new investigational medications now in development that may help to restore glucagon counterregulation in type 1 diabetes. This review highlights the normal regulatory role of pancreatic somatostatin signaling in healthy islet function and how the inhibition of somatostatin receptor signaling in pancreatic α-cells may restore normal glucagon counterregulation in diabetes mellitus.
Collapse
Affiliation(s)
- Emily G. Hoffman
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Ninoschka C. D’Souza
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | | | - Michael C. Riddell
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
9
|
Cohrs CM, Chen C, Atkinson MA, Drotar DM, Speier S. Bridging the Gap: Pancreas Tissue Slices From Organ and Tissue Donors for the Study of Diabetes Pathogenesis. Diabetes 2024; 73:11-22. [PMID: 38117999 PMCID: PMC10784654 DOI: 10.2337/dbi20-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/14/2023] [Indexed: 12/22/2023]
Abstract
Over the last two decades, increased availability of human pancreatic tissues has allowed for major expansions in our understanding of islet biology in health and disease. Indeed, studies of fixed and frozen pancreatic tissues, as well as efforts using viable isolated islets obtained from organ donors, have provided significant insights toward our understanding of diabetes. However, the procedures associated with islet isolation result in distressed cells that have been removed from any surrounding influence. The pancreas tissue slice technology was developed as an in situ approach to overcome certain limitations associated with studies on isolated islets or fixed tissue. In this Perspective, we discuss the value of this novel platform and review how pancreas tissue slices, within a short time, have been integrated in numerous studies of rodent and human islet research. We show that pancreas tissue slices allow for investigations in a less perturbed organ tissue environment, ranging from cellular processes, over peri-islet modulations, to tissue interactions. Finally, we discuss the considerations and limitations of this technology in its future applications. We believe the pancreas tissue slices will help bridge the gap between studies on isolated islets and cells to the systemic conditions by providing new insight into physiological and pathophysiological processes at the organ level. ARTICLE HIGHLIGHTS Human pancreas tissue slices represent a novel platform to study human islet biology in close to physiological conditions. Complementary to established technologies, such as isolated islets, single cells, and histological sections, pancreas tissue slices help bridge our understanding of islet physiology and pathophysiology from single cell to intact organ. Diverse sources of viable human pancreas tissue, each with distinct characteristics to be considered, are available to use in tissue slices for the study of diabetes pathogenesis.
Collapse
Affiliation(s)
- Christian M. Cohrs
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Chunguang Chen
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Mark A. Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL
| | - Denise M. Drotar
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL
| | - Stephan Speier
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
10
|
Huang JL, Pourhosseinzadeh MS, Lee S, Krämer N, Guillen JV, Cinque NH, Aniceto P, Momen AT, Koike S, Huising MO. Paracrine signalling by pancreatic δ cells determines the glycaemic set point in mice. Nat Metab 2024; 6:61-77. [PMID: 38195859 PMCID: PMC10919447 DOI: 10.1038/s42255-023-00944-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/09/2023] [Indexed: 01/11/2024]
Abstract
While pancreatic β and α cells are considered the main drivers of blood glucose homeostasis through insulin and glucagon secretion, the contribution of δ cells and somatostatin (SST) secretion to glucose homeostasis remains unresolved. Here we provide a quantitative assessment of the physiological contribution of δ cells to the glycaemic set point in mice. Employing three orthogonal mouse models to remove SST signalling within the pancreas or transplanted islets, we demonstrate that ablating δ cells or SST leads to a sustained decrease in the glycaemic set point. This reduction coincides with a decreased glucose threshold for insulin response from β cells, leading to increased insulin secretion to the same glucose challenge. Our data demonstrate that β cells are sufficient to maintain stable glycaemia and reveal that the physiological role of δ cells is to provide tonic feedback inhibition that reduces the β cell glucose threshold and consequently lowers the glycaemic set point in vivo.
Collapse
Affiliation(s)
- Jessica L Huang
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Mohammad S Pourhosseinzadeh
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Sharon Lee
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Niels Krämer
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Jaresley V Guillen
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Naomi H Cinque
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Paola Aniceto
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Ariana T Momen
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Shinichiro Koike
- Department of Nutrition, University of California, Davis, CA, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA.
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
11
|
Félix-Martínez GJ, Godínez-Fernández JR. A primer on modelling pancreatic islets: from models of coupled β-cells to multicellular islet models. Islets 2023; 15:2231609. [PMID: 37415423 PMCID: PMC10332213 DOI: 10.1080/19382014.2023.2231609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
Pancreatic islets are mini-organs composed of hundreds or thousands of ɑ, β and δ-cells, which, respectively, secrete glucagon, insulin and somatostatin, key hormones for the regulation of blood glucose. In pancreatic islets, hormone secretion is tightly regulated by both internal and external mechanisms, including electrical communication and paracrine signaling between islet cells. Given its complexity, the experimental study of pancreatic islets has been complemented with computational modeling as a tool to gain a better understanding about how all the mechanisms involved at different levels of organization interact. In this review, we describe how multicellular models of pancreatic cells have evolved from the early models of electrically coupled β-cells to models in which experimentally derived architectures and both electrical and paracrine signals have been considered.
Collapse
Affiliation(s)
- Gerardo J. Félix-Martínez
- Investigador por México CONAHCYT-Department of Electrical Engineering, Universidad Autónoma Metropolitana, Mexico, Mexico
- Department of Electrical Engineering, Universidad Autónoma Metropolitana, Mexico, Mexico
| | | |
Collapse
|
12
|
Ang T, Mason SA, Dao GM, Bruce CR, Kowalski GM. The impact of a single dose of whey protein on glucose flux and metabolite profiles in normoglycemic males: insights into glucagon and insulin biology. Am J Physiol Endocrinol Metab 2023; 325:E688-E699. [PMID: 37877796 DOI: 10.1152/ajpendo.00182.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
Protein ingestion concurrently stimulates euglycemic glucagon and insulin secretion, a response that is particularly robust with rapidly absorbing proteins. Previously, we have shown that ingestion of repeated doses of rapidly absorbing whey protein equally stimulated endogenous glucose production (EGP) and glucose disposal (Rd), thus explaining the preservation of euglycemia. Here, we aimed to determine if a smaller single dose of whey could elicit a large enough glucagon and insulin response to stimulate glucose flux. Therefore, in normoglycemic young adult males (n = 10; age ∼26; BMI ∼25), using [6,6-2H2] glucose tracing and quantitative targeted metabolite profiling, we determined the metabolic response to a single 25 g "standard" dose of whey protein. Whey protein ingestion did not alter glycemia, but increased circulating glucagon (peak 4-fold basal), insulin (peak 6-fold basal), amino acids, and urea while also reducing free fatty acid (FFA) and glycerol concentrations. Interestingly, the postprandial insulin response was driven by both a stimulation of insulin secretion and marked reduction in hepatic insulin clearance. Whey protein ingestion resulted in a modest stimulation of EGP and Rd, both peaking at ∼20% above baseline 1 h after protein ingestion. These findings demonstrate that the ingestion of a single standard serving of whey protein can induce a euglycemic glucagon and insulin response that stimulates glucose flux. We speculate on a theory that could potentially explain how glucagon and insulin synergistically provide hardwired control of nitrogen and glucose homeostasis.NEW & NOTEWORTHY Protein ingestion concurrently stimulates glucagon and insulin secretion. Here we show that in normoglycemic males, ingestion of a single "standard" 25 g serving of rapidly absorbing whey protein drives a sufficiently large glucagon and insulin response, such that it simultaneously increases endogenous glucose production and glucose disposal. We speculate on a novel theory that could potentially explain how the antagonistic/synergistic actions of glucagon and insulin simultaneously provide tight control of glucose and nitrogen homeostasis.
Collapse
Affiliation(s)
- Teddy Ang
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
- School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
| | - Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
- School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
| | - Giang M Dao
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
- School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
13
|
Kolic J, Sun WG, Johnson JD, Guess N. Amino acid-stimulated insulin secretion: a path forward in type 2 diabetes. Amino Acids 2023; 55:1857-1866. [PMID: 37966501 DOI: 10.1007/s00726-023-03352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023]
Abstract
Qualitative and quantitatively appropriate insulin secretion is essential for optimal control of blood glucose. Beta-cells of the pancreas produce and secrete insulin in response to glucose and non-glucose stimuli including amino acids. In this manuscript, we review the literature on amino acid-stimulated insulin secretion in oral and intravenous in vivo studies, in addition to the in vitro literature, and describe areas of consensus and gaps in understanding. We find promising evidence that the synergism of amino acid-stimulated insulin secretion could be exploited to develop novel therapeutics, but that a systematic approach to investigating these lines of evidence is lacking. We highlight evidence that supports the relative preservation of amino acid-stimulated insulin secretion compared to glucose-stimulated insulin secretion in type 2 diabetes, and make the case for the therapeutic potential of amino acids. Finally, we make recommendations for research and describe the potential clinical utility of nutrient-based treatments for type 2 diabetes including remission services.
