1
|
Tian Y, Li W, Zhang Y. 3-N-Butylphthalide alleviate Aβ-induced cellular senescence through the CDK2-pRB1-Caspase3 axis. Brain Res 2024:149435. [PMID: 39736372 DOI: 10.1016/j.brainres.2024.149435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/17/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-beta (Aβ) and leading to cellular senescence and cognitive deficits. Cellular senescence contributes significantly to the pathogenesis of AD through the senescence-associated secretory phenotype (SASP), exacerbating Aβ deposition. This study investigates the protective effects of 3-N-Butylphthalide (NBP), a compound derived from Apium graveolens Linn (Chinese celery), on Aβ-induced cellular senescence in U87 cells. Using RNA-sequencing and biochemical assays, we demonstrate that NBP ameliorate Aβ oligomer-induced cellular senescence and apoptosis, and regulated the expression of cyclin-dependent kinase inhibitor 2A (CDKN2A) and components of the cyclin-dependent kinase 2 (CDK2)- phosphorylated retinoblastoma 1 (pRB1)-Caspase3 pathway. Moreover, NBP was shown to suppress the expression of SASP-related genes. These findings suggest that NBP rescues U87 cells from Aβ oligomer-induced senescence and apoptosis through modulating the CDK2-pRB1-Caspase3 axis and SASP expression. Our results underscore the potential of NBP as a senostatic agent for AD which have not been reported in previous studies, offering insights into its mechanisms of action and paving the way for future studies on its efficacy in vivo and in clinical settings. Thus, we contribute to growing evidence supporting the use of senolytic and senostatic agents in the treatment of AD.
Collapse
Affiliation(s)
- Yuanruhua Tian
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wenke Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
2
|
Huang Z, Xu P, Hess DC, Zhang Q. Cellular senescence as a key contributor to secondary neurodegeneration in traumatic brain injury and stroke. Transl Neurodegener 2024; 13:61. [PMID: 39668354 PMCID: PMC11636056 DOI: 10.1186/s40035-024-00457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
Traumatic brain injury (TBI) and stroke pose major health challenges, impacting millions of individuals globally. Once considered solely acute events, these neurological conditions are now recognized as enduring pathological processes with long-term consequences, including an increased susceptibility to neurodegeneration. However, effective strategies to counteract their devastating consequences are still lacking. Cellular senescence, marked by irreversible cell-cycle arrest, is emerging as a crucial factor in various neurodegenerative diseases. Recent research further reveals that cellular senescence may be a potential driver for secondary neurodegeneration following brain injury. Herein, we synthesize emerging evidence that TBI and stroke drive the accumulation of senescent cells in the brain. The rationale for targeting senescent cells as a therapeutic approach to combat neurodegeneration following TBI/stroke is outlined. From a translational perspective, we emphasize current knowledge and future directions of senolytic therapy for these neurological conditions.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC, 29208, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
3
|
Carling GK, Fan L, Foxe NR, Norman K, Wong MY, Zhu D, Corona C, Razzoli A, Yu F, Yarahmady A, Ye P, Chen H, Huang Y, Amin S, Sereda R, Lopez-Lee C, Zacharioudakis E, Chen X, Xu J, Cheng F, Gavathiotis E, Cuervo AM, Holtzman DM, Mok SA, Sinha SC, Sidoli S, Ratan RR, Luo W, Gong S, Gan L. Alzheimer's disease-linked risk alleles elevate microglial cGAS-associated senescence and neurodegeneration in a tauopathy model. Neuron 2024; 112:3877-3896.e8. [PMID: 39353433 PMCID: PMC11624100 DOI: 10.1016/j.neuron.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/02/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
The strongest risk factors for late-onset sporadic Alzheimer's disease (AD) include the ε4 allele of apolipoprotein E (APOE), the R47H variant of triggering receptor expressed on myeloid cells 2 (TREM2), and female sex. Here, we combine APOE4 and TREM2R47H (R47H) in female P301S tauopathy mice to identify the pathways activated when AD risk is the strongest, thereby highlighting detrimental disease mechanisms. We find that R47H induces neurodegeneration in 9- to 10-month-old female APOE4 tauopathy mice. The combination of APOE4 and R47H (APOE4-R47H) worsened hyperphosphorylated tau pathology in the frontal cortex and amplified tauopathy-induced microglial cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling and downstream interferon response. APOE4-R47H microglia displayed cGAS- and BAX-dependent upregulation of senescence, showing association between neurotoxic signatures and implicating mitochondrial permeabilization in pathogenesis. By uncovering pathways enhanced by the strongest AD risk factors, our study points to cGAS-STING signaling and associated microglial senescence as potential drivers of AD risk.
Collapse
Affiliation(s)
- Gillian K Carling
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nessa R Foxe
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kendra Norman
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Man Ying Wong
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daphne Zhu
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carlo Corona
- Burke Neurological Institute, Weill Cornell Medicine, White Plains, NY 10605, USA
| | - Agnese Razzoli
- Transfusion Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42122, Italy; Clinical and Experimental PhD Program, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Fangmin Yu
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Allan Yarahmady
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Pearly Ye
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Hao Chen
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yige Huang
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA; Biochemistry, Structural Biology, Cell Biology, Developmental Biology, and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sadaf Amin
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rebecca Sereda
- Department of Developmental and Molecular Biology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Chloe Lopez-Lee
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Emmanouil Zacharioudakis
- Department of Biochemistry, Department of Medicine, Montefiore Einstein Comprehensive Cancer Center, Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Xiaoying Chen
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jielin Xu
- Cleveland Clinic Genome Center and Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Feixiong Cheng
- Cleveland Clinic Genome Center and Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Montefiore Einstein Comprehensive Cancer Center, Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sue-Ann Mok
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Subhash C Sinha
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Simone Sidoli
- Department of Biochemistry, Department of Medicine, Montefiore Einstein Comprehensive Cancer Center, Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Rajiv R Ratan
- Burke Neurological Institute, Weill Cornell Medicine, White Plains, NY 10605, USA
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shiaoching Gong
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
4
|
Serrano-Pozo A, Li H, Li Z, Muñoz-Castro C, Jaisa-Aad M, Healey MA, Welikovitch LA, Jayakumar R, Bryant AG, Noori A, Connors TR, Hu M, Zhao K, Liao F, Lin G, Pastika T, Tamm J, Abdourahman A, Kwon T, Bennett RE, Woodbury ME, Wachter A, Talanian RV, Biber K, Karran EH, Hyman BT, Das S. Astrocyte transcriptomic changes along the spatiotemporal progression of Alzheimer's disease. Nat Neurosci 2024; 27:2384-2400. [PMID: 39528672 PMCID: PMC11614739 DOI: 10.1038/s41593-024-01791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
Astrocytes are crucial to brain homeostasis, yet their changes along the spatiotemporal progression of Alzheimer's disease (AD) neuropathology remain unexplored. Here we performed single-nucleus RNA sequencing of 628,943 astrocytes from five brain regions representing the stereotypical progression of AD pathology across 32 donors spanning the entire normal aging to severe AD continuum. We mapped out several unique astrocyte subclusters that exhibited varying responses to neuropathology across the AD-vulnerable neural network (spatial axis) or AD pathology stage (temporal axis). The proportion of homeostatic, intermediate and reactive astrocytes changed only along the spatial axis, whereas two other subclusters changed along the temporal axis. One of these, a trophic factor-rich subcluster, declined along pathology stages, whereas the other increased in the late stage but returned to baseline levels in the end stage, suggesting an exhausted response with chronic exposure to neuropathology. Our study underscores the complex dynamics of astrocytic responses in AD.
Collapse
Affiliation(s)
- Alberto Serrano-Pozo
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Huan Li
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Zhaozhi Li
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
| | - Clara Muñoz-Castro
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Methasit Jaisa-Aad
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Molly A Healey
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
| | - Lindsay A Welikovitch
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Annie G Bryant
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
| | - Ayush Noori
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
| | - Theresa R Connors
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
| | - Miwei Hu
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
| | - Karen Zhao
- AbbVie, Cambridge Research Center, Cambridge, MA, USA
| | - Fan Liao
- AbbVie, Cambridge Research Center, Cambridge, MA, USA
| | - Gen Lin
- AbbVie Deutschland GmbH & Co. KG, Genomics Research Center, Ludwigshafen, Germany
| | | | - Joseph Tamm
- AbbVie, Cambridge Research Center, Cambridge, MA, USA
| | | | - Taekyung Kwon
- AbbVie, Cambridge Research Center, Cambridge, MA, USA
| | - Rachel E Bennett
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Astrid Wachter
- AbbVie Deutschland GmbH & Co. KG, Genomics Research Center, Ludwigshafen, Germany
| | | | - Knut Biber
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Ludwigshafen, Germany
| | - Eric H Karran
- AbbVie, Cambridge Research Center, Cambridge, MA, USA
| | - Bradley T Hyman
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sudeshna Das
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Suryadevara V, Hudgins AD, Rajesh A, Pappalardo A, Karpova A, Dey AK, Hertzel A, Agudelo A, Rocha A, Soygur B, Schilling B, Carver CM, Aguayo-Mazzucato C, Baker DJ, Bernlohr DA, Jurk D, Mangarova DB, Quardokus EM, Enninga EAL, Schmidt EL, Chen F, Duncan FE, Cambuli F, Kaur G, Kuchel GA, Lee G, Daldrup-Link HE, Martini H, Phatnani H, Al-Naggar IM, Rahman I, Nie J, Passos JF, Silverstein JC, Campisi J, Wang J, Iwasaki K, Barbosa K, Metis K, Nernekli K, Niedernhofer LJ, Ding L, Wang L, Adams LC, Ruiyang L, Doolittle ML, Teneche MG, Schafer MJ, Xu M, Hajipour M, Boroumand M, Basisty N, Sloan N, Slavov N, Kuksenko O, Robson P, Gomez PT, Vasilikos P, Adams PD, Carapeto P, Zhu Q, Ramasamy R, Perez-Lorenzo R, Fan R, Dong R, Montgomery RR, Shaikh S, Vickovic S, Yin S, Kang S, Suvakov S, Khosla S, Garovic VD, Menon V, Xu Y, Song Y, Suh Y, Dou Z, Neretti N. SenNet recommendations for detecting senescent cells in different tissues. Nat Rev Mol Cell Biol 2024; 25:1001-1023. [PMID: 38831121 PMCID: PMC11578798 DOI: 10.1038/s41580-024-00738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Adam D Hudgins
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Adarsh Rajesh
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | | | - Alla Karpova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amit K Dey
- National Institute on Aging, NIH, Baltimore, MD, USA
| | - Ann Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Anthony Agudelo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Azucena Rocha
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Bikem Soygur
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Chase M Carver
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Cristina Aguayo-Mazzucato
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Darren J Baker
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dilyana B Mangarova
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Ellen M Quardokus
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | | | - Elizabeth L Schmidt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Feng Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca E Duncan
- The Buck Institute for Research on Aging, Novato, CA, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Gung Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Helene Martini
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Hemali Phatnani
- New York Genome Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Iman M Al-Naggar
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Jonathan C Silverstein
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith Campisi
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Julia Wang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kanako Iwasaki
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Karina Barbosa
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Kay Metis
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kerem Nernekli
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Laura J Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lichao Wang
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Lisa C Adams
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Liu Ruiyang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Madison L Doolittle
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Marcos G Teneche
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ming Xu
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Mohammadjavad Hajipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | | | | | - Nicholas Sloan
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nikolai Slavov
- Center on the Biology of Aging, Brown University, Providence, RI, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Olena Kuksenko
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Paul T Gomez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Periklis Vasilikos
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Priscila Carapeto
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Quan Zhu
- Center for Epigenomics, University of California, San Diego, CA, USA
| | | | | | - Rong Fan
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Runze Dong
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Ruth R Montgomery
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Sadiya Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Sanja Vickovic
- New York Genome Center, New York, NY, USA
- Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden
| | - Shanshan Yin
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Shoukai Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sonja Suvakov
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Vesna D Garovic
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yanxin Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yizhe Song
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
6
|
Hudson HR, Riessland M, Orr ME. Defining and characterizing neuronal senescence, 'neurescence', as G X arrested cells. Trends Neurosci 2024; 47:971-984. [PMID: 39389805 DOI: 10.1016/j.tins.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Cellular senescence is a cell state characterized by resistance to apoptosis and stable cell cycle arrest. Senescence was first observed in mitotic cells in vitro. Recent evidence from in vivo studies and human tissue indicates that postmitotic cells, including neurons, may also become senescent. The quiescent cell state of neurons and inconsistent descriptions of neuronal senescence across studies, however, have caused confusion in this burgeoning field. We summarize evidence demonstrating that exit from G0 quiescence may protect neurons against apoptosis and predispose them toward senescence. Additionally, we propose the term 'neurescent' for senescent neurons and introduce the cell state, GX, to describe cell cycle arrest achieved by passing through G0 quiescence. Criteria are provided to identify neurescent cells, distinguish them from G0 quiescent neurons, and compare neurescent phenotypes with classic replicative senescence.
