1
|
El-Shoura EAM, Abdelzaher LA, Mahmoud NI, Farghaly OA, Sabry M, Girgis Shahataa M, Salem EA, Saad HM, Elhussieny O, Kozman MR, Atwa AM. Combined sulforaphane and β-sitosterol mitigate olanzapine-induced metabolic disorders in rats: Insights on FOXO, PI3K/AKT, JAK/STAT3, and MAPK signaling pathways. Int Immunopharmacol 2024; 140:112904. [PMID: 39116489 DOI: 10.1016/j.intimp.2024.112904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
One of the best antipsychotics for treating schizophrenia and bipolar disorders is olanzapine (OLA). However, its use is restricted owing to unfavorable adverse effects as liver damage, dyslipidemia, and weight gain. The primary objective of the present investigation was to examine the signaling mechanisms that underlie the metabolic disruption generated by OLA. Besides, the potential protective effect of sulforaphane (SFN) and β-sitosterol (βSS) against obesity and metabolic toxicity induced by OLA were inspected as well. A total of five groups of male Wistar rats were established, including the control, OLA, SFN+OLA, βSS+OLA, and the combination + OLA groups. Hepatic histopathology, biochemical analyses, ultimate body weights, liver function, oxidative stress, and pro-inflammatory cytokines were evaluated. In addition to the relative expression of FOXO, the signaling pathways for PI3K/AKT, JAK/STAT3, and MAPK were assessed as well. All biochemical and hepatic histopathological abnormalities caused by OLA were alleviated by SFN and/or βSS. A substantial decrease in systolic blood pressure (SBP), proinflammatory cytokines, serum lipid profile parameters, hepatic MDA, TBIL, AST, and ALT were reduced through SFN or/and βSS. To sum up, the detrimental effects of OLA are mediated by alterations in the Akt/FOXO3a/ATG12, Ras/SOS2/Raf-1/MEK/ERK1/2, and Smad3,4/TGF-β signaling pathways. The administration of SFN and/or βSS has the potential to mitigate the metabolic deficit, biochemical imbalances, hepatic histological abnormalities, and the overall unfavorable consequences induced by OLA by modulating the abovementioned signaling pathways.
Collapse
Affiliation(s)
- Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nesreen I Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Omar A Farghaly
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Egypt
| | - Mostafa Sabry
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Egypt
| | - Mary Girgis Shahataa
- Department of Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa A Salem
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen ElKom, 32511, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh 51744, Egypt
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh 51744, Egypt
| | - Magy R Kozman
- Clinical Pharmacy Department, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12563, Egypt
| | - Ahmed M Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Ayen Iraqi University, Thi-Qar 64001, Iraq
| |
Collapse
|
2
|
Shagdarova B, Melnikova V, Kostenko V, Konovalova M, Zhuikov V, Varlamov V, Svirshchevskaya E. Effects of Chitosan and N-Succinyl Chitosan on Metabolic Disorders Caused by Oral Administration of Olanzapine in Mice. Biomedicines 2024; 12:2358. [PMID: 39457671 PMCID: PMC11504887 DOI: 10.3390/biomedicines12102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The issue of human mental health is gaining more and more attention nowadays. However, most mental disorders are treated with antipsychotic drugs that cause weight gain and metabolic disorders, which include olanzapine (OLZ). The search for and development of natural compounds for the prevention of obesity when taking antipsychotic drugs is an urgent task. The biopolymer chitosan (Chi) and its derivatives have lipid-lowering and anti-diabetic properties, which makes them potential therapeutic substances for use in the treatment of metabolic disorders. The purpose of this work was to analyze the effect of the natural biopolymer Chi, its derivative N-succinyl chitosan (SuChi), and Orlistat (ORL) as a control on the effects caused by the intake of OLZ in a mouse model. METHODS Mice were fed with pearl barley porridge mixed with OLZ or combinations OLZ + Chi, OLZ + SuChi, or OLZ + ORL for 2 months. The weight, lipid profile, blood chemokines, expression of genes associated with appetite regulation, and behavior of the mice were analyzed in dynamics. RESULTS For the first time, data were obtained on the effects of Chi and SuChi on metabolic changes during the co-administration of antipsychotics. Oral OLZ increased body weight, food and water intake, and glucose, triglyceride, and cholesterol levels in blood. ORL and SuChi better normalized lipid metabolism than Chi, decreasing triglyceride and cholesterol levels. OLZ decreased the production of all chemokines tested at the 4th week of treatment and increased CXCL1, CXCL13, and CCL22 chemokine levels at the 7th week. All of the supplements corrected the level of CXCL1, CXCL13, and CCL22 chemokines but did not recover suppressed chemokines. SuChi and ORL stimulated the expression of satiety associated proopiomelanocortin (POMC) and suppressed the appetite-stimulating Agouti-related protein (AgRP) genes. All supplements improved the locomotion of mice. CONCLUSIONS Taken collectively, we found that SuChi more than Chi possessed an activity close to that of ORL, preventing metabolic disorders in mice fed with OLZ. As OLZ carries positive charge and SuChi is negatively charged, we hypothesized that SuChi's protective effect can be explained by electrostatic interaction between OLZ byproducts and SuChi in the gastrointestinal tract.
