1
|
Shen SY, Wu C, Yang ZQ, Wang KX, Shao ZH, Yan W. Advances in cannabinoid receptors pharmacology: from receptor structural insights to ligand discovery. Acta Pharmacol Sin 2025; 46:1495-1510. [PMID: 39910211 PMCID: PMC12098862 DOI: 10.1038/s41401-024-01472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/26/2024] [Indexed: 02/07/2025]
Abstract
The medicinal and recreational uses of Cannabis sativa have been recognized for thousands of years. Today, cannabis-derived medicines are used to treat a variety of conditions, including chronic pain, epilepsy, multiple sclerosis, and chemotherapy-induced nausea. However, cannabis use disorder (CUD) has become the third most prevalent substance use disorder globally. Cannabinoid receptors are the primary targets that mediate the effects of cannabis and its analogs. Despite their importance, the mechanisms of modulation and the full therapeutic potential of cannabinoid receptors remain unclear, hindering the development of the next generation of cannabinoid-based drugs. This review summarizes the discovery and medicinal potential of phytocannabinoids and explores the distribution, signaling pathways, and functional roles of cannabinoid receptors. It also discusses classical cannabinoid drugs, as well as agonists, antagonists, and inverse agonists, which serve as key therapeutic agents. Recent advancements in the development of allosteric drugs are highlighted, with a focus on positive and negative allosteric modulators (PAMs and NAMs) that target CB1 and CB2 receptors. The identification of multiple allosteric sites on the CB1 receptor and the structural basis for allosteric modulation are emphasized, along with the structure-based discovery of ago-BAMs for CB1. This review concludes by examining the future potential of allosteric modulators in cannabinoid drug development, noting that ongoing progress in cannabinoid-derived drugs continues to open new avenues for therapeutic use and paves the way for future research into their full medicinal potential.
Collapse
Affiliation(s)
- Si-Yuan Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhi-Qian Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke-Xin Wang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen-Hua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, Frontier Medical Center, Chengdu, 610212, China.
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Dalle S, Poffé C, Lauriks W, Robberechts R, Stalmans M, Terrasi R, Muccioli GG, Koppo K. Circulating Endocannabinoids Are Associated with Mental Alertness During Ultra-Endurance Exercise. Cannabis Cannabinoid Res 2025; 10:200-206. [PMID: 39729203 DOI: 10.1089/can.2024.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Introduction: Ultra-endurance exercise events result in central fatigue, impacting on mental alertness and decision making. Endocannabinoids are typically elevated during endurance exercise and have been implicated in central processes such as learning and memory, but their role in central fatigue has never been studied. Materials and Methods: Twenty-four recreational male ultrarunners participated in a 100-km trail run, and 18 of them completed at least 60 km and were included in the analyses. A cognitive test battery to assess median reaction time (MRT) and median movement time during a reaction time task and median response latency during a rapid visual information processing task was completed prior to and immediately after the trail. Blood serum samples pre- and postexercise were analyzed for endocannabinoids and related lipids (anadamide: AEA; 2-arachidonoylglycerol: 2-AG; palmitoylethanolamide: PEA; oleoylethanolamide: OEA; stearoylethanolamine: SEA) via liquid chromatography-mass spectrometry. Results: Ultra-endurance exercise worsened all cognitive parameters and increased abundance of AEA, PEA, OEA, and SEA but not 2-AG. Interestingly, the exercise-induced change in MRT showed moderate, positive correlations with the change in different endocannabinoids, that is, AEA (r = 0.5164, p = 0.0338), PEA (r = 0.5466, p = 0.0251), and OEA (r = 0.5442, p = 0.0239). Conclusion: These results indicate a potential role of endocannabinoids on mental alertness following ultra-endurance exercise.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- MOVANT Research Group, Faculty of Medicine & Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Faculty of Rehabilitation Sciences, Rehabilitation Research Center (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Wout Lauriks
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Ruben Robberechts
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Myrthe Stalmans
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Romano Terrasi
- Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids Research Group, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Giulio G Muccioli
- Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids Research Group, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Aloisio Caruso E, De Nunzio V, Tutino V, Notarnicola M. The Endocannabinoid System: Implications in Gastrointestinal Physiology and Pathology. Int J Mol Sci 2025; 26:1306. [PMID: 39941074 PMCID: PMC11818434 DOI: 10.3390/ijms26031306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
The endocannabinoid system (ECS), composed of receptors, endocannabinoids, and enzymes that regulate biosynthesis and degradation, plays a fundamental role in the physiology and pathology of the gastrointestinal tract, particularly in the small and large intestine and liver. Specifically, cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 (CB2R), located principally in the nervous system and immune cells, orchestrate processes such as intestinal motility, intestinal and hepatic inflammation, and energy metabolism, respectively. The main endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), influence appetite, body weight regulation, and inflammatory states and thus have implications in obesity, non-alcoholic fatty liver disease (NAFLD) and irritable bowel syndrome (IBS). Recent studies have highlighted the therapeutic potential of targeting the ECS to modulate gastrointestinal and metabolic diseases. In particular, peripheral CB1R antagonists and CB2R agonists have shown efficacy in treating intestinal inflammation, reducing hepatic steatosis, and controlling IBS symptoms. Moreover, the ECS is emerging as a potential target for the treatment of colorectal cancer, acting on cell proliferation and apoptosis. This review highlights the opportunity to exploit the endocannabinoid system in the search for innovative therapeutic strategies, emphasizing the importance of a targeted approach to optimize treatment efficacy and minimize side effects.
Collapse
Affiliation(s)
- Emanuela Aloisio Caruso
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy; (E.A.C.); (V.D.N.)
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy; (E.A.C.); (V.D.N.)
| | - Valeria Tutino
- Laboratory of Clinical Pathology, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy;
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy; (E.A.C.); (V.D.N.)
| |
Collapse
|
4
|
Sato R, da Fonseca GWP, das Neves W, von Haehling S. Mechanisms and pharmacotherapy of cancer cachexia-associated anorexia. Pharmacol Res Perspect 2025; 13:e70031. [PMID: 39776294 PMCID: PMC11707257 DOI: 10.1002/prp2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 01/30/2025] Open
Abstract
Cachexia is a multifactorial metabolic syndrome characterized by weight and skeletal muscle loss caused by underlying illnesses such as cancer, heart failure, and renal failure. Inflammation, insulin resistance, increased muscle protein degradation, decreased food intake, and anorexia are the primary pathophysiological drivers of cachexia. Cachexia causes physical deterioration and functional impairment, loss of quality of life, lower response to active treatment, and ultimately morbidity and mortality, while the difficulties in tackling cachexia in its advanced phases and the heterogeneity of the syndrome among patients require an individualized and multidisciplinary approach from an early stage. Specifically, strategies combining nutritional and exercise interventions as well as pharmacotherapy that directly affect the pathogenesis of cachexia, such as anti-inflammatory, metabolism-improving, and appetite-stimulating agents, have been proposed, but none of which have demonstrated sufficient evidence to date. Nevertheless, several agents have recently emerged, including anamorelin, a ghrelin receptor agonist, growth differentiation factor 15 neutralization therapy, and melanocortin receptor antagonist, as candidates for ameliorating anorexia associated with cancer cachexia. Therefore, in this review, we outline cancer cachexia-associated anorexia and its pharmacotherapy, including corticosteroids, progesterone analogs, cannabinoids, anti-psychotics, and thalidomide which have been previously explored for their efficacy, in addition to the aforementioned novel agents, along with their mechanisms.
Collapse
Affiliation(s)
- Ryosuke Sato
- Department of Cardiology and PneumologyUniversity of Göttingen Medical CenterGöttingenGermany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower SaxonyGermany
| | - Guilherme Wesley Peixoto da Fonseca
- Heart Institute (InCor)University of São Paulo Medical SchoolSão PauloSão PauloBrazil
- School of Physical Education and SportUniversity of São PauloSão PauloBrazil
| | - Willian das Neves
- Department of Anatomy, Institute of Biomedical SciencesUniversity of Sao PauloSao PauloBrazil
| | - Stephan von Haehling
- Department of Cardiology and PneumologyUniversity of Göttingen Medical CenterGöttingenGermany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower SaxonyGermany
| |
Collapse
|
5
|
Allemeier AM, Drummond C, Tiefenthaler B, Dvorak TC, Holz FN, Hume C, Kreger RB, Koulibali CI, Khan HA, Best AL, Gee T, Pedersen GD, Glover K, Ganu D, Martin J, Hill MN, Epps SA. Endocannabinoid involvement in beneficial effects of caloric restriction in a rodent model of comorbid depression and epilepsy. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111212. [PMID: 39645180 DOI: 10.1016/j.pnpbp.2024.111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Clinically, patients with depression are at a heightened risk for developing epilepsy, and vice versa, suggesting shared mechanisms for this bidirectional comorbidity. Unfortunately, comorbid depression and epilepsy is associated with worsened quality of life and treatment refractoriness, highlighting the need for novel treatment targets and nonpharmacologic supplements to existing therapies. The present study used the Swim-Low Active rat, a well-validated model of depression and epilepsy comorbidity that was selectively bred based on forced swim test behavior, to assess the safety and efficacy of caloric restriction in treating this comorbidity. The study also investigated the role of endocannabinoids in the effects of caloric restriction on the behavioral endpoints and to determine whether there were any sex differences in these effects. Male rats restricted to approximately 80 % of their daily food intake for an acute 24-h period showed elevated struggling behavior in the Porsolt (Forced) Swim Test and increased latency to pilocarpine-induced seizure; this same caloric restriction yielded a significant increase in hippocampal anandamide levels compared to ad lib rats. These effects were not seen in female rats, although female rats did show anticonvulsant effects of chronic caloric restriction. Administration of 1 mg/kg SR141716 alongside an acute caloric restriction in male rats blocked the antidepressant-like effects of caloric restriction but did not affect seizure responses. Combined, these results suggest caloric restriction may be both safe and modestly effective in benefitting depression- and epilepsy-related behaviors in male SwLo rats, and that the endocannabinoid system may be a promising target for treating this comorbidity.
Collapse
Affiliation(s)
- Ashley M Allemeier
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA
| | - Christine Drummond
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA
| | - Bradley Tiefenthaler
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA
| | - Tierney C Dvorak
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA
| | - Faith N Holz
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA
| | - Catherine Hume
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| | - Rachelle B Kreger
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Chauncella I Koulibali
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Humza A Khan
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Alexa L Best
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Timothy Gee
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Grace D Pedersen
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Kevin Glover
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Dollar Ganu
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Julie Martin
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| | - S Alisha Epps
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| |
Collapse
|
6
|
Patel C, Patel R, Kesharwani A, Rao L, Jain NS. Central cholinergic transmission modulates endocannabinoid-induced marble-burying behavior in mice. Behav Brain Res 2025; 476:115252. [PMID: 39278464 DOI: 10.1016/j.bbr.2024.115252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Central cholinergic system and endocannabinoid, anandamide exhibits anti-compulsive-like behavior in mice. However, the role of the central cholinergic system in the anandamide-induced anti-compulsive-like behavior is still unexplored. Therefore, the present study assessed the role of central cholinergic transmission in the anandamide-induced anti-compulsive activity using a marble-burying behavior (MBB) model in mice. The modulation in the anandamide-induced effect on MBB was evaluated using mice with altered central cholinergic transmission achieved by pretreatment (i.c.v.) with various cholinergic agents like acetylcholine (ACh), acetylcholinesterase inhibitor (AChEI), neostigmine, nicotine, mAChR antagonist, atropine, and nAChR antagonist, mecamylamine. The influence of anandamide treatment on the brain AChE activity was also evaluated. The results revealed that i.c.v. injection of anandamide (10, 20 µg/mouse, i.c.v.) dose-dependently reduced MBB in mice. Moreover, anandamide in all the tested doses inhibited the brain AChE activity indicating the role of an enhanced central cholinergic transmission in its anti-compulsive-like effect . Furthermore, the anti-compulsive-like effect of anandamide (20 µg/mouse, i.c.v.) was found to be enhanced in mice centrally pre-treated with, ACh (0.1 µg/mouse, i.c.v.) or AChEI, neostigmine (0.3 µg/mouse, i.c.v.). In addition, the anandamide-induced anti-compulsive-like effect was significantly increased in mice pre-treated with a low dose of nicotine (0.1 µg/mouse, i.c.v.) while, it was attenuated by the higher dose of nicotine (2 µg/mouse, i.c.v.). On the other hand, the anandamide (20 µg/mouse, i.c.v.) induced anti-compulsive-like effect was found to be diminished in mice pre-treated with mAChR antagonist, atropine (0.1, 0.5 µg/mouse, i.c.v.) and pre-injection of nAChR antagonist, mecamylamine (0.1, 0.5 µg/mouse, i.c.v.) potentiated the anandamide induced anti-compulsive-like response in mice. Thus, the present investigation delineates the modulatory role of an enhanced central cholinergic transmission in the anandamide-induced anti-compulsive-like behavior in mice by inhibition of brain AChE or via muscarinic and nicotinic receptors mediated mechanism.
