1
|
Chaudhary VB, Nokes LF, González JB, Cooper PO, Katula AM, Mares EC, Pehim Limbu S, Robinson JN, Aguilar-Trigueros CA. TraitAM, a global spore trait database for arbuscular mycorrhizal fungi. Sci Data 2025; 12:588. [PMID: 40199921 PMCID: PMC11978867 DOI: 10.1038/s41597-025-04940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 04/01/2025] [Indexed: 04/10/2025] Open
Abstract
Knowledge regarding organismal traits supports a better understanding of the relationship between form and function and can be used to predict the consequences of environmental stressors on ecological and evolutionary processes. Most plants on Earth form symbioses with mycorrhizal fungi, but our ability to make trait-based inferences for these fungi is limited due to a lack of publicly available trait data. Here, we present TraitAM, a comprehensive database of multiple spore traits for all described species of the most common group of mycorrhizal fungi, the arbuscular mycorrhizal (AM) fungi (subphylum Glomeromycotina). Trait data for 344 species were mined from original species descriptions and used to calculate newly developed fungal trait metrics that can be employed to explore both intra- and inter-specific variation in traits. TraitAM also includes an updated phylogenetic tree that can be used to conduct phylogenetically-informed multivariate analyses of AM fungal traits. TraitAM will aid our further understanding of the biology, ecology, and evolution of these globally widespread, symbiotic fungi.
Collapse
Affiliation(s)
- V Bala Chaudhary
- Department of Environmental Studies, Dartmouth College, Hanover, NH, 03755, USA.
| | - Liam F Nokes
- Department of Environmental Studies, Dartmouth College, Hanover, NH, 03755, USA
| | - Jennifer B González
- Department of Environmental Studies, Dartmouth College, Hanover, NH, 03755, USA
- Department of Natural Sciences, New Hampshire Technical Institute, Concord, NH, 03301, USA
| | - Peri O Cooper
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, 14853, USA
| | - Anne M Katula
- Department of Environmental Studies, Dartmouth College, Hanover, NH, 03755, USA
| | - Emma C Mares
- Department of Environmental Science and Studies, DePaul University, Chicago, IL, 60614, USA
| | - Smriti Pehim Limbu
- Department of Environmental Studies, Dartmouth College, Hanover, NH, 03755, USA
| | - Jannetta N Robinson
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, 80302, USA
| | - Carlos A Aguilar-Trigueros
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
2
|
Kuper-Psenicnik A, Bennett JA. Intraspecies variation in mycorrhizal response of Medicago sativa to Rhizophagus irregularis under abiotic stress. MYCORRHIZA 2024; 35:3. [PMID: 39671121 DOI: 10.1007/s00572-024-01175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 12/14/2024]
Abstract
Plant partnerships with arbuscular mycorrhizal fungi (AMF) improve plant resilience to stress by increasing the plant's access to and uptake of essential nutrients and water, as well as regulating the plant's stress response. The magnitude and direction of AMF effects during the relationship depend on multiple factors including plant identity and environmental context. To investigate how AMF influence plant responses to environmental stresses, we assessed the effects of drought and salinity on growth, final biomass, and reproduction of nine alfalfa (Medicago sativa) cultivars inoculated with Rhizophagus irregularis or grown alone. In absence of stress, the fungus increased nutrient content, but caused declines in biomass through a reduction in initial growth that was not overcome by a later growth spurt. Mycorrhizal fungus inoculation also magnified stress effects on growth in most scenarios, but this depended on the stress type and cultivar. For salinity, this stress increase in inoculated plants was mediated by increased salt accumulation. Flowering of each cultivar was affected by both inoculation and stress type, albeit erratically, whereas seed production was only affected by inoculation when drought stressed. We found no clear pattern distinguishing differences in mycorrhizal fungus effects on stress among cultivars; however, our results show that mycorrhizal fungus effects on plant stress responses are contingent on the plant performance metric and stress type, highlighting the complexity of responses to mycorrhizas.
Collapse
Affiliation(s)
- Aisa Kuper-Psenicnik
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada
| | - Jonathan A Bennett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada.
| |
Collapse
|
3
|
Veresoglou SD, Begum N. Dose-response curves: the next frontier in plant ecology. TRENDS IN PLANT SCIENCE 2024; 29:971-977. [PMID: 38653637 DOI: 10.1016/j.tplants.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
A large fraction of experimental work in plant ecology, and thus also on ecosystem functioning and the delivery of ecosystem services, describes experiments that have been carried out under controlled (glasshouse) conditions. Controlled growth settings commonly sacrifice realism through, for example, reducing the densities of plant species in the pots and controlling how environmental settings such as moisture and light vary in favor of a higher mechanistic resolution, which makes these studies particularly suitable for subsequent syntheses. We explore the possibility that further integration of dose-response curves can maximize the impact of existing studies. We suggest that we can expand considerably the scope of the dose and response variables that are considered in plant ecology.
Collapse
Affiliation(s)
- Stavros D Veresoglou
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Naheeda Begum
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
4
|
Martin FM, van der Heijden MGA. The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. THE NEW PHYTOLOGIST 2024; 242:1486-1506. [PMID: 38297461 DOI: 10.1111/nph.19541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024]
Abstract
Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research.
Collapse
Affiliation(s)
- Francis M Martin
- Université de Lorraine, INRAE, UMR IAM, Champenoux, 54280, France
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Marcel G A van der Heijden
- Department of Agroecology & Environment, Plant-Soil Interactions, Agroscope, Zürich, 8046, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zürich, 8057, Switzerland
| |
Collapse
|
5
|
Lutz S, Bodenhausen N, Hess J, Valzano-Held A, Waelchli J, Deslandes-Hérold G, Schlaeppi K, van der Heijden MGA. Soil microbiome indicators can predict crop growth response to large-scale inoculation with arbuscular mycorrhizal fungi. Nat Microbiol 2023; 8:2277-2289. [PMID: 38030903 PMCID: PMC10730404 DOI: 10.1038/s41564-023-01520-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Alternative solutions to mineral fertilizers and pesticides that reduce the environmental impact of agriculture are urgently needed. Arbuscular mycorrhizal fungi (AMF) can enhance plant nutrient uptake and reduce plant stress; yet, large-scale field inoculation trials with AMF are missing, and so far, results remain unpredictable. We conducted on-farm experiments in 54 fields in Switzerland and quantified the effects on maize growth. Growth response to AMF inoculation was highly variable, ranging from -12% to +40%. With few soil parameters and mainly soil microbiome indicators, we could successfully predict 86% of the variation in plant growth response to inoculation. The abundance of pathogenic fungi, rather than nutrient availability, best predicted (33%) AMF inoculation success. Our results indicate that soil microbiome indicators offer a sustainable biotechnological perspective to predict inoculation success at the beginning of the growing season. This predictability increases the profitability of microbiome engineering as a tool for sustainable agricultural management.
Collapse
Affiliation(s)
- Stefanie Lutz
- Plant-Soil Interactions, Department of Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Natacha Bodenhausen
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Julia Hess
- Plant-Soil Interactions, Department of Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Alain Valzano-Held
- Plant-Soil Interactions, Department of Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Jan Waelchli
- Plant Microbe Interactions, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Gabriel Deslandes-Hérold
- Plant Microbe Interactions, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Plant Biochemistry, Institute of Molecular Plant Biology, ETH Zurich, Zurich, Switzerland
| | - Klaus Schlaeppi
- Plant Microbe Interactions, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| | - Marcel G A van der Heijden
- Plant-Soil Interactions, Department of Agroecology and Environment, Agroscope, Zurich, Switzerland.
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland.
| |
Collapse
|
6
|
Meng Y, Davison J, Clarke JT, Zobel M, Gerz M, Moora M, Öpik M, Bueno CG. Environmental modulation of plant mycorrhizal traits in the global flora. Ecol Lett 2023; 26:1862-1876. [PMID: 37766496 DOI: 10.1111/ele.14309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Mycorrhizal symbioses are known to strongly influence plant performance, structure plant communities and shape ecosystem dynamics. Plant mycorrhizal traits, such as those characterising mycorrhizal type (arbuscular (AM), ecto-, ericoid or orchid mycorrhiza) and status (obligately (OM), facultatively (FM) or non-mycorrhizal) offer valuable insight into plant belowground functionality. Here, we compile available plant mycorrhizal trait information and global occurrence data (∼ 100 million records) for 11,770 vascular plant species. Using a plant phylogenetic mega-tree and high-resolution climatic and edaphic data layers, we assess phylogenetic and environmental correlates of plant mycorrhizal traits. We find that plant mycorrhizal type is more phylogenetically conserved than plant mycorrhizal status, while environmental variables (both climatic and edaphic; notably soil texture) explain more variation in mycorrhizal status, especially FM. The previously underestimated role of environmental conditions has far-reaching implications for our understanding of ecosystem functioning under changing climatic and soil conditions.