Collapse
Affiliation(s)
- Balzhima Shagdarova
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.Z.); (V.V.)
| | - Viktoria Melnikova
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Valentina Kostenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (M.K.); (E.S.)
| | - Mariya Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (M.K.); (E.S.)
| | - Vsevolod Zhuikov
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.Z.); (V.V.)
| | - Valery Varlamov
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.Z.); (V.V.)
| | - Elena Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (M.K.); (E.S.)
| |
Collapse
|
3
|
Chartoumpekis DV, Chen I, Salvatore SR, Schopfer FJ, Freeman BA, Khoo NKH. Adipocyte-specific Nrf2 deletion negates nitro-oleic acid benefits on glucose tolerance in diet-induced obesity. Nitric Oxide 2024; 149:75-84. [PMID: 38879114 DOI: 10.1016/j.niox.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
Obesity is commonly linked with white adipose tissue (WAT) dysfunction, setting off inflammation and oxidative stress, both key contributors to the cardiometabolic complications associated with obesity. To improve metabolic and cardiovascular health, countering these inflammatory and oxidative signaling processes is crucial. Offering potential in this context, the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) by nitro-fatty acids (NO2-FA) promote diverse anti-inflammatory signaling and counteract oxidative stress. Additionally, we previously highlighted that nitro-oleic acid (NO2-OA) preferentially accumulates in WAT and provides protection against already established high fat diet (HFD)-mediated impaired glucose tolerance. The precise mechanism accounting for these protective effects remained largely unexplored until now. Herein, we reveal that protective effects of improved glucose tolerance by NO2-OA is absent when Nrf2 is specifically ablated in adipocytes (ANKO mice). NO2-OA treatment did not alter body weight between ANKO and littermate controls (Nrf2fl/fl) mice on both the HFD and low-fat diet (LFD). As expected, at day 76 (before NO2-OA treatment) and notably at day 125 (daily treatment of 15 mg/kg NO2-OA for 48 days), both HFD-fed Nrf2fl/fl and ANKO mice exhibited increased fat mass and reduced lean mass compared to LFD controls. However, throughout the NO2-OA treatment, no distinction was observed between Nrf2fl/fl and ANKO in the HFD-fed mice as well as in the Nrf2fl/fl mice fed a LFD. Glucose tolerance tests revealed impaired glucose tolerance in HFD-fed Nrf2fl/fl and ANKO compared to LFD-fed Nrf2fl/fl mice. Notably, NO2-OA treatment improved glucose tolerance in HFD-fed Nrf2fl/fl but did not yield the same improvement in ANKO mice at days 15, 30, and 55 of treatment. Unraveling the pathways linked to NO2-OA's protective effects in obesity-mediated impairment in glucose tolerance is pivotal within the realm of precision medicine, crucially propelling future applications and refining novel drug-based strategies.
Collapse
Affiliation(s)
- D V Chartoumpekis
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, CH-1011, Lausanne, Switzerland
| | - I Chen
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - S R Salvatore
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - F J Schopfer
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, 15261, USA
| | - B A Freeman
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - N K H Khoo
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
4
|
Wieting J, Jahn K, Eberlein CK, Bleich S, Frieling H, Deest M. Hypomethylation of the dopamine transporter (DAT) gene promoter is associated with hyperphagia-related behavior in Prader-Willi syndrome: a case-control study. Behav Brain Res 2023; 450:114494. [PMID: 37182741 DOI: 10.1016/j.bbr.2023.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Prader-Willi syndrome (PWS), a neurodevelopmental disorder based on the loss of paternally derived but maternally imprinted genes on chromosome 15q11-13, is typically associated with hyperphagia-related behavior leading to massive obesity. Recently, there has been increasing evidence for dysregulated expression patterns of genes outside the PWS locus that influence the behavioral phenotype and for alterations in the dopaminergic system associated with weight regulation in PWS. In this study, we investigated the epigenetic regulation of the promoter regions of the dopamine transporter (DAT) and dopamine receptor D2 (DRD2) genes and their association with hyperphagia-related behavior in PWS. Methylation of the DAT and DRD2 promoter regions was examined by DNA bisulfite sequencing in 32 individuals with PWS and compared with a control group matched for sex, age, and body mass index (BMI). Hyperphagia-related behavior was assessed using the Hyperphagia Questionnaire for Clinical Trials (HQ-CT). Analysis by linear mixed models revealed a significant effect of factor group on mean DAT promoter methylation rate with decreased mean methylation in PWS (7.3 ± 0.4%) compared to controls (18.8 ± 0.6%), p < 0.001. In the PWS group, we further identified effects of HQ-CT score and BMI on DAT promoter methylation. Although also statistically significantly different (8.4 ± 0.2 in PWS, 10.5 ± 0.3 in controls, p < 0.001), DRD2 promoter methylation visually appeared to be evenly distributed between groups, raising concerns regarding a biological effect. Here, we provide evidence for altered epigenetic regulation of the DAT gene in PWS, which is associated with PWS-typical hyperphagia-related behaviors.
