1
|
Ladak RJ, Choi JH, Luo J, Chen OJ, Mahmood N, He AJ, Naeli P, Snell PH, Bayani E, Hoang HD, Alain T, Teodoro JG, Wang J, Zhang X, Jafarnejad SM, Sonenberg N. The 4EHP-mediated translational repression of cGAS impedes the host immune response against DNA viruses. Proc Natl Acad Sci U S A 2024; 121:e2413018121. [PMID: 39560640 PMCID: PMC11621783 DOI: 10.1073/pnas.2413018121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024] Open
Abstract
A critical host response against viral infections entails the activation of innate immune signaling that culminates in the production of antiviral proteins. DNA viruses are sensed by the cytosolic pattern recognition receptor cyclic GMP-AMP synthase (cGAS), which initiates a signaling pathway that results in production of proinflammatory cytokines such as Interferon-β (IFN-β) and activation of the antiviral response. Precise regulation of the antiviral innate immune response is required to avoid deleterious effects of its overactivation. We previously reported that the 4EHP/GIGYF2 translational repressor complex reduces the translation of Ifnb1 mRNA, which encodes IFN-β, upon RNA viral infections. Here, we report a distinct regulatory mechanism by which 4EHP controls replication of DNA viruses by translational repression of the Cgas mRNA, which encodes the DNA viral sensor cGAS. We show that 4EHP is required for effective translational repression of Cgas mRNA triggered by miR-23a. Upon infection, 4EHP deficiency bolsters the elicited innate immune response against the diverse DNA viruses Herpes simplex virus 1 (HSV-1) and Vaccinia Virus (VacV) and concomitantly reduces their rate of replication in vitro and in vivo. This study elucidates an intrinsic regulatory mechanism of the host response to DNA viruses which may provide unique opportunities for countering viral infections.
Collapse
Affiliation(s)
- Reese Jalal Ladak
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Jung-Hyun Choi
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Jun Luo
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Owen J. Chen
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Niaz Mahmood
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Alexander J. He
- Department of Physiology, McGill University, Montreal, QCH3A 1A2, Canada
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, BelfastBT9 7AE, United Kingdom
| | - Patric Harris Snell
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, BelfastBT9 7AE, United Kingdom
| | - Esha Bayani
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QCH3A 2B4, Canada
| | - Huy-Dung Hoang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ONK1H 8L1, Canada
| | - Tommy Alain
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ONK1H 8L1, Canada
| | - Jose G. Teodoro
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Jianwei Wang
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, China
| | - Xu Zhang
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, BelfastBT9 7AE, United Kingdom
| | - Nahum Sonenberg
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| |
Collapse
|
2
|
Rosen BC, Sawatzki K, Ricciardi MJ, Smith E, Golez I, Mauter JT, Pedreño-López N, Yrizarry-Medina A, Weisgrau KL, Vosler LJ, Voigt TB, Louw JJ, Tisoncik-Go J, Whitmore LS, Panayiotou C, Ghosh N, Furlott JR, Parks CL, Desrosiers RC, Lifson JD, Rakasz EG, Watkins DI, Gale M. Acute-phase innate immune responses in SIVmac239-infected Mamu-B*08+ Indian rhesus macaques may contribute to the establishment of elite control. Front Immunol 2024; 15:1478063. [PMID: 39502699 PMCID: PMC11534762 DOI: 10.3389/fimmu.2024.1478063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Spontaneous control of chronic-phase HIV/SIV viremia is often associated with the expression of specific MHC class I allotypes. HIV/SIV-specific CD8+ cytotoxic T lymphocytes (CTLs) restricted by these MHC class I allotypes appear to be critical for viremic control. Establishment of the elite controller (EC) phenotype is predictable in SIVmac239-infected Indian rhesus macaques (RMs), with approximately 50% of Mamu-B*08+ RMs and 20% of Mamu-B*17+ RMs becoming ECs. Despite extensive characterization of EC-associated CTLs in HIV/SIV-infected individuals, the precise mechanistic basis of elite control remains unknown. Because EC and non-EC viral load trajectories begin diverging by day 14 post-infection, we hypothesized that hyperacute innate immune responses may contribute to viremic control. Methods To gain insight into the immunological factors involved in the determination of EC status, we vaccinated 16 Mamu-B*08+ RMs with Vif and Nef to elicit EC-associated CTLs, then subjected these 16 vaccinees and an additional 16 unvaccinated Mamu-B*08+ controls to repeated intrarectal SIVmac239 challenges. We then performed whole-blood transcriptomic analysis of all 32 SIVmac239-infected Mamu-B*08+ RMs and eight SIVmac239-infected Mamu-B*08 - RMs during the first 14 days of infection. Results Vaccination did not provide protection against acquisition, but peak and setpoint viremia were significantly lower in vaccinees relative to controls. We did not identify any meaningful correlations between vaccine-induced CTL parameters and SIVmac239 acquisition rate or chronic-phase viral loads. Ultimately, 13 of 16 vaccinees (81%) and 7 of 16 controls (44%) became ECs (viremia ≤ 10,000 vRNA copies/mL plasma for ≥ 4 weeks). We identified subsets of immunomodulatory genes differentially expressed (DE) between RM groupings based on vaccination status, EC status, and MHC class I genotype. These DE genes function in multiple innate immune processes, including the complement system, cytokine/chemokine signaling, pattern recognition receptors, and interferon-mediated responses. Discussion A striking difference in the kinetics of differential gene expression among our RM groups suggests that Mamu-B*08-associated elite control is characterized by a robust, rapid innate immune response that quickly resolves. These findings indicate that, despite the association between MHC class I genotype and elite control, innate immune factors in hyperacute SIV infection preceding CTL response development may facilitate the establishment of the EC phenotype.
Collapse
Affiliation(s)
- Brandon C. Rosen
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Kaitlin Sawatzki
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, United States
| | - Michael J. Ricciardi
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Elise Smith
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, United States
| | - Inah Golez
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, United States
| | - Jack T. Mauter
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Núria Pedreño-López
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Aaron Yrizarry-Medina
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Kim L. Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Logan J. Vosler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas B. Voigt
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Johan J. Louw
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Jennifer Tisoncik-Go
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, United States
| | - Leanne S. Whitmore
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, United States
| | - Christakis Panayiotou
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Noor Ghosh
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Jessica R. Furlott
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Ronald C. Desrosiers
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - David I. Watkins
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
3
|
Swaraj S, Tripathi S. Interference without interferon: interferon-independent induction of interferon-stimulated genes and its role in cellular innate immunity. mBio 2024; 15:e0258224. [PMID: 39302126 PMCID: PMC11481898 DOI: 10.1128/mbio.02582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Interferons (IFNs) are multifaceted proteins that play pivotal roles in orchestrating robust antiviral immune responses and modulating the intricate landscape of host immunity. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, which leads to the transcription of a battery of genes, collectively known as IFN-stimulated genes (ISGs). While the well-established role of IFNs in coordinating the innate immune response against viral infections is widely acknowledged, recent years have provided a more distinct comprehension of the functional significance attributed to non-canonical, IFN-independent induction of ISGs. In this review, we summarize the non-conventional signaling pathways of ISG induction. These alternative pathways offer new avenues for developing antiviral strategies or immunomodulation in various diseases.
Collapse
Affiliation(s)
- Shachee Swaraj
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
4
|
Mărunţelu I, Constantinescu AE, Covache-Busuioc RA, Constantinescu I. The Golgi Apparatus: A Key Player in Innate Immunity. Int J Mol Sci 2024; 25:4120. [PMID: 38612929 PMCID: PMC11012725 DOI: 10.3390/ijms25074120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
The Golgi apparatus, long recognized for its roles in protein processing and vesicular trafficking, has recently been identified as a crucial contributor to innate immune signaling pathways. This review discusses our expanding understanding of the Golgi apparatus's involvement in initiating and activating these pathways. It highlights the significance of membrane connections between the Golgi and other organelles, such as the endoplasmic reticulum, mitochondria, endosomes, and autophagosomes. These connections are vital for the efficient transmission of innate immune signals and the activation of effector responses. Furthermore, the article delves into the Golgi apparatus's roles in key immune pathways, including the inflammasome-mediated activation of caspase-1, the cGAS-STING pathway, and TLR/RLR signaling. Overall, this review aims to provide insights into the multifunctional nature of the Golgi apparatus and its impact on innate immunity.
Collapse
Affiliation(s)
- Ion Mărunţelu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Alexandra-Elena Constantinescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-E.C.); (R.-A.C.-B.)
- “Emil Palade” Center of Excellence for Young Researchers (EP-CEYR), Romanian Academy of Scientists (AOSR), 050094 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-E.C.); (R.-A.C.-B.)
| | - Ileana Constantinescu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
- “Emil Palade” Center of Excellence for Young Researchers (EP-CEYR), Romanian Academy of Scientists (AOSR), 050094 Bucharest, Romania
- Romanian Academy of Scientists (AOSR), 050094 Bucharest, Romania
| |
Collapse
|
5
|
Podlacha M, Gaffke L, Grabowski Ł, Mantej J, Grabski M, Pierzchalska M, Pierzynowska K, Węgrzyn G, Węgrzyn A. Bacteriophage DNA induces an interrupted immune response during phage therapy in a chicken model. Nat Commun 2024; 15:2274. [PMID: 38480702 PMCID: PMC10937645 DOI: 10.1038/s41467-024-46555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
One of the hopes for overcoming the antibiotic resistance crisis is the use of bacteriophages to combat bacterial infections, the so-called phage therapy. This therapeutic approach is generally believed to be safe for humans and animals as phages should infect only prokaryotic cells. Nevertheless, recent studies suggested that bacteriophages might be recognized by eukaryotic cells, inducing specific cellular responses. Here we show that in chickens infected with Salmonella enterica and treated with a phage cocktail, bacteriophages are initially recognized by animal cells as viruses, however, the cGAS-STING pathway (one of two major pathways of the innate antiviral response) is blocked at the stage of the IRF3 transcription factor phosphorylation. This inhibition is due to the inability of RNA polymerase III to recognize phage DNA and to produce dsRNA molecules which are necessary to stimulate a large protein complex indispensable for IRF3 phosphorylation, indicating the mechanism of the antiviral response impairment.
Collapse
Affiliation(s)
- Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Łukasz Grabowski
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Jagoda Mantej
- Univentum Labs, Bażyńskiego 4, 80-309, Gdansk, Poland
| | - Michał Grabski
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Małgorzata Pierzchalska
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, Balicka 122, 30-149, Cracow, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Alicja Węgrzyn
- Phage Therapy Center, University Center for Applied and Interdisciplinary Research, University of Gdansk, Kładki 24, 80-822, Gdansk, Poland.
| |
Collapse
|
6
|
Marques C, Held A, Dorfman K, Sung J, Song C, Kavuturu AS, Aguilar C, Russo T, Oakley DH, Albers MW, Hyman BT, Petrucelli L, Lagier-Tourenne C, Wainger BJ. Neuronal STING activation in amyotrophic lateral sclerosis and frontotemporal dementia. Acta Neuropathol 2024; 147:56. [PMID: 38478117 PMCID: PMC10937762 DOI: 10.1007/s00401-024-02688-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 03/17/2024]
Abstract
The stimulator of interferon genes (STING) pathway has been implicated in neurodegenerative diseases, including Parkinson's disease and amyotrophic lateral sclerosis (ALS). While prior studies have focused on STING within immune cells, little is known about STING within neurons. Here, we document neuronal activation of the STING pathway in human postmortem cortical and spinal motor neurons from individuals affected by familial or sporadic ALS. This process takes place selectively in the most vulnerable cortical and spinal motor neurons but not in neurons that are less affected by the disease. Concordant STING activation in layer V cortical motor neurons occurs in a mouse model of C9orf72 repeat-associated ALS and frontotemporal dementia (FTD). To establish that STING activation occurs in a neuron-autonomous manner, we demonstrate the integrity of the STING signaling pathway, including both upstream activators and downstream innate immune response effectors, in dissociated mouse cortical neurons and neurons derived from control human induced pluripotent stem cells (iPSCs). Human iPSC-derived neurons harboring different familial ALS-causing mutations exhibit increased STING signaling with DNA damage as a main driver. The elevated downstream inflammatory markers present in ALS iPSC-derived neurons can be suppressed with a STING inhibitor. Our results reveal an immunophenotype that consists of innate immune signaling driven by the STING pathway and occurs specifically within vulnerable neurons in ALS/FTD.
Collapse
Affiliation(s)
- Christine Marques
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aaron Held
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Katherine Dorfman
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - Joon Sung
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - Catherine Song
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - Amey S Kavuturu
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - Corey Aguilar
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - Tommaso Russo
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - Derek H Oakley
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Mark W Albers
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Alzheimer Disease Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Alzheimer Disease Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Clotilde Lagier-Tourenne
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Brian J Wainger
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA.