Collapse
Affiliation(s)
- Yiming Meng
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - John T Clarke
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Ecology and Biogeography, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Maret Gerz
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - C Guillermo Bueno
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
- Pyrenean Institute of Ecology, IPE-CSIC, Jaca, Spain
| |
Collapse
|
7
|
Magnoli SM, Bever JD. Plant productivity response to inter- and intra-symbiont diversity: Mechanisms, manifestations and meta-analyses. Ecol Lett 2023; 26:1614-1628. [PMID: 37317651 DOI: 10.1111/ele.14274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/20/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
Symbiont diversity can have large effects on plant growth but the mechanisms generating this relationship remain opaque. We identify three potential mechanisms underlying symbiont diversity-plant productivity relationships: provisioning with complementary resources, differential impact of symbionts of varying quality and interference between symbionts. We connect these mechanisms to descriptive representations of plant responses to symbiont diversity, develop analytical tests differentiating these patterns and test them using meta-analysis. We find generally positive symbiont diversity-plant productivity relationships, with relationship strength varying with symbiont type. Inoculation with symbionts from different guilds (e.g. mycorrhizal fungi and rhizobia) yields strongly positive relationships, consistent with complementary benefits from functionally distinct symbionts. In contrast, inoculation with symbionts from the same guild yields weak relationships, with co-inoculation not consistently generating greater growth than the best individual symbiont, consistent with sampling effects. The statistical approaches we outline, along with our conceptual framework, can be used to further explore plant productivity and community responses to symbiont diversity, and we identify critical needs for additional research to explore context dependency in these relationships.
Collapse
Affiliation(s)
- Susan M Magnoli
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, Kansas, USA
| | - James D Bever
- Kansas Biological Survey and Center for Ecological Research and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
8
|
Groten K, Yon F, Baldwin IT. Arbuscular mycorrhizal fungi influence the intraspecific competitive ability of plants under field and glasshouse conditions. PLANTA 2023; 258:60. [PMID: 37535207 PMCID: PMC10400695 DOI: 10.1007/s00425-023-04214-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
MAIN CONCLUSION Nicotiana attenuata's capacity to interact with arbuscular mycorrhizal fungi influences its intraspecific competitive ability under field and glasshouse conditions, but not its overall community productivity. Arbuscular mycorrhizal (AM) fungi can alter the nutrient status and growth of plants, and they can also affect plant-plant, plant-herbivore, and plant-pathogen interactions. These AM effects are rarely studied in populations under natural conditions due to the limitation of non-mycorrhizal controls. Here we used a genetic approach, establishing field and glasshouse communities of AM-harboring Nicotiana attenuata empty vector (EV) plants and isogenic plants silenced in calcium- and calmodulin-dependent protein kinase expression (irCCaMK), and unable to establish AM symbioses. Performance and growth were quantified in communities of the same (monocultures) or different genotypes (mixed cultures) and both field and glasshouse experiments returned similar responses. In mixed cultures, AM-harboring EV plants attained greater stalk lengths, shoot and root biomasses, clearly out-competing the AM fungal-deficient irCCaMK plants, while in monocultures, both genotypes grew similarly. Competitive ability was also reflected in reproductive traits: EV plants in mixed cultures outperformed irCCaMK plants. When grown in monocultures, the two genotypes did not differ in reproductive performance, though total leaf N and P contents were significantly lower independent of the community type. Plant productivity in terms of growth and seed production at the community level did not differ, while leaf nutrient content of phosphorus and nitrogen depended on the community type. We infer that AM symbioses drastically increase N. attenuata's competitive ability in mixed communities resulting in increased fitness for the individuals harboring AM without a net gain for the community.
Collapse
Affiliation(s)
- Karin Groten
- Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany.
| | - Felipe Yon
- Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
- Instituto de Medicina Tropical, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ian T Baldwin
- Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| |
Collapse
|
9
|
Vivelo S, Alsairafi B, Walsh JT, Bhatnagar JM. Intrinsic growth rate and cellobiohydrolase activity underlie the phylogenetic signal to fungal decomposer succession. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2022.101180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Grünfeld L, Skias G, Rillig MC, Veresoglou SD. Arbuscular mycorrhizal root colonization depends on the spatial distribution of the host plants. MYCORRHIZA 2022; 32:387-395. [PMID: 35794357 PMCID: PMC9561028 DOI: 10.1007/s00572-022-01087-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Despite their ubiquity in terrestrial ecosystems, arbuscular mycorrhizal fungi (AMF) experience dispersion constraints and thus depend on the spatial distribution of the plant hosts. Our understanding of fungal-plant interactions with respect to their spatial distributions and implications for the functioning of the symbiosis remain limited. We here manipulated the location of habitat patches of Medicago lupulina in two experiments to explore the responses of AMF root colonization and extraradical hyphae. We tested the specific hypothesis that AMF-plant habitats high in connectance would stimulate root colonization and induce denser functional root colonization (colonization rate of arbuscules plus coils) because of higher propagule availability between nearby host plant patches (experiment 1). In experiment 2, we anticipated similar responses in mixed habitats of different soil fertility, namely phosphorus-fertilized or unfertilized soil, and anticipated a higher density of extraradical hyphae in the soil connecting the habitats with increased functional root colonization. In agreement with our hypothesis, we found the highest total and functional root colonization in unfragmented micro-landscapes, describing landscapes that occur within a spatial scale of a few centimeters with the AMF-plant habitats positioned adjacent to each other. In the second experiment, overdispersed micro-landscapes promoted functional root colonization. This study provides experimental evidence that the spatial distribution of habitats can determine AMF abundance at the microscale.
Collapse
Affiliation(s)
- Leonie Grünfeld
- Institut Für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany
| | - Georgios Skias
- Institut Für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
| | - Matthias C Rillig
- Institut Für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany
| | - Stavros D Veresoglou
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
11
|
Dadzie FA, Moles AT, Erickson TE, Slavich E, Muñoz‐Rojas M. Native bacteria and cyanobacteria can influence seedling emergence and growth of native plants used in dryland restoration. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Frederick A. Dadzie
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences UNSW Sydney Sydney New South Wales Australia
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences UNSW Sydney Sydney New South Wales Australia
| | - Angela T. Moles
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences UNSW Sydney Sydney New South Wales Australia
| | - Todd E. Erickson
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
- Kings Park Science, Department of Biodiversity, Conservation and Attractions Kings Park Western Australia Australia
| | - Eve Slavich
- School of Mathematics and Statistics UNSW Sydney Sydney New South Wales Australia
| | - Miriam Muñoz‐Rojas
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences UNSW Sydney Sydney New South Wales Australia
- Department of Plant Biology and Ecology University of Seville Seville Spain
| |
Collapse
|
12
|
Chaudhary VB, Holland EP, Charman-Anderson S, Guzman A, Bell-Dereske L, Cheeke TE, Corrales A, Duchicela J, Egan C, Gupta MM, Hannula SE, Hestrin R, Hoosein S, Kumar A, Mhretu G, Neuenkamp L, Soti P, Xie Y, Helgason T. What are mycorrhizal traits? Trends Ecol Evol 2022; 37:573-581. [PMID: 35504748 DOI: 10.1016/j.tree.2022.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 12/29/2022]
Abstract
Traits are inherent properties of organisms, but how are they defined for organismal networks such as mycorrhizal symbioses? Mycorrhizal symbioses are complex and diverse belowground symbioses between plants and fungi that have proved challenging to fit into a unified and coherent trait framework. We propose an inclusive mycorrhizal trait framework that classifies traits as morphological, physiological, and phenological features that have functional implications for the symbiosis. We further classify mycorrhizal traits by location - plant, fungus, or the symbiosis - which highlights new questions in trait-based mycorrhizal ecology designed to charge and challenge the scientific community. This new framework is an opportunity for researchers to interrogate their data to identify novel insights and gaps in our understanding of mycorrhizal symbioses.