Collapse
Affiliation(s)
- Jelena Kolic
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - WenQing Grace Sun
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Nicola Guess
- Department of Primary Care Health Sciences, University of Oxford, Radcliffe Primary Care Building, Radcliffe Observatory Quarter, Woodstock Rd, Oxford, OX2 6GG, UK.
| |
Collapse
|
14
|
Walker JT, Saunders DC, Rai V, Chen HH, Orchard P, Dai C, Pettway YD, Hopkirk AL, Reihsmann CV, Tao Y, Fan S, Shrestha S, Varshney A, Petty LE, Wright JJ, Ventresca C, Agarwala S, Aramandla R, Poffenberger G, Jenkins R, Mei S, Hart NJ, Phillips S, Kang H, Greiner DL, Shultz LD, Bottino R, Liu J, Below JE, Parker SCJ, Powers AC, Brissova M. Genetic risk converges on regulatory networks mediating early type 2 diabetes. Nature 2023; 624:621-629. [PMID: 38049589 PMCID: PMC11374460 DOI: 10.1038/s41586-023-06693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/28/2023] [Indexed: 12/06/2023]
Abstract
Type 2 diabetes mellitus (T2D), a major cause of worldwide morbidity and mortality, is characterized by dysfunction of insulin-producing pancreatic islet β cells1,2. T2D genome-wide association studies (GWAS) have identified hundreds of signals in non-coding and β cell regulatory genomic regions, but deciphering their biological mechanisms remains challenging3-5. Here, to identify early disease-driving events, we performed traditional and multiplexed pancreatic tissue imaging, sorted-islet cell transcriptomics and islet functional analysis of early-stage T2D and control donors. By integrating diverse modalities, we show that early-stage T2D is characterized by β cell-intrinsic defects that can be proportioned into gene regulatory modules with enrichment in signals of genetic risk. After identifying the β cell hub gene and transcription factor RFX6 within one such module, we demonstrated multiple layers of genetic risk that converge on an RFX6-mediated network to reduce insulin secretion by β cells. RFX6 perturbation in primary human islet cells alters β cell chromatin architecture at regions enriched for T2D GWAS signals, and population-scale genetic analyses causally link genetically predicted reduced RFX6 expression with increased T2D risk. Understanding the molecular mechanisms of complex, systemic diseases necessitates integration of signals from multiple molecules, cells, organs and individuals, and thus we anticipate that this approach will be a useful template to identify and validate key regulatory networks and master hub genes for other diseases or traits using GWAS data.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vivek Rai
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Hung-Hsin Chen
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Orchard
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Chunhua Dai
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yasminye D Pettway
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexander L Hopkirk
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Conrad V Reihsmann
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yicheng Tao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Simin Fan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Shristi Shrestha
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arushi Varshney
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Lauren E Petty
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jordan J Wright
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christa Ventresca
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Samir Agarwala
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Radhika Aramandla
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Greg Poffenberger
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Regina Jenkins
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shaojun Mei
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nathaniel J Hart
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sharon Phillips
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dale L Greiner
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Rita Bottino
- Imagine Pharma, Devon, PA, USA
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Allegheny Health Network, Pittsburgh, PA, USA
| | - Jie Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- VA Tennessee Valley Healthcare System, Nashville, TN, USA.
| | - Marcela Brissova
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
15
|
Osipovich AB, Zhou FY, Chong JJ, Trinh LT, Cottam MA, Shrestha S, Cartailler JP, Magnuson MA. Deletion of Ascl1 in pancreatic β-cells improves insulin secretion, promotes parasympathetic innervation, and attenuates dedifferentiation during metabolic stress. Mol Metab 2023; 78:101811. [PMID: 37769990 PMCID: PMC10570713 DOI: 10.1016/j.molmet.2023.101811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023] Open
Abstract
OBJECTIVE ASCL1, a pioneer transcription factor, is essential for neural cell differentiation and function. Previous studies have shown that Ascl1 expression is increased in pancreatic β-cells lacking functional KATP channels or after feeding of a high fat diet (HFD) suggesting that it may contribute to the metabolic stress response of β-cells. METHODS We generated β-cell-specific Ascl1 knockout mice (Ascl1βKO) and assessed their glucose homeostasis, islet morphology and gene expression after feeding either a normal diet or HFD for 12 weeks, or in combination with a genetic disruption of Abcc8, an essential KATP channel component. RESULTS Ascl1 expression is increased in response to both a HFD and membrane depolarization and requires CREB-dependent Ca2+ signaling. No differences in glucose homeostasis or islet morphology were observed in Ascl1βKO mice fed a normal diet or in the absence of KATP channels. However, male Ascl1βKO mice fed a HFD exhibited decreased blood glucose levels, improved glucose tolerance, and increased β-cell proliferation. Bulk RNA-seq analysis of islets from Ascl1βKO mice from three studied conditions showed alterations in genes associated with the secretory function. HFD-fed Ascl1βKO mice showed the most extensive changes with increased expression of genes necessary for glucose sensing, insulin secretion and β-cell proliferation, and a decrease in genes associated with β-cell dysfunction, inflammation and dedifferentiation. HFD-fed Ascl1βKO mice also displayed increased expression of parasympathetic neural markers and cholinergic receptors that was accompanied by increased insulin secretion in response to acetylcholine and an increase in islet innervation. CONCLUSIONS Ascl1 expression is induced by stimuli that cause Ca2+-signaling to the nucleus and contributes in a multifactorial manner to the loss of β-cell function by promoting the expression of genes associated with cellular dedifferentiation, attenuating β-cells proliferation, suppressing acetylcholine sensitivity, and repressing parasympathetic innervation of islets. Thus, the removal of Ascl1 from β-cells improves their function in response to metabolic stress.
Collapse
Affiliation(s)
- Anna B Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Frank Y Zhou
- College of Arts and Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Judy J Chong
- College of Arts and Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Linh T Trinh
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mathew A Cottam
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Shristi Shrestha
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
16
|
Vaganova AN, Shemyakova TS, Lenskaia KV, Rodionov RN, Steenblock C, Gainetdinov RR. Trace Amine-Associated Receptors and Monoamine-Mediated Regulation of Insulin Secretion in Pancreatic Islets. Biomolecules 2023; 13:1618. [PMID: 38002300 PMCID: PMC10669413 DOI: 10.3390/biom13111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Currently, metabolic syndrome treatment includes predominantly pharmacological symptom relief and complex lifestyle changes. Trace amines and their receptor systems modulate signaling pathways of dopamine, norepinephrine, and serotonin, which are involved in the pathogenesis of this disorder. Trace amine-associated receptor 1 (TAAR1) is expressed in endocrine organs, and it was revealed that TAAR1 may regulate insulin secretion in pancreatic islet β-cells. For instance, accumulating data demonstrate the positive effect of TAAR1 agonists on the dynamics of metabolic syndrome progression and MetS-associated disease development. The role of other TAARs (TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) in the islet's function is much less studied. In this review, we summarize the evidence of TAARs' contribution to the metabolic syndrome pathogenesis and regulation of insulin secretion in pancreatic islets. Additionally, by the analysis of public transcriptomic data, we demonstrate that TAAR1 and other TAAR receptors are expressed in the pancreatic islets. We also explore associations between the expression of TAARs mRNA and other genes in studied samples and demonstrate the deregulation of TAARs' functional associations in patients with metabolic diseases compared to healthy donors.
Collapse
Affiliation(s)
- Anastasia N. Vaganova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
- St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Taisiia S. Shemyakova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
| | - Karina V. Lenskaia
- Department of Medicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| | - Roman N. Rodionov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.N.R.); (C.S.)
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.N.R.); (C.S.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
- St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
17
|
Riahi Y, Kogot-Levin A, Kadosh L, Agranovich B, Malka A, Assa M, Piran R, Avrahami D, Glaser B, Gottlieb E, Jackson F, Cerasi E, Bernal-Mizrachi E, Helman A, Leibowitz G. Hyperglucagonaemia in diabetes: altered amino acid metabolism triggers mTORC1 activation, which drives glucagon production. Diabetologia 2023; 66:1925-1942. [PMID: 37480416 DOI: 10.1007/s00125-023-05967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/07/2023] [Indexed: 07/24/2023]
Abstract
AIM/HYPOTHESIS Hyperglycaemia is associated with alpha cell dysfunction, leading to dysregulated glucagon secretion in type 1 and type 2 diabetes; however, the mechanisms involved are still elusive. The nutrient sensor mammalian target of rapamycin complex 1 (mTORC1) plays a major role in the maintenance of alpha cell mass and function. We studied the regulation of alpha cell mTORC1 by nutrients and its role in the development of hyperglucagonaemia in diabetes. METHODS Alpha cell mTORC1 activity was assessed by immunostaining for phosphorylation of its downstream target, the ribosomal protein S6, and glucagon, followed by confocal microscopy on pancreatic sections and flow cytometry on dispersed human and mouse islets and the alpha cell line, αTC1-6. Metabolomics and metabolic flux were studied by 13C glucose labelling in 2.8 or 16.7 mmol/l glucose followed by LC-MS analysis. To study the role of mTORC1 in mediating hyperglucagonaemia in diabetes, we generated an inducible alpha cell-specific Rptor knockout in the Akita mouse model of diabetes and tested the effects on glucose tolerance by IPGTT and on glucagon secretion. RESULTS mTORC1 activity was increased in alpha cells from diabetic Akita mice in parallel to the development of hyperglycaemia and hyperglucagonaemia (two- to eightfold increase). Acute exposure of mouse and human islets to amino acids stimulated alpha cell mTORC1 (3.5-fold increase), whereas high glucose concentrations inhibited mTORC1 (1.4-fold decrease). The mTORC1 response to glucose was abolished in human and mouse diabetic alpha cells following prolonged islet exposure to high glucose levels, resulting in sustained activation of mTORC1, along with increased glucagon secretion. Metabolomics and metabolic flux analysis showed that exposure to high glucose levels enhanced glycolysis, glucose oxidation and the synthesis of glucose-derived amino acids. In addition, chronic exposure to high glucose levels increased the expression of Slc7a2 and Slc38a4, which encode amino acid transporters, as well as the levels of branched-chain amino acids and methionine cycle metabolites (~1.3-fold increase for both). Finally, conditional Rptor knockout in alpha cells from adult diabetic mice inhibited mTORC1, thereby inhibiting glucagon secretion (~sixfold decrease) and improving diabetes, despite persistent insulin deficiency. CONCLUSIONS/INTERPRETATION Alpha cell exposure to hyperglycaemia enhances amino acid synthesis and transport, resulting in sustained activation of mTORC1, thereby increasing glucagon secretion. mTORC1 therefore plays a major role in mediating alpha cell dysfunction in diabetes. DATA AVAILABILITY All sequencing data are available from the Gene Expression Omnibus (GEO) repository (accession no. GSE154126; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154126 ).