Collapse
Affiliation(s)
- Hannah R Hudson
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Markus Riessland
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | - Miranda E Orr
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Salisbury VA Medical Center, Salisbury, NC, USA.
| |
Collapse
|
7
|
Dziewa M, Złotek M, Herbet M, Piątkowska-Chmiel I. Molecular and Cellular Foundations of Aging of the Brain: Anti-aging Strategies in Alzheimer's Disease. Cell Mol Neurobiol 2024; 44:80. [PMID: 39607636 PMCID: PMC11604688 DOI: 10.1007/s10571-024-01514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Alzheimer's disease (AD) is a condition characterized by the gradual degeneration of the nervous system that poses significant challenges to cognitive function and overall mental health. Given the increasing global life expectancy, there is an urgent need for effective strategies to prevent and manage Alzheimer's disease, with a particular focus on anti-aging interventions. Recent scientific advancements have unveiled several promising strategies for combating Alzheimer's disease (AD), ranging from lifestyle interventions to cutting-edge pharmacological treatments and therapies targeting the underlying biological processes of aging and AD. Regular physical exercise, cognitive engagement, a balanced diet, and social interaction serve as key pillars in maintaining brain health. At the same time, therapies target key pathological mechanisms of AD, such as amyloid-beta accumulation, tau abnormalities, neuroinflammation, mitochondrial dysfunction, and synaptic loss, offering potential breakthroughs in treatment. Moreover, cutting-edge innovations such as gene therapy, stem cell transplantation, and novel drug delivery systems are emerging as potential game-changers in the fight against AD. This review critically evaluates the latest research on anti-aging interventions and their potential in preventing and treating Alzheimer's disease (AD) by exploring the connections between aging mechanisms and AD pathogenesis. It provides a comprehensive analysis of both well-established and emerging strategies, while also identifying key gaps in current knowledge to guide future research efforts.
Collapse
Affiliation(s)
- Magdalena Dziewa
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland
| | - Magdalena Złotek
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland
| | - Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland.
| |
Collapse
|
8
|
Sharifitabar M, Kazempour S, Razavian J, Sajedi S, Solhjoo S, Zare H. A deep neural network to de-noise single-cell RNA sequencing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624552. [PMID: 39605470 PMCID: PMC11601639 DOI: 10.1101/2024.11.20.624552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq), a powerful technique for investigating the transcriptome of individual cells, enables the discovery of heterogeneous cell populations, rare cell types, and transcriptional dynamics in separate cells. Yet, scRNA-seq data analysis is limited by the problem of measurement dropouts, i.e., genes displaying zero expression levels. We introduce ZiPo, a deep artificial neural network for rate estimation and library size prediction in scRNA-seq data which incorporates adjustable zero inflation in the distribution to capture the dropouts. ZiPo builds upon established concepts, including using deep autoencoders and adopting the Poisson and negative binomial distributions, by taking advantage of novel strategies, including library size prediction and residual connections, to improve the overall performance. A significant innovation of ZiPo is the introduction of a scale-invariant loss term, making the weights sparse and, hence, the model biologically more interpretable. ZiPo quickly handles vast singular and mixed datasets, with the processing time directly proportional to the number of cells. In this paper, we demonstrate the power of ZiPo on three datasets and show its advantages over other current techniques. The code used to produce the results in this manuscript is available at https://bitbucket.org/habilzare/alzheimer/src/master/code/deep/ZiPo/.
Collapse
|
9
|
Zhu J, Wu C, Yang L. Cellular senescence in Alzheimer's disease: from physiology to pathology. Transl Neurodegener 2024; 13:55. [PMID: 39568081 PMCID: PMC11577763 DOI: 10.1186/s40035-024-00447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/12/2024] [Indexed: 11/22/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, characterized by the accumulation of Aβ and abnormal tau hyperphosphorylation. Despite substantial efforts in development of drugs targeting Aβ and tau pathologies, effective therapeutic strategies for AD remain elusive. Recent attention has been paid to the significant role of cellular senescence in AD progression. Mounting evidence suggests that interventions targeting cellular senescence hold promise in improving cognitive function and ameliorating hallmark pathologies in AD. This narrative review provides a comprehensive summary and discussion of the physiological roles, characteristics, biomarkers, and commonly employed in vivo and in vitro models of cellular senescence, with a particular focus on various cell types in the brain, including astrocytes, microglia, oligodendrocyte precursor cells, neurons, and endothelial cells. The review further delves into factors influencing cellular senescence in AD and emphasizes the significance of targeting cellular senescence as a promising approach for AD treatment, which includes the utilization of senolytics and senomorphics.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
10
|
Tangavelou K, Bhaskar K. The Mechanistic Link Between Tau-Driven Proteotoxic Stress and Cellular Senescence in Alzheimer's Disease. Int J Mol Sci 2024; 25:12335. [PMID: 39596399 PMCID: PMC11595124 DOI: 10.3390/ijms252212335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
In Alzheimer's disease (AD), tau dissociates from microtubules (MTs) due to hyperphosphorylation and misfolding. It is degraded by various mechanisms, including the 20S proteasome, chaperone-mediated autophagy (CMA), 26S proteasome, macroautophagy, and aggrephagy. Neurofibrillary tangles (NFTs) form upon the impairment of aggrephagy, and eventually, the ubiquitin chaperone valosin-containing protein (VCP) and heat shock 70 kDa protein (HSP70) are recruited to the sites of NFTs for the extraction of tau for the ubiquitin-proteasome system (UPS)-mediated degradation. However, the impairment of tau degradation in neurons allows tau to be secreted into the extracellular space. Secreted tau can be monomers, oligomers, and paired helical filaments (PHFs), which are seeding competent pathological tau that can be endocytosed/phagocytosed by healthy neurons, microglia, astrocytes, oligodendrocyte progenitor cells (OPCs), and oligodendrocytes, often causing proteotoxic stress and eventually triggers senescence. Senescent cells secrete various senescence-associated secretory phenotype (SASP) factors, which trigger cellular atrophy, causing decreased brain volume in human AD. However, the molecular mechanisms of proteotoxic stress and cellular senescence are not entirely understood and are an emerging area of research. Therefore, this comprehensive review summarizes pertinent studies that provided evidence for the sequential tau degradation, failure, and the mechanistic link between tau-driven proteotoxic stress and cellular senescence in AD.
Collapse
Affiliation(s)
- Karthikeyan Tangavelou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
11
|
Tan X, Su X, Wang Y, Liang W, Wang D, Huo D, Wang H, Qi Y, Zhang W, Han L, Zhang D, Wang M, Xu J, Feng H. BRD7 regulates cellular senescence and apoptosis in ALS by modulating p21 expression and p53 mitochondrial translocation respectively. Neuroscience 2024; 563:51-62. [PMID: 39510439 DOI: 10.1016/j.neuroscience.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/15/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
Cellular senescence is involved in the progression of neurodegenerative diseases. Motor neurons exhibit senescence-like alterations in ALS. BRD7, identified as a regulatory factor associated with cellular senescence, its function in ALS remains unclear. This study aims to investigate the potential role and mechanisms of BRD7 in ALS. We analyzed RNA levels using qRT-PCR, protein levels through immunofluorescence and western blot, and apoptosis via TUNEL staining. Cell transfection was conducted for in vitro experiments. The level of β-galactosidase was measured by β-galactosidase activity detection kit. ALS motor neurons exhibited senescence-like alterations, characterized by increased activity of p53, p21, and β-galactosidase, as well as reduced lamin B1 staining. Additionally, the expression of BRD7 was upregulated and induced cellular senescence and apoptosis. Downregulation of BRD7 alleviates the cellular senescence by inhibiting p21 rather than p53. Knockdown of BRD7 inhibited p53 mitochondrial translocation, leading to reduced apoptosis. Our results suggest that BRD7 plays an important role in the survival of ALS motor neurons. BRD7 knockdown can reduce cellular senescence and apoptosis by inhibiting p21 and p53 mitochondrial translocation.
Collapse
Affiliation(s)
- Xingli Tan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Xiaoli Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Weiwei Liang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China; Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Di Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Di Huo
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Hongyong Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Yan Qi
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Wenmo Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Ling Han
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Dongmei Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Ming Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Jing Xu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Honglin Feng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| |
Collapse
|
12
|
Riessland M, Ximerakis M, Jarjour AA, Zhang B, Orr ME. Therapeutic targeting of senescent cells in the CNS. Nat Rev Drug Discov 2024; 23:817-837. [PMID: 39349637 DOI: 10.1038/s41573-024-01033-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 11/01/2024]
Abstract
Senescent cells accumulate throughout the body with advanced age, diseases and chronic conditions. They negatively impact health and function of multiple systems, including the central nervous system (CNS). Therapies that target senescent cells, broadly referred to as senotherapeutics, recently emerged as potentially important treatment strategies for the CNS. Promising therapeutic approaches involve clearing senescent cells by disarming their pro-survival pathways with 'senolytics'; or dampening their toxic senescence-associated secretory phenotype (SASP) using 'senomorphics'. Following the pioneering discovery of first-generation senolytics dasatinib and quercetin, dozens of additional therapies have been identified, and several promising targets are under investigation. Although potentially transformative, senotherapies are still in early stages and require thorough testing to ensure reliable target engagement, specificity, safety and efficacy. The limited brain penetrance and potential toxic side effects of CNS-acting senotherapeutics pose challenges for drug development and translation to the clinic. This Review assesses the potential impact of senotherapeutics for neurological conditions by summarizing preclinical evidence, innovative methods for target and biomarker identification, academic and industry drug development pipelines and progress in clinical trials.
Collapse
Affiliation(s)
- Markus Riessland
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | | | | | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miranda E Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Salisbury VA Medical Center, Salisbury, NC, USA.
| |
Collapse
|
13
|
Li Y, Wang Q, Xuan Y, Zhao J, Li J, Tian Y, Chen G, Tan F. Investigation of human aging at the single-cell level. Ageing Res Rev 2024; 101:102530. [PMID: 39395577 DOI: 10.1016/j.arr.2024.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/18/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
Human aging is characterized by a gradual decline in physiological functions and an increased susceptibility to various diseases. The complex mechanisms underlying human aging are still not fully elucidated. Single-cell sequencing (SCS) technologies have revolutionized aging research by providing unprecedented resolution and detailed insights into cellular diversity and dynamics. In this review, we discuss the application of various SCS technologies in human aging research, encompassing single-cell, genomics, transcriptomics, epigenomics, and proteomics. We also discuss the combination of multiple omics layers within single cells and the integration of SCS technologies with advanced methodologies like spatial transcriptomics and mass spectrometry. These approaches have been essential in identifying aging biomarkers, elucidating signaling pathways associated with aging, discovering novel aging cell subpopulations, uncovering tissue-specific aging characteristics, and investigating aging-related diseases. Furthermore, we provide an overview of aging-related databases that offer valuable resources for enhancing our understanding of the human aging process.