Collapse
Affiliation(s)
- V Bala Chaudhary
- Department of Environmental Studies, Dartmouth College, Hanover, NH 03755, USA.
| | | | | | - Aidee Guzman
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lukas Bell-Dereske
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Tanya E Cheeke
- School of Biological Sciences, Washington State University, Richland, WA 99354, USA
| | - Adriana Corrales
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 110151, Colombia
| | - Jessica Duchicela
- Departamento de Ciencias de la Vida, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador
| | - Cameron Egan
- Department of Biology, Okanagan College, 1000 KLO Rd, Kelowna, BC, Canada V1Y 4X8
| | - Manju M Gupta
- Department of Biology, University of Delhi, Sri Aurobindo College, Delhi 110017, India
| | - S Emilia Hannula
- Institute of Environmental Sciences, Leiden University, Leiden 2333, The Netherlands
| | - Rachel Hestrin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Shabana Hoosein
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523, USA
| | - Amit Kumar
- Institute of Ecology, Faculty of Sustainability, Leuphana University of Lüneburg, 21335 Lüneburg, Germany
| | - Genet Mhretu
- Department of Biology, Mekelle University, Mekelle 231, Ethiopia
| | - Lena Neuenkamp
- University of Bern, Institute of Plant Sciences, Berne 3013, Switzerland; Department of Ecology and Multidisciplinary Institute for Environment Studies 'Ramon Margalef', University of Alicante, Alicante 03009, Spain
| | - Pushpa Soti
- Biology Department, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Yichun Xie
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077
| | | |
Collapse
|
13
|
Weemstra M, Kuyper TW, Sterck FJ, Umaña MN. Incorporating belowground traits: avenues towards a whole‐tree perspective on performance. OIKOS 2022. [DOI: 10.1111/oik.08827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Monique Weemstra
- Dept of Ecology and Evolutionary Biology, Univ. of Michigan Ann Arbor MI USA
| | - Thomas W. Kuyper
- Soil Biology Group, Wageningen Univ. and Research Centre Wageningen the Netherlands
| | - Frank J. Sterck
- Forest Ecology and Forest Management Group, Wageningen Univ. and Research Centre Wageningen the Netherlands
| | - María Natalia Umaña
- Dept of Ecology and Evolutionary Biology, Univ. of Michigan Ann Arbor MI USA
| |
Collapse
|
14
|
Adnan M, Islam W, Gang L, Chen HYH. Advanced research tools for fungal diversity and its impact on forest ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45044-45062. [PMID: 35460003 DOI: 10.1007/s11356-022-20317-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Fungi are dominant ecological participants in the forest ecosystems, which play a major role in recycling organic matter and channeling nutrients across trophic levels. Fungal populations are shaped by plant communities and environmental parameters, and in turn, fungal communities also impact the forest ecosystem through intrinsic participation of different fungal guilds. Mycorrhizal fungi result in conservation and stability of forest ecosystem, while pathogenic fungi can bring change in forest ecosystem, by replacing the dominant plant species with new or exotic plant species. Saprotrophic fungi, being ecological regulators in the forest ecosystem, convert dead tree logs into reusable constituents and complete the ecological cycles of nitrogen and carbon. However, fungal communities have not been studied in-depth with respect to functional, spatiotemporal, or environmental parameters. Previously, fungal diversity and its role in shaping the forest ecosystem were studied by traditional and laborious cultural methods, which were unable to achieve real-time results and draw a conclusive picture of fungal communities. This review highlights the latest advances in biological methods such as next-generation sequencing and meta'omics for observing fungal diversity in the forest ecosystem, the role of different fungal groups in shaping forest ecosystem, forest productivity, and nutrient cycling at global scales.
Collapse
Affiliation(s)
- Muhammad Adnan
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liu Gang
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Han Y H Chen
- Faculty of Forestry and the Forest Environment, Lakehead University, 955 Oliver Rd, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
15
|
A quantitative synthesis of soil microbial effects on plant species coexistence. Proc Natl Acad Sci U S A 2022; 119:e2122088119. [PMID: 35605114 DOI: 10.1073/pnas.2122088119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SignificanceUnderstanding the processes that maintain plant diversity is a key goal in ecology. Many previous studies have shown that soil microbes can generate stabilizing or destabilizing feedback loops that drive either plant species coexistence or monodominance. However, theory shows that microbial controls over plant coexistence also arise through microbially mediated competitive imbalances, which have been largely neglected. Using data from 50 studies, we found that soil microbes affect plant dynamics primarily by generating competitive fitness differences rather than stabilizing or destabilizing feedbacks. Consequently, in the absence of other competitive asymmetries among plants, soil microbes are predicted to drive species exclusion more than coexistence. These results underscore the need for measuring competitive fitness differences when evaluating microbial controls over plant coexistence.
Collapse
|
16
|
Bennett AE, Groten K. The Costs and Benefits of Plant-Arbuscular Mycorrhizal Fungal Interactions. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:649-672. [PMID: 35216519 DOI: 10.1146/annurev-arplant-102820-124504] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The symbiotic interaction between plants and arbuscular mycorrhizal (AM) fungi is often perceived as beneficial for both partners, though a large ecological literature highlights the context dependency of this interaction. Changes in abiotic variables, such as nutrient availability, can drive the interaction along the mutualism-parasitism continuum with variable outcomes for plant growth and fitness. However, AM fungi can benefit plants in more ways than improved phosphorus nutrition and plant growth. For example, AM fungi can promote abiotic and biotic stress tolerance even when considered parasitic from a nutrient provision perspective. Other than being obligate biotrophs, very little is known about the benefits AM fungi gain from plants. In this review, we utilize both molecular biology and ecological approaches to expand our understanding of the plant-AM fungal interaction across disciplines.
Collapse
Affiliation(s)
- Alison E Bennett
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio, USA;
| | - Karin Groten
- Max Planck Institute for Chemical Ecology, Jena, Germany;
| |
Collapse
|
17
|
Wang G, Koziol L, Foster BL, Bever JD. Microbial mediators of plant community response to long-term N and P fertilization: Evidence of a role of plant responsiveness to mycorrhizal fungi. GLOBAL CHANGE BIOLOGY 2022; 28:2721-2735. [PMID: 35048483 DOI: 10.1111/gcb.16091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/26/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Climate changes and anthropogenic nutrient enrichment widely threaten plant diversity and ecosystem functions. Understanding the mechanisms governing plant species turnover across nutrient gradients is crucial to developing successful management and restoration strategies. We tested whether and how soil microbes, particularly arbuscular mycorrhizal fungi (AMF), could mediate plant community response to a 15 years long-term N (0, 4, 8, and 16 g N m-2 year-1 ) and P (0 and 8 g N m-2 year-1 ) enrichment in a grassland system. We found N and P enrichment resulted in plant community diversity decrease and composition change, in which perennial C4 graminoids were dramatically reduced while annuals and perennial forbs increased. Metabarcoding analysis of soil fungal community showed that N and P changed fungal diversity and composition, of which only a cluster of AMF identified by the co-occurrence networks analysis was highly sensitive to P treatments and was negatively correlated with shifts in percentage cover of perennial C4 graminoids. Moreover, by estimating the mycorrhizal responsiveness (MR) of 41 plant species in the field experiment from 264 independent tests, we found that the community weighted mean MR of the plant community was substantially reduced with nutrient enrichment and was positively correlated with C4 graminoids percentage cover. Both analyses of covariance and structural equation modeling indicated that the shift in MR rather than AMF composition change was the primary predictor of the decline in perennial C4 graminoids, suggesting that the energy cost invested by C4 plants on those sensitive AMF might drive the inferior competitive abilities compared with other groups. Our results suggest that shifts in the competitive ability of mycorrhizal responsive plants can drive plant community change to anthropogenic eutrophication, suggesting a functional benefit of mycorrhizal mutualism in ecological restoration following climatic or anthropogenic degradation of soil communities.
Collapse
Affiliation(s)
- Guangzhou Wang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, People's Republic of China
- Kansas Biological Survey, University of Kansas, Lawrence, Kansas, USA
| | - Liz Koziol
- Kansas Biological Survey, University of Kansas, Lawrence, Kansas, USA
| | - Bryan L Foster
- Kansas Biological Survey, University of Kansas, Lawrence, Kansas, USA
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - James D Bever
- Kansas Biological Survey, University of Kansas, Lawrence, Kansas, USA
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
18
|
Tree functional traits, forest biomass, and tree species diversity interact with site properties to drive forest soil carbon. Nat Commun 2022; 13:1097. [PMID: 35233020 PMCID: PMC8888738 DOI: 10.1038/s41467-022-28748-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 02/02/2022] [Indexed: 01/04/2023] Open
Abstract
Forests constitute important ecosystems in the global carbon cycle. However, how trees and environmental conditions interact to determine the amount of organic carbon stored in forest soils is a hotly debated subject. In particular, how tree species influence soil organic carbon (SOC) remains unclear. Based on a global compilation of data, we show that functional traits of trees and forest standing biomass explain half of the local variability in forest SOC. The effects of functional traits on SOC depended on the climatic and soil conditions with the strongest effect observed under boreal climate and on acidic, poor, coarse-textured soils. Mixing tree species in forests also favours the storage of SOC, provided that a biomass over-yielding occurs in mixed forests. We propose that the forest carbon sink can be optimised by (i) increasing standing biomass, (ii) increasing forest species richness, and (iii) choosing forest composition based on tree functional traits according to the local conditions. Forests constitute important ecosystems in the global carbon cycle. This study investigates how tree species influence soil organic carbon using a global dataset, showing the importance of tree functional traits and forest standing biomass to optimise forest carbon sink.