Collapse
Affiliation(s)
- Jelte Wieting
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Kirsten Jahn
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Christian K Eberlein
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Stefan Bleich
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Helge Frieling
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Maximilian Deest
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
5
|
Seguin I, Medak KD, Shamshoum H, Hahn MK, Wright DC. Thermoneutral housing and preexisting obesity do not abolish the sexually dimorphic effects of olanzapine on weight gain in mice. Obesity (Silver Spring) 2023; 31:454-465. [PMID: 36617436 DOI: 10.1002/oby.23630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 01/10/2023]
Abstract
OBJECTIVE In contrast to what is seen clinically, male mice are resistant to antipsychotic-induced obesity. This is problematic as preclinical studies examining mechanisms of antipsychotic-induced metabolic dysfunction might be relevant to only half the population. This study sought to determine whether housing mice at thermoneutrality and under conditions of preexisting obesity, steps that have not been previously considered, would uncover a greater obesogenic effect of the antipsychotic olanzapine (OLZ). METHODS C57BL6/J mice were fed a low- or high-fat diet (HFD) for 4 weeks and then switched to a control HFD or an HFD supplemented with OLZ for 6 weeks. RESULTS Irrespective of obesity, OLZ treatment attenuated weight gain and increased energy expenditure in male mice. In females, OLZ increased food intake and potentiated weight gain in mice with preexisting obesity. CONCLUSIONS Despite taking steps to increase clinical translatability, this study did not unmask an obesogenic effect of OLZ in male mice. Interestingly, prior studies in female mice could have been underestimating the metabolic consequences of OLZ by not considering the importance of preexisting obesity. Uncovering the mechanisms conferring resistance to weight gain in males may provide clues for approaches to counter the metabolic side effects of antipsychotics clinically.
Collapse
Affiliation(s)
- Ian Seguin
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Kyle D Medak
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Hesham Shamshoum
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Margaret K Hahn
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - David C Wright
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Food and Land Systems, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Weight changes in people with early psychosis treated with oral or long-acting injectable aripiprazole. Schizophr Res 2023; 251:74-81. [PMID: 36587541 DOI: 10.1016/j.schres.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/26/2022] [Accepted: 11/15/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Weight gain remains a major problem in young people with psychosis treated with antipsychotic medication. Aripiprazole is now available in monthly long-acting injection (LAI) and daily oral tablet formulation, but information is lacking about differences in weight gain between the two formulations. We monitored for up to 24 months the weight changes associated with oral or LAI-administered aripiprazole and in a group who not prescribed any antipsychotic medication. METHODS Participants included 109 young people with early psychosis (n = 30 Oral, 41 LAI, 38 Nil antipsychotic) with a treatment completion median time of 15 months. Weight (kilogram) and body mass index (BMI) were recorded at 3 monthly intervals. Multilevel modelling analyses assessed the contribution of time and group on weight change. RESULTS Participants taking nil antipsychotics did not gain weight over time, while the two aripiprazole groups gained a combined average of 7.1 kg (SD = 5.0) or 1.9 BMI (SD = 0.4). An examination of formulation effects showed a significantly greater rate of change over time in the Oral group with a weight increase of approximately 11.0 kg (SD = 8.2) or 3.5 BMI (SD = 0.7, compared to the LAI group with a gain of 3.7 kg (SD = 2.1) or 0.8 BMI (SD = 0.1) in the LAI group. These differences could not be explained by demographic or clinical characteristics, medication dosage, or baseline weight. CONCLUSIONS While aripiprazole is generally considered relatively benign in terms of weight, it still poses a significant risk especially for people with early psychosis. However the current study suggests that the risk may be lower in those treated with LAI than with Oral formulation, consolidating the clinical utility of LAI.
Collapse
|
7
|
AlQudah M, Khalifeh M, Al-Azaizeh R, Masaadeh A, Al-Rusan OM, Haddad HK. Hyperbaric oxygen exposure alleviate metabolic side-effects of olanzapine treatment and is associated with Langerhans islet proliferation in rats. Pathol Oncol Res 2022; 28:1610752. [PMID: 36590387 PMCID: PMC9801520 DOI: 10.3389/pore.2022.1610752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Introduction: Olanzapine (OLZ) is one of the second-generation antipsychotics drugs (APDs) used to treat several psychiatric illnesses. Olanzapine treatment is often associated with many metabolic side effects in a dose dependent manner such as obesity, dyslipidemia and insulin resistance, induction of type II diabetes and acute pancreatitis in some patients. Methods: Hyperbaric Oxygen therapy (HBOT) was investigated as a tool to mitigate olanzapine metabolic side effects in rats. Thirty-six female Sprague Dawley (SD) rats were divided into 4 groups; rats on olanzapine treatment either exposed to hyperbaric oxygen therapy (HBOOLZ) or left without exposure (OLZ) then non-treated rats that either exposed to hyperbaric oxygen therapy or left without exposure (control). Rats received Hyperbaric Oxygen therapy for 35 days at 2.4 atmospheres absolute (ATA) for 2.5 h daily followed by intraperitoneal injection of olanzapine at 10 mg/kg or placebo. Results: Rats on either hyperbaric oxygen therapy or olanzapine had a significant loss in body weight. Olanzapine treatment showed a decrease in serum insulin level, triglyceride, highdensity lipoprotein (HDL) cholesterol, and lipase level but an increase in fasting blood sugar (FBS), insulin resistance index (HOMA-IR) and amylase, while rats' exposure to hyperbaric oxygen therapy reversed these effects. The Pancreatic Langerhans islets were up-regulated in both hyperbaric oxygen therapy and olanzapine treatments but the combination (HBOOLZ) doubled these islets number. Discussion: This study advocated that hyperbaric oxygen therapy can be an alternative approach to control or reverse many metabolic disorders (MDs) associatedwith olanzapine treatment. In addition, it seems that hyperbaric oxygen therapy positively affect the pancreatic Langerhans cells activity and architecture.