Collapse
Affiliation(s)
- Yunjin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Qixia Wang
- Department of General Practice, Xi'an Central Hospital, Xi'an, Shaanxi 710000, China
| | - Yuan Xuan
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, China
| | - Jian Zhao
- Department of Oncology-Pathology Karolinska Institutet, BioClinicum, Solna, Sweden
| | - Jin Li
- Shandong Zhifu Hospital, Yantai, Shandong 264000, China
| | - Yuncai Tian
- Shanghai AZ Science and Technology Co., Ltd, Shanghai 200000, China
| | - Geng Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| | - Fei Tan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, China.
| |
Collapse
|
14
|
Yao M, Wei Z, Nielsen JS, Ouyang Y, Kakazu A, Wang H, Du L, Li R, Chu T, Scafidi S, Lu H, Aggarwal M, Duan W. Senolytic therapy preserves blood-brain barrier integrity and promotes microglia homeostasis in a tauopathy model. Neurobiol Dis 2024; 202:106711. [PMID: 39437971 PMCID: PMC11600427 DOI: 10.1016/j.nbd.2024.106711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024] Open
Abstract
Cellular senescence, characterized by expressing the cell cycle inhibitory proteins, is evident in driving age-related diseases. Senescent cells play a crucial role in the initiation and progression of tau-mediated pathology, suggesting that targeting cell senescence offers a therapeutic potential for treating tauopathy associated diseases. This study focuses on identifying non-invasive biomarkers and validating their responses to a well-characterized senolytic therapy combining dasatinib and quercetin (D + Q), in a widely used tauopathy mouse model, PS19. We employed human-translatable MRI measures, including water extraction with phase-contrast arterial spin tagging (WEPCAST) MRI, T2 relaxation under spin tagging (TRUST), longitudinally assessed brain physiology and high-resolution structural MRI evaluated the brain regional volumes in PS19 mice. Our data reveal increased BBB permeability, decreased oxygen extraction fraction, and brain atrophy in 9-month-old PS19 mice compared to their littermate controls. (D + Q) treatment effectively preserves BBB integrity, rescues cerebral oxygen hypometabolism, attenuates brain atrophy, and alleviates tau hyperphosphorylation in PS19 mice. Mechanistically, D + Q treatment induces a shift of microglia from a disease-associated to a homeostatic state, reducing a senescence-like microglial phenotype marked by increased p16/Ink4a. D + Q-treated PS19 mice exhibit enhanced cue-associated cognitive performance in the tracing fear conditioning test compared to the vehicle-treated littermates, implying improved cognitive function by D + Q treatment. Our results pave the way for application of senolytic treatment as well as these noninvasive MRI biomarkers in clinical trials in tauopathy associated neurological disorders.
Collapse
Affiliation(s)
- Minmin Yao
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of medicine, Baltimore, MD, USA
| | - Zhiliang Wei
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan Scharff Nielsen
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuxiao Ouyang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of medicine, Baltimore, MD, USA
| | - Aaron Kakazu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of medicine, Baltimore, MD, USA
| | - Haitong Wang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of medicine, Baltimore, MD, USA
| | - Lida Du
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of medicine, Baltimore, MD, USA
| | - Ruoxuan Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of medicine, Baltimore, MD, USA
| | - Tiffany Chu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Manisha Aggarwal
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of medicine, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Ghosh P, Fontanella RA, Scisciola L, Taktaz F, Pesapane A, Basilicata MG, Tortorella G, Matacchione G, Capuano A, Vietri MT, Selvaggi F, Paolisso G, Barbieri M. Obesity-induced neuronal senescence: Unraveling the pathophysiological links. Ageing Res Rev 2024; 101:102533. [PMID: 39368666 DOI: 10.1016/j.arr.2024.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Obesity is one of the most prevalent and increasing metabolic disorders and is considered one of the twelve risk factors for dementia. Numerous studies have demonstrated that obesity induces pathophysiological changes leading to cognitive decline; however, the underlying molecular mechanisms are yet to be fully elucidated. Various biochemical processes, including chronic inflammation, oxidative stress, insulin resistance, dysregulation of lipid metabolism, disruption of the blood-brain barrier, and the release of adipokines have been reported to contribute to the accumulation of senescent neurons during obesity. These senescent cells dysregulate neuronal health and function by exhibiting a senescence-associated secretory phenotype, inducing neuronal inflammation, deregulating cellular homeostasis, causing mitochondrial dysfunction, and promoting microglial infiltration. These factors act as major risks for the occurrence of neurodegenerative diseases and cognitive decline. This review aims to focus on how obesity upregulates neuronal senescence and explores both pharmacological and non-pharmacological interventions for preventing cognitive impairments, thus offering new insights into potential therapeutic strategies.
Collapse
Affiliation(s)
- Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Annalisa Capuano
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Maria Teresa Vietri
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, Naples 80138, Italy; UOC Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naple 80138, Italy
| | - Francesco Selvaggi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; UniCamillus, International Medical University, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
16
|
Wu B, Xiao Q, Zhu L, Tang H, Peng W. Icariin targets p53 to protect against ceramide-induced neuronal senescence: Implication in Alzheimer's disease. Free Radic Biol Med 2024; 224:204-219. [PMID: 39197597 DOI: 10.1016/j.freeradbiomed.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a leading cause of dementia. The aging brain is particularly vulnerable to various stressors, including increased levels of ceramide. However, the role of ceramide in neuronal cell senescence and AD progression and whether icariin, a natural flavonoid glucoside, could reverse neuronal senescence remain inadequately understood. AIM In this study, we explore the role of ceramide in neuronal senescence and AD, and whether icariin can counteract these effects. METHODS We pretreated HT-22 cells with icariin and then induced senescence with ceramide. Various assays were employed to assess cell senescence, such as reactive oxygen species (ROS) production, cell cycle progression, β-galactosidase staining, and expression of senescence-associated proteins. In vivo studies utilized APP/PS1 mice and C57BL/6J mice injected with ceramide to evaluate behavioral changes, histopathological alterations, and senescence-associated protein expression. Transcriptomics, molecular docking, molecular dynamics simulations, and cellular thermal shift assays were employed to verify the interaction between icariin and P53. The specificity of icariin targeting of P53 was further confirmed through rescue experiments utilizing the P53 activator Navtemadlin. RESULTS Our data demonstrated that ceramide could induce neuronal senescence and AD-related pathologies, which were reversed by icariin. Moreover, molecular studies revealed that icariin directly targeted P53, and its neuroprotective effects were attenuated by P53 activation, providing evidence for the role of P53 in icariin-mediated neuroprotection. CONCLUSION Icariin demonstrates a protective effect against ceramide-induced neuronal senescence by inhibiting the P53 pathway. This identifies a novel mechanism of action for icariin, offering a novel therapeutic approach for AD and other age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Beibei Wu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Qiao Xiao
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Lemei Zhu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Hanfen Tang
- Department of Nutrition, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Academician Workstation, Changsha Medical University, Changsha, 410219, China.
| |
Collapse
|
17
|
Andonian BJ, Hippensteel JA, Abuabara K, Boyle EM, Colbert JF, Devinney MJ, Faye AS, Kochar B, Lee J, Litke R, Nair D, Sattui SE, Sheshadri A, Sherman AN, Singh N, Zhang Y, LaHue SC. Inflammation and aging-related disease: A transdisciplinary inflammaging framework. GeroScience 2024:10.1007/s11357-024-01364-0. [PMID: 39352664 DOI: 10.1007/s11357-024-01364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Inflammaging, a state of chronic, progressive low-grade inflammation during aging, is associated with several adverse clinical outcomes, including frailty, disability, and death. Chronic inflammation is a hallmark of aging and is linked to the pathogenesis of many aging-related diseases. Anti-inflammatory therapies are also increasingly being studied as potential anti-aging treatments, and clinical trials have shown benefits in selected aging-related diseases. Despite promising advances, significant gaps remain in defining, measuring, treating, and integrating inflammaging into clinical geroscience research. The Clin-STAR Inflammation Research Interest Group was formed by a group of transdisciplinary clinician-scientists with the goal of advancing inflammaging-related clinical research and improving patient-centered care for older adults. Here, we integrate insights from nine medical subspecialties to illustrate the widespread impact of inflammaging on diseases linked to aging, highlighting the extensive opportunities for targeted interventions. We then propose a transdisciplinary approach to enhance understanding and treatment of inflammaging that aims to improve comprehensive care for our aging patients.
Collapse
Affiliation(s)
- Brian J Andonian
- Division of Rheumatology and Immunology, Duke University School of Medicine, Durham, NC, USA.
| | - Joseph A Hippensteel
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katrina Abuabara
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Eileen M Boyle
- Department of Haematology, University College London Cancer Institute, London, UK
| | - James F Colbert
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael J Devinney
- Division of Critical Care, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Adam S Faye
- Division of Gastroenterology, Department of Population Health, NYU Langone Medical Center, New York, NY, USA
| | - Bharati Kochar
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Jiha Lee
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rachel Litke
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Devika Nair
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sebastian E Sattui
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anoop Sheshadri
- Division of Nephrology, Department of Medicine, University of California, San Francisco, Nephrology Section, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | | | - Namrata Singh
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Yinan Zhang
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sara C LaHue
- Department of Neurology, School of Medicine, and the UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
18
|
Yoshioka Y, Huang Y, Jin X, Ngo KX, Kumaki T, Jin M, Toyoda S, Takayama S, Inotsume M, Fujita K, Homma H, Ando T, Tanaka H, Okazawa H. PQBP3 prevents senescence by suppressing PSME3-mediated proteasomal Lamin B1 degradation. EMBO J 2024; 43:3968-3999. [PMID: 39103492 PMCID: PMC11405525 DOI: 10.1038/s44318-024-00192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Senescence of nondividing neurons remains an immature concept, with especially the regulatory molecular mechanisms of senescence-like phenotypes and the role of proteins associated with neurodegenerative diseases in triggering neuronal senescence remaining poorly explored. In this study, we reveal that the nucleolar polyglutamine binding protein 3 (PQBP3; also termed NOL7), which has been linked to polyQ neurodegenerative diseases, regulates senescence as a gatekeeper of cytoplasmic DNA leakage. PQBP3 directly binds PSME3 (proteasome activator complex subunit 3), a subunit of the 11S proteasome regulator complex, decreasing PSME3 interaction with Lamin B1 and thereby preventing Lamin B1 degradation and senescence. Depletion of endogenous PQBP3 causes nuclear membrane instability and release of genomic DNA from the nucleus to the cytosol. Among multiple tested polyQ proteins, ataxin-1 (ATXN1) partially sequesters PQBP3 to inclusion bodies, reducing nucleolar PQBP3 levels. Consistently, knock-in mice expressing mutant Atxn1 exhibit decreased nuclear PQBP3 and a senescence phenotype in Purkinje cells of the cerebellum. Collectively, these results suggest homologous roles of the nucleolar protein PQBP3 in cellular senescence and neurodegeneration.
Collapse
Affiliation(s)
- Yuki Yoshioka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yong Huang
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Xiaocen Jin
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kien Xuan Ngo
- Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Tomohiro Kumaki
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Meihua Jin
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Saori Toyoda
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Sumire Takayama
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Maiko Inotsume
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Research Center for Child Mental Development, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hidenori Homma
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Toshio Ando
- Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hikari Tanaka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
19
|
Zwang TJ, Sastre ED, Wolf N, Ruiz-Uribe N, Woost B, Hoglund Z, Fan Z, Bailey J, Nfor L, Buée L, Nilsson KPR, Hyman BT, Bennett RE. Neurofibrillary tangle-bearing neurons have reduced risk of cell death in mice with Alzheimer's pathology. Cell Rep 2024; 43:114574. [PMID: 39096489 PMCID: PMC11441076 DOI: 10.1016/j.celrep.2024.114574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/31/2024] [Accepted: 07/17/2024] [Indexed: 08/05/2024] Open
Abstract
A prevailing hypothesis is that neurofibrillary tangles play a causal role in driving cognitive decline in Alzheimer's disease (AD) because tangles correlate anatomically with areas that undergo neuronal loss. We used two-photon longitudinal imaging to directly test this hypothesis and observed the fate of individual neurons in two mouse models. At any time point, neurons without tangles died at >3 times the rate as neurons with tangles. Additionally, prior to dying, they became >20% more distant from neighboring neurons across imaging sessions. Similar microstructural changes were evident in a population of non-tangle-bearing neurons in Alzheimer's donor tissues. Together, these data suggest that nonfibrillar tau puts neurons at high risk of death, and surprisingly, the presence of a tangle reduces this risk. Moreover, cortical microstructure changes appear to be a better predictor of imminent cell death than tangle status is and a promising tool for identifying dying neurons in Alzheimer's.