Collapse
Affiliation(s)
- Yael Riahi
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviram Kogot-Levin
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liat Kadosh
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bella Agranovich
- Laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Assaf Malka
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michael Assa
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ron Piran
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dana Avrahami
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Developmental Biology and Cancer Research, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Glaser
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eyal Gottlieb
- Laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fields Jackson
- Department of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Erol Cerasi
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Aharon Helman
- Department of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel.
| | - Gil Leibowitz
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
18
|
Hrovatin K, Bastidas-Ponce A, Bakhti M, Zappia L, Büttner M, Salinno C, Sterr M, Böttcher A, Migliorini A, Lickert H, Theis FJ. Delineating mouse β-cell identity during lifetime and in diabetes with a single cell atlas. Nat Metab 2023; 5:1615-1637. [PMID: 37697055 PMCID: PMC10513934 DOI: 10.1038/s42255-023-00876-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/26/2023] [Indexed: 09/13/2023]
Abstract
Although multiple pancreatic islet single-cell RNA-sequencing (scRNA-seq) datasets have been generated, a consensus on pancreatic cell states in development, homeostasis and diabetes as well as the value of preclinical animal models is missing. Here, we present an scRNA-seq cross-condition mouse islet atlas (MIA), a curated resource for interactive exploration and computational querying. We integrate over 300,000 cells from nine scRNA-seq datasets consisting of 56 samples, varying in age, sex and diabetes models, including an autoimmune type 1 diabetes model (NOD), a glucotoxicity/lipotoxicity type 2 diabetes model (db/db) and a chemical streptozotocin β-cell ablation model. The β-cell landscape of MIA reveals new cell states during disease progression and cross-publication differences between previously suggested marker genes. We show that β-cells in the streptozotocin model transcriptionally correlate with those in human type 2 diabetes and mouse db/db models, but are less similar to human type 1 diabetes and mouse NOD β-cells. We also report pathways that are shared between β-cells in immature, aged and diabetes models. MIA enables a comprehensive analysis of β-cell responses to different stressors, providing a roadmap for the understanding of β-cell plasticity, compensation and demise.
Collapse
Affiliation(s)
- Karin Hrovatin
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Medical Faculty, Technical University of Munich, Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Luke Zappia
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Maren Büttner
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Medical Faculty, Technical University of Munich, Munich, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Adriana Migliorini
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- McEwen Stem Cell Institute, University Health Network (UHN), Toronto, Ontario, Canada
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medical Faculty, Technical University of Munich, Munich, Germany.
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- Department of Mathematics, Technical University of Munich, Garching, Germany.
| |
Collapse
|
19
|
Li Y, Tong T, Li P, Peng Y, Zhang M, Liu J, She Y, Li Z, Li Y. Screening of Potential Probiotic Lactobacillaceae and Their Improvement of Type 2 Diabetes Mellitus by Promoting PI3K/AKT Signaling Pathway in db/db Mice. Pol J Microbiol 2023; 72:285-297. [PMID: 37725896 PMCID: PMC10508973 DOI: 10.33073/pjm-2023-028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/09/2023] [Indexed: 09/21/2023] Open
Abstract
The study aimed to isolate Lactobacillaceae strains with in vitro hypoglycemic activity and probiotic properties and to determine their antidiabetic abilities in vivo. Lactiplantibacillus plantarum 22, L. plantarum 25, Limosilactobacillus fermentum 11, and L. fermentum 305 with high in vitro hypoglycemic activity were screened from 23 strains of Lactobacillaceae isolated from human feces and identified by 16S rDNA sequencing. The fasting blood glucose (FBG) of the mice was recorded weekly. After 12 weeks, liver, kidney, and pancreas tissues were stained with hematoxylin and eosin (H&E) to observe histomorphology; the inflammatory factors were assayed by Quantitative Real-time PCR; PI3K and AKT were measured by Western blot; the short-chain fatty acids (SCFAs) were determined by LC-MS/MS. Inhibitory activities of L. plantarum 22, L. plantarum 25, L. fermentum 11, and L. fermentum 305 against α-amylase were 62.29 ± 0.44%, 51.81 ± 3.65%, 58.40 ± 1.68%, and 57.48 ± 5.04%, respectively. Their inhibitory activities to α-glucosidase were 14.89 ± 0.38%, 15.32 ± 0.89%, 52.63 ± 3.07%, and 51.79 ± 1.13%, respectively. Their survival rate after simulated gastrointestinal test were 12.42 ± 2.84%, 9.10 ± 1.12%, 5.86 ± 0.52%, and 8.82 ± 2.50% and their adhesion rates to Caco-2 cell were 6.09 ± 0.39%, 6.37 ± 0.28%, 6.94 ± 0.27%, and 6.91 ± 0.11%, respectively. The orthogonal tests of bacterial powders of the four strains showed that the maximum inhibitory activities to α-amylase and α-glucosidase were 93.18 ± 1.19% and 75.33 ± 2.89%, respectively. The results showed that the mixture of Lactobacillaceae could lower FBG, reduce inflammation, and liver, kidney, and pancreas damage, promote PI3K/AKT signaling pathway, and increase the content of SCFAs. The combination of L. plantarum 22, L. plantarum 25, L. fermentum 11, and L. fermentum 305 can potentially improve type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- Yueyang Li
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Tong Tong
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Peifan Li
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yian Peng
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Michael Zhang
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
- School of Public Health, Anhui University of Science and Technology, Hefei, China
| | - Jia Liu
- Internal Trade Food Science and Technology (Beijing) Co., Ltd., Beijing, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science, Beijing, China
| | - Zuming Li
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yongli Li
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Montalvo AP, Gruskin ZL, Leduc A, Liu M, Gao Z, Ahn JH, Straubhaar JR, Slavov N, Alvarez-Dominguez JR. An adult clock component links circadian rhythms to pancreatic β-cell maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.552890. [PMID: 37609178 PMCID: PMC10441398 DOI: 10.1101/2023.08.11.552890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
How ubiquitous circadian clocks orchestrate tissue-specific outputs is not well understood. Pancreatic β cell-autonomous clocks attune insulin secretion to daily energy cycles, and desynchrony from genetic or behavioral disruptions raises type 2 diabetes risk. We show that the transcription factor DEC1, a clock component induced in adult β cells, coordinates their glucose responsiveness by synchronizing energy metabolism and secretory gene oscillations. Dec1-ablated mice develop lifelong hypo-insulinemic diabetes, despite normal islet formation and intact circadian Clock and Bmal1 activators. DEC1, but not CLOCK/BMAL1, binds maturity-linked genes that mediate respiratory metabolism and insulin exocytosis, and Dec1 loss disrupts their transcription synchrony. Accordingly, β-cell Dec1 ablation causes hypo-insulinemia due to immature glucose responsiveness, dampening insulin rhythms. Thus, Dec1 links circadian clockwork to the β-cell maturation process, aligning metabolism to diurnal energy cycles.
Collapse
Affiliation(s)
- Ana P Montalvo
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Zoe L Gruskin
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Andrew Leduc
- Departments of Bioengineering and Biology, Single-Cell Proteomics Center and Barnett Institute, Northeastern University, Boston, MA 02115, USA
| | - Mai Liu
- Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zihan Gao
- Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - June H Ahn
- Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Juerg R Straubhaar
- Bioinformatics Center, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Nikolai Slavov
- Departments of Bioengineering and Biology, Single-Cell Proteomics Center and Barnett Institute, Northeastern University, Boston, MA 02115, USA
| | - Juan R Alvarez-Dominguez
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Souza-Tavares H, Miranda CS, Vasques-Monteiro IML, Sandoval C, Santana-Oliveira DA, Silva-Veiga FM, Fernandes-da-Silva A, Souza-Mello V. Peroxisome proliferator-activated receptors as targets to treat metabolic diseases: Focus on the adipose tissue, liver, and pancreas. World J Gastroenterol 2023; 29:4136-4155. [PMID: 37475842 PMCID: PMC10354577 DOI: 10.3748/wjg.v29.i26.4136] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023] Open
Abstract
The world is experiencing reflections of the intersection of two pandemics: Obesity and coronavirus disease 2019. The prevalence of obesity has tripled since 1975 worldwide, representing substantial public health costs due to its comorbidities. The adipose tissue is the initial site of obesity impairments. During excessive energy intake, it undergoes hyperplasia and hypertrophy until overt inflammation and insulin resistance turn adipocytes into dysfunctional cells that send lipotoxic signals to other organs. The pancreas is one of the organs most affected by obesity. Once lipotoxicity becomes chronic, there is an increase in insulin secretion by pancreatic beta cells, a surrogate for type 2 diabetes mellitus (T2DM). These alterations threaten the survival of the pancreatic islets, which tend to become dysfunctional, reaching exhaustion in the long term. As for the liver, lipotoxicity favors lipogenesis and impairs beta-oxidation, resulting in hepatic steatosis. This silent disease affects around 30% of the worldwide population and can evolve into end-stage liver disease. Although therapy for hepatic steatosis remains to be defined, peroxisome proliferator-activated receptors (PPARs) activation copes with T2DM management. Peroxisome PPARs are transcription factors found at the intersection of several metabolic pathways, leading to insulin resistance relief, improved thermogenesis, and expressive hepatic steatosis mitigation by increasing mitochondrial beta-oxidation. This review aimed to update the potential of PPAR agonists as targets to treat metabolic diseases, focusing on adipose tissue plasticity and hepatic and pancreatic remodeling.
