1
|
Firth JA, Albery GF, Bouwhuis S, Brent LJN, Salguero-Gómez R. Understanding age and society using natural populations. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220469. [PMID: 39463246 PMCID: PMC11513640 DOI: 10.1098/rstb.2022.0469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024] Open
Abstract
Ageing affects almost all aspects of life and therefore is an important process across societies, human and non-human animal alike. This article introduces new research exploring the complex interplay between individual-level ageing and demography, and the consequences this interplay holds for the structure and functioning of societies across various natural populations. We discuss how this Special Issue provides a foundation for integrating perspectives from evolutionary biology, behavioural ecology and demography to provide new insights into how ageing shapes individuals' social behaviour and social associations, and how this in turn impacts social networks, social processes (such as disease or information transfer) and fitness. Through examining these topics across taxa, from invertebrates to birds and mammals, we outline how contemporary studies are using natural populations to advance our understanding of the relationship between age and society in innovative ways. We highlight key emerging research themes from this Special Issue, such as how sociality affects lifespan and health, the genetic and ecological underpinnings of social ageing and the adaptive strategies employed by different species. We conclude that this Special Issue underscores the importance of studying social ageing using diverse systems and interdisciplinary approaches for advancing evolutionary and ecological insights into both ageing and sociality more generally.This article is part of the discussion meeting issue 'Understanding age and society using natural populations '.
Collapse
Affiliation(s)
- Josh A. Firth
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Department of Biology, Oxford University, Oxford, UK
| | - Gregory F. Albery
- School of Natural Sciences, Trinity College Dublin, Dublin, Republic of Ireland
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Lauren J. N. Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | | |
Collapse
|
2
|
Hao M, Zhang H, Jiang S, Hu Z, Jiang X, Wu J, Li Y, Jin L, Wang X. Metrics of Physiological Network Topology Are Novel Biomarkers to Capture Functional Disability and Health. J Gerontol A Biol Sci Med Sci 2024; 80:glae268. [PMID: 39500737 DOI: 10.1093/gerona/glae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Indexed: 12/22/2024] Open
Abstract
BACKGROUND Physiological networks are highly complex, integrating connections among multiple organ systems and their dynamic changes underlying human aging. It is unknown whether individual-level network could serve as robust biomarkers for health and aging. METHODS We used personalized network analysis to construct a single-sample network and examine the associations between network properties and functional disability in the Rugao Longevity and Aging Study (RuLAS), the China Health and Retirement Longitudinal Study (CHARLS), the Chinese Longitudinal Healthy Longevity Survey (CLHLS), and the National Health and Nutrition Examination Survey (NHANES). RESULTS We observed impairments in interconnected physiological systems among long-lived adults in RuLAS. Single-sample network analysis was applied to reflect the co-occurrence of these multisystem impairments at the individual level. The activities of daily living (ADL)-disabled individuals' networks exhibited notably increased connectivity among various biomarkers. Significant associations were found between network topology and functional disability across RuLAS, CHARLS, CLHLS, and NHANES. Additionally, network topology served as a novel biomarker to capture risks of incident ADL disability in CHARLS. Furthermore, these metrics of physiological network topology predicted mortality across 4 cohorts. Sensitivity analysis demonstrated that the prediction performance of network topology remained robust, regardless of the chosen biomarkers and parameters. CONCLUSIONS These findings showed that metrics of network topology were sensitive and robust biomarkers to capture risks of functional disability and mortality, highlighting the role of single-sample physiological networks as novel biomarkers for health and aging.
Collapse
Affiliation(s)
- Meng Hao
- Department of Geriatrics, Huadong Hospital, Shanghai Medical College, Fudan University, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan Zhangjiang Institute, Shanghai, China
| | - Hui Zhang
- Department of Geriatrics, Huadong Hospital, Shanghai Medical College, Fudan University, Human Phenome Institute, Fudan University, Shanghai, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Jiang
- Department of Vascular Surgery, Shanghai Key Laboratory of Vascular Lesion Regulation and Remodeling, Pudong Medical Center, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Zixin Hu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoyan Jiang
- State Key Laboratory of Cardiology, Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, China
| | - Jingyi Wu
- Department of Geriatrics, Huadong Hospital, Shanghai Medical College, Fudan University, Human Phenome Institute, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yi Li
- Department of Geriatrics, Huadong Hospital, Shanghai Medical College, Fudan University, Human Phenome Institute, Fudan University, Shanghai, China
- Department of Vascular Surgery, Shanghai Key Laboratory of Vascular Lesion Regulation and Remodeling, Pudong Medical Center, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaofeng Wang
- Department of Geriatrics, Huadong Hospital, Shanghai Medical College, Fudan University, Human Phenome Institute, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Rodriguez CW, Reddien PW. Agelessness is possible under the disposable soma theory but system complexity makes it unlikely. J Theor Biol 2024; 595:111958. [PMID: 39362359 DOI: 10.1016/j.jtbi.2024.111958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Although demographic studies have failed to find evidence of aging in certain animal species, classic evolutionary theories of aging struggle to explain how evolution could favor agelessness in such cases. Here, we develop mathematical models of the disposable soma theory to identify conditions in which agelessness would be evolutionarily favored. For any given type of damage that could accumulate and cause age-accelerating mortality risk, we find that evolution could select for its complete removal if the mortality risk it poses is severe enough and its repair does not pose too large of a penalty to reproduction. Environmental factors such as extrinsic mortality and the form of population density-dependent regulation also play a large role in determining the optimal rate of aging and whether agelessness should be evolutionarily favored. However, in a system with multiple sources of damage and multiple independent repair processes, avoiding aging is rarely evolutionarily favorable. Pleiotropic repair processes, such as those that could be present in asexual fissioning organisms, make agelessness more likely but do not guarantee it. Our results indicate that agelessness could be favored by evolution in narrow contexts but that multiple types of damage and repair make agelessness unlikely to arise in sufficiently complex organisms.
Collapse
Affiliation(s)
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, 02142, MA, USA.
| |
Collapse
|
4
|
Wu Z, Qu J, Liu GH. Roles of chromatin and genome instability in cellular senescence and their relevance to ageing and related diseases. Nat Rev Mol Cell Biol 2024; 25:979-1000. [PMID: 39363000 DOI: 10.1038/s41580-024-00775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 10/05/2024]
Abstract
Ageing is a complex biological process in which a gradual decline in physiological fitness increases susceptibility to diseases such as neurodegenerative disorders and cancer. Cellular senescence, a state of irreversible cell-growth arrest accompanied by functional deterioration, has emerged as a pivotal driver of ageing. In this Review, we discuss how heterochromatin loss, telomere attrition and DNA damage contribute to cellular senescence, ageing and age-related diseases by eliciting genome instability, innate immunity and inflammation. We also discuss how emerging therapeutic strategies could restore heterochromatin stability, maintain telomere integrity and boost the DNA repair capacity, and thus counteract cellular senescence and ageing-associated pathologies. Finally, we outline current research challenges and future directions aimed at better comprehending and delaying ageing.
Collapse
Affiliation(s)
- Zeming Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Alakhdar AA, Sivakumar S, Kopchak RM, Hunter AN, Ambrosio F, Washburn NR. Age-Related ECM Stiffness Mediates TRAIL Activation in Muscle Stem Cell Differentiation. Adv Biol (Weinh) 2024; 8:e2400334. [PMID: 39601528 DOI: 10.1002/adbi.202400334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/01/2024] [Indexed: 11/29/2024]
Abstract
The stiffening of the extracellular matrix (ECM) with age hinders muscle regeneration by causing intrinsic muscle stem cell (MuSC) dysfunction through a poorly understood mechanism. Here, the study aims to study those age-related molecular changes in the differentiation of MuSCs due to age and/or stiffness. Hence, young and aged MuSCs are seeded onto substrates engineered to mimic a soft and stiff ECM microenvironment to study those molecular changes using single-cell RNA sequencing (scRNA). The trajectory of scRNA data of the MuSCs under four different conditions undergoing differentiation is analyzed as well as the active molecular pathways and transcription factors driving those differentiation fates. Data revealed the presence of a branching point within the trajectory leading to the emergence of an age-related fibroblastic population characterized by activation of the TNF-related apoptosis-inducing ligand (TRAIL) pathway, which is significantly activated in aged cells cultured on stiff substrates. Next, using the collagen cross-linking inhibitor β-aminopropionitrile (BAPN) in vivo, the study elucidates stiffness changes on TRAIL downstream apoptotic targets (caspase 8 and caspase 3) using immunostaining. TRAIL activity is significantly inhibited by BAPN in aged animals, indicating a complex mechanism of age-related declines in muscle function through inflammatory and apoptotic mediators.
Collapse
Affiliation(s)
- Amira A Alakhdar
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | | | - Rylee M Kopchak
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, 02129, USA
| | - Allison N Hunter
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Fabrisia Ambrosio
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, 02129, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Newell R Washburn
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
6
|
Fustolo-Gunnink SF, de Boode WP, Dekkers OM, Greisen G, Lopriore E, Russo F. If things were simple, word would have gotten around. Can complexity science help us improve pediatric research? Pediatr Res 2024:10.1038/s41390-024-03677-4. [PMID: 39609614 DOI: 10.1038/s41390-024-03677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/22/2024] [Accepted: 10/04/2024] [Indexed: 11/30/2024]
Abstract
Complexity science is a discipline which explores how complex systems behave and how we interact with them. Though it is widely implemented outside medicine, particularly in the sciences involving human behavior, but also in the natural sciences such as physics and biology, there are only a few applications within medical research. We propose that complexity science can provide new and helpful perspectives on complex pediatric medical problems. It can help us better understand complex systems and develop ways to cope with their inherent unpredictabilities. In this article, we provide a brief introduction of complexity science, explore why many medical problems can be considered 'complex', and discuss how we can apply this perspective to pediatric research. IMPACT: Current methods in pediatric research often focus on single mechanisms or interventions instead of systems, and tend to simplify complexity. This may not be appropriate. Complexity science provides a framework and a toolbox to better address complex problems. This review provides a starting point for the application of complexity science in pediatric research.
Collapse
Affiliation(s)
- Suzanne F Fustolo-Gunnink
- Institute for Advanced Study, University of Amsterdam, Amsterdam, the Netherlands.
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, Willem-Alexander Children's Hospital, Leiden, the Netherlands.
- Sanquin Research & LAB Services, Sanquin Blood Supply Foundation, Amsterdam, the Netherlands.