Collapse
Affiliation(s)
- Chhatrapal Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Richa Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Anuradha Kesharwani
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Laxmi Rao
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Nishant Sudhir Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India.
| |
Collapse
|
7
|
Hanske A, Nazaré M, Grether U. Chemical Probes for Investigating the Endocannabinoid System. Curr Top Behav Neurosci 2025. [PMID: 39747798 DOI: 10.1007/7854_2024_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ9-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.1, anandamide (N-arachidonoylethanolamine (AEA)) 1.2, and various proteins, regulates vital processes such as sleep, appetite, and memory, and holds significant therapeutic potential, especially for neurological disorders. Small molecule-derived pharmacological tools, or chemical probes, target key components of the ECS and are crucial for target validation, mechanistic studies, pathway elucidation, phenotypic screening, and drug discovery. These probes selectively interact with specific proteins or pathways, enabling researchers to modulate target activity and observe biological effects. When they carry an additional reporter group, they are referred to as labeled chemical probes. Developed through medicinal chemistry, structural biology, and high-throughput screening, effective chemical probes must be selective, potent, and depending on their purpose meet additional criteria such as cell permeability and metabolic stability.This chapter describes high-quality labeled and unlabeled chemical probes targeting ECS constituents that have been successfully applied for various research purposes. CB1R and CB2R, class A G protein-coupled receptors, are activated by 2-AG 1.1, AEA 1.2, and THC 3.1, with numerous ligands developed for these receptors. Imaging techniques like single-photon emission computed tomography, positron emission tomography, and fluorescently labeled CB1R and CB2R probes have enhanced CB receptor studies. CB2R activation generally results in immunosuppressive effects, limiting tissue injury. AEA 1.2 is mainly degraded by fatty acid amide hydrolase (FAAH) or N-acylethanolamine acid amidase (NAAA) into ethanolamine and arachidonic acid (AA) 1.3. FAAH inhibitors increase endogenous fatty acid amides, providing analgesic effects without adverse effects. NAAA inhibitors reduce inflammation and pain in animal models. Diacylglycerol lipase (DAGL) is essential for 2-AG 1.1 biosynthesis, while monoacylglycerol lipase (MAGL) degrades 2-AG 1.1 into AA 1.3, thus regulating cannabinoid signaling. Multiple inhibitors targeting FAAH and MAGL have been generated, though NAAA and DAGL probe development lags behind. Similarly, advancements in inhibitors targeting endocannabinoid (eCB) cellular uptake or trafficking proteins like fatty acid-binding proteins have been slower. The endocannabinoidome (eCBome) includes the ECS and related molecules and receptors, offering therapeutic opportunities from non-THC cannabinoids and eCBome mediators. Ongoing research aims to refine chemical tools for ECS and eCBome study, addressing unmet medical needs in central nervous system disorders and beyond.
Collapse
Affiliation(s)
- Annaleah Hanske
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Uwe Grether
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
8
|
Jacquin-Piques A. The pleasantness of foods. Neurophysiol Clin 2025; 55:103031. [PMID: 39644807 DOI: 10.1016/j.neucli.2024.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024] Open
Abstract
Food pleasantness is largely based on the palatability of food and is linked to taste. Along with homeostatic and cognitive control, it forms part of the control of food intake (hedonic control), and does not only correspond to the pleasure that can be described of food intake. There are many factors that cause variations in eating pleasantness between individuals, such as age, sex, culture, co-morbidities, treatments, environmental factors or the specific characteristics of foods. The control of food intake is based on four determinants: conditioned satiety, the reward system, sensory specific satiety and alliesthesia. These four determinants follow one another over time, in the per-prandial and inter-prandial periods, and complement one another. There are many cerebral areas involved in the hedonic control of food intake. The most involved brain areas are the orbitofrontal and anterior cingulate cortices, which interact with deep neural structures (amygdala, striatum, substantia nigra) for the reward circuit, with the hippocampi for memorising pleasant foods, and even with the hypothalamus and insula, brain areas more recently involved in the physiology of food pleasantness. Changes in brain activity secondary to modulation of food pleasantness can be measured objectively by recording taste-evoked potentials, an electroencephalography technique with very good temporal resolution.
Collapse
Affiliation(s)
- Agnès Jacquin-Piques
- Centre des Sciences du Goût et de l'Alimentation (CSGA) - UMR CNRS 6265, INRAE 1324, University of Burgundy, L'institut Agro - 9E, Boulevard Jeanne d'Arc - 21000 DIJON, France; University Hospital of Dijon, Bourgogne - Department of Neurology - Clinical Neurophysiology - 14, rue Paul Gaffarel - 21000 DIJON, France.
| |
Collapse
|
9
|
Lau D, Tobin S, Pribiag H, Nakajima S, Fisette A, Matthys D, Franco Flores AK, Peyot ML, Murthy Madiraju SR, Prentki M, Stellwagen D, Alquier T, Fulton S. ABHD6 loss-of-function in mesoaccumbens postsynaptic but not presynaptic neurons prevents diet-induced obesity in male mice. Nat Commun 2024; 15:10652. [PMID: 39681558 PMCID: PMC11649924 DOI: 10.1038/s41467-024-54819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
α/β-hydrolase domain 6 (ABHD6) is a lipase linked to physiological functions affecting energy metabolism. Brain ABHD6 degrades 2-arachidonoylglycerol and thereby modifies cannabinoid receptor signalling. However, its functional role within mesoaccumbens circuitry critical for motivated behaviour and considerably modulated by endocannabinoids was unknown. Using three viral approaches, we show that control of the nucleus accumbens by neuronal ABHD6 is a key determinant of body weight and reward-directed behaviour in male mice. Contrary to expected outcomes associated with increasing endocannabinoid tone, loss of ABHD6 in nucleus accumbens, but not ventral tegmental area, neurons completely prevents diet-induced obesity, reduces food- and drug-seeking and enhances physical activity without affecting anxiodepressive behaviour. These effects are explained by attenuated inhibitory synaptic transmission onto medium spiny neurons. ABHD6 deletion in nucleus accumbens neurons and dopamine ventral tegmental area neurons produces contrasting effects on effortful responding for food. Intraventricular infusions of an ABHD6 inhibitor also restrain appetite and promote weight loss. Together, these results reveal functional specificity of pre- and post-synaptic mesoaccumbens neuronal ABHD6 to differentially control energy balance and propose ABHD6 inhibition as a potential anti-obesity tool.
Collapse
Affiliation(s)
- David Lau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - Stephanie Tobin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Horia Pribiag
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University Health Center, Montréal, QC, Canada
| | - Shingo Nakajima
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Alexandre Fisette
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Dominique Matthys
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - Anna Kristyna Franco Flores
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - Marie-Line Peyot
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - S R Murthy Madiraju
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Marc Prentki
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, Canada
| | - David Stellwagen
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University Health Center, Montréal, QC, Canada
| | - Thierry Alquier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
- Department of Nutrition, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
10
|
Akurati S, Hanlon EC. Beyond the Scale: Exploring the Endocannabinoid System's Impact on Obesity. Curr Diab Rep 2024; 25:6. [PMID: 39543055 DOI: 10.1007/s11892-024-01562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE OF REVIEW This review explores the role of the endocannabinoid system (ECS) in regulating energy balance, food intake, and metabolism, with a focus on how ECS dysregulation contributes to obesity. The goal is to provide insights into the mechanisms underlying obesity and its associated metabolic disorders. RECENT FINDINGS Recent research indicates that the ECS significantly influences food intake, fat storage, insulin sensitivity, and inflammation, all of which are central to the development and progression of obesity. New research areas include the interaction between the ECS and gut microbiota, circadian rhythms of the ECS, and the impact of genetic and epigenetic factors on ECS function. Interest in the therapeutic potential of targeting the ECS has grown, with earlier treatments like CB1 receptor antagonists showing mixed results in efficacy and safety. Evidence from both animal and human studies highlight the impact of elevated levels of the endocannabinoids anandamide and 2-AG on food intake, insulin resistance, visceral fat accumulation, and metabolic disturbances associated with obesity. The review explores the interaction between the ECS and other physiological systems, including gut-brain communication, circadian rhythms, as well as leptin and ghrelin signaling. Additionally, genetic and epigenetic factors influencing ECS function are examined, emphasizing their contribution to obesity susceptibility. While therapeutic approaches targeting the ECS, particularly CB1 receptor antagonism, have shown potential in managing obesity, the review acknowledges the challenges posed by central nervous system side effects in earlier treatments like rimonabant. However, recent advancements in peripherally restricted CB1 antagonists offer renewed hope for safer and more effective obesity treatments. The review concludes by addressing future research directions and therapeutic strategies to combat this global health challenge.
Collapse
Affiliation(s)
- Sneha Akurati
- Leonard M Miller School of Medicine, University of Miami, 1600 NW 10th Ave #1140, Miami, FL, 33136, USA
| | - Erin C Hanlon
- Department of Medicine, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, 5841 S. Maryland Ave, MC1027, Chicago, IL, 60637, USA.
| |
Collapse
|
11
|
Lord MN, Noble EE. Hypothalamic cannabinoid signaling: Consequences for eating behavior. Pharmacol Res Perspect 2024; 12:e1251. [PMID: 39155548 PMCID: PMC11331011 DOI: 10.1002/prp2.1251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 08/20/2024] Open
Abstract
In parallel to the legalization of cannabis for both medicinal and recreational purposes, cannabinoid use has steadily increased over the last decade in the United States. Cannabinoids, such as tetrahydrocannabinol and anandamide, bind to the central cannabinoid-1 (CB1) receptor to impact several physiological processes relevant for body weight regulation, including appetite and energy expenditure. The hypothalamus integrates peripheral signals related to energy balance, houses several nuclei that orchestrate eating, and expresses the CB1 receptor. Herein we review literature to date concerning cannabinergic action in the hypothalamus with a specific focus on eating behaviors. We highlight hypothalamic areas wherein researchers have focused their attention, including the lateral, arcuate, paraventricular, and ventromedial hypothalamic nuclei, and interactions with the hormone leptin. This review serves as a comprehensive analysis of what is known about cannabinoid signaling in the hypothalamus, highlights gaps in the literature, and suggests future directions.
Collapse
Affiliation(s)
- Magen N. Lord
- Department of Nutritional SciencesUniversity of GeorgiaAthensGeorgiaUSA
| | - Emily E. Noble
- Department of Nutritional SciencesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
12
|
Faiz MB, Naeem F, Irfan M, Aslam MA, Estevinho LM, Ateşşahin DA, Alshahrani AM, Calina D, Khan K, Sharifi-Rad J. Exploring the therapeutic potential of cannabinoids in cancer by modulating signaling pathways and addressing clinical challenges. Discov Oncol 2024; 15:490. [PMID: 39331301 PMCID: PMC11436528 DOI: 10.1007/s12672-024-01356-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
For centuries, cannabinoids have been utilized for their medicinal properties, particularly in Asian and South-Asian countries. Cannabis plants, known for their psychoactive and non-psychoactive potential, were historically used for spiritual and remedial healing. However, as cannabis became predominantly a recreational drug, it faced prohibition. Recently, the therapeutic potential of cannabinoids has sparked renewed research interest, extending their use to various medical conditions, including cancer. This review aims to highlight current data on the involvement of cannabinoids in cancer signaling pathways, emphasizing their potential in cancer therapy and the need for further investigation into the underlying mechanisms. A comprehensive literature review was conducted using databases such as PubMed/MedLine, Google Scholar, Web of Science, Scopus, and Embase. The search focused on peer-reviewed articles, review articles, and clinical trials discussing the anticancer properties of cannabinoids. Inclusion criteria included studies in English on the mechanisms of action and clinical efficacy of cannabinoids in cancer. Cannabinoids, including Δ9-THC, CBD, and CBG, exhibit significant anticancer activities such as apoptosis induction, autophagy stimulation, cell cycle arrest, anti-proliferation, anti-angiogenesis, and metastasis inhibition. Clinical trials have demonstrated cannabinoids' efficacy in tumor regression and health improvement in palliative care. However, challenges such as variability in cannabinoid composition, psychoactive effects, regulatory barriers, and lack of standardized dosing remain. Cannabinoids show promising potential as anticancer agents through various mechanisms. Further large-scale, randomized controlled trials are essential to validate these findings and establish standardized therapeutic protocols. Future research should focus on elucidating detailed mechanisms, optimizing dosing, and exploring cannabinoids as primary chemotherapeutic agents.