Collapse
Affiliation(s)
- Mohammad AlQudah
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan,*Correspondence: Mohammad AlQudah,
| | - Mohammad Khalifeh
- Department of Veterinary Basic Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Rasha Al-Azaizeh
- Department of Veterinary Basic Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Amr Masaadeh
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan,University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Omar M. Al-Rusan
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan,Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Husam K. Haddad
- Department of Pathology and Laboratory Medicine, Ministry of Health, Amman, Jordan
| |
Collapse
|
8
|
Gaziano I, Corneliussen S, Biglari N, Neuhaus R, Shen L, Sotelo-Hitschfeld T, Klemm P, Steuernagel L, De Solis AJ, Chen W, Wunderlich FT, Kloppenburg P, Brüning JC. Dopamine-inhibited POMCDrd2+ neurons in the ARC acutely regulate feeding and body temperature. JCI Insight 2022; 7:162753. [PMID: 36345942 PMCID: PMC9675440 DOI: 10.1172/jci.insight.162753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Dopamine acts on neurons in the arcuate nucleus (ARC) of the hypothalamus, which controls homeostatic feeding responses. Here we demonstrate a differential enrichment of dopamine receptor 1 (Drd1) expression in food intake-promoting agouti related peptide (AgRP)/neuropeptide Y (NPY) neurons and a large proportion of Drd2-expressing anorexigenic proopiomelanocortin (POMC) neurons. Owing to the nature of these receptors, this translates into a predominant activation of AgRP/NPY neurons upon dopamine stimulation and a larger proportion of dopamine-inhibited POMC neurons. Employing intersectional targeting of Drd2-expressing POMC neurons, we reveal that dopamine-mediated POMC neuron inhibition is Drd2 dependent and that POMCDrd2+ neurons exhibit differential expression of neuropeptide signaling mediators compared with the global POMC neuron population, which manifests in enhanced somatostatin responsiveness of POMCDrd2+ neurons. Selective chemogenetic activation of POMCDrd2+ neurons uncovered their ability to acutely suppress feeding and to preserve body temperature in fasted mice. Collectively, the present study provides the molecular and functional characterization of POMCDrd2+ neurons and aids our understanding of dopamine-dependent control of homeostatic energy-regulatory neurocircuits.
Collapse
Affiliation(s)
- Isabella Gaziano
- Neuronal Control of Metabolism group, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and
| | - Svenja Corneliussen
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and,Institute for Zoology, Faculty of Mathematics and Natural Sciences, University of Cologne, Germany
| | - Nasim Biglari
- Neuronal Control of Metabolism group, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and
| | - René Neuhaus
- Neuronal Control of Metabolism group, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and
| | - Linyan Shen
- Neuronal Control of Metabolism group, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and
| | - Tamara Sotelo-Hitschfeld
- Neuronal Control of Metabolism group, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and
| | - Paul Klemm
- Neuronal Control of Metabolism group, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and
| | - Lukas Steuernagel
- Neuronal Control of Metabolism group, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and
| | - Alain J. De Solis
- Neuronal Control of Metabolism group, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and
| | - Weiyi Chen
- Neuronal Control of Metabolism group, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and
| | - F. Thomas Wunderlich
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and,Obesity and Cancer group, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Peter Kloppenburg
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and,Institute for Zoology, Faculty of Mathematics and Natural Sciences, University of Cologne, Germany
| | - Jens C. Brüning
- Neuronal Control of Metabolism group, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and,National Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
9
|
Suh SB, Lee N, Kim J, Kim S, Jang S, Park JK, Lee K, Choi SY, Kwon HJ, Lee CH. Metformin ameliorates olanzapine-induced obesity and glucose intolerance by regulating hypothalamic inflammation and microglial activation in female mice. Front Pharmacol 2022; 13:906717. [PMID: 36313357 PMCID: PMC9596779 DOI: 10.3389/fphar.2022.906717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Olanzapine (OLZ), a widely used second-generation antipsychotic drug, is known to cause metabolic side effects, including diabetes and obesity. Interestingly, OLZ-induced metabolic side effects have been demonstrated to be more profound in females in human studies and animal models. Metformin (MET) is often used as a medication for the metabolic side effects of OLZ. However, the mechanisms underlying OLZ-induced metabolic disturbances and their treatment remain unclear. Recent evidence has suggested that hypothalamic inflammation is a key component of the pathophysiology of metabolic disorders. On this background, we conducted this study with the following three objectives: 1) to investigate whether OLZ can independently induce hypothalamic microgliosis; 2) to examine whether there are sex-dependent differences in OLZ-induced hypothalamic microgliosis; and 3) to examine whether MET affects hypothalamic microgliosis. We found that administration of OLZ for 5 days induced systemic glucose intolerance and hypothalamic microgliosis and inflammation. Of note, both hypothalamic microglial activation and systemic glucose intolerance were far more evident in female mice than in male mice. The administration of MET attenuated hypothalamic microglial activation and prevented OLZ-induced systemic glucose intolerance and hypothalamic leptin resistance. Minocycline, a tetracycline derivative that prevents microgliosis, showed similar results when centrally injected. Our findings reveal that OLZ induces metabolic disorders by causing hypothalamic inflammation and that this inflammation is alleviated by MET administration.