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
7
|
Amniouel S, Jafri MS. High-accuracy prediction of colorectal cancer chemotherapy efficacy using machine learning applied to gene expression data. Front Physiol 2024; 14:1272206. [PMID: 38304289 PMCID: PMC10830836 DOI: 10.3389/fphys.2023.1272206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Introduction: FOLFOX and FOLFIRI chemotherapy are considered standard first-line treatment options for colorectal cancer (CRC). However, the criteria for selecting the appropriate treatments have not been thoroughly analyzed. Methods: A newly developed machine learning model was applied on several gene expression data from the public repository GEO database to identify molecular signatures predictive of efficacy of 5-FU based combination chemotherapy (FOLFOX and FOLFIRI) in patients with CRC. The model was trained using 5-fold cross validation and multiple feature selection methods including LASSO and VarSelRF methods. Random Forest and support vector machine classifiers were applied to evaluate the performance of the models. Results and Discussion: For the CRC GEO dataset samples from patients who received either FOLFOX or FOLFIRI, validation and test sets were >90% correctly classified (accuracy), with specificity and sensitivity ranging between 85%-95%. In the datasets used from the GEO database, 28.6% of patients who failed the treatment therapy they received are predicted to benefit from the alternative treatment. Analysis of the gene signature suggests the mechanistic difference between colorectal cancers that respond and those that do not respond to FOLFOX and FOLFIRI. Application of this machine learning approach could lead to improvements in treatment outcomes for patients with CRC and other cancers after additional appropriate clinical validation.
Collapse
Affiliation(s)
- Soukaina Amniouel
- School of Systems Biology, George Mason University, Fairfax, VA, United States
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA, United States
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Fioretti D, Ledda M, Iurescia S, Carletti R, Di Gioia C, Lolli MG, Marchese R, Lisi A, Rinaldi M. Severely Damaged Freeze-Injured Skeletal Muscle Reveals Functional Impairment, Inadequate Repair, and Opportunity for Human Stem Cell Application. Biomedicines 2023; 12:30. [PMID: 38275391 PMCID: PMC10813063 DOI: 10.3390/biomedicines12010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The regeneration of severe traumatic muscle injuries is an unsolved medical need that is relevant for civilian and military medicine. In this work, we produced a critically sized nonhealing muscle defect in a mouse model to investigate muscle degeneration/healing phases. MATERIALS AND METHODS We caused a freeze injury (FI) in the biceps femoris of C57BL/6N mice. From day 1 to day 25 post-injury, we conducted histological/morphometric examinations, an analysis of the expression of genes involved in inflammation/regeneration, and an in vivo functional evaluation. RESULTS We found that FI activates cytosolic DNA sensing and inflammatory responses. Persistent macrophage infiltration, the prolonged expression of eMHC, the presence of centrally nucleated myofibers, and the presence of PAX7+ satellite cells at late time points and with chronic physical impairment indicated inadequate repair. By looking at stem-cell-based therapeutic protocols of muscle repair, we investigated the crosstalk between M1-biased macrophages and human amniotic mesenchymal stem cells (hAMSCs) in vitro. We demonstrated their reciprocal paracrine effects where hAMSCs induced a shift of M1 macrophages into an anti-inflammatory phenotype, and M1 macrophages promoted an increase in the expression of hAMSC immunomodulatory factors. CONCLUSIONS Our findings support the rationale for the future use of our injury model to exploit the full potential of in vivo hAMSC transplantation following severe traumatic injuries.
Collapse
Affiliation(s)
- Daniela Fioretti
- Department Biomedical Sciences, Institute of Translational Pharmacology, National Research Council, Area di Ricerca Roma2 Tor Vergata, 00133 Rome, Italy; (M.L.); (S.I.); (M.G.L.); (A.L.)
| | - Mario Ledda
- Department Biomedical Sciences, Institute of Translational Pharmacology, National Research Council, Area di Ricerca Roma2 Tor Vergata, 00133 Rome, Italy; (M.L.); (S.I.); (M.G.L.); (A.L.)
| | - Sandra Iurescia
- Department Biomedical Sciences, Institute of Translational Pharmacology, National Research Council, Area di Ricerca Roma2 Tor Vergata, 00133 Rome, Italy; (M.L.); (S.I.); (M.G.L.); (A.L.)
| | - Raffaella Carletti
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Cira Di Gioia
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| | - Maria Grazia Lolli
- Department Biomedical Sciences, Institute of Translational Pharmacology, National Research Council, Area di Ricerca Roma2 Tor Vergata, 00133 Rome, Italy; (M.L.); (S.I.); (M.G.L.); (A.L.)
| | - Rodolfo Marchese
- Department of Clinical Pathology, FBF S. Peter Hospital, 00189 Rome, Italy;
| | - Antonella Lisi
- Department Biomedical Sciences, Institute of Translational Pharmacology, National Research Council, Area di Ricerca Roma2 Tor Vergata, 00133 Rome, Italy; (M.L.); (S.I.); (M.G.L.); (A.L.)
| | - Monica Rinaldi
- Department Biomedical Sciences, Institute of Translational Pharmacology, National Research Council, Area di Ricerca Roma2 Tor Vergata, 00133 Rome, Italy; (M.L.); (S.I.); (M.G.L.); (A.L.)
| |
Collapse
|
9
|
Mondal S, Sarvari G, Boehr DD. Picornavirus 3C Proteins Intervene in Host Cell Processes through Proteolysis and Interactions with RNA. Viruses 2023; 15:2413. [PMID: 38140654 PMCID: PMC10747604 DOI: 10.3390/v15122413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The Picornaviridae family comprises a large group of non-enveloped viruses with enormous impact on human and animal health. The picornaviral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteases. The picornaviral 3C proteases share similar three-dimensional structures and play a significant role in the viral life cycle and virus-host interactions. Picornaviral 3C proteins also have conserved RNA-binding activities that contribute to the assembly of the viral RNA replication complex. The 3C protease is important for regulating the host cell response through the cleavage of critical host cell proteins, acting to selectively 'hijack' host factors involved in gene expression, promoting picornavirus replication, and inactivating key factors in innate immunity signaling pathways. The protease and RNA-binding activities of 3C are involved in viral polyprotein processing and the initiation of viral RNA synthesis. Most importantly, 3C modifies critical molecules in host organelles and maintains virus infection by subtly subverting host cell death through the blocking of transcription, translation, and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Here, we discuss the molecular mechanisms through which 3C mediates physiological processes involved in promoting virus infection, replication, and release.
Collapse
Affiliation(s)
| | | | - David D. Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
10
|
Bruurs LJM, Müller M, Schipper JG, Rabouw HH, Boersma S, van Kuppeveld FJM, Tanenbaum ME. Antiviral responses are shaped by heterogeneity in viral replication dynamics. Nat Microbiol 2023; 8:2115-2129. [PMID: 37814072 PMCID: PMC10627821 DOI: 10.1038/s41564-023-01501-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/01/2023] [Indexed: 10/11/2023]
Abstract
Antiviral signalling, which can be activated in host cells upon virus infection, restricts virus replication and communicates infection status to neighbouring cells. The antiviral response is heterogeneous, both quantitatively (efficiency of response activation) and qualitatively (transcribed antiviral gene set). To investigate the basis of this heterogeneity, we combined Virus Infection Real-time IMaging (VIRIM), a live-cell single-molecule imaging method, with real-time readouts of the dsRNA sensing pathway to analyse the response of human cells to encephalomyocarditis virus (EMCV) infection. We find that cell-to-cell heterogeneity in viral replication rates early in infection affect the efficiency of antiviral response activation, with lower replication rates leading to more antiviral response activation. Furthermore, we show that qualitatively distinct antiviral responses can be linked to the strength of the antiviral signalling pathway. Our analyses identify variation in early viral replication rates as an important parameter contributing to heterogeneity in antiviral response activation.
Collapse
Grants
- ERC starting grant (EU/ERC-677936 RNAREG), NWO klein-2 grant (OCENW.KLEIN.344), Howard Hughes Medical Institute international research scholar grant (HHMI/IRS 55008747), Oncode Institute
- ERC starting grant (EU/ERC-677936 RNAREG), NWO klein-2 grant (OCENW.KLEIN.344), Oncode Institute
- NWO klein-2 grant (OCENW.KLEIN.344), NWO VICI (91812628)
- NWO VICI (91812628), ERC starting grant (EU/ERC-677936 RNAREG), Oncode Institute
- ERC starting grant (EU/ERC-677936 RNAREG), Howard Hughes Medical Institute international research scholar grant (HHMI/IRS 55008747), Oncode Institute
- Howard Hughes Medical Institute international research scholar grant (HHMI/IRS 55008747), Oncode Institute
Collapse
Affiliation(s)
- Lucas J M Bruurs
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Micha Müller
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jelle G Schipper
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Huib H Rabouw
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Sanne Boersma
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Frank J M van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Marvin E Tanenbaum
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.
- Department of Bionanoscience, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
11
|
Savan R, Gale M. Innate immunity and interferon in SARS-CoV-2 infection outcome. Immunity 2023; 56:1443-1450. [PMID: 37437537 PMCID: PMC10361255 DOI: 10.1016/j.immuni.2023.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/14/2023]
Abstract
Innate immunity and the actions of type I and III interferons (IFNs) are essential for protection from SARS-CoV-2 and COVID-19. Each is induced in response to infection and serves to restrict viral replication and spread while directing the polarization and modulation of the adaptive immune response. Owing to the distribution of their specific receptors, type I and III IFNs, respectively, impart systemic and local actions. Therapeutic IFN has been administered to combat COVID-19 but with differential outcomes when given early or late in infection. In this perspective, we sort out the role of innate immunity and complex actions of IFNs in the context of SARS-CoV-2 infection and COVID-19. We conclude that IFNs are a beneficial component of innate immunity that has mediated natural clearance of infection in over 700 million people. Therapeutic induction of innate immunity and use of IFN should be featured in strategies to treat acute SARS-CoV-2 infection in people at risk for severe COVID-19.
Collapse
Affiliation(s)
- Ram Savan
- Department of Immunology and Center for Innate Immunity and Immune Disease, University of Washington, 750 Republican St., Seattle, WA 98109, USA
| | - Michael Gale
- Department of Immunology and Center for Innate Immunity and Immune Disease, University of Washington, 750 Republican St., Seattle, WA 98109, USA.
| |
Collapse
|
12
|
Schwanke H, Gonçalves Magalhães V, Schmelz S, Wyler E, Hennig T, Günther T, Grundhoff A, Dölken L, Landthaler M, van Ham M, Jänsch L, Büssow K, van den Heuvel J, Blankenfeldt W, Friedel CC, Erhard F, Brinkmann MM. The Cytomegalovirus M35 Protein Directly Binds to the Interferon-β Enhancer and Modulates Transcription of Ifnb1 and Other IRF3-Driven Genes. J Virol 2023; 97:e0040023. [PMID: 37289084 PMCID: PMC10308904 DOI: 10.1128/jvi.00400-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Induction of type I interferon (IFN) gene expression is among the first lines of cellular defense a virus encounters during primary infection. We previously identified the tegument protein M35 of murine cytomegalovirus (MCMV) as an essential antagonist of this antiviral system, showing that M35 interferes with type I IFN induction downstream of pattern-recognition receptor (PRR) activation. Here, we report structural and mechanistic details of M35's function. Determination of M35's crystal structure combined with reverse genetics revealed that homodimerization is a key feature for M35's immunomodulatory activity. In electrophoretic mobility shift assays (EMSAs), purified M35 protein specifically bound to the regulatory DNA element that governs transcription of the first type I IFN gene induced in nonimmune cells, Ifnb1. DNA-binding sites of M35 overlapped with the recognition elements of interferon regulatory factor 3 (IRF3), a key transcription factor activated by PRR signaling. Chromatin immunoprecipitation (ChIP) showed reduced binding of IRF3 to the host Ifnb1 promoter in the presence of M35. We furthermore defined the IRF3-dependent and the type I IFN signaling-responsive genes in murine fibroblasts by RNA sequencing of metabolically labeled transcripts (SLAM-seq) and assessed M35's global effect on gene expression. Stable expression of M35 broadly influenced the transcriptome in untreated cells and specifically downregulated basal expression of IRF3-dependent genes. During MCMV infection, M35 impaired expression of IRF3-responsive genes aside of Ifnb1. Our results suggest that M35-DNA binding directly antagonizes gene induction mediated by IRF3 and impairs the antiviral response more broadly than formerly recognized. IMPORTANCE Replication of the ubiquitous human cytomegalovirus (HCMV) in healthy individuals mostly goes unnoticed but can impair fetal development or cause life-threatening symptoms in immunosuppressed or -deficient patients. Like other herpesviruses, CMV extensively manipulates its hosts and establishes lifelong latent infections. Murine CMV (MCMV) presents an important model system as it allows the study of CMV infection in the host organism. We previously showed that during entry into host cells, MCMV virions release the evolutionary conserved protein M35 protein to immediately dampen the antiviral type I interferon (IFN) response induced by pathogen detection. Here, we show that M35 dimers bind to regulatory DNA elements and interfere with recruitment of interferon regulatory factor 3 (IRF3), a key cellular factor for antiviral gene expression. Thereby, M35 interferes with expression of type I IFNs and other IRF3-dependent genes, reflecting the importance for herpesviruses to avoid IRF3-mediated gene induction.