Collapse
Affiliation(s)
- Manal Bint Faiz
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Faiza Naeem
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Irfan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Muhammad Adeel Aslam
- Department of Forensic Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Leticia M Estevinho
- Mountain Research Center, CIMO, Polytechnic Institute of Bragança, Campus Santa Apolónia, 5300-253, Bragança, Portugal
| | - Dilek Arslan Ateşşahin
- Baskil Vocational School, Department of Plant and Animal Production, Fırat University, 23100, Elazıg, Turkey
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, College of Pharmacy, Shaqra University, Dawadimi, Saudi Arabia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Khushbukhat Khan
- Cancer Clinical Research Unit, Trials360, Lahore, 54000, Pakistan.
| | - Javad Sharifi-Rad
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
13
|
Rivi V, Rigillo G, Batabyal A, Lukowiak K, Pani L, Tascedda F, Benatti C, Blom JMC. Different stressors uniquely affect the expression of endocannabinoid-metabolizing enzymes in the central ring ganglia of Lymnaea stagnalis. J Neurochem 2024; 168:2848-2867. [PMID: 38922726 DOI: 10.1111/jnc.16147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
The endocannabinoid system (ECS) plays an important role in neuroprotection, neuroplasticity, energy balance, modulation of stress, and inflammatory responses, acting as a critical link between the brain and the body's peripheral regions, while also offering promising potential for novel therapeutic strategies. Unfortunately, in humans, pharmacological inhibitors of different ECS enzymes have led to mixed results in both preclinical and clinical studies. As the ECS has been highly conserved throughout the eukaryotic lineage, the use of invertebrate model organisms like the pond snail Lymnaea stagnalis may provide a flexible tool to unravel unexplored functions of the ECS at the cellular, synaptic, and behavioral levels. In this study, starting from the available genome and transcriptome of L. stagnalis, we first identified putative transcripts of all ECS enzymes containing an open reading frame. Each predicted protein possessed a high degree of sequence conservation to known orthologues of other invertebrate and vertebrate organisms. Sequences were confirmed by qualitative PCR and sequencing. Then, we investigated the transcriptional effects induced by different stress conditions (i.e., bacterial LPS injection, predator scent, food deprivation, and acute heat shock) on the expression levels of the enzymes of the ECS in Lymnaea's central ring ganglia. Our results suggest that in Lymnaea as in rodents, the ECS is involved in mediating inflammatory and anxiety-like responses, promoting energy balance, and responding to acute stressors. To our knowledge, this study offers the most comprehensive analysis so far of the ECS in an invertebrate model organism.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anuradha Batabyal
- Department of Physical and Natural Sciences, FLAME University, Pune, India
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luca Pani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, Florida, USA
| | - Fabio Tascedda
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- CIB, Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| | - Cristina Benatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Johanna M C Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
14
|
Yoshida R, Ninomiya Y. Mechanisms and Functions of Sweet Reception in Oral and Extraoral Organs. Int J Mol Sci 2024; 25:7398. [PMID: 39000505 PMCID: PMC11242429 DOI: 10.3390/ijms25137398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The oral detection of sugars relies on two types of receptor systems. The first is the G-protein-coupled receptor TAS1R2/TAS1R3. When activated, this receptor triggers a downstream signaling cascade involving gustducin, phospholipase Cβ2 (PLCβ2), and transient receptor potential channel M5 (TRPM5). The second type of receptor is the glucose transporter. When glucose enters the cell via this transporter, it is metabolized to produce ATP. This ATP inhibits the opening of KATP channels, leading to cell depolarization. Beside these receptor systems, sweet-sensitive taste cells have mechanisms to regulate their sensitivity to sweet substances based on internal and external states of the body. Sweet taste receptors are not limited to the oral cavity; they are also present in extraoral organs such as the gastrointestinal tract, pancreas, and brain. These extraoral sweet receptors are involved in various functions, including glucose absorption, insulin release, sugar preference, and food intake, contributing to the maintenance of energy homeostasis. Additionally, sweet receptors may have unique roles in certain organs like the trachea and bone. This review summarizes past and recent studies on sweet receptor systems, exploring the molecular mechanisms and physiological functions of sweet (sugar) detection in both oral and extraoral organs.
Collapse
Affiliation(s)
- Ryusuke Yoshida
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Yuzo Ninomiya
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Dionne O, Abolghasemi A, Corbin F, Çaku A. Implication of the endocannabidiome and metabolic pathways in fragile X syndrome pathophysiology. Psychiatry Res 2024; 337:115962. [PMID: 38763080 DOI: 10.1016/j.psychres.2024.115962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
Fragile X Syndrome (FXS) results from the silencing of the FMR1 gene and is the most prevalent inherited cause of intellectual disability and the most frequent monogenic cause of autism spectrum disorder. It is well established that Fragile X individuals are subjected to a wide array of comorbidities, ranging from cognitive, behavioural, and medical origin. Furthermore, recent studies have also described metabolic impairments in FXS individuals. However, the molecular mechanisms linking FMRP deficiency to improper metabolism are still misunderstood. The endocannabinoidome (eCBome) is a lipid-based signalling system that regulates several functions across the body, ranging from cognition, behaviour and metabolism. Alterations in the eCBome have been described in FXS animal models and linked to neuronal hyperexcitability, a core deficit of the disease. However, the potential link between dysregulation of the eCBome and altered metabolism observed in FXS remains unexplored. As such, this review aims to overcome this issue by describing the most recent finding related to eCBome and metabolic dysfunctions in the context of FXS. A better comprehension of this association will help deepen our understanding of FXS pathophysiology and pave the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Olivier Dionne
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada.
| | - Armita Abolghasemi
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
| | - François Corbin
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
| | - Artuela Çaku
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
| |
Collapse
|
16
|
Fradet A, Castonguay-Paradis S, Dugas C, Perron J, St-Arnaud G, Marc I, Doyen A, Flamand N, Dahhani F, Di Marzo V, Veilleux A, Robitaille J. The human milk endocannabinoidome and neonatal growth in gestational diabetes. Front Endocrinol (Lausanne) 2024; 15:1415630. [PMID: 38938519 PMCID: PMC11208692 DOI: 10.3389/fendo.2024.1415630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024] Open
Abstract
Objective Endocannabinoids and their N-acyl-ethanolamines (NAEs) and 2monoacyl-glycerols (2-MAGs) congeners are involved in the central and peripheral regulation of energy homeostasis, they are present in human milk and are associated with obesity. Infants exposed in utero to gestational diabetes mellitus (GDM) are more likely to develop obesity. The objective of this cross-sectional study is to compare the profile of eCBome mediators in milk of women with gestational diabetes (GDM+) and without (GDM-) and to assess the association with offspring growth. The hypothesis is that the eCBome of GDM+ human milk is altered and associated with a difference in infant growth. Methods Circulating eCBome mediators were measured by LC-MS/MS in human milk obtained at 2 months postpartum from GDM+ (n=24) and GDM- (n=29) women. Infant weight and height at 2 months were obtained from the child health record. Z-scores were calculated. Results Circulating Npalmitoylethanolamine (PEA) was higher in human milk of GDM+ women than in GDM- women (4.9 ± 3.2 vs. 3.3 ± 1.7, p=0.04). Higher levels were also found for several 2monoacyl-glycerols (2-MAGs) (p<0.05). The levels of NAEs (β=-4.6, p=0.04) and especially non-omega-3 NAEs (B=-5.6, p=0.004) in human milk were negatively correlated with weight-for-age z-score of GDM+ offspring. Conclusion The profile of eCBome mediators in human milk at 2 months postpartum was different in GDM+ compared to GDM- women and was associated with GDM+ offspring growth at 2 months. Clinical trial registration ClinicalTrials.gov, identifier (NCT04263675 and NCT02872402).
Collapse
Affiliation(s)
- Alice Fradet
- Centre NUTRISS - Nutrition, santé et société, INAF, Université Laval, Québec City, QC, Canada
- Ecole de nutrition, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Université Laval, Québec City, QC, Canada
| | - Sophie Castonguay-Paradis
- Centre NUTRISS - Nutrition, santé et société, INAF, Université Laval, Québec City, QC, Canada
- Ecole de nutrition, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Université Laval, Québec City, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC, Canada
| | - Camille Dugas
- Centre NUTRISS - Nutrition, santé et société, INAF, Université Laval, Québec City, QC, Canada
| | - Julie Perron
- Centre NUTRISS - Nutrition, santé et société, INAF, Université Laval, Québec City, QC, Canada
| | - Gabrielle St-Arnaud
- Centre NUTRISS - Nutrition, santé et société, INAF, Université Laval, Québec City, QC, Canada
- Ecole de nutrition, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Université Laval, Québec City, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC, Canada
| | - Isabelle Marc
- Département de pédiatrie, Université Laval, Centre de recherche du CHU de Québec, Québec City, QC, Canada
| | - Alain Doyen
- Département des sciences des aliments, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Université Laval, Québec City, QC, Canada
| | - Nicolas Flamand
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC, Canada
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Université Laval, Québec City, QC, Canada
- Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Fadil Dahhani
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC, Canada
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Université Laval, Québec City, QC, Canada
| | - Vincenzo Di Marzo
- Centre NUTRISS - Nutrition, santé et société, INAF, Université Laval, Québec City, QC, Canada
- Ecole de nutrition, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Université Laval, Québec City, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC, Canada
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Université Laval, Québec City, QC, Canada
- Joint International Unit on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Pozzuoli, Italy
| | - Alain Veilleux
- Centre NUTRISS - Nutrition, santé et société, INAF, Université Laval, Québec City, QC, Canada
- Ecole de nutrition, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Université Laval, Québec City, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC, Canada
| | - Julie Robitaille
- Centre NUTRISS - Nutrition, santé et société, INAF, Université Laval, Québec City, QC, Canada
- Ecole de nutrition, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Université Laval, Québec City, QC, Canada
| |
Collapse
|
17
|
Leidmaa E, Prodan AM, Depner LL, Komorowska-Müller JA, Beins EC, Schuermann B, Kolbe CC, Zimmer A. Astrocytic Dagla Deletion Decreases Hedonic Feeding in Female Mice. Cannabis Cannabinoid Res 2024; 9:74-88. [PMID: 38265773 PMCID: PMC10874831 DOI: 10.1089/can.2023.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Introduction: Endocannabinoids and exogenous cannabinoids are potent regulators of feeding behavior and energy metabolism. Stimulating cannabinoid receptor signaling enhances appetite, particularly for energy-dense palatable foods, and promotes energy storage. To elucidate the underlying cellular mechanisms, we investigate here the potential role of astrocytic endocannabinoid 2-arachidonoylglycerol (2-AG). Astrocytes provide metabolic support for neurons and contribute to feeding regulation but the effect of astrocytic 2-AG on feeding is unknown. Materials and Methods: We generated mice lacking the 2-AG synthesizing enzyme diacylglycerol lipase alpha (Dagla) in astrocytes (GLAST-Dagla KO) and investigated hedonic feeding behavior in male and female mice. Body weight and baseline water and food intake was characterized; additionally, the mice went through milk, saccharine, and sucrose preference tests in fed and fasted states. In female mice, the estrous cycle stages were identified and plasma levels of female sex hormones were measured. Results: We found that the effects of the inducible astrocytic Dagla deletion were sex-specific. Acute milk preference was decreased in female, but not in male mice and the effect was most evident in the estrus stage of the cycle. This prompted us to investigate sex hormone profiles, which were found to be altered in GLAST-Dagla KO females. Specifically, follicle-stimulating hormone was elevated in the estrus stage, luteinizing hormone in the proestrus, and progesterone was increased in both proestrus and estrus stages of the cycle compared with controls. Conclusions: Astrocytic Dagla regulates acute hedonic appetite for palatable food in females and not in males, possibly owing to a deregulated female sex hormone profile. It is plausible that endocannabinoid production by astrocytes at least partly contributes to the greater susceptibility to overeating in females. This finding may also be important for understanding the effects of exogenous cannabinoids on sex hormone profiles.
Collapse
Affiliation(s)
- Este Leidmaa
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Alexandra Maria Prodan
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Lena-Louise Depner
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | | | - Eva Carolina Beins
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
- Medical Faculty, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Britta Schuermann
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | | | - Andreas Zimmer
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| |
Collapse
|
18
|
Ruhl T, Nuptybayeva A, Kim BS, Beier JP. GPR55 inhibits the pro-adipogenic activity of anandamide in human adipose stromal cells. Exp Cell Res 2024; 435:113908. [PMID: 38163565 DOI: 10.1016/j.yexcr.2023.113908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/03/2024]
Abstract
The endocannabinoid anandamide (AEA) stimulates adipogenesis via the cannabinoid receptor CB1 in adipose stromal cells (ASCs). However, AEA interacts also with nonclassical cannabinoid receptors, including transient receptor potential cation channel (TRPV)1 and G protein-coupled receptor (GPR)55. Their roles in AEA mediated adipogenesis of human ASCs have not been investigated. We examined the receptor-expressions by immunostaining on human ASCs and tested their functionality by measuring the expression of immediate early genes (IEGs) related to the transcription factor-complex AP-1 upon exposition to receptor agonists. Cells were stimulated with increasing concentrations of specific ligands to investigate the effects on ASC viability (proliferation and metabolic activity), secretory activity, and AEA mediated differentiation. ASCs expressed both receptors, and their activation suppressed IEG expression. TRPV1 did not affect viability or cytokine secretion. GPR55 decreased proliferation, and it inhibited the release of hepatocyte growth factor. Blocking GPR55 increased the pro-adipogenic activity of AEA. These data suggest that GPR55 functions as negative regulator of cannabinoid mediated pro-adipogenic capacity in ASCs.
Collapse
Affiliation(s)
- Tim Ruhl
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Aigul Nuptybayeva
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Bong-Sung Kim
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany; Department of Plastic and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| | - Justus P Beier
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
19
|
Lee BH, Sideris A, Ladha KS, Johnson RL, Wu CL. Cannabis and Cannabinoids in the Perioperative Period. Anesth Analg 2024; 138:16-30. [PMID: 35551150 DOI: 10.1213/ane.0000000000006070] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cannabis use is increasingly common, and with a growing number of jurisdictions implementing legalization frameworks, it is likely that providers will encounter more patients who use cannabis. Therefore, it is important for providers to understand the implications of cannabis use and practical considerations for the perioperative period. Cannabis affects multiple organ systems and may influence intraoperative anesthesia, as well as postoperative pain management. The effects of cannabis and key anesthetic considerations are reviewed here.