Collapse
Affiliation(s)
- Theodore J Zwang
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Eric Del Sastre
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Nina Wolf
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Nancy Ruiz-Uribe
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Benjamin Woost
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Zachary Hoglund
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Zhanyun Fan
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Joshua Bailey
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Lois Nfor
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Luc Buée
- University Lille, Inserm, CHU Lille, LilNCog-Lille Neuroscience & Cognition, 59000 Lille, France
| | - K Peter R Nilsson
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Rachel E Bennett
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Wang Y, Kuca K, You L, Nepovimova E, Heger Z, Valko M, Adam V, Wu Q, Jomova K. The role of cellular senescence in neurodegenerative diseases. Arch Toxicol 2024; 98:2393-2408. [PMID: 38744709 PMCID: PMC11272704 DOI: 10.1007/s00204-024-03768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Increasing evidence has revealed that cellular senescence drives NDs, including Alzheimer's disease (AD) and Parkinson's disease. Different senescent cell populations secrete senescence-associated secretory phenotypes (SASP), including matrix metalloproteinase-3, interleukin (IL)-1α, IL-6, and IL-8, which can harm adjacent microglia. Moreover, these cells possess high expression levels of senescence hallmarks (p16 and p21) and elevated senescence-associated β-galactosidase activity in in vitro and in vivo ND models. These senescence phenotypes contribute to the deposition of β-amyloid and tau-protein tangles. Selective clearance of senescent cells and SASP regulation by inhibiting p38/mitogen-activated protein kinase and nuclear factor kappa B signaling attenuate β-amyloid load and prevent tau-protein tangle deposition, thereby improving cognitive performance in AD mouse models. In addition, telomere shortening, a cellular senescence biomarker, is associated with increased ND risks. Telomere dysfunction causes cellular senescence, stimulating IL-6, tumor necrosis factor-α, and IL-1β secretions. The forced expression of telomerase activators prevents cellular senescence, yielding considerable neuroprotective effects. This review elucidates the mechanism of cellular senescence in ND pathogenesis, suggesting strategies to eliminate or restore senescent cells to a normal phenotype for treating such diseases.
Collapse
Affiliation(s)
- Yating Wang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, 500 05, Hradec Kralove, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, 401520, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74, Nitra, Slovakia.
| |
Collapse
|
21
|
Russo T, Riessland M. Lipid accumulation drives cellular senescence in dopaminergic neurons. Aging (Albany NY) 2024; 16:11128-11133. [PMID: 39033779 PMCID: PMC11315398 DOI: 10.18632/aging.206030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Parkinson's disease (PD) is an age-related movement disorder caused by the loss of dopaminergic (DA) neurons of the substantia nigra pars compacta (SNpc) of the midbrain, however, the underlying cause(s) of this DA neuron loss in PD is unknown and there are currently no effective treatment options to prevent or slow neuronal loss or the progression of related symptoms. It has been shown that both environmental factors as well as genetic predispositions underpin PD development and recent research has revealed that lysosomal dysfunction and lipid accumulation are contributors to disease progression, where an age-related aggregation of alpha-synuclein as well as lipids have been found in PD patients. Interestingly, the most common genetic risk factor for PD is Glucosylceramidase Beta 1 (GBA), which encodes a lysosomal glucocerebrosidase (GCase) that cleaves the beta-glucosidic linkage of lipids known as glucocerebrosides (GluCer). We have recently discovered that artificial induction of GluCer accumulation leads to cellular senescence of DA neurons, suggesting that lipid aggregation plays a crucial role in the pathology of PD by driving senescence in these vulnerable DA neurons. Here, we discuss the relevance of the age-related aggregation of lipids as well as the direct functional link between general lipid aggregation, cellular senescence, and inflammaging of DA neurons. We propose that the expression of a cellular senescence phenotype in the most vulnerable neurons in PD can be triggered by lysosomal impairment and lipid aggregation. Importantly, we highlight additional data that perilipin (PLIN2) is significantly upregulated in senescent DA neurons, suggesting an overall enrichment of lipid droplets (LDs) in these cells. These findings align with our previous results in dopaminergic neurons in highlighting a central role for lipid accumulation in the senescence of DA neurons. Importantly, general lipid droplet aggregation and global lysosomal impairment have been implicated in many neurodegenerative diseases including PD. Taken together, our data suggest a connection between age-related lysosomal impairment, lipid accumulation, and cellular senescence in DA neurons that in turn drives inflammaging in the midbrain and ultimately leads to neurodegeneration and PD.
Collapse
Affiliation(s)
- Taylor Russo
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794, USA
| | - Markus Riessland
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
22
|
Yao M, Wei Z, Nielsen JOS, Kakazu A, Ouyang Y, Li R, Chu T, Scafidi S, Lu H, Aggarwal M, Duan W. Senolytic therapy preserves blood-brain barrier integrity and promotes microglia homeostasis in a tauopathy model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586662. [PMID: 38585805 PMCID: PMC10996647 DOI: 10.1101/2024.03.25.586662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cellular senescence, characterized by expressing the cell cycle inhibitory proteins, is evident in driving age-related diseases. Senescent cells play a crucial role in the initiation and progression of tau-mediated pathology, suggesting that targeting cell senescence offers a therapeutic potential for treating tauopathy associated diseases. This study focuses on identifying non-invasive biomarkers and validating their responses to a well-characterized senolytic therapy combining dasatinib and quercetin (D+Q), in a widely used tauopathy mouse model, PS19. We employed human-translatable MRI measures, including water extraction with phase-contrast arterial spin tagging (WEPCAST) MRI, T2 relaxation under spin tagging (TRUST), longitudinally assessed brain physiology and high-resolution structural MRI evaluated the brain regional volumes in PS19 mice. Our data reveal increased BBB permeability, decreased oxygen extraction fraction, and brain atrophy in 9-month-old PS19 mice compared to their littermate controls. (D+Q) treatment effectively preserves BBB integrity, rescues cerebral oxygen hypometabolism, attenuates brain atrophy, and alleviates tau hyperphosphorylation in PS19 mice. Mechanistically, D+Q treatment induces a shift of microglia from a disease-associated to a homeostatic state, reducing a senescence-like microglial phenotype marked by increased p16/INK4a. D+Q-treated PS19 mice exhibit enhanced cue-associated cognitive performance in the tracing fear conditioning test compared to the vehicle-treated littermates, implying improved cognitive function by D+Q treatment. Our results pave the way for application of senolytic treatment as well as these noninvasive MRI biomarkers in clinical trials in tauopathy associated neurological disorders.
Collapse
|
23
|
Burmistrov DE, Gudkov SV, Franceschi C, Vedunova MV. Sex as a Determinant of Age-Related Changes in the Brain. Int J Mol Sci 2024; 25:7122. [PMID: 39000227 PMCID: PMC11241365 DOI: 10.3390/ijms25137122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The notion of notable anatomical, biochemical, and behavioral distinctions within male and female brains has been a contentious topic of interest within the scientific community over several decades. Advancements in neuroimaging and molecular biological techniques have increasingly elucidated common mechanisms characterizing brain aging while also revealing disparities between sexes in these processes. Variations in cognitive functions; susceptibility to and progression of neurodegenerative conditions, notably Alzheimer's and Parkinson's diseases; and notable disparities in life expectancy between sexes, underscore the significance of evaluating aging within the framework of gender differences. This comprehensive review surveys contemporary literature on the restructuring of brain structures and fundamental processes unfolding in the aging brain at cellular and molecular levels, with a focus on gender distinctions. Additionally, the review delves into age-related cognitive alterations, exploring factors influencing the acceleration or deceleration of aging, with particular attention to estrogen's hormonal support of the central nervous system.
Collapse
Affiliation(s)
- Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia;
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia;
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Claudio Franceschi
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
24
|
Herdy JR, Mertens J, Gage FH. Neuronal senescence may drive brain aging. Science 2024; 384:1404-1406. [PMID: 38935713 DOI: 10.1126/science.adi3450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Senescence of postmitotic neurons presents challenges and opportunities to modify brain aging.
Collapse
Affiliation(s)
- Joseph R Herdy
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jerome Mertens
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
25
|
Gong Y, Haeri M, Zhang X, Li Y, Liu A, Wu D, Zhang Q, Jazwinski SM, Zhou X, Wang X, Jiang L, Chen YP, Yan X, Swerdlow RH, Shen H, Deng HW. Spatial Dissection of the Distinct Cellular Responses to Normal Aging and Alzheimer's Disease in Human Prefrontal Cortex at Single-Nucleus Resolution. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.21.24306783. [PMID: 38826275 PMCID: PMC11142279 DOI: 10.1101/2024.05.21.24306783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Aging significantly elevates the risk for Alzheimer's disease (AD), contributing to the accumulation of AD pathologies, such as amyloid-β (Aβ), inflammation, and oxidative stress. The human prefrontal cortex (PFC) is highly vulnerable to the impacts of both aging and AD. Unveiling and understanding the molecular alterations in PFC associated with normal aging (NA) and AD is essential for elucidating the mechanisms of AD progression and developing novel therapeutics for this devastating disease. In this study, for the first time, we employed a cutting-edge spatial transcriptome platform, STOmics® SpaTial Enhanced Resolution Omics-sequencing (Stereo-seq), to generate the first comprehensive, subcellular resolution spatial transcriptome atlas of the human PFC from six AD cases at various neuropathological stages and six age, sex, and ethnicity matched controls. Our analyses revealed distinct transcriptional alterations across six neocortex layers, highlighted the AD-associated disruptions in laminar architecture, and identified changes in layer-to-layer interactions as AD progresses. Further, throughout the progression from NA to various stages of AD, we discovered specific genes that were significantly upregulated in neurons experiencing high stress and in nearby non-neuronal cells, compared to cells distant from the source of stress. Notably, the cell-cell interactions between the neurons under the high stress and adjacent glial cells that promote Aβ clearance and neuroprotection were diminished in AD in response to stressors compared to NA. Through cell-type specific gene co-expression analysis, we identified three modules in excitatory and inhibitory neurons associated with neuronal protection, protein dephosphorylation, and negative regulation of Aβ plaque formation. These modules negatively correlated with AD progression, indicating a reduced capacity for toxic substance clearance in AD subject samples. Moreover, we have discovered a novel transcription factor, ZNF460, that regulates all three modules, establishing it as a potential new therapeutic target for AD. Overall, utilizing the latest spatial transcriptome platform, our study developed the first transcriptome-wide atlas with subcellular resolution for assessing the molecular alterations in the human PFC due to AD. This atlas sheds light on the potential mechanisms underlying the progression from NA to AD.
