1
|
Ma D, Muñoz X, Ojanguren I, Romero-Mesones C, Soler-Segovia D, Varona-Porres D, Cruz MJ. Increased TGFβ1, VEGF and IFN-γ in the Sputum of Severe Asthma Patients With Bronchiectasis. Arch Bronconeumol 2024; 60:682-689. [PMID: 38908944 DOI: 10.1016/j.arbres.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Bronchiectasis is one of the most common comorbidities in severe asthma. However, the mechanisms by which asthma promotes the development and progress of this condition are not well defined. This study aimed to analyze the inflammatory phenotypes and quantify the expression of proinflammatory and remodeling cytokines in asthma patients with and without bronchiectasis. METHODS The study sample comprised individuals with severe asthma and bronchiectasis (group AB, n=55) and a control population of individuals with severe asthma without bronchiectasis (group AC, n=45). Induced sputum samples were obtained and cell types determined by differential cell count. Proinflammatory and bronchial remodeling cytokines (IL-8, neutrophilic elastase, TGFβ1, VEGF, IFN-γ, TNF-α, and GM-CSF) were analyzed by immunoassay in sputum supernatant. RESULTS Neutrophilic inflammation was the primary phenotype in both asthma groups. Higher levels of TGFβ1, VEGF and IFN-γ were observed in asthma patients with bronchiectasis (group AB) than in controls (group AC) (15 vs 24pg/ml, p=0.014; 183 vs 272pg/ml, p=0.048; 0.85 vs 19pg/ml, p<0.001, respectively). Granulocyte-macrophage colony-stimulating factor (GM-CSF) levels were significantly lower in the AB group than in the AC group (1.2 vs 4.4pg/ml, p<0.001). IL-8, neutrophil elastase and TNF-α did not present significant differences between the groups. CONCLUSIONS Raised levels of TGFβ1 and VEGF cytokines may indicate airway remodeling activation in asthma patients with bronchiectasis. The type of inflammation in asthma patients did not differ according to the presence or absence of bronchiectasis.
Collapse
Affiliation(s)
- Donghai Ma
- Servicio de Neumología, Hospital Universitario Vall d́Hebron, Barcelona, Spain
| | - Xavier Muñoz
- Servicio de Neumología, Hospital Universitario Vall d́Hebron, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universitat Autónoma de Barcelona, Spain.
| | - Iñigo Ojanguren
- Servicio de Neumología, Hospital Universitario Vall d́Hebron, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Spain
| | | | - David Soler-Segovia
- Servicio de Neumología, Hospital Universitario Vall d́Hebron, Barcelona, Spain
| | - Diego Varona-Porres
- Servicio de Radiología, Hospital Universitario Vall d́Hebron, Barcelona, Spain
| | - María-Jesús Cruz
- Servicio de Neumología, Hospital Universitario Vall d́Hebron, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Spain
| |
Collapse
|
2
|
Zhang TH, Chen X, Wei YY, Tang XC, Xu LH, Cui HR, Liu HC, Wang ZX, Chen T, Li CB, Wang JJ. Associations between cytokine levels and cognitive function among individuals at clinical high risk for psychosis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111166. [PMID: 39383934 DOI: 10.1016/j.pnpbp.2024.111166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
OBJECTIVE To explore the intricate interplay among cytokines, cognitive functioning, and conversion to psychosis in individuals at clinical high-risk (CHR) for psychosis. METHOD We initially enrolled 385 individuals at CHR and 95 healthy controls (HCs). Subsequently, 102 participants at CHR completed the 1-year follow-up assessments, and 47 participants transitioned to psychosis. We assessed the levels of interleukins (IL-1β, IL-2, IL-6, IL-8, IL-10), tumor necrosis factor-α (TNF-α), granulocyte-macrophage colony-stimulating factor (GM-CSF), and vascular endothelial growth factor (VEGF). We comprehensively evaluated cognitive performance across six domains, including speed of processing (SP), attention/vigilance (AV), working memory (WM), verbal learning (VeL), visual learning (ViL), and reasoning and problem-solving (RPS). RESULTS Higher baseline cognitive domain scores were associated with elevated GM-CSF and reduced VEGF levels. In the follow-up analysis, significant time effects were observed for IL-1β and IL-2. We also observed significant interaction effects between specific cognitive domains (AV, WM, VeL, and OCS) and levels of cytokine (GM-CSF, IL-1β, IL-6, and TNF-α). Changes in WM were negatively correlated with changes in TNF-α levels and positively correlated with changes in VEGF levels. Variations in VeL were inversely correlated with changes in GM-CSF and IL-10 levels, whereas changes in RPS were positively associated with changes in GM-CSF and IL-8 levels. CONCLUSIONS Our results revealed intricate associations among cytokine levels, cognitive performance, and psychosis progression.
Collapse
Affiliation(s)
- Tian Hong Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China.
| | - Xing Chen
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China; Department of Psychiatry, Nantong Fourth People's Hospital and Nantong Brain Hospital, NanTong, Jiangsu, China
| | - Yan Yan Wei
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Xiao Chen Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Li Hua Xu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Hui Ru Cui
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Hai Chun Liu
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zi Xuan Wang
- Shanghai Xinlianxin Psychological Counseling Center, Shanghai, China
| | - Tao Chen
- Big Data Research Lab, University of Waterloo, Ontario, Canada; Labor and Worklife Program, Harvard University, Cambridge, MA, United States
| | - Chun Bo Li
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Ji Jun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China; Department of Psychiatry, Nantong Fourth People's Hospital and Nantong Brain Hospital, NanTong, Jiangsu, China; Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, PR China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
3
|
Kazakova A, Zhelnov P, Sidorov R, Rogova A, Vasileva O, Ivanov R, Reshetnikov V, Muslimov A. DNA and RNA vaccines against tuberculosis: a scoping review of human and animal studies. Front Immunol 2024; 15:1457327. [PMID: 39421744 PMCID: PMC11483866 DOI: 10.3389/fimmu.2024.1457327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction To comprehensively identify and provide an overview of in vivo or clinical studies of nucleic acids (NA)-based vaccines against TB we included human or animal studies of NA vaccines for the prevention or treatment of TB and excluded in vitro or in silico research, studies of microorganisms other than M. tuberculosis, reviews, letters, and low-yield reports. Methods We searched PubMed, Scopus, Embase, selected Web of Science and ProQuest databases, Google Scholar, eLIBRARY.RU, PROSPERO, OSF Registries, Cochrane CENTRAL, EU Clinical Trials Register, clinicaltrials.gov, and others through WHO International Clinical Trials Registry Platform Search Portal, AVMA and CABI databases, bioRxiv, medRxiv, and others through OSF Preprint Archive Search. We searched the same sources and Google for vaccine names (GX-70) and scanned reviews for references. Data on antigenic composition, delivery systems, adjuvants, and vaccine efficacy were charted and summarized descriptively. Results A total of 18,157 records were identified, of which 968 were assessed for eligibility. No clinical studies were identified. 365 reports of 345 animal studies were included in the review. 342 (99.1%) studies involved DNA vaccines, and the remaining three focused on mRNA vaccines. 285 (82.6%) studies used single-antigen vaccines, while 48 (13.9%) used multiple antigens or combinations with adjuvants. Only 12 (3.5%) studies involved multiepitope vaccines. The most frequently used antigens were immunodominant secretory antigens (Ag85A, Ag85B, ESAT6), heat shock proteins, and cell wall proteins. Most studies delivered naked plasmid DNA intramuscularly without additional adjuvants. Only 4 of 17 studies comparing NA vaccines to BCG after M. tuberculosis challenge demonstrated superior protection in terms of bacterial load reduction. Some vaccine variants showed better efficacy compared to BCG. Systematic review registration https://osf.io/, identifier F7P9G.
Collapse
Affiliation(s)
- Alisa Kazakova
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| | - Pavel Zhelnov
- Zheln, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Roman Sidorov
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Ural Branch, Perm, Russia
| | - Anna Rogova
- Saint-Petersburg State Chemical-Pharmaceutical University, St. Petersburg, Russia
- Laboratory of Nano- and Microencapsulation of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Olga Vasileva
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| | - Roman Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| | - Vasiliy Reshetnikov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| | - Albert Muslimov
- Saint-Petersburg State Chemical-Pharmaceutical University, St. Petersburg, Russia
| |
Collapse
|
4
|
Tonog G, Yu H, Moon SK, Lee S, Jeong H, Kim HS, Kim KB, Suh HJ, Kim H. Garlic Bioconverted by Bacillus subtilis Stimulates the Intestinal Immune System and Modulates Gut Microbiota Composition. Mol Nutr Food Res 2024; 68:e2400504. [PMID: 39358948 DOI: 10.1002/mnfr.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Indexed: 10/04/2024]
Abstract
SCOPE This study evaluates the potential of bioconverted garlic ferments (BGFs) to stimulate the intestinal immune system and modulate cecal microbiota composition. METHODS AND RESULTS In vitro, BGF significantly enhances Peyer's patch (PP)-mediated bone marrow cell proliferation and increases the production of interferon-gamma (IFN-γ), granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin (IL)-6, and immunoglobulin A (IgA) but not IL-4, IL-5, and immunoglobulin E (IgE). Oral administration of BGF to C3H/HeN mice for 4 weeks significantly increases the GM-CSF (42.1-45.8 pg mL-1) and IFN-γ (6.5-12.1 pg mL-1) levels in PP cells. BGF also significantly elevates the levels of tumor necrosis factor-alpha (TNF-α, 165.0-236.3 pg mg-1), GM-CSF (2.4-3.0 ng mg-1), and IFN-γ (1.5-3.2 ng mg-1) in the small intestinal fluid, and TNF-α (2.2-3.1 pg mL-1) and IFN-γ (10.3-0.21.5 pg mL-1) in the mouse serum. Cecal microbial analysis reveals that BGF increases Bacteroidota and Verrucomicrobiota and decreases Actinobacteria and Bacillota at the phylum level in mice. At the genus level, BGF significantly increases the abundance of Fusimonas (250 mg kg-1 BW-1 day-1), Bacteroides (125 and 250 mg kg-1 BW-1 day-1), and Akkermansia (125 mg kg-1 BW-1 day-1) and decreases that of Bifidobacterium (62.5 and 250 mg kg-1 BW-1 day-1) and Limosilactobacillus (125 and 250 mg kg-1 BW-1 day-1). CONCLUSION This study provides the first evidence of BGF's ability to modulate the intestinal immune system and gut microbiota, supporting its potential as a novel functional material to enhance gut immunity.
Collapse
Affiliation(s)
- Genevieve Tonog
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, South Korea
| | - Hyeonjun Yu
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, South Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, South Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, South Korea
| | | | | | | | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, South Korea
| | - Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, South Korea
| |
Collapse
|
5
|
Zhang Y, Deng Y, Zhai Y, Li Y, Li Y, Li J, Gu Y, Li S. A bispecific nanosystem activates endogenous natural killer cells in the bone marrow for haematologic malignancies therapy. NATURE NANOTECHNOLOGY 2024; 19:1558-1568. [PMID: 39043825 DOI: 10.1038/s41565-024-01736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 05/20/2024] [Indexed: 07/25/2024]
Abstract
Haematologic malignancies commonly arise from the bone marrow lesion, yet there are currently no effective targeted therapies against tumour cells in this location. Here we constructed a bone-marrow-targeting nanosystem, CSF@E-Hn, which is based on haematopoietic-stem-cell-derived nanovesicles adorned with gripper ligands (aPD-L1 and aNKG2D) and encapsulated with colony-stimulating factor (CSF) for the treatment of haematologic malignancies. CSF@E-Hn targets the bone marrow and, thanks to the gripper ligands, pulls together tumour cells and natural killer cells, activating the latter for specific tumour cell targeting and elimination. The therapeutic efficacy was validated in mice bearing acute myeloid leukaemia and multiple myeloma. The comprehensive assessment of the post-treatment bone marrow microenvironment revealed that the integration of CSF into a bone-marrow-targeted nanosystem promoted haematopoietic stem cell differentiation, boosted memory T cell generation and maintained bone homoeostasis, with long-term prevention of relapse. Our nanosystem represents a promising strategy for the treatment of haematologic malignancies.
Collapse
MESH Headings
- Animals
- Mice
- Killer Cells, Natural/immunology
- Killer Cells, Natural/drug effects
- Bone Marrow/drug effects
- Bone Marrow/pathology
- Humans
- Hematologic Neoplasms/therapy
- Hematologic Neoplasms/drug therapy
- Hematologic Neoplasms/pathology
- Cell Line, Tumor
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Nanoparticles/chemistry
- Hematopoietic Stem Cells/drug effects
- Multiple Myeloma/drug therapy
- Multiple Myeloma/pathology
- Multiple Myeloma/immunology
- Female
Collapse
Affiliation(s)
- Yanqin Zhang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yanfang Deng
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yuewen Zhai
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yu Li
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yuting Li
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Juequan Li
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China.
| | - Siwen Li
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
6
|
Bai Z, Feng B, McClory SE, de Oliveira BC, Diorio C, Gregoire C, Tao B, Yang L, Zhao Z, Peng L, Sferruzza G, Zhou L, Zhou X, Kerr J, Baysoy A, Su G, Yang M, Camara PG, Chen S, Tang L, June CH, Melenhorst JJ, Grupp SA, Fan R. Single-cell CAR T atlas reveals type 2 function in 8-year leukaemia remission. Nature 2024; 634:702-711. [PMID: 39322664 PMCID: PMC11485231 DOI: 10.1038/s41586-024-07762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/27/2024] [Indexed: 09/27/2024]
Abstract
Despite a high response rate in chimeric antigen receptor (CAR) T cell therapy for acute lymphocytic leukaemia (ALL)1-3, approximately 50% of patients relapse within the first year4-6, representing an urgent question to address in the next stage of cellular immunotherapy. Here, to investigate the molecular determinants of ultralong CAR T cell persistence, we obtained a single-cell multi-omics atlas from 695,819 pre-infusion CAR T cells at the basal level or after CAR-specific stimulation from 82 paediatric patients with ALL enrolled in the first two CAR T ALL clinical trials and 6 healthy donors. We identified that elevated type 2 functionality in CAR T infusion products is significantly associated with patients maintaining a median B cell aplasia duration of 8.4 years. Analysis of ligand-receptor interactions revealed that type 2 cells regulate a dysfunctional subset to maintain whole-population homeostasis, and the addition of IL-4 during antigen-specific activation alleviates CAR T cell dysfunction while enhancing fitness at both transcriptomic and epigenomic levels. Serial proteomic profiling of sera after treatment revealed a higher level of circulating type 2 cytokines in 5-year or 8-year relapse-free responders. In a leukaemic mouse model, type 2high CAR T cell products demonstrated superior expansion and antitumour activity, particularly after leukaemia rechallenge. Restoring antitumour efficacy in type 2low CAR T cells was attainable by enhancing their type 2 functionality, either through incorporating IL-4 into the manufacturing process or by priming manufactured CAR T products with IL-4 before infusion. Our findings provide insights into the mediators of durable CAR T therapy response and suggest potential therapeutic strategies to sustain long-term remission by boosting type 2 functionality in CAR T cells.