Collapse
Affiliation(s)
- Bradley H Lee
- From the Department of Anesthesiology, Critical Care & Pain Management, Hospital for Special Surgery, New York, New York
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York
| | - Alexandra Sideris
- From the Department of Anesthesiology, Critical Care & Pain Management, Hospital for Special Surgery, New York, New York
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York
| | - Karim S Ladha
- Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| | - Rebecca L Johnson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christopher L Wu
- From the Department of Anesthesiology, Critical Care & Pain Management, Hospital for Special Surgery, New York, New York
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York
| |
Collapse
|
20
|
Miranda-Olivos R, Baenas I, Steward T, Granero R, Pastor A, Sánchez I, Juaneda-Seguí A, Del Pino-Gutiérrez A, Fernández-Formoso JA, Vilarrasa N, Guerrero-Pérez F, Virgili N, López-Urdiales R, Jiménez-Murcia S, de la Torre R, Soriano-Mas C, Fernández-Aranda F. Exploring the influence of circulating endocannabinoids and nucleus accumbens functional connectivity on anorexia nervosa severity. Mol Psychiatry 2023; 28:4793-4800. [PMID: 37759041 PMCID: PMC10914605 DOI: 10.1038/s41380-023-02253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Anorexia nervosa (AN) is a severe psychiatric disorder characterized by a harmful persistence of self-imposed starvation resulting in significant weight loss. Research suggests that alterations in the nucleus accumbens (NAcc) and circulating endocannabinoids (eCBs), such as anandamide (AEA) and 2-arachidonoylglycerol (2-AG), may contribute to increased severity and maladaptive behaviors in AN, warranting an examination of the interplay between central reward circuitry and eCBs. For this purpose, we assessed NAcc functional connectivity and circulating AEA and 2-AG concentrations in 18 individuals with AN and 18 healthy controls (HC) to test associations between circulating eCBs, NAcc functional connectivity, and AN severity, as defined by body mass index (BMI). Decreased connectivity was observed between the NAcc and the right insula (NAcc-insula; pFWE < 0.001) and the left supplementary motor area (NAcc-SMA; pFWE < 0.001) in the AN group compared to HC. Reduced NAcc-insula functional connectivity mediated the association between AEA concentrations and BMI in the AN group. However, in HC, NAcc-SMA functional connectivity had a mediating role between AEA concentrations and BMI. Although no significant differences in eCBs concentrations were observed between the groups, our findings provide insights into how the interaction between eCBs and NAcc functional connectivity influences AN severity. Altered NAcc-insula and NAcc-SMA connectivity in AN may impair the integration of interoceptive, somatosensory, and motor planning information related to reward stimuli. Furthermore, the distinct associations between eCBs concentrations and NAcc functional connectivity in AN and HC could have clinical implications for weight maintenance, with eCBs being a potential target for AN treatment.
Collapse
Affiliation(s)
- Romina Miranda-Olivos
- Clinical Psychology Unit, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 08907, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Research Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain
- Doctoral Program in Medicine and Translational Research, University of Barcelona, 08036, Barcelona, Spain
| | - Isabel Baenas
- Clinical Psychology Unit, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 08907, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Research Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain
- Doctoral Program in Medicine and Translational Research, University of Barcelona, 08036, Barcelona, Spain
| | - Trevor Steward
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Roser Granero
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 08907, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Research Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain
- Department of Psychobiology and Methodology, Autonomous University of Barcelona, 08193, Barcelona, Spain
| | - Antoni Pastor
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 08907, Barcelona, Spain
- Integrative Pharmacology and Systems Neuroscience research group, Hospital del Mar Research Institute (IMIM), 08003, Barcelona, Spain
| | - Isabel Sánchez
- Clinical Psychology Unit, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 08907, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Research Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain
| | - Asier Juaneda-Seguí
- Doctoral Program in Medicine and Translational Research, University of Barcelona, 08036, Barcelona, Spain
- Ciber de Salud Mental (CIBERSAM), Instituto Salud Carlos III, 28029, Barcelona, Spain
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, C/Feixa Llarga s/n, 08907, Barcelona, Spain
| | - Amparo Del Pino-Gutiérrez
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 08907, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Research Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain
- Department of Public Health, Mental Health and Perinatal Nursing, School of Nursing, University of Barcelona, 08907, Barcelona, Spain
| | - José A Fernández-Formoso
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 08907, Barcelona, Spain
| | - Nuria Vilarrasa
- Department of Endocrinology and Nutrition, Bellvitge University Hospital-IDIBELL, C/Feixa Llarga s/n, 08907, Barcelona, Spain
- CIBERDEM-CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Fernando Guerrero-Pérez
- Department of Endocrinology and Nutrition, Bellvitge University Hospital-IDIBELL, C/Feixa Llarga s/n, 08907, Barcelona, Spain
| | - Nuria Virgili
- Department of Endocrinology and Nutrition, Bellvitge University Hospital-IDIBELL, C/Feixa Llarga s/n, 08907, Barcelona, Spain
| | - Rafael López-Urdiales
- Department of Endocrinology and Nutrition, Bellvitge University Hospital-IDIBELL, C/Feixa Llarga s/n, 08907, Barcelona, Spain
| | - Susana Jiménez-Murcia
- Clinical Psychology Unit, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 08907, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Research Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08907, Barcelona, Spain
| | - Rafael de la Torre
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 08907, Barcelona, Spain
- Integrative Pharmacology and Systems Neuroscience research group, Hospital del Mar Research Institute (IMIM), 08003, Barcelona, Spain
- Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), 08002, Barcelona, Spain
| | - Carles Soriano-Mas
- Ciber de Salud Mental (CIBERSAM), Instituto Salud Carlos III, 28029, Barcelona, Spain.
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, C/Feixa Llarga s/n, 08907, Barcelona, Spain.
- Department of Social Psychology and Quantitative Psychology, School of Psychology, University of Barcelona, 08035, Barcelona, Spain.
| | - Fernando Fernández-Aranda
- Clinical Psychology Unit, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 08907, Barcelona, Spain.
- Psychoneurobiology of Eating and Addictive Behaviors Research Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain.
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08907, Barcelona, Spain.
| |
Collapse
|
21
|
Wang J, Ossemond J, Le Gouar Y, Boissel F, Dupont D, Pédrono F. Effect of Docosahexaenoic Acid Encapsulation with Whey Proteins on Rat Growth and Tissue Endocannabinoid Profile. Nutrients 2023; 15:4622. [PMID: 37960275 PMCID: PMC10650154 DOI: 10.3390/nu15214622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Modifying the food structure allows a nutrient to be delivered differently, which can modify not only its digestion process but also its subsequent metabolism. In this study, rats received 3 g of omelette daily containing docosahexaenoic acid (DHA) as crude oil or previously encapsulated with whey proteins, whereas a control group received a DHA-free omelette. The results showed that DHA encapsulation markedly induced a different feeding behaviour so animals ate more and grew faster. Then, after four weeks, endocannabinoids and other N-acyl ethanolamides were quantified in plasma, brain, and heart. DHA supplementation strongly reduced endocannabinoid derivatives from omega-6 fatty acids. However, DHA encapsulation had no particular effect, other than a great increase in the content of DHA-derived docosahexaenoyl ethanolamide in the heart. While DHA supplementation has indeed shown an effect on cannabinoid profiles, its physiological effect appears to be mediated more through more efficient digestion of DHA oil droplets in the case of DHA encapsulation. Thus, the greater release of DHA and other dietary cannabinoids present may have activated the cannabinoid system differently, possibly more locally along the gastrointestinal tract. However, further studies are needed to evaluate the synergy between DHA encapsulation, fasting, hormones regulating food intake, and animal growth.
Collapse
Affiliation(s)
| | | | | | | | | | - Frédérique Pédrono
- National Research Institute for Agriculture, Food and Environment (INRAE), L’Institut Agro Rennes-Angers, Science and Technology of Milk and Egg (STLO), 35042 Rennes, France; (J.W.); (J.O.); (Y.L.G.); (F.B.); (D.D.)
| |
Collapse
|
22
|
Martin EL, Baker NL, Sempio C, Christians U, Klawitter J, McRae-Clark AL. Sex differences in endocannabinoid tone in a pilot study of cannabis use disorder and acute cannabis abstinence. Addict Biol 2023; 28:e13337. [PMID: 37753564 PMCID: PMC10539022 DOI: 10.1111/adb.13337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023]
Abstract
Cannabis use disorder (CUD) presents differently in men and women, particularly in symptoms of cannabis withdrawal. Novel pharmacotherapeutic interventions for CUD, such as those that target the endocannabinoid (eCB) system, must be developed in a manner consistent with these sex differences. The present pilot study sought to prospectively assess sex differences in cannabis withdrawal in a small sample of adults with moderate-to-severe CUD and to determine if withdrawal was associated with peripheral eCB and eCB congener tone. Men and women (n = 5/sex) completed 2 weeks of study participation separated by 1 month; in the latter week, participants abstained from cannabis use. Each week, participants attended in-person laboratory visits during which blood was drawn repeatedly to assess plasma eCB and eCB congener tone. Participants also completed multiple daily ambulatory assessments to assess cannabis use and withdrawal symptoms. As anticipated, women reported a greater increase in withdrawal symptoms during the abstinent week [Δ = 9.4 (SE = 1.1); p < 0.001] than men [Δ = 1.2 (SE = 1.2); p = 0.35]. Sex differences in levels of the eCB N-arachidonoylethanolamide (AEA), as well as the eCB congeners stearoylethanolamide (SEA) and linoleylethanolamide (LEA), were evident during abstinence at the morning time point only (p's < 0.05). LEA was associated with withdrawal symptom expression in both sexes [β = 0.16 (SE = 0.09)] and palmitoylethanolamide (PEA) [β = 0.22 (SE = 0.13)] and 2-arachidonoylglycerol (2-AG) [β = 0.32 (SE = 0.15)] were associated with withdrawal symptoms in women only. Pharmacotherapeutic development for CUD should consider evident sex differences in eCB and eCB congener tone during abstinence and their associations with cannabis withdrawal, as eCB-based interventions may produce differential effects by sex.
Collapse
Affiliation(s)
- Erin L. Martin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC USA
| | - Nathaniel L. Baker
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC USA
| | - Cristina Sempio
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Uwe Christians
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Jost Klawitter
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO USA
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO USA
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Aimee L. McRae-Clark
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC USA
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC USA
- Ralph H. Johnson VA Medical Center, Charleston, SC USA
| |
Collapse
|
23
|
Belali R, Mard SA, Khoshnam SE, Bavarsad K, Sarkaki A, Farbood Y. Anandamide improves food intake and orexinergic neuronal activity in the chronic sleep deprivation induction model in rats by modulating the expression of the CB1 receptor in the lateral hypothalamus. Neuropeptides 2023; 101:102336. [PMID: 37290176 DOI: 10.1016/j.npep.2023.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 06/10/2023]
Abstract
Sleep deprivation alters orexinergic neuronal activity in the lateral hypothalamus (LH), which is the main regulator of sleep-wake, arousal, appetite, and energy regulation processes. Cannabinoid receptor (CBR) expression in this area is involved in modulating the function of orexin neurons. In this study, we investigated the effects of endocannabinoid anandamide (AEA) administration on improving food intake and appetite by modulating the activity of orexin neurons and CB1R expression after chronic sleep deprivation. Adult male Wistar rats (200-250 g) were randomly divided into three groups: control + vehicle (Control), chronic sleep deprivation + vehicle (SD), and chronic sleep deprivation +20 mg/kg AEA (SD + A). For SD induction, the rats were kept in a sleep deprivation device for 18 h (7 a.m. to 1 a.m.) daily for 21 days. Weight gain, food intake, the electrical power of orexin neurons, CB1R mRNA expression in hypothalamus, CB1R protein expression in the LH, TNF-α, IL-6, IL-4 levels and antioxidant activity in hypothalamus were measured after SD induction. Our results showed that AEA administration significantly improved food intake (p < 0.01), Electrical activity of orexin neurons (p < 0.05), CB1R expression in the hypothalamus (p < 0.05), and IL-4 levels (p < 0.05). AEA also reduced mRNA expression of OX1R and OX2R (p < 0.01 and p < 0.05 respectively), also IL-6 and TNF-α (p < 0.01) and MDA level (p < 0.05) in hypothalamic tissue. As a consequence, AEA modulates orexinergic system function and improves food intake by regulating the expression of the CB1 receptor in the LH in sleep deprived rats.
Collapse
Affiliation(s)
- Rafie Belali
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kowsar Bavarsad
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
24
|
Szanda G, Jourdan T, Wisniewski É, Cinar R, Godlewski G, Rajki A, Liu J, Chedester L, Szalai B, Tóth AD, Soltész-Katona E, Hunyady L, Inoue A, Horváth VB, Spät A, Tam J, Kunos G. Cannabinoid receptor type 1 (CB 1R) inhibits hypothalamic leptin signaling via β-arrestin1 in complex with TC-PTP and STAT3. iScience 2023; 26:107207. [PMID: 37534180 PMCID: PMC10392084 DOI: 10.1016/j.isci.2023.107207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/20/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
Molecular interactions between anorexigenic leptin and orexigenic endocannabinoids, although of great metabolic significance, are not well understood. We report here that hypothalamic STAT3 signaling in mice, initiated by physiological elevations of leptin, is diminished by agonists of the cannabinoid receptor 1 (CB1R). Measurement of STAT3 activation by semi-automated confocal microscopy in cultured neurons revealed that this CB1R-mediated inhibition requires both T cell protein tyrosine phosphatase (TC-PTP) and β-arrestin1 but is independent of changes in cAMP. Moreover, β-arrestin1 translocates to the nucleus upon CB1R activation and binds both STAT3 and TC-PTP. Consistently, CB1R activation failed to suppress leptin signaling in β-arrestin1 knockout mice in vivo, and in neural cells deficient in CB1R, β-arrestin1 or TC-PTP. Altogether, CB1R activation engages β-arrestin1 to coordinate the TC-PTP-mediated inhibition of the leptin-evoked neuronal STAT3 response. This mechanism may restrict the anorexigenic effects of leptin when hypothalamic endocannabinoid levels rise, as during fasting or in diet-induced obesity.