Collapse
Affiliation(s)
- Sang Bum Suh
- University of Ulsan College of Medicine, Seoul, South Korea
| | - Nayoung Lee
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Jaedeok Kim
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Saeha Kim
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Sooyeon Jang
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Jong Kook Park
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Keunwook Lee
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Soo Young Choi
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Hyung-Joo Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
- Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, South Korea
- *Correspondence: Chan Hee Lee,
| |
Collapse
|
10
|
Long-term effects of adolescent exposure to olanzapine in C57BL/6 J mice and the impact of dietary fish oil supplementation. Psychopharmacology (Berl) 2022; 239:3117-3131. [PMID: 35896725 DOI: 10.1007/s00213-022-06193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/13/2022] [Indexed: 11/27/2022]
Abstract
RATIONALE Second-generation antipsychotic (SGA) medications can produce abnormal weight gain and metabolic dysfunction in children, but little is known about the post-treatment consequences of adolescent SGA exposure. OBJECTIVES The objective of this study was to determine the long-term, post-treatment effects of adolescent olanzapine exposure on weight and metabolic function and whether dietary fish oil (FO) modulated any observed effects of olanzapine. METHODS Male and female mice were fed a high-fat, high-sugar (HF-HS) diet or an HF-HS diet supplemented with fish oil (HF-HS-FO) and were treated with olanzapine or vehicle for 29 days beginning on postnatal day 37. RESULTS In male mice, adolescent olanzapine treatment suppressed weight gain during and after treatment and improved metabolic function in adulthood; dietary fish oil reduced weight gain, increased expression of fatty acid oxidation genes, and decreased expression of genes associated with fatty acid synthesis and inflammation. In contrast, few effects were observed in female mice. CONCLUSIONS The current results suggest that adolescent olanzapine exposure can produce long-term alterations in weight and metabolic function in male mice and that dietary fish oil can reduce adverse effects of lifelong consumption of an HF-HS diet. Because expected adverse effects of adolescent olanzapine treatment were not observed, the potential beneficial effects of dietary fish oil for SGA-induced weight gain and metabolic dysfunction could not be evaluated.
Collapse
|
11
|
Zhou R, He M, Fan J, Li R, Zuo Y, Li B, Gao G, Sun T. The role of hypothalamic endoplasmic reticulum stress in schizophrenia and antipsychotic-induced weight gain: A narrative review. Front Neurosci 2022; 16:947295. [PMID: 36188456 PMCID: PMC9523121 DOI: 10.3389/fnins.2022.947295] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Schizophrenia (SCZ) is a serious mental illness that affects 1% of people worldwide. SCZ is associated with a higher risk of developing metabolic disorders such as obesity. Antipsychotics are the main treatment for SCZ, but their side effects include significant weight gain/obesity. Despite extensive research, the underlying mechanisms by which SCZ and antipsychotic treatment induce weight gain/obesity remain unclear. Hypothalamic endoplasmic reticulum (ER) stress is one of the most important pathways that modulates inflammation, neuronal function, and energy balance. This review aimed to investigate the role of hypothalamic ER stress in SCZ and antipsychotic-induced weight gain/obesity. Preliminary evidence indicates that SCZ is associated with reduced dopamine D2 receptor (DRD2) signaling, which significantly regulates the ER stress pathway, suggesting the importance of ER stress in SCZ and its related metabolic disorders. Antipsychotics such as olanzapine activate ER stress in hypothalamic neurons. These effects may induce decreased proopiomelanocortin (POMC) processing, increased neuropeptide Y (NPY) and agouti-related protein (AgRP) expression, autophagy, and leptin and insulin resistance, resulting in hyperphagia, decreased energy expenditure, and central inflammation, thereby causing weight gain. By activating ER stress, antipsychotics such as olanzapine activate hypothalamic astrocytes and Toll-like receptor 4 signaling, thereby causing inflammation and weight gain/obesity. Moreover, evidence suggests that antipsychotic-induced ER stress may be related to their antagonistic effects on neurotransmitter receptors such as DRD2 and the histamine H1 receptor. Taken together, ER stress inhibitors could be a potential effective intervention against SCZ and antipsychotic-induced weight gain and inflammation.