Collapse
Affiliation(s)
- Yun Gong
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Mohammad Haeri
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, 66160, USA
| | - Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yisu Li
- Department of Cell and Molecular Biology, School of Science of Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Anqi Liu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Di Wu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Qilei Zhang
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410008, China
| | - S. Michal Jazwinski
- Tulane Center for Aging, Deming Department of Medicine, Tulane University School of Medicne, New Orleans, LA 70112, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lindong Jiang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yi-Ping Chen
- Department of Cell and Molecular Biology, School of Science of Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Xiaoxin Yan
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410008, China
| | - Russell H. Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, MO, 66160, USA
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| |
Collapse
|
26
|
Wang S, Li B, Cai Z, Hugo C, Li J, Sun Y, Qian L, Remaley AT, Tcw J, Chui HC, Bennett DA, Arvanitakis Z, Kerman B, Yassine H. Cellular senescence induced by cholesterol accumulation is mediated by lysosomal ABCA1 in APOE4 and AD. RESEARCH SQUARE 2024:rs.3.rs-4373201. [PMID: 38798644 PMCID: PMC11118681 DOI: 10.21203/rs.3.rs-4373201/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Cellular senescence is a hallmark of aging and has been implicated in Alzheimer's disease (AD) pathogenesis. Cholesterol accumulation drives cellular senescence; however, the underlying mechanisms are unclear. ATP-binding cassette transporter A1 (ABCA1) plays an important role in cholesterol homeostasis. ABCA1 expression and its trafficking is afiltered in APOE4 and AD cellular and mouse models. However, whether ABCA1 trafficking is involved in cellular senescence in APOE4 and AD remains unknown. Methods We examined the association between cellular senescence and ABCA1 expression in human postmortem brain samples using transcriptomic, histological, and biochemical analyses. An unbiased proteomic screening was performed to identify targets that mediate cellular ABCA1 trafficking. APOE4-TR mice, immortalized, primary and induced pluripotent stem cell (iPSC) models were used to examine the cholesterol-ABCA1-senescence pathways. Results Bulk and single nuclei transcriptomic profiling of the human dorsolateral prefrontal cortex from the Religious Order Study/Memory Aging Project (ROSMAP) revealed upregulation of cellular senescence transcriptome signatures in AD, which was strongly correlated with ABCA1 expression. Immunofluorescence and immunoblotting analyses confirmed increased ABCA1 expression in AD brain tissues, which was associated with lipofuscin-stained lipids and mTOR phosphorylation. Using discovery proteomics, caveolin-1, a sensor of cellular cholesterol accumulation, was identified to promote ABCA1 endolysosomal trafficking. Greater caveolin-1 expression was found in both APOE4-TR mouse models and AD human brains. Cholesterol induced mTORC1 activation was regulated by ABCA1 expression or its lysosomal trapping. Reducing cholesterol by cyclodextrin in APOE4-TR mice reduced ABCA1 lysosome trapping and increased ABCA1 recycling to efflux cholesterol to HDL particles, reducing mTORC1 activation and senescence-associated neuroinflammation. In human iPSC-derived astrocytes, the reduction of cholesterol by cyclodextrin attenuated inflammatory responses. Conclusions Cholesterol accumulation in APOE4 and AD induced caveolin-1 expression, which traps ABCA1 in lysosomes to activate mTORC1 pathways and induce cellular senescence. This study provided novel insights into how cholesterol accumulation in APOE4 and AD accelerates senescence.
Collapse
Affiliation(s)
| | | | | | | | - Jie Li
- University of Southern California
| | - Yi Sun
- University of Southern California
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jonischkies K, del Angel M, Demiray YE, Loaiza Zambrano A, Stork O. The NDR family of kinases: essential regulators of aging. Front Mol Neurosci 2024; 17:1371086. [PMID: 38803357 PMCID: PMC11129689 DOI: 10.3389/fnmol.2024.1371086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Aging is defined as a progressive decline of cognitive and physiological functions over lifetime. Since the definition of the nine hallmarks of aging in 2013 by López-Otin, numerous studies have attempted to identify the main regulators and contributors in the aging process. One interesting group of proteins whose participation has been implicated in several aging hallmarks are the nuclear DBF2-related (NDR) family of serine-threonine AGC kinases. They are one of the core components of the Hippo signaling pathway and include NDR1, NDR2, LATS1 and LATS2 in mammals, along with its highly conserved metazoan orthologs; Trc in Drosophila melanogaster, SAX-1 in Caenorhabditis elegans, CBK1, DBF20 in Saccharomyces cerevisiae and orb6 in Saccharomyces pombe. These kinases have been independently linked to the regulation of widely diverse cellular processes disrupted during aging such as the cell cycle progression, transcription, intercellular communication, nutrient homeostasis, autophagy, apoptosis, and stem cell differentiation. However, a comprehensive overview of the state-of-the-art knowledge regarding the post-translational modifications of and by NDR kinases in aging has not been conducted. In this review, we summarize the current understanding of the NDR family of kinases, focusing on their relevance to various aging hallmarks, and emphasize the growing body of evidence that suggests NDR kinases are essential regulators of aging across species.
Collapse
Affiliation(s)
- Kevin Jonischkies
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Miguel del Angel
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Yunus Emre Demiray
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Allison Loaiza Zambrano
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Science, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Mental Health (DZPG), Jena-Magdeburg-Halle, Germany
| |
Collapse
|
28
|
Oliveri D, Moschetti G, Griego A, Scarpa E. Endothelial cellular senescence and tau accumulation: An interplay full of opportunities? IBRAIN 2024; 10:225-230. [PMID: 38915948 PMCID: PMC11193862 DOI: 10.1002/ibra.12154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024]
Abstract
Recent research has shown that tau protein can be passed to neighboring cells, leading to cellular senescence in the endothelial cells present in the central nervous system (CNS). This discovery could potentially open new doors for testing novel therapeutic compounds that specifically target senescent cells (senolytics) or for identifying new biomarkers that can enable early detection of tauopathies and dementia.
Collapse
Affiliation(s)
- Doriana Oliveri
- Department of Pharmaceutical Sciences (DISFARM)University of MilanMilanItaly
- Infection Dynamics Laboratory‐National Institute of Molecular Genetics (INGM)MilanItaly
| | - Giorgia Moschetti
- Department of Pharmaceutical Sciences (DISFARM)University of MilanMilanItaly
- Infection Dynamics Laboratory‐National Institute of Molecular Genetics (INGM)MilanItaly
| | - Anna Griego
- Department of Pharmaceutical Sciences (DISFARM)University of MilanMilanItaly
- Infection Dynamics Laboratory‐National Institute of Molecular Genetics (INGM)MilanItaly
| | - Edoardo Scarpa
- Department of Pharmaceutical Sciences (DISFARM)University of MilanMilanItaly
- Infection Dynamics Laboratory‐National Institute of Molecular Genetics (INGM)MilanItaly
| |
Collapse
|
29
|
Fancy NN, Smith AM, Caramello A, Tsartsalis S, Davey K, Muirhead RCJ, McGarry A, Jenkyns MH, Schneegans E, Chau V, Thomas M, Boulger S, Cheung TKD, Adair E, Papageorgopoulou M, Willumsen N, Khozoie C, Gomez-Nicola D, Jackson JS, Matthews PM. Characterisation of premature cell senescence in Alzheimer's disease using single nuclear transcriptomics. Acta Neuropathol 2024; 147:78. [PMID: 38695952 PMCID: PMC11065703 DOI: 10.1007/s00401-024-02727-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 05/05/2024]
Abstract
Aging is associated with cell senescence and is the major risk factor for AD. We characterized premature cell senescence in postmortem brains from non-diseased controls (NDC) and donors with Alzheimer's disease (AD) using imaging mass cytometry (IMC) and single nuclear RNA (snRNA) sequencing (> 200,000 nuclei). We found increases in numbers of glia immunostaining for galactosidase beta (> fourfold) and p16INK4A (up to twofold) with AD relative to NDC. Increased glial expression of genes related to senescence was associated with greater β-amyloid load. Prematurely senescent microglia downregulated phagocytic pathways suggesting reduced capacity for β-amyloid clearance. Gene set enrichment and pseudo-time trajectories described extensive DNA double-strand breaks (DSBs), mitochondrial dysfunction and ER stress associated with increased β-amyloid leading to premature senescence in microglia. We replicated these observations with independent AD snRNA-seq datasets. Our results describe a burden of senescent glia with AD that is sufficiently high to contribute to disease progression. These findings support the hypothesis that microglia are a primary target for senolytic treatments in AD.
Collapse
Affiliation(s)
- Nurun N Fancy
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Amy M Smith
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Centre for Brain Research and Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Alessia Caramello
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Stergios Tsartsalis
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Karen Davey
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
- UK Dementia Research Institute Centre, King's College London, London, UK
| | - Robert C J Muirhead
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
- UK Dementia Research Institute Centre, King's College London, London, UK
| | - Aisling McGarry
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marion H Jenkyns
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Eleonore Schneegans
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Vicky Chau
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Michael Thomas
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Sam Boulger
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - To Ka Dorcas Cheung
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Emily Adair
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Marianna Papageorgopoulou
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Nanet Willumsen
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Combiz Khozoie
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Johanna S Jackson
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
- UK Dementia Research Institute Centre, Imperial College London, London, UK.
| |
Collapse
|
30
|
Zhang Y, Xie JZ, Jiang YL, Yang SJ, Wei H, Yang Y, Wang JZ. Homocysteine-potentiated Kelch-like ECH-associated protein 1 promotes senescence of neuroblastoma 2a cells via inhibiting ubiquitination of β-catenin. Eur J Neurosci 2024; 59:2732-2747. [PMID: 38501537 DOI: 10.1111/ejn.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/24/2023] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
Elevated serum homocysteine (Hcy) level is a risk factor for Alzheimer's disease (AD) and accelerates cell aging. However, the mechanism by which Hcy induces neuronal senescence remains largely unknown. In this study, we observed that Hcy significantly promoted senescence in neuroblastoma 2a (N2a) cells with elevated β-catenin and Kelch-like ECH-associated protein 1 (KEAP1) levels. Intriguingly, Hcy promoted the interaction between KEAP1 and the Wilms tumor gene on the X chromosome (WTX) while hampering the β-catenin-WTX interaction. Mechanistically, Hcy attenuated the methylation level of the KEAP1 promoter CpG island and activated KEAP1 transcription. However, a slow degradation rate rather than transcriptional activation contributed to the high level of β-catenin. Hcy-upregulated KEAP1 competed with β-catenin to bind to WTX. Knockdown of both β-catenin and KEAP1 attenuated Hcy-induced senescence in N2a cells. Our data highlight a crucial role of the KEAP1-β-catenin pathway in Hcy-induced neuronal-like senescence and uncover a promising target for AD treatment.
Collapse
Affiliation(s)
- Yao Zhang
- Endocrine Department of Liyuan Hospital; Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Zhao Xie
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yan-Li Jiang
- Endocrine Department of Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Juan Yang
- Endocrine Department of Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
31
|
Boccardi V, Orr ME, Polidori MC, Ruggiero C, Mecocci P. Focus on senescence: Clinical significance and practical applications. J Intern Med 2024; 295:599-619. [PMID: 38446642 DOI: 10.1111/joim.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The older population is increasing worldwide, and life expectancy is continuously rising, predominantly thanks to medical and technological progress. Healthspan refers to the number of years an individual can live in good health. From a gerontological viewpoint, the mission is to extend the life spent in good health, promoting well-being and minimizing the impact of aging-related diseases to slow the aging process. Biologically, aging is a malleable process characterized by an intra- and inter-individual heterogeneous and dynamic balance between accumulating damage and repair mechanisms. Cellular senescence is a key component of this process, with senescent cells accumulating in different tissues and organs, leading to aging and age-related disease susceptibility over time. Removing senescent cells from the body or slowing down the burden rate has been proposed as an efficient way to reduce age-dependent deterioration. In animal models, senotherapeutic molecules can extend life expectancy and lifespan by either senolytic or senomorphic activity. Much research shows that dietary and physical activity-driven lifestyle interventions protect against senescence. This narrative review aims to summarize the current knowledge on targeting senescent cells to reduce the risk of age-related disease in animal models and their translational potential for humans. We focused on studies that have examined the potential role of senotherapeutics in slowing the aging process and modifying age-related disease burdens. The review concludes with a general discussion of the mechanisms underlying this unique trajectory and its implications for future research.