Collapse
Affiliation(s)
- Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Bing Feng
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Materials Science & Engineering, EPFL, Lausanne, Switzerland
| | - Susan E McClory
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Caroline Diorio
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Céline Gregoire
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bo Tao
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Ziran Zhao
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Giacomo Sferruzza
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Liqun Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaolei Zhou
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Materials Science & Engineering, EPFL, Lausanne, Switzerland
| | - Jessica Kerr
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alev Baysoy
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Graham Su
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mingyu Yang
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Pablo G Camara
- Department of Genetics and Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Li Tang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Materials Science & Engineering, EPFL, Lausanne, Switzerland.
| | - Carl H June
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA.
| | | | - Stephan A Grupp
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Human and Translational Immunology, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
7
|
Zong YH, Cao JF, Zhao Y, Gao M, Chen WL, Wu M, Xu X, Xu ZY, Zhang XQ, Tang JZ, Liu Y, Hu XS, Wang SQ, Zhang X. Mechanism of Lian Hua Qing Wen capsules regulates the inflammatory response caused by M 1 macrophage based on cellular experiments and computer simulations. Acta Trop 2024; 257:107320. [PMID: 39002739 DOI: 10.1016/j.actatropica.2024.107320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE The polarization of macrophages with the resulting inflammatory response play a crucial part in tissue and organ damage due to inflammatory. Study has proved Lian Hua Qing Wen capsules (LHQW) can reduce activation of inflammatory response and damage of tissue derived from the inflammatory reactions. However, the mechanism of LHQW regulates the macrophage-induced inflammatory response is unclear. Therefore, we investigated the mechanism of LHQW regulated the inflammatory response of M1 macrophages by cellular experiments and computer simulations. METHODS This study has analysed the targets and mechanisms of macrophage regulating inflammatory response at gene and protein levels through bioinformatics. The monomeric components of LHQW were analyzed by High Performance Liquid Chromatography (HPLC). We established the in vitro cell model by M1 macrophages (Induction of THP-1 cells into M1 macrophages). RT-qPCR and immunofluorescence were used to detect changes in gene and protein levels of key targets after LHQW treatment. Computer simulations were utilized to verify the binding stability of monomeric components and protein targets. RESULTS Macrophages had 140,690 gene targets, inflammatory response had 12,192 gene targets, intersection gene targets were 11,772. Key monomeric components (including: Pinocembrin, Fargesone-A, Nodakenin and Bowdichione) of LHQW were screened by HPLC. The results of cellular experiments indicated that LHQW could significantly reduce the mRNA expression of CCR5, CSF2, IFNG and TNF, thereby alleviating the inflammatory response caused by M1 macrophage. The computer simulations further validated the binding stability and conformation of key monomeric components and key protein targets, and IFNG/Nodakenin was able to form the most stable binding conformation for its action. CONCLUSION In this study, the mechanism of LHQW inhibits the polarization of macrophages and the resulting inflammatory response was investigated by computer simulations and cellular experiments. We found that LHQW may not only reduce cell damage and death by acting on TNF and CCR5, but also inhibit the immune recognition process and inflammatory response by regulating CSF2 and IFNG to prevent polarization of macrophages. Therefore, these results suggested that LHQW may act through multiple targets to inhibit the polarization of macrophages and the resulting inflammatory response.
Collapse
Affiliation(s)
| | - Jun-Feng Cao
- College of Medicine, Southwest Jiaotong University, Chengdu, PR China
| | | | - Miao Gao
- Chengdu Medical College, Chengdu, PR China
| | | | - Mei Wu
- Chengdu Medical College, Chengdu, PR China
| | - Xiang Xu
- Chengdu Medical College, Chengdu, PR China
| | | | | | | | - Yulin Liu
- Chengdu Medical College, Chengdu, PR China
| | | | | | - Xiao Zhang
- Chengdu Medical College, Chengdu, PR China.
| |
Collapse
|
8
|
Ni J, Wang X, Wu L, Ai X, Chu Q, Han C, Dong X, Zhou Y, Pang Y, Zhu Z. Sintilimab in combination with stereotactic body radiotherapy and granulocyte-macrophage colony-stimulating factor in metastatic non-small cell lung cancer: The multicenter SWORD phase 2 trial. Nat Commun 2024; 15:7242. [PMID: 39174542 PMCID: PMC11341907 DOI: 10.1038/s41467-024-51807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024] Open
Abstract
This single-arm, multicenter, phase 2 trial (NCT04106180) investigated the triple combination of sintilimab (anti-PD1 antibody), stereotactic body radiotherapy (SBRT) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in metastatic non-small cell lung cancer (NSCLC). With a median follow-up of 32.1 months, 18 (36.7%, 90% CI 25.3%-49.5%) of the 49 evaluable patients had an objective response, meeting the primary endpoint. Secondary endpoints included out-of-field (abscopal) response rate (ASR), progression-free survival (PFS), overall survival (OS), and treatment-related adverse events (TRAEs). The ASR was 30.6% (95% CI 18.3%-45.4%). The median PFS and OS were 5.9 (95% CI 2.5-9.3) and 18.4 (95% CI 9.7-27.1) months, respectively. Any grade and grade 3 TRAEs occurred in 44 (86.3%) and 6 (11.8%) patients, without grade 4-5 TRAEs. Moreover, in pre-specified biomarker analyses, SBRT-induced increase of follicular helper T cells (Tfh) in unirradiated tumor lesions and patient's blood, as well as of circulating IL-21 levels, was found associated with improved prognosis. Taken together, the triple combination therapy was well tolerated with promising efficacy and Tfh may play a critical role in SBRT-triggered anti-tumor immunity in metastatic NSCLC.
Collapse
Affiliation(s)
- Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaofei Wang
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Lin Wu
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinghao Ai
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengbo Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yechun Pang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Thoracic Oncology, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Zhu Y, Zhou L, Mo L, Hong C, Pan L, Lin J, Qi Y, Tan S, Qian M, Hu T, Zhao Y, Qiu H, Lin P, Ma X, Yang Q. Plasmodium yoelii Infection Enhances the Expansion of Myeloid-Derived Suppressor Cells via JAK/STAT3 Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:170-186. [PMID: 38819229 DOI: 10.4049/jimmunol.2300541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs), the negative immune regulators, have been demonstrated to be involved in immune responses to a variety of pathological conditions, such as tumors, chronic inflammation, and infectious diseases. However, the roles and mechanisms underlying the expansion of MDSCs in malaria remain unclear. In this study, the phenotypic and functional characteristics of splenic MDSCs during Plasmodium yoelii NSM infection are described. Furthermore, we provide compelling evidence that the sera from P. yoelii-infected C57BL/6 mice containing excess IL-6 and granulocyte-macrophage colony-stimulating factor promote the accumulation of MDSCs by inducing Bcl2 expression. Serum-induced MDSCs exert more potent suppressive effects on T cell responses than control MDSCs within both in vivo P. yoelii infection and in vitro serum-treated bone marrow cells experiments. Serum treatment increases the MDSC inhibitory effect, which is dependent on Arg1 expression. Moreover, mechanistic studies reveal that the serum effects are mediated by JAK/STAT3 signaling. By inhibiting STAT3 phosphorylation with the JAK inhibitor JSI-124, effects of serum on MDSCs are almost eliminated. In vivo depletion of MDSCs with anti-Gr-1 or 5-fluorouracil significantly reduces the parasitemia and promotes Th1 immune response in P. yoelii-infected C57BL/6 mice by upregulating IFN-γ expression. In summary, this study indicates that P. yoelii infection facilitates the accumulation and function of MDSCs by upregulating the expression of Bcl2 and Arg1 via JAK/STAT3 signaling pathway in vivo and in vitro. Manipulating the JAK/STAT3 signaling pathway or depleting MDSCs could be promising therapeutic interventions to treat malaria.
Collapse
Affiliation(s)
- Yiqiang Zhu
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Lu Zhou
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lengshan Mo
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Cansheng Hong
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lingxia Pan
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jie Lin
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yanwei Qi
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Simin Tan
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Manhongtian Qian
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tengfei Hu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yi Zhao
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huaina Qiu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Peibin Lin
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Xiancai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Quan Yang
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Ahn MJ, Kim EH, Choi Y, Chae CH, Kim P, Kim SH. Novel hematopoietic progenitor kinase 1 inhibitor KHK-6 enhances T-cell activation. PLoS One 2024; 19:e0305261. [PMID: 38923962 PMCID: PMC11207149 DOI: 10.1371/journal.pone.0305261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Inhibiting the functional role of negative regulators in immune cells is an effective approach for developing immunotherapies. The serine/threonine kinase hematopoietic progenitor kinase 1 (HPK1) involved in the T-cell receptor signaling pathway attenuates T-cell activation by inducing the degradation of SLP-76 through its phosphorylation at Ser-376, reducing the immune response. Interestingly, several studies have shown that the genetic ablation or pharmacological inhibition of HPK1 kinase activity improves the immune response to cancers by enhancing T-cell activation and cytokine production; therefore, HPK1 could be a promising druggable target for T-cell-based cancer immunotherapy. To increase the immune response against cancer cells, we designed and synthesized KHK-6 and evaluated its cellular activity to inhibit HPK1 and enhance T-cell activation. KHK-6 inhibited HPK1 kinase activity with an IC50 value of 20 nM and CD3/CD28-induced phosphorylation of SLP-76 at Ser-376 Moreover, KHK-6 significantly enhanced CD3/CD28-induced production of cytokines; proportion of CD4+ and CD8+ T cells that expressed CD69, CD25, and HLA-DR markers; and T-cell-mediated killing activity of SKOV3 and A549 cells. In conclusion, KHK-6 is a novel ATP-competitive HPK1 inhibitor that blocks the phosphorylation of HPK1 downstream of SLP-76, enhancing the functional activation of T cells. In summary, our study showed the usefulness of KHK-6 in the drug discovery for the HPK1-inhibiting immunotherapy.
Collapse
Affiliation(s)
- Min Jeong Ahn
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| | - Eun Hye Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yunha Choi
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medicinal Chemistry & Pharmacology, University of Science and Technology, Daejeon, Republic of Korea
| | - Chong Hak Chae
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Pilho Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medicinal Chemistry & Pharmacology, University of Science and Technology, Daejeon, Republic of Korea
| | - Seong Hwan Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Wong JPH, Blazev R, Ng YK, Goodman CA, Montgomery MK, Watt KI, Carl CS, Watt MJ, Voldstedlund CT, Richter EA, Crouch PJ, Steyn FJ, Ngo ST, Parker BL. Characterization of the skeletal muscle arginine methylome in health and disease reveals remodeling in amyotrophic lateral sclerosis. FASEB J 2024; 38:e23647. [PMID: 38787599 DOI: 10.1096/fj.202400045r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Arginine methylation is a protein posttranslational modification important for the development of skeletal muscle mass and function. Despite this, our understanding of the regulation of arginine methylation under settings of health and disease remains largely undefined. Here, we investigated the regulation of arginine methylation in skeletal muscles in response to exercise and hypertrophic growth, and in diseases involving metabolic dysfunction and atrophy. We report a limited regulation of arginine methylation under physiological settings that promote muscle health, such as during growth and acute exercise, nor in disease models of insulin resistance. In contrast, we saw a significant remodeling of asymmetric dimethylation in models of atrophy characterized by the loss of innervation, including in muscle biopsies from patients with myotrophic lateral sclerosis (ALS). Mass spectrometry-based quantification of the proteome and asymmetric arginine dimethylome of skeletal muscle from individuals with ALS revealed the largest compendium of protein changes with the identification of 793 regulated proteins, and novel site-specific changes in asymmetric dimethyl arginine (aDMA) of key sarcomeric and cytoskeletal proteins. Finally, we show that in vivo overexpression of PRMT1 and aDMA resulted in increased fatigue resistance and functional recovery in mice. Our study provides evidence for asymmetric dimethylation as a regulator of muscle pathophysiology and presents a valuable proteomics resource and rationale for numerous methylated and nonmethylated proteins, including PRMT1, to be pursued for therapeutic development in ALS.
Collapse
Affiliation(s)
- Julian P H Wong
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ronnie Blazev
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yaan-Kit Ng
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Craig A Goodman
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Magdalene K Montgomery
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kevin I Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Christian S Carl
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christian T Voldstedlund
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Peter J Crouch
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Frederik J Steyn
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Shyuan T Ngo
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin L Parker
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Sang L, Gong X, Huang Y, Zhang L, Sun J. Immunotherapeutic implications on targeting the cytokines produced in rhinovirus-induced immunoreactions. FRONTIERS IN ALLERGY 2024; 5:1427762. [PMID: 38859875 PMCID: PMC11163110 DOI: 10.3389/falgy.2024.1427762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Rhinovirus is a widespread virus associated with several respiratory diseases, especially asthma exacerbation. Currently, there are no accurate therapies for rhinovirus. Encouragingly, it is found that during rhinovirus-induced immunoreactions the levels of certain cytokines in patients' serum will alter. These cytokines may have pivotal pro-inflammatory or anti-inflammatory effects via their specific mechanisms. Thus far, studies have shown that inhibitions of cytokines such as IL-1, IL-4, IL-5, IL-6, IL-13, IL-18, IL-25, and IL-33 may attenuate rhinovirus-induced immunoreactions, thereby relieving rhinovirus infection. Furthermore, such therapeutics for rhinovirus infection can be applied to viruses of other species, with certain practicability.
Collapse
Affiliation(s)
- Le Sang
- Department of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Xia Gong
- Department of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Yunlei Huang
- Department of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Linling Zhang
- Department of Respiratory Medicine, Shaoxing People’s Hospital, Shaoxing City, Zhejiang Province, China
| | - Jian Sun
- Department of Respiratory Medicine, Shaoxing People’s Hospital, Shaoxing City, Zhejiang Province, China
| |
Collapse
|
13
|
Kan AKC, Tang WT, Li PH. Helper T cell subsets: Development, function and clinical role in hypersensitivity reactions in the modern perspective. Heliyon 2024; 10:e30553. [PMID: 38726130 PMCID: PMC11079302 DOI: 10.1016/j.heliyon.2024.e30553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Helper T cells are traditionally classified into T helper 1 (TH1) and T helper 2 (TH2). The more recent discoveries of T helper 17 (TH17), follicular helper T cells (TFH) and regulatory T cells (Treg) enhanced our understanding on the mechanisms of immune function and hypersensitivity reactions, which shaped the modern perspective on the function and role of these different subsets of helper T cells in hypersensitivity reactions. Each subset of helper T cells has characteristic roles in different types of hypersensitivity reactions, hence giving rise to the respective characteristic clinical manifestations. The roles of helper T cells in allergic contact dermatitis (TH1-mediated), drug rash with eosinophilia and systemic symptoms (DRESS) syndrome (TH2-mediated), and acute generalised exanthematous pustulosis (AGEP) (TH17-mediated) are summarised in this article, demonstrating the correlation between the type of helper T cell involved and the clinical features. TFH plays crucial roles in antibody class-switch recombination; they may be implicated in antibody-mediated hypersensitivity reactions, but further research is warranted to delineate their exact pathogenic roles. The helper T cell subsets and their specific cytokine profiles implicated in different hypersensitivity reactions could be potential treatment targets by biologics, but more clinical trials are warranted to establish their clinical effectiveness.