| | - Willem P de Boode
- Department of Neonatology, Radboud University Medical Center, Radboud Institute for Health Sciences, Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Olaf M Dekkers
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gorm Greisen
- Department of Neonatology, Rigshospitalet and Copenhagen University, Copenhagen, Denmark
| | - Enrico Lopriore
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, Willem-Alexander Children's Hospital, Leiden, the Netherlands
| | - Federica Russo
- Freudenthal Institute, Faculty of Science, Utrecht University, Utrecht, the Netherlands
- Department of Science and Technology Studies, University College London, London, UK
| |
Collapse
|
7
|
Tanaka M, Szabó Á, Vécsei L. Redefining Roles: A Paradigm Shift in Tryptophan-Kynurenine Metabolism for Innovative Clinical Applications. Int J Mol Sci 2024; 25:12767. [PMID: 39684480 DOI: 10.3390/ijms252312767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
The tryptophan-kynurenine (KYN) pathway has long been recognized for its essential role in generating metabolites that influence various physiological processes. Traditionally, these metabolites have been categorized into distinct, often opposing groups, such as pro-oxidant versus antioxidant, excitotoxic/neurotoxic versus neuroprotective. This dichotomous framework has shaped much of the research on conditions like neurodegenerative and neuropsychiatric disorders, as well as cancer, where metabolic imbalances are a key feature. The effects are significantly influenced by various factors, including the concentration of metabolites and the particular cellular milieu in which they are generated. A molecule that acts as neuroprotective at low concentrations may exhibit neurotoxic effects at elevated levels. The oxidative equilibrium of the surrounding environment can alter the function of KYN from an antioxidant to a pro-oxidant. This narrative review offers a comprehensive examination and analysis of the contemporary understanding of KYN metabolites, emphasizing their multifaceted biological functions and their relevance in numerous physiological and pathological processes. This underscores the pressing necessity for a paradigm shift in the comprehension of KYN metabolism. Understanding the context-dependent roles of KYN metabolites is vital for novel therapies in conditions like Alzheimer's disease, multiple sclerosis, and cancer. Comprehensive pathway modulation, including balancing inflammatory signals and enzyme regulation, offers promising avenues for targeted, effective treatments.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
8
|
Venkataraman A, Kordic I, Li J, Zhang N, Bharadwaj NS, Fang Z, Das S, Coskun AF. Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics. NPJ AGING 2024; 10:57. [PMID: 39592596 PMCID: PMC11599402 DOI: 10.1038/s41514-024-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Aging has profound effects on the body, most notably an increase in the prevalence of several diseases. An important aging hallmark is the presence of senescent cells that no longer multiply nor die off properly. Another characteristic is an altered immune system that fails to properly self-surveil. In this multi-player aging process, cellular senescence induces a change in the secretory phenotype, known as senescence-associated secretory phenotype (SASP), of many cells with the intention of recruiting immune cells to accelerate the clearance of these damaged senescent cells. However, the SASP phenotype results in inducing secondary senescence of nearby cells, resulting in those cells becoming senescent, and improper immune activation resulting in a state of chronic inflammation, called inflammaging, in many diseases. Senescence in immune cells, termed immunosenescence, results in further dysregulation of the immune system. An interdisciplinary approach is needed to physiologically assess aging changes of the immune system at the cellular and tissue level. Thus, the intersection of biomaterials, microfluidics, and spatial omics has great potential to collectively model aging and immunosenescence. Each of these approaches mimics unique aspects of the body undergoes as a part of aging. This perspective highlights the key aspects of how biomaterials provide non-cellular cues to cell aging, microfluidics recapitulate flow-induced and multi-cellular dynamics, and spatial omics analyses dissect the coordination of several biomarkers of senescence as a function of cell interactions in distinct tissue environments. An overview of how senescence and immune dysregulation play a role in organ aging, cancer, wound healing, Alzheimer's, and osteoporosis is included. To illuminate the societal impact of aging, an increasing trend in anti-senescence and anti-aging interventions, including pharmacological interventions, medical procedures, and lifestyle changes is discussed, including further context of senescence.
Collapse
Affiliation(s)
- Abhijeet Venkataraman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Ivan Kordic
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - JiaXun Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nivik Sanjay Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sandip Das
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
9
|
Balachandran A, Pei H, Shi Y, Beard J, Caspi A, Cohen A, Domingue BW, Eckstein IC, Ferrucci L, Furuya A, Kothari M, Moffitt TE, Ryan C, Skirbekk V, Zhang Y, Belsky DW. Pace of Aging in older adults matters for healthspan and lifespan. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.25.24306359. [PMID: 38712264 PMCID: PMC11071564 DOI: 10.1101/2024.04.25.24306359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
As societies age, policy makers need tools to understand how demographic aging will affect population health and to develop programs to increase healthspan. The current metrics used for policy analysis do not distinguish differences caused by early-life factors, such as prenatal care and nutrition, from those caused by ongoing changes in people's bodies due to aging. Here we introduce an adapted Pace of Aging method designed to quantify differences between individuals and populations in the speed of aging-related health declines. The adapted Pace of Aging method, implemented in data from the US Health and Retirement Study and English Longitudinal Study of Aging (N=21,463), integrates longitudinal data on blood biomarkers, physical measurements, and functional tests. It reveals stark differences in rates of aging between population subgroups and demonstrates strong and consistent prospective associations with incident morbidity, disability, and mortality. Pace of Aging can advance the population science of healthy longevity.
Collapse
|
10
|
Yu YH. Oral health: integral component of overall health and important determinant of ageing. THE LANCET. HEALTHY LONGEVITY 2024; 5:100641. [PMID: 39427679 DOI: 10.1016/j.lanhl.2024.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 10/22/2024] Open
Affiliation(s)
- Yau-Hua Yu
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA 02111, USA.
| |
Collapse
|
11
|
Yang Y, Lu X, Liu N, Ma S, Zhang H, Zhang Z, Yang K, Jiang M, Zheng Z, Qiao Y, Hu Q, Huang Y, Zhang Y, Xiong M, Liu L, Jiang X, Reddy P, Dong X, Xu F, Wang Q, Zhao Q, Lei J, Sun S, Jing Y, Li J, Cai Y, Fan Y, Yan K, Jing Y, Haghani A, Xing M, Zhang X, Zhu G, Song W, Horvath S, Rodriguez Esteban C, Song M, Wang S, Zhao G, Li W, Izpisua Belmonte JC, Qu J, Zhang W, Liu GH. Metformin decelerates aging clock in male monkeys. Cell 2024; 187:6358-6378.e29. [PMID: 39270656 DOI: 10.1016/j.cell.2024.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/10/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024]
Abstract
In a rigorous 40-month study, we evaluated the geroprotective effects of metformin on adult male cynomolgus monkeys, addressing a gap in primate aging research. The study encompassed a comprehensive suite of physiological, imaging, histological, and molecular evaluations, substantiating metformin's influence on delaying age-related phenotypes at the organismal level. Specifically, we leveraged pan-tissue transcriptomics, DNA methylomics, plasma proteomics, and metabolomics to develop innovative monkey aging clocks and applied these to gauge metformin's effects on aging. The results highlighted a significant slowing of aging indicators, notably a roughly 6-year regression in brain aging. Metformin exerts a substantial neuroprotective effect, preserving brain structure and enhancing cognitive ability. The geroprotective effects on primate neurons were partially mediated by the activation of Nrf2, a transcription factor with anti-oxidative capabilities. Our research pioneers the systemic reduction of multi-dimensional biological age in primates through metformin, paving the way for advancing pharmaceutical strategies against human aging.
Collapse
Affiliation(s)
- Yuanhan Yang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyong Lu
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Zhiyi Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kuan Yang
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengmeng Jiang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zikai Zheng
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yicheng Qiao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinchao Hu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510060, China
| | - Ying Huang
- Chongqing Fifth People's Hospital, Chongqing 400060, China
| | - Yiyuan Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Muzhao Xiong
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixiao Liu
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Jiang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pradeep Reddy
- Altos Labs San Diego Institute of Science, San Diego, CA, USA
| | - Xueda Dong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanshu Xu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoran Wang
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhao
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Jinghui Lei
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Shuhui Sun
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Ying Jing
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Jingyi Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Yusheng Cai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yanling Fan
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Kaowen Yan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yaobin Jing
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; International Center for Aging and Cancer, Hainan Medical University, Haikou 571199, China
| | - Amin Haghani
- Altos Labs San Diego Institute of Science, San Diego, CA, USA
| | - Mengen Xing
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guodong Zhu
- Institute of Gerontology, Guangzhou Geriatric Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weihong Song
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Steve Horvath
- Altos Labs San Diego Institute of Science, San Diego, CA, USA
| | | | - Moshi Song
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China; National Medical Center for Neurological Diseases, Beijing 100053, China; Beijing Municipal Geriatric Medical Research Center, Beijing 100053, China
| | - Wei Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Jing Qu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Weiqi Zhang
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| |
Collapse
|
12
|
Mukherjee SD, Batagello CA, Adler A, Agudelo J, Zampini A, Suryavanshi M, Nguyen A, Orr T, Dearing D, Monga M, Miller AW. Complex system modelling reveals oxalate homeostasis is driven by diverse oxalate-degrading bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620613. [PMID: 39553961 PMCID: PMC11565779 DOI: 10.1101/2024.10.28.620613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Decades of research have made clear that host-associated microbiomes touch all facets of health. However, effective therapies that target the microbiome have been elusive given its inherent complexity. Here, we experimentally examined diet-microbe-host interactions through a complex systems framework, centered on dietary oxalate. Using multiple, independent molecular, animal, and in vitro experimental models, we found that microbiome composition influenced multiple oxalate-microbe-host interfaces. Importantly, administration of the oxalate-degrading specialist, Oxalobacter formigenes, was only effective against a poor oxalate-degrading microbiota background and gives critical new insights into why clinical intervention trials with this species exhibit variable outcomes. Data suggest that, while heterogeneity in the microbiome impacts multiple diet-host-microbe interfaces, metabolic redundancy among diverse microorganisms in specific diet-microbe axes is a critical variable that may impact the efficacy of bacteriotherapies, which can help guide patient and probiotic selection criteria in probiotic clinical trials.
Collapse
Affiliation(s)
- Sromona D. Mukherjee
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Carlos A. Batagello
- Division of Urology, Hospital das Clínicas, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Ava Adler
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jose Agudelo
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Anna Zampini
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mangesh Suryavanshi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew Nguyen
- M Health Fairview Southdale Hospital, Edina, MN, USA
| | - Teri Orr
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Denise Dearing
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Manoj Monga
- Department of Urology, University of California San Diego, San Diego, CA, USA
| | - Aaron W. Miller
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
13
|
Güler A, Yardımcı BK, Özek NŞ. Human anti-apoptotic Bcl-2 and Bcl-xL proteins protect yeast cells from aging induced oxidative stress. Biochimie 2024:S0300-9084(24)00235-9. [PMID: 39413900 DOI: 10.1016/j.biochi.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Aging is a degenerative, biological, and time-dependent process that affects all organisms. Yeast aging is a physiological phenomenon characterized by the progressive transformation of yeast cells, resulting in modifications to their viability and vitality. Aging in yeast cells is comparable to that in higher organisms in some respects; however, due to their straightforward and well-characterized genetic makeup, these cells present unique advantages when it comes to researching the aging process. Here, we assessed the impact of human anti-apoptotic Bcl-2 and Bcl-xL proteins on aging using a yeast model. The findings clearly showed that these proteins exhibited remarkable anti-aging properties in yeast cells. Our data indicate that the presence of both proteins enhanced the reproductive survival of aging cells, likely by effecting the components functioning as both pro- and anti-oxidants, depending on the stage of yeast cell lifespan. Both proteins partially protected yeast cells from aging-related morphological deformations and cellular damage during the aging period. In particular, Bcl-xL expressing yeast cells reached the maximum activity levels for almost all of the major antioxidant enzymes and the total antioxidant status on the 8th day of lifespan and could provide effective protection at the latest stage of the investigated aging period. The chemometric data analysis of IR spectra confirmed the findings of the morphological and biochemical analyses. In this regard, specifically, understanding the mechanism of action on the cellular redox state of Bcl-xL in yeast may facilitate comprehension of its indirect antioxidant function in higher eukaryotes.
Collapse
Affiliation(s)
- Ayşenur Güler
- Chemistry Department, Graduate School of Natural and Applied Sciences, Pamukkale University, Denizli, Turkey
| | - Berna Kavakcıoğlu Yardımcı
- Department of Chemistry, Faculty of Science, Pamukkale University, Denizli, Turkey; Advanced Technology Application and Research Center, Pamukkale University, Denizli, Turkey.
| | - Nihal Şimşek Özek
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey; East Anatolian High Technology Research and Application Center, Ataturk University, Erzurum, Turkey
| |
Collapse
|
14
|
Pridham G, Rutenberg AD. Dynamical Network Stability Analysis of Multiple Biological Ages Provides a Framework for Understanding the Aging Process. J Gerontol A Biol Sci Med Sci 2024; 79:glae021. [PMID: 38206765 PMCID: PMC11639168 DOI: 10.1093/gerona/glae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 01/13/2024] Open
Abstract
Widespread interest in nondestructive biomarkers of aging has led to a multitude of biological ages that each proffers a "true" health-adjusted individual age. Although each measure provides salient information on the aging process, they are each univariate, in contrast to the "hallmark" and "pillar" theories of aging, which are explicitly multidimensional, multicausal, and multiscale. Fortunately, multiple biological ages can be systematically combined into a multidimensional network representation. The interaction network between these biological ages permits analysis of the multidimensional effects of aging, as well as quantification of causal influences during both natural aging and, potentially, after anti-aging intervention. The behavior of the system as a whole can then be explored using dynamical network stability analysis, which identifies new, efficient biomarkers that quantify long-term resilience scores on the timescale between measurements (years). We demonstrate this approach using a set of 8 biological ages from the longitudinal Swedish Adoption/Twin Study of Aging (SATSA). After extracting an interaction network between these biological ages, we observed that physiological age, a proxy for cardiometabolic health, serves as a central node in the network, implicating it as a key vulnerability for slow, age-related decline. We furthermore show that while the system as a whole is stable, there is a weakly stable direction along which recovery is slow-on the timescale of a human lifespan. This slow direction provides an aging biomarker, which correlates strongly with chronological age and predicts longitudinal decline in health-suggesting that it estimates an important driver of age-related changes.