Collapse
Affiliation(s)
| | | | | | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Osorno 5310431, Chile
- Departamento de Ciencias Preclínicas, Universidad de la Frontera, Temuco 4780000, Chile
| | | | | | | | - Vanessa Souza-Mello
- Department of Anatomy, Rio de Janeiro State University, Rio de Janeiro 20551030, Brazil
| |
Collapse
|
22
|
Oteng AB, Liu L. GPCR-mediated effects of fatty acids and bile acids on glucose homeostasis. Front Endocrinol (Lausanne) 2023; 14:1206063. [PMID: 37484954 PMCID: PMC10360933 DOI: 10.3389/fendo.2023.1206063] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Fatty acids and glucose are key biomolecules that share several commonalities including serving as energy substrates and as signaling molecules. Fatty acids can be synthesized endogenously from intermediates of glucose catabolism via de-novo lipogenesis. Bile acids are synthesized endogenously in the liver from the biologically important lipid molecule, cholesterol. Evidence abounds that fatty acids and bile acids play direct and indirect roles in systemic glucose homeostasis. The tight control of plasma glucose levels during postprandial and fasted states is principally mediated by two pancreatic hormones, insulin and glucagon. Here, we summarize experimental studies on the endocrine effects of fatty acids and bile acids, with emphasis on their ability to regulate the release of key hormones that regulate glucose metabolism. We categorize the heterogenous family of fatty acids into short chain fatty acids (SCFAs), unsaturated, and saturated fatty acids, and highlight that along with bile acids, these biomolecules regulate glucose homeostasis by serving as endogenous ligands for specific G-protein coupled receptors (GPCRs). Activation of these GPCRs affects the release of incretin hormones by enteroendocrine cells and/or the secretion of insulin, glucagon, and somatostatin by pancreatic islets, all of which regulate systemic glucose homeostasis. We deduce that signaling induced by fatty acids and bile acids is necessary to maintain euglycemia to prevent metabolic diseases such as type-2 diabetes and related metabolic disorders.
Collapse
|
23
|
Aldous N, Moin ASM, Abdelalim EM. Pancreatic β-cell heterogeneity in adult human islets and stem cell-derived islets. Cell Mol Life Sci 2023; 80:176. [PMID: 37270452 DOI: 10.1007/s00018-023-04815-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/19/2023] [Indexed: 06/05/2023]
Abstract
Recent studies reported that pancreatic β-cells are heterogeneous in terms of their transcriptional profiles and their abilities for insulin secretion. Sub-populations of pancreatic β-cells have been identified based on the functionality and expression of specific surface markers. Under diabetes condition, β-cell identity is altered leading to different β-cell sub-populations. Furthermore, cell-cell contact between β-cells and other endocrine cells within the islet play an important role in regulating insulin secretion. This highlights the significance of generating a cell product derived from stem cells containing β-cells along with other major islet cells for treating patients with diabetes, instead of transplanting a purified population of β-cells. Another key question is how close in terms of heterogeneity are the islet cells derived from stem cells? In this review, we summarize the heterogeneity in islet cells of the adult pancreas and those generated from stem cells. In addition, we highlight the significance of this heterogeneity in health and disease conditions and how this can be used to design a stem cell-derived product for diabetes cell therapy.
Collapse
Affiliation(s)
- Noura Aldous
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar
| | - Abu Saleh Md Moin
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Essam M Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar.
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar.
| |
Collapse
|
24
|
Wang G, Chiou J, Zeng C, Miller M, Matta I, Han JY, Kadakia N, Okino ML, Beebe E, Mallick M, Camunas-Soler J, Dos Santos T, Dai XQ, Ellis C, Hang Y, Kim SK, MacDonald PE, Kandeel FR, Preissl S, Gaulton KJ, Sander M. Integrating genetics with single-cell multiomic measurements across disease states identifies mechanisms of beta cell dysfunction in type 2 diabetes. Nat Genet 2023; 55:984-994. [PMID: 37231096 PMCID: PMC10550816 DOI: 10.1038/s41588-023-01397-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 04/12/2023] [Indexed: 05/27/2023]
Abstract
Dysfunctional pancreatic islet beta cells are a hallmark of type 2 diabetes (T2D), but a comprehensive understanding of the underlying mechanisms, including gene dysregulation, is lacking. Here we integrate information from measurements of chromatin accessibility, gene expression and function in single beta cells with genetic association data to nominate disease-causal gene regulatory changes in T2D. Using machine learning on chromatin accessibility data from 34 nondiabetic, pre-T2D and T2D donors, we identify two transcriptionally and functionally distinct beta cell subtypes that undergo an abundance shift during T2D progression. Subtype-defining accessible chromatin is enriched for T2D risk variants, suggesting a causal contribution of subtype identity to T2D. Both beta cell subtypes exhibit activation of a stress-response transcriptional program and functional impairment in T2D, which is probably induced by the T2D-associated metabolic environment. Our findings demonstrate the power of multimodal single-cell measurements combined with machine learning for characterizing mechanisms of complex diseases.
Collapse
Affiliation(s)
- Gaowei Wang
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
| | - Joshua Chiou
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
- Biomedical Graduate Studies Program, University of California San Diego, La Jolla, CA, USA
| | - Chun Zeng
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
| | - Michael Miller
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Ileana Matta
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
| | - Jee Yun Han
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Nikita Kadakia
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
| | - Mei-Lin Okino
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
| | - Elisha Beebe
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
| | - Medhavi Mallick
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
| | | | - Theodore Dos Santos
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Xiao-Qing Dai
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Cara Ellis
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Yan Hang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Departments of Medicine and of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Departments of Medicine and of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Fouad R Kandeel
- Department of Clinical Diabetes, Endocrinology & Metabolism, City of Hope, Duarte, CA, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA.
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Kyle J Gaulton
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Maike Sander
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| |
Collapse
|
25
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
26
|
Huang X, Gu W, Zhang J, Lan Y, Colarusso JL, Li S, Pertl C, Lu J, Kim H, Zhu J, Breault DT, Sévigny J, Zhou Q. Stomach-derived human insulin-secreting organoids restore glucose homeostasis. Nat Cell Biol 2023; 25:778-786. [PMID: 37106062 DOI: 10.1038/s41556-023-01130-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/15/2023] [Indexed: 04/29/2023]
Abstract
Gut stem cells are accessible by biopsy and propagate robustly in culture, offering an invaluable resource for autologous cell therapies. Insulin-producing cells can be induced in mouse gut, but it has not been possible to generate abundant and durable insulin-secreting cells from human gut tissues to evaluate their potential as a cell therapy for diabetes. Here we describe a protocol to differentiate cultured human gastric stem cells into pancreatic islet-like organoids containing gastric insulin-secreting (GINS) cells that resemble β-cells in molecular hallmarks and function. Sequential activation of the inducing factors NGN3 and PDX1-MAFA led human gastric stem cells onto a distinctive differentiation path, including a SOX4High endocrine and GalaninHigh GINS precursor, before adopting β-cell identity, at efficiencies close to 70%. GINS organoids acquired glucose-stimulated insulin secretion in 10 days and restored glucose homeostasis for over 100 days in diabetic mice after transplantation, providing proof of concept for a promising approach to treat diabetes.
Collapse
Affiliation(s)
- Xiaofeng Huang
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Wei Gu
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jiaoyue Zhang
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ying Lan
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan L Colarusso
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sanlan Li
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Christoph Pertl
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jiaqi Lu
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Hyunkee Kim
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jian Zhu
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
- Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Qiao Zhou
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
27
|
Langhans W, Watts AG, Spector AC. The elusive cephalic phase insulin response: triggers, mechanisms, and functions. Physiol Rev 2023; 103:1423-1485. [PMID: 36422994 PMCID: PMC9942918 DOI: 10.1152/physrev.00025.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
The cephalic phase insulin response (CPIR) is classically defined as a head receptor-induced early release of insulin during eating that precedes a postabsorptive rise in blood glucose. Here we discuss, first, the various stimuli that elicit the CPIR and the sensory signaling pathways (sensory limb) involved; second, the efferent pathways that control the various endocrine events associated with eating (motor limb); and third, what is known about the central integrative processes linking the sensory and motor limbs. Fourth, in doing so, we identify open questions and problems with respect to the CPIR in general. Specifically, we consider test conditions that allow, or may not allow, the stimulus to reach the potentially relevant taste receptors and to trigger a CPIR. The possible significance of sweetness and palatability as crucial stimulus features and whether conditioning plays a role in the CPIR are also discussed. Moreover, we ponder the utility of the strict classical CPIR definition based on what is known about the effects of vagal motor neuron activation and thereby acetylcholine on the β-cells, together with the difficulties of the accurate assessment of insulin release. Finally, we weigh the evidence of the physiological and clinical relevance of the cephalic contribution to the release of insulin that occurs during and after a meal. These points are critical for the interpretation of the existing data, and they support a sharper focus on the role of head receptors in the overall insulin response to eating rather than relying solely on the classical CPIR definition.
Collapse
Affiliation(s)
- Wolfgang Langhans
- Physiology and Behavior Laboratory, ETH Zürich, Schwerzenbach, Switzerland
| | - Alan G Watts
- Department of Biological Sciences, USC Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
28
|
In Vivo CaV3 Channel Inhibition Promotes Maturation of Glucose-Dependent Ca2+ Signaling in Human iPSC-Islets. Biomedicines 2023; 11:biomedicines11030807. [PMID: 36979793 PMCID: PMC10045717 DOI: 10.3390/biomedicines11030807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
CaV3 channels are ontogenetically downregulated with the maturation of certain electrically excitable cells, including pancreatic β cells. Abnormally exaggerated CaV3 channels drive the dedifferentiation of mature β cells. This led us to question whether excessive CaV3 channels, retained mistakenly in engineered human-induced pluripotent stem cell-derived islet (hiPSC-islet) cells, act as an obstacle to hiPSC-islet maturation. We addressed this question by using the anterior chamber of the eye (ACE) of immunodeficient mice as a site for recapitulation of in vivo hiPSC-islet maturation in combination with intravitreal drug infusion, intravital microimaging, measurements of cytoplasmic-free Ca2+ concentration ([Ca2+]i) and patch clamp analysis. We observed that the ACE is well suited for recapitulation, observation and intervention of hiPSC-islet maturation. Intriguingly, intraocular hiPSC-islet grafts, retrieved intact following intravitreal infusion of the CaV3 channel blocker NNC55-0396, exhibited decreased basal [Ca2+]i levels and increased glucose-stimulated [Ca2+]i responses. Insulin-expressing cells of these islet grafts indeed expressed the NNC55-0396 target CaV3 channels. Intraocular hiPSC-islets underwent satisfactory engraftment, vascularization and light scattering without being influenced by the intravitreally infused NNC55-0396. These data demonstrate that inhibiting CaV3 channels facilitates the maturation of glucose-activated Ca2+ signaling in hiPSC-islets, supporting the notion that excessive CaV3 channels as a developmental error impede the maturation of engineer ed hiPSC-islet insulin-expressing cells.