Collapse
Affiliation(s)
- Ruqin Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- *Correspondence: Meng He,
| | - Jun Fan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ruoxi Li
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Zuo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Benben Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- Guanbin Gao,
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- Taolei Sun,
| |
Collapse
|
12
|
Zapata RC, Silver A, Yoon D, Chaudry B, Libster A, McCarthy MJ, Osborn O. Antipsychotic-induced weight gain and metabolic effects show diurnal dependence and are reversible with time restricted feeding. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:70. [PMID: 36042214 PMCID: PMC9427943 DOI: 10.1038/s41537-022-00276-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/08/2022] [Indexed: 01/21/2023]
Abstract
Antipsychotic drugs (AP) are highly efficacious treatments for psychiatric disorders but are associated with significant metabolic side-effects. The circadian clock maintains metabolic homeostasis by sustaining daily rhythms in feeding, fasting and hormone regulation but how circadian rhythms interact with AP and its associated metabolic side-effects is not well-known. We hypothesized that time of AP dosing impacts the development of metabolic side-effects. Weight gain and metabolic side-effects were compared in C57Bl/6 mice and humans dosed with APs in either the morning or evening. In mice, AP dosing at the start of the light cycle/rest period (AM) resulted in significant increase in food intake and weight gain compared with equivalent dose before the onset of darkness/active period (PM). Time of AP dosing also impacted circadian gene expression, metabolic hormones and inflammatory pathways and their diurnal expression patterns. We also conducted a retrospective examination of weight and metabolic outcomes in patients who received risperidone (RIS) for the treatment of serious mental illness and observed a significant association between time of dosing and severity of RIS-induced metabolic side-effects. Time restricted feeding (TRF) has been shown in both mouse and some human studies to be an effective therapeutic intervention against obesity and metabolic disease. We demonstrate, for the first time, that TRF is an effective intervention to reduce AP-induced metabolic side effects in mice. These studies identify highly effective and translatable interventions with potential to mitigate AP-induced metabolic side effects.
Collapse
Affiliation(s)
- Rizaldy C. Zapata
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Allison Silver
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Dongmin Yoon
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Besma Chaudry
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Avraham Libster
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Michael J. McCarthy
- Psychiatry Service, VA San Diego Healthcare, San Diego, CA 92161 USA ,grid.266100.30000 0001 2107 4242Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA 92093 USA
| | - Olivia Osborn
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
13
|
Liu K, Liu J, Zou B, Li C, Zeh HJ, Kang R, Kroemer G, Huang J, Tang D. Trypsin-Mediated Sensitization to Ferroptosis Increases the Severity of Pancreatitis in Mice. Cell Mol Gastroenterol Hepatol 2021; 13:483-500. [PMID: 34562639 PMCID: PMC8688567 DOI: 10.1016/j.jcmgh.2021.09.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Pancreatitis is characterized by acinar cell death and persistent inflammation. Ferroptosis is a type of lipid peroxidation-dependent necrosis, which is negatively regulated by glutathione peroxidase 4. We studied how trypsin, a serine protease secreted by pancreatic acinar cells, affects the contribution of ferroptosis to triggering pancreatitis. METHODS In vitro, the mouse pancreatic acinar cell line 266-6 and mouse primary pancreatic acinar cells were used to investigate the effect of exogenous trypsin on ferroptosis sensitivity. Short hairpin RNAs were designed to silence gene expression, whereas a library of 1080 approved drugs was used to identify new ferroptosis inhibitors in 266-6 cells. In vivo, a Cre/LoxP system was used to generate mice with a pancreas-specific knockout of Gpx4 (Pdx1-Cre;Gpx4flox/flox mice). Acute or chronic pancreatitis was induced in these mice (Gpx4flox/flox mice served as controls) by cerulein injections or a Lieber-DeCarli alcoholic liquid diet. Pancreatic tissues, acinar cells, and serum were collected and analyzed by histology, immunoblot, quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, or immunohistochemical analyses. RESULTS Supraphysiological doses of trypsin (500 or 1000 ng/mL) alone did not trigger significant cell death in 266-6 cells and mouse primary pancreatic acinar cells, but did increase the sensitivity of these cells to ferroptosis upon treatment with cerulein, L-arginine, alcohol, erastin, or RSL3. Proteasome 26S subunit, non-adenosine triphosphatase 4-dependent lipid peroxidation caused ferroptosis in pancreatic acinar cells by promoting the proteasomal degradation of glutathione peroxidase 4. The drug screening campaign identified the antipsychotic drug olanzapine as an antioxidant inhibiting ferroptosis in pancreatic acinar cells. Mice lacking pancreatic Gpx4 developed more severe pancreatitis after cerulein infection or ethanol feeding than control mice. Conversely, olanzapine administration protected against pancreatic ferroptotic damage and experimental pancreatitis in Gpx4-deficient mice. CONCLUSIONS Trypsin-mediated sensitization to ferroptotic damage increases the severity of pancreatitis in mice, and this process can be reversed by olanzapine.