Collapse
Affiliation(s)
- Glen Pridham
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew D Rutenberg
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
15
|
Cohen AA, Olde Rikkert MGM. The Power of a Complex Systems Perspective to Elucidate Aging. J Gerontol A Biol Sci Med Sci 2024; 79:glae210. [PMID: 39352172 PMCID: PMC11443544 DOI: 10.1093/gerona/glae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
It is becoming highly accepted that aging, age-related diseases, and geriatric healthcare can move forward if reductionist research is complemented by integrative research uniting knowledge on specific aging mechanisms, multiple biomedical, social, psychological, lifestyle, and environmental factors and their interactions. In this special issue, we present exciting papers that illustrate how complexity science theory and practice can be applied to aging research and provide a better understanding and quantification of healthy aging and vulnerability to disease. Recent insights on biomarkers, clocks of aging, frailty, and resilience are covered and studied in interaction with a dynamic multiscale perspective. The editorial and closing viewpoint guide you through basic principles of gerontological complexity science and shed light on new research horizons, including innovative systems-based interventions.
Collapse
Affiliation(s)
- Alan A Cohen
- Robert N. Butler Columbia Aging Center and Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Marcel G M Olde Rikkert
- Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Shaulson ED, Cohen AA, Picard M. The brain-body energy conservation model of aging. NATURE AGING 2024; 4:1354-1371. [PMID: 39379694 DOI: 10.1038/s43587-024-00716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/04/2024] [Indexed: 10/10/2024]
Abstract
Aging involves seemingly paradoxical changes in energy metabolism. Molecular damage accumulation increases cellular energy expenditure, yet whole-body energy expenditure remains stable or decreases with age. We resolve this apparent contradiction by positioning the brain as the mediator and broker in the organismal energy economy. As somatic tissues accumulate damage over time, costly intracellular stress responses are activated, causing aging or senescent cells to secrete cytokines that convey increased cellular energy demand (hypermetabolism) to the brain. To conserve energy in the face of a shrinking energy budget, the brain deploys energy conservation responses, which suppress low-priority processes, producing fatigue, physical inactivity, blunted sensory capacities, immune alterations and endocrine 'deficits'. We term this cascade the brain-body energy conservation (BEC) model of aging. The BEC outlines (1) the energetic cost of cellular aging, (2) how brain perception of senescence-associated hypermetabolism may drive the phenotypic manifestations of aging and (3) energetic principles underlying the modifiability of aging trajectories by stressors and geroscience interventions.
Collapse
Affiliation(s)
- Evan D Shaulson
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Alan A Cohen
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA.
- Department of Neurology, H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia Translational Neuroscience Initiative, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
17
|
Kelly C, Trumpff C, Acosta C, Assuras S, Baker J, Basarrate S, Behnke A, Bo K, Bobba-Alves N, Champagne FA, Conklin Q, Cross M, De Jager P, Engelstad K, Epel E, Franklin SG, Hirano M, Huang Q, Junker A, Juster RP, Kapri D, Kirschbaum C, Kurade M, Lauriola V, Li S, Liu CC, Liu G, McEwen B, McGill MA, McIntyre K, Monzel AS, Michelson J, Prather AA, Puterman E, Rosales XQ, Shapiro PA, Shire D, Slavich GM, Sloan RP, Smith JLM, Spann M, Spicer J, Sturm G, Tepler S, de Schotten MT, Wager TD, Picard M. A platform to map the mind-mitochondria connection and the hallmarks of psychobiology: the MiSBIE study. Trends Endocrinol Metab 2024; 35:884-901. [PMID: 39389809 PMCID: PMC11555495 DOI: 10.1016/j.tem.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 10/12/2024]
Abstract
Health emerges from coordinated psychobiological processes powered by mitochondrial energy transformation. But how do mitochondria regulate the multisystem responses that shape resilience and disease risk across the lifespan? The Mitochondrial Stress, Brain Imaging, and Epigenetics (MiSBIE) study was established to address this question and determine how mitochondria influence the interconnected neuroendocrine, immune, metabolic, cardiovascular, cognitive, and emotional systems among individuals spanning the spectrum of mitochondrial energy transformation capacity, including participants with rare mitochondrial DNA (mtDNA) lesions causing mitochondrial diseases (MitoDs). This interdisciplinary effort is expected to generate new insights into the pathophysiology of MitoDs, provide a foundation to develop novel biomarkers of human health, and integrate our fragmented knowledge of bioenergetic, brain-body, and mind-mitochondria processes relevant to medicine and public health.
Collapse
Affiliation(s)
- Catherine Kelly
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Caroline Trumpff
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Carlos Acosta
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephanie Assuras
- Department of Clinical Neuropsychology, Division of Cognitive Neuroscience, Columbia University Irving Medical Center, New York, NY, USA
| | - Jack Baker
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Sophia Basarrate
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Alexander Behnke
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Ke Bo
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Natalia Bobba-Alves
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Quinn Conklin
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Marissa Cross
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Philip De Jager
- Center for Translational and Computational Neuroimmunology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kris Engelstad
- H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Elissa Epel
- Weill Institute for Neurosciences, Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Soah G Franklin
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Michio Hirano
- H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Qiuhan Huang
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Alex Junker
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Robert-Paul Juster
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada
| | - Darshana Kapri
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Clemens Kirschbaum
- Faculty of Psychology, Institute of Biopsychology, Technical University Dresden, Dresden, Germany
| | - Mangesh Kurade
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Vincenzo Lauriola
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Shufang Li
- H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Cynthia C Liu
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Grace Liu
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Bruce McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Marlon A McGill
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Kathleen McIntyre
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna S Monzel
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeremy Michelson
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Aric A Prather
- Weill Institute for Neurosciences, Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Eli Puterman
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiomara Q Rosales
- H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Peter A Shapiro
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Consultation-Liaison Psychiatry, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - David Shire
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Richard P Sloan
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Janell L M Smith
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Marisa Spann
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Julie Spicer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel Sturm
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Sophia Tepler
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behavior Laboratory, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University Medical Center, New York, NY, USA; Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
18
|
Mathisen AF, Legøy TA, Larsen U, Unger L, Abadpour S, Paulo JA, Scholz H, Ghila L, Chera S. The age-dependent regulation of pancreatic islet landscape is fueled by a HNF1a-immune signaling loop. Mech Ageing Dev 2024; 220:111951. [PMID: 38825059 DOI: 10.1016/j.mad.2024.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
Animal longevity is a function of global vital organ functionality and, consequently, a complex polygenic trait. Yet, monogenic regulators controlling overall or organ-specific ageing exist, owing their conservation to their function in growth and development. Here, by using pathway analysis combined with wet-biology methods on several dynamic timelines, we identified Hnf1a as a novel master regulator of the maturation and ageing in the adult pancreatic islet during the first year of life. Conditional transgenic mice bearing suboptimal levels of this transcription factor in the pancreatic islets displayed age-dependent changes, with a profile echoing precocious maturation. Additionally, the comparative pathway analysis revealed a link between Hnf1a age-dependent regulation and immune signaling, which was confirmed in the ageing timeline of an overly immunodeficient mouse model. Last, the global proteome analysis of human islets spanning three decades of life largely backed the age-specific regulation observed in mice. Collectively, our results suggest a novel role of Hnf1a as a monogenic regulator of the maturation and ageing process in the pancreatic islet via a direct or indirect regulatory loop with immune signaling.
Collapse
Affiliation(s)
- Andreas Frøslev Mathisen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Thomas Aga Legøy
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ulrik Larsen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lucas Unger
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Shadab Abadpour
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Norway; Institute for Surgical Research, Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hanne Scholz
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Norway; Institute for Surgical Research, Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Luiza Ghila
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
19
|
Eder M, Martin OMF, Oswal N, Sedlackova L, Moutinho C, Del Carmen-Fabregat A, Menendez Bravo S, Sebé-Pedrós A, Heyn H, Stroustrup N. Systematic mapping of organism-scale gene-regulatory networks in aging using population asynchrony. Cell 2024; 187:3919-3935.e19. [PMID: 38908368 DOI: 10.1016/j.cell.2024.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 06/24/2024]
Abstract
In aging, physiologic networks decline in function at rates that differ between individuals, producing a wide distribution of lifespan. Though 70% of human lifespan variance remains unexplained by heritable factors, little is known about the intrinsic sources of physiologic heterogeneity in aging. To understand how complex physiologic networks generate lifespan variation, new methods are needed. Here, we present Asynch-seq, an approach that uses gene-expression heterogeneity within isogenic populations to study the processes generating lifespan variation. By collecting thousands of single-individual transcriptomes, we capture the Caenorhabditis elegans "pan-transcriptome"-a highly resolved atlas of non-genetic variation. We use our atlas to guide a large-scale perturbation screen that identifies the decoupling of total mRNA content between germline and soma as the largest source of physiologic heterogeneity in aging, driven by pleiotropic genes whose knockdown dramatically reduces lifespan variance. Our work demonstrates how systematic mapping of physiologic heterogeneity can be applied to reduce inter-individual disparities in aging.
Collapse
Affiliation(s)
- Matthias Eder
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Olivier M F Martin
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Natasha Oswal
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Lucia Sedlackova
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Cátia Moutinho
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Andrea Del Carmen-Fabregat
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Simon Menendez Bravo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
20
|
Bencivenga L, Strumia M, Rolland Y, Guyonnet S, Parini A, Cestac P, Andrieu S, Souto Barreto PD, Rouch L. Visit-to-visit blood pressure variability is associated with intrinsic capacity decline: Results from the MAPT Study. Eur J Intern Med 2024; 125:82-88. [PMID: 38499456 DOI: 10.1016/j.ejim.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND The effectiveness of the body physiological regulatory mechanisms declines in late life, and increased Blood Pressure Variability (BPV) may represent an alteration in cardiovascular homeostatic patterns. Intrinsic Capacity (IC) has been proposed by the World Health Organization as a marker of healthy aging, based on individual's functional abilities and intended at preserving successful aging. We aimed to investigate the association of visit-to-visit BPV with IC decline in a population of community-dwelling older adults. METHODS The study population consisted of 1407 community-dwelling participants aged ≥70 years from the MAPT study evaluated during the 5-year follow-up. Systolic BPV (SBPV) and diastolic BPV (DBPV) were determined through six indicators. Cognition, psychology, locomotion and vitality constituted the four IC domains assessed. Total IC Z-score resulted from the sum of the four domains Z-scores divided by 4. The incidence of domain impairment over time was also assessed. RESULTS Higher SBPV was significantly associated with poorer IC Z-scores in all linear mixed models [1-SD increase of CV%: β(SE)=-0.010(0.001), p < 0.01]. Similar results were observed for DBPV [1-SD increase of CV%: β(SE)=-0.003(0.001), p = 0.02]. Incident IC impairment was significantly higher in participants with greater SBPV, [HR=1.16 (95 % CI, 1.01-1.33), p = 0.03], while greater DBPV did not show a higher risk of incident IC impairment. CONCLUSIONS Greater BPV is associated with IC decline over time. Our findings support BP instability as a presumable index of altered cardiovascular homeostatic mechanism, suggesting that BPV might be a clinical marker of aging and addressable risk factor for promoting healthy aging.