Collapse
|
29
|
Abstract
Plasma glucose is tightly regulated via the secretion of the two glucose-regulating hormones insulin and glucagon. Situated next to the insulin-secreting β-cells, the α-cells produce and secrete glucagon-one of the body's few blood glucose-increasing hormones. Diabetes is a bihormonal disorder, resulting from both inadequate insulin secretion and dysregulation of glucagon. The year 2023 marks the 100th anniversary of the discovery of glucagon, making it particularly timely to highlight the roles of this systemic metabolic messenger in health and disease.
Collapse
Affiliation(s)
- Patrick E MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Metabolic Physiology, Institute of Neuroscience and Physiology, University of Göteborg, Gothenburg, Sweden.
| |
Collapse
|
30
|
Wang G, Chiou J, Zeng C, Miller M, Matta I, Han JY, Kadakia N, Okino ML, Beebe E, Mallick M, Camunas-Soler J, dos Santos T, Dai XQ, Ellis C, Hang Y, Kim SK, MacDonald PE, Kandeel FR, Preissl S, Gaulton KJ, Sander M. Integration of single-cell multiomic measurements across disease states with genetics identifies mechanisms of beta cell dysfunction in type 2 diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.12.31.522386. [PMID: 36711922 PMCID: PMC9881862 DOI: 10.1101/2022.12.31.522386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Altered function and gene regulation of pancreatic islet beta cells is a hallmark of type 2 diabetes (T2D), but a comprehensive understanding of mechanisms driving T2D is still missing. Here we integrate information from measurements of chromatin activity, gene expression and function in single beta cells with genetic association data to identify disease-causal gene regulatory changes in T2D. Using machine learning on chromatin accessibility data from 34 non-diabetic, pre-T2D and T2D donors, we robustly identify two transcriptionally and functionally distinct beta cell subtypes that undergo an abundance shift in T2D. Subtype-defining active chromatin is enriched for T2D risk variants, suggesting a causal contribution of subtype identity to T2D. Both subtypes exhibit activation of a stress-response transcriptional program and functional impairment in T2D, which is likely induced by the T2D-associated metabolic environment. Our findings demonstrate the power of multimodal single-cell measurements combined with machine learning for identifying mechanisms of complex diseases.
Collapse
Affiliation(s)
- Gaowei Wang
- Department of Pediatrics, University of California San Diego, La Jolla CA, USA
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla CA, USA
| | - Joshua Chiou
- Department of Pediatrics, University of California San Diego, La Jolla CA, USA
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla CA, USA
- Biomedical Graduate Studies Program, University of California San Diego, La Jolla CA, USA
| | - Chun Zeng
- Department of Pediatrics, University of California San Diego, La Jolla CA, USA
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla CA, USA
| | - Michael Miller
- Center for Epigenomics, University of California San Diego, La Jolla CA, USA
| | - Ileana Matta
- Department of Pediatrics, University of California San Diego, La Jolla CA, USA
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla CA, USA
| | - Jee Yun Han
- Center for Epigenomics, University of California San Diego, La Jolla CA, USA
| | - Nikita Kadakia
- Department of Pediatrics, University of California San Diego, La Jolla CA, USA
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla CA, USA
| | - Mei-Lin Okino
- Department of Pediatrics, University of California San Diego, La Jolla CA, USA
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla CA, USA
| | - Elisha Beebe
- Department of Pediatrics, University of California San Diego, La Jolla CA, USA
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla CA, USA
| | - Medhavi Mallick
- Department of Pediatrics, University of California San Diego, La Jolla CA, USA
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla CA, USA
| | | | - Theodore dos Santos
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Xiao-Qing Dai
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Cara Ellis
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Yan Hang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Departments of Medicine and of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Seung K. Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Departments of Medicine and of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Patrick E. MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Fouad R. Kandeel
- Department of Clinical Diabetes, Endocrinology & Metabolism, City of Hope, Duarte, CA, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California San Diego, La Jolla CA, USA
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kyle J Gaulton
- Department of Pediatrics, University of California San Diego, La Jolla CA, USA
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla CA, USA
| | - Maike Sander
- Department of Pediatrics, University of California San Diego, La Jolla CA, USA
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA, USA
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
31
|
Magkos F, Reeds DN, Mittendorfer B. Evolution of the diagnostic value of "the sugar of the blood": hitting the sweet spot to identify alterations in glucose dynamics. Physiol Rev 2023; 103:7-30. [PMID: 35635320 PMCID: PMC9576168 DOI: 10.1152/physrev.00015.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
In this paper, we provide an overview of the evolution of the definition of hyperglycemia during the past century and the alterations in glucose dynamics that cause fasting and postprandial hyperglycemia. We discuss how extensive mechanistic, physiological research into the factors and pathways that regulate the appearance of glucose in the circulation and its uptake and metabolism by tissues and organs has contributed knowledge that has advanced our understanding of different types of hyperglycemia, namely prediabetes and diabetes and their subtypes (impaired fasting plasma glucose, impaired glucose tolerance, combined impaired fasting plasma glucose, impaired glucose tolerance, type 1 diabetes, type 2 diabetes, gestational diabetes mellitus), their relationships with medical complications, and how to prevent and treat hyperglycemia.
Collapse
Affiliation(s)
- Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Dominic N Reeds
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
32
|
Melena I, Hughes JW. Islet cilia and glucose homeostasis. Front Cell Dev Biol 2022; 10:1082193. [PMID: 36531945 PMCID: PMC9751591 DOI: 10.3389/fcell.2022.1082193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/22/2022] [Indexed: 09/05/2023] Open
Abstract
Diabetes is a growing pandemic affecting over ten percent of the U.S. population. Individuals with all types of diabetes exhibit glucose dysregulation due to altered function and coordination of pancreatic islets. Within the critical intercellular space in pancreatic islets, the primary cilium emerges as an important physical structure mediating cell-cell crosstalk and signal transduction. Many events leading to hormone secretion, including GPCR and second-messenger signaling, are spatiotemporally regulated at the level of the cilium. In this review, we summarize current knowledge of cilia action in islet hormone regulation and glucose homeostasis, focusing on newly implicated ciliary pathways that regulate insulin exocytosis and intercellular communication. We present evidence of key signaling proteins on islet cilia and discuss ways in which cilia might functionally connect islet endocrine cells with the non-endocrine compartments. These discussions aim to stimulate conversations regarding the extent of cilia-controlled glucose homeostasis in health and in metabolic diseases.
Collapse
Affiliation(s)
| | - Jing W. Hughes
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
33
|
Capozzi ME, D'Alessio DA, Campbell JE. The past, present, and future physiology and pharmacology of glucagon. Cell Metab 2022; 34:1654-1674. [PMID: 36323234 PMCID: PMC9641554 DOI: 10.1016/j.cmet.2022.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
The evolution of glucagon has seen the transition from an impurity in the preparation of insulin to the development of glucagon receptor agonists for use in type 1 diabetes. In type 2 diabetes, glucagon receptor antagonists have been explored to reduce glycemia thought to be induced by hyperglucagonemia. However, the catabolic actions of glucagon are currently being leveraged to target the rise in obesity that paralleled that of diabetes, bringing the pharmacology of glucagon full circle. During this evolution, the physiological importance of glucagon advanced beyond the control of hepatic glucose production, incorporating critical roles for glucagon to regulate both lipid and amino acid metabolism. Thus, it is unsurprising that the study of glucagon has left several paradoxes that make it difficult to distill this hormone down to a simplified action. Here, we describe the history of glucagon from the past to the present and suggest some direction to the future of this field.
Collapse
Affiliation(s)
- Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - David A D'Alessio
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC 27701, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27701, USA.
| |
Collapse
|
34
|
Hill JH, Massaquoi MS, Sweeney EG, Wall ES, Jahl P, Bell R, Kallio K, Derrick D, Murtaugh LC, Parthasarathy R, Remington SJ, Round JL, Guillemin K. BefA, a microbiota-secreted membrane disrupter, disseminates to the pancreas and increases β cell mass. Cell Metab 2022; 34:1779-1791.e9. [PMID: 36240759 PMCID: PMC9633563 DOI: 10.1016/j.cmet.2022.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/26/2022] [Accepted: 08/31/2022] [Indexed: 01/11/2023]
Abstract
Microbiome dysbiosis is a feature of diabetes, but how microbial products influence insulin production is poorly understood. We report the mechanism of BefA, a microbiome-derived protein that increases proliferation of insulin-producing β cells during development in gnotobiotic zebrafish and mice. BefA disseminates systemically by multiple anatomic routes to act directly on pancreatic islets. We detail BefA's atomic structure, containing a lipid-binding SYLF domain, and demonstrate that it permeabilizes synthetic liposomes and bacterial membranes. A BefA mutant impaired in membrane disruption fails to expand β cells, whereas the pore-forming host defense protein, Reg3, stimulates β cell proliferation. Our work demonstrates that membrane permeabilization by microbiome-derived and host defense proteins is necessary and sufficient for β cell expansion during pancreas development, potentially connecting microbiome composition with diabetes risk.