Collapse
Affiliation(s)
- Gergő Szanda
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
- ELKH-SE Laboratory of Molecular Physiology Research Group, Eötvös Loránd Research Network, 1094 Budapest, Hungary
| | - Tony Jourdan
- INSERM Center Lipids, Nutrition, Cancer LNC U1231, 21000 Dijon, France
| | - Éva Wisniewski
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anikó Rajki
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
- ELKH-SE Laboratory of Molecular Physiology Research Group, Eötvös Loránd Research Network, 1094 Budapest, Hungary
| | - Jie Liu
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lee Chedester
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bence Szalai
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
| | - András Dávid Tóth
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
- Department of Internal Medicine and Haematology, Semmelweis University, 1085 Budapest, Hungary
| | - Eszter Soltész-Katona
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Centre of Excellence of the Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Centre of Excellence of the Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Viktória Bea Horváth
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
| | - András Spät
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Podinić T, Werstuck G, Raha S. The Implications of Cannabinoid-Induced Metabolic Dysregulation for Cellular Differentiation and Growth. Int J Mol Sci 2023; 24:11003. [PMID: 37446181 DOI: 10.3390/ijms241311003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The endocannabinoid system (ECS) governs and coordinates several physiological processes through an integrated signaling network, which is responsible for inducing appropriate intracellular metabolic signaling cascades in response to (endo)cannabinoid stimulation. This intricate cellular system ensures the proper functioning of the immune, reproductive, and nervous systems and is involved in the regulation of appetite, memory, metabolism, and development. Cannabinoid receptors have been observed on both cellular and mitochondrial membranes in several tissues and are stimulated by various classes of cannabinoids, rendering the ECS highly versatile. In the context of growth and development, emerging evidence suggests a crucial role for the ECS in cellular growth and differentiation. Indeed, cannabinoids have the potential to disrupt key energy-sensing metabolic signaling pathways requiring mitochondrial-ER crosstalk, whose functioning is essential for successful cellular growth and differentiation. This review aims to explore the extent of cannabinoid-induced cellular dysregulation and its implications for cellular differentiation.
Collapse
Affiliation(s)
- Tina Podinić
- The Department of Pediatrics and the Graduate Program in Medical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Geoff Werstuck
- Department of Medicine and the Thrombosis and Atherosclerosis Research Institute, David Braley Research Institute, McMaster University, Hamilton, ON L8L 2X2, Canada
| | - Sandeep Raha
- The Department of Pediatrics and the Graduate Program in Medical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
26
|
Vasincu A, Rusu RN, Ababei DC, Neamțu M, Arcan OD, Macadan I, Beșchea Chiriac S, Bild W, Bild V. Exploring the Therapeutic Potential of Cannabinoid Receptor Antagonists in Inflammation, Diabetes Mellitus, and Obesity. Biomedicines 2023; 11:1667. [PMID: 37371762 DOI: 10.3390/biomedicines11061667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Recently, research has greatly expanded the knowledge of the endocannabinoid system (ECS) and its involvement in several therapeutic applications. Cannabinoid receptors (CBRs) are present in nearly every mammalian tissue, performing a vital role in different physiological processes (neuronal development, immune modulation, energy homeostasis). The ECS has an essential role in metabolic control and lipid signaling, making it a potential target for managing conditions such as obesity and diabetes. Its malfunction is closely linked to these pathological conditions. Additionally, the immunomodulatory function of the ECS presents a promising avenue for developing new treatments for various types of acute and chronic inflammatory conditions. Preclinical investigations using peripherally restricted CBR antagonists that do not cross the BBB have shown promise for the treatment of obesity and metabolic diseases, highlighting the importance of continuing efforts to discover novel molecules with superior safety profiles. The purpose of this review is to examine the roles of CB1R and CB2Rs, as well as their antagonists, in relation to the above-mentioned disorders.
Collapse
Affiliation(s)
- Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Monica Neamțu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Oana Dana Arcan
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Ioana Macadan
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Sorin Beșchea Chiriac
- Department of Toxicology, "Ion Ionescu de la Brad" University of Life Sciences, 8 M. Sadoveanu Alley, 700489 Iasi, Romania
| | - Walther Bild
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
27
|
Bourdy R, Befort K. The Role of the Endocannabinoid System in Binge Eating Disorder. Int J Mol Sci 2023; 24:ijms24119574. [PMID: 37298525 DOI: 10.3390/ijms24119574] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Eating disorders are multifactorial disorders that involve maladaptive feeding behaviors. Binge eating disorder (BED), the most prevalent of these in both men and women, is characterized by recurrent episodes of eating large amounts of food in a short period of time, with a subjective loss of control over eating behavior. BED modulates the brain reward circuit in humans and animal models, which involves the dynamic regulation of the dopamine circuitry. The endocannabinoid system plays a major role in the regulation of food intake, both centrally and in the periphery. Pharmacological approaches together with research using genetically modified animals have strongly highlighted a predominant role of the endocannabinoid system in feeding behaviors, with the specific modulation of addictive-like eating behaviors. The purpose of the present review is to summarize our current knowledge on the neurobiology of BED in humans and animal models and to highlight the specific role of the endocannabinoid system in the development and maintenance of BED. A proposed model for a better understanding of the underlying mechanisms involving the endocannabinoid system is discussed. Future research will be necessary to develop more specific treatment strategies to reduce BED symptoms.
Collapse
Affiliation(s)
- Romain Bourdy
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Université de Strasbourg, UMR7364, CNRS, 12 Rue Goethe, 67000 Strasbourg, France
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Université de Strasbourg, UMR7364, CNRS, 12 Rue Goethe, 67000 Strasbourg, France
| |
Collapse
|
28
|
Mir HD, Giorgini G, Di Marzo V. The emerging role of the endocannabinoidome-gut microbiome axis in eating disorders. Psychoneuroendocrinology 2023; 154:106295. [PMID: 37229916 DOI: 10.1016/j.psyneuen.2023.106295] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Among the sources of chemical signals regulating food intake, energy metabolism and body weight, few have attracted recently as much attention as the expanded endocannabinoid system, or endocannabinoidome (eCBome), and the gut microbiome, the two systems on which this review article is focussed. Therefore, it is legitimate to expect that these two systems also play a major role in the etiopathology of eating disorders (EDs), in particular of anorexia nervosa, bulimia nervosa and binge-eating disorder. The major mechanisms through which, also via interactions with other endogenous signaling systems, the eCBome, with its several lipid mediators and receptors, and the gut microbiome, via its variety of microbial kingdoms, phyla and species, and armamentarium of metabolites, intervene in these disorders, are described here, based on several published studies in either experimental models or patients. Additionally, in view of the emerging multi-faceted cross-talk mechanisms between these two complex systems, we discuss the possibility that the eCBome-gut microbiome axis is also involved in EDs.
Collapse
Affiliation(s)
- Hayatte-Dounia Mir
- Centre de Recherche de l'Institut Universitaire de Pneumologie et Cardiologie (CRIUCPQ), Université Laval, Québec, Canada; Department of Medicine, Faculty of Medicine (FMED), Université Laval, Québec, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada
| | - Giada Giorgini
- Centre de Recherche de l'Institut Universitaire de Pneumologie et Cardiologie (CRIUCPQ), Université Laval, Québec, Canada; Department of Medicine, Faculty of Medicine (FMED), Université Laval, Québec, Canada; Unité Mixte Internationale en Recherche Chimique et Biomoléculaire sur le Microbiome et son Impact sur la Santé Métabolique et la Nutrition (UMI-MicroMeNu) entre l'Université Laval, Québec, Canada, et le Consiglio Nazionale delle Ricerche, Institute of Biomolecular Chemistry (ICB-CNR), Pozzuoli, Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche de l'Institut Universitaire de Pneumologie et Cardiologie (CRIUCPQ), Université Laval, Québec, Canada; Department of Medicine, Faculty of Medicine (FMED), Université Laval, Québec, Canada; Unité Mixte Internationale en Recherche Chimique et Biomoléculaire sur le Microbiome et son Impact sur la Santé Métabolique et la Nutrition (UMI-MicroMeNu) entre l'Université Laval, Québec, Canada, et le Consiglio Nazionale delle Ricerche, Institute of Biomolecular Chemistry (ICB-CNR), Pozzuoli, Italy; Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec, Canada; Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, Canada; École de nutrition, Faculté des Sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, Québec, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada.
| |
Collapse
|
29
|
Levichev A, Faumont S, Berner RZ, Purcell Z, White AM, Chicas-Cruz K, Lockery SR. The conserved endocannabinoid anandamide modulates olfactory sensitivity to induce hedonic feeding in C. elegans. Curr Biol 2023; 33:1625-1639.e4. [PMID: 37084730 PMCID: PMC10175219 DOI: 10.1016/j.cub.2023.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 04/23/2023]
Abstract
The ability of cannabis to increase food consumption has been known for centuries. In addition to producing hyperphagia, cannabinoids can amplify existing preferences for calorically dense, palatable food sources, a phenomenon called hedonic amplification of feeding. These effects result from the action of plant-derived cannabinoids that mimic endogenous ligands called endocannabinoids. The high degree of conservation of cannabinoid signaling at the molecular level across the animal kingdom suggests hedonic feeding may also be widely conserved. Here, we show that exposure of Caenorhabditis elegans to anandamide, an endocannabinoid common to nematodes and mammals, shifts both appetitive and consummatory responses toward nutritionally superior food, an effect analogous to hedonic feeding. We find that anandamide's effect on feeding requires the C. elegans cannabinoid receptor NPR-19 but can also be mediated by the human CB1 cannabinoid receptor, indicating functional conservation between the nematode and mammalian endocannabinoid systems for the regulation of food preferences. Furthermore, anandamide has reciprocal effects on appetitive and consummatory responses to food, increasing and decreasing responses to inferior and superior foods, respectively. Anandamide's behavioral effects require the AWC chemosensory neurons, and anandamide renders these neurons more sensitive to superior foods and less sensitive to inferior foods, mirroring the reciprocal effects seen at the behavioral level. Our findings reveal a surprising degree of functional conservation in the effects of endocannabinoids on hedonic feeding across species and establish a new system to investigate the cellular and molecular basis of endocannabinoid system function in the regulation of food choice.
Collapse
Affiliation(s)
- Anastasia Levichev
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Serge Faumont
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Rachel Z Berner
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Zhifeng Purcell
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Amanda M White
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Kathy Chicas-Cruz
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Shawn R Lockery
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
30
|
Kibret BG, Canseco-Alba A, Onaivi ES, Engidawork E. Crosstalk between the endocannabinoid and mid-brain dopaminergic systems: Implication in dopamine dysregulation. Front Behav Neurosci 2023; 17:1137957. [PMID: 37009000 PMCID: PMC10061032 DOI: 10.3389/fnbeh.2023.1137957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Endocannabinoids (eCBs) and the expanded endocannabinoid system (ECS)-"endocannabinoidome", consists of the endogenous ligands, eCBs, their canonical and non-canonical receptor subtypes, and their synthesizing and metabolizing enzymes. This system modulates a wide range of body functions and acts as a retrograde signaling system within the central nervous system (CNS) by inhibition of classical transmitters, and plays a vital modulatory function on dopamine, a major neurotransmitter in the CNS. Dopamine is involved in different behavioral processes and contributes to different brain disorders-including Parkinson's disease, schizophrenia, and drug addiction. After synthesis in the neuronal cytosol, dopamine is packaged into synaptic vesicles until released by extracellular signals. Calcium dependent neuronal activation results in the vesicular release of dopamine and interacts with different neurotransmitter systems. The ECS, among others, is involved in the regulation of dopamine release and the interaction occurs either through direct or indirect mechanisms. The cross-talk between the ECS and the dopaminergic system has important influence in various dopamine-related neurobiological and pathologic conditions and investigating this interaction might help identify therapeutic targets and options in disorders of the CNS associated with dopamine dysregulation.
Collapse
Affiliation(s)
- Berhanu Geresu Kibret
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Ana Canseco-Alba
- Direction de Investigacion, Instituto Nacional de Neurologia y Neurocircirugia “Manuel Velasco Suarez”, Mexico City, Mexico
| | - Emmanuel S. Onaivi
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
31
|
Chaput JP, McHill AW, Cox RC, Broussard JL, Dutil C, da Costa BGG, Sampasa-Kanyinga H, Wright KP. The role of insufficient sleep and circadian misalignment in obesity. Nat Rev Endocrinol 2023; 19:82-97. [PMID: 36280789 PMCID: PMC9590398 DOI: 10.1038/s41574-022-00747-7] [Citation(s) in RCA: 248] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 01/21/2023]
Abstract
Traditional risk factors for obesity and the metabolic syndrome, such as excess energy intake and lack of physical activity, cannot fully explain the high prevalence of these conditions. Insufficient sleep and circadian misalignment predispose individuals to poor metabolic health and promote weight gain and have received increased research attention in the past 10 years. Insufficient sleep is defined as sleeping less than recommended for health benefits, whereas circadian misalignment is defined as wakefulness and food intake occurring when the internal circadian system is promoting sleep. This Review discusses the impact of insufficient sleep and circadian misalignment in humans on appetite hormones (focusing on ghrelin, leptin and peptide-YY), energy expenditure, food intake and choice, and risk of obesity. Some potential strategies to reduce the adverse effects of sleep disruption on metabolic health are provided and future research priorities are highlighted. Millions of individuals worldwide do not obtain sufficient sleep for healthy metabolic functions. Furthermore, modern working patterns, lifestyles and technologies are often not conducive to adequate sleep at times when the internal physiological clock is promoting it (for example, late-night screen time, shift work and nocturnal social activities). Efforts are needed to highlight the importance of optimal sleep and circadian health in the maintenance of metabolic health and body weight regulation.