Collapse
Affiliation(s)
- Hella Schwanke
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Stefan Schmelz
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Helmholtz Association, Berlin, Germany
| | - Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | | | | | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Helmholtz Association, Berlin, Germany
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marco van Ham
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Jänsch
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Konrad Büssow
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Joop van den Heuvel
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wulf Blankenfeldt
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Caroline C. Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
13
|
Jiang B, Schmitt MJ, Rand U, Company C, Dramaretska Y, Grossmann M, Serresi M, Čičin-Šain L, Gargiulo G. Pharmacological modulators of epithelial immunity uncovered by synthetic genetic tracing of SARS-CoV-2 infection responses. SCIENCE ADVANCES 2023; 9:eadf4975. [PMID: 37343108 PMCID: PMC10284557 DOI: 10.1126/sciadv.adf4975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
Epithelial immune responses govern tissue homeostasis and offer drug targets against maladaptation. Here, we report a framework to generate drug discovery-ready reporters of cellular responses to viral infection. We reverse-engineered epithelial cell responses to SARS-CoV-2, the viral agent fueling the ongoing COVID-19 pandemic, and designed synthetic transcriptional reporters whose molecular logic comprises interferon-α/β/γ and NF-κB pathways. Such regulatory potential reflected single-cell data from experimental models to severe COVID-19 patient epithelial cells infected by SARS-CoV-2. SARS-CoV-2, type I interferons, and RIG-I drive reporter activation. Live-cell image-based phenotypic drug screens identified JAK inhibitors and DNA damage inducers as antagonistic modulators of epithelial cell response to interferons, RIG-I stimulation, and SARS-CoV-2. Synergistic or antagonistic modulation of the reporter by drugs underscored their mechanism of action and convergence on endogenous transcriptional programs. Our study describes a tool for dissecting antiviral responses to infection and sterile cues and rapidly discovering rational drug combinations for emerging viruses of concern.
Collapse
Affiliation(s)
- Ben Jiang
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Matthias Jürgen Schmitt
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Ulfert Rand
- Helmholtz-Zentrum für Infektionsforschung GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Carlos Company
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Yuliia Dramaretska
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Melanie Grossmann
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Michela Serresi
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Luka Čičin-Šain
- Helmholtz-Zentrum für Infektionsforschung GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Gaetano Gargiulo
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| |
Collapse
|
14
|
Sarry M, Vitour D, Zientara S, Bakkali Kassimi L, Blaise-Boisseau S. Foot-and-Mouth Disease Virus: Molecular Interplays with IFN Response and the Importance of the Model. Viruses 2022; 14:v14102129. [PMID: 36298684 PMCID: PMC9610432 DOI: 10.3390/v14102129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals with a significant socioeconomic impact. One of the issues related to this disease is the ability of its etiological agent, foot-and-mouth disease virus (FMDV), to persist in the organism of its hosts via underlying mechanisms that remain to be elucidated. The establishment of a virus–host equilibrium via protein–protein interactions could contribute to explaining these phenomena. FMDV has indeed developed numerous strategies to evade the immune response, especially the type I interferon response. Viral proteins target this innate antiviral response at different levels, ranging from blocking the detection of viral RNAs to inhibiting the expression of ISGs. The large diversity of impacts of these interactions must be considered in the light of the in vitro models that have been used to demonstrate them, some being sometimes far from biological systems. In this review, we have therefore listed the interactions between FMDV and the interferon response as exhaustively as possible, focusing on both their biological effect and the study models used.
Collapse
Affiliation(s)
- Morgan Sarry
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
- AgroParisTech, 75005 Paris, France
- Correspondence: (M.S.); (S.B.-B.)
| | - Damien Vitour
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Stephan Zientara
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Labib Bakkali Kassimi
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Sandra Blaise-Boisseau
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
- Correspondence: (M.S.); (S.B.-B.)
| |
Collapse
|
15
|
Stok JE, Oosenbrug T, ter Haar LR, Gravekamp D, Bromley CP, Zelenay S, Reis e Sousa C, van der Veen AG. RNA sensing via the RIG-I-like receptor LGP2 is essential for the induction of a type I IFN response in ADAR1 deficiency. EMBO J 2022; 41:e109760. [PMID: 35156720 PMCID: PMC8922249 DOI: 10.15252/embj.2021109760] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
RNA editing by the adenosine deaminase ADAR1 prevents innate immune responses to endogenous RNAs. In ADAR1-deficient cells, unedited self RNAs form base-paired structures that resemble viral RNAs and inadvertently activate the cytosolic RIG-I-like receptor (RLR) MDA5, leading to an antiviral type I interferon (IFN) response. Mutations in ADAR1 cause Aicardi-Goutières Syndrome (AGS), an autoinflammatory syndrome characterized by chronic type I IFN production. Conversely, ADAR1 loss and the consequent type I IFN production restricts tumor growth and potentiates the activity of some chemotherapeutics. Here, we show that another RIG-I-like receptor, LGP2, also has an essential role in the induction of a type I IFN response in ADAR1-deficient human cells. This requires the canonical function of LGP2 as an RNA sensor and facilitator of MDA5-dependent signaling. Furthermore, we show that the sensitivity of tumor cells to ADAR1 loss requires LGP2 expression. Finally, type I IFN induction in tumor cells depleted of ADAR1 and treated with some chemotherapeutics fully depends on LGP2 expression. These findings highlight a central role for LGP2 in self RNA sensing with important clinical implications.
Collapse
Affiliation(s)
- Jorn E Stok
- Department of ImmunologyLeiden University Medical CentreLeidenThe Netherlands
| | - Timo Oosenbrug
- Department of ImmunologyLeiden University Medical CentreLeidenThe Netherlands
| | - Laurens R ter Haar
- Department of ImmunologyLeiden University Medical CentreLeidenThe Netherlands
| | - Dennis Gravekamp
- Department of ImmunologyLeiden University Medical CentreLeidenThe Netherlands
| | - Christian P Bromley
- Cancer Research UK Manchester InstituteThe University of ManchesterAlderley ParkUK
| | - Santiago Zelenay
- Cancer Research UK Manchester InstituteThe University of ManchesterAlderley ParkUK
| | | | | |
Collapse
|
16
|
Sherwani MA, Ahmad I, Lewis MJ, Abdelgawad A, Rashid H, Yang K, Chen CY, Raman C, Elmets CA, Yusuf N. Type I Interferons Enhance the Repair of Ultraviolet Radiation-Induced DNA Damage and Regulate Cutaneous Immune Suppression. Int J Mol Sci 2022; 23:1822. [PMID: 35163747 PMCID: PMC8836948 DOI: 10.3390/ijms23031822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/23/2022] Open
Abstract
Type I interferons (IFNs) are important enhancers of immune responses which are downregulated in human cancers, including skin cancer. Solar ultraviolet (UV) B radiation is a proven environmental carcinogen, and its exposure contributes to the high prevalence of skin cancer. The carcinogenic effects of UV light can be attributed to the formation of cyclobutane pyrimidine dimers (CPD) and errors in the repair and replication of DNA. Treatment with a single dose of UVB (100 mJ/cm2) upregulated IFNα and IFNβ in the skin of C57BL/6 mice. IFNα and IFNβ were predominantly produced by CD11b+ cells. In mice lacking the type I IFN receptor 1 (IFNAR1), the repair of CPD following cutaneous exposure to a single dose of UVB (100 mJ/cm2) was decreased. UVB induced the expression of the DNA repair gene xeroderma pigmentosum A (XPA) in wild-type (WT) mice. In contrast, such treatment in IFNAR1 (IFNAR1-/-) mice downregulated XPA. A local UVB regimen consisting of UVB radiation (150 mJ/cm2) for 4 days followed by sensitization with hapten 2,4, dinitrofluorobenzene (DNFB) resulted in significant suppression of immune responses in both WT and IFNAR1-/- mice. However, there were significantly higher CD4+CD25+Foxp3+ regulatory T-cells in the draining lymph nodes of IFNAR1-/- mice in comparison to WT mice. Overall, our studies reveal a previously unknown action of type I IFNs in the repair of photodamage and the prevention of UVB-induced immune suppression.
Collapse
Affiliation(s)
- Mohammad Asif Sherwani
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.A.S.); (I.A.); (M.J.L.); (A.A.); (H.R.); (K.Y.); (C.A.E.)
| | - Israr Ahmad
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.A.S.); (I.A.); (M.J.L.); (A.A.); (H.R.); (K.Y.); (C.A.E.)
| | - Monica J. Lewis
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.A.S.); (I.A.); (M.J.L.); (A.A.); (H.R.); (K.Y.); (C.A.E.)
| | - Ahmed Abdelgawad
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.A.S.); (I.A.); (M.J.L.); (A.A.); (H.R.); (K.Y.); (C.A.E.)
| | - Harunur Rashid
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.A.S.); (I.A.); (M.J.L.); (A.A.); (H.R.); (K.Y.); (C.A.E.)
| | - Kevin Yang
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.A.S.); (I.A.); (M.J.L.); (A.A.); (H.R.); (K.Y.); (C.A.E.)
| | - Ching-Yi Chen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Chander Raman
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Craig A. Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.A.S.); (I.A.); (M.J.L.); (A.A.); (H.R.); (K.Y.); (C.A.E.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran Affairs Medical Center, Birmingham, AL 35294, USA
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.A.S.); (I.A.); (M.J.L.); (A.A.); (H.R.); (K.Y.); (C.A.E.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran Affairs Medical Center, Birmingham, AL 35294, USA
| |
Collapse
|
17
|
Pennemann FL, Mussabekova A, Urban C, Stukalov A, Andersen LL, Grass V, Lavacca TM, Holze C, Oubraham L, Benamrouche Y, Girardi E, Boulos RE, Hartmann R, Superti-Furga G, Habjan M, Imler JL, Meignin C, Pichlmair A. Cross-species analysis of viral nucleic acid interacting proteins identifies TAOKs as innate immune regulators. Nat Commun 2021; 12:7009. [PMID: 34853303 PMCID: PMC8636641 DOI: 10.1038/s41467-021-27192-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
The cell intrinsic antiviral response of multicellular organisms developed over millions of years and critically relies on the ability to sense and eliminate viral nucleic acids. Here we use an affinity proteomics approach in evolutionary distant species (human, mouse and fly) to identify proteins that are conserved in their ability to associate with diverse viral nucleic acids. This approach shows a core of orthologous proteins targeting viral genetic material and species-specific interactions. Functional characterization of the influence of 181 candidates on replication of 6 distinct viruses in human cells and flies identifies 128 nucleic acid binding proteins with an impact on virus growth. We identify the family of TAO kinases (TAOK1, -2 and -3) as dsRNA-interacting antiviral proteins and show their requirement for type-I interferon induction. Depletion of TAO kinases in mammals or flies leads to an impaired response to virus infection characterized by a reduced induction of interferon stimulated genes in mammals and impaired expression of srg1 and diedel in flies. Overall, our study shows a larger set of proteins able to mediate the interaction between viral genetic material and host factors than anticipated so far, attesting to the ancestral roots of innate immunity and to the lineage-specific pressures exerted by viruses.
Collapse
Affiliation(s)
- Friederike L Pennemann
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Assel Mussabekova
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Christian Urban
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Alexey Stukalov
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Line Lykke Andersen
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Vincent Grass
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Teresa Maria Lavacca
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Cathleen Holze
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Lila Oubraham
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Yasmine Benamrouche
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Enrico Girardi
- CeMM - Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Rasha E Boulos
- Computer Science and Mathematics Department, School of Arts and Science, Lebanese American University, Byblos, Lebanon
| | - Rune Hartmann
- Aarhus University, Department of Molecular Biology and Genetics - Structural Biology, Aarhus, Denmark
| | - Giulio Superti-Furga
- CeMM - Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Matthias Habjan
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Jean-Luc Imler
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Carine Meignin
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Andreas Pichlmair
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany.
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany.