Collapse
|
19
|
Hulsmans E, Peeters G, Honnay O. Soil Microbiomes in Apple Orchards Are Influenced by the Type of Agricultural Management but Never Match the Complexity and Connectivity of a Semi-natural Benchmark. Front Microbiol 2022; 13:830668. [PMID: 35250946 PMCID: PMC8888915 DOI: 10.3389/fmicb.2022.830668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 11/22/2022] Open
Abstract
Conversion of natural ecosystems into agricultural land may strongly affect the soil microbiome and the functioning of the soil ecosystem. Alternative farming systems, such as organic farming, have therefore been advocated to reduce this impact, yet the outcomes of different agricultural management regimes often remain ambiguous and their evaluations mostly lack a proper more natural benchmark. We used high-throughput amplicon sequencing, linear models, redundancy analyses, and co-occurrence network analyses to investigate the effect of organic and integrated pest management (IPM) on soil fungal and bacterial communities in both the crop and drive rows of apple orchards in Belgium, and we included semi-natural grasslands as a benchmark. Fungi were strongly influenced by agricultural management, with lower diversity indices and distinct communities in IPM compared to organic orchards, whereas IPM orchards had a higher AMF abundance and the most complex and connected fungal communities. Bacterial diversity indices, community composition, and functional groups were less affected by management, with only a higher network connectivity and abundance of keystone taxa in organic drive rows. On the other hand, none of the agricultural soil microbiomes matched the complexity and connectedness of our semi-natural benchmark, demonstrating that even more nature-friendly agricultural management practices strongly affect the soil microbiome and highlighting the essential role of (semi-)natural systems as a harbor of robust and functionally diverse fungal and bacterial communities.
Collapse
Affiliation(s)
- Eva Hulsmans
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
20
|
Marín C, Godoy R, Rubio J. Gaps in South American Mycorrhizal Biodiversity and Ecosystem Function Research. Fungal Biol 2022. [DOI: 10.1007/978-3-031-12994-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Van Nuland ME, Ware IM, Schadt CW, Yang Z, Bailey JK, Schweitzer JA. Natural soil microbiome variation affects spring foliar phenology with consequences for plant productivity and climate-driven range shifts. THE NEW PHYTOLOGIST 2021; 232:762-775. [PMID: 34227117 DOI: 10.1111/nph.17599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Identifying the potential for natural soil microbial communities to predictably affect complex plant traits is an important frontier in climate change research. Plant phenology varies with environmental and genetic factors, but few studies have examined whether the soil microbiome interacts with plant population differentiation to affect phenology and ecosystem function. We compared soil microbial variation in a widespread tree species (Populus angustifolia) with different soil inoculum treatments in a common garden environment to test how the soil microbiome affects spring foliar phenology and subsequent biomass growth. We hypothesized and show that soil bacterial and fungal communities vary with tree conditioning from different populations and elevations, that this soil community variation influences patterns of foliar phenology and plant growth across populations and elevation gradients, and that transferring lower elevation plant genotypes to higher elevation soil communities delayed foliar phenology, thereby shortening the growing season and reducing annual biomass production. Our findings show the importance of plant-soil interactions that help shape the timing of tree foliar phenology and productivity. These geographic patterns in plant population × microbiome interactions also broaden our understanding of how soil communities impact plant phenotypic variation across key climate change gradients, with consequences for ecosystem functioning.
Collapse
Affiliation(s)
| | - Ian M Ware
- Institute of Pacific Islands Forestry, USDA Forest Service, Pacific Southwest Research Station, Hilo, HI, 96720, USA
| | - Chris W Schadt
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zamin Yang
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Joseph K Bailey
- Ecology and Evolutionary Biology Department, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jennifer A Schweitzer
- Ecology and Evolutionary Biology Department, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
22
|
Delavaux CS, Weigelt P, Dawson W, Essl F, van Kleunen M, König C, Pergl J, Pyšek P, Stein A, Winter M, Taylor A, Schultz PA, Whittaker RJ, Kreft H, Bever JD. Mycorrhizal types influence island biogeography of plants. Commun Biol 2021; 4:1128. [PMID: 34561537 PMCID: PMC8463580 DOI: 10.1038/s42003-021-02649-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/07/2021] [Indexed: 11/09/2022] Open
Abstract
Plant colonization of islands may be limited by the availability of symbionts, particularly arbuscular mycorrhizal (AM) fungi, which have limited dispersal ability compared to ectomycorrhizal and ericoid (EEM) as well as orchid mycorrhizal (ORC) fungi. We tested for such differential island colonization within contemporary angiosperm floras worldwide. We found evidence that AM plants experience a stronger mycorrhizal filter than other mycorrhizal or non-mycorrhizal (NM) plant species, with decreased proportions of native AM plant species on islands relative to mainlands. This effect intensified with island isolation, particularly for non-endemic plant species. The proportion of endemic AM plant species increased with island isolation, consistent with diversification filling niches left open by the mycorrhizal filter. We further found evidence of humans overcoming the initial mycorrhizal filter. Naturalized floras showed higher proportions of AM plant species than native floras, a pattern that increased with increasing isolation and land-use intensity. This work provides evidence that mycorrhizal fungal symbionts shape plant colonization of islands and subsequent diversification.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jan Pergl
- Czech Academy of Sciences, Průhonice, Czech Republic
| | - Petr Pyšek
- Czech Academy of Sciences, Průhonice, Czech Republic
| | - Anke Stein
- University of Konstanz, Konstanz, Germany
| | - Marten Winter
- German Centre for Integrative Biodiversity Research, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Iversen CM, McCormack ML. Filling gaps in our understanding of belowground plant traits across the world: an introduction to a Virtual Issue. THE NEW PHYTOLOGIST 2021; 231:2097-2103. [PMID: 34405907 DOI: 10.1111/nph.17326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Colleen M Iversen
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37830-6301, USA
| | - M Luke McCormack
- Center for Tree Science, The Morton Arboretum, Liesle, IL, 60515, USA
| |
Collapse
|
24
|
Germain SJ, Lutz JA. Shared friends counterbalance shared enemies in old forests. Ecology 2021; 102:e03495. [PMID: 34309021 DOI: 10.1002/ecy.3495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 11/09/2022]
Abstract
Mycorrhizal mutualisms are nearly ubiquitous across plant communities. Yet, it is still unknown whether facilitation among plants arises primarily from these mycorrhizal networks or from physical and ecological attributes of plants themselves. Here, we tested the relative contributions of mycorrhizae and plants to both positive and negative biotic interactions to determine whether plant-soil feedbacks with mycorrhizae neutralize competition and enemies within multitrophic forest community networks. We used Bayesian hierarchical generalized linear modeling to examine mycorrhizal-guild-specific and mortality-cause-specific woody plant survival compiled from a spatially and temporally explicit data set comprising 101,096 woody plants from three mixed-conifer forests across western North America. We found positive plant-soil feedbacks for large-diameter trees: species-rich woody plant communities indirectly promoted large tree survival when connected via mycorrhizal networks. Shared mycorrhizae primarily counterbalanced apparent competition mediated by tree enemies (e.g., bark beetles, soil pathogens) rather than diffuse competition between plants. We did not find the same survival benefits for small trees or shrubs. Our findings suggest that lower large-diameter tree mortality susceptibility in species-rich temperate forests resulted from greater access to shared mycorrhizal networks. The interrelated importance of aboveground and belowground biodiversity to large tree survival may be critical for counteracting increasing pathogen, bark beetle, and density threats.
Collapse
Affiliation(s)
- Sara J Germain
- Department of Wildland Resources, Utah State University, Logan, Utah, 84322-5230, USA
| | - James A Lutz
- Department of Wildland Resources, Utah State University, Logan, Utah, 84322-5230, USA
| |
Collapse
|
25
|
Cinar O, Umbanhowar J, Hoeksema JD, Viechtbauer W. Using information-theoretic approaches for model selection in meta-analysis. Res Synth Methods 2021; 12:537-556. [PMID: 33932323 PMCID: PMC8359854 DOI: 10.1002/jrsm.1489] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/18/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022]
Abstract
Meta‐regression can be used to examine the association between effect size estimates and the characteristics of the studies included in a meta‐analysis using regression‐type methods. By searching for those characteristics (i.e., moderators) that are related to the effect sizes, we seek to identify a model that represents the best approximation to the underlying data generating mechanism. Model selection via testing, either through a series of univariate models or a model including all moderators, is the most commonly used approach for this purpose. Here, we describe alternative model selection methods based on information criteria, multimodel inference, and relative variable importance. We demonstrate their application using an illustrative example and present results from a simulation study to compare the performance of the various model selection methods for identifying the true model across a wide variety of conditions. Whether information‐theoretic approaches can also be used not only in combination with maximum likelihood (ML) but also restricted maximum likelihood (REML) estimation was also examined. The results indicate that the conventional methods for model selection may be outperformed by information‐theoretic approaches. The latter are more often among the set of best methods across all of the conditions simulated and can have higher probabilities for identifying the true model under particular scenarios. Moreover, their performance based on REML estimation was either very similar to that from ML estimation or at times even better depending on how exactly the REML likelihood was computed. These results suggest that alternative model selection methods should be more widely applied in meta‐regression.