Collapse
Affiliation(s)
- Andy Ka Chun Kan
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region of China
| | - Wang Tik Tang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region of China
| | - Philip H. Li
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
14
|
Lee YS, Bang YJ, Yoo S, Park SI, Park HJ, Kwak HW, Bae SH, Park HJ, Kim JY, Youn SB, Roh G, Lee S, Kwon SP, Bang EK, Keum G, Nam JH, Hong SH. Analysis of the Immunostimulatory Effects of Cytokine-Expressing Internal Ribosome Entry Site-Based RNA Adjuvants and Their Applications. J Infect Dis 2024; 229:1408-1418. [PMID: 37711050 DOI: 10.1093/infdis/jiad392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Developing new adjuvants that can effectively induce humoral and cellular immune responses while broadening the immune response is of great value. In this study, we aimed to develop single-stranded RNA adjuvants expressing (1) granulocyte monocyte colony-stimulating factor or (2) interleukin 18 based on the encephalomyocarditis virus internal ribosome entry site; we also tested their efficacy in combination with ovalbumin or inactivated influenza vaccines. Notably, cytokine-expressing RNA adjuvants increased the expression of antigen-presenting cell activation markers in mice. Specifically, when combined with ovalbumin, RNA adjuvants expressing granulocyte monocyte colony-stimulating factor increased CD4+ T-cell responses, while those expressing interleukin 18 increased CD8+ T-cell responses. Cytokine-expressing RNA adjuvants further increased the frequency of polyclonal T cells with the influenza vaccine and reduced the clinical illness scores and weight loss of mice after viral challenge. Collectively, our results suggest that cytokine-expressing RNA adjuvants can be applied to protein-based or inactivated vaccines to increase their efficacy.
Collapse
Affiliation(s)
- Yu-Sun Lee
- Department of Biotechnology
- BK21 FOUR Department of Biotechnology, The Catholic University of Korea, Bucheon
| | - Yoo-Jin Bang
- Department of Biotechnology
- Central Research Institute, SML Biopharm, Gwangmyeong
| | - Soyeon Yoo
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul
| | - Sang-In Park
- Central Research Institute, SML Biopharm, Gwangmyeong
| | - Hyo-Jung Park
- Department of Biotechnology
- BK21 FOUR Department of Biotechnology, The Catholic University of Korea, Bucheon
| | - Hye Won Kwak
- Central Research Institute, SML Biopharm, Gwangmyeong
| | - Seo-Hyeon Bae
- Department of Biotechnology
- BK21 FOUR Department of Biotechnology, The Catholic University of Korea, Bucheon
| | | | - Jae-Yong Kim
- Department of Biotechnology
- Central Research Institute, SML Biopharm, Gwangmyeong
| | - Sue-Bean Youn
- Department of Biotechnology
- BK21 FOUR Department of Biotechnology, The Catholic University of Korea, Bucheon
| | - Gahyun Roh
- Department of Biotechnology
- BK21 FOUR Department of Biotechnology, The Catholic University of Korea, Bucheon
| | - Seonghyun Lee
- Department of Biotechnology
- BK21 FOUR Department of Biotechnology, The Catholic University of Korea, Bucheon
| | - Sung Pil Kwon
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul
| | - Eun-Kyoung Bang
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul
| | - Gyochang Keum
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul
| | - Jae-Hwan Nam
- BK21 FOUR Department of Biotechnology, The Catholic University of Korea, Bucheon
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon
| | - So-Hee Hong
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Miedema J, Cinetto F, Smed-Sörensen A, Spagnolo P. The immunopathogenesis of sarcoidosis. J Autoimmun 2024:103247. [PMID: 38734536 DOI: 10.1016/j.jaut.2024.103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Sarcoidosis is a granulomatous multiorgan disease, thought to result from exposure to yet unidentified antigens in genetically susceptible individuals. The exaggerated inflammatory response that leads to granuloma formation is highly complex and involves the innate and adaptive immune system. Consecutive immunological studies using advanced technology have increased our understanding of aberrantly activated immune cells, mediators and pathways that influence the formation, maintenance and resolution of granulomas. Over the years, it has become increasingly clear that disease immunopathogenesis can only be understood if the clinical heterogeneity of sarcoidosis is taken into consideration, along with the distribution of immune cells in peripheral blood and involved organs. Most studies offer an immunological snapshot during disease course, while the cellular composition of both the circulation and tissue microenvironment may change over time. Despite these challenges, novel insights on the role of the immune system are continuously published, thus bringing the field forward. This review highlights current knowledge on the innate and adaptive immune responses involved in sarcoidosis pathogenesis, as well as the pathways involved in non-resolving disease and fibrosis development. Additionally, we describe proposed immunological mechanisms responsible for drug-induced sarcoid like reactions. Although many aspects of disease immunopathogenesis remain to be unraveled, the identification of crucial immune reactions in sarcoidosis may help identify new treatment targets. We therefore also discuss potential therapies and future strategies based on the latest immunological findings.
Collapse
Affiliation(s)
- Jelle Miedema
- Department of Pulmonary Medicine, Center of Expertise for Interstitial Lung Disease, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Francesco Cinetto
- Rare Diseases Referral Center, Internal Medicine 1, Ca' Foncello Hospital, AULSS2 Marca Trevigiana, Italy; Department of Medicine - DIMED, University of Padova, Padova, Italy.
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy.
| |
Collapse
|
16
|
Yatomi M, Akasaka K, Sato S, Chida M, Kanbe M, Sawada H, Yokota I, Wakamatsu I, Muto S, Sato M, Yamaguchi K, Miura Y, Tsurumaki H, Sakurai R, Hara K, Koga Y, Sunaga N, Yamakawa H, Matsushima H, Yamazaki S, Endo Y, Motegi SI, Hisada T, Maeno T. A case of autoimmune pulmonary alveolar proteinosis during the course of treatment of rapidly progressive interstitial pneumonia associated with anti-MDA5 antibody-positive dermatomyositis. BMC Pulm Med 2024; 24:170. [PMID: 38589870 PMCID: PMC11003183 DOI: 10.1186/s12890-024-02989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Autoimmune pulmonary alveolar proteinosis (APAP) is a diffuse lung disease that causes abnormal accumulation of lipoproteins in the alveoli; however, its pathogenesis remains unclear. Recently, APAP cases have been reported during the course of dermatomyositis. The combination of these two diseases may be coincidental; however, it may have been overlooked because differentiating APAP from a flare-up of interstitial pneumonia associated with dermatomyositis is challenging. This didactic case demonstrates the need for early APAP scrutiny. CASE PRESENTATION A 50-year-old woman was diagnosed with anti-melanoma differentiation-associated gene 5 (anti-MDA5) antibody-positive dermatitis and interstitial pneumonia in April 2021. The patient was treated with corticosteroids, tacrolimus, and cyclophosphamide pulse therapy for interstitial pneumonia complicated by MDA5 antibody-positive dermatitis, which improved the symptoms and interstitial pneumonia. Eight months after the start of treatment, a new interstitial shadow appeared that worsened. Therefore, three additional courses of cyclophosphamide pulse therapy were administered; however, the respiratory symptoms and interstitial shadows did not improve. Respiratory failure progressed, and 14 months after treatment initiation, bronchoscopy revealed turbid alveolar lavage fluid, numerous foamy macrophages, and numerous periodic acid-Schiff-positive unstructured materials. Blood test results revealed high anti-granulocyte-macrophage colony-stimulating factor (GM-CSF) antibody levels, leading to a diagnosis of APAP. The patient underwent whole-lung lavage, and the respiratory disturbance promptly improved. Anti-GM-CSF antibodies were measured from the cryopreserved serum samples collected at the time of diagnosis of anti-MDA5 antibody-positive dermatitis, and 10 months later, both values were significantly higher than normal. CONCLUSIONS This is the first report of anti-MDA5 antibody-positive dermatomyositis complicated by interstitial pneumonia with APAP, which may develop during immunosuppressive therapy and be misdiagnosed as a re-exacerbation of interstitial pneumonia. In anti-MDA5 antibody-positive dermatomyositis, APAP comorbidity may have been overlooked, and early evaluation with bronchoalveolar lavage fluid and anti-GM-CSF antibody measurements should be considered, keeping the development of APAP in mind.
Collapse
Affiliation(s)
- Masakiyo Yatomi
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan.
| | - Keiichi Akasaka
- Department of Respiratory Medicine, Saitama Red Cross Hospital, 1-5, Shintoshin, Chuo-Ku, Saitama, 330-8553, Japan
| | - Shintaro Sato
- Department of Respiratory Medicine, Saitama Red Cross Hospital, 1-5, Shintoshin, Chuo-Ku, Saitama, 330-8553, Japan
| | - Mizuki Chida
- Department of Dermatology, Gunma University Graduate School of Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Mio Kanbe
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Hiru Sawada
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Itaru Yokota
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Ikuo Wakamatsu
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Sohei Muto
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Mari Sato
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Kochi Yamaguchi
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Yosuke Miura
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Hiroaki Tsurumaki
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Reiko Sakurai
- Oncology Center, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371-, 8511, Japan
| | - Kenichiro Hara
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Yasuhiko Koga
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Noriaki Sunaga
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Hideaki Yamakawa
- Department of Respiratory Medicine, Saitama Red Cross Hospital, 1-5, Shintoshin, Chuo-Ku, Saitama, 330-8553, Japan
| | - Hidekazu Matsushima
- Department of Respiratory Medicine, Saitama Red Cross Hospital, 1-5, Shintoshin, Chuo-Ku, Saitama, 330-8553, Japan
| | - Sahori Yamazaki
- Department of Dermatology, Gunma University Graduate School of Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Yukie Endo
- Department of Dermatology, Gunma University Graduate School of Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Takeshi Hisada
- Gunma University Graduate School of Health Sciences, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8514, Japan
| | - Toshitaka Maeno
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| |
Collapse
|
17
|
Lum FM, Chan YH, Teo TH, Becht E, Amrun SN, Teng KW, Hartimath SV, Yeo NK, Yee WX, Ang N, Torres-Ruesta AM, Fong SW, Goggi JL, Newell EW, Renia L, Carissimo G, Ng LF. Crosstalk between CD64 +MHCII + macrophages and CD4 + T cells drives joint pathology during chikungunya. EMBO Mol Med 2024; 16:641-663. [PMID: 38332201 PMCID: PMC10940729 DOI: 10.1038/s44321-024-00028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Communications between immune cells are essential to ensure appropriate coordination of their activities. Here, we observed the infiltration of activated macrophages into the joint-footpads of chikungunya virus (CHIKV)-infected animals. Large numbers of CD64+MHCII+ and CD64+MHCII- macrophages were present in the joint-footpad, preceded by the recruitment of their CD11b+Ly6C+ inflammatory monocyte precursors. Recruitment and differentiation of these myeloid subsets were dependent on CD4+ T cells and GM-CSF. Transcriptomic and gene ontology analyses of CD64+MHCII+ and CD64+MHCII- macrophages revealed 89 differentially expressed genes, including genes involved in T cell proliferation and differentiation pathways. Depletion of phagocytes, including CD64+MHCII+ macrophages, from CHIKV-infected mice reduced disease pathology, demonstrating that these cells play a pro-inflammatory role in CHIKV infection. Together, these results highlight the synergistic dynamics of immune cell crosstalk in driving CHIKV immunopathogenesis. This study provides new insights in the disease mechanism and offers opportunities for development of novel anti-CHIKV therapeutics.
Collapse
Affiliation(s)
- Fok-Moon Lum
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore.
| | - Yi-Hao Chan
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Teck-Hui Teo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Etienne Becht
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Siti Naqiah Amrun
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Karen Ww Teng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Siddesh V Hartimath
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Nicholas Kw Yeo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Wearn-Xin Yee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Nicholas Ang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Anthony M Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Siew-Wai Fong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Julian L Goggi
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Evan W Newell
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Guillaume Carissimo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Lisa Fp Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, L69 7BE, UK.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZX, UK.
| |
Collapse
|
18
|
Dudek P, Talar-Wojnarowska R. Current Approach to Risk Factors and Biomarkers of Intestinal Fibrosis in Inflammatory Bowel Disease. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:305. [PMID: 38399592 PMCID: PMC10889938 DOI: 10.3390/medicina60020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Inflammatory bowel disease (IBD), especially Crohn's disease (CD), characterized by a chronic inflammatory process and progressive intestinal tissue damage, leads to the unrestrained proliferation of mesenchymal cells and the development of bowel strictures. Complications induced by fibrosis are related to high rates of morbidity and mortality and lead to a substantial number of hospitalizations and surgical procedures, generating high healthcare costs. The development of easily obtained, reliable fibrogenesis biomarkers is essential to provide an important complementary tool to existing diagnostic and prognostic methods in IBD management, guiding decisions on the intensification of pharmacotherapy, proceeding to surgical methods of treatment and monitoring the efficacy of anti-fibrotic therapy in the future. The most promising potential markers of fibrosis include cartilage oligomeric matrix protein (COMP), hepatocyte growth factor activator (HGFA), and fibronectin isoform- extra domain A (ED-A), as well as antibodies against granulocyte macrophage colony-stimulating factor (GM-CSF Ab), cathelicidin (LL-37), or circulatory miRNAs: miR-19a-3p and miR-19b-3p. This review summarizes the role of genetic predisposition, and risk factors and serological markers potentially contributing to the pathophysiology of fibrotic strictures in the course of IBD.