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany.
| |
Collapse
|
18
|
Aslani M, Mortazavi-Jahromi SS, Mirshafiey A. Cytokine storm in the pathophysiology of COVID-19: Possible functional disturbances of miRNAs. Int Immunopharmacol 2021; 101:108172. [PMID: 34601331 PMCID: PMC8452524 DOI: 10.1016/j.intimp.2021.108172] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2, as the causative agent of COVID-19, is an enveloped positives-sense single-stranded RNA virus that belongs to the Beta-CoVs sub-family. A sophisticated hyper-inflammatory reaction named cytokine storm is occurred in patients with severe/critical COVID-19, following an imbalance in immune-inflammatory processes and inhibition of antiviral responses by SARS-CoV-2, which leads to pulmonary failure, ARDS, and death. The miRNAs are small non-coding RNAs with an average length of 22 nucleotides which play various roles as one of the main modulators of genes expression and maintenance of immune system homeostasis. Recent evidence has shown that Homo sapiens (hsa)-miRNAs have the potential to work in three pivotal areas including targeting the virus genome, regulating the inflammatory signaling pathways, and reinforcing the production/signaling of IFNs-I. However, it seems that several SARS-CoV-2-induced interfering agents such as viral (v)-miRNAs, cytokine content, competing endogenous RNAs (ceRNAs), etc. preclude efficient function of hsa-miRNAs in severe/critical COVID-19. This subsequently leads to increased virus replication, intense inflammatory processes, and secondary complications development. In this review article, we provide an overview of hsa-miRNAs roles in viral genome targeting, inflammatory pathways modulation, and IFNs responses amplification in severe/critical COVID-19 accompanied by probable interventional factors and their function. Identification and monitoring of these interventional elements can help us in designing the miRNAs-based therapy for the reduction of complications/mortality rate in patients with severe/critical forms of the disease.
Collapse
Affiliation(s)
- Mona Aslani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Two Interferon-Stimulated Response Elements Cooperatively Regulate Interferon-Stimulated Gene Expression in West Nile Virus-Infected IFNAR -/- Mouse Embryo Fibroblasts. J Virol 2021; 95:e0104021. [PMID: 34495694 DOI: 10.1128/jvi.01040-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously identified a subset of interferon-stimulated genes (ISGs) upregulated by West Nile virus (WNV) infection in wild-type mouse embryo fibroblasts (MEFs) after viral proteins had inhibited type I interferon (IFN)-mediated JAK-STAT signaling and also in WNV-infected RIG-I-/-, MDA5-/-, STAT1-/-, STAT2-/-, IFNAR-/-, IRF3-/-, IRF7-/-, and IRF3/7-/- MEFs. In this study, ISG upregulation by WNV infection in IFNAR-/- MEFs was confirmed by transcriptome sequencing (RNA-seq). ISG upregulation by WNV infection was inhibited in RIG-I/MDA5-/- MEFs. ISGs were upregulated in IRF1-/- and IRF5-/- MEFs but only minimally upregulated in IRF3/5/7-/- MEFs, suggesting redundant IRF involvement. We previously showed that a single proximal interferon-stimulated response element (ISRE) in the Oas1a and Oas1b promoters bound the ISGF3 complex after type I IFN treatment. In this study, we used wild-type and mutant promoter luciferase reporter constructs to identify critical regions in the Oas1b and Ifit1 promoters for gene activation in infected IFNAR-/- MEFs. Two ISREs were required in both promoters. Mutation of these ISREs in an Ifit1 promoter DNA probe reduced in vitro complex formation with infected nuclear extracts. An NF-κB inhibitor decreased Ifit1 promoter activity in cells and in vitro complex formation. IRF3 and p50 promoter binding was detected by chromatin immunoprecipitation (ChIP) for upregulated ISGs with two proximal ISREs. The data indicate that ISREs function cooperatively to upregulate the expression of some ISGs when type I IFN signaling is absent, with the binding complex consisting of IRF3, IRF5, and/or IRF7 and an NF-κB component(s) as well as other, as-yet-unknown factors. IMPORTANCE Type I IFN signaling in mammalian cells induces formation of the ISGF3 transcription factor complex, which binds to interferon stimulated response elements (ISREs) in the promoters of interferon-stimulated genes (ISGs) in the cell nucleus. Flavivirus proteins counteract type I IFN signaling by preventing either the formation or nuclear localization of ISGF3. A subset of ISRE-regulated ISGs was still induced in West Nile virus (WNV)-infected mouse embryo fibroblasts (MEFs), indicating that cells have an alternative mechanism for activating these ISGs. In this study, cellular components involved in this ISG upregulation mechanism were identified using gene knockout MEFs and ChIP, and critical promoter regions for gene activation were mapped using reporter assays. The data indicate a cooperative function between two ISREs and required binding of IRF3, IRF5, and/or IRF7 and an NF-κB component(s). Moreover, type I IFN signaling-independent ISG activation requires different additional promoter activation regions than type I IFN-dependent activation.
Collapse
|
20
|
Khan KA, Marineau A, Doyon P, Acevedo M, Durette É, Gingras AC, Servant MJ. TRK-Fused Gene (TFG), a protein involved in protein secretion pathways, is an essential component of the antiviral innate immune response. PLoS Pathog 2021; 17:e1009111. [PMID: 33411856 PMCID: PMC7790228 DOI: 10.1371/journal.ppat.1009111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
Antiviral innate immune response to RNA virus infection is supported by Pattern-Recognition Receptors (PRR) including RIG-I-Like Receptors (RLR), which lead to type I interferons (IFNs) and IFN-stimulated genes (ISG) production. Upon sensing of viral RNA, the E3 ubiquitin ligase TNF Receptor-Associated Factor-3 (TRAF3) is recruited along with its substrate TANK-Binding Kinase (TBK1), to MAVS-containing subcellular compartments, including mitochondria, peroxisomes, and the mitochondria-associated endoplasmic reticulum membrane (MAM). However, the regulation of such events remains largely unresolved. Here, we identify TRK-Fused Gene (TFG), a protein involved in the transport of newly synthesized proteins to the endomembrane system via the Coat Protein complex II (COPII) transport vesicles, as a new TRAF3-interacting protein allowing the efficient recruitment of TRAF3 to MAVS and TBK1 following Sendai virus (SeV) infection. Using siRNA and shRNA approaches, we show that TFG is required for virus-induced TBK1 activation resulting in C-terminal IRF3 phosphorylation and dimerization. We further show that the ability of the TRAF3-TFG complex to engage mTOR following SeV infection allows TBK1 to phosphorylate mTOR on serine 2159, a post-translational modification shown to promote mTORC1 signaling. We demonstrate that the activation of mTORC1 signaling during SeV infection plays a positive role in the expression of Viperin, IRF7 and IFN-induced proteins with tetratricopeptide repeats (IFITs) proteins, and that depleting TFG resulted in a compromised antiviral state. Our study, therefore, identifies TFG as an essential component of the RLR-dependent type I IFN antiviral response. Antiviral innate immune response is the first line of defence against the invading viruses through type I interferon (IFN) signaling. However, viruses have devised ways to target signaling molecules for aberrant IFN response and worsen the disease outcome. As such, deciphering the roles of new regulators of innate immunity could transform the antiviral treatment paradigm by introducing novel panviral therapeutics designed to reinforce antiviral host responses. This could be of great use in fighting recent outbreaks of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome MERS-CoV, and the more recent SARS-CoV-2 causing the COVID-19 pandemic. However, aberrant activation of such pathways can lead to detrimental consequences, including autoimmune diseases. Regulation of type I IFN responses is thus of paramount importance. To prevent an uncontrolled response, signaling events happen in discrete subcellular compartments, therefore, distinguishing sites involved in recognition of pathogens and those permitting downstream signaling. Here, we show TFG as a new regulator of type I IFN response allowing the efficient organization of signaling molecules. TFG, thus, further substantiates the importance of the protein trafficking machinery in the regulation of optimal antiviral responses. Our findings have implications for both antiviral immunity and autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Priscilla Doyon
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | - Mariana Acevedo
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | - Étienne Durette
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marc J. Servant
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
- * E-mail:
| |
Collapse
|
21
|
Oosenbrug T, van de Graaff MJ, Haks MC, van Kasteren S, Ressing ME. An alternative model for type I interferon induction downstream of human TLR2. J Biol Chem 2020; 295:14325-14342. [PMID: 32796029 DOI: 10.1074/jbc.ra120.015283] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/10/2020] [Indexed: 11/06/2022] Open
Abstract
Surface-exposed Toll-like receptors (TLRs) such as TLR2 and TLR4 survey the extracellular environment for pathogens. TLR activation initiates the production of various cytokines and chemokines, including type I interferons (IFN-I). Downstream of TLR4, IFNβ secretion is only vigorously triggered in macrophages when the receptor undergoes endocytosis and switches signaling adaptor; surface TLR4 engagement predominantly induces proinflammatory cytokines via the signaling adaptor MyD88. It is unclear whether this dichotomy is generally applicable to other TLRs, cell types, or differentiation states. Here, we report that diverse TLR2 ligands induce an IFN-I response in human monocyte-like cells, but not in differentiated macrophages. This TLR2-dependent IFN-I signaling originates from the cell surface and depends on MyD88; it involves combined activation of the transcription factors IRF3 and NF-κB, driven by the kinases TBK1 and TAK1-IKKβ, respectively. TLR2-stimulated monocytes produced modest IFNβ levels that caused productive downstream signaling, reflected by STAT1 phosphorylation and expression of numerous interferon-stimulated genes. Our findings reveal that the outcome of TLR2 signaling includes an IFN-I response in human monocytes, which is lost upon macrophage differentiation, and differs mechanistically from IFN-I-induction through TLR4. These findings point to molecular mechanisms tailored to the differentiation state of a cell and the nature of receptors activated to control and limit TLR-triggered IFN-I responses.
Collapse
Affiliation(s)
- Timo Oosenbrug
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michel J van de Graaff
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Mariëlle C Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander van Kasteren
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Maaike E Ressing
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Macromolecular Synthesis Shutoff Resistance by Myeloid Cells Is Critical to IRF7-Dependent Systemic Interferon Alpha/Beta Induction after Alphavirus Infection. J Virol 2019; 93:JVI.00872-19. [PMID: 31578290 DOI: 10.1128/jvi.00872-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
Alphavirus infection of fibroblastic cell types in vitro inhibits host cell translation and transcription, leading to suppression of interferon alpha/beta (IFN-α/β) production. However, the effect of infection upon myeloid cells, which are often the first cells encountered by alphaviruses in vivo, is unclear. Previous studies demonstrated an association of systemic IFN-α/β production with myeloid cell infection efficiency. Murine infection with wild-type Venezuelan equine encephalitis virus (VEEV), a highly myeloid-cell-tropic alphavirus, results in secretion of very high systemic levels of IFN-α/β, suggesting that stress responses in responding cells are active. Here, we infected myeloid cell cultures with VEEV to identify the cellular source of IFN-α/β, the timing and extent of translation and/or transcription inhibition in infected cells, and the transcription factors responsible for IFN-α/β induction. In contrast to fibroblast infection, myeloid cell cultures infected with VEEV secreted IFN-α/β that increased until cell death was observed. VEEV inhibited translation in most cells early after infection (<6 h postinfection [p.i.]), while transcription inhibition occurred later (>6 h p.i.). Furthermore, the interferon regulatory factor 7 (IRF7), but not IRF3, transcription factor was critical for IFN-α/β induction in vitro and in sera of mice. We identified a subset of infected Raw 264.7 myeloid cells that resisted VEEV-induced translation inhibition and secreted IFN-α/β despite virus infection. However, in the absence of IFN receptor signaling, the size of this cell population was diminished. These results indicate that IFN-α/β induction in vivo is IRF7 dependent and arises in part from a subset of myeloid cells that are resistant, in an IFN-α/β-dependent manner, to VEEV-induced macromolecular synthesis inhibition.IMPORTANCE Most previous research exploring the interaction of alphaviruses with host cell antiviral responses has been conducted using fibroblast lineage cell lines. Previous studies have led to the discovery of virus-mediated activities that antagonize host cell antiviral defense pathways, such as host cell translation and transcription inhibition and suppression of STAT1 signaling. However, their relevance and impact upon myeloid lineage cell types, which are key responders during the initial stages of alphavirus infection in vivo, have not been well studied. Here, we demonstrate the different abilities of myeloid cells to resist VEEV infection compared to nonmyeloid cell types and begin to elucidate the mechanisms by which host antiviral responses are upregulated in myeloid cells despite the actions of virus-encoded antagonists.