Collapse
Affiliation(s)
- Ozan Cinar
- Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtThe Netherlands
| | - James Umbanhowar
- Department of BiologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Jason D. Hoeksema
- Department of BiologyUniversity of Mississippi, UniversityMississippiUSA
| | - Wolfgang Viechtbauer
- Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
26
|
Pirttilä AM, Mohammad Parast Tabas H, Baruah N, Koskimäki JJ. Biofertilizers and Biocontrol Agents for Agriculture: How to Identify and Develop New Potent Microbial Strains and Traits. Microorganisms 2021; 9:817. [PMID: 33924411 PMCID: PMC8069042 DOI: 10.3390/microorganisms9040817] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/02/2022] Open
Abstract
Microbiological tools, biofertilizers, and biocontrol agents, which are bacteria and fungi capable of providing beneficial outcomes in crop plant growth and health, have been developed for several decades. Currently we have a selection of strains available as products for agriculture, predominantly based on plant-growth-promoting rhizobacteria (PGPR), soil, epiphytic, and mycorrhizal fungi, each having specific challenges in their production and use, with the main one being inconsistency of field performance. With the growing global concern about pollution, greenhouse gas accumulation, and increased need for plant-based foods, the demand for biofertilizers and biocontrol agents is expected to grow. What are the prospects of finding solutions to the challenges on existing tools? The inconsistent field performance could be overcome by using combinations of several different types of microbial strains, consisting various members of the full plant microbiome. However, a thorough understanding of each microbiological tool, microbial communities, and their mechanisms of action must precede the product development. In this review, we offer a brief overview of the available tools and consider various techniques and approaches that can produce information on new beneficial traits in biofertilizer and biocontrol strains. We also discuss innovative ideas on how and where to identify efficient new members for the biofertilizer and biocontrol strain family.
Collapse
Affiliation(s)
- Anna Maria Pirttilä
- Ecology and Genetics, University of Oulu, FIN-90014 Oulu, Finland; (H.M.P.T.); (N.B.); (J.J.K.)
| | | | | | | |
Collapse
|
27
|
Westoby M, Falster DS, Schrader J. Motivating data contributions via a distinct career currency. Proc Biol Sci 2021; 288:20202830. [PMID: 33653143 PMCID: PMC7935020 DOI: 10.1098/rspb.2020.2830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/02/2021] [Indexed: 01/18/2023] Open
Abstract
If collecting research data is perceived as poorly rewarded compared to data synthesis and analysis, this can slow overall research progress via two effects. People who have already collected data may be slow to make it openly accessible. Also, researchers may reallocate effort from collecting fresh data to synthesizing and analysing data already accessible. Here, we advocate for a second career currency in the form of data contributions statements embedded within applications for jobs, promotions and research grants. This workable step forward would provide for peer opinion to operate across thousands of selection and promotion committees and granting panels. In this way, fair valuation of data contributions relative to publications could emerge.
Collapse
Affiliation(s)
- Mark Westoby
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Daniel S. Falster
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 1466, Australia
| | - Julian Schrader
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Department of Biodiversity, Macroecology and Biogeography, University of Goettingen, Goettingen, Germany
| |
Collapse
|
28
|
Srivastava S, Johny L, Adholeya A. Review of patents for agricultural use of arbuscular mycorrhizal fungi. MYCORRHIZA 2021; 31:127-136. [PMID: 33507367 DOI: 10.1007/s00572-021-01020-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Mycorrhizal biotechnology has emerged as a major component of sustainable agriculture and allied activities. Innovations related to its role in agriculture, land reclamation, forestry, and landscaping are well recognized. This review presents the evolution of innovations worldwide related to arbuscular mycorrhizal fungi (AMF) in the past two decades, from 2000 to April 2020, and maintains that such innovations must continue in the future. An analysis of 696 patents showed that AMF have been used consistently as a biofertilizer and bioremediator over that period, although an upsurge was noted in propagation technologies, next-generation production methods, and formulation technologies. This review will familiarize mycorrhizologists with novel and evolving trends and will convince them of the importance of applying for patents to safeguard their innovations and the use of those innovations by industry.
Collapse
Affiliation(s)
- Shivani Srivastava
- TERI Deakin Nanobiotechnology Centre, Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), TERI Gram, Gwal Pahari, 122001, Gurugram, India
| | - Leena Johny
- TERI Deakin Nanobiotechnology Centre, Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), TERI Gram, Gwal Pahari, 122001, Gurugram, India
| | - Alok Adholeya
- TERI Deakin Nanobiotechnology Centre, Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), TERI Gram, Gwal Pahari, 122001, Gurugram, India.
| |
Collapse
|
29
|
Arbuscular Mycorrhizal Fungal Communities in the Soils of Desert Habitats. Microorganisms 2021; 9:microorganisms9020229. [PMID: 33499315 PMCID: PMC7912695 DOI: 10.3390/microorganisms9020229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/25/2022] Open
Abstract
Deserts cover a significant proportion of the Earth’s surface and continue to expand as a consequence of climate change. Mutualistic arbuscular mycorrhizal (AM) fungi are functionally important plant root symbionts, and may be particularly important in drought stressed systems such as deserts. Here we provide a first molecular characterization of the AM fungi occurring in several desert ecosystems worldwide. We sequenced AM fungal DNA from soil samples collected from deserts in six different regions of the globe using the primer pair WANDA-AML2 with Illumina MiSeq. We recorded altogether 50 AM fungal phylotypes. Glomeraceae was the most common family, while Claroideoglomeraceae, Diversisporaceae and Acaulosporaceae were represented with lower frequency and abundance. The most diverse site, with 35 virtual taxa (VT), was in the Israeli Negev desert. Sites representing harsh conditions yielded relatively few reads and low richness estimates, for example, a Saudi Arabian desert site where only three Diversispora VT were recorded. The AM fungal taxa recorded in the desert soils are mostly geographically and ecologically widespread. However, in four sites out of six, communities comprised more desert-affiliated taxa (according to the MaarjAM database) than expected at random. AM fungal VT present in samples were phylogenetically clustered compared with the global taxon pool, suggesting that nonrandom assembly processes, notably habitat filtering, may have shaped desert fungal assemblages.
Collapse
|
30
|
Veresoglou SD, Yang G, Mola M, Manntschke A, Mating M, Forstreuter M, Rillig MC. Excluding arbuscular mycorrhiza lowers variability in soil respiration but slows down recovery from perturbations. Ecosphere 2020. [DOI: 10.1002/ecs2.3308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
| | - Gaowen Yang
- Institut für Biologie Freie Universität Berlin Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) BerlinD‐14195Germany
| | - Magkdi Mola
- Institut für Biologie Freie Universität Berlin Berlin Germany
| | | | - Moritz Mating
- Institut für Biologie Freie Universität Berlin Berlin Germany
| | | | - Matthias C. Rillig
- Institut für Biologie Freie Universität Berlin Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) BerlinD‐14195Germany
| |
Collapse
|
31
|
|
32
|
Song F, Bai F, Wang J, Wu L, Jiang Y, Pan Z. Influence of Citrus Scion/Rootstock Genotypes on Arbuscular Mycorrhizal Community Composition under Controlled Environment Condition. PLANTS 2020; 9:plants9070901. [PMID: 32708770 PMCID: PMC7412222 DOI: 10.3390/plants9070901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023]
Abstract
Citrus is vegetatively propagated by grafting for commercial production, and most rootstock cultivars of citrus have scarce root hairs, thus heavily relying on mutualistic symbiosis with arbuscular mycorrhizal fungi (AMF) for mineral nutrient uptake. However, the AMF community composition, and its differences under different citrus scion/rootstock genotypes, were largely unknown. In this study, we investigated the citrus root-associated AMF diversity and richness, and assessed the influence of citrus scion/rootstock genotypes on the AMF community composition in a controlled condition, in order to exclude interferences from environmental factors and agricultural practices. As a result, a total of 613,408 Glomeromycota tags were detected in the citrus roots, and 46 AMF species were annotated against the MAARJAM database. Of these, 39 species belonged to Glomus, indicating a dominant role of the Glomus AMF in the symbiosis with citrus. PCoA analysis indicated that the AMF community’s composition was significantly impacted by both citrus scion and rootstock genotypes, but total samples were clustered according to rootstock genotype rather than scion genotype. In addition, AMF α diversity was significantly affected merely by rootstock genotype. Thus, rootstock genotype might exert a greater impact on the AMF community than scion genotype. Taken together, this study provides a comprehensive insight into the AMF community in juvenile citrus plants, and reveals the important effects of citrus genotype on AMF community composition.