Collapse
|
19
|
Bai Z, Zhang D, Gao Y, Tao B, Bao S, Enninful A, Zhang D, Su G, Tian X, Zhang N, Xiao Y, Liu Y, Gerstein M, Li M, Xing Y, Lu J, Xu ML, Fan R. Spatially Exploring RNA Biology in Archival Formalin-Fixed Paraffin-Embedded Tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579143. [PMID: 38370833 PMCID: PMC10871202 DOI: 10.1101/2024.02.06.579143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Spatial transcriptomics has emerged as a powerful tool for dissecting spatial cellular heterogeneity but as of today is largely limited to gene expression analysis. Yet, the life of RNA molecules is multifaceted and dynamic, requiring spatial profiling of different RNA species throughout the life cycle to delve into the intricate RNA biology in complex tissues. Human disease-relevant tissues are commonly preserved as formalin-fixed and paraffin-embedded (FFPE) blocks, representing an important resource for human tissue specimens. The capability to spatially explore RNA biology in FFPE tissues holds transformative potential for human biology research and clinical histopathology. Here, we present Patho-DBiT combining in situ polyadenylation and deterministic barcoding for spatial full coverage transcriptome sequencing, tailored for probing the diverse landscape of RNA species even in clinically archived FFPE samples. It permits spatial co-profiling of gene expression and RNA processing, unveiling region-specific splicing isoforms, and high-sensitivity transcriptomic mapping of clinical tumor FFPE tissues stored for five years. Furthermore, genome-wide single nucleotide RNA variants can be captured to distinguish different malignant clones from non-malignant cells in human lymphomas. Patho-DBiT also maps microRNA-mRNA regulatory networks and RNA splicing dynamics, decoding their roles in spatial tumorigenesis trajectory. High resolution Patho-DBiT at the cellular level reveals a spatial neighborhood and traces the spatiotemporal kinetics driving tumor progression. Patho-DBiT stands poised as a valuable platform to unravel rich RNA biology in FFPE tissues to study human tissue biology and aid in clinical pathology evaluation.
Collapse
Affiliation(s)
- Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Dingyao Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yan Gao
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bo Tao
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shuozhen Bao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Archibald Enninful
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Daiwei Zhang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Graham Su
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Xiaolong Tian
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Ningning Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Yang Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mark Gerstein
- Section on Biomedical Informatics and Data Science, Yale University, New Haven, CT 06520, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Xing
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Lu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mina L. Xu
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
- Human and Translational Immunology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
20
|
Hardisty G, Nicol MQ, Shaw DJ, Bennet ID, Bryson K, Ligertwood Y, Schwarze J, Beard PM, Hopkins J, Dutia BM. Latent gammaherpesvirus infection enhances type I IFN response and reduces virus spread in an influenza A virus co-infection model. J Gen Virol 2024; 105. [PMID: 38329395 DOI: 10.1099/jgv.0.001962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Infections with persistent or latent viruses alter host immune homeostasis and have potential to affect the outcome of concomitant acute viral infections such as influenza A virus (IAV). Gammaherpesviruses establish life-long infections and require an on-going immune response to control reactivation. We have used a murine model of co-infection to investigate the response to IAV infection in mice latently infected with the gammaherpesvirus MHV-68. Over the course of infection, latently infected BALB/c mice showed less weight loss, clinical signs, pulmonary cellular infiltration and expression of inflammatory mediators than naïve mice infected with IAV and had significantly more activated CD8+ T cells in the lungs. Four days after IAV infection, virus spread in the lungs of latently infected animals was significantly lower than in naïve animals. By 7 days after IAV infection latently infected lungs express elevated levels of cytokines and chemokines indicating they are primed to respond to the secondary infection. Investigation at an early time point showed that 24 h after IAV infection co-infected animals had higher expression of IFNβ and Ddx58 (RIG-I) and a range of ISGs than mice infected with IAV alone suggesting that the type I IFN response plays a role in the protective effect. This effect was mouse strain dependent and did not occur in 129/Sv/Ev mice. These results offer insight into innate immune mechanisms that could be utilized to protect against IAV infection and highlight on-going and persistent viral infections as a significant factor impacting the severity of acute respiratory infections.
Collapse
Affiliation(s)
- Gareth Hardisty
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh. EH16 4UU, UK
| | - Marlynne Q Nicol
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Darren J Shaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Ian D Bennet
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Karen Bryson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Yvonne Ligertwood
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Jurgen Schwarze
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh. EH16 4UU, UK
| | - Philippa M Beard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BF, UK
| | - John Hopkins
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Bernadette M Dutia
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| |
Collapse
|
21
|
Amoriello R, Memo C, Ballerini L, Ballerini C. The brain cytokine orchestra in multiple sclerosis: from neuroinflammation to synaptopathology. Mol Brain 2024; 17:4. [PMID: 38263055 PMCID: PMC10807071 DOI: 10.1186/s13041-024-01077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
The central nervous system (CNS) is finely protected by the blood-brain barrier (BBB). Immune soluble factors such as cytokines (CKs) are normally produced in the CNS, contributing to physiological immunosurveillance and homeostatic synaptic scaling. CKs are peptide, pleiotropic molecules involved in a broad range of cellular functions, with a pivotal role in resolving the inflammation and promoting tissue healing. However, pro-inflammatory CKs can exert a detrimental effect in pathological conditions, spreading the damage. In the inflamed CNS, CKs recruit immune cells, stimulate the local production of other inflammatory mediators, and promote synaptic dysfunction. Our understanding of neuroinflammation in humans owes much to the study of multiple sclerosis (MS), the most common autoimmune and demyelinating disease, in which autoreactive T cells migrate from the periphery to the CNS after the encounter with a still unknown antigen. CNS-infiltrating T cells produce pro-inflammatory CKs that aggravate local demyelination and neurodegeneration. This review aims to recapitulate the state of the art about CKs role in the healthy and inflamed CNS, with focus on recent advances bridging the study of adaptive immune system and neurophysiology.
Collapse
Affiliation(s)
- Roberta Amoriello
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy.
| | - Christian Memo
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy
| | - Laura Ballerini
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy
| | - Clara Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
| |
Collapse
|
22
|
Schwarz E, Benner B, Yu L, Tounkara F, Carson WE. Analysis of Changes in Plasma Cytokine Levels in Response to IL12 Therapy in Three Clinical Trials. CANCER RESEARCH COMMUNICATIONS 2024; 4:81-91. [PMID: 38108458 PMCID: PMC10777814 DOI: 10.1158/2767-9764.crc-23-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/04/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The ability of IL12 to stimulate natural killer (NK) cell and T-cell antitumor activity makes it an attractive candidate for the immune therapy of cancer. Our group has demonstrated that IL12 enhances the NK cell response to antibody-coated tumor cells and conducted three clinical trials utilizing IL12 with mAbs (OSU-9968, OSU-0167, and OSU-11010). To better characterize IL12-induced immunity, plasma cytokine levels were measured in 21 patients from these trials with favorable and unfavorable responses. t-statistics and linear modeling were used to test for differences within and between response groups by examining levels at baseline and post-IL12 administration. Patients exhibited significant increases in 11 cytokines post-IL12 administration when analyzed collectively. However, several cytokines were differentially induced by IL12 depending on response. GMCSF was significantly increased in complete/partially responding patients, while stable disease patients had significant increases in IL10 and decreases in VEGF-C. Patients who experienced progressive disease had significant increases in CCL3, CCL4, IL18, TNFα, CXCL10, CCL8, CCL2, IL6, and IFNγ. The increases in CCL3, CCL4, and IL6 in progressive disease patients were significantly higher than in clinically benefitting patients and most prominent within the first two cycles of IL12 therapy. This correlative pilot study has identified changes that occur in levels of circulating cytokines following IL12 administration to patients with cancer, but this report must be viewed as exploratory in nature. It is meant to spark further inquiry into the topic via the analysis of additional cohorts of patients with similar characteristics who have received IL12 in a uniform fashion. SIGNIFICANCE IL12 activates immune cells and is used to treat cancer. The profile of circulating cytokines was measured in an exploratory fashion in patients with cancer that received IL12 in combination with mAbs. This correlative pilot study could serve as the basis for additional studies of IL12 effects on the production of immune cytokines.
Collapse
Affiliation(s)
- Emily Schwarz
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Brooke Benner
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Fode Tounkara
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - William E. Carson
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Department of Surgery, Division of Surgical Oncology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
23
|
Zhang H, Chen Y, Jiang X, Gu Q, Yao J, Wang X, Wu J. Unveiling the landscape of cytokine research in glioma immunotherapy: a scientometrics analysis. Front Pharmacol 2024; 14:1333124. [PMID: 38259287 PMCID: PMC10800575 DOI: 10.3389/fphar.2023.1333124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Cytokines modulate the glioma tumor microenvironment, influencing occurrence, progression, and treatment response. Strategic cytokine application may improve glioma immunotherapy outcomes. Gliomas remain refractory to standard therapeutic modalities, but immunotherapy shows promise given the integral immunomodulatory roles of cytokines. However, systematic evaluation of cytokine glioma immunotherapy research is absent. Bibliometric mapping of the research landscape, recognition of impactful contributions, and elucidation of evolutive trajectories and hot topics has yet to occur, potentially guiding future efforts. Here, we analyzed the structure, evolution, trends, and hotspots of the cytokine glioma immunotherapy research field, subsequently focusing on avenues for future investigation. Methods: This investigation conducted comprehensive bibliometric analyses on a corpus of 1529 English-language publications, from 1 January 2000, to 4 October 2023, extracted from the Web of Science database. The study employed tools including Microsoft Excel, Origin, VOSviewer, CiteSpace, and the Bibliometrix R package, to systematically assess trends in publication, contributions from various countries, institutions, authors, and journals, as well as to examine literature co-citation and keyword distributions within the domain of cytokines for glioma immunotherapy. The application of these methodologies facilitated a detailed exploration of the hotspots, the underlying knowledge structure, and the developments in the field of cytokines for glioma immunotherapy. Results: This bibliometric analysis revealed an exponential growth in annual publications, with the United States, China, and Germany as top contributors. Reviews constituted 17% and research articles 83% of total publications. Analysis of keywords like "interleukin-13," "TGF-beta," and "dendritic cells" indicated progression from foundational cytokine therapies to sophisticated understanding of the tumor microenvironment and immune dynamics. Key research avenues encompassed the tumor microenvironment, epidermal growth factor receptor, clinical trials, and interleukin pathways. This comprehensive quantitative mapping of the glioma immunotherapy cytokine literature provides valuable insights to advance future research and therapeutic development. Conclusion: This study has identified remaining knowledge gaps regarding the role of cytokines in glioma immunotherapy. Future research will likely focus on the tumor microenvironment, cancer vaccines, epidermal growth factor receptor, and interleukin-13 receptor alpha 2. Glioma immunotherapy development will continue through investigations into resistance mechanisms, microglia and macrophage biology, and interactions within the complex tumor microenvironment.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Chen
- Gamma Knife Center, Department of Oncology, Department of Neurological Surgery, Tianjin Huanhu Hospital, Tianjin Medical University, Tianjin, China
| | - Xinzhan Jiang
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Qiang Gu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiahao Yao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuefeng Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianghua Wu
- School of Nursing, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong, China
| |
Collapse
|
24
|
Chaker SC, Saad M, Mayes T, Lineaweaver WC. Burn Injury-related Growth Factor Expressions and Their Potential Roles in Burn-related Neuropathies. J Burn Care Res 2024; 45:25-31. [PMID: 37978864 DOI: 10.1093/jbcr/irad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 11/19/2023]
Abstract
In the context of burn injury, growth factors (GFs) play a significant role in mediating the complex local and systematic processes that occur. Among the many systemic complications that arise following a burn injury, peripheral neuropathy remains one of the most common. Despite the broad understanding of the effects GFs have on multiple tissues, their potential implications in both wound healing and neuropathy remain largely unexplored. Therefore, this review aims to investigate the expression patterns of GFs prominent during the burn wound healing process and explore the potential contributions these GFs have on the development of burn-related peripheral neuropathy.
Collapse
Affiliation(s)
- Sara C Chaker
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232USA
| | - Mariam Saad
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232USA
| | - Taylor Mayes
- Middle Tennessee State University, Murfreesboro, TN, 37132USA
| | - William C Lineaweaver
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232USA
| |
Collapse
|
25
|
White CS, Hung CC, Lanka S, Maddox CW, Barri A, Sokale AO, Dilger RN. Dietary monoglyceride supplementation to support intestinal integrity and host defenses in health-challenged weanling pigs. J Anim Sci 2024; 102:skae105. [PMID: 38629856 PMCID: PMC11044705 DOI: 10.1093/jas/skae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
Frequent incidence of postweaning enterotoxigenic Escherichia coli (ETEC) diarrhea in the swine industry contributes to high mortality rates and associated economic losses. In this study, a combination of butyric, caprylic, and capric fatty acid monoglycerides was investigated to promote intestinal integrity and host defenses in weanling pigs infected with ETEC. A total of 160 pigs were allotted to treatment groups based on weight and sex. Throughout the 17-d study, three treatment groups were maintained: sham-inoculated pigs fed a control diet (uninfected control [UC], n = 40), ETEC-inoculated pigs fed the same control diet (infected control [IC], n = 60), and ETEC-inoculated pigs fed the control diet supplemented with monoglycerides included at 0.3% of the diet (infected supplemented [MG], n = 60). After a 7-d acclimation period, pigs were orally inoculated on each of three consecutive days with either 3 mL of a sham-control (saline) or live ETEC culture (3 × 109 colony-forming units/mL). The first day of inoculations was designated as 0 d postinoculation (DPI), and all study outcomes reference this time point. Fecal, tissue, and blood samples were collected from 48 individual pigs (UC, n = 12; IC, n = 18; MG, n = 18) on 5 and 10 DPI for analysis of dry matter (DM), bacterial enumeration, inflammatory markers, and intestinal permeability. ETEC-inoculated pigs in both the IC and MG groups exhibited clear signs of infection including lower (P < 0.05) gain:feed and fecal DM, indicative of excess water in the feces, and elevated (P < 0.05) rectal temperatures, total bacteria, total E. coli, and total F18 ETEC during the peak-infection period (5 DPI). Reduced (P < 0.05) expression of the occludin, tumor necrosis factor α, and vascular endothelial growth factor A genes was observed in both ETEC-inoculated groups at the 5 DPI time point. There were no meaningful differences between treatments for any of the outcomes measured at 10 DPI. Overall, all significant changes were the result of the ETEC infection, not monoglyceride supplementation.