Collapse
Affiliation(s)
- Virginia Boccardi
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Miranda Ethel Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Salisbury VA Medical Center, Salisbury, North Carolina, USA
| | - M Cristina Polidori
- Ageing Clinical Research, Department II of Internal Medicine and Center for Molecular Medicine Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress-Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carmelinda Ruggiero
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Patrizia Mecocci
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Wu D, Sun JKL, Chow KHM. Neuronal cell cycle reentry events in the aging brain are more prevalent in neurodegeneration and lead to cellular senescence. PLoS Biol 2024; 22:e3002559. [PMID: 38652714 PMCID: PMC11037540 DOI: 10.1371/journal.pbio.3002559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 04/25/2024] Open
Abstract
Increasing evidence indicates that terminally differentiated neurons in the brain may recommit to a cell cycle-like process during neuronal aging and under disease conditions. Because of the rare existence and random localization of these cells in the brain, their molecular profiles and disease-specific heterogeneities remain unclear. Through a bioinformatics approach that allows integrated analyses of multiple single-nucleus transcriptome datasets from human brain samples, these rare cell populations were identified and selected for further characterization. Our analyses indicated that these cell cycle-related events occur predominantly in excitatory neurons and that cellular senescence is likely their immediate terminal fate. Quantitatively, the number of cell cycle re-engaging and senescent neurons decreased during the normal brain aging process, but in the context of late-onset Alzheimer's disease (AD), these cells accumulate instead. Transcriptomic profiling of these cells suggested that disease-specific differences were predominantly tied to the early stage of the senescence process, revealing that these cells presented more proinflammatory, metabolically deregulated, and pathology-associated signatures in disease-affected brains. Similarly, these general features of cell cycle re-engaging neurons were also observed in a subpopulation of dopaminergic neurons identified in the Parkinson's disease (PD)-Lewy body dementia (LBD) model. An extended analysis conducted in a mouse model of brain aging further validated the ability of this bioinformatics approach to determine the robust relationship between the cell cycle and senescence processes in neurons in this cross-species setting.
Collapse
Affiliation(s)
- Deng Wu
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jacquelyne Ka-Li Sun
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
33
|
Garbarino VR, Palavicini JP, Melendez J, Barthelemy N, He Y, Kautz TF, Lopez-Cruzan M, Mathews JJ, Xu P, Zhan B, Saliba A, Ragi N, Sharma K, Craft S, Petersen RC, Espindola-Netto JM, Xue A, Tchkonia T, Kirkland JL, Seshadri S, Salardini A, Musi N, Bateman RJ, Gonzales MM, Orr ME. Evaluation of Exploratory Fluid Biomarker Results from a Phase 1 Senolytic Trial in Mild Alzheimer's Disease. RESEARCH SQUARE 2024:rs.3.rs-3994894. [PMID: 38496619 PMCID: PMC10942554 DOI: 10.21203/rs.3.rs-3994894/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Senescent cell accumulation contributes to the progression of age-related disorders including Alzheimer's disease (AD). Clinical trials evaluating senolytics, drugs that clear senescent cells, are underway, but lack standardized outcome measures. Our team recently published data from the first open-label trial to evaluate senolytics (dasatinib plus quercetin) in AD. After 12-weeks of intermittent treatment, we reported brain exposure to dasatinib, favorable safety and tolerability, and modest post-treatment changes in cerebrospinal fluid (CSF) inflammatory and AD biomarkers using commercially available assays. Herein, we present more comprehensive exploratory analyses of senolytic associated changes in AD relevant proteins, metabolites, lipids, and transcripts measured across blood, CSF, and urine. These analyses included mass spectrometry for precise quantification of amyloid beta (Aß) and tau in CSF; immunoassays to assess senescence associated secretory factors in plasma, CSF, and urine; mass spectrometry analysis of urinary metabolites and lipids in blood and CSF; and transcriptomic analyses relevant to chronic stress measured in peripheral blood cells. Levels of Aß and tau species remained stable. Targeted cytokine and chemokine analyses revealed treatment-associated increases in inflammatory plasma fractalkine and MMP-7 and CSF IL-6. Urinary metabolites remained unchanged. Modest treatment-associated lipid profile changes suggestive of decreased inflammation were observed both peripherally and centrally. Blood transcriptomic analysis indicated downregulation of inflammatory genes including FOS, FOSB, IL1β, IL8, JUN, JUNB, PTGS2. These data provide a foundation for developing standardized outcome measures across senolytic studies and indicate distinct biofluid-specific signatures that will require validation in future studies. ClinicalTrials.gov: NCT04063124.
Collapse
Affiliation(s)
- Valentina R. Garbarino
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Juan Pablo Palavicini
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Justin Melendez
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA
| | - Nicolas Barthelemy
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA
| | - Yingxin He
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA
| | - Tiffany F. Kautz
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Marisa Lopez-Cruzan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Julia J. Mathews
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Peng Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Afaf Saliba
- Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nagarjunachary Ragi
- Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kumar Sharma
- Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Suzanne Craft
- Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | - Ailing Xue
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Arash Salardini
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nicolas Musi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA
| | - Mitzi M. Gonzales
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Miranda E. Orr
- Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Salisbury VA Medical Center, Salisbury, NC, 28144, USA
| |
Collapse
|
34
|
de Luzy IR, Lee MK, Mobley WC, Studer L. Lessons from inducible pluripotent stem cell models on neuronal senescence in aging and neurodegeneration. NATURE AGING 2024; 4:309-318. [PMID: 38429379 DOI: 10.1038/s43587-024-00586-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
Age remains the central risk factor for many neurodegenerative diseases including Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis. Although the mechanisms of aging are complex, the age-related accumulation of senescent cells in neurodegeneration is well documented and their clearance can alleviate disease-related features in preclinical models. Senescence-like characteristics are observed in both neuronal and glial lineages, but their relative contribution to aging and neurodegeneration remains unclear. Human pluripotent stem cell-derived neurons provide an experimental model system to induce neuronal senescence. However, the extensive heterogeneity in the profile of senescent neurons and the methods to assess senescence remain major challenges. Here, we review the evidence of cellular senescence in neuronal aging and disease, discuss human pluripotent stem cell-based model systems used to investigate neuronal senescence and propose a panel of cellular and molecular hallmarks to characterize senescent neurons. Understanding the role of neuronal senescence may yield novel therapeutic opportunities in neurodegenerative disease.
Collapse
Affiliation(s)
- Isabelle R de Luzy
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Michael K Lee
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - William C Mobley
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
35
|
Carling GK, Fan L, Foxe NR, Norman K, Ye P, Wong MY, Zhu D, Yu F, Xu J, Yarahmady A, Chen H, Huang Y, Amin S, Zacharioudakis E, Chen X, Holtzman DM, Mok SA, Gavathiotis E, Sinha SC, Cheng F, Luo W, Gong S, Gan L. Alzheimer's disease-linked risk alleles elevate microglial cGAS-associated senescence and neurodegeneration in a tauopathy model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577107. [PMID: 38328219 PMCID: PMC10849737 DOI: 10.1101/2024.01.24.577107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The strongest risk factors for Alzheimer's disease (AD) include the χ4 allele of apolipoprotein E (APOE), the R47H variant of triggering receptor expressed on myeloid cells 2 (TREM2), and female sex. Here, we combine APOE4 and TREM2R47H ( R47H ) in female P301S tauopathy mice to identify the pathways activated when AD risk is the strongest, thereby highlighting disease-causing mechanisms. We find that the R47H variant induces neurodegeneration in female APOE4 mice without impacting hippocampal tau load. The combination of APOE4 and R47H amplified tauopathy-induced cell-autonomous microglial cGAS-STING signaling and type-I interferon response, and interferon signaling converged across glial cell types in the hippocampus. APOE4-R47H microglia displayed cGAS- and BAX-dependent upregulation of senescence, showing association between neurotoxic signatures and implicating mitochondrial permeabilization in pathogenesis. By uncovering pathways enhanced by the strongest AD risk factors, our study points to cGAS-STING signaling and associated microglial senescence as potential drivers of AD risk.
Collapse
|
36
|
Liu Y, Tan Y, Zhang Z, Yi M, Zhu L, Peng W. The interaction between ageing and Alzheimer's disease: insights from the hallmarks of ageing. Transl Neurodegener 2024; 13:7. [PMID: 38254235 PMCID: PMC10804662 DOI: 10.1186/s40035-024-00397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Ageing is a crucial risk factor for Alzheimer's disease (AD) and is characterised by systemic changes in both intracellular and extracellular microenvironments that affect the entire body instead of a single organ. Understanding the specific mechanisms underlying the role of ageing in disease development can facilitate the treatment of ageing-related diseases, such as AD. Signs of brain ageing have been observed in both AD patients and animal models. Alleviating the pathological changes caused by brain ageing can dramatically ameliorate the amyloid beta- and tau-induced neuropathological and memory impairments, indicating that ageing plays a crucial role in the pathophysiological process of AD. In this review, we summarize the impact of several age-related factors on AD and propose that preventing pathological changes caused by brain ageing is a promising strategy for improving cognitive health.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China
| | - Yejun Tan
- School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China
| | - Min Yi
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China.
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China.
| |
Collapse
|
37
|
Richardson M, Richardson DR. Pharmacological Targeting of Senescence with Senolytics as a New Therapeutic Strategy for Neurodegeneration. Mol Pharmacol 2024; 105:64-74. [PMID: 38164616 DOI: 10.1124/molpharm.123.000803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Cellular senescence is a state of permanent cell-cycle arrest. Early in life, senescence has a physiologic role in tumor suppression and wound healing. However, gradually, as these senescent cells accumulate over the lifespan of an organism, they contribute to inflammation and the progression of age-related diseases, including neurodegeneration. Targeting senescent cells using a class of drugs known as "senolytics" holds great promise for the management of Alzheimer's and Parkinson's disease. Already, several senolytic compounds have been shown to ameliorate cognitive deficits across several preclinical models of neurodegeneration. Most of these senolytics (e.g., dasatinib) are repurposed clinical or experimental anticancer drugs, which trigger apoptosis of senescent cells by interfering with pro-survival pathways. However, outside of their senolytic function, many first-generation senolytics also have other less appreciated neuroprotective effects, such as potent antioxidant and anti-inflammatory activity. In addition, some senolytic drugs may also have negative dose-limiting toxicities, including thrombocytopenia. In this review, we discuss the various biologic pathways targeted by the leading senolytic drugs, namely dasatinib, quercetin, fisetin, and navitoclax. We further evaluate the clinical transability of these compounds for neurodegeneration, assessing their adverse effects, pharmacokinetic properties, and chemical structure. SIGNIFICANCE STATEMENT: Currently, there are no effective disease-modifying treatments for the most prevalent neurodegenerative disorders, including Alzheimer's and Parkinson's disease. Some of the drugs currently available for treating these diseases are associated with unwanted side-effects and/or become less efficacious with time. Therefore, researchers have begun to explore new innovative treatments for these belligerent diseases, including senolytic drugs. These agents lead to the apoptosis of senescent cells thereby preventing their deleterious role in neurodegeneration.
Collapse
Affiliation(s)
- Miriam Richardson
- Centre for Cancer Cell Biology and Drug Discovery (M.R., DR.R.), Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; and Department of Pathology and Biological Responses (D.R.R.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery (M.R., DR.R.), Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; and Department of Pathology and Biological Responses (D.R.R.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
38
|
Melo Dos Santos LS, Trombetta-Lima M, Eggen B, Demaria M. Cellular senescence in brain aging and neurodegeneration. Ageing Res Rev 2024; 93:102141. [PMID: 38030088 DOI: 10.1016/j.arr.2023.102141] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Cellular senescence is a state of terminal cell cycle arrest associated with various macromolecular changes and a hypersecretory phenotype. In the brain, senescent cells naturally accumulate during aging and at sites of age-related pathologies. Here, we discuss the recent advances in understanding the accumulation of senescent cells in brain aging and disorders. Here we highlight the phenotypical heterogeneity of different senescent brain cell types, highlighting the potential importance of subtype-specific features for physiology and pathology. We provide a comprehensive overview of various senescent cell types in naturally occurring aging and the most common neurodegenerative disorders. Finally, we critically discuss the potential of adapting senotherapeutics to improve brain health and reduce pathological progression, addressing limitations and future directions for application and development.