Collapse
Affiliation(s)
- Jennifer Hampton Hill
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | - Elena S Wall
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Philip Jahl
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Rickesha Bell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Karen Kallio
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Daniel Derrick
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - L Charles Murtaugh
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Raghuveer Parthasarathy
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - S James Remington
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - June L Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada.
| |
Collapse
|
35
|
Bosi E, Marselli L, Suleiman M, Tesi M, De Luca C, Del Guerra S, Cnop M, Eizirik D, Marchetti P. A single-cell human islet interactome atlas identifies disrupted autocrine and paracrine communications in type 2 diabetes. NAR Genom Bioinform 2022; 4:lqac084. [DOI: 10.1093/nargab/lqac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 10/04/2022] [Accepted: 10/29/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
A sensible control of hormone secretion from pancreatic islets requires concerted inter-cellular communications, but a comprehensive picture of the whole islet interactome is presently missing. Single-cell transcriptomics allows to overcome this and we used here a single-cell dataset from type 2 diabetic (T2D) and non-diabetic (ND) donors to leverage islet interaction networks. The single-cell dataset contains 3046 cells classified in 7 cell types. The interactions across cell types in T2D and ND were obtained and resulting networks analysed to identify high-centrality genes and altered interactions in T2D. The T2D interactome displayed a higher number of interactions (10 787) than ND (9707); 1289 interactions involved beta cells (1147 in ND). High-centrality genes included EGFR, FGFR1 and FGFR2, important for cell survival and proliferation. In conclusion, this analysis represents the first in silico model of the human islet interactome, enabling the identification of signatures potentially relevant for T2D pathophysiology.
Collapse
Affiliation(s)
- Emanuele Bosi
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa , Genoa , Italy
| | - Lorella Marselli
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| | - Mara Suleiman
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| | - Marta Tesi
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| | - Carmela De Luca
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| | - Silvia Del Guerra
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| | - Miriam Cnop
- ULB Center for Diabetes Research , Université Libre de Bruxelles, Brussels , Belgium
- Division of Endocrinology, Erasmus Hospital , Université Libre de Bruxelles, Brussels , Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research , Université Libre de Bruxelles, Brussels , Belgium
| | - Piero Marchetti
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| |
Collapse
|
36
|
Hagan DW, Ferreira SM, Santos GJ, Phelps EA. The role of GABA in islet function. Front Endocrinol (Lausanne) 2022; 13:972115. [PMID: 36246925 PMCID: PMC9558271 DOI: 10.3389/fendo.2022.972115] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gamma aminobutyric acid (GABA) is a non-proteinogenic amino acid and neurotransmitter that is produced in the islet at levels as high as in the brain. GABA is synthesized by the enzyme glutamic acid decarboxylase (GAD), of which the 65 kDa isoform (GAD65) is a major autoantigen in type 1 diabetes. Originally described to be released via synaptic-like microvesicles or from insulin secretory vesicles, beta cells are now understood to release substantial quantities of GABA directly from the cytosol via volume-regulated anion channels (VRAC). Once released, GABA influences the activity of multiple islet cell types through ionotropic GABAA receptors and metabotropic GABAB receptors. GABA also interfaces with cellular metabolism and ATP production via the GABA shunt pathway. Beta cells become depleted of GABA in type 1 diabetes (in remaining beta cells) and type 2 diabetes, suggesting that loss or reduction of islet GABA correlates with diabetes pathogenesis and may contribute to dysfunction of alpha, beta, and delta cells in diabetic individuals. While the function of GABA in the nervous system is well-understood, the description of the islet GABA system is clouded by differing reports describing multiple secretion pathways and effector functions. This review will discuss and attempt to unify the major experimental results from over 40 years of literature characterizing the role of GABA in the islet.
Collapse
Affiliation(s)
- D. Walker Hagan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Sandra M. Ferreira
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Gustavo J. Santos
- Islet Biology and Metabolism Lab – I.B.M. Lab, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
37
|
de Bie TH, Balvers MGJ, de Vos RCH, Witkamp RF, Jongsma MA. The influence of a tomato food matrix on the bioavailability and plasma kinetics of oral gamma-aminobutyric acid (GABA) and its precursor glutamate in healthy men. Food Funct 2022; 13:8399-8410. [PMID: 35852458 DOI: 10.1039/d2fo01358d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gamma-aminobutyric acid (GABA) and its precursor glutamate play signaling roles in a range of tissues. Both function as neurotransmitters in the central nervous system, but they also modulate pancreatic and immune functioning, for example. Besides endogenous production, both compounds are found in food products, reaching relatively high levels in tomatoes. Recent studies in rodents suggest beneficial effects of oral GABA on glucose homeostasis and blood pressure. However, the bioavailability from food remains unknown. We studied the bioavailability of GABA and glutamate from tomatoes relative to a solution in water. After a fasting blood sample was taken, eleven healthy men randomly received 1 liter of 4 different drinks in a cross-over design with a one-week interval. The drinks were a solution of 888 mg L-1 GABA, a solution of 3673 mg L-1 glutamate, pureed fresh tomatoes and plain water as the control. Following intake, 18 blood samples were taken at intervals for 24 hours. Plasma GABA and glutamate concentrations were determined by ultra-pressure liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Fasting plasma GABA and glutamate concentrations were found to be 16.71 (SD 2.18) ng mL-1 and 4626 (SD 1666) ng mL-1, respectively. Fasting GABA levels were constant (5.8 CV%) between individuals, while fasting glutamate levels varied considerably (23.5 CV%). GABA from pureed tomatoes showed similar bioavailability to that of a solution in water. For glutamate, the absorption from pureed tomatoes occurred more slowly as seen from a longer tmax (0.98 ± 0.14 h vs. 0.41 ± 0.04 h, P = 0.003) and lower Cmax (7815 ± 627 ng mL-1vs. 16 420 ± 2778 ng mL-1, P = 0.006). These data suggest that GABA is bioavailable from tomatoes, and that food products containing GABA could potentially induce health effects similar to those claimed for GABA supplements. The results merit further studies on the bioavailability of GABA from other food products and the health effects of GABA-rich diets. The clinical trial registry number is NCT04086108 (https://clinicaltrials.gov/ct2/show/NCT04303468).
Collapse
Affiliation(s)
- Tessa H de Bie
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands. .,Wageningen Plant Research, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Ric C H de Vos
- Wageningen Plant Research, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Maarten A Jongsma
- Wageningen Plant Research, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
38
|
Patel SN, Mathews CE, Chandler R, Stabler CL. The Foundation for Engineering a Pancreatic Islet Niche. Front Endocrinol (Lausanne) 2022; 13:881525. [PMID: 35600597 PMCID: PMC9114707 DOI: 10.3389/fendo.2022.881525] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022] Open
Abstract
Progress in diabetes research is hindered, in part, by deficiencies in current experimental systems to accurately model human pathophysiology and/or predict clinical outcomes. Engineering human-centric platforms that more closely mimic in vivo physiology, however, requires thoughtful and informed design. Summarizing our contemporary understanding of the unique and critical features of the pancreatic islet can inform engineering design criteria. Furthermore, a broad understanding of conventional experimental practices and their current advantages and limitations ensures that new models address key gaps. Improving beyond traditional cell culture, emerging platforms are combining diabetes-relevant cells within three-dimensional niches containing dynamic matrices and controlled fluidic flow. While highly promising, islet-on-a-chip prototypes must evolve their utility, adaptability, and adoptability to ensure broad and reproducible use. Here we propose a roadmap for engineers to craft biorelevant and accessible diabetes models. Concurrently, we seek to inspire biologists to leverage such tools to ask complex and nuanced questions. The progenies of such diabetes models should ultimately enable investigators to translate ambitious research expeditions from benchtop to the clinic.
Collapse
Affiliation(s)
- Smit N. Patel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Rachel Chandler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Cherie L. Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
39
|
Tremmel DM, Sackett SD, Feeney AK, Mitchell SA, Schaid MD, Polyak E, Chlebeck PJ, Gupta S, Kimple ME, Fernandez LA, Odorico JS. A human pancreatic ECM hydrogel optimized for 3-D modeling of the islet microenvironment. Sci Rep 2022; 12:7188. [PMID: 35504932 PMCID: PMC9065104 DOI: 10.1038/s41598-022-11085-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/04/2022] [Indexed: 02/07/2023] Open
Abstract
Extracellular matrix (ECM) plays a multitude of roles, including supporting cells through structural and biochemical interactions. ECM is damaged in the process of isolating human islets for clinical transplantation and basic research. A platform in which islets can be cultured in contact with natural pancreatic ECM is desirable to better understand and support islet health, and to recapitulate the native islet environment. Our study demonstrates the derivation of a practical and durable hydrogel from decellularized human pancreas that supports human islet survival and function. Islets embedded in this hydrogel show increased glucose- and KCl-stimulated insulin secretion, and improved mitochondrial function compared to islets cultured without pancreatic matrix. In extended culture, hydrogel co-culture significantly reduced levels of apoptosis compared to suspension culture and preserved controlled glucose-responsive function. Isolated islets displayed altered endocrine and non-endocrine cell arrangement compared to in situ islets; hydrogel preserved an islet architecture more similar to that observed in situ. RNA sequencing confirmed that gene expression differences between islets cultured in suspension and hydrogel largely fell within gene ontology terms related to extracellular signaling and adhesion. Natural pancreatic ECM improves the survival and physiology of isolated human islets.
Collapse
Affiliation(s)
- Daniel M Tremmel
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| | - Sara Dutton Sackett
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| | - Austin K Feeney
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Samantha A Mitchell
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael D Schaid
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Erzsebet Polyak
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Peter J Chlebeck
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Sakar Gupta
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle E Kimple
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | | | - Jon S Odorico
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
40
|
Morriseau TS, Doucette CA, Dolinsky VW. More than meets the islet: aligning nutrient and paracrine inputs with hormone secretion in health and disease. Am J Physiol Endocrinol Metab 2022; 322:E446-E463. [PMID: 35373587 DOI: 10.1152/ajpendo.00411.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pancreatic islet is responsive to an array of endocrine, paracrine, and nutritional inputs that adjust hormone secretion to ensure accurate control of glucose homeostasis. Although the mechanisms governing glucose-coupled insulin secretion have received the most attention, there is emerging evidence for a multitude of physiological signaling pathways and paracrine networks that collectively regulate insulin, glucagon, and somatostatin release. Moreover, the modulation of these pathways in conditions of glucotoxicity or lipotoxicity are areas of both growing interest and controversy. In this review, the contributions of external, intrinsic, and paracrine factors in pancreatic β-, α-, and δ-cell secretion across the full spectrum of physiological (i.e., fasting and fed) and pathophysiological (gluco- and lipotoxicity; diabetes) environments will be critically discussed.