Collapse
|
23
|
Arthur SE, Sorgeloos F, Hosmillo M, Goodfellow IG. Epigenetic Suppression of Interferon Lambda Receptor Expression Leads to Enhanced Human Norovirus Replication In Vitro. mBio 2019; 10:e02155-19. [PMID: 31575769 PMCID: PMC6775457 DOI: 10.1128/mbio.02155-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022] Open
Abstract
Human norovirus (HuNoV) is the main cause of gastroenteritis worldwide, yet no therapeutics are currently available. Here, we utilize a human norovirus replicon in human gastric tumor (HGT) cells to identify host factors involved in promoting or inhibiting HuNoV replication. We observed that an interferon (IFN)-cured population of replicon-harboring HGT cells (HGT-Cured) was enhanced in their ability to replicate transfected HuNoV RNA compared to parental HGT cells, suggesting that differential gene expression in HGT-Cured cells created an environment favoring norovirus replication. Microarrays were used to identify genes differentially regulated in HGT-NV and HGT-Cured compared to parental cells. We found that IFN lambda receptor (IFNLR1) expression was highly reduced in HGT-NV and HGT-Cured cells. While all three cell lines responded to exogenous IFN-β by inducing interferon-stimulated genes, HGT-NV and HGT-Cured cells failed to respond to exogenous IFN-λ. Methylation-sensitive PCR showed that an increased methylation of the IFNLR1 promoter and inhibition of DNA methyltransferase activity partially reactivated IFNLR1 expression in HGT-NV and HGT-Cured cells, indicating that host adaptation occurred via epigenetic reprogramming. Moreover, IFNLR1 ectopic expression rescued response to IFN-λ and restricted HuNoV replication in HGT-NV cells. We conclude that type III IFN is important in inhibiting HuNoV replication in vitro and that the loss of IFNLR1 enhances replication of HuNoV. This study unravels for the first time epigenetic reprogramming of the interferon lambda receptor as a new mechanism of cellular adaptation during long-term RNA virus replication and shows that an endogenous level of interferon lambda signaling is able to control human norovirus replication.IMPORTANCE Noroviruses are one of the most widespread causes of gastroenteritis, yet no suitable therapeutics are available for their control. Moreover, to date, knowledge of the precise cellular processes that control the replication of the human norovirus remains ill defined. Recent work has highlighted the importance of type III interferon (IFN) responses in the restriction of viruses that infect the intestine. Here, we analyzed the adaptive changes required to support long-term replication of noroviruses in cell culture and found that the receptor for type III IFN is decreased in its expression. We confirmed that this decreased expression was driven by epigenetic modifications and that cells lacking the type III IFN receptor are more permissive for norovirus replication. This work provides new insights into key host-virus interactions required for the control of noroviruses and opens potential novel avenues for their therapeutic control.
Collapse
Affiliation(s)
- Sabastine E Arthur
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Frédéric Sorgeloos
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Ian G Goodfellow
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Wang Z, Tan Y, Mou X, Wang C, Li Y, Xiao F, Hu X, Liu H, Xu H. Screening and pharmacodynamic evaluation of the anti-respiratory syncytial virus activity of butene lactones in vitro and in vivo. J Med Virol 2019; 92:17-25. [PMID: 31475735 DOI: 10.1002/jmv.25586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/28/2019] [Indexed: 11/07/2022]
Abstract
A series of butene lactones were synthesized and these compounds were tested for anti-respiratory syncytial virus (RSV) activity in vitro. Three compounds exhibited an antiviral effect, the highest of which was compound 6b3 with an effective concentration 50% of 6.35 μM. The effects of 6b3 were then evaluated in vivo and a significant reduction in the lung index caused by RSV was detected. Reduced inflammatory infiltration and necrosis of the lungs were revealed by histopathology and gross pathology. Activation of an early immune response by 6b3 was also observed by cytokine analysis via a real-time polymerase chain reaction. These results indicated that 6b3 has an anti-RSV effect both in vitro and in vivo, and is a possible candidate compound for the development of an anti-RSV drug in the future.
Collapse
Affiliation(s)
- Zhenya Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Yayun Tan
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Xiaodong Mou
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Congcong Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Fan Xiao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Xiaoning Hu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Hongmin Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Haiwei Xu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Grudzien-Nogalska E, Wu Y, Jiao X, Cui H, Mateyak MK, Hart RP, Tong L, Kiledjian M. Structural and mechanistic basis of mammalian Nudt12 RNA deNADding. Nat Chem Biol 2019; 15:575-582. [PMID: 31101919 PMCID: PMC6527130 DOI: 10.1038/s41589-019-0293-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 03/18/2019] [Indexed: 11/21/2022]
Abstract
We recently demonstrated mammalian cells harbor NAD-capped mRNAs that are hydrolyzed by the DXO deNADding enzyme. Here we report the Nudix protein Nudt12 is a second mammalian deNADding enzyme structurally and mechanistically distinct from DXO and targeting different RNAs. Crystal structure of mouse Nudt12 in complex with the deNADding product AMP and three Mg2+ ions at 1.6 Å resolution provides exquisite insights into the molecular basis of the deNADding activity within the NAD pyrophosphate. Disruption of the Nudt12 gene stabilizes transfected NAD-capped RNA in cells and its endogenous NAD-capped mRNA targets are enriched in those encoding proteins involved in cellular energetics. Furthermore, exposure of cells to nutrient or environmental stress manifests changes in NAD-capped RNA levels that are selectively responsive to Nudt12 or DXO respectively, indicating an association of deNADding to cellular metabolism.
Collapse
Affiliation(s)
| | - Yixuan Wu
- Department Biological Sciences, Columbia University, New York, NY, USA
| | - Xinfu Jiao
- Department Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Huijuan Cui
- Department Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Maria K Mateyak
- Department Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Ronald P Hart
- Department Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Liang Tong
- Department Biological Sciences, Columbia University, New York, NY, USA.
| | - Megerditch Kiledjian
- Department Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
26
|
Zhao C, Zhao W. TANK-binding kinase 1 as a novel therapeutic target for viral diseases. Expert Opin Ther Targets 2019; 23:437-446. [DOI: 10.1080/14728222.2019.1601702] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chunyuan Zhao
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, China
| |
Collapse
|
27
|
Wei S, Yang D, Yang J, Zhang X, Zhang J, Fu J, Zhou G, Liu H, Lian Z, Han H. Overexpression of Toll-like receptor 4 enhances LPS-induced inflammatory response and inhibits Salmonella Typhimurium growth in ovine macrophages. Eur J Cell Biol 2019; 98:36-50. [PMID: 30522781 DOI: 10.1016/j.ejcb.2018.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/06/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
The Toll-like receptor 4 (TLR4) plays a crucial role in innate inflammatory responses, as it recognizes gram-negative bacteria (or their products) and contributes greatly to host defense against invading pathogens. Though TLR4 overexpressing transgenic sheep, resistant to certain diseases related with gram-negative bacteria, had been bred in our previous research, the effects of overexpression of TLR4 on innate immune response remained unclear. In this study, TLR4 overexpressing ovine macrophages were obtained from peripheral blood, and it was found that the overexpression of TLR4 initially promoted the production of proinflammatory cytokines TNFα and IL-6 by activating TLR4-mediated IRAK4-dependent NF-κB and MAPK (JNK and ERK1/2) signaling following LPS stimulation. However, this effect was later impaired due to increased internalization of TLR4 into endosomal compartment of the macrophages. Then the overexpression of TLR4 triggered TBK1-dependent interferon-regulatory factor-3 (IRF-3) expression, which in turn led to the induction of IFN-β and IFN-inducible genes (i.e.IP10, IRG1 and GARG16). Understandably, an increased IFN-β level facilitated phosphorylation of STAT1 to induce expression of innate antiviral genes Mx1 and ISG15, suggesting that TLR4 overexpressing macrophages were equipped better against viral infection. Correspondingly, the bacterial burden in these macrophages, after infection with live S. Typhimurium, was decreased significantly. In summary, the results indicated that overexpression of TLR4 could enhance innate inflammatory responses, initiate the innate antiviral immunity, and control effectively S. Typhimurium growth in ovine macrophages.
Collapse
Affiliation(s)
- Shao Wei
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongbing Yang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jifan Yang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaosheng Zhang
- Institute of Animal Science and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Jinlong Zhang
- Institute of Animal Science and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Juncai Fu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, China
| | - Haijun Liu
- Institute of Animal Science and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongbing Han
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
28
|
Schultz KLW, Troisi EM, Baxter VK, Glowinski R, Griffin DE. Interferon regulatory factors 3 and 7 have distinct roles in the pathogenesis of alphavirus encephalomyelitis. J Gen Virol 2018; 100:46-62. [PMID: 30451651 DOI: 10.1099/jgv.0.001174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interferon (IFN) regulatory factors (IRFs) are important determinants of the innate response to infection. We evaluated the role(s) of combined and individual IRF deficiencies in the outcome of infection of C57BL/6 mice with Sindbis virus, an alphavirus that infects neurons and causes encephalomyelitis. The brain and spinal cord levels of Irf7, but not Irf3 mRNAs, were increased after infection. IRF3/5/7-/- and IRF3/7-/- mice died within 3-4 days with uncontrolled virus replication, similar to IFNα receptor-deficient mice, while all wild-type (WT) mice recovered. IRF3-/- and IRF7-/- mice had brain levels of IFNα that were lower, but brain and spinal cord levels of IFNβ and IFN-stimulated gene mRNAs that were similar to or higher than WT mice without detectable serum IFN or increases in Ifna or Ifnb mRNAs in the lymph nodes, indicating that the differences in outcome were not due to deficiencies in the central nervous system (CNS) type I IFN response. IRF3-/- mice developed persistent neurological deficits and had more spinal cord inflammation and higher CNS levels of Il1b and Ifnγ mRNAs than WT mice, but all mice survived. IRF7-/- mice died 5-8 days after infection with rapidly progressive paralysis and differed from both WT and IRF3-/- mice in the induction of higher CNS levels of IFNβ, tumour necrosis factor (TNF) α and Cxcl13 mRNA, delayed virus clearance and more extensive cell death. Therefore, fatal disease in IRF7-/- mice is likely due to immune-mediated neurotoxicity associated with failure to regulate the production of inflammatory cytokines such as TNFα in the CNS.
Collapse
Affiliation(s)
- Kimberly L W Schultz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,†Present address: Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Elizabeth M Troisi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Victoria K Baxter
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,‡Present address: University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca Glowinski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,§Present address: Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
29
|
Zhang J, Dang F, Ren J, Wei W. Biochemical Aspects of PD-L1 Regulation in Cancer Immunotherapy. Trends Biochem Sci 2018; 43:1014-1032. [PMID: 30287140 DOI: 10.1016/j.tibs.2018.09.004] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022]
Abstract
PD-L1, frequently expressed in human cancers, engages with PD-1 on immune cells and contributes to cancer immune evasion. As such, antibodies blocking the PD-1/PD-L1 interaction reactivate cytotoxic T cells to eradicate cancer cells. However, a majority of cancer patients fail to respond to PD-1/PD-L1 blockade with unclear underlying mechanism(s). Recent studies revealed that PD-L1 expression levels on tumor cells might affect the clinical response to anti-PD-1/PD-L1 therapies. Hence, understanding molecular mechanisms for controlling PD-L1 expression will be important to improve the clinical response rate and efficacy of PD-1/PD-L1 blockade. In this review, we primarily focus on summarizing PD-L1 regulation and its potential roles in regulating antitumor immune response, with purpose to optimize anti-PD-1/PD-L1 therapies, benefiting a wider cancer patient population.
Collapse
Affiliation(s)
- Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; These authors contributed equally to this work
| | - Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; These authors contributed equally to this work
| | - Junming Ren
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
30
|
Haas DA, Meiler A, Geiger K, Vogt C, Preuss E, Kochs G, Pichlmair A. Viral targeting of TFIIB impairs de novo polymerase II recruitment and affects antiviral immunity. PLoS Pathog 2018; 14:e1006980. [PMID: 29709033 PMCID: PMC5927403 DOI: 10.1371/journal.ppat.1006980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/19/2018] [Indexed: 11/21/2022] Open
Abstract
Viruses have evolved a plethora of mechanisms to target host antiviral responses. Here, we propose a yet uncharacterized mechanism of immune regulation by the orthomyxovirus Thogoto virus (THOV) ML protein through engaging general transcription factor TFIIB. ML generates a TFIIB depleted nuclear environment by re-localizing it into the cytoplasm. Although a broad effect on gene expression would be anticipated, ML expression, delivery of an ML-derived functional domain or experimental depletion of TFIIB only leads to altered expression of a limited number of genes. Our data indicate that TFIIB is critically important for the de novo recruitment of Pol II to promoter start sites and that TFIIB may not be required for regulated gene expression from paused promoters. Since many immune genes require de novo recruitment of Pol II, targeting of TFIIB by THOV represents a neat mechanism to affect immune responses while keeping other cellular transcriptional activities intact. Thus, interference with TFIIB activity may be a favourable site for therapeutic intervention to control undesirable inflammation. Viruses target the innate immune system at critical vulnerability points. Here we show that the orthomyxovirus Thogoto virus impairs activity of general transcription factor IIB (TFIIB). Surprisingly, impairment of TFIIB function does not result in a general inhibition of transcription but in a rather specific impairment of selective genes. Transcriptome and functional analyses intersected with published CHIP-Seq datasets suggest that affected genes require de novo recruitment of the polymerase complex. Since the innate immune system heavily relies on genes that require de novo recruitment of the polymerase complex, targeting of TFIIB represents a neat mechanism to broadly affect antiviral immunity. Conversely, therapeutic targeting of TFIIB may represent a mechanism to limit pathological side effects caused by overshooting immune reactions.