Collapse
Affiliation(s)
- Jean-Philippe Chaput
- Healthy Active Living and Obesity Research Group, CHEO Research Institute, Ottawa, ON, Canada.
- Department of Paediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Andrew W McHill
- Sleep, Chronobiology, and Health Laboratory, School of Nursing, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Rebecca C Cox
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Josiane L Broussard
- Sleep and Metabolism Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Caroline Dutil
- Healthy Active Living and Obesity Research Group, CHEO Research Institute, Ottawa, ON, Canada
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Bruno G G da Costa
- Research Center in Physical Activity and Health, Department of Physical Education, School of Sports, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Hugues Sampasa-Kanyinga
- Healthy Active Living and Obesity Research Group, CHEO Research Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Kenneth P Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
32
|
Endocannabinoid 2-Arachidonoylglycerol Levels in the Anterior Cingulate Cortex, Caudate Putamen, Nucleus Accumbens, and Piriform Cortex Were Upregulated by Chronic Restraint Stress. Cells 2023; 12:cells12030393. [PMID: 36766735 PMCID: PMC9913316 DOI: 10.3390/cells12030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Endocannabinoid 2-arachidonoylglycerol (2-AG) has been implicated in habituation to stress, and its augmentation reduces stress-induced anxiety-like behavior. Chronic restraint stress (CRS) changes the 2-AG levels in some gross brain areas, such as the forebrain. However, the detailed spatial distribution of 2-AG and its changes by CRS in stress processing-related anatomical structures such as the anterior cingulate cortex (ACC), caudate putamen (CP), nucleus accumbens (NAc), and piriform cortex (PIR) are still unclear. In this study, mice were restrained for 30 min in a 50 mL-centrifuge tube for eight consecutive days, followed by imaging of the coronal brain sections of control and stressed mice using desorption electrospray ionization mass spectrometry imaging (DESI-MSI). The results showed that from the forebrain to the cerebellum, 2-AG levels were highest in the hypothalamus and lowest in the hippocampal region. 2-AG levels were significantly (p < 0.05) upregulated and 2-AG precursors levels were significantly (p < 0.05) downregulated in the ACC, CP, NAc, and PIR of stressed mice compared with control mice. This study provided direct evidence of 2-AG expression and changes, suggesting that 2-AG levels are increased in the ACC CP, NAc, and PIR when individuals are under chronic stress.
Collapse
|
33
|
Ghazali R, Patel VB. Nonneurological aspects of the endocannabinoid system: Nonalcoholic fatty liver disease. NEUROBIOLOGY AND PHYSIOLOGY OF THE ENDOCANNABINOID SYSTEM 2023:507-518. [DOI: 10.1016/b978-0-323-90877-1.00023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Endocannabinoid System Regulation in Female Rats with Recurrent Episodes of Binge Eating. Int J Mol Sci 2022; 23:ijms232315228. [PMID: 36499556 PMCID: PMC9738776 DOI: 10.3390/ijms232315228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Recurrent Binge Eating (BE) episodes characterize several eating disorders. Here, we attempted to reassemble a condition closer to BE disorder, and we analyzed whether recurrent episodes might evoke molecular alterations in the hypothalamus of rats. The hypothalamus is a brain region which is sensitive to stress and relevant in motivated behaviors, such as food intake. A well-characterized animal model of BE, in which a history of intermittent food restriction and stress induce binge-like palatable food consumption, was used to analyze the transcriptional regulation of the endocannabinoid system (ECS). We detected, in rats showing the BE behavior, an up-regulated gene expression of cannabinoid type-1 receptor (CB1), sn-1-specific diacylglycerol lipase, as well as fatty acid amide hydrolase (Faah) and monoacylglycerol lipase. A selective reduction in DNA methylation was also observed at the promoter of Faah, which is consistent with the changes in the gene expression. Moreover, BE behavior in rats was associated with an increase in anandamide (AEA) levels. Our findings support the relevant role of the ECS in the regulation of food intake in rats subjected to repeated BE episodes, and, in particular, on AEA signaling, acting via CB1 and FAAH modulation. Notably, the epigenetic regulation of the Faah gene might suggest this enzyme as a possible target for developing new therapeutical approaches.
Collapse
|
35
|
Chivite M, Comesaña S, Calo J, Soengas JL, Conde-Sieira M. Endocannabinoid receptors are involved in enhancing food intake in rainbow trout. Horm Behav 2022; 146:105277. [PMID: 36356457 DOI: 10.1016/j.yhbeh.2022.105277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
The mechanisms involved in hedonic regulation of food intake, including endocannabinoid system (ECs) are scarcely known in fish. We recently demonstrate in rainbow trout the presence of a rewarding response mediated by ECs in hypothalamus and telencephalon when fish fed a lipid-enriched diet, and that central administration of main agonists of ECs namely AEA or 2-AG exert a bimodal effect on feed intake in fish with low doses inducing an increase that disappears with the high dose of both endocannabinoids (EC). To assess the precise involvement of the different receptors of the ECs (CNR1, TRPV1, and GPR55) in this response we injected intracerebroventricularly AEA or 2-AG in the absence/presence of specific receptor antagonists (AM251, capsazepine, and ML193; respectively). The presence of antagonists clearly counteracts the effect of EC supporting the specificity of EC action inducing changes not only in ECs but also in GABA and glutamate metabolism ultimately leading to the increase observed in food intake response.
Collapse
Affiliation(s)
- Mauro Chivite
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - Sara Comesaña
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - Jessica Calo
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - José L Soengas
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - Marta Conde-Sieira
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain.
| |
Collapse
|
36
|
Huang X, Zhou Y, Sun Y, Wang Q. Intestinal fatty acid binding protein: A rising therapeutic target in lipid metabolism. Prog Lipid Res 2022; 87:101178. [PMID: 35780915 DOI: 10.1016/j.plipres.2022.101178] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
Fatty acid binding proteins (FABPs) are key proteins in lipid transport, and the isoforms are segregated according to their tissue origins. Several isoforms, such as adipose-FABP and epidermal-FABP, have been shown to participate in multiple pathologic processes due to their ubiquitous expression. Intestinal fatty acid binding protein, also termed FABP2 or I-FABP, is specifically expressed in the small intestine. FABP2 can traffic lipids from the intestinal lumen to enterocytes and bind superfluous fatty acids to maintain a steady pool of fatty acids in the epithelium. As a lipid chaperone, FABP2 can also carry lipophilic drugs to facilitate targeted transport. When the integrity of the intestinal epithelium is disrupted, FABP2 is released into the circulation. Thus, it can potentially serve as a clinical biomarker. In this review, we discuss the pivotal role of FABP2 in intestinal lipid metabolism. We also summarize the molecular interactions that have been reported to date, highlighting the clinical prospects of FABP2 research.
Collapse
Affiliation(s)
- Xi Huang
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Youci Zhou
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunwei Sun
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qijun Wang
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
37
|
Park Y, Watkins BA. Dietary PUFAs and Exercise Dynamic Actions on Endocannabinoids in Brain: Consequences for Neural Plasticity and Neuroinflammation. Adv Nutr 2022; 13:1989-2001. [PMID: 35675221 PMCID: PMC9526838 DOI: 10.1093/advances/nmac064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/15/2021] [Accepted: 06/02/2022] [Indexed: 01/28/2023] Open
Abstract
The brain and peripheral nervous system provide oversight to muscle physiology and metabolism. Muscle is the largest organ in the body and critical for glucose sensitivity, prevention of diabetes, and control of obesity. The central nervous system produces endocannabinoids (eCBs) that play a role in brain neurobiology, such as inflammation and pain. Interestingly, studies in humans and rodents show that a moderate duration of exercise increases eCBs in the brain and blood and influences cannabinoid receptors. Cannabinoid actions in the nervous system have advanced our understanding of pain, well-being, and disease. Nutrition is an important aspect of brain and eCB physiology because eCBs are biosynthesized from PUFAs. The primary eCB metabolites are derived from arachidonic acid, a 20:4n-6 (ω-6) PUFA, and the n-3 (ω-3) PUFAs, EPA and DHA. The eCBs bind to cannabinoid receptors CB1 and CB2 to exert a wide range of activities, such as stimulating appetite, influencing energy metabolism, supporting the immune system, and facilitating neuroplasticity. A diet containing different essential n-6 and n-3 PUFAs will dominate the formation of specific eCBs, and subsequently their actions as ligands for CB1 and CB2. The eCBs also function as substrates for cyclooxygenase enzymes, including potential substrates for the oxylipins (OxLs), which can be proinflammatory. Together, the eCBs and OxLs act as modulators of neuroinflammation. Thus, dietary PUFAs have implications for exercise responses via synthesis of eCBs and their effects on neuroinflammation. Neurotrophins also participate in interactions between diet and the eCBs, specifically brain-derived neurotrophic factor (BDNF). BDNF supports neuroplasticity in cooperation with the endocannabinoid system (ECS). This review will describe the role of PUFAs in eCB biosynthesis, discuss the ECS and OxLs in neuroinflammation, highlight the evidence for exercise effects on eCBs, and describe eCB and BDNF actions on neuroplasticity.
Collapse
|
38
|
Endocannabinoid signaling of homeostatic status modulates functional connectivity in reward and salience networks. Psychopharmacology (Berl) 2022; 239:1311-1319. [PMID: 34212205 DOI: 10.1007/s00213-021-05890-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/27/2021] [Indexed: 12/24/2022]
Abstract
RATIONALE Endocannabinoids are well poised to regulate crosstalk between energy sensing of hunger and satiety and reward-driven motivation. OBJECTIVES Here, we aimed to unravel associations between plasma endocannabinoids and brain connectivity in homeostatic and reward circuits across hunger and satiety states. METHODS Fifteen participants (7 females) underwent two counter-balanced resting-state functional magnetic resonance imaging scans, one after overnight fasting and one after consumption of a standardized filling meal (satiety). Before each scan, we drew blood to measure plasma endocannabinoid concentrations (anandamide [AEA], anandamide-derived POEA, and 2-arachidonoylglycerol [2-AG]), analyzed with liquid chromatography tandem mass spectrometry. RESULTS We found that AEA levels were associated with increased connectivity between the lateral hypothalamus and the ventral striatum during satiety. Furthermore, fasting AEA levels correlated with connectivity between the ventral striatum and the anterior cingulate cortex and the insula. CONCLUSIONS Altogether, results suggest that peripheral AEA concentrations are sensitive to homeostatic changes and linked to neural communication in reward and salience networks. Findings may have significant implications for understanding normal and abnormal interactions between homeostatic input and reward valuation.
Collapse
|
39
|
Khalid M, Alqarni MH, Shoaib A, Wahab S, Foudah AI, Aljarba TM, Akhtar J, Alamri MA, Ahmad S. Anti-Obesity Action of Boerhavia diffusa in Rats against High-Fat Diet-Induced Obesity by Blocking the Cannabinoid Receptors. PLANTS 2022; 11:plants11091158. [PMID: 35567159 PMCID: PMC9105516 DOI: 10.3390/plants11091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022]
Abstract
Obesity, type 2 diabetes, and cardiovascular illnesses have known risk factors in the pathophysiology of an unhealthy diet. Obesity now affects almost a third of the world’s population and is widely seen as a side effect of the Industrial Revolution. The current study aimed to determine natural phytoconstituents that have a significant role in the management of obesity. In this view, we have selected the plant Boerhavia diffusa which has different pharmacological actions and is traditionally used to treat sickness caused by lifestyle modification. The methanolic extract of the plant material was prepared and then further fractionated by means of solvents (n-hexane, chloroform, n-butanol, and water). The absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis was done by taking the active constituent of the plant (Punarnavine, Boeravinone B, and Eupalitin). The molecular docking analysis of these compounds is also performed by targeting the cannabinoid receptor (CR). Structural analysis of the best complex was done using the Discovery Studio visualizer tool. High-performance thin-layer chromatography (HPTLC) analysis was done by using a solvent system (chloroform and methanol in a ratio of 8:2). The in vivo study was done on the Sprague–Dawley (SD) rats treated with a high-fat diet to induce obesity and different parameters such as body weight, behavioral activity, organ fat pad weight, lipid profile, and liver biomarkers (AST, ALT, BUN, and creatinine) were estimated. The result of the study suggested that the phytoconstituents of B. diffusa upon molecular docking revealed the possible binding mechanisms with the CR and thus show potent anti-obesity action.
Collapse
Affiliation(s)
- Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.H.A.); (A.I.F.); (T.M.A.)
- Correspondence:
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.H.A.); (A.I.F.); (T.M.A.)
| | - Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (A.S.); (S.A.)