Collapse
Affiliation(s)
- Fang Song
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fuxi Bai
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Juanjuan Wang
- Institute National Agro-Technical Extension and Service Center (NATESC), Ministry of Agriculture, Beijing 100000, China
| | - Liming Wu
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yingchun Jiang
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhiyong Pan
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
33
|
Blaus A, Reitalu T, Gerhold P, Hiiesalu I, Massante JC, Veski S. Modern Pollen–Plant Diversity Relationships Inform Palaeoecological Reconstructions of Functional and Phylogenetic Diversity in Calcareous Fens. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Almeida BK, Garg M, Kubat M, Afkhami ME. Not that kind of tree: Assessing the potential for decision tree-based plant identification using trait databases. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11379. [PMID: 32765978 PMCID: PMC7394705 DOI: 10.1002/aps3.11379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/12/2020] [Indexed: 05/28/2023]
Abstract
PREMISE Advancements in machine learning and the rise of accessible "big data" provide an important opportunity to improve trait-based plant identification. Here, we applied decision-tree induction to a subset of data from the TRY plant trait database to (1) assess the potential of decision trees for plant identification and (2) determine informative traits for distinguishing taxa. METHODS Decision trees were induced using 16 vegetative and floral traits (689 species, 20 genera). We assessed how well the algorithm classified species from test data and pinpointed those traits that were important for identification across diverse taxa. RESULTS The unpruned tree correctly placed 98% of the species in our data set into genera, indicating its promise for distinguishing among the species used to construct them. Furthermore, in the pruned tree, an average of 89% of the species from the test data sets were properly classified into their genera, demonstrating the flexibility of decision trees to also classify new species into genera within the tree. Closer inspection revealed that seven of the 16 traits were sufficient for the classification, and these traits yielded approximately two times more initial information gain than those not included. DISCUSSION Our findings demonstrate the potential for tree-based machine learning and big data in distinguishing among taxa and determining which traits are important for plant identification.
Collapse
Affiliation(s)
- Brianna K. Almeida
- Department of BiologyUniversity of Miami1301 Memorial DriveCoral GablesFlorida33143USA
| | - Manish Garg
- Department of Electrical and Computer EngineeringUniversity of Miami1251 Memorial DriveCoral GablesFlorida33143USA
| | - Miroslav Kubat
- Department of Electrical and Computer EngineeringUniversity of Miami1251 Memorial DriveCoral GablesFlorida33143USA
| | - Michelle E. Afkhami
- Department of BiologyUniversity of Miami1301 Memorial DriveCoral GablesFlorida33143USA
| |
Collapse
|
35
|
Perez-Lamarque B, Selosse MA, Öpik M, Morlon H, Martos F. Cheating in arbuscular mycorrhizal mutualism: a network and phylogenetic analysis of mycoheterotrophy. THE NEW PHYTOLOGIST 2020; 226:1822-1835. [PMID: 32022272 DOI: 10.1111/nph.16474] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/20/2020] [Indexed: 05/27/2023]
Abstract
Although mutualistic interactions are widespread and essential in ecosystem functioning, the emergence of uncooperative cheaters threatens their stability, unless there are some physiological or ecological mechanisms limiting interactions with cheaters. In this framework, we investigated the patterns of specialization and phylogenetic distribution of mycoheterotrophic cheaters vs noncheating autotrophic plants and their respective fungi, in a global arbuscular mycorrhizal network with> 25 000 interactions. We show that mycoheterotrophy evolved repeatedly among vascular plants, suggesting low phylogenetic constraints for plants. However, mycoheterotrophic plants are significantly more specialized than autotrophic plants, and they tend to be associated with specialized and closely related fungi. These results raise new hypotheses about the mechanisms (e.g. sanctions, or habitat filtering) that actually limit the interaction of mycoheterotrophic plants and their associated fungi with the rest of the autotrophic plants. Beyond mycorrhizal symbiosis, this unprecedented comparison of mycoheterotrophic vs autotrophic plants provides a network and phylogenetic framework to assess the presence of constraints upon cheating emergences in mutualisms.
Collapse
Affiliation(s)
- Benoît Perez-Lamarque
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP39, 57 rue Cuvier, 75 005, Paris, France
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, 75 005, Paris, France
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP39, 57 rue Cuvier, 75 005, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Maarja Öpik
- University of Tartu, 40 Lai Street, 51 005, Tartu, Estonia
| | - Hélène Morlon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, 75 005, Paris, France
| | - Florent Martos
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP39, 57 rue Cuvier, 75 005, Paris, France
| |
Collapse
|
36
|
Teste FP, Jones MD, Dickie IA. Dual-mycorrhizal plants: their ecology and relevance. THE NEW PHYTOLOGIST 2020; 225:1835-1851. [PMID: 31514244 DOI: 10.1111/nph.16190] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Dual-mycorrhizal plants are capable of associating with fungi that form characteristic arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) structures. Here, we address the following questions: (1) How many dual-mycorrhizal plant species are there? (2) What are the advantages for a plant to host two, rather than one, mycorrhizal types? (3) Which factors can provoke shifts in mycorrhizal dominance (i.e. mycorrhizal switching)? We identify a large number (89 genera within 32 families) of confirmed dual-mycorrhizal plants based on observing arbuscules or coils for AM status and Hartig net or similar structures for EM status within the same plant species. We then review the possible nutritional benefits and discuss the possible mechanisms leading to net costs and benefits. Cost and benefits of dual-mycorrhizal status appear to be context dependent, particularly with respect to the life stage of the host plant. Mycorrhizal switching occurs under a wide range of abiotic and biotic factors, including soil moisture and nutrient status. The relevance of dual-mycorrhizal plants in the ecological restoration of adverse sites where plants are not carbon limited is discussed. We conclude that dual-mycorrhizal plants are underutilized in ecophysiological-based experiments, yet are powerful model plant-fungal systems to better understand mycorrhizal symbioses without confounding host effects.
Collapse
Affiliation(s)
- François P Teste
- Grupo de Estudios Ambientales, IMASL-CONICET & Universidad Nacional de San Luis, Av. Ejercito de los Andes 950 (5700), San Luis, Argentina
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley (Perth), WA, 6009, Australia
| | - Melanie D Jones
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Ian A Dickie
- Bio-Protection Research Centre, School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| |
Collapse
|
37
|
Moyano J, Rodriguez-Cabal MA, Nuñez MA. Highly invasive tree species are more dependent on mutualisms. Ecology 2020; 101:e02997. [PMID: 32002992 DOI: 10.1002/ecy.2997] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 11/10/2022]
Abstract
Why some species become invasive while others do not remains an elusive question. It has been proposed that invasive species should depend less on mutualisms, because their spread would then be less constrained by the availability of mutualistic partners. We tested this idea with the genus Pinus, whose degree of invasiveness is known at the species level (being highly and negatively correlated with seed size), and which forms obligate mutualistic associations with ectomycorrhizal fungi (EMF). Mycorrhizal dependence is defined as the degree to which a plant needs the mycorrhizal fungi to show the maximum growth. In this regard, we use plant growth response to mycorrhizal fungi as a proxy for mycorrhizal dependence. We assessed the responsiveness of Pinus species to EMF using 1,206 contrasts published on 34 species, and matched these data with data on Pinus species invasiveness. Surprisingly, we found that species that are more invasive depend more on mutualisms (EMF). Seedling growth of species with smaller seeds benefited more from mutualisms, indicating a higher dependence. A higher reliance on EMF could be part of a strategy in which small-seeded species produce more seeds that can disperse further, and these species are likely to establish only if facilitated by mycorrhizal fungi. On the contrary, big-seeded species showed a lower dependence on EMF, which may be explained by their tolerance to stressful conditions during establishment. However, the limited dispersal of larger seeds may limit the spread of these species. We present strong evidence against a venerable belief in ecology that species that rely more on mutualisms are less prone to invade, and suggest that in certain circumstances greater reliance on mutualists can increase spread capacity.