Collapse
Affiliation(s)
- Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico II, Napoli, Italy; Gérontopôle de Toulouse, Institut du Vieillissement, CHU de Toulouse, France.
| | - Mathilde Strumia
- Gérontopôle de Toulouse, Institut du Vieillissement, CHU de Toulouse, France; UMR INSERM 1295, Université Toulouse III, Toulouse, France; Department of Pharmacy, Toulouse University, Toulouse, France
| | - Yves Rolland
- Gérontopôle de Toulouse, Institut du Vieillissement, CHU de Toulouse, France; UMR INSERM 1295, Université Toulouse III, Toulouse, France
| | - Sophie Guyonnet
- Gérontopôle de Toulouse, Institut du Vieillissement, CHU de Toulouse, France; UMR INSERM 1295, Université Toulouse III, Toulouse, France
| | - Angelo Parini
- Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Toulouse, France
| | - Philippe Cestac
- Department of Pharmacy, Toulouse University, Toulouse, France
| | - Sandrine Andrieu
- Gérontopôle de Toulouse, Institut du Vieillissement, CHU de Toulouse, France; UMR INSERM 1295, Université Toulouse III, Toulouse, France
| | - Philipe De Souto Barreto
- Gérontopôle de Toulouse, Institut du Vieillissement, CHU de Toulouse, France; UMR INSERM 1295, Université Toulouse III, Toulouse, France
| | - Laure Rouch
- Gérontopôle de Toulouse, Institut du Vieillissement, CHU de Toulouse, France; UMR INSERM 1295, Université Toulouse III, Toulouse, France; Department of Pharmacy, Toulouse University, Toulouse, France
| |
Collapse
|
21
|
Cole MF, Barnes P, Monroe IG, Rukundo J, Emery Thompson M, Rosati AG. Age-related physiological dysregulation progresses slowly in semi-free-ranging chimpanzees. Evol Med Public Health 2024; 12:129-142. [PMID: 39239461 PMCID: PMC11375048 DOI: 10.1093/emph/eoae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/24/2024] [Indexed: 09/07/2024] Open
Abstract
Background and objectives Lifestyle has widespread effects on human health and aging. Prior results from chimpanzees (Pan troglodytes), one of humans' closest evolutionary relatives, indicate that these lifestyle effects may also be shared with other species, as semi-free-ranging chimpanzees fed a naturalistic diet show healthier values in several specific health biomarkers, compared with their sedentary, captive counterparts. Here, we examined how lifestyle factors associated with different environments affect rates of physiological aging in closely related chimpanzees. Methodology We compared physiological dysregulation, an index of biological aging, in semi-free-ranging chimpanzees in an African sanctuary versus captive chimpanzees in US laboratories. If the rate of aging is accelerated by high-calorie diet and sedentism, we predicted greater age-related dysregulation in the laboratory populations. Conversely, if costs of a wild lifestyle accelerate aging, then semi-free-ranging chimpanzees at the sanctuary, whose environment better approximates the wild, should show greater age-related dysregulation. We further tested whether dysregulation differed based on sex or body system, as in humans. Results We found that semi-free-ranging chimpanzees showed lower overall dysregulation, as well as lower age-related change in dysregulation, than laboratory chimpanzees. Males experienced lower dysregulation than females in both contexts, and the two populations exhibited distinct aging patterns based on body system. Conclusions and implications Our results support the conclusion that naturalistic living conditions result in healthier aging in chimpanzees. These data provide support for the proposal that lifestyle effects on human health and aging are conserved from deeper into our evolutionary history.
Collapse
Affiliation(s)
- Megan F Cole
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | - Paige Barnes
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Isabelle G Monroe
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua Rukundo
- Chimpanzee Sanctuary and Wildlife Conservation Trust, Entebbe, Uganda
| | | | - Alexandra G Rosati
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Wen J, Tian YE, Skampardoni I, Yang Z, Cui Y, Anagnostakis F, Mamourian E, Zhao B, Toga AW, Zaleskey A, Davatzikos C. The Genetic Architecture of Biological Age in Nine Human Organ Systems. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.06.08.23291168. [PMID: 37398441 PMCID: PMC10312870 DOI: 10.1101/2023.06.08.23291168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Understanding the genetic basis of biological aging in multi-organ systems is vital for elucidating age-related disease mechanisms and identifying therapeutic interventions. This study characterized the genetic architecture of the biological age gap (BAG) across nine human organ systems in 377,028 individuals of European ancestry from the UK Biobank. We discovered 393 genomic loci-BAG pairs (P-value<5×10-8) linked to the brain, eye, cardiovascular, hepatic, immune, metabolic, musculoskeletal, pulmonary, and renal systems. We observed BAG-organ specificity and inter-organ connections. Genetic variants associated with the nine BAGs are predominantly specific to the respective organ system while exerting pleiotropic effects on traits linked to multiple organ systems. A gene-drug-disease network confirmed the involvement of the metabolic BAG-associated genes in drugs targeting various metabolic disorders. Genetic correlation analyses supported Cheverud's Conjecture1 - the genetic correlation between BAGs mirrors their phenotypic correlation. A causal network revealed potential causal effects linking chronic diseases (e.g., Alzheimer's disease), body weight, and sleep duration to the BAG of multiple organ systems. Our findings shed light on promising therapeutic interventions to enhance human organ health within a complex multi-organ network, including lifestyle modifications and potential drug repositioning strategies for treating chronic diseases. All results are publicly available at https://labs-laboratory.com/medicine.
Collapse
Affiliation(s)
- Junhao Wen
- Laboratory of AI and Biomedical Science (LABS), Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Ye Ella Tian
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ioanna Skampardoni
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Zhijian Yang
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Yuhan Cui
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Filippos Anagnostakis
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Elizabeth Mamourian
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Arthur W. Toga
- Laboratory of Neuro Imaging (LONI), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Andrew Zaleskey
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
23
|
Pu F, Chen W, Li C, Fu J, Gao W, Ma C, Cao X, Zhang L, Hao M, Zhou J, Huang R, Ma Y, Hu K, Liu Z. Heterogeneous associations of multiplexed environmental factors and multidimensional aging metrics. Nat Commun 2024; 15:4921. [PMID: 38858361 PMCID: PMC11164970 DOI: 10.1038/s41467-024-49283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/31/2024] [Indexed: 06/12/2024] Open
Abstract
Complicated associations between multiplexed environmental factors and aging are poorly understood. We manipulated aging using multidimensional metrics such as phenotypic age, brain age, and brain volumes in the UK Biobank. Weighted quantile sum regression was used to examine the relative individual contributions of multiplexed environmental factors to aging, and self-organizing maps (SOMs) were used to examine joint effects. Air pollution presented a relatively large contribution in most cases. We also found fair heterogeneities in which the same environmental factor contributed inconsistently to different aging metrics. Particulate matter contributed the most to variance in aging, while noise and green space showed considerable contribution to brain volumes. SOM identified five subpopulations with distinct environmental exposure patterns and the air pollution subpopulation had the worst aging status. This study reveals the heterogeneous associations of multiplexed environmental factors with multidimensional aging metrics and serves as a proof of concept when analyzing multifactors and multiple outcomes.
Collapse
Affiliation(s)
- Fan Pu
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Weiran Chen
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Chenxi Li
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Jingqiao Fu
- Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Weijing Gao
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Chao Ma
- School of Economics and Management, Southeast University, Nanjing, 211189, Jiangsu, China
| | - Xingqi Cao
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Lingzhi Zhang
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Meng Hao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Jin Zhou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University; Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Rong Huang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University; Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yanan Ma
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University; Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Kejia Hu
- Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
| | - Zuyun Liu
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
24
|
Colditz IG, Campbell DLM, Ingham AB, Lee C. Review: Environmental enrichment builds functional capacity and improves resilience as an aspect of positive welfare in production animals. Animal 2024; 18:101173. [PMID: 38761442 DOI: 10.1016/j.animal.2024.101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/20/2024] Open
Abstract
The success of the animal in coping with challenges, and in harnessing opportunities to thrive, is central to its welfare. Functional capacity describes the capacity of molecules, cells, organs, body systems, the whole animal, and its community to buffer against the impacts of environmental perturbations. This buffering capacity determines the ability of the animal to maintain or regain functions in the face of environmental perturbations, which is recognised as resilience. The accuracy of physiological regulation and the maintenance of homeostatic balance underwrite the dynamic stability of outcomes such as biorhythms, feed intake, growth, milk yield, and egg production justifying their assessment as indicators of resilience. This narrative review examines the influence of environmental enrichments, especially during developmental stages in young animals, in building functional capacity and in its subsequent expression as resilience. Experience of enriched environments can build skills and competencies across multiple functional domains including but not limited to behaviour, immunity, and metabolism thereby increasing functional capacity and facilitating resilience within the context of challenges such as husbandry practices, social change, and infection. A quantitative method for measuring the distributed property of functional capacity may improve its assessment. Methods for analysing embedded energy (emergy) in ecosystems may have utility for this goal. We suggest functional capacity provides the common thread that links environmental enrichments with an ability to express resilience and may provide a novel and useful framework for measuring and reporting resilience. We conclude that the development of functional capacity and its subsequent expression as resilience is an aspect of positive animal welfare. The emergence of resilience from system dynamics highlights a need to shift from the study of physical and mental states to the study of physical and mental dynamics to describe the positive dimension of animal welfare.
Collapse
Affiliation(s)
- I G Colditz
- Agriculture and Food, CSIRO, Armidale, NSW 2350, Australia.
| | - D L M Campbell
- Agriculture and Food, CSIRO, Armidale, NSW 2350, Australia
| | - A B Ingham
- Agriculture and Food, CSIRO, St. Lucia, QLD 4067, Australia
| | - C Lee
- Agriculture and Food, CSIRO, Armidale, NSW 2350, Australia
| |
Collapse
|
25
|
Alfatah M, Lim JJJ, Zhang Y, Naaz A, Cheng TYN, Yogasundaram S, Faidzinn NA, Lin JJ, Eisenhaber B, Eisenhaber F. Uncharacterized yeast gene YBR238C, an effector of TORC1 signaling in a mitochondrial feedback loop, accelerates cellular aging via HAP4- and RMD9-dependent mechanisms. eLife 2024; 12:RP92178. [PMID: 38713053 PMCID: PMC11076046 DOI: 10.7554/elife.92178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Uncovering the regulators of cellular aging will unravel the complexity of aging biology and identify potential therapeutic interventions to delay the onset and progress of chronic, aging-related diseases. In this work, we systematically compared genesets involved in regulating the lifespan of Saccharomyces cerevisiae (a powerful model organism to study the cellular aging of humans) and those with expression changes under rapamycin treatment. Among the functionally uncharacterized genes in the overlap set, YBR238C stood out as the only one downregulated by rapamycin and with an increased chronological and replicative lifespan upon deletion. We show that YBR238C and its paralog RMD9 oppositely affect mitochondria and aging. YBR238C deletion increases the cellular lifespan by enhancing mitochondrial function. Its overexpression accelerates cellular aging via mitochondrial dysfunction. We find that the phenotypic effect of YBR238C is largely explained by HAP4- and RMD9-dependent mechanisms. Furthermore, we find that genetic- or chemical-based induction of mitochondrial dysfunction increases TORC1 (Target of Rapamycin Complex 1) activity that, subsequently, accelerates cellular aging. Notably, TORC1 inhibition by rapamycin (or deletion of YBR238C) improves the shortened lifespan under these mitochondrial dysfunction conditions in yeast and human cells. The growth of mutant cells (a proxy of TORC1 activity) with enhanced mitochondrial function is sensitive to rapamycin whereas the growth of defective mitochondrial mutants is largely resistant to rapamycin compared to wild type. Our findings demonstrate a feedback loop between TORC1 and mitochondria (the TORC1-MItochondria-TORC1 (TOMITO) signaling process) that regulates cellular aging processes. Hereby, YBR238C is an effector of TORC1 modulating mitochondrial function.
Collapse
Affiliation(s)
- Mohammad Alfatah
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Jolyn Jia Jia Lim
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Yizhong Zhang
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Arshia Naaz
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Trishia Yi Ning Cheng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Sonia Yogasundaram
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Nashrul Afiq Faidzinn
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Jovian Jing Lin
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- LASA – Lausitz Advanced Scientific Applications gGmbHWeißwasserGermany
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- LASA – Lausitz Advanced Scientific Applications gGmbHWeißwasserGermany
- School of Biological Sciences (SBS), Nanyang Technological University (NTU)SingaporeSingapore
| |
Collapse
|
26
|
Keshmiri S, Tomonaga S, Mizutani H, Doya K. Respiratory modulation of the heart rate: A potential biomarker of cardiorespiratory function in human. Comput Biol Med 2024; 173:108335. [PMID: 38564855 DOI: 10.1016/j.compbiomed.2024.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
In recent decade, wearable digital devices have shown potentials for the discovery of novel biomarkers of humans' physiology and behavior. Heart rate (HR) and respiration rate (RR) are most crucial bio-signals in humans' digital phenotyping research. HR is a continuous and non-invasive proxy to autonomic nervous system and ample evidence pinpoints the critical role of respiratory modulation of cardiac function. In the present study, we recorded longitudinal (7 days, 4.63 ± 1.52) HR and RR of 89 freely behaving human subjects (Female: 39, age 57.28 ± 5.67, Male: 50, age 58.48 ± 6.32) and analyzed their dynamics using linear models and information theoretic measures. While HR's linear and nonlinear characteristics were expressed within the plane of the HR-RR directed flow of information (HR→RR - RR→HR), their dynamics were determined by its RR→HR axis. More importantly, RR→HR quantified the effect of alcohol consumption on individuals' cardiorespiratory function independent of their consumed amount of alcohol, thereby signifying the presence of this habit in their daily life activities. The present findings provided evidence for the critical role of the respiratory modulation of HR, which was previously only studied in non-human animals. These results can contribute to humans' phenotyping research by presenting RR→HR as a digital diagnosis/prognosis marker of humans' cardiorespiratory pathology.