Collapse
Affiliation(s)
- Cameron S White
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Chien-Che Hung
- Veterinary Diagnostic Laboratory, University of Illinois, Urbana, IL, USA
| | - Saraswathi Lanka
- Veterinary Diagnostic Laboratory, University of Illinois, Urbana, IL, USA
| | - Carol W Maddox
- Veterinary Diagnostic Laboratory, University of Illinois, Urbana, IL, USA
| | | | | | - Ryan N Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
26
|
Almeida SFF, Santos L, Sampaio-Ribeiro G, Ferreira HRS, Lima N, Caetano R, Abreu M, Zuzarte M, Ribeiro AS, Paiva A, Martins-Marques T, Teixeira P, Almeida R, Casanova JM, Girão H, Abrunhosa AJ, Gomes CM. Unveiling the role of osteosarcoma-derived secretome in premetastatic lung remodelling. J Exp Clin Cancer Res 2023; 42:328. [PMID: 38031171 PMCID: PMC10688015 DOI: 10.1186/s13046-023-02886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Lung metastasis is the most adverse clinical factor and remains the leading cause of osteosarcoma-related death. Deciphering the mechanisms driving metastatic spread is crucial for finding open therapeutic windows for successful organ-specific interventions that may halt or prevent lung metastasis. METHODS We employed a mouse premetastatic lung-based multi-omics integrative approach combined with clinical features to uncover the specific changes that precede lung metastasis formation and identify novel molecular targets and biomarker of clinical utility that enable the design of novel therapeutic strategies. RESULTS We found that osteosarcoma-bearing mice or those preconditioned with the osteosarcoma cell secretome harbour profound lung structural alterations with airway damage, inflammation, neutrophil infiltration, and extracellular matrix remodelling with increased deposition of fibronectin and collagens by resident stromal activated fibroblasts, favouring the adhesion of disseminated tumour cells. Systemic-induced microenvironmental changes, supported by transcriptomic and histological data, promoted and accelerated lung metastasis formation. Comparative proteome profiling of the cell secretome and mouse plasma identified a large number of proteins involved in extracellular-matrix organization, cell-matrix adhesion, neutrophil degranulation, and cytokine-mediated signalling, consistent with the observed lung microenvironmental changes. Moreover, we identified EFEMP1, an extracellular matrix glycoprotein exclusively secreted by metastatic cells, in the plasma of mice bearing a primary tumour and in biopsy specimens from osteosarcoma patients with poorer overall survival. Depletion of EFEMP1 from the secretome prevents the formation of lung metastasis. CONCLUSIONS Integration of our data uncovers neutrophil infiltration and the functional contribution of stromal-activated fibroblasts in ECM remodelling for tumour cell attachment as early pro-metastatic events, which may hold therapeutic potential in preventing or slowing the metastatic spread. Moreover, we identified EFEMP1, a secreted glycoprotein, as a metastatic driver and a potential candidate prognostic biomarker for lung metastasis in osteosarcoma patients. Osteosarcoma-derived secreted factors systemically reprogrammed the lung microenvironment and fostered a growth-permissive niche for incoming disseminated cells to survive and outgrow into overt metastasis. Daily administration of osteosarcoma cell secretome mimics the systemic release of tumour-secreted factors of a growing tumour in mice during PMN formation; Transcriptomic and histological analysis of premetastatic lungs revealed inflammatory-induced stromal fibroblast activation, neutrophil infiltration, and ECM remodelling as early onset pro-metastatic events; Proteome profiling identified EFEMP1, an extracellular secreted glycoprotein, as a potential predictive biomarker for lung metastasis and poor prognosis in osteosarcoma patients. Osteosarcoma patients with EFEMP1 expressing biopsies have a poorer overall survival.
Collapse
Affiliation(s)
- Sara F F Almeida
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, 3000-548, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
| | - Liliana Santos
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, 3000-548, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
| | - Gabriela Sampaio-Ribeiro
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
| | - Hugo R S Ferreira
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
| | - Nuno Lima
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
| | - Rui Caetano
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, 3004-561, Portugal
| | - Mónica Abreu
- Multidisciplinary Institute of Ageing (MIA), University of Coimbra, Coimbra, Portugal
| | - Mónica Zuzarte
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
| | - Ana Sofia Ribeiro
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, 4200-135, Portugal
| | - Artur Paiva
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Tânia Martins-Marques
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
| | - Paulo Teixeira
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, 3004-561, Portugal
| | - Rui Almeida
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, 3004-561, Portugal
| | - José Manuel Casanova
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
- Tumor Unit of the Locomotor Apparatus (UTAL), Orthopedics Service, Coimbra Hospital and University Center (CHUC), University Clinic of Orthopedics, Coimbra, 3000-075, Portugal
| | - Henrique Girão
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
| | - Antero J Abrunhosa
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, 3000-548, Portugal
| | - Célia M Gomes
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal.
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal.
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal.
| |
Collapse
|
27
|
Keturakis V, Narauskaitė D, Balion Z, Gečys D, Kulkovienė G, Kairytė M, Žukauskaitė I, Benetis R, Stankevičius E, Jekabsone A. The Effect of SARS-CoV-2 Spike Protein RBD-Epitope on Immunometabolic State and Functional Performance of Cultured Primary Cardiomyocytes Subjected to Hypoxia and Reoxygenation. Int J Mol Sci 2023; 24:16554. [PMID: 38068877 PMCID: PMC10705973 DOI: 10.3390/ijms242316554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/25/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Cardio complications such as arrhythmias and myocardial damage are common in COVID-19 patients. SARS-CoV-2 interacts with the cardiovascular system primarily via the ACE2 receptor. Cardiomyocyte damage in SARS-CoV-2 infection may stem from inflammation, hypoxia-reoxygenation injury, and direct toxicity; however, the precise mechanisms are unclear. In this study, we simulated hypoxia-reoxygenation conditions commonly seen in SARS-CoV-2-infected patients and studied the impact of the SARS-CoV-2 spike protein RBD-epitope on primary rat cardiomyocytes to gain insight into the potential mechanisms underlying COVID-19-related cardiac complications. Cell metabolic activity was evaluated with PrestoBlueTM. Gene expression of proinflammatory markers was measured by qRT-PCR and their secretion was quantified by Luminex assay. Cardiomyocyte contractility was analysed using the Myocyter plugin of ImageJ. Mitochondrial respiration was determined through Seahorse Mito Stress Test. In hypoxia-reoxygenation conditions, treatment of the SARS-CoV-2 spike RBD-epitope reduced the metabolic activity of primary cardiomyocytes, upregulated Il1β and Cxcl1 expression, and elevated GM-CSF and CCL2 cytokines secretion. Contraction time increased, while amplitude and beating frequency decreased. Acute treatment with a virus RBD-epitope inhibited mitochondrial respiration and lowered ATP production. Under ischaemia-reperfusion, the SARS-CoV-2 RBD-epitope induces cardiomyocyte injury linked to impaired mitochondrial activity.
Collapse
Affiliation(s)
- Vytenis Keturakis
- Preclinical Research Laboratory for Medicinal Products, Institute of Cardiology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (V.K.)
- Department of Heart, Thoracic and Vascular Surgery, Medicine Faculty, Medical Academy, Lithuanian University of Health Sciences, 50103 Kaunas, Lithuania
| | - Deimantė Narauskaitė
- Preclinical Research Laboratory for Medicinal Products, Institute of Cardiology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (V.K.)
| | - Zbigniev Balion
- Preclinical Research Laboratory for Medicinal Products, Institute of Cardiology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (V.K.)
| | - Dovydas Gečys
- Preclinical Research Laboratory for Medicinal Products, Institute of Cardiology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (V.K.)
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, 50103 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania
| | - Gabrielė Kulkovienė
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania
| | - Milda Kairytė
- Preclinical Research Laboratory for Medicinal Products, Institute of Cardiology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (V.K.)
| | - Ineta Žukauskaitė
- Preclinical Research Laboratory for Medicinal Products, Institute of Cardiology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (V.K.)
| | - Rimantas Benetis
- Department of Heart, Thoracic and Vascular Surgery, Medicine Faculty, Medical Academy, Lithuanian University of Health Sciences, 50103 Kaunas, Lithuania
| | - Edgaras Stankevičius
- Preclinical Research Laboratory for Medicinal Products, Institute of Cardiology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (V.K.)
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Aistė Jekabsone
- Preclinical Research Laboratory for Medicinal Products, Institute of Cardiology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (V.K.)
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania
| |
Collapse
|
28
|
Sremac M, Luo H, Deng H, Parr MFE, Hutcheson J, Verde PS, Alagpulinsa DA, Kitzmann JM, Papas KK, Brauns T, Markmann JF, Lei J, Poznansky MC. Short-term function and immune-protection of microencapsulated adult porcine islets with alginate incorporating CXCL12 in healthy and diabetic non-human primates without systemic immune suppression: A pilot study. Xenotransplantation 2023; 30:e12826. [PMID: 37712342 DOI: 10.1111/xen.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/10/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
Replacement of insulin-producing pancreatic beta-cells by islet transplantation offers a functional cure for type-1 diabetes (T1D). We recently demonstrated that a clinical grade alginate micro-encapsulant incorporating the immune-repellent chemokine and pro-survival factor CXCL12 could protect and sustain the integrity and function of autologous islets in healthy non-human primates (NHPs) without systemic immune suppression. In this pilot study, we examined the impact of the CXCL12 micro encapsulant on the function and inflammatory and immune responses of xenogeneic islets transplanted into the omental tissue bilayer sac (OB; n = 4) and diabetic (n = 1) NHPs. Changes in the expression of cytokines after implantation were limited to 2-6-fold changes in blood, most of which did not persist over the first 4 weeks after implantation. Flow cytometry of PBMCs following transplantation showed minimal changes in IFNγ or TNFα expression on xenoantigen-specific CD4+ or CD8+ T cells compared to unstimulated cells, and these occurred mainly in the first 4 weeks. Microbeads were readily retrievable for assessment at day 90 and day 180 and at retrieval were without microscopic signs of degradation or foreign body responses (FBR). In vitro and immunohistochemistry studies of explanted microbeads indicated the presence of functional xenogeneic islets at day 30 post transplantation in all biopsied NHPs. These results from a small pilot study revealed that CXCL12-microencapsulated xenogeneic islets abrogate inflammatory and adaptive immune responses to the xenograft. This work paves the way toward future larger scale studies of the transplantation of alginate microbeads with CXCL12 and porcine or human stem cell-derived beta cells or allogeneic islets into diabetic NHPs without systemic immunosuppression.
Collapse
Affiliation(s)
- Marinko Sremac
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hao Luo
- Division of Transplant Surgery and Center of Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of General Surgery, General Hospital of Western Theater Command, Chengdu, China
| | - Hongping Deng
- Division of Transplant Surgery and Center of Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Madeline F E Parr
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Pushkar S Verde
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David A Alagpulinsa
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jenna Miner Kitzmann
- Department of Surgery, Institute for Cellular Transplantation, University of Arizona, Tucson, Arizona, USA
| | - Klearchos K Papas
- Department of Surgery, Institute for Cellular Transplantation, University of Arizona, Tucson, Arizona, USA
| | - Timothy Brauns
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - James F Markmann
- Division of Transplant Surgery and Center of Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ji Lei
- Division of Transplant Surgery and Center of Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Muslimov A, Tereshchenko V, Shevyrev D, Rogova A, Lepik K, Reshetnikov V, Ivanov R. The Dual Role of the Innate Immune System in the Effectiveness of mRNA Therapeutics. Int J Mol Sci 2023; 24:14820. [PMID: 37834268 PMCID: PMC10573212 DOI: 10.3390/ijms241914820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Advances in molecular biology have revolutionized the use of messenger RNA (mRNA) as a therapeutic. The concept of nucleic acid therapy with mRNA originated in 1990 when Wolff et al. reported successful expression of proteins in target organs by direct injection of either plasmid DNA or mRNA. It took decades to bring the transfection efficiency of mRNA closer to that of DNA. The next few decades were dedicated to turning in vitro-transcribed (IVT) mRNA from a promising delivery tool for gene therapy into a full-blown therapeutic modality, which changed the biotech market rapidly. Hundreds of clinical trials are currently underway using mRNA for prophylaxis and therapy of infectious diseases and cancers, in regenerative medicine, and genome editing. The potential of IVT mRNA to induce an innate immune response favors its use for vaccination and immunotherapy. Nonetheless, in non-immunotherapy applications, the intrinsic immunostimulatory activity of mRNA directly hinders the desired therapeutic effect since it can seriously impair the target protein expression. Targeting the same innate immune factors can increase the effectiveness of mRNA therapeutics for some indications and decrease it for others, and vice versa. The review aims to present the innate immunity-related 'barriers' or 'springboards' that may affect the development of immunotherapies and non-immunotherapy applications of mRNA medicines.
Collapse
Affiliation(s)
- Albert Muslimov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Valeriy Tereshchenko
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Daniil Shevyrev
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Anna Rogova
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- Saint-Petersburg Chemical-Pharmaceutical University, Professora Popova 14, 197376 St. Petersburg, Russia
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russia
| | - Kirill Lepik
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Vasiliy Reshetnikov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Roman Ivanov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| |
Collapse
|
30
|
Okamoto M, Omori-Miyake M, Kuwahara M, Okabe M, Eguchi M, Yamashita M. The Inhibition of Glycolysis in T Cells by a Jak Inhibitor Ameliorates the Pathogenesis of Allergic Contact Dermatitis in Mice. J Invest Dermatol 2023; 143:1973-1982.e5. [PMID: 37028703 DOI: 10.1016/j.jid.2023.03.1667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/31/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023]
Abstract
Allergic contact dermatitis (ACD) and atopic dermatitis develop through delayed-type hypersensitivity reactions mediated by T cells. The development of immunomodulatory drugs, such as Jak inhibitors, would be useful for the long-term management of these diseases owing to their profile of favorable adverse effects. However, the efficacy of Jak inhibitors for ACD treatment has not been fully determined under a variety of settings. Therefore, we evaluated the effects of ruxolitinib, a Jak inhibitor for Jak1 and Jak2, using a mouse ACD model. As a result, the lower numbers of immune cells, including CD4+ T cells, CD8+ T cells, neutrophils, and possibly macrophages, as well as milder pathophysiological aspects have been observed in the inflamed skin of ACD with the administration of ruxolitinib. In addition, the treatment of differentiating T cells with ruxolitinib downregulated the level of IL-2-mediated glycolysis in vitro. Furthermore, symptoms of ACD did not develop in T-cell-specific Pgam1-deficient mice whose T cells had no glycolytic capacity. Taken together, our data suggest that the downregulation of glycolysis in T cells by ruxolitinib could be an important factor in the suppression of ACD development in mice.
Collapse
Affiliation(s)
- Michiko Okamoto
- Department of Pediatrics, Ehime University Graduate School of Medicine, Ehime, Japan; Department of Immunology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Miyuki Omori-Miyake
- Department of Infections and Host Defenses, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Makoto Kuwahara
- Department of Immunology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masataka Okabe
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Mariko Eguchi
- Department of Pediatrics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masakatsu Yamashita
- Department of Immunology, Ehime University Graduate School of Medicine, Ehime, Japan; Department of Infections and Host Defenses, Ehime University Graduate School of Medicine, Ehime, Japan.
| |
Collapse
|
31
|
Sueblinvong V, Fan X, Hart C, Molina S, Koval M, Guidot DM. Ethanol-exposed lung fibroblasts cause airway epithelial barrier dysfunction. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1839-1849. [PMID: 37864530 DOI: 10.1111/acer.15174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/24/2023] [Accepted: 08/11/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Chronic alcohol ingestion predisposes to lung injury and disrepair during sepsis. Our previous studies outlined roles for transforming growth factor-beta 1 (TGFβ1) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in epithelial barrier homeostasis and how alcohol perturbs their expression and signaling. Here we hypothesize that ethanol-exposed lung fibroblasts (LF) are a source of dysregulated TGFβ1 and GM-CSF and thereby alter airway epithelial barrier function. METHODS Human or rat LF were cultured ± ethanol for 2 weeks and then co-cultured with human or rat airway epithelial cells (AEC) seeded on Transwell permeable supports. In selected groups, a TGFβ1 receptor type 1 (TGFβR1) inhibitor (SB431542) or a TGFβ1 neutralizing antibody was applied. Transepithelial electrical resistance (TER) was measured prior to co-culture and on day 5 of co-culture. AEC were then analyzed for the expression of selected tight junction and mesenchymal proteins, and transwell membranes were analyzed by immunofluorescence microscopy for ZO-1 expression and localization. TGFβ1 and GM-CSF levels in conditioned media from the co-cultures were quantified by ELISA. RESULTS AEC co-cultured with ethanol-exposed LF (ELF) showed a significant reduction in TER and corresponding decreases in ZO-1 expression, whereas collagen type 1A1 and α-smooth muscle actin protein expression were increased. In parallel, in conditioned media from the ELF + AEC co-cultures, activated TGFβ1 levels increased and GM-CSF levels decreased. Notably, all the effects of ELF on the AEC were prevented by blocking TGFβ1 activity. CONCLUSIONS Prior ethanol exposure to LF induces barrier dysfunction in naive AEC in a paracrine fashion through activation of TGFβ1 signaling and suppression of GM-CSF. These experimental findings provide a potential mechanism by which chronic alcohol ingestion impairs airway epithelial integrity and renders individuals susceptible to lung injury.