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia;
| | - Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.H.A.); (A.I.F.); (T.M.A.)
| | - Tariq M. Aljarba
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.H.A.); (A.I.F.); (T.M.A.)
| | - Juber Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow 226026, India;
| | - Mubarak A. Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Sarfaraz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (A.S.); (S.A.)
| |
Collapse
|
40
|
Campos A, Port JD, Acosta A. Integrative Hedonic and Homeostatic Food Intake Regulation by the Central Nervous System: Insights from Neuroimaging. Brain Sci 2022; 12:431. [PMID: 35447963 PMCID: PMC9032173 DOI: 10.3390/brainsci12040431] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Food intake regulation in humans is a complex process controlled by the dynamic interaction of homeostatic and hedonic systems. Homeostatic regulation is controlled by appetitive signals from the gut, adipose tissue, and the vagus nerve, while conscious and unconscious reward processes orchestrate hedonic regulation. On the one hand, sight, smell, taste, and texture perception deliver potent food-related feedback to the central nervous system (CNS) and influence brain areas related to food reward. On the other hand, macronutrient composition stimulates the release of appetite signals from the gut, which are translated in the CNS into unconscious reward processes. This multi-level regulation process of food intake shapes and regulates human ingestive behavior. Identifying the interface between hormones, neurotransmitters, and brain areas is critical to advance our understanding of conditions like obesity and develop better therapeutical interventions. Neuroimaging studies allow us to take a glance into the central nervous system (CNS) while these processes take place. This review focuses on the available neuroimaging evidence to describe this interaction between the homeostatic and hedonic components in human food intake regulation.
Collapse
Affiliation(s)
- Alejandro Campos
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - John D. Port
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
41
|
Leuillier M, Duflot T, Ménoret S, Messaoudi H, Djerada Z, Groussard D, Denis RG, Chevalier L, Karoui A, Panthu B, Thiébaut PA, Schmitz-Afonso I, Nobis S, Campart C, Henry T, Sautreuil C, Luquet SH, Beseme O, Féliu C, Peyret H, Nicol L, Henry JP, Renet S, Mulder P, Wan D, Tesson L, Heslan JM, Duché A, Jacques S, Ziegler F, Brunel V, Rautureau GJ, Monteil C, do Rego JL, do Rego JC, Afonso C, Hammock B, Madec AM, Pinet F, Richard V, Anegon I, Guignabert C, Morisseau C, Bellien J. CRISPR/Cas9-mediated inactivation of the phosphatase activity of soluble epoxide hydrolase prevents obesity and cardiac ischemic injury. J Adv Res 2022; 43:163-174. [PMID: 36585106 PMCID: PMC9811321 DOI: 10.1016/j.jare.2022.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Although the physiological role of the C-terminal hydrolase domain of the soluble epoxide hydrolase (sEH-H) is well investigated, the function of its N-terminal phosphatase activity (sEH-P) remains unknown. OBJECTIVES This study aimed to assess in vivo the physiological role of sEH-P. METHODS CRISPR/Cas9 was used to generate a novel knock-in (KI) rat line lacking the sEH-P activity. RESULTS The sEH-P KI rats has a decreased metabolism of lysophosphatidic acids to monoacyglycerols. KI rats grew almost normally but with less weight and fat mass gain while insulin sensitivity was increased compared to wild-type rats. This lean phenotype was more marked in males than in female KI rats and mainly due to decreased food consumption and enhanced energy expenditure. In fact, sEH-P KI rats had an increased lipolysis allowing to supply fatty acids as fuel to potentiate brown adipose thermogenesis under resting condition and upon cold exposure. The potentiation of thermogenesis was abolished when blocking PPARγ, a nuclear receptor activated by intracellular lysophosphatidic acids, but also when inhibiting simultaneously sEH-H, showing a functional interaction between the two domains. Furthermore, sEH-P KI rats fed a high-fat diet did not gain as much weight as the wild-type rats, did not have increased fat mass and did not develop insulin resistance or hepatic steatosis. In addition, sEH-P KI rats exhibited enhanced basal cardiac mitochondrial activity associated with an enhanced left ventricular contractility and were protected against cardiac ischemia-reperfusion injury. CONCLUSION Our study reveals that sEH-P is a key player in energy and fat metabolism and contributes together with sEH-H to the regulation of cardiometabolic homeostasis. The development of pharmacological inhibitors of sEH-P appears of crucial importance to evaluate the interest of this promising therapeutic strategy in the management of obesity and cardiac ischemic complications.
Collapse
Affiliation(s)
- Matthieu Leuillier
- Normandy University, UniRouen, Inserm UMR1096 EnVI, FHU REMOD-VHF, F-76000 Rouen, France
| | - Thomas Duflot
- Normandy University, UniRouen, Inserm UMR1096 EnVI, FHU REMOD-VHF, F-76000 Rouen, France,Department of Pharmacology, Rouen University Hospital, F-76000 Rouen, France,Laboratory of Pharmacokinetics, Toxicology and Pharmacogenetics, Rouen University Hospital, F-76000 Rouen, France
| | - Séverine Ménoret
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France,Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France,Transgenesis Rat ImmunoPhenomic Platform, F-44000 Nantes, France
| | - Hind Messaoudi
- Normandy University, UniRouen, Inserm UMR1096 EnVI, FHU REMOD-VHF, F-76000 Rouen, France
| | - Zoubir Djerada
- Department of Pharmacology, EA 3801, SFR CAP-santé, Reims University Hospital, F-51095 Reims Cedex, France
| | - Déborah Groussard
- Normandy University, UniRouen, Inserm UMR1096 EnVI, FHU REMOD-VHF, F-76000 Rouen, France
| | - Raphaël G.P. Denis
- Unité de Biologie Fonctionnelle et Adaptative, Centre National la Recherche scientifique, Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Laurence Chevalier
- Normandie University, Unirouen, INSA Rouen, CNRS, Groupe de Physique des Matériaux-UMR6634, F-76000 Rouen, France
| | - Ahmed Karoui
- Normandie Univ, UNIROUEN, UNICAEN, ABTE, F-76000 Rouen, France
| | - Baptiste Panthu
- CarMeN Laboratory, INSERM, INRA, INSA, Université Claude Bernard Lyon 1, F-69600 Oullins, France
| | | | - Isabelle Schmitz-Afonso
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, F-76821, Mont-Saint-Aignan, Cedex, France
| | - Séverine Nobis
- Animal Behavioral Platform (SCAC), HeRacLeS Inserm US51-CNRS UAR2026, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, F-76183 Rouen, France
| | - Cynthia Campart
- Animal Behavioral Platform (SCAC), HeRacLeS Inserm US51-CNRS UAR2026, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, F-76183 Rouen, France
| | - Tiphaine Henry
- Animal Behavioral Platform (SCAC), HeRacLeS Inserm US51-CNRS UAR2026, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, F-76183 Rouen, France
| | - Camille Sautreuil
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F-76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Serge H. Luquet
- Unité de Biologie Fonctionnelle et Adaptative, Centre National la Recherche scientifique, Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Olivia Beseme
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Catherine Féliu
- Department of Pharmacology, EA 3801, SFR CAP-santé, Reims University Hospital, F-51095 Reims Cedex, France
| | - Hélène Peyret
- Department of Pharmacology, EA 3801, SFR CAP-santé, Reims University Hospital, F-51095 Reims Cedex, France
| | - Lionel Nicol
- Normandy University, UniRouen, Inserm UMR1096 EnVI, FHU REMOD-VHF, F-76000 Rouen, France
| | - Jean-Paul Henry
- Normandy University, UniRouen, Inserm UMR1096 EnVI, FHU REMOD-VHF, F-76000 Rouen, France
| | - Sylvanie Renet
- Normandy University, UniRouen, Inserm UMR1096 EnVI, FHU REMOD-VHF, F-76000 Rouen, France
| | - Paul Mulder
- Normandy University, UniRouen, Inserm UMR1096 EnVI, FHU REMOD-VHF, F-76000 Rouen, France
| | - Debin Wan
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Laurent Tesson
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France,Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France,Transgenesis Rat ImmunoPhenomic Platform, F-44000 Nantes, France
| | - Jean-Marie Heslan
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France,Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France,GenoCellEdit Platform, F-44000 Nantes, France
| | - Angéline Duché
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Genom'IC Platform, Bâtiment Gustave Roussy, F-75014 Paris, France
| | - Sébastien Jacques
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Genom'IC Platform, Bâtiment Gustave Roussy, F-75014 Paris, France
| | - Frédéric Ziegler
- Department of General Biochemistry, Rouen University Hospital, 76000 Rouen, France
| | - Valéry Brunel
- Department of General Biochemistry, Rouen University Hospital, 76000 Rouen, France
| | - Gilles J.P. Rautureau
- Centre de Résonance Magnétique Nucléaire à Très hauts Champs (FRE 2034, CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1), Université de Lyon, F-69100 Villeurbanne, France
| | | | - Jean-Luc do Rego
- Animal Behavioral Platform (SCAC), HeRacLeS Inserm US51-CNRS UAR2026, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, F-76183 Rouen, France
| | - Jean-Claude do Rego
- Animal Behavioral Platform (SCAC), HeRacLeS Inserm US51-CNRS UAR2026, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, F-76183 Rouen, France
| | - Carlos Afonso
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, F-76821, Mont-Saint-Aignan, Cedex, France
| | - Bruce Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Anne-Marie Madec
- CarMeN Laboratory, INSERM, INRA, INSA, Université Claude Bernard Lyon 1, F-69600 Oullins, France
| | - Florence Pinet
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Genom'IC Platform, Bâtiment Gustave Roussy, F-75014 Paris, France
| | - Vincent Richard
- Normandy University, UniRouen, Inserm UMR1096 EnVI, FHU REMOD-VHF, F-76000 Rouen, France,Department of Pharmacology, Rouen University Hospital, F-76000 Rouen, France
| | - Ignacio Anegon
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France,Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France,Transgenesis Rat ImmunoPhenomic Platform, F-44000 Nantes, France
| | - Christophe Guignabert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, F-92350 Le Plessis-Robinson, France,Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, F-94270 Le Kremlin-Bicêtre, France
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Jérémy Bellien
- Normandy University, UniRouen, Inserm UMR1096 EnVI, FHU REMOD-VHF, F-76000 Rouen, France; Department of Pharmacology, Rouen University Hospital, F-76000 Rouen, France.
| |
Collapse
|
42
|
Almeida MM, Dias-Rocha CP, Calviño C, Trevenzoli IH. Lipid endocannabinoids in energy metabolism, stress and developmental programming. Mol Cell Endocrinol 2022; 542:111522. [PMID: 34843899 DOI: 10.1016/j.mce.2021.111522] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) regulates brain development and function, energy metabolism and stress in a sex-, age- and tissue-dependent manner. The ECS comprises mainly the bioactive lipid ligands anandamide (AEA) and 2-aracdonoylglycerol (2-AG), cannabinoid receptors 1 and 2 (CB1 and CB2), and several metabolizing enzymes. The endocannabinoid tonus is increased in obesity, stimulating food intake and a preference for fat, reward, and lipid accumulation in peripheral tissues, as well as favoring a positive energy balance. Energy balance and stress responses share adaptive mechanisms regulated by the ECS that seem to underlie the complex relationship between feeding and emotional behavior. The ECS is also a key regulator of development. Environmental insults (diet, toxicants, and stress) in critical periods of developmental plasticity, such as gestation, lactation and adolescence, alter the ECS and may predispose individuals to the development of chronic diseases and behavioral changes in the long term. This review is focused on the ECS and the developmental origins of health and disease (DOHaD).
Collapse
Affiliation(s)
- Mariana Macedo Almeida
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | | | - Camila Calviño
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Isis Hara Trevenzoli
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
43
|
Schiano Moriello A, Di Marzo V, Petrosino S. Mutual Links between the Endocannabinoidome and the Gut Microbiome, with Special Reference to Companion Animals: A Nutritional Viewpoint. Animals (Basel) 2022; 12:ani12030348. [PMID: 35158670 PMCID: PMC8833664 DOI: 10.3390/ani12030348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 12/07/2022] Open
Abstract
There is growing evidence that perturbation of the gut microbiome, known as “dysbiosis”, is associated with the pathogenesis of human and veterinary diseases that are not restricted to the gastrointestinal tract. In this regard, recent studies have demonstrated that dysbiosis is linked to the pathogenesis of central neuroinflammatory disorders, supporting the existence of the so-called microbiome-gut-brain axis. The endocannabinoid system is a recently recognized lipid signaling system and termed endocannabinoidome monitoring a variety of body responses. Accumulating evidence demonstrates that a profound link exists between the gut microbiome and the endocannabinoidome, with mutual interactions controlling intestinal homeostasis, energy metabolism and neuroinflammatory responses during physiological conditions. In the present review, we summarize the latest data on the microbiome-endocannabinoidome mutual link in health and disease, focalizing the attention on gut dysbiosis and/or altered endocannabinoidome tone that may distort the bidirectional crosstalk between these two complex systems, thus leading to gastrointestinal and metabolic diseases (e.g., idiopathic inflammation, chronic enteropathies and obesity) as well as neuroinflammatory disorders (e.g., neuropathic pain and depression). We also briefly discuss the novel possible dietary interventions based not only on probiotics and/or prebiotics, but also, and most importantly, on endocannabinoid-like modulators (e.g., palmitoylethanolamide) for intestinal health and beyond.
Collapse
Affiliation(s)
- Aniello Schiano Moriello
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Napoli, Italy; (A.S.M.); (V.D.M.)
- Epitech Group SpA, Via Einaudi 13, 35030 Padova, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Napoli, Italy; (A.S.M.); (V.D.M.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ and INAF, Centre NUTRISS, Faculties of Medicine and Agriculture and Food Sciences, Université Laval, Quebéc City, QC G1V 4G5, Canada
| | - Stefania Petrosino
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Napoli, Italy; (A.S.M.); (V.D.M.)