Collapse
Affiliation(s)
- Soheil Keshmiri
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology, Okinawa, Japan.
| | - Sutashu Tomonaga
- Neural Computation Unit (NCU), Okinawa Institute of Science and Technology, Okinawa, Japan.
| | - Haruo Mizutani
- Suntory Global Innovation Center Limited (SGIC), Suntory, Kyoto, Japan.
| | - Kenji Doya
- Neural Computation Unit (NCU), Okinawa Institute of Science and Technology, Okinawa, Japan.
| |
Collapse
|
27
|
Zane F, MacMurray C, Guillermain C, Cansell C, Todd N, Rera M. Ageing as a two-phase process: theoretical framework. FRONTIERS IN AGING 2024; 5:1378351. [PMID: 38651031 PMCID: PMC11034523 DOI: 10.3389/fragi.2024.1378351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 04/25/2024]
Abstract
Human ageing, along with the ageing of conventional model organisms, is depicted as a continuous and progressive decline of biological capabilities accompanied by an exponentially increasing mortality risk. However, not all organisms experience ageing identically and our understanding of the phenomenon is coloured by human-centric views. Ageing is multifaceted and influences a diverse range of species in varying ways. Some undergo swift declines post-reproduction, while others exhibit insubstantial changes throughout their existence. This vast array renders defining universally applicable "ageing attributes" a daunting task. It is nonetheless essential to recognize that not all ageing features are organism-specific. These common attributes have paved the way for identifying "hallmarks of ageing," processes that are intertwined with age, amplified during accelerated ageing, and manipulations of which can potentially modulate or even reverse the ageing process. Yet, a glaring observation is that individuals within a single population age at varying rates. To address this, demographers have coined the term 'frailty'. Concurrently, scientific advancements have ushered in the era of molecular clocks. These innovations enable a distinction between an individual's chronological age (time since birth) and biological age (physiological status and mortality risk). In 2011, the "Smurf" phenotype was unveiled in Drosophila, delineating an age-linked escalation in intestinal permeability that presages imminent mortality. It not only acts as a predictor of natural death but identifies individuals exhibiting traits normally described as age-related. Subsequent studies have revealed the phenotype in organisms like nematodes, zebrafish, and mice, invariably acting as a death predictor. Collectively, these findings have steered our conception of ageing towards a framework where ageing is not linear and continuous but marked by two distinct, necessary phases, discernible in vivo, courtesy of the Smurf phenotype. This framework includes a mathematical enunciation of longevity trends based on three experimentally measurable parameters. It facilitates a fresh perspective on the evolution of ageing as a function. In this article, we aim to delineate and explore the foundational principles of this innovative framework, emphasising its potential to reshape our understanding of ageing, challenge its conventional definitions, and recalibrate our comprehension of its evolutionary trajectory.
Collapse
Affiliation(s)
- Flaminia Zane
- Université Paris Cité, INSERM UMR U1284, Paris, France
| | | | | | - Céline Cansell
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Palaiseau, France
| | - Nicolas Todd
- Eco-Anthropologie (EA), Muséum National d’Histoire Naturelle, CNRS, Université de Paris, Musée de l’Homme, Paris, France
| | - Michael Rera
- Université Paris Cité, Institut Jacques Monod, CNRS UMR 7592, Paris, France
| |
Collapse
|
28
|
Qu Y, Liu W, Wen J, Li M. Adaptive robust structure exploration for complex systems based on model configuration and fusion. PeerJ Comput Sci 2024; 10:e1983. [PMID: 38660165 PMCID: PMC11041945 DOI: 10.7717/peerj-cs.1983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Analyzing and obtaining useful information is challenging when facing a new complex system. Traditional methods often focus on specific structural aspects, such as communities, which may overlook the important features and result in biased conclusions. To address this, this article suggests an adaptive algorithm for exploring complex system structures using a generative model. This method calculates and optimizes node parameters, which can reflect the latent structural characteristics of the complex system. The effectiveness and stability of this method have been demonstrated in comparative experiments on 10 sets of benchmark networks using our model parameter configuration scheme. To enhance adaptability, algorithm fusion strategies were also proposed and tested on two real-world networks. The results indicate that the algorithm can uncover multiple structural features, including clustering, overlapping, and local chaining. This adaptive algorithm provides a promising approach for exploring complex system structures.
Collapse
Affiliation(s)
- Yingfei Qu
- Computer Science and Technology Post-Doctoral Station, Chongqing University, Chongqing, China
| | - Wanbing Liu
- Hengda Fuji Elevator Co. Ltd., Huzhou, China
| | - Junhao Wen
- Computer Science and Technology Post-Doctoral Station, Chongqing University, Chongqing, China
| | - Ming Li
- Chongqing Key Laboratory for Intelligent Perception and Blockchain Technology, Chongqing Technology and Business University, Chongqing, China
| |
Collapse
|
29
|
Soheili-Nezhad S, Ibáñez-Solé O, Izeta A, Hoeijmakers JHJ, Stoeger T. Time is ticking faster for long genes in aging. Trends Genet 2024; 40:299-312. [PMID: 38519330 PMCID: PMC11003850 DOI: 10.1016/j.tig.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/24/2024]
Abstract
Recent studies of aging organisms have identified a systematic phenomenon, characterized by a negative correlation between gene length and their expression in various cell types, species, and diseases. We term this phenomenon gene-length-dependent transcription decline (GLTD) and suggest that it may represent a bottleneck in the transcription machinery and thereby significantly contribute to aging as an etiological factor. We review potential links between GLTD and key aging processes such as DNA damage and explore their potential in identifying disease modification targets. Notably, in Alzheimer's disease, GLTD spotlights extremely long synaptic genes at chromosomal fragile sites (CFSs) and their vulnerability to postmitotic DNA damage. We suggest that GLTD is an integral element of biological aging.
Collapse
Affiliation(s)
- Sourena Soheili-Nezhad
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Olga Ibáñez-Solé
- Stem Cells & Aging Group, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Ander Izeta
- Stem Cells & Aging Group, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Tecnun-University of Navarra, 20018 Donostia-San Sebastian, Spain.
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; University of Cologne, Faculty of Medicine, Cluster of Excellence for Aging Research, Institute for Genome Stability in Ageing and Disease, Cologne, Germany; Princess Maxima Center for Pediatric Oncology, Oncode Institute, Utrecht, The Netherlands.
| | - Thomas Stoeger
- Feinberg School of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA; Potocsnak Longevity Institute, Northwestern University, Chicago, IL, USA; Simpson Querrey Lung Institute for Translational Science, Chicago, IL, USA.
| |
Collapse
|
30
|
Kriete A. Dissipative scaling of development and aging in multicellular organisms. Biosystems 2024; 237:105157. [PMID: 38367762 DOI: 10.1016/j.biosystems.2024.105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Evolution, self-replication and ontogenesis are highly dynamic, irreversible and self-organizing processes dissipating energy. While progress has been made to decipher the role of thermodynamics in cellular fission, it is not yet clear how entropic balances shape organism growth and aging. This paper derives a general dissipation theory for the life history of organisms. It implies a self-regulated energy dissipation facilitating exponential growth within a hierarchical and entropy lowering self-organization. The theory predicts ceilings in energy expenditures imposed by geometric constrains, which promote thermal optimality during development, and a dissipative scaling across organisms consistent with ecological scaling laws combining isometric and allometric terms. The theory also illustrates how growing organisms can tolerate damage through continuous extension and production of new dissipative structures low in entropy. However, when organisms reduce their rate of cell division and reach a steady adult state, they become thermodynamically unstable, increase internal entropy by accumulating damage, and age.
Collapse
Affiliation(s)
- Andres Kriete
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Bossone Research Center, 3141 Chestnut St., Philadelphia, PA, 19104, USA.
| |
Collapse
|
31
|
Park S, Laskow TC, Chen J, Guha P, Dawn B, Kim D. Microphysiological systems for human aging research. Aging Cell 2024; 23:e14070. [PMID: 38180277 PMCID: PMC10928588 DOI: 10.1111/acel.14070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Recent advances in microphysiological systems (MPS), also known as organs-on-a-chip (OoC), enable the recapitulation of more complex organ and tissue functions on a smaller scale in vitro. MPS therefore provide the potential to better understand human diseases and physiology. To date, numerous MPS platforms have been developed for various tissues and organs, including the heart, liver, kidney, blood vessels, muscle, and adipose tissue. However, only a few studies have explored using MPS platforms to unravel the effects of aging on human physiology and the pathogenesis of age-related diseases. Age is one of the risk factors for many diseases, and enormous interest has been devoted to aging research. As such, a human MPS aging model could provide a more predictive tool to understand the molecular and cellular mechanisms underlying human aging and age-related diseases. These models can also be used to evaluate preclinical drugs for age-related diseases and translate them into clinical settings. Here, we provide a review on the application of MPS in aging research. First, we offer an overview of the molecular, cellular, and physiological changes with age in several tissues or organs. Next, we discuss previous aging models and the current state of MPS for studying human aging and age-related conditions. Lastly, we address the limitations of current MPS and present future directions on the potential of MPS platforms for human aging research.
Collapse
Affiliation(s)
- Seungman Park
- Department of Mechanical EngineeringUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Thomas C. Laskow
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jingchun Chen
- Nevada Institute of Personalized MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Prasun Guha
- Nevada Institute of Personalized MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
- School of Life SciencesUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Buddhadeb Dawn
- Department of Internal Medicine, Kirk Kerkorian School of MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Deok‐Ho Kim
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Center for Microphysiological SystemsJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
32
|
Uleman JF, Quax R, Melis RJF, Hoekstra AG, Olde Rikkert MGM. The need for systems thinking to advance Alzheimer's disease research. Psychiatry Res 2024; 333:115741. [PMID: 38277813 DOI: 10.1016/j.psychres.2024.115741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/08/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024]
Abstract
Despite extensive research efforts to mechanistically understand late-onset Alzheimer's disease (LOAD) and other complex mental health disorders, curative treatments remain elusive. We emphasize the multiscale multicausality inherent to LOAD, highlighting the interplay between interconnected pathophysiological processes and risk factors. Systems thinking methods, such as causal loop diagrams and systems dynamic models, offer powerful means to capture and study this complexity. Recent studies developed and validated a causal loop diagram and system dynamics model using multiple longitudinal data sets, enabling the simulation of personalized interventions on various modifiable risk factors in LOAD. The results indicate that targeting factors like sleep disturbance and depressive symptoms could be promising and yield synergistic benefits. Furthermore, personalized interventions showed significant potential, with top-ranked intervention strategies differing significantly across individuals. We argue that systems thinking approaches can open new prospects for multifactorial precision medicine. In future research, systems thinking may also guide structured, model-driven data collection on the multiple interactions in LOAD's complex multicausality, facilitating theory development and possibly resulting in effective prevention and treatment options.