Collapse
Affiliation(s)
- Viranuj Sueblinvong
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xian Fan
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Craishun Hart
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Samuel Molina
- FUJIFILM Irvine Scientific, Warminster, Pennsylvania, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David M Guidot
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
32
|
Min SJ, Kim SJ, Park JY, Seo CS, Choi YK. Preparation of Herbal Extracts for Intestinal Immune Modulation Activity Based on In Vitro Screening and In Vivo Evaluation of Zingiber officinale Rosc. Extracts. Molecules 2023; 28:6743. [PMID: 37764519 PMCID: PMC10536359 DOI: 10.3390/molecules28186743] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Ten traditional herbal extracts effective against diarrhea, infectious diseases, and bacterial activity were selected and analyzed for Peyer's patch cell-mediated intestinal immunomodulatory activity in vitro and in vivo. Among the 10 herbal extracts, Zingiber officinale Rosc. (ZO) extract induced the highest secretion of immunoglobulin A (IgA) and granulocyte macrophage colony-stimulating factor (GM-CSF) in the cells of Peyer's patches. Furthermore, animal experiments showed that IA production was enhanced with the oral administration of ZO extract (100 mg/kg and 300 mg/kg) for 10 days. In addition, 6-, 8-, 10-gingerol, and 6-, 8-, 10-shogaol, the six major index compounds of ZO extract, were analyzed using HPLC. Our study findings confirm the intestinal immunomodulatory activity of ZO extract and lay a strong foundation for future analytical studies aimed at determining the active components of ZO extracts.
Collapse
Affiliation(s)
- Su Ji Min
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Sung Jin Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Jun Yeon Park
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| | - Chang-Seob Seo
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - You-Kyong Choi
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
33
|
Dharra R, Kumar Sharma A, Datta S. Emerging aspects of cytokine storm in COVID-19: The role of proinflammatory cytokines and therapeutic prospects. Cytokine 2023; 169:156287. [PMID: 37402337 PMCID: PMC10291296 DOI: 10.1016/j.cyto.2023.156287] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/24/2023] [Indexed: 07/06/2023]
Abstract
COVID-19 has claimed millions of lives during the last 3 years since initial cases were reported in Wuhan, China, in 2019. Patients with COVID-19 suffer from severe pneumonia, high fever, acute respiratory distress syndrome (ARDS), and multiple-organ dysfunction, which may also result in fatality in extreme cases. Cytokine storm (CS) is hyperactivation of the immune system, wherein the dysregulated production of proinflammatory cytokines could result in excessive immune cell infiltrations in the pulmonary tissues, resulting in tissue damage. The immune cell infiltration could also occur in other tissues and organs and result in multiple organs' dysfunction. The key cytokines implicated in the onset of disease severity include TNF-α, IFN-γ, IL-6, IL-1β, GM-CSF, and G-CSF. Controlling the CS is critical in treating COVID-19 disease. Therefore, different strategies are employed to mitigate the effects of CS. These include using monoclonal antibodies directed against soluble cytokines or the cytokine receptors, combination therapies, mesenchymal stem cell therapy, therapeutic plasma exchange, and some non-conventional treatment methods to improve patient immunity. The current review describes the role/s of critical cytokines in COVID-19-mediated CS and the respective treatment modalities.
Collapse
Affiliation(s)
- Renu Dharra
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036, India
| | - Anil Kumar Sharma
- Department of Bio-Science and Technology, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Sonal Datta
- Department of Bio-Science and Technology, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India.
| |
Collapse
|
34
|
Jha A, Larkin J, Moore E. SOCS1-KIR Peptide in PEGDA Hydrogels Reduces Pro-Inflammatory Macrophage Activation. Macromol Biosci 2023; 23:e2300237. [PMID: 37337867 DOI: 10.1002/mabi.202300237] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 06/21/2023]
Abstract
Macrophages modulate the wound healing cascade by adopting different phenotypes such as pro-inflammatory (M1) or pro-wound healing (M2). To reduce M1 activation, the JAK/STAT pathway can be targeted by using suppressors of cytokine signaling (SOCS1) proteins. Recently a peptide mimicking the kinase inhibitory region (KIR) of SOCS1 has been utilized to manipulate the adaptive immune response. However, the utilization of SOCS1-KIR to reduce pro-inflammatory phenotype in macrophages is yet to be investigated in a biomaterial formulation. This study introduces a PEGDA hydrogel platform to investigate SOCS1-KIR as a macrophage phenotype manipulating peptide. Immunocytochemistry, cytokine secretion assays, and gene expression analysis for pro-inflammatory macrophage markers in 2D and 3D experiments demonstrate a reduction in M1 activation due to SOCS1-KIR treatment. The retention of SOCS1-KIR in the hydrogel through release assays and diffusion tests is demonstrated. The swelling ratio of the hydrogel also remains unaffected with the entrapment of SOCS1-KIR. This study elucidates how SOCS1-KIR peptide in PEGDA hydrogels can be utilized as an effective therapeutic for macrophage manipulation.
Collapse
Affiliation(s)
- Aakanksha Jha
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Joseph Larkin
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32603, USA
| | - Erika Moore
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
35
|
Yadagiri G, Singh A, Arora K, Mudavath SL. Immunotherapy and immunochemotherapy in combating visceral leishmaniasis. Front Med (Lausanne) 2023; 10:1096458. [PMID: 37265481 PMCID: PMC10229823 DOI: 10.3389/fmed.2023.1096458] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/14/2023] [Indexed: 06/03/2023] Open
Abstract
Visceral leishmaniasis (VL), a vector-borne disease, is caused by an obligate intramacrophage, kinetoplastid protozoan parasite of the genus Leishmania. Globally, VL is construed of diversity and complexity concerned with high fatality in tropics, subtropics, and Mediterranean regions with ~50,000-90,000 new cases annually. Factors such as the unavailability of licensed vaccine(s), insubstantial measures to control vectors, and unrestrained surge of drug-resistant parasites and HIV-VL co-infections lead to difficulty in VL treatment and control. Furthermore, VL treatment, which encompasses several problems including limited efficacy, emanation of drug-resistant parasites, exorbitant therapy, and exigency of hospitalization until the completion of treatment, further exacerbates disease severity. Therefore, there is an urgent need for the development of safe and efficacious therapies to control and eliminate this devastating disease. In such a scenario, biotherapy/immunotherapy against VL can become an alternative strategy with limited side effects and no or nominal chance of drug resistance. An extensive understanding of pathogenesis and immunological events that ensue during VL infection is vital for the development of immunotherapeutic strategies against VL. Immunotherapy alone or in combination with standard anti-leishmanial chemotherapeutic agents (immunochemotherapy) has shown better therapeutic outcomes in preclinical studies. This review extensively addresses VL treatment with an emphasis on immunotherapy or immunochemotherapeutic strategies to improve therapeutic outcomes as an alternative to conventional chemotherapy.
Collapse
Affiliation(s)
- Ganesh Yadagiri
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Aakriti Singh
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Kanika Arora
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| |
Collapse
|
36
|
Chohan KL, Siegler EL, Kenderian SS. CAR-T Cell Therapy: the Efficacy and Toxicity Balance. Curr Hematol Malig Rep 2023; 18:9-18. [PMID: 36763238 PMCID: PMC10505056 DOI: 10.1007/s11899-023-00687-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW Chimeric antigen receptor (CAR) T cell therapy is an immunotherapy that has resulted in tremendous progress in the treatment of patients with B cell malignancies. However, the remarkable efficacy of therapy is not without significant safety concerns. Herein, we will review the unique and potentially life-threatening toxicities associated with CAR-T cell therapy and their association with treatment efficacy. RECENT FINDINGS Currently, CAR-T cell therapy is approved for the treatment of B cell relapsed or refractory leukemia and lymphoma, and most recently, multiple myeloma (MM). In these different diseases, it has led to excellent complete and overall response rates depending on the patient population and therapy. Despite promising efficacy, CAR-T cell therapy is associated with significant side effects; the two most notable toxicities are cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). The treatment of CAR-T-induced toxicity is supportive; however, as higher-grade adverse events occur, toxicity-directed therapy with tocilizumab, an IL-6 receptor antibody, and steroids is standard practice. Overall, a careful risk-benefit balance exists between the efficacy and toxicities of therapies. The challenge lies in the underlying pathophysiology of CAR-T-related toxicity which relies upon the activation of CAR-T cells. Some degree of toxicity is expected to achieve an effective response to therapy, and certain aspects of treatment are also associated with toxicity. As progress is made in the investigation and approval of new CARs, novel toxicity-directed therapies and toxicity-limited constructs will be the focus of attention.
Collapse
Affiliation(s)
| | - Elizabeth L Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA.
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 1st ST SW, Rochester, MN, 55902, USA.
| |
Collapse
|
37
|
Jin M, Hu J, Tong L, Zhang B, Huang J. The Epitope Basis of Embryonic Stem Cell-Induced Antitumor Immunity against Bladder Cancer. Adv Healthc Mater 2023; 12:e2202691. [PMID: 36510117 PMCID: PMC11468705 DOI: 10.1002/adhm.202202691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Indexed: 12/15/2022]
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) share many cellular and molecular features with cancer cells. Taking advantage of these similarities, stem cells are effective vaccines against cancers in animal models. However, the molecular basis is not well understood, which hinders the development of effective cancer vaccines. Here, prophylactic and therapeutic bladder cancer vaccines composed of allogeneic ESCs and CpG with or without granulocyte macrophage colony stimulating factor are tested. The ESC-based cancer vaccines are able to induce specific antitumor immunity including stimulating cytotoxic CD8+ T cells and memory CD4+ T cells, reducing myeloid-derived suppressor cells, and preventing bladder cancer growth in mouse models. Furthermore, several genes that are overexpressed in both ESCs and tumors are identified. An epitope-based vaccine designed with shared overexpressed proteins induces specific antitumor immunity and reduces bladder cancer growth. Functional epitopes underlying the action of stem cell-based vaccines against bladder cancer are identified and it is confirmed that ESC-based anticancer vaccines have great potential. A systematic approach is provided here to developing novel effective epitope-based cancer vaccines in the future.
Collapse
Affiliation(s)
- Meiling Jin
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Jingchu Hu
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong SARChina
| | - Lili Tong
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Bao‐Zhong Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Jian‐Dong Huang
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong SARChina
- Department of Clinical OncologyShenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhen518053China
- Guangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐Sen UniversityGuangzhou510120China
| |
Collapse
|
38
|
Teque F, Wegehaupt A, Roufs E, Killian MS. CD8+ Lymphocytes from Healthy Blood Donors Secrete Antiviral Levels of Interferon-Alpha. Viruses 2023; 15:v15040894. [PMID: 37112874 PMCID: PMC10144965 DOI: 10.3390/v15040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The adaptive immune response to viral infections features the antigen-driven expansion of CD8+ T cells. These cells are widely recognized for their cytolytic activity that is mediated through the secretion of cytokines such as perforin and granzymes. Less appreciated is their ability to secrete soluble factors that restrict virus replication without killing the infected cells. In this study we measured the ability of primary anti-CD3/28-stimulated CD8+ T cells from healthy blood donors to secrete interferon-alpha. Supernatants collected from CD8+ T cell cultures were screened for their ability to suppress HIV-1 replication in vitro and their interferon-alpha concentrations were measured by ELISA. Interferon-alpha concentrations in the CD8+ T cell culture supernatants ranged from undetectable to 28.6 pg/mL. The anti-HIV-1 activity of the cell culture supernatants was observed to be dependent on the presence of interferon-alpha. Appreciable increases in the expression levels of type 1 interferon transcripts were observed following T cell receptor stimulation, suggesting that the secretion of interferon-alpha by CD8+ T cells is an antigen-driven response. In 42-plex cytokine assays, the cultures containing interferon-alpha were also found to contain elevated levels of GM-CSF, IL-10, IL-13, and TNF-alpha. Together, these results demonstrate that the secretion of anti-viral levels of interferon-alpha is a common function of CD8+ T cells. Furthermore, this CD8+ T cell function likely plays broader roles in health and disease.
Collapse
|
39
|
Lopes-Santos G, Tjioe KC, Magalhaes MADO, Oliveira DT. The role of granulocyte-macrophage colony-stimulating factor in head and neck cancer. Arch Oral Biol 2023; 147:105641. [PMID: 36753900 DOI: 10.1016/j.archoralbio.2023.105641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To review the molecular mechanisms and biological roles of granulocyte-macrophage colony-stimulating factor (GM-CSF) in head and neck squamous cell carcinoma, highlighting its potential clinical applications. DESIGN The search terms "granulocyte-macrophage colony-stimulating factor", "GM-CSF", "CSF2″ and "head and neck squamous cell carcinoma" or "head and neck cancer" were queried in the PubMed/MEDLINE and Scopus databases. RESULTS Despite of being a widely expressed cytokine, the number of studies investigating the specific roles of GM-CSF in head and neck cancer was limited. Most of them investigated GM-CSF in conjunction with other cytokines. When studied alone, conflicting findings were observed in head and neck squamous cell carcinoma. GM-CSF has been shown to induce angiogenesis and local tumor invasion. Additionally, it has also been implicated in immune evasion. On the other hand, GM-CSF stimulated the differentiation of dendritic cells, which are responsible for presenting tumor antigens, and for the regulation of T cell function. Even with these paradoxical effects, there are few studies investigating the potential of GM-CSF as adjuvant therapy in head and neck cancer. CONCLUSION The effects of GM-CSF in head and neck cancer may be pro- or antitumor. Understanding how one arm and not the other is activated is essential to assess the applicability and the safety of this cytokine as a therapeutic agent.