Collapse
Affiliation(s)
- Ke Liu
- Department of Ophthalmology, The 2nd Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Liu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Borong Zou
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Changfeng Li
- Department of Endoscopy Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Herbert J. Zeh
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Jun Huang
- Department of Orthopaedics, The 2nd Xiangya Hospital, Central South University, Changsha, China,Jun Huang, MD, Department of Orthopaedics, The 2nd Xiangya Hospital, Central South University, Changsha 410011, China. fax: (86) 731-85295999
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas,Correspondence Address correspondence to: Daolin Tang, MD, Department of Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390
| |
Collapse
|
14
|
Zapata RC, Zhang D, Chaudry B, Osborn O. Self-Administration of Drugs in Mouse Models of Feeding and Obesity. J Vis Exp 2021. [PMID: 34180903 DOI: 10.3791/62775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Preclinical studies in mice often rely on invasive protocols, such as injections or oral gavage, to deliver drugs. These stressful routes of administration have significant effects on important metabolic parameters including food intake and body weight. Although an attractive option to circumvent this is to compound the drug in rodent food or dissolve it in water, these approaches also have limitations as they are affected by drug stability at room temperature for extended periods of time, the drug's solubility in water, and that the dosing is highly dependent on timing of food or water intake. The constant availability of the drug also limits translational relevance on how drugs are administered to patients. To overcome these limitations, drugs can be mixed with highly palatable food, such as peanut butter, allowing mice to self-administer compounds. Mice reliably and reproducibly consume the drug/peanut butter pellet in a short time frame. This approach facilitates a delivery approach with minimal stress compared with an injection or gavage. This protocol demonstrates the approach of drug preparation, animal acclimatization to placebo delivery, and drug delivery. The implications of this approach are discussed in studies related to timing of drug administration and the circadian rhythm.
Collapse
Affiliation(s)
- Rizaldy C Zapata
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego
| | - Dinghong Zhang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego
| | - Besma Chaudry
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego;
| |
Collapse
|
15
|
Morales I, Berridge KC. 'Liking' and 'wanting' in eating and food reward: Brain mechanisms and clinical implications. Physiol Behav 2020; 227:113152. [PMID: 32846152 PMCID: PMC7655589 DOI: 10.1016/j.physbeh.2020.113152] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 01/02/2023]
Abstract
It is becoming clearer how neurobiological mechanisms generate 'liking' and 'wanting' components of food reward. Mesocorticolimbic mechanisms that enhance 'liking' include brain hedonic hotspots, which are specialized subregions that are uniquely able to causally amplify the hedonic impact of palatable tastes. Hedonic hotspots are found in nucleus accumbens medial shell, ventral pallidum, orbitofrontal cortex, insula cortex, and brainstem. In turn, a much larger mesocorticolimbic circuitry generates 'wanting' or incentive motivation to obtain and consume food rewards. Hedonic and motivational circuitry interact together and with hypothalamic homeostatic circuitry, allowing relevant physiological hunger and satiety states to modulate 'liking' and 'wanting' for food rewards. In some conditions such as drug addiction, 'wanting' is known to dramatically detach from 'liking' for the same reward, and this may also occur in over-eating disorders. Via incentive sensitization, 'wanting' selectively becomes higher, especially when triggered by reward cues when encountered in vulnerable states of stress, etc. Emerging evidence suggests that some cases of obesity and binge eating disorders may reflect an incentive-sensitization brain signature of cue hyper-reactivity, causing excessive 'wanting' to eat. Future findings on the neurobiological bases of 'liking' and 'wanting' can continue to improve understanding of both normal food reward and causes of clinical eating disorders.
Collapse
Affiliation(s)
- Ileana Morales
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, United States.
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, United States
| |
Collapse
|
16
|
Role of TRPV1/TRPV3 channels in olanzapine-induced metabolic alteration: Possible involvement in hypothalamic energy-sensing, appetite regulation, inflammation and mesolimbic pathway. Toxicol Appl Pharmacol 2020; 402:115124. [PMID: 32652086 DOI: 10.1016/j.taap.2020.115124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/30/2022]
Abstract
Atypical antipsychotics (AAPs) have the tendency of inducing severe metabolic alterations like obesity, diabetes mellitus, insulin resistance, dyslipidemia and cardiovascular complications. These alterations have been attributed to altered hypothalamic appetite regulation, energy sensing, insulin/leptin signaling, inflammatory reactions and active reward anticipation. Line of evidence suggests that transient receptor potential vanilloid type 1 and 3 (TRPV1 and TRPV3) channels are emerging targets in treatment of obesity, diabetes mellitus and could modulate feed intake. The present study was aimed to investigate the putative role TRPV1/TRPV3 in olanzapine-induced metabolic alterations in mice. Female BALB/c mice were treated with olanzapine for six weeks to induce metabolic alterations. Non-selective TRPV1/TRPV3 antagonist (ruthenium red) and selective TRPV1 (capsazepine) and TRPV3 antagonists (2,2-diphenyltetrahydrofuran or DPTHF) were used to investigate the involvement of TRPV1/TRPV3 in chronic olanzapine-induced metabolic alterations. These metabolic alterations were differentially reversed by ruthenium red and capsazepine, while DPTHF didn't show any significant effect. Olanzapine treatment also altered the mRNA expression of hypothalamic appetite-regulating and nutrient-sensing factors, inflammatory genes and TRPV1/TRPV3, which were reversed with ruthenium red and capsazepine treatment. Furthermore, olanzapine treatment also increased expression of TRPV1/TRPV3 in nucleus accumbens (NAc), TRPV3 expression in ventral tegmental area (VTA), which were reversed by the respective antagonists. However, DPTHF treatment showed reduced feed intake in olanzapine treated mice, which might be due to TRPV3 specific antagonism and reduced hedonic feed intake. In conclusion, our results suggested the putative role TRPV1 in hypothalamic dysregulations and TRPV3 in the mesolimbic pathway; both regulate feeding in olanzapine treated mice.