Collapse
Affiliation(s)
- Jeroen F Uleman
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Department of Geriatric Medicine, Radboudumc Alzheimer Center, Donders Institute for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Rick Quax
- Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - René J F Melis
- Department of Geriatric Medicine, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alfons G Hoekstra
- Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Marcel G M Olde Rikkert
- Department of Geriatric Medicine, Radboudumc Alzheimer Center, Donders Institute for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
33
|
Gavrilov LA, Gavrilova NS. Exploring Patterns of Human Mortality and Aging: A Reliability Theory Viewpoint. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:341-355. [PMID: 38622100 PMCID: PMC11090256 DOI: 10.1134/s0006297924020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 04/17/2024]
Abstract
The most important manifestation of aging is an increased risk of death with advancing age, a mortality pattern characterized by empirical regularities known as mortality laws. We highlight three significant ones: the Gompertz law, compensation effect of mortality (CEM), and late-life mortality deceleration and describe new developments in this area. It is predicted that CEM should result in declining relative variability of mortality at older ages. The quiescent phase hypothesis of negligible actuarial aging at younger adult ages is tested and refuted by analyzing mortality of the most recent birth cohorts. To comprehend the aging mechanisms, it is crucial to explain the observed empirical mortality patterns. As an illustrative example of data-directed modeling and the insights it provides, we briefly describe two different reliability models applied to human mortality patterns. The explanation of aging using a reliability theory approach aligns with evolutionary theories of aging, including idea of chronic phenoptosis. This alignment stems from their focus on elucidating the process of organismal deterioration itself, rather than addressing the reasons why organisms are not designed for perpetual existence. This article is a part of a special issue of the journal that commemorates the legacy of the eminent Russian scientist Vladimir Petrovich Skulachev (1935-2023) and his bold ideas about evolution of biological aging and phenoptosis.
Collapse
Affiliation(s)
- Leonid A Gavrilov
- NORC at the University of Chicago, Chicago, IL 60637, USA.
- Institute for Demographic Research, Federal Center of Theoretical and Applied Sociology, Russian Academy of Sciences, Moscow, 109028, Russia
| | - Natalia S Gavrilova
- NORC at the University of Chicago, Chicago, IL 60637, USA
- Institute for Demographic Research, Federal Center of Theoretical and Applied Sociology, Russian Academy of Sciences, Moscow, 109028, Russia
| |
Collapse
|
34
|
Nielsen PY, Jensen MK, Mitarai N, Bhatt S. The Gompertz Law emerges naturally from the inter-dependencies between sub-components in complex organisms. Sci Rep 2024; 14:1196. [PMID: 38216698 PMCID: PMC10786855 DOI: 10.1038/s41598-024-51669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024] Open
Abstract
Understanding and facilitating healthy aging has become a major goal in medical research and it is becoming increasingly acknowledged that there is a need for understanding the aging phenotype as a whole rather than focusing on individual factors. Here, we provide a universal explanation for the emergence of Gompertzian mortality patterns using a systems approach to describe aging in complex organisms that consist of many inter-dependent subsystems. Our model relates to the Sufficient-Component Cause Model, widely used within the field of epidemiology, and we show that including inter-dependencies between subsystems and modeling the temporal evolution of subsystem failure results in Gompertizan mortality on the population level. Our model also provides temporal trajectories of mortality-risk for the individual. These results may give insight into understanding how biological age evolves stochastically within the individual, and how this in turn leads to a natural heterogeneity of biological age in a population.
Collapse
Affiliation(s)
- Pernille Yde Nielsen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| | - Majken K Jensen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Namiko Mitarai
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Samir Bhatt
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
35
|
Moaddel R, Ubaida‐Mohien C, Tanaka T, Tian Q, Candia J, Moore AZ, Lovett J, Fantoni G, Shehadeh N, Turek L, Collingham V, Kaileh M, Chia CW, Sen R, Egan JM, Ferrucci L. Cross-sectional analysis of healthy individuals across decades: Aging signatures across multiple physiological compartments. Aging Cell 2024; 23:e13902. [PMID: 37350292 PMCID: PMC10776121 DOI: 10.1111/acel.13902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/28/2023] [Accepted: 05/27/2023] [Indexed: 06/24/2023] Open
Abstract
The study of age-related biomarkers from different biofluids and tissues within the same individual might provide a more comprehensive understanding of age-related changes within and between compartments as these changes are likely highly interconnected. Understanding age-related differences by compartments may shed light on the mechanism of their reciprocal interactions, which may contribute to the phenotypic manifestations of aging. To study such possible interactions, we carried out a targeted metabolomic analysis of plasma, skeletal muscle, and urine collected from healthy participants, age 22-92 years, and identified 92, 34, and 35 age-associated metabolites, respectively. The metabolic pathways that were identified across compartments included inflammation and cellular senescence, microbial metabolism, mitochondrial health, sphingolipid metabolism, lysosomal membrane permeabilization, vascular aging, and kidney function.
Collapse
Affiliation(s)
- Ruin Moaddel
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | | | - Toshiko Tanaka
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Qu Tian
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Julián Candia
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Ann Zenobia Moore
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Jacqueline Lovett
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Giovanna Fantoni
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Nader Shehadeh
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Lisa Turek
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Victoria Collingham
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Mary Kaileh
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Chee W. Chia
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Ranjan Sen
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Josephine M. Egan
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Luigi Ferrucci
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| |
Collapse
|
36
|
Cohen NM, Lifshitz A, Jaschek R, Rinott E, Balicer R, Shlush LI, Barbash GI, Tanay A. Longitudinal machine learning uncouples healthy aging factors from chronic disease risks. NATURE AGING 2024; 4:129-144. [PMID: 38062254 DOI: 10.1038/s43587-023-00536-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/02/2023] [Indexed: 01/21/2024]
Abstract
To understand human longevity, inherent aging processes must be distinguished from known etiologies leading to age-related chronic diseases. Such deconvolution is difficult to achieve because it requires tracking patients throughout their entire lives. Here, we used machine learning to infer health trajectories over the entire adulthood age range using extrapolation from electronic medical records with partial longitudinal coverage. Using this approach, our model tracked the state of patients who were healthy and free from known chronic disease risk and distinguished individuals with higher or lower longevity potential using a multivariate score. We showed that the model and the markers it uses performed consistently on data from Israeli, British and US populations. For example, mildly low neutrophil counts and alkaline phosphatase levels serve as early indicators of healthy aging that are independent of risk for major chronic diseases. We characterize the heritability and genetic associations of our longevity score and demonstrate at least 1 year of extended lifespan for parents of high-scoring patients compared to matched controls. Longitudinal modeling of healthy individuals is thereby established as a tool for understanding healthy aging and longevity.
Collapse
Affiliation(s)
- Netta Mendelson Cohen
- Department of Computer Science and Applied Math, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Aviezer Lifshitz
- Department of Computer Science and Applied Math, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rami Jaschek
- Department of Computer Science and Applied Math, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Rinott
- Department of Computer Science and Applied Math, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ran Balicer
- Clalit Research Institute, Ramat Gan, Israel
| | - Liran I Shlush
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gabriel I Barbash
- Department of Computer Science and Applied Math, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Amos Tanay
- Department of Computer Science and Applied Math, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
37
|
Voisin S, Seale K, Jacques M, Landen S, Harvey NR, Haupt LM, Griffiths LR, Ashton KJ, Coffey VG, Thompson JM, Doering TM, Lindholm ME, Walsh C, Davison G, Irwin R, McBride C, Hansson O, Asplund O, Heikkinen AE, Piirilä P, Pietiläinen KH, Ollikainen M, Blocquiaux S, Thomis M, Coletta DK, Sharples AP, Eynon N. Exercise is associated with younger methylome and transcriptome profiles in human skeletal muscle. Aging Cell 2024; 23:e13859. [PMID: 37128843 PMCID: PMC10776126 DOI: 10.1111/acel.13859] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
Exercise training prevents age-related decline in muscle function. Targeting epigenetic aging is a promising actionable mechanism and late-life exercise mitigates epigenetic aging in rodent muscle. Whether exercise training can decelerate, or reverse epigenetic aging in humans is unknown. Here, we performed a powerful meta-analysis of the methylome and transcriptome of an unprecedented number of human skeletal muscle samples (n = 3176). We show that: (1) individuals with higher baseline aerobic fitness have younger epigenetic and transcriptomic profiles, (2) exercise training leads to significant shifts of epigenetic and transcriptomic patterns toward a younger profile, and (3) muscle disuse "ages" the transcriptome. Higher fitness levels were associated with attenuated differential methylation and transcription during aging. Furthermore, both epigenetic and transcriptomic profiles shifted toward a younger state after exercise training interventions, while the transcriptome shifted toward an older state after forced muscle disuse. We demonstrate that exercise training targets many of the age-related transcripts and DNA methylation loci to maintain younger methylome and transcriptome profiles, specifically in genes related to muscle structure, metabolism, and mitochondrial function. Our comprehensive analysis will inform future studies aiming to identify the best combination of therapeutics and exercise regimes to optimize longevity.
Collapse
Affiliation(s)
- Sarah Voisin
- Institute for Health and Sport (iHeS)Victoria UniversityFootscrayVictoriaAustralia
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Kirsten Seale
- Institute for Health and Sport (iHeS)Victoria UniversityFootscrayVictoriaAustralia
| | - Macsue Jacques
- Institute for Health and Sport (iHeS)Victoria UniversityFootscrayVictoriaAustralia
| | - Shanie Landen
- Institute for Health and Sport (iHeS)Victoria UniversityFootscrayVictoriaAustralia
| | - Nicholas R. Harvey
- Faculty of Health Sciences and MedicineBond UniversityGold CoastQueenslandAustralia
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Larisa M. Haupt
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
- ARC Training Centre for Cell and Tissue Engineering TechnologiesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
- Max Planck Queensland Centre for the Materials Sciences of Extracellular MatricesBrisbaneQueenslandAustralia
| | - Lyn R. Griffiths
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Kevin J. Ashton
- Faculty of Health Sciences and MedicineBond UniversityGold CoastQueenslandAustralia
| | - Vernon G. Coffey
- Faculty of Health Sciences and MedicineBond UniversityGold CoastQueenslandAustralia
| | | | - Thomas M. Doering
- School of Health, Medical and Applied SciencesCentral Queensland UniversityRockhamptonQueenslandAustralia
| | - Malene E. Lindholm
- Department of Medicine, School of MedicineStanford UniversityStanfordCaliforniaUSA
| | - Colum Walsh
- Genomic Medicine Research Group, School of Biomedical SciencesUlster UniversityColeraineUK
| | - Gareth Davison
- Sport and Exercise Sciences Research InstituteUlster UniversityBelfastUK
| | - Rachelle Irwin
- Genomic Medicine Research Group, School of Biomedical SciencesUlster UniversityColeraineUK
| | - Catherine McBride
- Sport and Exercise Sciences Research InstituteUlster UniversityBelfastUK
| | - Ola Hansson
- Department of Clinical Sciences, Genomics, Diabetes and Endocrinology Unit, Lund University Diabetes CenterLund UniversityLundSweden
- Institute for Molecular Medicine Finland (FIMM)Helsinki UniversityHelsinkiFinland
| | - Olof Asplund
- Department of Clinical Sciences, Genomics, Diabetes and Endocrinology Unit, Lund University Diabetes CenterLund UniversityLundSweden
| | - Aino E. Heikkinen
- Institute for Molecular Medicine Finland (FIMM)Helsinki UniversityHelsinkiFinland
| | - Päivi Piirilä
- Unit of Clinical PhysiologyHelsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Kirsi H. Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- HealthyWeightHub, Endocrinology, Abdominal CenterHelsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland (FIMM)Helsinki UniversityHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Sara Blocquiaux
- Department of Movement Sciences, Physical Activity, Sports and Health Research GroupKU LeuvenLeuvenBelgium
| | - Martine Thomis
- Department of Movement Sciences, Physical Activity, Sports and Health Research GroupKU LeuvenLeuvenBelgium
| | - Dawn K. Coletta
- Department of Medicine, Division of EndocrinologyUniversity of ArizonaTucsonArizonaUSA
- UA Center for Disparities in Diabetes Obesity and MetabolismUniversity of ArizonaTucsonArizonaUSA
- Department of PhysiologyUniversity of ArizonaTucsonArizonaUSA
| | - Adam P. Sharples
- Institute of Physical PerformanceNorwegian School of Sport SciencesOsloNorway
| | - Nir Eynon
- Institute for Health and Sport (iHeS)Victoria UniversityFootscrayVictoriaAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
38
|
Li Q, Legault V, Hermann Honfo S, Milot E, Jia Q, Wang F, Ferrucci L, Bandinelli S, Cohen AA. Physiological Dysregulation Proceeds and Predicts Health Outcomes Similarly in Chinese and Western Populations. J Gerontol A Biol Sci Med Sci 2024; 79:glad146. [PMID: 37313838 PMCID: PMC11491748 DOI: 10.1093/gerona/glad146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND A decade ago, we proposed an index of physiological dysregulation based on Mahalanobis distance (DM) that measures how far from the norm an individual biomarker profile is. While extensive validation has been performed, focus was mostly on Western populations with little comparison to developing countries, particularly at a physiological system level. The degree to which the approach would work in other sociocultural contexts and the similarity of dysregulation signatures across diverse populations are still open questions. METHODS Using 2 data sets from China and 3 from Western countries (United States, United Kingdom, and Italy), we calculated DM globally and per physiological system. We assessed pairwise correlations among systems, difference with age, prediction of mortality and age-related diseases, and sensitivity to interchanging data sets with one another as the reference in DM calculation. RESULTS Overall, results were comparable across all data sets. Different physiological systems showed distinct dysregulation processes. Association with age was moderate and often nonlinear, similarly for all populations. Mahalanobis distance predicted most health outcomes, although differently by physiological system. Using a Chinese population as the reference when calculating DM for Western populations, or vice versa, led to similar associations with health outcomes, with a few exceptions. CONCLUSIONS While small differences were noticeable, they did not systematically emerge between Chinese and Western populations, but rather diffusively across all data sets. These findings suggest that DM presents similar properties, notwithstanding sociocultural backgrounds, and that it is equally effective in capturing the loss of homeostasis that occurs during aging in diverse industrial human populations.