Collapse
Affiliation(s)
- Gabriela Lopes-Santos
- Department of Surgery, Stomatology, Pathology, and Radiology, Area of Pathology, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo 17012-901, Brazil.
| | - Kellen Cristine Tjioe
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd., CN2236B, Augusta, GA 30912, USA.
| | | | - Denise Tostes Oliveira
- Department of Surgery, Stomatology, Pathology, and Radiology, Area of Pathology, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo 17012-901, Brazil.
| |
Collapse
|
40
|
Ahmad SF, Patra MK, Mahendran K, Paul BR, Khanna S, Singh AK, De UK, Agrawal RK, Gaur GK, Dutt T. Hematological and serum biochemical parameters and profiling of cytokine genes in lumpy skin disease in Vrindavani cattle. 3 Biotech 2023; 13:66. [PMID: 36721645 PMCID: PMC9884329 DOI: 10.1007/s13205-023-03477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/11/2023] [Indexed: 01/30/2023] Open
Abstract
Lumpy skin disease (LSD) is a notifiable re-emerging transboundary viral disease of bovines that inflicts heavy losses in affected livestock farms. Genetic variations contribute substantially to the inter-individual differences in the immune response against disease agents. The present study aimed to evaluate the genetic basis of differential immune response in Vrindavani cattle by comparing the hematological, biochemical and cytokine genes' expression profiles of LSD-affected and unaffected animals. After 21 days of the outbreak at the farm, the animals were grouped as affected (those who developed symptoms) and unaffected/healthy (those who did not). Standard hematological and biochemical parameters were evaluated in both the groups. Expression profiling of important Th1 (IL2, INFG and GMCSF) and Th2 (IL4, IL6 and IL10) cytokines was also performed via a relative quantification approach using real-time PCR. Erythrogram and leucogram analyses revealed significant differences in total leucocyte count (TLC: 14.18 ± 0.74 versus 11.38 ± 0.68 x103/µL), hemoglobin (Hb: 8.66 ± 0.42 versus 10.84 ± 0.17 g%) and percentage of neutrophils (46.40 ± 1.98 versus 35.40 ± 2.11%), lymphocytes (49.40 ± 1.99 versus 62.40 ± 1.86) and monocytes (4.20 ± 0.37 versus 2.40 ± 0.40) between the affected and healthy animals, respectively. The production of liver enzymes (SGOT and SGPT) was significantly higher in affected animals (74.18 ± 4.76 and 59.51 ± 2.75) when compared to the healthy counterparts (65.95 ± 9.18 and 39.21 ± 3.31). The expression profiling of Th1 and Th2 cytokines revealed significant differences between the two groups, except IL10. The expression of IL2, GMCSF and IL6 were upregulated in healthy animals while that of INFG, IL4 and IL10 were upregulated in LSD-affected animals. The highest abundance was observed for IL2 transcripts in healthy animals among all assessed cytokines with log2fold change of 1.61 as compared to affected counterparts. Overall, the immune response in healthy animals (after exposure to LSD virus) was predominated by the expression of Th1 cell proliferation and there was an increased production of pro-inflammatory cytokines as compared to the affected counterparts. The results revealed that the effective immune response to LSD in cattle consists of changes in hematological and biochemical parameters and altered expression profile of cytokines with enhanced phagocytosis and lymphocyte recruitment. Furthermore, optimal expression of Th1 cytokines is required for maintaining optimal health against infectious insult with LSD virus in cattle.
Collapse
Affiliation(s)
- Sheikh Firdous Ahmad
- grid.417990.20000 0000 9070 5290ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Manas Kumar Patra
- grid.417990.20000 0000 9070 5290ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - K. Mahendran
- grid.417990.20000 0000 9070 5290ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Babul Rudra Paul
- grid.417990.20000 0000 9070 5290ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Shivani Khanna
- grid.417990.20000 0000 9070 5290ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Amit Kumar Singh
- grid.417990.20000 0000 9070 5290ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Ujjwal Kumar De
- grid.417990.20000 0000 9070 5290ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Ravi Kant Agrawal
- grid.417990.20000 0000 9070 5290ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Gyanendra Kumar Gaur
- grid.417990.20000 0000 9070 5290ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Triveni Dutt
- grid.417990.20000 0000 9070 5290ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| |
Collapse
|
41
|
Ahamadi M, Kast J, Chen P, Huang X, Dutta S, Upreti VV. Oncolytic viral kinetics mechanistic modeling of Talimogene Laherparepvec (T-VEC) a first-in-class oncolytic viral therapy in patients with advanced melanoma. CPT Pharmacometrics Syst Pharmacol 2023; 12:250-260. [PMID: 36564918 PMCID: PMC9931434 DOI: 10.1002/psp4.12898] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/25/2022] Open
Abstract
Talimogene Laherparepvec (T-VEC) is a first-in-class oncolytic virotherapy approved for the treatment of unresectable melanoma recurrent after initial surgery. Biodistribution data from a phase II study was used to develop a viral kinetic mechanistic model describing the interaction between cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF), the immune system, and T-VEC treatment. Our analysis found that (1) the viral infection rate has a great influence on T-VEC treatment efficacy; (2) an increase in T-VEC dose of 102 plaque-forming units/ml 21 days and beyond after the initial dose of T-VEC resulted in an ~12% increase in response; and (3) at the systemic level, the ratio of resting innate immune cells to the death rate of innate immune impact T-VEC treatment efficacy. This analysis clarifies under which condition the immune system either assists in eliminating tumor cells or inhibits T-VEC treatment efficacy, which is critical to both efficiently design future oncolytic agents and understand cancer development.
Collapse
Affiliation(s)
- Malidi Ahamadi
- Clinical Pharmacology Modeling and Simulation, Amgen IncThousand OaksCaliforniaUSA
| | - Johannes Kast
- Clinical Pharmacology Modeling and Simulation, Amgen IncSouth San FranciscoCaliforniaUSA
| | - Po‐Wei Chen
- Clinical Pharmacology Modeling and Simulation, Amgen IncThousand OaksCaliforniaUSA
| | - Xiaojun Huang
- Global Development, Amgen IncThousand OaksCaliforniaUSA
| | - Sandeep Dutta
- Clinical Pharmacology Modeling and Simulation, Amgen IncThousand OaksCaliforniaUSA
| | - Vijay V. Upreti
- Clinical Pharmacology Modeling and Simulation, Amgen IncSouth San FranciscoCaliforniaUSA
| |
Collapse
|
42
|
Chen R, Li Y, Zhuang Y, Zhang Y, Wu H, Lin T, Chen S. Immune evaluation of granulocyte-macrophage colony stimulating factor loaded hierarchically 3D nanofiber scaffolds in a humanized mice model. Front Bioeng Biotechnol 2023; 11:1159068. [PMID: 37034265 PMCID: PMC10080111 DOI: 10.3389/fbioe.2023.1159068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Background: Immune evaluation of biomaterials for tissue regeneration is a critical preclinical evaluation. The current evaluation criterion (ISO 10993-1 or GB/T 16886) uses rodents to perform the immune evaluation. However, the immune system of rodents is different from humans, the obtained results may not be reliable, which could lead directly to the failure of clinical trials. Granulocyte-macrophage colony-stimulating factor (GM-CSF) shows a great potential application in tissue regeneration by regulating local immune responses. The presented work combines the advantages of GM-CSF (immunoregulation) and hierarchically 3D nanofiber scaffolds (tissue regeneration). Methods: Firstly, we fabricated GM-CSF loaded 3D radially aligned nanofiber scaffolds, and then subcutaneous implantation was performed in humanized mice. The whole scaffold and surrounding tissue were harvested at each indicated time point. Finally, the cell infiltration and local immune responses were detected by histological observations, including H&E and Masson staining and immunochemistry. Results: We found significant cell migration and extracellular matrix deposition within the 3D radially aligned nanofiber scaffold after subcutaneous implantation. The locally released GM-CSF could accelerate the expression of human dendritic cells (CD11c) only 3 days after subcutaneous implantation. Moreover, higher expression of human cytotoxic T cells (CD3+/CD8+), M1 macrophages (CD68/CCR7) was detected within GM-CSF loaded radially aligned nanofiber scaffolds and their surrounding tissues. Conclusions: The 3D radially aligned scaffold can accelerate cell migration from surrounding tissues to regenerate the wound area. And the locally released GM-CSF enhances dendritic cell recruitment and activation of cytotoxic T cells and M1 macrophages. Taken together, the GM-CSF loaded 3D radially aligned nanofiber scaffolds have a promising potential for achieving tissue regeneration.
Collapse
Affiliation(s)
- Rui Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yujie Li
- Department of Plastic, Reconstructive and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yangyang Zhuang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiming Zhang
- Department of Plastic, Reconstructive and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hailong Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Hailong Wu, ; Tao Lin, ; Shixuan Chen,
| | - Tao Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
- *Correspondence: Hailong Wu, ; Tao Lin, ; Shixuan Chen,
| | - Shixuan Chen
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- *Correspondence: Hailong Wu, ; Tao Lin, ; Shixuan Chen,
| |
Collapse
|
43
|
Tauber PA, Kratzer B, Schatzlmaier P, Smole U, Köhler C, Rausch L, Kranich J, Trapin D, Neunkirchner A, Zabel M, Jutz S, Steinberger P, Gadermaier G, Brocker T, Stockinger H, Derdak S, Pickl WF. The small molecule inhibitor BX-795 uncouples IL-2 production from inhibition of Th2 inflammation and induces CD4 + T cells resembling iTreg. Front Immunol 2023; 14:1094694. [PMID: 37090735 PMCID: PMC10117943 DOI: 10.3389/fimmu.2023.1094694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/06/2023] [Indexed: 04/25/2023] Open
Abstract
Background Treg cells have been shown to be an important part of immune-homeostasis and IL-2 which is produced upon T cell receptor (TCR)-dependent activation of T lymphocytes has been demonstrated to critically participate in Treg development. Objective To evaluate small molecule inhibitors (SMI) for the identification of novel IL-2/Treg enhancing compounds. Materials and methods We used TCR-dependent and allergen-specific cytokine secretion of human and mouse T cells, next generation messenger ribonucleic acid sequencing (RNA-Seq) and two different models of allergic airway inflammation to examine lead SMI-compounds. Results We show here that the reported 3-phosphoinositide dependent kinase-1 (PDK1) SMI BX-795 increased IL-2 in culture supernatants of Jurkat E6-1 T cells, human peripheral blood mononuclear cells (hPBMC) and allergen-specific mouse T cells upon TCR-dependent and allergen-specific stimulation while concomitantly inhibiting Th2 cytokine secretion. RNA-Seq revealed that the presence of BX-795 during allergen-specific activation of T cells induces a bona fide Treg cell type highly similar to iTreg but lacking Foxp3 expression. When applied in mugwort pollen and house dust mite extract-based models of airway inflammation, BX-795 significantly inhibited Th2 inflammation including expression of Th2 signature transcription factors and cytokines and influx into the lungs of type 2-associated inflammatory cells such as eosinophils. Conclusions BX-795 potently uncouples IL-2 production from Th2 inflammation and induces Th-IL-2 cells, which highly resemble induced (i)Tregs. Thus, BX-795 may be a useful new compound for the treatment of allergic diseases.
Collapse
Affiliation(s)
- Peter A. Tauber
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Philipp Schatzlmaier
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ursula Smole
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Cordula Köhler
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Lisa Rausch
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Jan Kranich
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Doris Trapin
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alina Neunkirchner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Maja Zabel
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sabrina Jutz
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Thomas Brocker
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Hannes Stockinger
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Healthcare, Krems, Austria
- *Correspondence: Winfried F. Pickl,
| |
Collapse
|
44
|
Santos KR, Souza FN, Ramos-Sanchez EM, Batista CF, Reis LC, Fotoran WL, Heinemann MB, Cunha AF, Rocha MC, Faria AR, Andrade HM, Cerqueira MMOP, Gidlund M, Goto H, Della Libera AMMP. Staphylococcus aureus-Cure-Associated Antigens Elicit Type 3 Immune Memory T Cells. Antibiotics (Basel) 2022; 11:1831. [PMID: 36551488 PMCID: PMC9774748 DOI: 10.3390/antibiotics11121831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is one of the most frequently major mastitis pathogens that cause clinical and subclinical mastitis worldwide. Current antimicrobial treatments are usually ineffective, and the commercially available vaccines lack proven effectiveness. The immunological response elicited by the recombinant S. aureus-cure-associated proteins phosphoglycerate kinase (PGK), enolase (ENO), and elongation factor-G (EF-G) in combination with the granulocyte-macrophage colony-stimulating factor (GM-CSF) DNA vaccination was studied in this work. METHODS Here, twenty-three C57BL/6 mice were divided into four groups and vaccinated with: G1: none (control); G2: GM-CSF DNA plasmid DNA vaccine; G3: the combination of EF-G+ENO+PGK; and G4: the combinations of EF-G+ENO+PGK proteins plus GM-CSF plasmid DNA vaccine. After 44 days, spleen cells were collected for immunophenotyping and lymphocyte proliferation evaluation by flow cytometry upon S. aureus stimulus. RESULTS Immunization with the three S. aureus recombinant proteins alone resulted in a higher percentage of IL-17A+ cells among CD8+ T central memory cells, as well as the highest intensity of IL-17A production by overall lymphocytes indicating that the contribution of the combined lymphocyte populations is crucial to sustaining a type 3 cell immunity environment. CONCLUSION The immunization with three S. aureus-cure-associated recombinant proteins triggered type 3 immunity, which is a highly interesting path to pursue an effective bovine S. aureus mastitis vaccine.