Collapse
Affiliation(s)
- Jaime Moyano
- Grupo de Ecología de Invasiones, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, CP 8400, Argentina
| | - Mariano A Rodriguez-Cabal
- Grupo de Ecología de Invasiones, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, CP 8400, Argentina.,Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, 05405, USA
| | - Martin A Nuñez
- Grupo de Ecología de Invasiones, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, CP 8400, Argentina
| |
Collapse
|
38
|
Chaudhary VB, Akland K, Johnson NC, Bowker MA. Do soil inoculants accelerate dryland restoration? A simultaneous assessment of biocrusts and mycorrhizal fungi. Restor Ecol 2020. [DOI: 10.1111/rec.13088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- V. Bala Chaudhary
- Department of Environmental Science and Studies DePaul University 1110 West Belden Avenue Chicago IL 60614 U.S.A
| | - Kristine Akland
- Department of Biological Sciences Northern Arizona University 617 S. Beaver Flagstaff AZ 86011 U.S.A
| | - Nancy C. Johnson
- Department of Biological Sciences Northern Arizona University 617 S. Beaver Flagstaff AZ 86011 U.S.A
- School of Earth and Sustainability Northern Arizona University 625 S. Knoles Drive Flagstaff AZ 86011 U.S.A
| | - Matthew A. Bowker
- School of Forestry Northern Arizona University 200 E. Pine Knoll Drive, Box 15018 Flagstaff AZ 86011 U.S.A
| |
Collapse
|
39
|
Bueno CG, Aldrich-Wolfe L, Chaudhary VB, Gerz M, Helgason T, Hoeksema JD, Klironomos J, Lekberg Y, Leon D, Maherali H, Öpik M, Zobel M, Moora M. Misdiagnosis and uncritical use of plant mycorrhizal data are not the only elephants in the room. THE NEW PHYTOLOGIST 2019; 224:1415-1418. [PMID: 31246312 DOI: 10.1111/nph.15976] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Affiliation(s)
- C Guillermo Bueno
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Laura Aldrich-Wolfe
- Department of Biological Sciences, North Dakota State University, PO Box 6050, Fargo, ND, 58108, USA
| | - V Bala Chaudhary
- Department of Environmental Science and Studies, DePaul University, 1110 West Belden Ave, Chicago, IL, 60614-2245, USA
| | - Maret Gerz
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Thorunn Helgason
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Jason D Hoeksema
- Department of Biology, University of Mississippi, PO Box 1848, University, MS, 38677, USA
| | - John Klironomos
- Department of Biology, University of British Columbia-Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Ylva Lekberg
- MPG Ranch, 1001 S. Higgins Ave, Missoula, MT, 59801, USA
- Department of Ecosystem Conservation Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Daniela Leon
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Hafiz Maherali
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Maarja Öpik
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Martin Zobel
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Mari Moora
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| |
Collapse
|
40
|
Cheeke TE, Zheng C, Koziol L, Gurholt CR, Bever JD. Sensitivity to AMF species is greater in late-successional than early-successional native or nonnative grassland plants. Ecology 2019; 100:e02855. [PMID: 31359432 PMCID: PMC6916349 DOI: 10.1002/ecy.2855] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/27/2019] [Accepted: 07/11/2019] [Indexed: 11/23/2022]
Abstract
Sensitivity of plant species to individual arbuscular mycorrhizal (AM) fungal species is of primary importance to understanding the role of AM fungal diversity and composition in plant ecology. Currently, we do not have a predictive framework for understanding which plant species are sensitive to different AM fungal species. In two greenhouse studies, we tested for differences in plant sensitivity to different AM fungal species and mycorrhizal responsiveness across 17 grassland plant species of North America that varied in successional stage, native status, and plant family by growing plants with different AM fungal treatments including eight single AM fungal isolates, diverse mixtures of AM fungi, and non-inoculated controls. We found that late successional grassland plant species were highly responsive to AM fungi and exhibited stronger sensitivity in their response to individual AM fungal taxa compared to nonnative or early successional native grassland plant species. We confirmed these results using a meta-analysis that included 13 experiments, 37 plant species, and 40 fungal isolates (from nine publications and two greenhouse experiments presented herein). Mycorrhizal responsiveness and sensitivity of response (i.e., variation in plant biomass response to different AM fungal taxa) did not differ by the source of fungal inocula (i.e., local or not local) or plant family. Sensitivity of plant response to AM fungal species was consistently correlated with the average mycorrhizal response of that plant species. This study identifies that AM fungal identity is more important to the growth of late successional plant species than early successional or nonnative plant species, thereby predicting that AM fungal composition will be more important to plant community dynamics in late successional communities than in early successional or invaded plant communities.
Collapse
Affiliation(s)
- Tanya E. Cheeke
- School of Biological SciencesWashington State University2710 Crimson WayRichlandWashington99354USA
| | - Chaoyuan Zheng
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityNo. 15 Shangxiadian RoadFuzhou350002China
| | - Liz Koziol
- Kansas Biological Station2101 Constant AvenueLawrenceKansas66044USA
| | - Carli R. Gurholt
- Wisconsin School of Professional Psychology9120 W. Hampton AvenueMilwaukeeWisconsin53225USA
| | - James D. Bever
- Kansas Biological Station and Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansas66047USA
| |
Collapse
|
41
|
Pyšek P, Guo W, Štajerová K, Moora M, Bueno CG, Dawson W, Essl F, Gerz M, Kreft H, Pergl J, van Kleunen M, Weigelt P, Winter M, Zobel M. Facultative mycorrhizal associations promote plant naturalization worldwide. Ecosphere 2019. [DOI: 10.1002/ecs2.2937] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Petr Pyšek
- Department of Invasion Ecology Institute of Botany Czech Academy of Sciences Průhonice Czech Republic
- Department of Ecology Faculty of Science Charles University Viničná 7 Prague 2 CZ‐128 44 Czech Republic
| | - Wen‐Yong Guo
- Department of Invasion Ecology Institute of Botany Czech Academy of Sciences Průhonice Czech Republic
- Department of Bioscience Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) Aarhus University Aarhus C 8000 Denmark
- Section for Ecoinformatics & Biodiversity Department of Biosciences Aarhus University Aarhus C 8000 Denmark
| | - Kateřina Štajerová
- Department of Invasion Ecology Institute of Botany Czech Academy of Sciences Průhonice Czech Republic
- Department of Ecology Faculty of Science Charles University Viničná 7 Prague 2 CZ‐128 44 Czech Republic
| | - Mari Moora
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Lai 40 Tartu 51005 Estonia
| | - C. Guillermo Bueno
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Lai 40 Tartu 51005 Estonia
| | - Wayne Dawson
- Department of Biosciences Durham University South Road Durham DH1 3LE UK
| | - Franz Essl
- Division of Conservation Biology, Vegetation and Landscape Ecology Department of Botany and Biodiversity Research University Vienna Wien 1030 Austria
| | - Maret Gerz
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Lai 40 Tartu 51005 Estonia
| | - Holger Kreft
- Biodiversity, Macroecology & Biogeography University of Goettingen Göttingen Germany
- Centre of Biodiversity and Sustainable Land Use (CBL) University of Goettingen Göttingen Germany
| | - Jan Pergl
- Department of Invasion Ecology Institute of Botany Czech Academy of Sciences Průhonice Czech Republic
| | - Mark van Kleunen
- Ecology, Department of Biology University of Konstanz Universitätsstrasse 10 Konstanz D‐78464 Germany
- Zhejiang Provincial KeyLaboratory of Plant Evolutionary Ecology and Conservation Taizhou University Taizhou 318000 China
| | - Patrick Weigelt
- Biodiversity, Macroecology & Biogeography University of Goettingen Göttingen Germany
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Deutscher Platz 5e Leipzig 04103 Germany
| | - Martin Zobel
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Lai 40 Tartu 51005 Estonia
| |
Collapse
|
42
|
Mujica MI, Bueno CG, Duchicela J, Marín C. Strengthening mycorrhizal research in South America. THE NEW PHYTOLOGIST 2019; 224:563-567. [PMID: 31503344 DOI: 10.1111/nph.16105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- María Isabel Mujica
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), 8331150, Santiago, Chile
| | - C Guillermo Bueno
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Jessica Duchicela
- Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas - ESPE, Av. General Rumiñahui s/n, 171103, Sangolquí, Ecuador
| | - César Marín
- Instituto de Ciencias Agronómicas y Veterinarias, Universidad de O'Higgins, 2820000, Rancagua, Chile
- Center of Applied Ecology & Sustainability, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| |
Collapse
|
43
|
Chaudhary VB, Sandall EL, Lazarski MV. Urban mycorrhizas: predicting arbuscular mycorrhizal abundance in green roofs. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Stoian V, Vidican R, Crişan I, Puia C, Şandor M, Stoian VA, Păcurar F, Vaida I. Sensitive approach and future perspectives in microscopic patterns of mycorrhizal roots. Sci Rep 2019; 9:10233. [PMID: 31308444 PMCID: PMC6629619 DOI: 10.1038/s41598-019-46743-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/04/2019] [Indexed: 11/23/2022] Open
Abstract
The harmonization of methodologies for the assessment of radicular endophytic colonization is a current necessity, especially for the arbuscular mycorrhizas. The functionality of mycorrhizal symbionts for plants can be described only by indicators obtained based on microscopic analysis. That is the reason for which a unifying methodology will lead to the achievement of highly correlated indicators comparable from one research to another. Our proposed methodology can further digitize the microscopic observations of colonization. The MycoPatt system is developed as a methodological framework for obtaining objective and comparable microscopic observations. The horizontal, vertical and transversal indicators are highly adaptable and allow the tracking of mycorrhizal colonization in root length. All structures developed by symbionts can be traced and the obtained metadata can be compared without any transformation. Mycorrhizal maps have a high degree of applicability in evaluating soil inoculum efficiency. In the future, the application of this method will lead to digital maps with a high degree of accuracy. MycoPatt allows the mathematical expression of colonization patterns, being a complex model that converts biological data into statistically comparable indicators. This will further allow obtaining inferences with applicative importance and similarity spectra for the colonizing fungi and host plants.