Collapse
Affiliation(s)
- L S Melo Dos Santos
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, the Netherlands; School of Sciences, Health and Life, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Avenue, 6681, 90619-900 Porto Alegre, Brazil
| | - M Trombetta-Lima
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA Groningen, the Netherlands; Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusiglaan 1, 9713AV Groningen, the Netherlands
| | - Bjl Eggen
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA Groningen, the Netherlands
| | - M Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, the Netherlands.
| |
Collapse
|
39
|
Orr ME. A Need for Refined Senescence Biomarkers and Measures of Senolytics in the Brain. J Alzheimers Dis 2024; 98:411-415. [PMID: 38461508 PMCID: PMC11063734 DOI: 10.3233/jad-231462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Cellular senescence contributes to Alzheimer's disease (AD) pathogenesis. Treatments that remove senescent cells, senolytics, improve brain outcomes in AD mice with amyloid-β or tau deposition. 3xTgAD mice develop both AD neuropathologies; however, Ng et al. report low p16INK4a-associated senescence in the brain. Senolytic treatment by genetic removal; dasatinib with quercetin (D+Q), which enter the brain; and ABT-263 with limited brain penetrance all reduced AD neuropathology. Refined measures of senescence and brain exposure would help clarify the benefits of senolytics despite low p16INK4a-associated senescence and potential limited brain penetrance.
Collapse
Affiliation(s)
- Miranda E. Orr
- Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Salisbury VA Medical Center, Salisbury, NC, USA
| |
Collapse
|
40
|
Diniz BS, Seitz-Holland J, Sehgal R, Kasamoto J, Higgins-Chen AT, Lenze E. Geroscience-Centric Perspective for Geriatric Psychiatry: Integrating Aging Biology With Geriatric Mental Health Research. Am J Geriatr Psychiatry 2024; 32:1-16. [PMID: 37845116 PMCID: PMC10841054 DOI: 10.1016/j.jagp.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 10/18/2023]
Abstract
The geroscience hypothesis asserts that physiological aging is caused by a small number of biological pathways. Despite the explosion of geroscience research over the past couple of decades, the research on how serious mental illnesses (SMI) affects the biological aging processes is still in its infancy. In this review, we aim to provide a critical appraisal of the emerging literature focusing on how we measure biological aging systematically, and in the brain and how SMIs affect biological aging measures in older adults. We will also review recent developments in the field of cellular senescence and potential targets for interventions for SMIs in older adults, based on the geroscience hypothesis.
Collapse
Affiliation(s)
- Breno S Diniz
- UConn Center on Aging & Department of Psychiatry (BSD), School of Medicine, University of Connecticut Health Center, Farmington, CT.
| | - Johanna Seitz-Holland
- Department of Psychiatry (JSH), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry (JSH), Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Raghav Sehgal
- Program in Computational Biology and Bioinformatics (RS, JK), Yale University, New Haven, CT
| | - Jessica Kasamoto
- Program in Computational Biology and Bioinformatics (RS, JK), Yale University, New Haven, CT
| | - Albert T Higgins-Chen
- Department of Psychiatry (ATHC), Yale University School of Medicine, New Haven, CT; Department of Pathology (ATHC), Yale University School of Medicine, New Haven, CT
| | - Eric Lenze
- Department of Psychiatry (EL), School of Medicine, Washington University at St. Louis, St. Louis, MO
| |
Collapse
|
41
|
Ting KK, Coleman P, Kim HJ, Zhao Y, Mulangala J, Cheng NC, Li W, Gunatilake D, Johnstone DM, Loo L, Neely GG, Yang P, Götz J, Vadas MA, Gamble JR. Vascular senescence and leak are features of the early breakdown of the blood-brain barrier in Alzheimer's disease models. GeroScience 2023; 45:3307-3331. [PMID: 37782439 PMCID: PMC10643714 DOI: 10.1007/s11357-023-00927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/27/2023] [Indexed: 10/03/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related disease, with loss of integrity of the blood-brain barrier (BBB) being an early feature. Cellular senescence is one of the reported nine hallmarks of aging. Here, we show for the first time the presence of senescent cells in the vasculature in AD patients and mouse models of AD. Senescent endothelial cells and pericytes are present in APP/PS1 transgenic mice but not in wild-type littermates at the time of amyloid deposition. In vitro, senescent endothelial cells display altered VE-cadherin expression and loss of cell junction formation and increased permeability. Consistent with this, senescent endothelial cells in APP/PS1 mice are present at areas of vascular leak that have decreased claudin-5 and VE-cadherin expression confirming BBB breakdown. Furthermore, single cell sequencing of endothelial cells from APP/PS1 transgenic mice confirms that adhesion molecule pathways are among the most highly altered pathways in these cells. At the pre-plaque stage, the vasculature shows significant signs of breakdown, with a general loss of VE-cadherin, leakage within the microcirculation, and obvious pericyte perturbation. Although senescent vascular cells were not directly observed at sites of vascular leak, senescent cells were close to the leak area. Thus, we would suggest in AD that there is a progressive induction of senescence in constituents of the neurovascular unit contributing to an increasing loss of vascular integrity. Targeting the vasculature early in AD, either with senolytics or with drugs that improve the integrity of the BBB may be valid therapeutic strategies.
Collapse
Affiliation(s)
- Ka Ka Ting
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia.
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| | - Paul Coleman
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Hani Jieun Kim
- Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Yang Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jocelyne Mulangala
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
| | - Ngan Ching Cheng
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
| | - Wan Li
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Dilini Gunatilake
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
| | - Daniel M Johnstone
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Lipin Loo
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, & School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - G Gregory Neely
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, & School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Pengyi Yang
- Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Mathew A Vadas
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
- Heart Research Institute, Sydney, NSW, Australia
| | - Jennifer R Gamble
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia.
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
42
|
Riviere-Cazaux C, Carlstrom LP, Neth BJ, Olson IE, Rajani K, Rahman M, Ikram S, Mansour MA, Mukherjee B, Warrington AE, Short SC, von Zglinicki T, Brown DA, Burma S, Tchkonia T, Schafer MJ, Baker DJ, Kizilbash SH, Kirkland JL, Burns TC. An untapped window of opportunity for glioma: targeting therapy-induced senescence prior to recurrence. NPJ Precis Oncol 2023; 7:126. [PMID: 38030881 PMCID: PMC10687268 DOI: 10.1038/s41698-023-00476-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
High-grade gliomas are primary brain tumors that are incredibly refractory long-term to surgery and chemoradiation, with no proven durable salvage therapies for patients that have failed conventional treatments. Post-treatment, the latent glioma and its microenvironment are characterized by a senescent-like state of mitotic arrest and a senescence-associated secretory phenotype (SASP) induced by prior chemoradiation. Although senescence was once thought to be irreversible, recent evidence has demonstrated that cells may escape this state and re-enter the cell cycle, contributing to tumor recurrence. Moreover, senescent tumor cells could spur the growth of their non-senescent counterparts, thereby accelerating recurrence. In this review, we highlight emerging evidence supporting the use of senolytic agents to ablate latent, senescent-like cells that could contribute to tumor recurrence. We also discuss how senescent cell clearance can decrease the SASP within the tumor microenvironment thereby reducing tumor aggressiveness at recurrence. Finally, senolytics could improve the long-term sequelae of prior therapy on cognition and bone marrow function. We critically review the senolytic drugs currently under preclinical and clinical investigation and the potential challenges that may be associated with deploying senolytics against latent glioma. In conclusion, senescence in glioma and the microenvironment are critical and potential targets for delaying or preventing tumor recurrence and improving patient functional outcomes through senotherapeutics.
Collapse
Affiliation(s)
| | | | | | - Ian E Olson
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | | | - Masum Rahman
- Department of Neurological Surgery, Rochester, MN, USA
| | - Samar Ikram
- Department of Neurological Surgery, Rochester, MN, USA
| | | | - Bipasha Mukherjee
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Arthur E Warrington
- Department of Neurological Surgery, Rochester, MN, USA
- Department of Neurology, Rochester, MN, USA
| | - Susan C Short
- Leeds Institute of Medical Research at St. James's, St. James's University Hospital, University of Leeds, Leeds, UK
| | - Thomas von Zglinicki
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Desmond A Brown
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sandeep Burma
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Rochester, MN, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Rochester, MN, USA
| | - Darren J Baker
- Department of Pediatric and Adolescent Medicine, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Rochester, MN, USA
| | | | - James L Kirkland
- Department of Pediatric and Adolescent Medicine, Rochester, MN, USA
- Department of Medicine, Rochester, MN, USA
| | - Terry C Burns
- Department of Neurological Surgery, Rochester, MN, USA.
| |
Collapse
|
43
|
Wang DX, Dong ZJ, Deng SX, Tian YM, Xiao YJ, Li X, Ma XR, Li L, Li P, Chang HZ, Liu L, Wang F, Wu Y, Gao X, Zheng SS, Gu HM, Zhang YN, Wu JB, Wu F, Peng Y, Zhang XW, Zhan RY, Gao LX, Sun Q, Guo X, Zhao XD, Luo JH, Zhou R, Han L, Shu Y, Zhao JW. GDF11 slows excitatory neuronal senescence and brain ageing by repressing p21. Nat Commun 2023; 14:7476. [PMID: 37978295 PMCID: PMC10656444 DOI: 10.1038/s41467-023-43292-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
As a major neuron type in the brain, the excitatory neuron (EN) regulates the lifespan in C. elegans. How the EN acquires senescence, however, is unknown. Here, we show that growth differentiation factor 11 (GDF11) is predominantly expressed in the EN in the adult mouse, marmoset and human brain. In mice, selective knock-out of GDF11 in the post-mitotic EN shapes the brain ageing-related transcriptional profile, induces EN senescence and hyperexcitability, prunes their dendrites, impedes their synaptic input, impairs object recognition memory and shortens the lifespan, establishing a functional link between GDF11, brain ageing and cognition. In vitro GDF11 deletion causes cellular senescence in Neuro-2a cells. Mechanistically, GDF11 deletion induces neuronal senescence via Smad2-induced transcription of the pro-senescence factor p21. This work indicates that endogenous GDF11 acts as a brake on EN senescence and brain ageing.
Collapse
Affiliation(s)
- Di-Xian Wang
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Zhao-Jun Dong
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Sui-Xin Deng
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, 201508, Shanghai, China
| | | | - Yu-Jie Xiao
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, 201508, Shanghai, China
| | - Xinran Li
- The Global Scientific and Technological Innovation Center and the MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xiao-Ru Ma
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Liang Li
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, 201508, Shanghai, China
| | - Pengxiao Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai; Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | | | | | - Fan Wang
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yang Wu
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xiang Gao
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Shuang-Shuang Zheng
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Hui-Min Gu
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Ya-Nan Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jian-Bin Wu
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Fan Wu
- Department of Neurosurgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, 310003, Hangzhou, China
| | - Yonglin Peng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai; Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiao-Wen Zhang
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Ren-Ya Zhan
- Department of Neurosurgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, 310003, Hangzhou, China
| | - Li-Xia Gao
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, 310020, Hangzhou, China
| | - Qiming Sun
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing Guo
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiao-Dong Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai; Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Jian-Hong Luo
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lei Han
- BGI Research, 310030, Hangzhou, China.
| | - Yousheng Shu
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, 201508, Shanghai, China.
| | - Jing-Wei Zhao
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China.