Collapse
Affiliation(s)
- Kamila R. Santos
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - Fernando N. Souza
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal da Paraíba, Areia 58397-000, Brazil
| | - Eduardo M. Ramos-Sanchez
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal da Paraíba, Areia 58397-000, Brazil
- Laboratório de Soroloepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, Brazil
- Departamento de Salud Publica, Facultad de Ciencias de La Salud, Universidad Nacional Torino Rodriguez de Mendonza de Amazonas, Chachapoyas 01001, Peru
| | - Camila F. Batista
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - Luiza C. Reis
- Laboratório de Soroloepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Wesley L. Fotoran
- Laboratório de Genética, Instituto Butantã, Universidade de São Paulo, São Paulo 05503-900, Brazil
| | - Marcos B. Heinemann
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - Adriano F. Cunha
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - Mussya C. Rocha
- Laboratório de Soroloepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Angélica R. Faria
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Laboratório de Parasitologia Clínica, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-000, Brazil
| | - Hélida M. Andrade
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Mônica M. O. P. Cerqueira
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - Magnus Gidlund
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Hiro Goto
- Laboratório de Soroloepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, Brazil
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Alice Maria M. P. Della Libera
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| |
Collapse
|
45
|
IL-2/GM-CSF enhances CXCR3 expression in CAR-T cells via the PI3K/AKT and ERK1/2 pathways. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04509-w. [PMID: 36474002 DOI: 10.1007/s00432-022-04509-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the effects of cytokines IL-2 and GM-CSF on CXCR3 expression and chemotaxis of CAR-T cells. BACKGROUND High lymphocyte infiltration within the tumor is a basic requirement for good results in tumor immunotherapy; C-X-C motif chemokine receptor 3 (CXCR3) is an important factor for the chemotaxis of lymphocytes to tumor tissues. The tumor microenvironment can exhibit diverse cytokine suppression or promote antitumor immunity. Both interleukin (IL)-2 and granulocyte macrophage colony-stimulating factor (GM-CSF) contribute to the regulation of immunosuppression in the tumor microenvironment. However, the effects of IL-2 and GM-CSF on CXCR3 expression on the T cell surface and its mechanisms are not well understood. Here, we explored the effects of polycytokines on CXCR3 expression in chimeric antigen receptor T cells (CAR-T cells) and on HuH-7 in situ hepatocellular carcinoma. MATERIALS AND METHODS Peripheral blood mononuclear cells (PBMCs) were isolated, followed by purifying using CD3 immunomagnetic beads. Cells were divided into three groups. After 24h of activation using CD3/CD28 antibody, T cells were transfected using lentiviral vector, pGC-SV40-EGFP-GPC3-CAR. Three culture methods were used to amplify the transfected T cells. Method 'A' was to incubate T cells with CD3/CD28 antibody; method 'B' was with CD3/CD28 antibody and IL-2 at a final concentration of 1000 U/ml; method 'C' was with method B in addition of GM-CSF at a final concentration of 1000 U/ml. The phosphorylation of MAPK and PI3K/AKT was determined by western blot. The chemotaxis effect of CAR-T cells on Huh-7 HCCIA in situ was assayed by immunofluorescence and immunohistochemistry. RESULTS The CD3/CD28/IL-2/GM-CSF combination is the most potent for stimulating activated CAR-T cell proliferation and CXCR3 expression in vitro; CD3/CD28/IL-2 induces CAR-T cell expression of CXCR3 through the activation of the PI3K/APK pathway and GM-CSF induces CXCR3 expression in CAR-T cells through the activation of ERK1/2 rather than the p38 MAPK signaling pathway. CAR-GPC3-T cells with high CXCR3 expression showed increased chemotaxis ability to HuH in situ hepatocellular carcinoma, and considerably inhibited the growth of in situ tumors in nude mouse livers. CONCLUSION A multi-factorial amplification protocol can effectively improve CXCR3 expression on the surface of activated CAR-T cells in vitro, as well as enhance the chemotaxis ability of CAR-T cells in vivo, which significantly inhibit the growth of liver cancer.
Collapse
|
46
|
Luo C, Wang Q, Guo R, Zhang J, Zhang J, Zhang R, Ma X, Wang P, Adam FEA, Zeshan B, Yang Z, Zhou Y, Wang X. A novel Pseudorabies virus vaccine developed using HDR-CRISPR/Cas9 induces strong humoral and cellular immune response in mice. Virus Res 2022; 322:198937. [PMID: 36174845 DOI: 10.1016/j.virusres.2022.198937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 12/24/2022]
Abstract
Outbreaks of Pseudorabies (PR) by numerous highly virulent and antigenic variant Pseudorabies virus (PRV) strains have been causing severe economic losses to the pig industry in China since 2011. However, current commercial vaccines are often unable to induce thorough protective immunity. In this study, a TK/gI/gE deleted recombinant PRV expressing GM-CSF was developed by using the HDR-CRISPR/Cas9 system. Here, a four-sgRNA along with the Cas9D10A targeting system was utilized for TK/gI/gE gene deletion and GM-CSF insertion. Our study showed that the four-sgRNA targeting system appeared to have higher knock-in efficiency for PRVs editing. The replication of the recombinant PRVs were slightly lower than that of the parental strain, but they appeared to have similar properties in terms of growth curves and plaque morphology. The mice vaccinated with the recombinant PRV expressing GM-CSF via intramuscular injection showed no obvious clinical symptoms, milder pathological lesions, and were completely protected against wild-type PRV challenge. When compared to the triple gene-deleted PRV, the gB antibodies and neutralizing antibody titers were improved and the immunized mice appeared to have lower viral load and higher mRNA levels of IL-2, IL-4, IL-6, and IFN-γ in spleens. Our study offers a novel approach for recombinant PRV construction, and the triple gene-deleted PRV expressing GM-CSF could serve as a promising vaccine candidate for PR control.
Collapse
Affiliation(s)
- Chen Luo
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing,Jiangsu 211171, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianqian Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruhai Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingnan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingya Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peixin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | - Basit Zeshan
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan, Sabah 90509, Malaysia
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yefei Zhou
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing,Jiangsu 211171, China.
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
47
|
Korobova ZR, Arsentieva NA, Liubimova NE, Batsunov OK, Dedkov VG, Gladkikh AS, Sharova AA, Adish Z, Chernykh EI, Kaschenko VA, Ratnikov VA, Gorelov VP, Stanevich OV, Kulikov AN, Pevtsov DE, Totolian AA. Cytokine Profiling in Different SARS-CoV-2 Genetic Variants. Int J Mol Sci 2022; 23:14146. [PMID: 36430621 PMCID: PMC9692520 DOI: 10.3390/ijms232214146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
This study is a successor of our previous work concerning changes in the chemokine profile in infection that are associated with different SARS-CoV-2 genetic variants. The goal of our study was to take into account both the virus and the host immune system by assessing concentrations of cytokines in patients infected with different SARS-CoV-2 variants (ancestral Wuhan strain, Alpha, Delta and Omicron). Our study was performed on 340 biological samples taken from COVID-19 patients and healthy donors in the timespan between May 2020 and April 2022. We performed genotyping of the virus in nasopharyngeal swabs, which was followed by assessment of cytokines' concentration in blood plasma. We noted that out of nearly 30 cytokines, only four showed stable elevation independently of the variant (IL-6, IL-10, IL-18 and IL-27), and we believe them to be 'constant' markers for COVID-19 infection. Cytokines that were studied as potential biomarkers lose their diagnostic value as the virus evolves, and the specter of potential targets for predictive models is narrowing. So far, only four cytokines (IL-6, IL-10, IL-18, and IL-27) showed a consistent rise in concentrations independently of the genetic variant of the virus. Although we believe our findings to be of scientific interest, we still consider them inconclusive; further investigation and comparison of immune responses to different variants of SARS-CoV-2 is required.
Collapse
Affiliation(s)
- Zoia R. Korobova
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | | | - Natalia E. Liubimova
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Oleg K. Batsunov
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Vladimir G. Dedkov
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Anna S. Gladkikh
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Alena A. Sharova
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Zhansaya Adish
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, 13/5, Kurgalzhynskoye Road, Nur-Sultan 010000, Kazakhstan
| | - Ekaterina I. Chernykh
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
| | - Victor A. Kaschenko
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
- Department of Faculty Surgery, Saint Petersburg State University, Universitetskaya Naberezhnaya, 7/9, 199034 Saint Petersburg, Russia
| | - Vyacheslav A. Ratnikov
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
- Scientific, Clinical and Educational Center “Radiation Diagnostics and Nuclear Medicine” of the Institute of High Medical Technologies, Saint Petersburg State University, Universitetskaya Naberezhnaya, 7/9, 199034 Saint Petersburg, Russia
| | - Victor P. Gorelov
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
| | - Oksana V. Stanevich
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Alexandr N. Kulikov
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Dmitry E. Pevtsov
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Areg A. Totolian
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| |
Collapse
|
48
|
Jiang Y, Feng D, Wang C, Zhang Y, Zhao C, Li S, Qin Y, Chang AH, Zhu J. Administration of granulocyte-macrophage colony-stimulating factor enhanced chimeric antigen receptor T-cell expansion and cellular immunity recovery without inducing cytokine release syndrome. Front Med (Lausanne) 2022; 9:1042501. [PMID: 36405594 PMCID: PMC9669452 DOI: 10.3389/fmed.2022.1042501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Background Neutropenia and cytokine release syndrome (CRS) are two major toxicities of chimeric antigen receptor (CAR)-T cell therapy. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an ideal candidate treatment for neutropenia except for its potential aggravation of CRS. We hypothesized that the optimal timing of supplemental with GM-CSF in a shortage of host immunity and CAR T-cell was chosen as avoidance of CRS. In the study we evaluated the safety and efficacy of GM-CSF intervention post-CAR T-cell therapy while circulating CAR T-cell declined. Materials and methods Nine patients received GM-CSF therapy who displayed moderate neutropenia with absolute neutrophil counts (ANC) < 1,500 cells/mm3 with concomitant declination of circulating CAR T-cell. Results The median duration of GM-CSF intervention was 15 days (4–30). CAR T-cell expansion was observed in peripheral blood (PB) of seven patients (7/9). The median baseline and peak CAR T cells count in PB of the seven patients with CAR T-cell expansion were 0.85 × 106/L (0–50.9) and 6.06 × 106/L (1.43–112.55). And the peaks of CAR T-cell levels in PB appeared in day 7 (2–11) following the initiation of GM-CSF administration with increases of 2.84 × 106/L (0.38–61.65). Also, increased white blood cells in PB were observed in all patients. The median onset and duration time of WBC recovery were 9 (1–14) and 17 (3–53) days. Moreover, the increment of WBC, neutrophil, lymphocyte and CD3-CD16 + CD56 + natural killer cell in PB was observed. In addition, no CRS or fatal infection occurred during GM-CSF treatment. Conclusion This study provides evidence for the clinical feasibility of combining CAR T-cell therapy with the GM-CSF to treat neutropenia patients with concomitant declination of circulating CAR T-cell.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Hematology, Shanghai Zhaxin Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Dan Feng
- Department of Hematology, Shanghai Zhaxin Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Chun Wang
- Department of Hematology, Shanghai Zhaxin Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Yanlei Zhang
- Shanghai YaKe Biotechnology Ltd., Shanghai, China
| | - Chuxian Zhao
- Department of Hematology, Shanghai Zhaxin Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Su Li
- Department of Hematology, Shanghai Zhaxin Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Youwen Qin
- Department of Laboratory, Shanghai Zhaxin Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Alex H. Chang
- Shanghai YaKe Biotechnology Ltd., Shanghai, China
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Alex H. Chang,
| | - Jun Zhu
- Department of Hematology, Shanghai Zhaxin Traditional Chinese and Western Medicine Hospital, Shanghai, China
- *Correspondence: Jun Zhu,
| |
Collapse
|
49
|
Petrucelli MF, Cantelli BAM, Marins M, Fachin AL. The Transcriptional Regulation of Genes Involved in the Immune Innate Response of Keratinocytes Co-Cultured with Trichophyton rubrum Reveals Important Roles of Cytokine GM-CSF. J Fungi (Basel) 2022; 8:1151. [PMID: 36354918 PMCID: PMC9693189 DOI: 10.3390/jof8111151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 04/05/2024] Open
Abstract
Trichophyton rubrum is the most causative agent of dermatophytosis worldwide. The keratinocytes are the first line of defense during infection, triggering immunomodulatory responses. Previous dual RNA-seq data showed the upregulation of several human genes involved in immune response and epithelial barrier integrity during the co-culture of HaCat cells with T. rubrum. This work evaluates the transcriptional response of this set of genes during the co-culture of HaCat with different stages of T. rubrum conidia development and viability. Our results show that the developmental stage of fungal conidia and their viability interfere with the transcriptional regulation of innate immunity genes. The CSF2 gene encoding the cytokine GM-CSF is the most overexpressed, and we report for the first time that CSF2 expression is contact and conidial-viability-dependent during infection. In contrast, CSF2 transcripts and GM-CSF secretion levels were observed when HaCat cells were challenged with bacterial LPS. Furthermore, the secretion of proinflammatory cytokines was dependent on the conidia developmental stage. Thus, we suggest that the viability and developmental stage of fungal conidia interfere with the transcriptional patterns of genes encoding immunomodulatory proteins in human keratinocytes with regard to important roles of GM-CSF during infection.
Collapse
Affiliation(s)
- Monise Fazolin Petrucelli
- Biotechnology Unity, University of Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil
- Laboratory of Genetics and Molecular Biology of Fungi, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, Brazil
| | - Bruna Aline M. Cantelli
- Biotechnology Unity, University of Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil
| | - Mozart Marins
- Biotechnology Unity, University of Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil
- Medicine Course, University of Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil
| | - Ana Lúcia Fachin
- Biotechnology Unity, University of Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil
- Medicine Course, University of Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil
| |
Collapse
|
50
|
Delic M, Boeswald V, Goepfert K, Pabst P, Moehler M. In vitro Characterization of Enhanced Human Immune Responses by GM-CSF Encoding HSV-1-Induced Melanoma Cells. Onco Targets Ther 2022; 15:1291-1307. [PMID: 36310770 PMCID: PMC9606445 DOI: 10.2147/ott.s350136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 09/23/2022] [Indexed: 01/24/2023] Open
Abstract
PURPOSE We studied the innate and adaptive immune response against melanoma cells after JS-1 (wild-type herpes simplex virus 1, wt HSV-1) or Talimogene laherparepvec (T-VEC) infection and evaluated the antitumoral efficacy in human melanoma cells. We analyzed the putative synergistic biological and immunological effects of JS-1 or T-VEC combined with cytostatic drugs in human tumor and immune cells. T-VEC is a genetically modified strain of HSV-1. Genetic modifications (insertion of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene) were made to attenuate the virus and increase selectivity for cancer cells. In addition to the direct oncolytic effect, we investigated the immune stimulatory effects of T-VEC by comparing it with JS-1. JS-1 is identical T-VEC except for the inserted GM-CSF gene. MATERIALS AND METHODS We analyzed the effects of T-VEC and JS-1 with cytostatic drugs in human tumor-immune cell coculture experiments. After coculture, the surface markers CD80, CD83 and CD86 were measured by fluorescence-activated cell sorting and the cytokines, interleukin (IL)-2, IL-6, tumor necrosis factor (TNF)-α and GM-CSF, by enzyme-linked immunosorbent assays. Furthermore, we analyzed the potential of the viruses to induce T cell activation, measured on the basis of CD4, CD8 and CD69. Analysis of these markers and cytokines allows for conclusions to be drawn concerning the maturation of dendritic cells (DCs) and the immunostimulatory effects of the treatment. RESULTS We documented increased activation of human cytotoxic T lymphocytes after infection by both HSV-1 strains and treatment with cytostatic drugs without significant differences between T-VEC and JS-1. CONCLUSION We demonstrated an immune response as a result of infection with both viruses, but T-VEC was in vitro not stronger than JS-1. The immunostimulatory effects of the viruses could be partially increased by chemotherapy, providing a rationale for future preclinical studies designed to explore T-VEC in combined regimens.
Collapse
Affiliation(s)
- Maike Delic
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany,Correspondence: Maike Delic, University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Langenbeckstrasse 1, Mainz, 55131, Germany, Tel +49 6131 179803, Fax +49 6131 179657, Email
| | - Veronika Boeswald
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany
| | - Katrin Goepfert
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany
| | - Petra Pabst
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany
| | - Markus Moehler
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany
| |
Collapse
|