Collapse
Affiliation(s)
- Darya A. Haas
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Arno Meiler
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Katharina Geiger
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
| | - Carola Vogt
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
| | - Ellen Preuss
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
- * E-mail:
| |
Collapse
|
31
|
IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nat Med 2017; 23:1481-1487. [PMID: 29106401 PMCID: PMC6477926 DOI: 10.1038/nm.4428] [Citation(s) in RCA: 382] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
Interferon regulatory factor 3 (IRF3) and type I interferons (IFNs) protect against infections1 and cancer2, but excessive IRF3 activation and type I IFN production cause auto-inflammatory conditions such as Aicardi Goutieres Syndrome3,4 and STING-associated vasculopathy of infancy (SAVI)3. Myocardial infarction (MI) elicits inflammation5, but the dominant molecular drivers of MI-associated inflammation remain unclear. Here, we show that ischemic cell death in the heart fuels a fatal response to myocardial infarction by activating IRF3 and type I IFN production. In mice, single cell RNA-Seq analysis of 4,215 leukocytes isolated from infarcted and non-infarcted hearts revealed that MI provokes activation of an IRF3-interferon axis in a distinct population of interferon inducible cells (IFNICs that were classified as cardiac macrophages). Mice genetically deficient in cGAS, its adaptor STING, IRF3, or the type I interferon receptor IFNAR exhibited impaired interferon stimulated gene (ISG) expression and, in the case of mice deficient in IRF3 or IFNAR, improved survival after MI as compared to controls. Interruption of IRF3-dependent signaling resulted in decreased cardiac expression of inflammatory cytokines and chemokines and decreased cardiac inflammatory cell infiltration, as well as in attenuated ventricular dilation and improved cardiac function. Similarly, treatment of mice with an IFNAR neutralizing antibody after MI ablated the IFN response and improved left ventricular dysfunction and survival. These results identify IRF3 and the type I interferon response as a potential therapeutic target for post-MI cardioprotection. The massive cell death that occurs during myocardial infarction releases self-DNA and triggers an interferon response in infiltrating leukocytes via a cGAS-STING-IRF3 pathway. In mice subjected to myocardial infarction, genetic disrupton of this pathway or antibody blockade of the type I interferon receptor improved heart function and survival.
Collapse
|
32
|
Ohsugi T, Yamaguchi K, Zhu C, Ikenoue T, Furukawa Y. Decreased expression of interferon-induced protein 2 (IFIT2) by Wnt/β-catenin signaling confers anti-apoptotic properties to colorectal cancer cells. Oncotarget 2017; 8:100176-100186. [PMID: 29245969 PMCID: PMC5725011 DOI: 10.18632/oncotarget.22122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/02/2017] [Indexed: 11/25/2022] Open
Abstract
Impaired Wnt signaling pathway plays a crucial role in the development of colorectal cancer through activation of the β-catenin/TCF7L2 complex. Although genes up-regulated by Wnt/β-catenin signaling have been intensively studied, the roles of down-regulated genes are poorly understood. In this study, we explored a global gene expression of colorectal cancer cells transfected with β-catenin siRNAs or a dominant negative form of TCF7L2 (dnTCF7L2), and identified a set of genes down-regulated by Wnt/β-catenin signaling. Among the genes, we focused here on IFIT2, a gene encoding interferon-induced protein with tetratricopeptide repeats. A reporter assay using plasmids containing a 5’-flanking region of the gene showed that the reporter activity was enhanced by either transduction of β-catenin siRNA or dnTCF7L2, suggesting that the region is involved in the transcriptional regulation as a downstream of the β-catenin/TCF7L2 complex. Consistent with this result, expression of IFIT2 was significantly lower in colorectal cancer tissues than that in normal tissues. Exogenous IFIT2 expression decreased cell proliferation and increased apoptosis of colorectal cancer cells. These data suggested that the down-regulation of IFIT2 by Wnt/β-catenin signaling may play a vital role in human colorectal carcinogenesis through the suppression of apoptosis.
Collapse
Affiliation(s)
- Tomoyuki Ohsugi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Chi Zhu
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
33
|
Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 2017; 548:466-470. [PMID: 28759889 PMCID: PMC5857357 DOI: 10.1038/nature23470] [Citation(s) in RCA: 1042] [Impact Index Per Article: 130.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022]
Abstract
Inflammatory gene expression following genotoxic cancer therapy is well documented, yet the events underlying its induction remain poorly understood. Inflammatory cytokines modify the tumour microenvironment by recruiting immune cells and are critical for both local and systemic (abscopal) tumour responses to radiotherapy. A poorly understood feature of these responses is the delayed onset (days), in contrast to the acute DNA-damage responses that occur in minutes to hours. Such dichotomous kinetics implicate additional rate-limiting steps that are essential for DNA-damage-induced inflammation. Here we show that cell cycle progression through mitosis following double-stranded DNA breaks leads to the formation of micronuclei, which precede activation of inflammatory signalling and are a repository for the pattern-recognition receptor cyclic GMP-AMP synthase (cGAS). Inhibiting progression through mitosis or loss of pattern recognition by stimulator of interferon genes (STING)-cGAS impaired interferon signalling. Moreover, STING loss prevented the regression of abscopal tumours in the context of ionizing radiation and immune checkpoint blockade in vivo. These findings implicate temporal modulation of the cell cycle as an important consideration in the context of therapeutic strategies that combine genotoxic agents with immune checkpoint blockade.
Collapse
|
34
|
Mycobacterium tuberculosis-triggered Hippo pathway orchestrates CXCL1/2 expression to modulate host immune responses. Sci Rep 2016; 6:37695. [PMID: 27883091 PMCID: PMC5121601 DOI: 10.1038/srep37695] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) pathogenesis encompasses a plethora of finely regulated alterations within the host which eventually coin the outcome of infection. Chemokines are important components in directing immune cell recruitment to the site of infection, and shaping the disease progression. Here, we demonstrate that Hippo (mammalian sterile 20-like 1 and 2 kinases, MST1/2, in mammals), is activated during mycobacterial infection in a toll-like receptor (TLR) 2-interleukin receptor-1 associated kinases (IRAK1/4)-dependent manner. Mtb-triggered Hippo signaling modulates the expression and secretion of chemokines (CXCL1 and CXCL2); as silencing MST1/2 compromised the ability of Mtb to furnish the same. Further insight into the mechanism of Hippo-mediated regulation of chemokines revealed the role for a non-canonical Hippo effector interferon (IFN) regulatory factor (IRF) 3 in the process and marked the effect to be independent of LATS1. Alongside their ability to guide directed recruitment of immune cells, we have uncovered a paracrine role for Hippo-mediated secretion of CXCL1 and CXCL2 in the production of anti-microbial peptides (beta-defensins), iNOS, NOX2 and pro-inflammatory molecules during mycobacterial infection of the host. This study highlights the involvement of TLR2-IRAK1/4-MST1/2-IRF3 axis in Mtb-triggered modulation of chemokines and identifies Hippo signaling as a novel regulator of host-mycobacterial interactions.
Collapse
|
35
|
Polycarpou A, Holland MJ, Karageorgiou I, Eddaoudi A, Walker SL, Willcocks S, Lockwood DNJ. Mycobacterium leprae Activates Toll-Like Receptor-4 Signaling and Expression on Macrophages Depending on Previous Bacillus Calmette-Guerin Vaccination. Front Cell Infect Microbiol 2016; 6:72. [PMID: 27458573 PMCID: PMC4937034 DOI: 10.3389/fcimb.2016.00072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/24/2016] [Indexed: 01/09/2023] Open
Abstract
Toll-like receptor (TLR)-1 and TLR2 have been shown to be receptors for Mycobacterium leprae (M. leprae), yet it is unclear whether M. leprae can signal through alternative TLRs. Other mycobacterial species possess ligands for TLR4 and genetic association studies in human populations suggest that people with TLR4 polymorphisms may be protected against leprosy. Using human embryonic kidney (HEK)-293 cells co-transfected with TLR4, we demonstrate that M. leprae activates TLR4. We used human macrophages to show that M. leprae stimulation of cytokine production is diminished if pre-treated with TLR4 neutralizing antibody. TLR4 protein expression was up-regulated on macrophages derived from non-bacillus Calmette-Guerin (BCG) vaccinated healthy volunteers after incubation with M. leprae, whereas it was down-regulated in macrophages derived from BCG-vaccinated donors. Finally, pre-treatment of macrophages derived from BCG-naive donors with BCG reversed the effect of M. leprae on TLR4 expression. This may be a newly described phenomenon by which BCG vaccination stimulates “non-specific” protection to the human immune system.
Collapse
Affiliation(s)
- Anastasia Polycarpou
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine London, UK
| | - Martin J Holland
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine London, UK
| | - Ioannis Karageorgiou
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine London, UK
| | - Ayad Eddaoudi
- Molecular and Cellular Immunology Unit, Institute of Child Health, University College London London, UK
| | - Stephen L Walker
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine London, UK
| | - Sam Willcocks
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine London, UK
| | - Diana N J Lockwood
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine London, UK
| |
Collapse
|
36
|
Lin JD, Feng N, Sen A, Balan M, Tseng HC, McElrath C, Smirnov SV, Peng J, Yasukawa LL, Durbin RK, Durbin JE, Greenberg HB, Kotenko SV. Distinct Roles of Type I and Type III Interferons in Intestinal Immunity to Homologous and Heterologous Rotavirus Infections. PLoS Pathog 2016; 12:e1005600. [PMID: 27128797 PMCID: PMC4851417 DOI: 10.1371/journal.ppat.1005600] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/05/2016] [Indexed: 11/18/2022] Open
Abstract
Type I (IFN-α/β) and type III (IFN-λ) interferons (IFNs) exert shared antiviral activities through distinct receptors. However, their relative importance for antiviral protection of different organ systems against specific viruses remains to be fully explored. We used mouse strains deficient in type-specific IFN signaling, STAT1 and Rag2 to dissect distinct and overlapping contributions of type I and type III IFNs to protection against homologous murine (EW-RV strain) and heterologous (non-murine) simian (RRV strain) rotavirus infections in suckling mice. Experiments demonstrated that murine EW-RV is insensitive to the action of both types of IFNs, and that timely viral clearance depends upon adaptive immune responses. In contrast, both type I and type III IFNs can control replication of the heterologous simian RRV in the gastrointestinal (GI) tract, and they cooperate to limit extra-intestinal simian RRV replication. Surprisingly, intestinal epithelial cells were sensitive to both IFN types in neonatal mice, although their responsiveness to type I, but not type III IFNs, diminished in adult mice, revealing an unexpected age-dependent change in specific contribution of type I versus type III IFNs to antiviral defenses in the GI tract. Transcriptional analysis revealed that intestinal antiviral responses to RV are triggered through either type of IFN receptor, and are greatly diminished when receptors for both IFN types are lacking. These results also demonstrate a murine host-specific resistance to IFN-mediated antiviral effects by murine EW-RV, but the retention of host efficacy through the cooperative action by type I and type III IFNs in restricting heterologous simian RRV growth and systemic replication in suckling mice. Collectively, our findings revealed a well-orchestrated spatial and temporal tuning of innate antiviral responses in the intestinal tract where two types of IFNs through distinct patterns of their expression and distinct but overlapping sets of target cells coordinately regulate antiviral defenses against heterologous or homologous rotaviruses with substantially different effectiveness. Two distinct families of interferons (IFNs), type I (IFN-α/β) and type III (IFN-λ) IFNs, are quickly produced in response to virus infection and engage distinct receptors to invoke shared rapid and broad-spectrum antiviral mechanisms against invading pathogens. However, the relative importance of type I and type III IFNs in protecting different organ systems against specific viruses or distinct strains of an individual virus remains to be fully explored. Here we demonstrated in suckling mice that neither type I nor type III IFNs are effective in blocking intestinal replication of murine rotavirus, rather, viral clearance is dependent upon adaptive immune responses. In contrast, both IFN types cooperate to control intestinal replication and extra-intestinal spread of simian rotavirus in neonatal mice. Unexpectedly, we found that although intestinal epithelial cells (IECs) respond to both types of IFNs in neonatal mice, responsiveness of IECs to type I IFNs, but not type III IFNs, is diminished in adult mice. Transcriptional analysis showed that both types of IFN receptors induced overlapping intestinal antiviral responses, which were abrogated only when both receptor types were deleted. Overall, these findings reveal a well-coordinated spatial and temporal regulation of antiviral defenses by type I and type III IFNs in the gastrointestinal tract that varies significantly depending on the viral strain examined.