Collapse
Affiliation(s)
- Qing Li
- Center for Innovation Management Research of Xinjiang, Urumqi 830046, China
- School of Economics and Management, Xinjiang University, Urumqi 830046, China
| | - Véronique Legault
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Sewanou Hermann Honfo
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Emmanuel Milot
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec G9A 5H7, Canada
| | - Qingzhou Jia
- School of Economics and Management, Xinjiang University, Urumqi 830046, China
| | - Fuqing Wang
- School of Economics and Management, Xinjiang University, Urumqi 830046, China
| | - Luigi Ferrucci
- Translational Gerontology Branch, Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital, Baltimore, Maryland 21225, USA
| | | | - Alan A Cohen
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
- Research Center on Aging, Sherbrooke, Quebec J1H 4C4, Canada
- Research Center of Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
39
|
James AS, Adil NA, Goltz D, Tangudu D, Chaudhari DS, Shukla R, Kumar V, Kumar A, Masternak MM, Holland P, Labyak C, Golden A, Dangiolo M, Arikawa AY, Kociolek J, Fraser A, Williams C, Agronin M, Aymat M, Jain S, Yadav H. Abnormalities in gut virome signatures linked with cognitive impairment in older adults. Gut Microbes 2024; 16:2431648. [PMID: 39676708 DOI: 10.1080/19490976.2024.2431648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
Multiple emerging lines of evidence indicate that the microbiome contributes to aging and cognitive health. However, the roles of distinct microbial components, such as viruses (virome) and their interactions with bacteria (bacteriome), as well as their metabolic pathways (metabolome) in relation to aging and cognitive function, remain poorly understood. Here, we present proof-of-concept results from a pilot study using datasets (n = 176) from the Microbiome in Aging Gut and Brain (MiaGB) consortium, demonstrating that the human virome signature significantly differs across the aging continuum (60s vs. 70s vs. 80+ years of age) in older adults. We observed that the predominant virome signature was enriched with bacteriophages, which change considerably with aging continuum. Analyses of interactions between phages and the host bacteriome suggest that lytic or temperate relationships change distinctly across the aging continuum, as well as cognitive impairment. Interestingly, the phage-bacteriome-metabolome interactions develop unique patterns that are distinctly linked to aging and cognitive dysfunction in older adults. The phage-bacteriome interactions affect bacterial metabolic pathways, potentially impacting older adults' health, including the risk of cognitive decline and dementia. Further comprehension of these studies could provide opportunities to target the microbiome by developing phage therapies to improve aging and brain health in older adults.
Collapse
Affiliation(s)
- Adewale S James
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Center for Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Noorul A Adil
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Center for Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Dayna Goltz
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Center for Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Divyani Tangudu
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Center for Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Diptaraj S Chaudhari
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Center for Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Rohit Shukla
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Center for Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Vivek Kumar
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Center for Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Ambuj Kumar
- Research Methodology and Biostatistics, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Michal M Masternak
- School of Global Health Management and Informatics, University of Central Florida, Orlando, FL, USA
| | - Peter Holland
- Department of Neuroscience, FAU Schmidt College of Medicine/i-Health FAU, Boca Raton, FL, USA
| | - Corinne Labyak
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, FL, USA
| | - Adam Golden
- School of Global Health Management and Informatics, University of Central Florida, Orlando, FL, USA
| | - Mariana Dangiolo
- School of Global Health Management and Informatics, University of Central Florida, Orlando, FL, USA
| | - Andrea Y Arikawa
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, FL, USA
| | - Judyta Kociolek
- Department of Neuroscience, FAU Schmidt College of Medicine/i-Health FAU, Boca Raton, FL, USA
- Clinical Research Unit, Division of Research, Florida Atlantic University, Boca Raton, FL, USA
| | - Amoy Fraser
- School of Global Health Management and Informatics, University of Central Florida, Orlando, FL, USA
| | - Cynthia Williams
- School of Global Health Management and Informatics, University of Central Florida, Orlando, FL, USA
| | - Marc Agronin
- Behavioral Health, MIND Institute, Miami Jewish Health, Miami, FL, USA
| | - Mariolga Aymat
- Behavioral Health, MIND Institute, Miami Jewish Health, Miami, FL, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Center for Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Center for Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
40
|
Kumar A, Goudar VS, Nahak BK, Tsai PH, Lin HW, Tseng FG. [Ru(dpp) 3 ]Cl 2 -Embedded Oxygen Nano Polymeric Sensors: A Promising Tool for Monitoring Intracellular and Intratumoral Oxygen Gradients with High Quantum Yield and Long Lifetime. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307955. [PMID: 38148312 DOI: 10.1002/smll.202307955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/28/2023] [Indexed: 12/28/2023]
Abstract
Unraveling the intricacies between oxygen dynamics and cellular processes in the tumor microenvironment (TME) hinges upon precise monitoring of intracellular and intratumoral oxygen levels, which holds paramount significance. The majority of these reported oxygen nanoprobes suffer compromised lifetime and quantum yield when exposed to the robust ROS activities prevalent in TME, limiting their prolonged in vitro usability. Herein, the ruthenium-embedded oxygen nano polymeric sensor (Ru-ONPS) is proposed for precise oxygen gradient monitoring within the cellular environment and TME. Ru-ONPS (≈64±7 nm) incorporates [Ru(dpp)3 ]Cl2 dye into F-127 and crosslinks it with urea and paraformaldehyde, ensuring a prolonged lifetime (5.4 µs), high quantum yield (66.65 ± 2.43% in N2 and 49.80 ± 3.14% in O2 ), superior photostability (>30 min), and excellent stability in diverse environmental conditions. Based on the Stern-Volmer plot, the Ru-ONPS shows complete linearity for a wide dynamic range (0-23 mg L-1 ), with a detection limit of 10 µg mL-1 . Confocal imaging reveals Ru-ONPS cellular uptake and intratumoral distribution. After 72 h, HCT-8 cells show 5.20±1.03% oxygen levels, while NIH3T3 cells have 7.07±1.90%. Co-culture spheroids display declining oxygen levels of 17.90±0.88%, 10.90±0.88%, and 5.10±1.18%, at 48, 120, and 216 h, respectively. Ru-ONPS advances cellular oxygen measurement and facilitates hypoxia-dependent metastatic research and therapeutic target identification.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Venkanagouda S Goudar
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Bishal Kumar Nahak
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Ping-Hsun Tsai
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Hao-Wu Lin
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
- Institute of Nano Engineering and Microsystems, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
- Research Center for Applied Sciences, Academia Sinica, Taipei, 115201, Taiwan ROC
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| |
Collapse
|
41
|
Klotz LO, Carlberg C. Nutrigenomics and redox regulation: Concepts relating to the Special Issue on nutrigenomics. Redox Biol 2023; 68:102920. [PMID: 37839954 PMCID: PMC10624588 DOI: 10.1016/j.redox.2023.102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
During our whole lifespan, from conception to death, the epigenomes of all tissues and cell types of our body integrate signals from the environment. This includes signals derived from our diet and the uptake of macro- and micronutrients. In most cases, this leads only to transient changes, but some effects of this epigenome programming process are persistent and can even be transferred to the next generation. Both epigenetic programming and redox processes are affected by the individual choice of diet and other lifestyle decisions like physical activity. The nutrient-gene communication pathways have adapted during human evolution and are essential for maintaining health. However, when they are maladaptive, such as in long-term obesity, they significantly contribute to diseases like type 2 diabetes and cancer. The field of nutrigenomics investigates nutrition-related signal transduction pathways and their effect on gene expression involving interactions both with the genome and the epigenomes. Several of these diet-(epi)genome interactions and the involved signal transduction cascades are redox-regulated. Examples include the effects of the NAD+/NADH ratio, vitamin C levels and secondary metabolites of dietary molecules from plants on the acetylation and methylation state of the epigenome as well as on gene expression through redox-sensitive pathways via the transcription factors NFE2L2 and FOXO. In this review, we summarize and extend on these topics as well as those discussed in the articles of this Special Issue and take them into the context of redox biology.
Collapse
Affiliation(s)
- Lars-Oliver Klotz
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
| | - Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, PL-10-748, Olsztyn, Poland; School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211, Kuopio, Finland.
| |
Collapse
|
42
|
Yang M, Harrison BR, Promislow DEL. Cellular age explains variation in age-related cell-to-cell transcriptome variability. Genome Res 2023; 33:1906-1916. [PMID: 37973195 PMCID: PMC10760448 DOI: 10.1101/gr.278144.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023]
Abstract
Organs and tissues age at different rates within a single individual. Such asynchrony in aging has been widely observed at multiple levels, from functional hallmarks, such as anatomical structures and physiological processes, to molecular endophenotypes, such as the transcriptome and metabolome. However, we lack a conceptual framework to understand why some components age faster than others. Just as demographic models explain why aging evolves, here we test the hypothesis that demographic differences among cell types, determined by cell-specific differences in turnover rate, can explain why the transcriptome shows signs of aging in some cell types but not others. Through analysis of mouse single-cell transcriptome data across diverse tissues and ages, we find that cellular age explains a large proportion of the variation in the age-related increase in transcriptome variance. We further show that long-lived cells are characterized by relatively high expression of genes associated with proteostasis and that the transcriptome of long-lived cells shows greater evolutionary constraint than short-lived cells. In contrast, in short-lived cell types, the transcriptome is enriched for genes associated with DNA repair. Based on these observations, we develop a novel heuristic model that explains how and why aging rates differ among cell types.
Collapse
Affiliation(s)
- Ming Yang
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Benjamin R Harrison
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Daniel E L Promislow
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA;
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
43
|
Park SC, Lee YS, Cho KA, Kim SY, Lee YI, Lee SR, Lim IK. What matters in aging is signaling for responsiveness. Pharmacol Ther 2023; 252:108560. [PMID: 37952903 DOI: 10.1016/j.pharmthera.2023.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Biological responsiveness refers to the capacity of living organisms to adapt to changes in both their internal and external environments through physiological and behavioral mechanisms. One of the prominent aspects of aging is the decline in this responsiveness, which can lead to a deterioration in the processes required for maintenance, survival, and growth. The vital link between physiological responsiveness and the essential life processes lies within the signaling systems. To devise effective strategies for controlling the aging process, a comprehensive reevaluation of this connecting loop is imperative. This review aims to explore the impact of aging on signaling systems responsible for responsiveness and introduce a novel perspective on intervening in the aging process by restoring the compromised responsiveness. These innovative mechanistic approaches for modulating altered responsiveness hold the potential to illuminate the development of action plans aimed at controlling the aging process and treating age-related disorders.