- Epitech Group SpA, Via Einaudi 13, 35030 Padova, Italy
- Correspondence:
| |
Collapse
|
44
|
Khan RN, Maner-Smith K, A. Owens J, Barbian ME, Jones RM, R. Naudin C. At the heart of microbial conversations: endocannabinoids and the microbiome in cardiometabolic risk. Gut Microbes 2022; 13:1-21. [PMID: 33896380 PMCID: PMC8078674 DOI: 10.1080/19490976.2021.1911572] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiometabolic syndrome encompasses intertwined risk factors such as hypertension, dyslipidemia, elevated triglycerides, abdominal obesity, and other maladaptive metabolic and inflammatory aberrations. As the molecular mechanisms linking cardiovascular disease and metabolic disorders are investigated, endocannabinoids have emerged as molecules of interest. The endocannabinoid system (ECS) of biologically active lipids has been implicated in several conditions, including chronic liver disease, osteoporosis, and more recently in cardiovascular diseases. The gut microbiome is a major regulator of inflammatory and metabolic signaling in the host, and if disrupted, has the potential to drive metabolic and cardiovascular diseases. Extensive studies have unraveled the impact of the gut microbiome on host physiology, with recent reports showing that gut microbes exquisitely control the ECS, with significant influences on host metabolic and cardiac health. In this review, we outline how modulation of the gut microbiome affects host metabolism and cardiovascular health via the ECS, and how these findings could be exploited as novel therapeutic targets for various metabolic and cardiac diseases.
Collapse
Affiliation(s)
- Ramsha Nabihah Khan
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Kristal Maner-Smith
- Emory Integrated Metabolomics and Lipidomics Core, Emory University, Atlanta, Georgia, USA
| | - Joshua A. Owens
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Maria Estefania Barbian
- Division of Neonatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Rheinallt M. Jones
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Crystal R. Naudin
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA,CONTACT Crystal R. Naudin Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA30322, United States of America
| |
Collapse
|
45
|
Aguilera Vasquez N, Nielsen DE. The Endocannabinoid System and Eating Behaviours: a Review of the Current State of the Evidence. Curr Nutr Rep 2022; 11:665-674. [PMID: 35980538 PMCID: PMC9750929 DOI: 10.1007/s13668-022-00436-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF THE REVIEW The endocannabinoid system (ENS) has emerged as an important factor in food intake and may have implications for nutrition research. The objective of the current report is to summarise the available evidence on the ENS and eating behaviour from both animal and human studies. RECENT FINDINGS The literature reviewed demonstrates a clear link between the ENS and eating behaviours. Overall, studies indicate that 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA) via cannabinoid receptor-1 (CNR1) binding may stimulate hunger and food intake while oleylethanolamide (OEA) may inhibit hunger. Mechanisms of these associations are not yet well understood, although the evidence suggests that there may be interactions with other physiological systems to consider. Most studies have been conducted in animal models, with few human studies available. Additional research is warranted among human populations into the ENS and eating behaviour. Evaluation of relationships between variation in ENS genes and dietary outcomes is an important area for investigation.
Collapse
Affiliation(s)
- Nathaly Aguilera Vasquez
- grid.14709.3b0000 0004 1936 8649School of Human Nutrition, McGill University, Macdonald Campus, 21111 Lakeshore Rd, Ste. Anne-de-Bellevue, Quebec, H9X 3V9 Canada
| | - Daiva E. Nielsen
- grid.14709.3b0000 0004 1936 8649School of Human Nutrition, McGill University, Macdonald Campus, 21111 Lakeshore Rd, Ste. Anne-de-Bellevue, Quebec, H9X 3V9 Canada
| |
Collapse
|
46
|
Effects of endocannabinoids on feed intake, stress response and whole-body energy metabolism in dairy cows. Sci Rep 2021; 11:23657. [PMID: 34880316 PMCID: PMC8655048 DOI: 10.1038/s41598-021-02970-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/24/2021] [Indexed: 11/12/2022] Open
Abstract
Endocannabinoids, particularly anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are instrumental in regulating energy homeostasis and stress response. However, little is known about the endocannabinoid system (ECS) in ruminants, although EC could improve dairy health and productivity, at least by increasing feed intake. In this study, we report if intraperitoneal (i.p.) AEA and 2-AG administration affects feed intake, whole-body macronutrient metabolism, isolation and restraint stress, and whether diet composition modulates circulating endocannabinoid concentrations in cows. Twenty Simmental cows in late lactation were fed a grass silage and a corn silage based diet. On each diet, cows received daily i.p. injections with either AEA (5 µg/kg; n = 7), 2-AG (2.5 µg/kg; n = 6) or saline (n = 7) for 8 days. Endocannabinoid administration for 5 days under free-ranging (non-stressed) conditions had no effect on feed intake or energy balance, but attenuated the stress-induced suppression of feed intake when housing changed to individual tie-stalls without social or tactile interaction. Endocannabinoids increased whole-body carbohydrate oxidation, reduced fat oxidation, and affected plasma non-esterified fatty acid concentrations and fatty acid contents of total lipids. There was no effect of endocannabinoids on plasma triglyceride concentrations or hepatic lipogenesis. Plasma AEA concentrations were not affected by diet, however, plasma 2-AG concentrations tended to be lower on the corn silage based diet. In conclusion, endocannabinoids attenuate stress-induced hypophagia, increase short-term feed intake and whole-body carbohydrate oxidation and decrease whole-body fat oxidation in cows.
Collapse
|
47
|
Miralpeix C, Reguera AC, Fosch A, Zagmutt S, Casals N, Cota D, Rodríguez-Rodríguez R. Hypothalamic endocannabinoids in obesity: an old story with new challenges. Cell Mol Life Sci 2021; 78:7469-7490. [PMID: 34718828 PMCID: PMC8557709 DOI: 10.1007/s00018-021-04002-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022]
Abstract
The crucial role of the hypothalamus in the pathogenesis of obesity is widely recognized, while the precise molecular and cellular mechanisms involved are the focus of intense research. A disrupted endocannabinoid system, which critically modulates feeding and metabolic functions, through central and peripheral mechanisms, is a landmark indicator of obesity, as corroborated by investigations centered on the cannabinoid receptor CB1, considered to offer promise in terms of pharmacologically targeted treatment for obesity. In recent years, novel insights have been obtained, not only into relation to the mode of action of CB receptors, but also CB ligands, non-CB receptors, and metabolizing enzymes considered to be part of the endocannabinoid system (particularly the hypothalamus). The outcome has been a substantial expansion in knowledge of this complex signaling system and in drug development. Here we review recent literature, providing further evidence on the role of hypothalamic endocannabinoids in regulating energy balance and the implication for the pathophysiology of obesity. We discuss how these lipids are dynamically regulated in obesity onset, by diet and metabolic hormones in specific hypothalamic neurons, the impact of gender, and the role of endocannabinoid metabolizing enzymes as promising targets for tackling obesity and related diseases.
Collapse
Affiliation(s)
- Cristina Miralpeix
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 3300, Bordeaux, France.
| | - Ana Cristina Reguera
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain
| | - Anna Fosch
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain
| | - Sebastian Zagmutt
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad Y La Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 3300, Bordeaux, France
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain.
| |
Collapse
|
48
|
Obesity risk is associated with altered cerebral glucose metabolism and decreased μ-opioid and CB 1 receptor availability. Int J Obes (Lond) 2021; 46:400-407. [PMID: 34728775 PMCID: PMC8794779 DOI: 10.1038/s41366-021-00996-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/06/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Obesity is a pressing public health concern worldwide. Novel pharmacological means are urgently needed to combat the increase of obesity and accompanying type 2 diabetes (T2D). Although fully established obesity is associated with neuromolecular alterations and insulin resistance in the brain, potential obesity-promoting mechanisms in the central nervous system have remained elusive. In this triple-tracer positron emission tomography study, we investigated whether brain insulin signaling, μ-opioid receptors (MORs) and cannabinoid CB1 receptors (CB1Rs) are associated with risk for developing obesity. METHODS Subjects were 41 young non-obese males with variable obesity risk profiles. Obesity risk was assessed by subjects' physical exercise habits, body mass index and familial risk factors, including parental obesity and T2D. Brain glucose uptake was quantified with [18F]FDG during hyperinsulinemic euglycemic clamp, MORs were quantified with [11C]carfentanil and CB1Rs with [18F]FMPEP-d2. RESULTS Subjects with higher obesity risk had globally increased insulin-stimulated brain glucose uptake (19 high-risk subjects versus 19 low-risk subjects), and familial obesity risk factors were associated with increased brain glucose uptake (38 subjects) but decreased availability of MORs (41 subjects) and CB1Rs (36 subjects). CONCLUSIONS These results suggest that the hereditary mechanisms promoting obesity may be partly mediated via insulin, opioid and endocannabinoid messaging systems in the brain.
Collapse
|
49
|
van Ackern I, Kuhla A, Kuhla B. A Role for Peripheral Anandamide and 2-Arachidonoylglycerol in Short-Term Food Intake and Orexigenic Hypothalamic Responses in a Species with Continuous Nutrient Delivery. Nutrients 2021; 13:3587. [PMID: 34684588 PMCID: PMC8540326 DOI: 10.3390/nu13103587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/27/2021] [Accepted: 10/09/2021] [Indexed: 12/19/2022] Open
Abstract
The endocannabinoid system (ECS) plays a pivotal role in the complex control and regulation of food intake. Pharmacological ECS activation could improve health in energy-deficient stages by increasing food intake, at least in intermittent feeders. However, knowledge of the mechanism regulating appetite in species with continued nutrient delivery is incomplete. The objectives of this pilot study were to investigate the effect of the intraperitoneal (i.p.) administration of the endocannabinoids (ECs) anandamide (AEA) and 2-arachidonoylglycerol (2-AG) on food intake, plasma EC concentrations and hypothalamic orexigenic signaling, and to study how the circulatory EC tone changes in response to short-term food deprivation in dairy cows, a species with continuous nutrient delivery. The administration of EC resulted in higher food intake during the first hour after treatment. Plasma AEA concentrations were significantly increased 2.5 h after AEA injection, whereas plasma 2-AG concentrations remained unchanged 2.5 h after 2-AG injection. The hypothalamic immunoreactivity of cannabinoid receptor 1, agouti-related protein, and orexin-A was not affected by either treatment; however, neuropeptide Y and agouti-related protein mRNA abundances were downregulated in the arcuate nucleus of AEA-treated animals. Short-term food deprivation increased plasma 2-AG, while plasma AEA remained unchanged. In conclusion, i.p.-administered 2-AG and AEA increase food intake in the short term, but only AEA accumulates in the circulation. However, plasma 2-AG concentrations are more responsive to food deprivation than AEA.
Collapse
Affiliation(s)
- Isabel van Ackern
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology ‘Oskar Kellner’, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Angela Kuhla
- Rostock University Medical Center, Institute for Experimental Surgery, Schillingallee 69a, 18057 Rostock, Germany;
| | - Björn Kuhla
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology ‘Oskar Kellner’, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| |
Collapse
|
50
|
Saucisse N, Mazier W, Simon V, Binder E, Catania C, Bellocchio L, Romanov RA, Léon S, Matias I, Zizzari P, Quarta C, Cannich A, Meece K, Gonzales D, Clark S, Becker JM, Yeo GSH, Fioramonti X, Merkle FT, Wardlaw SL, Harkany T, Massa F, Marsicano G, Cota D. Functional heterogeneity of POMC neurons relies on mTORC1 signaling. Cell Rep 2021; 37:109800. [PMID: 34644574 DOI: 10.1016/j.celrep.2021.109800] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
Hypothalamic pro-opiomelanocortin (POMC) neurons are known to trigger satiety. However, these neuronal cells encompass heterogeneous subpopulations that release γ-aminobutyric acid (GABA), glutamate, or both neurotransmitters, whose functions are poorly defined. Using conditional mutagenesis and chemogenetics, we show that blockade of the energy sensor mechanistic target of rapamycin complex 1 (mTORC1) in POMC neurons causes hyperphagia by mimicking a cellular negative energy state. This is associated with decreased POMC-derived anorexigenic α-melanocyte-stimulating hormone and recruitment of POMC/GABAergic neurotransmission, which is restrained by cannabinoid type 1 receptor signaling. Electrophysiology and optogenetic studies further reveal that pharmacological blockade of mTORC1 simultaneously activates POMC/GABAergic neurons and inhibits POMC/glutamatergic ones, implying that the functional specificity of these subpopulations relies on mTORC1 activity. Finally, POMC neurons with different neurotransmitter profiles possess specific molecular signatures and spatial distribution. Altogether, these findings suggest that mTORC1 orchestrates the activity of distinct POMC neurons subpopulations to regulate feeding behavior.
Collapse
Affiliation(s)
- Nicolas Saucisse
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Wilfrid Mazier
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Vincent Simon
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Elke Binder
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Caterina Catania
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Luigi Bellocchio
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Roman A Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Stéphane Léon
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Isabelle Matias
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Philippe Zizzari
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Carmelo Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Astrid Cannich
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Kana Meece
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Delphine Gonzales
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Samantha Clark
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Julia M Becker
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Giles S H Yeo
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Xavier Fioramonti
- NutriNeuro, UMR 1286 INRAE, Bordeaux University, Bordeaux INP, F-33000 Bordeaux, France
| | - Florian T Merkle
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Sharon L Wardlaw
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria; Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Federico Massa
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Giovanni Marsicano
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France.
| |
Collapse
|