Collapse
Affiliation(s)
- Jian-Da Lin
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Ningguo Feng
- Stanford University, Stanford, California, United States of America
- VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Adrish Sen
- Stanford University, Stanford, California, United States of America
- VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Murugabaskar Balan
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Hsiang-Chi Tseng
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Constance McElrath
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Sergey V. Smirnov
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Jianya Peng
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Linda L. Yasukawa
- Stanford University, Stanford, California, United States of America
- VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Russell K. Durbin
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Joan E. Durbin
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
- University Hospital Cancer Center, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Harry B. Greenberg
- Stanford University, Stanford, California, United States of America
- VA Palo Alto Health Care System, Palo Alto, California, United States of America
- * E-mail: (HBG); (SVK)
| | - Sergei V. Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
- University Hospital Cancer Center, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
- * E-mail: (HBG); (SVK)
| |
Collapse
|
37
|
Liu Y, Zhu Z, Zhang M, Zheng H. Multifunctional roles of leader protein of foot-and-mouth disease viruses in suppressing host antiviral responses. Vet Res 2015; 46:127. [PMID: 26511922 PMCID: PMC4625562 DOI: 10.1186/s13567-015-0273-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/07/2015] [Indexed: 12/17/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) leader protein (Lpro) is a papain-like proteinase, which plays an important role in FMDV pathogenesis. Lpro exists as two forms, Lab and Lb, due to translation being initiated from two different start codons separated by 84 nucleotides. Lpro self-cleaves from the nascent viral polyprotein precursor as the first mature viral protein. In addition to its role as a viral proteinase, Lpro also has the ability to antagonize host antiviral effects. To promote FMDV replication, Lpro can suppress host antiviral responses by three different mechanisms: (1) cleavage of eukaryotic translation initiation factor 4 γ (eIF4G) to shut off host protein synthesis; (2) inhibition of host innate immune responses through restriction of interferon-α/β production; and (3) Lpro can also act as a deubiquitinase and catalyze deubiquitination of innate immune signaling molecules. In the light of recent functional and biochemical findings regarding Lpro, this review introduces the basic properties of Lpro and the mechanisms by which it antagonizes host antiviral responses.
Collapse
Affiliation(s)
- Yingqi Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China. .,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
| | - Miaotao Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
| |
Collapse
|
38
|
Sunakawa Y, Stintzing S, Cao S, Heinemann V, Cremolini C, Falcone A, Yang D, Zhang W, Ning Y, Stremitzer S, Matsusaka S, Yamauchi S, Parekh A, Okazaki S, Berger MD, Graver S, Mendez A, Scherer SJ, Loupakis F, Lenz HJ. Variations in genes regulating tumor-associated macrophages (TAMs) to predict outcomes of bevacizumab-based treatment in patients with metastatic colorectal cancer: results from TRIBE and FIRE3 trials. Ann Oncol 2015; 26:2450-6. [PMID: 26416897 DOI: 10.1093/annonc/mdv474] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/18/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) with the M2-like phenotype are regulated by mainly NF-kB pathway including TBK1, which can influence tumor progression by secretion of proangiogenic factors such as vascular endothelial growth factor. The CCL2/CCR2 axis, histidine-rich glycoprotein (HRG), and placenta growth factor (PIGF) play a critical role in the polarization of M1/M2 phenotypes and the recruitment of TAMs to tumor microenvironment. We therefore hypothesized that variations in genes involved in regulating TAMs may predict clinical outcomes of bevacizumab treatment in patients with metastatic colorectal cancer (mCRC). PATIENTS AND METHODS We analyzed genomic DNA extracted from samples of patients receiving bevacizumab plus FOLFIRI as a first-line treatment using PCR-based direct sequencing. Twelve functional single-nucleotide polymorphisms in eight genes (CCL2, CCR2, HRG, PIGF, NFKB1, TBK1, CCL18, and IRF3) were tested for associations with clinical outcomes in a discovery cohort of 228 participants in TRIBE trial (NCT00719797), then validated in 248 KRAS exon2 (KRAS) wild-type participants in FIRE3 trial (NCT00433927). FIRE3-cetuximab cohort served as a negative control. RESULTS TBK1 rs7486100 was significantly associated with overall survival in 95 KRAS wild-type patients of TRIBE cohort in univariate analysis and had a strong trend in multivariable analysis; furthermore, the association of the T allele was observed for progression-free survival (PFS) in both univariate and multivariable analyses in FIRE3-bevacizumab but not cetuximab cohort. CCL2 rs4586, CCL18 rs14304, and IRF3 rs2304205 had univariate and multivariable correlations with PFS in KRAS mutant patients of the TRIBE cohort, whereas they had no correlations in KRAS wild-type patients of the TRIBE cohort. No association was seen in control cohort. CONCLUSIONS Our study demonstrates for the first time that variations in genes regulating TAMs-related functions are significantly associated with clinical outcomes in mCRC patients treated with bevacizumab-containing chemotherapy. These results also suggest that some TAM-related gene variations may predict outcomes of bevacizumab treatment in KRAS status-dependent manner.
Collapse
Affiliation(s)
- Y Sunakawa
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA Division of Medical Oncology, Department of Internal Medicine, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - S Stintzing
- Department of Hematology and Oncology, Klinikum der Universität München, Munich, Germany
| | - S Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - V Heinemann
- Department of Hematology and Oncology, Klinikum der Universität München, Munich, Germany
| | - C Cremolini
- U.O. Oncologia Medica, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa, Italy
| | - A Falcone
- U.O. Oncologia Medica, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa, Italy
| | - D Yang
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - W Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Y Ning
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S Stremitzer
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S Matsusaka
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S Yamauchi
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - A Parekh
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S Okazaki
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - M D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S Graver
- Department of Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - A Mendez
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S J Scherer
- Department of Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - F Loupakis
- U.O. Oncologia Medica, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa, Italy
| | - H-J Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| |
Collapse
|
39
|
Abstract
The interferon system protects mammals against virus infections. There are several types of interferons, which are characterized by their ability to inhibit virus replication and resultant pathogenesis by triggering both innate and cell-mediated immune responses. Virus infection is sensed by a variety of cellular pattern-recognition receptors and triggers the synthesis of interferons, which are secreted by the infected cells. In uninfected cells, cell surface receptors recognize the secreted interferons and activate intracellular signaling pathways that induce the expression of interferon-stimulated genes; the proteins encoded by these genes inhibit different stages of virus replication. To avoid extinction, almost all viruses have evolved mechanisms to defend themselves against the interferon system. Consequently, a dynamic equilibrium of survival is established between the virus and its host, an equilibrium that can be shifted to the host's favor by the use of exogenous interferon as a therapeutic antiviral agent.
Collapse
Affiliation(s)
- Volker Fensterl
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195;
| | - Saurabh Chattopadhyay
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195;
| | - Ganes C Sen
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195;
| |
Collapse
|
40
|
Khan KA, Dô F, Marineau A, Doyon P, Clément JF, Woodgett JR, Doble BW, Servant MJ. Fine-Tuning of the RIG-I-Like Receptor/Interferon Regulatory Factor 3-Dependent Antiviral Innate Immune Response by the Glycogen Synthase Kinase 3/β-Catenin Pathway. Mol Cell Biol 2015; 35:3029-43. [PMID: 26100021 PMCID: PMC4525315 DOI: 10.1128/mcb.00344-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/27/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022] Open
Abstract
Induction of an antiviral innate immune response relies on pattern recognition receptors, including retinoic acid-inducible gene 1-like receptors (RLR), to detect invading pathogens, resulting in the activation of multiple latent transcription factors, including interferon regulatory factor 3 (IRF3). Upon sensing of viral RNA and DNA, IRF3 is phosphorylated and recruits coactivators to induce type I interferons (IFNs) and selected sets of IRF3-regulated IFN-stimulated genes (ISGs) such as those for ISG54 (Ifit2), ISG56 (Ifit1), and viperin (Rsad2). Here, we used wild-type, glycogen synthase kinase 3α knockout (GSK-3α(-/-)), GSK-3β(-/-), and GSK-3α/β double-knockout (DKO) embryonic stem (ES) cells, as well as GSK-3β(-/-) mouse embryonic fibroblast cells in which GSK-3α was knocked down to demonstrate that both isoforms of GSK-3, GSK-3α and GSK-3β, are required for this antiviral immune response. Moreover, the use of two selective small-molecule GSK-3 inhibitors (CHIR99021 and BIO-acetoxime) or ES cells reconstituted with the catalytically inactive versions of GSK-3 isoforms showed that GSK-3 activity is required for optimal induction of antiviral innate immunity. Mechanistically, GSK-3 isoform activation following Sendai virus infection results in phosphorylation of β-catenin at S33/S37/T41, promoting IRF3 DNA binding and activation of IRF3-regulated ISGs. This study identifies the role of a GSK-3/β-catenin axis in antiviral innate immunity.
Collapse
Affiliation(s)
- Kashif Aziz Khan
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Florence Dô
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | | | - Priscilla Doyon
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | | | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Bradley W Doble
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Marc J Servant
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
41
|
Yang H, Fung SY, Xu S, Sutherland DP, Kollmann TR, Liu M, Turvey SE. Amino Acid-Dependent Attenuation of Toll-like Receptor Signaling by Peptide-Gold Nanoparticle Hybrids. ACS NANO 2015; 9:6774-84. [PMID: 26083966 DOI: 10.1021/nn505634h] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Manipulation of immune responsiveness using nanodevices provides a potential approach to treat human diseases. Toll-like receptor (TLR) signaling plays a central role in the pathophysiology of many acute and chronic human inflammatory diseases, and pharmacological regulation of TLR responses is anticipated to be beneficial in many of these inflammatory conditions. Here we describe the discovery of a unique class of peptide-gold nanoparticle hybrids that exhibit a broad inhibitory activity on TLR signaling, inhibiting signaling through TLRs 2, 3, 4, and 5. As exemplified using TLR4, the nanoparticles were found to inhibit both arms of TLR4 signaling cascade triggered by the prototypical ligand, lipopolysaccharide (LPS). Through structure-activity relationship studies, we identified the key chemical components of the hybrids that contribute to their immunomodulatory activity. Specifically, the hydrophobicity and aromatic ring structure of the amino acids on the peptides were essential for modulating TLR4 responses. This work enhances our fundamental understanding of the role of nanoparticle surface chemistry in regulating innate immune signaling, and identifies specific nanoparticle hybrids that may represent a unique class of anti-inflammatory therapeutics for human inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Shuyun Xu
- ‡Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network; Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | | | | | - Mingyao Liu
- ‡Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network; Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | | |
Collapse
|
42
|
Moore TC, Vogel AJ, Petro TM, Brown DM. IRF3 deficiency impacts granzyme B expression and maintenance of memory T cell function in response to viral infection. Microbes Infect 2015; 17:426-39. [PMID: 25777301 PMCID: PMC4479197 DOI: 10.1016/j.micinf.2015.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 01/02/2023]
Abstract
The role of interferon regulatory factor 3 (IRF3) in the innate immune response to infection has been well studied. However, less is known about IRF3 signaling in shaping the adaptive T cell response. To determine the role of IRF3 in the generation and maintenance of effective anti-viral T cell responses, mice deficient in IRF3 were infected with a potentially persistent virus, Theiler's murine encephalomyelitis virus (TMEV) or with a model acute infection, influenza A virus (IAV). IRF3 was required to prevent TMEV persistence and induce robust TMEV specific effector T cell responses at the site of infection. This defect was more pronounced in the memory phase with an apparent lack of TMEV-specific memory T cells expressing granzyme B (GrB) in IRF3 deficient mice. In contrast, IRF3 had no effect on antigen specific T cell responses at the effector stage during IAV infection. However, memory T cell responses to IAV were also impaired in IRF3 deficient mice. Furthermore, addition of cytokines during peptide restimulation could not restore GrB expression in IRF3 deficient memory T cells. Taken together, IRF3 plays an important role in the maintenance of effective anti-viral T cell memory responses.
Collapse
Affiliation(s)
- Tyler C Moore
- School of Biological Sciences, University of Nebraska-Lincoln, USA
| | | | - Thomas M Petro
- Nebraska Center for Virology, University of Nebraska-Lincoln, USA; Department of Oral Biology, University of Nebraska Medical Center, USA
| | - Deborah M Brown
- School of Biological Sciences, University of Nebraska-Lincoln, USA; Nebraska Center for Virology, University of Nebraska-Lincoln, USA.
| |
Collapse
|
43
|
Ourthiague DR, Birnbaum H, Ortenlöf N, Vargas JD, Wollman R, Hoffmann A. Limited specificity of IRF3 and ISGF3 in the transcriptional innate-immune response to double-stranded RNA. J Leukoc Biol 2015; 98:119-28. [PMID: 25896227 DOI: 10.1189/jlb.4a1014-483rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/02/2015] [Indexed: 11/24/2022] Open
Abstract
The innate immune response is largely initiated by pathogen-responsive activation of the transcription factor IRF3. Among other target genes, IRF3 controls the expression of IFN-β, which triggers the activation of the transcription factor ISGF3 via the IFNAR. IRF3 and ISGF3 have been reported to control many of the same target genes and together, control the antimicrobial innate-immune program; however, their respective contributions and specificities remain unclear. Here, we used genomic technologies to characterize their specificity in terms of their physical DNA-binding and genetic function. With the use of ChiP-seq and transcriptomic measurements in WT versus ifnar(-/-) versus ifnar(-/-)irf3(-/-) macrophages responding to intracellular dsRNA, we confirmed the known ISGF3 DNA-binding motif and further specified a distinct IRF3 consensus sequence. The functional specificity of IRF3 is particularly pronounced in cytokine/chemokine regulation; yet, even in the control of IFN-β, that specificity is not absolute. By mathematically modeling IFN-β production within an abstracted tissue layer, we find that IRF3 versus ISGF3 specificity may be critical to limiting IFN-β production and ISGF3 activation, temporally and spatially, but that partial overlap in their specificity is tolerable and may enhance the effectiveness of the innate-immune response.