Collapse
Affiliation(s)
- Taylor S Morriseau
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christine A Doucette
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vernon W Dolinsky
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
41
|
Flisher MF, Shin D, Huising MO. Urocortin3: Local inducer of somatostatin release and bellwether of beta cell maturity. Peptides 2022; 151:170748. [PMID: 35065098 PMCID: PMC10881066 DOI: 10.1016/j.peptides.2022.170748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
Urocortin 3 (UCN3) is a peptide hormone expressed in pancreatic islets of Langerhans of both human alpha and human beta cells and solely in murine beta cells. UCN3 signaling acts locally within the islet to activate its cognate receptor, corticotropin releasing hormone receptor 2 (CRHR2), which is expressed by delta cells, to potentiate somatostatin (SST) negative feedback to reduce islet cell hormone output. The functional importance of UCN3 signaling in the islet is to modulate the amount of SST tone allowing for finely tuned regulation of insulin and glucagon secretion. UCN3 signaling is a hallmark of functional beta cell maturation, increasing the beta cell glucose threshold for insulin secretion. In doing so, UCN3 plays a relevant functional role in accurately maintaining blood glucose homeostasis. Additionally, UCN3 acts as an indicator of beta cell maturation and health, as UCN3 is not expressed in immature beta cells and is downregulated in dedifferentiated and dysfunctional beta cell states. Here, we review the mechanistic underpinnings of UCN3 signaling, its net effect on islet cell hormone output, as well as its value as a marker for beta cell maturation and functional status.
Collapse
Affiliation(s)
- Marcus F Flisher
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, CA, United States
| | - Donghan Shin
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, CA, United States
| | - Mark O Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, CA, United States; Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, United States.
| |
Collapse
|
42
|
Yang YHC, Briant LJB, Raab CA, Mullapudi ST, Maischein HM, Kawakami K, Stainier DYR. Innervation modulates the functional connectivity between pancreatic endocrine cells. eLife 2022; 11:64526. [PMID: 35373736 PMCID: PMC9007585 DOI: 10.7554/elife.64526] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/03/2022] [Indexed: 11/20/2022] Open
Abstract
The importance of pancreatic endocrine cell activity modulation by autonomic innervation has been debated. To investigate this question, we established an in vivo imaging model that also allows chronic and acute neuromodulation with genetic and optogenetic tools. Using the GCaMP6s biosensor together with endocrine cell fluorescent reporters, we imaged calcium dynamics simultaneously in multiple pancreatic islet cell types in live animals in control states and upon changes in innervation. We find that by 4 days post fertilization in zebrafish, a stage when islet architecture is reminiscent of that in adult rodents, prominent activity coupling between beta cells is present in basal glucose conditions. Furthermore, we show that both chronic and acute loss of nerve activity result in diminished beta–beta and alpha–beta activity coupling. Pancreatic nerves are in contact with all islet cell types, but predominantly with beta and delta cells. Surprisingly, a subset of delta cells with detectable peri-islet neural activity coupling had significantly higher homotypic coupling with other delta cells suggesting that some delta cells receive innervation that coordinates their output. Overall, these data show that innervation plays a vital role in the maintenance of homotypic and heterotypic cellular connectivity in pancreatic islets, a process critical for islet function.
Collapse
Affiliation(s)
- Yu Hsuan Carol Yang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Christopher A Raab
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sri Teja Mullapudi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hans-Martin Maischein
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
43
|
Papazoglou I, Lee JH, Cui Z, Li C, Fulgenzi G, Bahn YJ, Staniszewska-Goraczniak HM, Piñol RA, Hogue IB, Enquist LW, Krashes MJ, Rane SG. A distinct hypothalamus-to-β cell circuit modulates insulin secretion. Cell Metab 2022; 34:285-298.e7. [PMID: 35108515 PMCID: PMC8935365 DOI: 10.1016/j.cmet.2021.12.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/01/2021] [Accepted: 12/22/2021] [Indexed: 02/03/2023]
Abstract
The central nervous system has long been thought to regulate insulin secretion, an essential process in the maintenance of blood glucose levels. However, the anatomical and functional connections between the brain and insulin-producing pancreatic β cells remain undefined. Here, we describe a functional transneuronal circuit connecting the hypothalamus to β cells in mice. This circuit originates from a subpopulation of oxytocin neurons in the paraventricular hypothalamic nucleus (PVNOXT), and it reaches the islets of the endocrine pancreas via the sympathetic autonomic branch to innervate β cells. Stimulation of PVNOXT neurons rapidly suppresses insulin secretion and causes hyperglycemia. Conversely, silencing of these neurons elevates insulin levels by dysregulating neuronal signaling and secretory pathways in β cells and induces hypoglycemia. PVNOXT neuronal activity is triggered by glucoprivation. Our findings reveal that a subset of PVNOXT neurons form functional multisynaptic circuits with β cells in mice to regulate insulin secretion, and their function is necessary for the β cell response to hypoglycemia.
Collapse
Affiliation(s)
- Ioannis Papazoglou
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA.
| | - Ji-Hyeon Lee
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Zhenzhong Cui
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Chia Li
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Gianluca Fulgenzi
- Neural Development Section, MCGP, CCR, NCI, NIH, Frederick, MD, USA; Department of Molecular and Clinical Sciences, Marche Polytechnic University, Ancona, Italy
| | - Young Jae Bahn
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA
| | | | - Ramón A Piñol
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Ian B Hogue
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Lynn W Enquist
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael J Krashes
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Sushil G Rane
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA.
| |
Collapse
|
44
|
Singh SP, Chawla P, Hnatiuk A, Kamel M, Silva LD, Spanjaard B, Eski SE, Janjuha S, Olivares-Chauvet P, Kayisoglu O, Rost F, Bläsche J, Kränkel A, Petzold A, Kurth T, Reinhardt S, Junker JP, Ninov N. A single-cell atlas of de novo β-cell regeneration reveals the contribution of hybrid β/δ-cells to diabetes recovery in zebrafish. Development 2022; 149:274140. [PMID: 35088828 DOI: 10.1242/dev.199853] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Regeneration-competent species possess the ability to reverse the progression of severe diseases by restoring the function of the damaged tissue. However, the cellular dynamics underlying this capability remain unexplored. Here, we have used single-cell transcriptomics to map de novo β-cell regeneration during induction and recovery from diabetes in zebrafish. We show that the zebrafish has evolved two distinct types of somatostatin-producing δ-cells, which we term δ1- and δ2-cells. Moreover, we characterize a small population of glucose-responsive islet cells, which share the hormones and fate-determinants of both β- and δ1-cells. The transcriptomic analysis of β-cell regeneration reveals that β/δ hybrid cells provide a prominent source of insulin expression during diabetes recovery. Using in vivo calcium imaging and cell tracking, we further show that the hybrid cells form de novo and acquire glucose-responsiveness in the course of regeneration. The overexpression of dkk3, a gene enriched in hybrid cells, increases their formation in the absence of β-cell injury. Finally, interspecies comparison shows that plastic δ1-cells are partially related to PP cells in the human pancreas. Our work provides an atlas of β-cell regeneration and indicates that the rapid formation of glucose-responsive hybrid cells contributes to the resolution of diabetes in zebrafish.
Collapse
Affiliation(s)
- Sumeet Pal Singh
- IRIBHM, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Prateek Chawla
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Alisa Hnatiuk
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Margrit Kamel
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Luis Delgadillo Silva
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Bastiaan Spanjaard
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Sema Elif Eski
- IRIBHM, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Sharan Janjuha
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Pedro Olivares-Chauvet
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Oezge Kayisoglu
- The Julius Maximilian University of Wurzburg, 97070 Wurzburg, Germany
| | - Fabian Rost
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany.,DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Juliane Bläsche
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Annekathrin Kränkel
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Petzold
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Thomas Kurth
- TUD, Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, EM-Facility, Technische Universitaät Dresden, 01307 Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Jan Philipp Junker
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Nikolay Ninov
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany.,Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
45
|
Cefalu WT, Andersen DK, Arreaza-Rubín G, Pin CL, Sato S, Verchere CB, Woo M, Rosenblum ND. Heterogeneity of Diabetes: β-Cells, Phenotypes, and Precision Medicine: Proceedings of an International Symposium of the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases. Diabetes Care 2022; 45:3-22. [PMID: 34782355 PMCID: PMC8753760 DOI: 10.2337/dci21-0051] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/03/2023]
Abstract
One hundred years have passed since the discovery of insulin-an achievement that transformed diabetes from a fatal illness into a manageable chronic condition. The decades since that momentous achievement have brought ever more rapid innovation and advancement in diabetes research and clinical care. To celebrate the important work of the past century and help to chart a course for its continuation into the next, the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases recently held a joint international symposium, bringing together a cohort of researchers with diverse interests and backgrounds from both countries and beyond to discuss their collective quest to better understand the heterogeneity of diabetes and thus gain insights to inform new directions in diabetes treatment and prevention. This article summarizes the proceedings of that symposium, which spanned cutting-edge research into various aspects of islet biology, the heterogeneity of diabetic phenotypes, and the current state of and future prospects for precision medicine in diabetes.