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
44
|
Gonzales MM, Garbarino VR, Kautz TF, Palavicini JP, Lopez-Cruzan M, Dehkordi SK, Mathews JJ, Zare H, Xu P, Zhang B, Franklin C, Habes M, Craft S, Petersen RC, Tchkonia T, Kirkland JL, Salardini A, Seshadri S, Musi N, Orr ME. Senolytic therapy in mild Alzheimer's disease: a phase 1 feasibility trial. Nat Med 2023; 29:2481-2488. [PMID: 37679434 PMCID: PMC10875739 DOI: 10.1038/s41591-023-02543-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
Cellular senescence contributes to Alzheimer's disease (AD) pathogenesis. An open-label, proof-of-concept, phase I clinical trial of orally delivered senolytic therapy, dasatinib (D) and quercetin (Q), was conducted in early-stage symptomatic patients with AD to assess central nervous system (CNS) penetrance, safety, feasibility and efficacy. Five participants (mean age = 76 + 5 years; 40% female) completed the 12-week pilot study. D and Q levels in blood increased in all participants (12.7-73.5 ng ml-1 for D and 3.29-26.3 ng ml-1 for Q). In cerebrospinal fluid (CSF), D levels were detected in four participants (80%) ranging from 0.281 to 0.536 ml-1 with a CSF to plasma ratio of 0.422-0.919%; Q was not detected. The treatment was well-tolerated, with no early discontinuation. Secondary cognitive and neuroimaging endpoints did not significantly differ from baseline to post-treatment further supporting a favorable safety profile. CSF levels of interleukin-6 (IL-6) and glial fibrillary acidic protein (GFAP) increased (t(4) = 3.913, P = 0.008 and t(4) = 3.354, P = 0.028, respectively) with trending decreases in senescence-related cytokines and chemokines, and a trend toward higher Aβ42 levels (t(4) = -2.338, P = 0.079). In summary, CNS penetrance of D was observed with outcomes supporting safety, tolerability and feasibility in patients with AD. Biomarker data provided mechanistic insights of senolytic effects that need to be confirmed in fully powered, placebo-controlled studies. ClinicalTrials.gov identifier: NCT04063124 .
Collapse
Affiliation(s)
- Mitzi M Gonzales
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Valentina R Garbarino
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tiffany F Kautz
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Juan Pablo Palavicini
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Marisa Lopez-Cruzan
- Department of Psychiatry & Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Shiva Kazempour Dehkordi
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Julia J Mathews
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Habil Zare
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Peng Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Crystal Franklin
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohamad Habes
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Suzanne Craft
- Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Tamara Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Arash Salardini
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Nicolas Musi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Miranda E Orr
- Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Salisbury VA Medical Center, Salisbury, NC, USA.
| |
Collapse
|
45
|
Ruggiero AD, Vemuri R, Blawas M, Long M, DeStephanis D, Williams AG, Chen H, Justice JN, Macauley SL, Day SM, Kavanagh K. Long-term dasatinib plus quercetin effects on aging outcomes and inflammation in nonhuman primates: implications for senolytic clinical trial design. GeroScience 2023; 45:2785-2803. [PMID: 37261678 PMCID: PMC10643765 DOI: 10.1007/s11357-023-00830-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023] Open
Abstract
Cellular senescence increases with aging and results in secretion of pro-inflammatory factors that induce local and systemic tissue dysfunction. We conducted the first preclinical trial in a relevant middle-aged nonhuman primate (NHP) model to allow estimation of the main translatable effects of the senolytic combination dasatinib (D) and quercetin (Q), with and without caloric restriction (CR). A multi-systemic survey of age-related changes, including those on immune cells, adipose tissue, the microbiome, and biomarkers of systemic organ and metabolic health are reported. Age-, weight-, sex-, and glycemic control-matched NHPs (D + Q, n = 9; vehicle [VEH] n = 7) received two consecutive days of D + Q (5 mg/kg + 50 mg/kg) monthly for 6 months, where in month six, a 10% CR was implemented in both D + Q and VEH NHPs to induce equal weight reductions. D + Q reduced senescence marker gene expressions in adipose tissue and circulating PAI-1 and MMP-9. Improvements were observed in immune cell types with significant anti-inflammatory shifts and reductions in microbial translocation biomarkers, despite stable microbiomes. Blood urea nitrogen showed robust improvements with D + Q. CR resulted in significant positive body composition changes in both groups with further improvement in immune cell profiles and decreased GDF15 (p = 0.05), and the interaction of D + Q and CR dramatically reduced glycosylated hemoglobin A1c (p = 0.03). This work indicates that 6 months of intermittent D + Q exposure is safe and may combat inflammaging via immune benefits and improved intestinal barrier function. We also saw renal benefits, and with CR, improved metabolic health. These data are intended to provide direction for the design of larger controlled intervention trials in older patients.
Collapse
Affiliation(s)
- Alistaire D Ruggiero
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ravichandra Vemuri
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Megan Blawas
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Masha Long
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Darla DeStephanis
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Abigail G Williams
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Haiying Chen
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jamie N Justice
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Shannon L Macauley
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Steven M Day
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kylie Kavanagh
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
46
|
Plascencia-Villa G, Perry G. Roles of Oxidative Stress in Synaptic Dysfunction and Neuronal Cell Death in Alzheimer's Disease. Antioxidants (Basel) 2023; 12:1628. [PMID: 37627623 PMCID: PMC10451948 DOI: 10.3390/antiox12081628] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is a brain disorder that progressively undermines memory and thinking skills by affecting the hippocampus and entorhinal cortex. The main histopathological hallmarks of AD are the presence of abnormal protein aggregates (Aβ and tau), synaptic dysfunction, aberrant proteostasis, cytoskeletal abnormalities, altered energy homeostasis, DNA and RNA defects, inflammation, and neuronal cell death. However, oxidative stress or oxidative damage is also evident and commonly overlooked or considered a consequence of the advancement of dementia symptoms. The control or onset of oxidative stress is linked to the activity of the amyloid-β peptide, which may serve as both antioxidant and pro-oxidant molecules. Furthermore, oxidative stress is correlated with oxidative damage to proteins, nucleic acids, and lipids in vulnerable cell populations, which ultimately lead to neuronal death through different molecular mechanisms. By recognizing oxidative stress as an integral feature of AD, alternative therapeutic or preventive interventions are developed and tested as potential or complementary therapies for this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA;
| | | |
Collapse
|
47
|
Duffy MF, Ding J, Langston RG, Shah SI, Nalls MA, Scholz SW, Whitaker DT, Auluck PK, Marenco S, Gibbs JR, Cookson MR. Divergent patterns of healthy aging across human brain regions at single-cell resolution reveal links to neurodegenerative disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551097. [PMID: 37577533 PMCID: PMC10418086 DOI: 10.1101/2023.07.31.551097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Age is a major common risk factor underlying neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Previous studies reported that chronological age correlates with differential gene expression across different brain regions. However, prior datasets have not disambiguated whether expression associations with age are due to changes in cell numbers and/or gene expression per cell. In this study, we leveraged single nucleus RNA-sequencing (snRNAseq) to examine changes in cell proportions and transcriptomes in four different brain regions, each from 12 donors aged 20-30 years (young) or 60-85 years (old). We sampled 155,192 nuclei from two cortical regions (entorhinal cortex and middle temporal gyrus) and two subcortical regions (putamen and subventricular zone) relevant to neurodegenerative diseases or the proliferative niche. We found no changes in cellular composition of different brain regions with healthy aging. Surprisingly, we did find that each brain region has a distinct aging signature, with only minor overlap in differentially associated genes across regions. Moreover, each cell type shows distinct age-associated expression changes, including loss of protein synthesis genes in cortical inhibitory neurons, axonogenesis genes in excitatory neurons and oligodendrocyte precursor cells, enhanced gliosis markers in astrocytes and disease-associated markers in microglia, and genes critical for neuron-glia communication. Importantly, we find cell type-specific enrichments of age associations with genes nominated by Alzheimer's disease and Parkinson's disease genome-wide association studies (GWAS), such as apolipoprotein E (APOE), and leucine-rich repeat kinase 2 (LRRK2) in microglia that are independent of overall expression levels across cell types. We present this data as a new resource which highlights, first, region- and cell type-specific transcriptomic changes in healthy aging that may contribute to selective vulnerability and, second, provide context for testing GWAS-nominated disease risk genes in relevant subtypes and developing more targeted therapeutic strategies. The data is readily accessible without requirement for extensive computational support in a public website, https://brainexp-hykyffa56a-uc.a.run.app/.
Collapse
Affiliation(s)
- Megan F. Duffy
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Rebekah G. Langston
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Syed I. Shah
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Mike A. Nalls
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Sonja W. Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - D. Thad Whitaker
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Pavan K. Auluck
- Human Brain Collection Core, Division of Intramural Research, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Stefano Marenco
- Human Brain Collection Core, Division of Intramural Research, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - J. Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| |
Collapse
|
48
|
Holloway K, Neherin K, Dam KU, Zhang H. Cellular senescence and neurodegeneration. Hum Genet 2023; 142:1247-1262. [PMID: 37115318 DOI: 10.1007/s00439-023-02565-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Advancing age is a major risk factor of Alzheimer's disease (AD). The worldwide prevalence of AD is approximately 50 million people, and this number is projected to increase substantially. The molecular mechanisms underlying the aging-associated susceptibility to cognitive impairment in AD are largely unknown. As a hallmark of aging, cellular senescence is a significant contributor to aging and age-related diseases including AD. Senescent neurons and glial cells have been detected to accumulate in the brains of AD patients and mouse models. Importantly, selective elimination of senescent cells ameliorates amyloid beta and tau pathologies and improves cognition in AD mouse models, indicating a critical role of cellular senescence in AD pathogenesis. Nonetheless, the mechanisms underlying when and how cellular senescence contributes to AD pathogenesis remain unclear. This review provides an overview of cellular senescence and discusses recent advances in the understanding of the impact of cellular senescence on AD pathogenesis, with brief discussions of the possible role of cellular senescence in other neurodegenerative diseases including Down syndrome, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Kristopher Holloway
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Kashfia Neherin
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Kha Uyen Dam
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Hong Zhang
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
49
|
Traxler L, Lucciola R, Herdy JR, Jones JR, Mertens J, Gage FH. Neural cell state shifts and fate loss in ageing and age-related diseases. Nat Rev Neurol 2023; 19:434-443. [PMID: 37268723 PMCID: PMC10478103 DOI: 10.1038/s41582-023-00815-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 06/04/2023]
Abstract
Most age-related neurodegenerative diseases remain incurable owing to an incomplete understanding of the disease mechanisms. Several environmental and genetic factors contribute to disease onset, with human biological ageing being the primary risk factor. In response to acute cellular damage and external stimuli, somatic cells undergo state shifts characterized by temporal changes in their structure and function that increase their resilience, repair cellular damage, and lead to their mobilization to counteract the pathology. This basic cell biological principle also applies to human brain cells, including mature neurons that upregulate developmental features such as cell cycle markers or glycolytic reprogramming in response to stress. Although such temporary state shifts are required to sustain the function and resilience of the young human brain, excessive state shifts in the aged brain might result in terminal fate loss of neurons and glia, characterized by a permanent change in cell identity. Here, we offer a new perspective on the roles of cell states in sustaining health and counteracting disease, and we examine how cellular ageing might set the stage for pathological fate loss and neurodegeneration. A better understanding of neuronal state and fate shifts might provide the means for a controlled manipulation of cell fate to promote brain resilience and repair.
Collapse
Affiliation(s)
- Larissa Traxler
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Raffaella Lucciola
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Herdy
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jeffrey R Jones
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jerome Mertens
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
50
|
Gaspar-Silva F, Trigo D, Magalhaes J. Ageing in the brain: mechanisms and rejuvenating strategies. Cell Mol Life Sci 2023; 80:190. [PMID: 37354261 DOI: 10.1007/s00018-023-04832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
Ageing is characterized by the progressive loss of cellular homeostasis, leading to an overall decline of the organism's fitness. In the brain, ageing is highly associated with cognitive decline and neurodegenerative diseases. With the rise in life expectancy, characterizing the brain ageing process becomes fundamental for developing therapeutic interventions against the increased incidence of age-related neurodegenerative diseases and to aim for an increase in human life span and, more importantly, health span. In this review, we start by introducing the molecular/cellular hallmarks associated with brain ageing and their impact on brain cell populations. Subsequently, we assess emerging evidence on how systemic ageing translates into brain ageing. Finally, we revisit the mainstream and the novel rejuvenating strategies, discussing the most successful ones in delaying brain ageing and related diseases.
Collapse
Affiliation(s)
- Filipa Gaspar-Silva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Diogo Trigo
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Joana Magalhaes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| |
Collapse
|