Collapse
Affiliation(s)
- Diana R Ourthiague
- *Signaling Systems Laboratory and Department of Chemistry and Biochemistry and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, California, USA; and Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Harry Birnbaum
- *Signaling Systems Laboratory and Department of Chemistry and Biochemistry and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, California, USA; and Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Niklas Ortenlöf
- *Signaling Systems Laboratory and Department of Chemistry and Biochemistry and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, California, USA; and Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Jesse D Vargas
- *Signaling Systems Laboratory and Department of Chemistry and Biochemistry and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, California, USA; and Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Roy Wollman
- *Signaling Systems Laboratory and Department of Chemistry and Biochemistry and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, California, USA; and Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Alexander Hoffmann
- *Signaling Systems Laboratory and Department of Chemistry and Biochemistry and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, California, USA; and Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
44
|
Rustagi A, Gale M. Innate antiviral immune signaling, viral evasion and modulation by HIV-1. J Mol Biol 2013; 426:1161-77. [PMID: 24326250 DOI: 10.1016/j.jmb.2013.12.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 02/08/2023]
Abstract
The intracellular innate antiviral response in human cells is an essential component of immunity against virus infection. As obligate intracellular parasites, all viruses must evade the actions of the host cell's innate immune response in order to replicate and persist. Innate immunity is induced when pathogen recognition receptors of the host cell sense viral products including nucleic acid as "non-self". This process induces downstream signaling through adaptor proteins to activate latent transcription factors that drive the expression of genes encoding antiviral and immune modulatory effector proteins that restrict virus replication and regulate adaptive immunity. The interferon regulatory factors (IRFs) are transcription factors that play major roles in innate immunity. In particular, IRF3 is activated in response to infection by a range of viruses including RNA viruses, DNA viruses and retroviruses. Among these viruses, human immunodeficiency virus type 1 (HIV-1) remains a major global health problem mediating chronic infection in millions of people wherein recent studies show that viral persistence is linked with the ability of the virus to dysregulate and evade the innate immune response. In this review, we discuss viral pathogen sensing, innate immune signaling pathways and effectors that respond to viral infection, the role of IRF3 in these processes and how it is regulated by pathogenic viruses. We present a contemporary overview of the interplay between HIV-1 and innate immunity, with a focus on understanding how innate immune control impacts infection outcome and disease.
Collapse
Affiliation(s)
- Arjun Rustagi
- Departments of Immunology and Global Health, University of Washington, Seattle, WA 98195-8059, USA
| | - Michael Gale
- Departments of Immunology and Global Health, University of Washington, Seattle, WA 98195-8059, USA.
| |
Collapse
|
45
|
Abstract
Rotavirus (RV) replicates efficiently in intestinal epithelial cells (IECs) in vivo despite the activation of a local host interferon (IFN) response. Previously, we demonstrated that homologous RV efficiently inhibits IFN induction in single infected and bystander villous IECs in vivo. Paradoxically, RV also induces significant type I IFN expression in the intestinal hematopoietic cell compartment in a relatively replication-independent manner. This suggests that RV replication and spread in IECs must occur despite exogenous stimulation of the STAT1-mediated IFN signaling pathway. Here we report that RV inhibits IFN-mediated STAT1 tyrosine 701 phosphorylation in human IECs in vitro and identify RV NSP1 as a direct inhibitor of the pathway. Infection of human HT29 IECs with simian (RRV) or porcine (SB1A or OSU) RV strains, which inhibit IFN induction by targeting either IFN regulatory factor 3 (IRF3) or NF-κB, respectively, resulted in similar regulation of IFN secretion. By flow cytometric analysis at early times during infection, neither RRV nor SB1A effectively inhibited the activation of Y701-STAT1 in response to exogenously added IFN. However, at later times during infection, both RV strains efficiently inhibited IFN-mediated STAT1 activation within virus-infected cells, indicating that RV encodes inhibitors of IFN signaling targeting STAT1 phosphorylation. Expression of RV NSP1 in the absence of other viral proteins resulted in blockage of exogenous IFN-mediated STAT1 phosphorylation, and this function was conserved in NSP1 from simian, bovine, and murine RV strains. Analysis of NSP1 determinants responsible for the inhibition of IFN induction and signaling pathways revealed that these determinants are encoded on discrete domains of NSP1. Finally, we observed that at later times during infection with SB1A, there was almost complete inhibition of IFN-mediated Y701-STAT1 in bystander cells staining negative for viral antigen. This property segregated with the NSP1 gene and was observed in a simian SA11 monoreassortant that encoded porcine OSU NSP1 but not in wild-type SA11 or a reassortant encoding simian RRV NSP1.
Collapse
|
46
|
Abstract
The cellular responses to infection are many, and include programmed cell death to inhibit microbial dissemination and the production and secretion of interferons (IFNs), which confer resistance to uninfected cells. In addition to the antimicrobial effects of IFNs, these cytokines have been used clinically for the treatment of various neoplasias to inhibit proliferation and stimulate apoptosis. However, the precise mechanisms of action of IFNs remain to be completely understood. One of the primary response genes induced after an infection or treatment with type I or III IFN is known as IFN-stimulated gene 54 (ISG54) or IFN-induced gene with tetratricopeptide repeats 2 (IFIT2). ISG54/IFIT2 is a member of a family of IFN-induced genes related in the sequence and structure. Expression of this protein has been found to promote cellular apoptosis by a mitochondrial pathway dependent on the action of Bcl2 proteins. ISG54/IFIT2 does not function as a monomer, and it forms complexes with itself and with the related ISG56/IFIT1 and ISG60/IFIT3 proteins to elicit complex cellular responses. The apoptotic response to ISG54/IFIT2 may contribute to other functions that have been reported, including translational regulation, inhibition of tumor colonization, and protection against a lethal viral infection.
Collapse
Affiliation(s)
- Nancy C Reich
- Department of Molecular Genetics and Microbiology, Stony Brook University , Stony Brook, NY 11794, USA.
| |
Collapse
|
47
|
Lam RA, Chwee JY, Le Bert N, Sauer M, Pogge von Strandmann E, Gasser S. Regulation of self-ligands for activating natural killer cell receptors. Ann Med 2013; 45:384-94. [PMID: 23701136 DOI: 10.3109/07853890.2013.792495] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells are able to lyse infected and tumor cells while sparing healthy cells. Recognition of diseased cells by NK cells is governed by several activating and inhibitory receptors. We review numerous pathways that have been implicated in the regulation of self-ligands for activating receptors, including NKG2D, DNAM-1, LFA-1, NKp30, NKp44, NKp46, NKp65, and NKp80 found on NK cells and some T cells. Understanding how the regulation of self-encoded ligand expression is regulated may provide novel avenues for future therapeutic approaches to infections and cancer.
Collapse
Affiliation(s)
- Runyi A Lam
- Immunology Programme, Centre for Life Sciences, Department of Microbiology, National University of Singapore 117456, Singapore
| | | | | | | | | | | |
Collapse
|
48
|
Aizawa-Yashiro T, Imaizumi T, Tsuruga K, Watanabe S, Matsumiya T, Hayakari R, Yoshida H, Satoh K, Ito E, Tanaka H. Glomerular expression of fractalkine is induced by polyinosinic-polycytidylic acid in human mesangial cells: possible involvement of fractalkine after viral infection. Pediatr Res 2013; 73:180-6. [PMID: 23168573 DOI: 10.1038/pr.2012.165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Viral infections often trigger the onset or worsening of glomerular diseases, but the details of this mechanism are unclear. Fractalkine/CX3CL1 (Fkn) is a chemokine that induces the chemotaxis and activation of cells expressing its receptor, CX3CR1. To examine the involvement of glomerular Fkn expression in the development of glomerulonephritis after viral infection, we conducted experimental studies using human mesangial cells (MCs) in culture. METHODS We examined the effect of polyinosinic-polycytidylic acid (poly IC), an authentic viral double-stranded RNA, on Fkn expression in MCs to investigate the involvement of Fkn in the antiviral reaction of MCs. Fkn mRNA and protein were analyzed using real-time PCR and enzyme-linked immunosorbent assay. Also, an immunofluorescent study to examine mesangial Fkn expression in biopsy specimens obtained from patients with glomerulonephritis was conducted. RESULTS Poly IC-induced Fkn expression in MCs in both a time- and dose-dependent manner, and RNA interference (RNAi) against Toll-like receptor 3 (TLR3) or interferon regulatory factor 3 (IRF3) inhibited poly IC-induced Fkn expression. Significant glomerular Fkn expression was observed in biopsy specimens from patients with immunoglobulin A nephropathy and purpura nephritis, with increasing severity of glomerular inflammation. CONCLUSION The TLR3/IRF3/Fkn signaling pathway may, at least in part, mediate immune and inflammatory responses against viral infection in MCs.
Collapse
|
49
|
Kamran N, Takai Y, Miyoshi J, Biswas SK, Wong JSB, Gasser S. Toll-like receptor ligands induce expression of the costimulatory molecule CD155 on antigen-presenting cells. PLoS One 2013; 8:e54406. [PMID: 23349877 PMCID: PMC3547938 DOI: 10.1371/journal.pone.0054406] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 12/13/2012] [Indexed: 12/15/2022] Open
Abstract
Genotoxic stress and RAS induce the expression of CD155, a ligand for the immune receptors DNAM-1, CD96 and TIGIT. Here we show that antigen-presenting cells upregulate CD155 expression in response to Toll-like receptor activation. Induction of CD155 by Toll-like receptors depended on MYD88, TRIF and NF-κB. In addition, IRF3, but not IRF7, modulated CD155 upregulation in response to TLR3 signals. Immunization of CD155-deficient mice with OVA and the TLR9 agonist CpG resulted in increased OVA-specific IgG2a/c titers when compared to wild type mice. Splenocytes of immunized CD155-deficient mice secreted lower levels of IL-4 and fewer IL-4 and GATA-3 expressing CD4+ T cells were present in the spleen of Cd155−/− mice. Our data suggest that CD155 regulates Th2 differentiation. Targeting of CD155 in immunization protocols using peptides may represent a promising new approach to boost protective humoral immunity in viral vaccines.
Collapse
Affiliation(s)
- Neha Kamran
- Immunology Programme, Department of Microbiology, National University of Singapore, Singapore, Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Yoshimi Takai
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jun Miyoshi
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | | | - Justin S. B. Wong
- Immunology Programme, Department of Microbiology, National University of Singapore, Singapore, Singapore
| | - Stephan Gasser
- Immunology Programme, Department of Microbiology, National University of Singapore, Singapore, Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
50
|
Neurotropic arboviruses induce interferon regulatory factor 3-mediated neuronal responses that are cytoprotective, interferon independent, and inhibited by Western equine encephalitis virus capsid. J Virol 2012. [PMID: 23192868 DOI: 10.1128/jvi.02858-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cell-intrinsic innate immune responses mediated by the transcription factor interferon regulatory factor 3 (IRF-3) are often vital for early pathogen control, and effective responses in neurons may be crucial to prevent the irreversible loss of these critical central nervous system cells after infection with neurotropic pathogens. To investigate this hypothesis, we used targeted molecular and genetic approaches with cultured neurons to study cell-intrinsic host defense pathways primarily using the neurotropic alphavirus western equine encephalitis virus (WEEV). We found that WEEV activated IRF-3-mediated neuronal innate immune pathways in a replication-dependent manner, and abrogation of IRF-3 function enhanced virus-mediated injury by WEEV and the unrelated flavivirus St. Louis encephalitis virus. Furthermore, IRF-3-dependent neuronal protection from virus-mediated cytopathology occurred independently of autocrine or paracrine type I interferon activity. Despite being partially controlled by IRF-3-dependent signals, WEEV also disrupted antiviral responses by inhibiting pattern recognition receptor pathways. This antagonist activity was mapped to the WEEV capsid gene, which disrupted signal transduction downstream of IRF-3 activation and was independent of capsid-mediated inhibition of host macromolecular synthesis. Overall, these results indicate that innate immune pathways have important cytoprotective activity in neurons and contribute to limiting injury associated with infection by neurotropic arboviruses.
Collapse
|