Collapse
Affiliation(s)
- William T. Cefalu
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Dana K. Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Guillermo Arreaza-Rubín
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Christopher L. Pin
- Departments of Physiology and Pharmacology, Paediatrics, and Oncology, University of Western Ontario, and Genetics and Development Division, Children’s Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Sheryl Sato
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - C. Bruce Verchere
- Departments of Surgery and Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital, Vancouver, British Columbia, Canada
- UBC Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Minna Woo
- Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, University Health Network and Sinai Health System, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Norman D. Rosenblum
- Canadian Institutes of Health Research Institute of Nutrition, Metabolism and Diabetes, Toronto, Ontario, Canada
- Division of Nephrology, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
- Program in Stem Cell and Developmental Biology, Research Institute, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Wess J. In Vivo Metabolic Roles of G Proteins of the Gi Family Studied With Novel Mouse Models. Endocrinology 2022; 163:6453469. [PMID: 34871353 PMCID: PMC8691396 DOI: 10.1210/endocr/bqab245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Indexed: 12/31/2022]
Abstract
G protein-coupled receptors (GPCRs) are the target of ~30% to 35% of all US Food and Drug Administration-approved drugs. The individual members of the GPCR superfamily couple to 1 or more functional classes of heterotrimeric G proteins. The physiological outcome of activating a particular GPCR in vivo depends on the pattern of receptor distribution and the type of G proteins activated by the receptor. Based on the structural and functional properties of their α-subunits, heterotrimeric G proteins are subclassified into 4 major families: Gs, Gi/o, Gq/11, and G12/13. Recent studies with genetically engineered mice have yielded important novel insights into the metabolic roles of Gi/o-type G proteins. For example, recent data indicate that Gi signaling in pancreatic α-cells plays a key role in regulating glucagon release and whole body glucose homeostasis. Receptor-mediated activation of hepatic Gi signaling stimulates hepatic glucose production, suggesting that inhibition of hepatic Gi signaling could prove clinically useful to reduce pathologically elevated blood glucose levels. Activation of adipocyte Gi signaling reduces plasma free fatty acid levels, thus leading to improved insulin sensitivity in obese, glucose-intolerant mice. These new data suggest that Gi-coupled receptors that are enriched in metabolically important cell types represent potential targets for the development of novel drugs useful for the treatment of type 2 diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892-0810, USA
- Correspondence: Jürgen Wess, PhD, Molecular Signaling Section, Laboratory of Bioorganic Chemistry, NIH-NIDDK, Bldg. 8A, Room B1A-05, 8 Center Drive MSC 0810, Bethesda, MD 20892-0810, USA.
| |
Collapse
|
47
|
López-Bermudo L, Luque-Sierra A, Maya-Miles D, Gallego-Durán R, Ampuero J, Romero-Gómez M, Berná G, Martín F. Contribution of Liver and Pancreatic Islet Crosstalk to β-Cell Function/Dysfunction in the Presence of Fatty Liver. Front Endocrinol (Lausanne) 2022; 13:892672. [PMID: 35651973 PMCID: PMC9148952 DOI: 10.3389/fendo.2022.892672] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue-to-tissue crosstalk regulates organ function, according to growing data. This phenomenon is relevant for pancreatic β-cells and the liver, as both tissues are involved in glucose homeostasis and lipid metabolism. The ability to fine-tune regulation and adaptive responses is enabled through communication between pancreatic β-cells and the liver. However, the crosstalk between both tissues changes when metabolic dysregulation is present. Factors and cargo from extracellular vesicles (EVs) released by liver and pancreatic β-cells that reach the circulation form the words of this interaction. The molecules released by the liver are called hepatokines and are usually secreted in response to the metabolic state. When hepatokines reach the pancreatic islets several mechanisms are initiated for their protection or damage. In the case of the crosstalk between pancreatic β-cells and the liver, only one factor has been found to date. This protein, pancreatic derived factor (PANDER) has been proposed as a novel linker between insulin resistance (IR) and type 2 diabetes mellitus (T2D) and could be considered a biomarker for non-alcoholic fatty liver disease (NAFLD) and T2D. Furthermore, the cargo released by EVs, mainly miRNAs, plays a significant role in this crosstalk. A better knowledge of the crosstalk between liver and pancreatic β-cells is essential to understand both diseases and it could lead to better prevention and new therapeutic options.
Collapse
Affiliation(s)
- Lucía López-Bermudo
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University Pablo Olavide, University of Seville, CSIC, Seville, Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Amparo Luque-Sierra
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University Pablo Olavide, University of Seville, CSIC, Seville, Spain
| | - Douglas Maya-Miles
- Hospital Universitario Virgen del Rocío de Sevilla, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Sevilla, Spain
- Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Gallego-Durán
- Hospital Universitario Virgen del Rocío de Sevilla, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Sevilla, Spain
- Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Ampuero
- Hospital Universitario Virgen del Rocío de Sevilla, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Sevilla, Spain
- Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Romero-Gómez
- Hospital Universitario Virgen del Rocío de Sevilla, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Sevilla, Spain
- Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Genoveva Berná
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University Pablo Olavide, University of Seville, CSIC, Seville, Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Franz Martín, ; Genoveva Berná,
| | - Franz Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University Pablo Olavide, University of Seville, CSIC, Seville, Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Franz Martín, ; Genoveva Berná,
| |
Collapse
|
48
|
Zhao K, Shi Y, Yu J, Yu L, Mael A, Li Y, Kolton A, Joyce T, Odorico J, Berggren PO, Yang SN. Intracameral Microimaging of Maturation of Human iPSC Derivatives into Islet Endocrine Cells. Cell Transplant 2022; 31:9636897211066508. [PMID: 35156411 PMCID: PMC8848082 DOI: 10.1177/09636897211066508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We exploited the anterior chamber of the eye (ACE) of immunodeficient mice as an ectopic site for both transplantation and microimaging of engineered surrogate islets from human induced pluripotent stem cells (hiPSC-SIs). These islets contained a majority of insulin-expressing cells, positive or negative for PDX1 and NKX6.1, and a minority of glucagon- or somatostatin-positive cells. Single, non-aggregated hiPSC-SIs were satisfactorily engrafted onto the iris. They underwent gradual vascularization and progressively increased their light scattering signals, reflecting the abundance of zinc-insulin crystal packaged inside mature insulin secretory granules. Intracameral hiPSC-SIs retrieved from recipients showed enhanced insulin immunofluorescence in correlation with the parallel increase in overall vascularization and light backscattering during the post-transplantation period. This approach enables longitudinal, nondestructive and intravital microimaging of cell fates, engraftment, vascularization and mature insulin secretory granules of single hiPSC-SI grafts, and may offer a feasible and reliable means to screen compounds for promoting in vivo hiPSC-SI maturation.
Collapse
Affiliation(s)
- Kaixuan Zhao
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| | - Yue Shi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| | - Jia Yu
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| | - Lina Yu
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| | - Amber Mael
- Regenerative Medical Solutions, Inc., Madison, WI, USA
| | - Yuxin Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | | | - Thomas Joyce
- Regenerative Medical Solutions, Inc., Madison, WI, USA
| | - Jon Odorico
- Regenerative Medical Solutions, Inc., Madison, WI, USA
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| | - Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| |
Collapse
|
49
|
Abstract
Intra-islet communication via electrical, paracrine and autocrine signals, is highly dependent on the organization of cells within the islets and is key for an adequate response to changes in blood glucose and other stimuli. In spite of the fact that relevant structural differences between mouse and human islet architectures have been described, the functional implications of these differences remain only partially understood. In this work, aiming to contribute to a better understanding of the relationship between structural and functional properties of pancreatic islets, we reconstructed human and mice islets in order to perform a structural comparison based on both morphologic and network-derived metrics. According to our results, human islets constitute a more efficient network from a connectivity viewpoint, mainly due to the higher proportion of heterotypic contacts between islet cells in comparison to mice islets.
Collapse
Affiliation(s)
- Gerardo J. Félix-Martínez
- Cátedras CONACYT, Consejo Nacional de Ciencia y Tecnología, México City, México
- Department of Electrical Engineering, Universidad Autónoma Metropolitana, México City, México
- CONTACT Gerardo J. Félix-Martínez Universidad Autónoma Metropolitana Unidad Iztapalapa. San Rafael Atlixco 186, Col. Vicentina 09340, México City, México
| | - J. R. Godínez-Fernández
- Department of Electrical Engineering, Universidad Autónoma Metropolitana, México City, México
| |
Collapse
|
50
|
Cefalu WT, Andersen DK, Arreaza-Rubín G, Pin CL, Sato S, Verchere CB, Woo M, Rosenblum ND. Heterogeneity of Diabetes: β-Cells, Phenotypes, and Precision Medicine: Proceedings of an International Symposium of the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases. Can J Diabetes 2021; 45:697-713. [PMID: 34794897 DOI: 10.1016/j.jcjd.2021.09.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 10/19/2022]
Abstract
One hundred years have passed since the discovery of insulin-an achievement that transformed diabetes from a fatal illness into a manageable chronic condition. The decades since that momentous achievement have brought ever more rapid innovation and advancement in diabetes research and clinical care. To celebrate the important work of the past century and help to chart a course for its continuation into the next, the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases recently held a joint international symposium, bringing together a cohort of researchers with diverse interests and backgrounds from both countries and beyond to discuss their collective quest to better understand the heterogeneity of diabetes and thus gain insights to inform new directions in diabetes treatment and prevention. This article summarizes the proceedings of that symposium, which spanned cutting-edge research into various aspects of islet biology, the heterogeneity of diabetic phenotypes, and the current state of and future prospects for precision medicine in diabetes.
Collapse
Affiliation(s)
- William T Cefalu
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States.
| | - Dana K Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Guillermo Arreaza-Rubín
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Christopher L Pin
- Departments of Physiology and Pharmacology, Paediatrics, and Oncology, University of Western Ontario, and Genetics and Development Division, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Sheryl Sato
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - C Bruce Verchere
- Departments of Surgery and Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital, Vancouver, British Columbia, Canada; UBC Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Minna Woo
- Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, University Health Network and Sinai Health System, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Norman D Rosenblum
- Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes, Toronto, Ontario, Canada; Division of Nephrology, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada; Program in Stem Cell and Developmental Biology, Research Institute, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| |
Collapse
|