Collapse
Affiliation(s)
- Sang Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea.
| | - Young-Sam Lee
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea; Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 42988, Republic of Korea.
| | - Kyung A Cho
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| | - Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Yun-Il Lee
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 42988, Republic of Korea; Interdisciplinary Engineering Major, Department of Interdisciplinary Studies, DGIST, Daegu 42988, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea; Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - In Kyoung Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
44
|
Fernandez ME, Martinez-Romero J, Aon MA, Bernier M, Price NL, de Cabo R. How is Big Data reshaping preclinical aging research? Lab Anim (NY) 2023; 52:289-314. [PMID: 38017182 DOI: 10.1038/s41684-023-01286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
The exponential scientific and technological progress during the past 30 years has favored the comprehensive characterization of aging processes with their multivariate nature, leading to the advent of Big Data in preclinical aging research. Spanning from molecular omics to organism-level deep phenotyping, Big Data demands large computational resources for storage and analysis, as well as new analytical tools and conceptual frameworks to gain novel insights leading to discovery. Systems biology has emerged as a paradigm that utilizes Big Data to gain insightful information enabling a better understanding of living organisms, visualized as multilayered networks of interacting molecules, cells, tissues and organs at different spatiotemporal scales. In this framework, where aging, health and disease represent emergent states from an evolving dynamic complex system, context given by, for example, strain, sex and feeding times, becomes paramount for defining the biological trajectory of an organism. Using bioinformatics and artificial intelligence, the systems biology approach is leading to remarkable advances in our understanding of the underlying mechanism of aging biology and assisting in creative experimental study designs in animal models. Future in-depth knowledge acquisition will depend on the ability to fully integrate information from different spatiotemporal scales in organisms, which will probably require the adoption of theories and methods from the field of complex systems. Here we review state-of-the-art approaches in preclinical research, with a focus on rodent models, that are leading to conceptual and/or technical advances in leveraging Big Data to understand basic aging biology and its full translational potential.
Collapse
Affiliation(s)
- Maria Emilia Fernandez
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jorge Martinez-Romero
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Miguel A Aon
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nathan L Price
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
45
|
Affiliation(s)
- Mike May
- Freelance writer and editor, Oak Harbor, WA, USA
| |
Collapse
|
46
|
Koivunen K, Löppönen A, Palmberg L, Rantalainen T, Rantanen T, Karavirta L. Autonomic nervous system and postural control regulation during orthostatic test as putative markers of physical resilience among community-dwelling older adults. Exp Gerontol 2023; 182:112292. [PMID: 37738781 DOI: 10.1016/j.exger.2023.112292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/25/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
INTRODUCTION We examined whether autonomic nervous system (ANS) and postural control regulation during orthostatic test reflect physical resilience by studying their associations with maximal walking speed and mortality. METHODS The participants were community-dwelling Finnish men (n = 303) and women (n = 386) aged 75, 80, and 85 years at baseline. Systolic and diastolic blood pressure (BP), heart rate, heart rate variability (HRV), respiratory rate, and postural sway were obtained using a digital sphygmomanometer, a single-channel ECG, and thigh- and chest-worn accelerometers. Linear and Cox regression models were used to estimate the associations of the physiological indices with maximal 10-m walking speed and 5-year mortality separately for sexes. RESULTS Better maintenance of BP under orthostatic stress was associated with faster walking speed in women and lower mortality hazard in men. Greater HRV in terms of low frequency power and lower respiration rate in supine position and smaller orthostatic changes in these were associated with faster walking speed especially in women. Less postural sway after standing up was associated with faster walking speed in women (-0.057, SE 0.022, p = 0.011) and more postural sway with increased mortality hazard in men (HR 1.71, 95 % CI 1.20-2.43) even after controlling for BP responses. CONCLUSIONS In addition to ANS regulation at rest and under stress, adaptation of postural control system to orthostasis may be used in quantifying older adults' physical resilience. Wearable sensors capturing stimulus-response patterns and natural fluctuations of body functions may provide opportunities to monitor and incorporate different subsystems' resilience also in free-living conditions.
Collapse
Affiliation(s)
- Kaisa Koivunen
- Faculty of Sport and Health Sciences and Gerontology Research Center, the University of Jyväskylä, Finland.
| | - Antti Löppönen
- Faculty of Sport and Health Sciences and Gerontology Research Center, the University of Jyväskylä, Finland; Department of Movement Sciences, Physical Activity, Sports and Health Research Group, KU Leuven, Leuven, Belgium
| | - Lotta Palmberg
- Faculty of Sport and Health Sciences and Gerontology Research Center, the University of Jyväskylä, Finland
| | - Timo Rantalainen
- Faculty of Sport and Health Sciences and Gerontology Research Center, the University of Jyväskylä, Finland
| | - Taina Rantanen
- Faculty of Sport and Health Sciences and Gerontology Research Center, the University of Jyväskylä, Finland
| | - Laura Karavirta
- Faculty of Sport and Health Sciences and Gerontology Research Center, the University of Jyväskylä, Finland
| |
Collapse
|
47
|
Kolb H, Kempf K, Martin S. Insulin and aging - a disappointing relationship. Front Endocrinol (Lausanne) 2023; 14:1261298. [PMID: 37854186 PMCID: PMC10579801 DOI: 10.3389/fendo.2023.1261298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/25/2023] [Indexed: 10/20/2023] Open
Abstract
Experimental studies in animal models of aging such as nematodes, fruit flies or mice have observed that decreased levels of insulin or insulin signaling promotes longevity. In humans, hyperinsulinemia and concomitant insulin resistance are associated with an elevated risk of age-related diseases suggestive of a shortened healthspan. Age-related disorders include neurodegenerative diseases, hypertension, cardiovascular disease, and type 2 diabetes. High ambient insulin concentrations promote increased lipogenesis and fat storage, heightened protein synthesis and accumulation of non-functional polypeptides due to limited turnover capacity. Moreover, there is impaired autophagy activity, and less endothelial NO synthase activity. These changes are associated with mitochondrial dysfunction and oxidative stress. The cellular stress induced by anabolic activity of insulin initiates an adaptive response aiming at maintaining homeostasis, characterized by activation of the transcription factor Nrf2, of AMP activated kinase, and an unfolded protein response. This protective response is more potent in the long-lived human species than in short-lived models of aging research resulting in a stronger pro-aging impact of insulin in nematodes and fruit flies. In humans, resistance to insulin-induced cell stress decreases with age, because of an increase of insulin and insulin resistance levels but less Nrf2 activation. These detrimental changes might be contained by adopting a lifestyle that promotes low insulin/insulin resistance levels and enhances an adaptive response to cellular stress, as observed with dietary restriction or exercise.
Collapse
Affiliation(s)
- Hubert Kolb
- Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- West-German Centre of Diabetes and Health, Düsseldorf Catholic Hospital Group, Düsseldorf, Germany
| | - Kerstin Kempf
- West-German Centre of Diabetes and Health, Düsseldorf Catholic Hospital Group, Düsseldorf, Germany
| | - Stephan Martin
- Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- West-German Centre of Diabetes and Health, Düsseldorf Catholic Hospital Group, Düsseldorf, Germany
| |
Collapse
|
48
|
Thuany M, Bandeira PFR, Vieira D, Weiss K, Knechtle B, Gomes TN. The subject-environment interplay between runners from different Brazilian macro-regions. Front Psychol 2023; 14:1134797. [PMID: 37809282 PMCID: PMC10557527 DOI: 10.3389/fpsyg.2023.1134797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/06/2023] [Indexed: 10/10/2023] Open
Abstract
Purpose Our purpose was to investigate the interplay between runners and their environment using a network approach. Methods This cross-sectional study sampled Brazilian runners of both sexes, from the five macro-regions of the country. An electronic questionnaire was used to obtain information regarding age, sex, training volume, socio-economic level, place of residence, and running pace. Environmental indicators (public illumination, pavement, sidewalk, and green areas) were collected from available public information. Descriptive statistics were presented in mean (SD), and frequency (%). A network analysis was performed to evaluate the association between individual and environmental characteristics. Statistical analyses were performed in the JASP, considering p < 0.05. Results At North and Mid-West regions, public illumination presents the highest values for the expected influence (1.74 and 1.56), while in Northeast and Southeast, sidewalks present the highest values (2.13; 0.91). For betweenness centrality, in North, Northeast, and Mid-West regions, residency in the capital of a state presented a hub. In contrast, pavement, and training volume present higher values in the South and Southeast. Network topologies are different. Conclusion Public illumination (North and Mid-West) and sidewalk (Northeast, Southeast) were the most important variables for runners. Continental size countries need specific approaches to improve physical activity levels and health outcomes that consider the cultural, historical, and environmental background.
Collapse
Affiliation(s)
- Mabliny Thuany
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, Porto, Portugal
| | - Paulo Felipe Ribeiro Bandeira
- Department of Physical Education, Regional University of Cariri, Crato, Ceará, Brazil
- Federal University of Vale do São Francisco—UNIVASF, Pernambuco, Brazil
| | - Douglas Vieira
- Post-Graduation Program of Physical Education, Department of Physical Education, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Katja Weiss
- Institute of Primary Care, University of Zurich, Zürich, Switzerland
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zürich, Switzerland
- Medbase St. Gallen Am Vadianplatz, St. Gallen, Switzerland
| | - Thayse Natacha Gomes
- Post-Graduation Program of Physical Education, Department of Physical Education, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
49
|
Uleman JF, Melis RJF, Hoekstra AG, Olde Rikkert MGM, Quax R. Exploring the potential impact of multi-factor precision interventions in Alzheimer's disease with system dynamics. J Biomed Inform 2023; 145:104462. [PMID: 37516375 DOI: 10.1016/j.jbi.2023.104462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/09/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Numerous clinical trials based on a single-cause paradigm have not resulted in efficacious treatments for Alzheimer's disease (AD). Recently, prevention trials that simultaneously intervened on multiple risk factors have shown mixed results, suggesting that careful design is necessary. Moreover, intensive pilot precision medicine (PM) trial results have been promising but may not generalize to a broader population. These observations suggest that a model-based approach to multi-factor precision medicine (PM) is warranted. We systematically developed a system dynamics model (SDM) of AD for PM using data from two longitudinal studies (N=3660). This method involved a model selection procedure in identifying interaction terms between the SDM components and estimating individualized parameters. We used the SDM to explore simulated single- and double-factor interventions on 14 modifiable risk factors. We quantified the potential impact of double-factor interventions over single-factor interventions as 1.5 [95% CI: 1.5-2.6] and of SDM-based PM over a one-size-fits-all approach as 3.5 [3.1, 3.8] ADAS-cog-13 points in 12 years. Although the model remains to be validated, we tentatively conclude that multi-factor PM could come to play an important role in AD prevention.
Collapse
Affiliation(s)
- Jeroen F Uleman
- Department of Geriatric Medicine, Radboudumc Alzheimer Center, Donders Institute for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam, the Netherlands.
| | - René J F Melis
- Institute for Advanced Study, University of Amsterdam, Amsterdam, the Netherlands; Department of Geriatric Medicine, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alfons G Hoekstra
- Computational Science Lab, Faculty of Science, Informatics Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Marcel G M Olde Rikkert
- Department of Geriatric Medicine, Radboudumc Alzheimer Center, Donders Institute for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rick Quax
- Institute for Advanced Study, University of Amsterdam, Amsterdam, the Netherlands; Computational Science Lab, Faculty of Science, Informatics Institute, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
50
|
Fernandes TG. Organoids as complex (bio)systems. Front Cell Dev Biol 2023; 11:1268540. [PMID: 37691827 PMCID: PMC10485618 DOI: 10.3389/fcell.2023.1268540] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Organoids are three-dimensional structures derived from stem cells that mimic the organization and function of specific organs, making them valuable tools for studying complex systems in biology. This paper explores the application of complex systems theory to understand and characterize organoids as exemplars of intricate biological systems. By identifying and analyzing common design principles observed across diverse natural, technological, and social complex systems, we can gain insights into the underlying mechanisms governing organoid behavior and function. This review outlines general design principles found in complex systems and demonstrates how these principles manifest within organoids. By acknowledging organoids as representations of complex systems, we can illuminate our understanding of their normal physiological behavior and gain valuable insights into the alterations that can lead to disease. Therefore, incorporating complex systems theory into the study of organoids may foster novel perspectives in biology and pave the way for new avenues of research and therapeutic interventions to improve human health and wellbeing.
Collapse
Affiliation(s)
- Tiago G. Fernandes
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|