Collapse
Affiliation(s)
- Vlad Stoian
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Agriculture, Department of Microbiology, Cluj-Napoca, 400372, Romania.
| | - Roxana Vidican
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Agriculture, Department of Microbiology, Cluj-Napoca, 400372, Romania.
| | - Ioana Crişan
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Agriculture, Department of Microbiology, Cluj-Napoca, 400372, Romania
| | - Carmen Puia
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Agriculture, Department of Plant pathology, Cluj-Napoca, 400372, Romania
| | - Mignon Şandor
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Agriculture, Department of Soil ecology, Cluj-Napoca, 400372, Romania
| | - Valentina A Stoian
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Agriculture, Department of Soil ecology, Cluj-Napoca, 400372, Romania
| | - Florin Păcurar
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Agriculture, Department of Grasslands and forage crops, Cluj-Napoca, 400372, Romania
| | - Ioana Vaida
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Agriculture, Department of Grasslands and forage crops, Cluj-Napoca, 400372, Romania
| |
Collapse
|
45
|
Hoch JMK, Rhodes ME, Shek KL, Dinwiddie D, Hiebert TC, Gill AS, Salazar Estrada AE, Griffin KL, Palmer MI, McGuire KL. Soil Microbial Assemblages Are Linked to Plant Community Composition and Contribute to Ecosystem Services on Urban Green Roofs. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00198] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Gibert A, Tozer W, Westoby M. Plant performance response to eight different types of symbiosis. THE NEW PHYTOLOGIST 2019; 222:526-542. [PMID: 30697746 DOI: 10.1111/nph.15392] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/07/2018] [Indexed: 06/09/2023]
Abstract
Almost all plant species interact with one or more symbioses somewhere within their distribution range. Bringing together plant trait data and growth responses to symbioses spanning 552 plant species, we provide for the first time on a large scale (597 studies) a quantitative synthesis on plant performance differences between eight major types of symbiosis, including mycorrhizas, N-fixing bacteria, fungal endophytes and ant-plant interactions. Frequency distributions of plant growth responses varied considerably between different types of symbiosis, in terms of both mean effect and 'risk', defined here as percentage of experiments reporting a negative effect of symbiosis on plants. Contrary to expectation, plant traits were poor predictors of growth response across and within all eight symbiotic associations. Our analysis showed no systematic additive effect when a host plant engaged in two functionally different symbioses. This synthesis suggests that plant species' ecological strategies have little effect in determining the influence of a symbiosis on host plant growth. Reliable quantification of differences in plant performance across symbioses will prove valuable for developing general hypotheses on how species become engaged in mutualisms without a guarantee of net returns.
Collapse
Affiliation(s)
- Anais Gibert
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Wade Tozer
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Mark Westoby
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
47
|
Exploring the Benefits of Endophytic Fungi via Omics. ADVANCES IN ENDOPHYTIC FUNGAL RESEARCH 2019. [DOI: 10.1007/978-3-030-03589-1_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Guillermo Bueno C, Gerz M, Zobel M, Moora M. Conceptual differences lead to divergent trait estimates in empirical and taxonomic approaches to plant mycorrhizal trait assignment. MYCORRHIZA 2019; 29:1-11. [PMID: 30324505 DOI: 10.1007/s00572-018-0869-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
Empirical and taxonomic approaches are the two main methods used to assign plant mycorrhizal traits to species lists. While the empirical approach uses only available empirical information, the taxonomic approach extrapolates certain core information about plant mycorrhizal types and statuses to related species. Despite recent claims that the taxonomic approach is now almost definitive, with little benefit to be gained from further empirical data collection, it has not been thoroughly compared with the empirical approach. Using the most complete available plant mycorrhizal trait information for Europe and both assignment approaches, we calculate the proportion of species for each trait, and model environmental drivers of trait distribution across the continent. We found large degrees of mismatch between approaches, with consequences for biogeographical interpretation, among facultatively mycorrhizal (FM; 91% of species mismatched), non-mycorrhizal (NM; 45%), and to a lesser extent arbuscular mycorrhizal (AM; 16%) plant species. This can partly be attributed to the taxonomic precision of the taxonomic approach and the use of different AM, NM, and FM concepts. Our results showed that the extrapolations of the taxonomic approach do not consistently match with empirical information and indicate that more empirical data are needed, in particular for FM, NM, and AM plant species. Clarifying certain concepts underlying mycorrhizal traits and empirically describing NM, AM, and FM species within plant families can greatly improve our understanding of the biogeography of mycorrhizal symbiosis.
Collapse
Affiliation(s)
- C Guillermo Bueno
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia.
| | - Maret Gerz
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Martin Zobel
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Mari Moora
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| |
Collapse
|
49
|
Hazard C, Johnson D. Does genotypic and species diversity of mycorrhizal plants and fungi affect ecosystem function? THE NEW PHYTOLOGIST 2018; 220:1122-1128. [PMID: 29393517 DOI: 10.1111/nph.15010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/17/2017] [Indexed: 05/05/2023]
Abstract
Contents Summary 1122 I. Introduction 1122 II. Are there consistent patterns in diversity of mycorrhizal fungal genotypes and species across space? 1125 III. What is the variation in functional traits and genes of mycorrhizal fungi at different taxonomic scales? 1125 IV. How will environmental change impact the relationships between genotypic and species diversity of mycorrhizal fungi and ecosystem function? 1126 V. Conclusions: considerations for future MEF research 1127 Acknowledgements 1127 References 1127 SUMMARY: Both genotypes and species of mycorrhizal fungi exhibit considerable variation in traits, and this variation can result in their diversity regulating ecosystem function. Yet, the nature of mycorrhizal fungal diversity-ecosystem function (MEF) relationships for both genotypes and species is currently poorly defined. New experiments should reflect the richness of genotypes and species in nature, but we still lack information about the extent to which fungal populations in particular are structured. Sampling designs should quantify the diversity of mycorrhizal fungal genotypes and species at three key broad spatial scales (root fragment, root system and interacting root systems) in order to inform manipulation experiments and to test how mycorrhizal fungal diversity both responds, and confers resilience to, environmental drivers.
Collapse
Affiliation(s)
- Christina Hazard
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 36 avenue Guy de Collongue, Ecully, 69134, France
| | - David Johnson
- School of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK
| |
Collapse
|
50
|
Powell JR, Rillig MC. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. THE NEW PHYTOLOGIST 2018; 220:1059-1075. [PMID: 29603232 DOI: 10.1111/nph.15119] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/19/2018] [Indexed: 05/22/2023]
Abstract
Contents Summary 1059 I. Introduction: pathways of influence and pervasiveness of effects 1060 II. AM fungal richness effects on ecosystem functions 1062 III. Other dimensions of biodiversity 1062 IV. Back to basics - primary axes of niche differentiation by AM fungi 1066 V. Functional diversity of AM fungi - a role for biological stoichiometry? 1067 VI. Past, novel and future ecosystems 1068 VII. Opportunities and the way forward 1071 Acknowledgements 1072 References 1072 SUMMARY: Arbuscular mycorrhizal (AM) fungi play important functional roles in ecosystems, including the uptake and transfer of nutrients, modification of the physical soil environment and alteration of plant interactions with other biota. Several studies have demonstrated the potential for variation in AM fungal diversity to also affect ecosystem functioning, mainly via effects on primary productivity. Diversity in these studies is usually characterized in terms of the number of species, unique evolutionary lineages or complementary mycorrhizal traits, as well as the ability of plants to discriminate among AM fungi in space and time. However, the emergent outcomes of these relationships are usually indirect, and thus context dependent, and difficult to predict with certainty. Here, we advocate a fungal-centric view of AM fungal biodiversity-ecosystem function relationships that focuses on the direct and specific links between AM fungal fitness and consequences for their roles in ecosystems, especially highlighting functional diversity in hyphal resource economics. We conclude by arguing that an understanding of AM fungal functional diversity is fundamental to determine whether AM fungi have a role in the exploitation of marginal/novel environments (whether past, present or future) and highlight avenues for future research.
Collapse
Affiliation(s)
- Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Matthias C Rillig
- Freie Universität Berlin, Institut für Biologie, Altensteinstr. 6, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, D-14195, Berlin, Germany
| |
Collapse
|