Collapse
|
17
|
Huang J, Hei GR, Yang Y, Liu CC, Xiao JM, Long YJ, Peng XJ, Yang Y, Zhao JP, Wu RR. Increased Appetite Plays a Key Role in Olanzapine-Induced Weight Gain in First-Episode Schizophrenia Patients. Front Pharmacol 2020; 11:739. [PMID: 32528286 PMCID: PMC7256453 DOI: 10.3389/fphar.2020.00739] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/04/2020] [Indexed: 01/10/2023] Open
Abstract
Weight gain and metabolic disturbances, potentially influenced by increased appetite, are common effects of olanzapine treatment in patients with schizophrenia. In this study, we explored the association between olanzapine-induced weight gain and metabolic effects with increased appetite. Drug-naïve, first-episode schizophrenia patients were treated with olanzapine for 12 weeks. Assessments included time to increased appetite, body weight, body mass index, biochemical indicators of blood glucose and lipids, proportion of patients who gained more than 7% or 10% of their baseline weight upon treatment conclusion, patients who developed dyslipidemia, and Positive and Negative Syndrome Scale scores. In total, 33 patients with schizophrenia receiving olanzapine were enrolled and 31 completed the study. During the 12-week olanzapine treatment, 77.4% (24/31) patients had increased appetite with 58.1% (18/31) patients having increased appetite within the first 4 weeks. The mean time for increased appetite was 20.3 days. More patients in the increased appetite group increased their initial body weight by more than 7% after 12 weeks when compared to patients with unchanged appetite (22/24 [91.7%] vs. 3/7 [42.9%], p = 0.004). Earlier increased appetite led to more weight gain during the following month. Overall, 50% of patients in the increased appetite group had dyslipidemia after 12 weeks. Our results demonstrated that olanzapine induced significantly appetite increase in first-episode patients with schizophrenia and appetite increase played a key role in olanzapine-induced weight gain and dyslipidemia. Clinical Trial Registration NCT03451734. Registered March 2, 2018 (retrospectively registered).
Collapse
Affiliation(s)
- Jing Huang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,China National Clinical Research Center on Mental Disorders, Changsha, China.,China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Gang-Rui Hei
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,China National Clinical Research Center on Mental Disorders, Changsha, China.,China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Ye Yang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,China National Clinical Research Center on Mental Disorders, Changsha, China.,China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Chen-Chen Liu
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,China National Clinical Research Center on Mental Disorders, Changsha, China.,China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Jing-Mei Xiao
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,China National Clinical Research Center on Mental Disorders, Changsha, China.,China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yu-Jun Long
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,China National Clinical Research Center on Mental Disorders, Changsha, China.,China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Xing-Jie Peng
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,China National Clinical Research Center on Mental Disorders, Changsha, China.,China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yi Yang
- Mental Health Institute, Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jing-Ping Zhao
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,China National Clinical Research Center on Mental Disorders, Changsha, China.,China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Ren-Rong Wu
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,China National Clinical Research Center on Mental Disorders, Changsha, China.,China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
18
|
Zapata RC, Osborn O. Susceptibility of male wild type mouse strains to antipsychotic-induced weight gain. Physiol Behav 2020; 220:112859. [PMID: 32156556 DOI: 10.1016/j.physbeh.2020.112859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/19/2022]
Abstract
While both men and women gain weight as a side effect of antipsychotic (AP) treatment, studies in mice have found only female mice are susceptible to weight gain. Therefore, to we set out to identify a strain of male mice that gain significant weight in response to APs which could better model AP-induced weight gain observed in humans. These studies determined that male Balb/c mice developed late onset olanzapine-induced weight gain. Patients often take APs for many years and thus understanding AP-mediated changes in food intake, energy expenditure and body weight regulation is particularly important.
Collapse
Affiliation(s)
- Rizaldy C Zapata
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
19
|
Singh R, Bansal Y, Sodhi RK, Singh DP, Bishnoi M, Kondepudi KK, Medhi B, Kuhad A. Berberine attenuated olanzapine-induced metabolic alterations in mice: Targeting transient receptor potential vanilloid type 1 and 3 channels. Life Sci 2020; 247:117442. [PMID: 32081663 DOI: 10.1016/j.lfs.2020.117442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/14/2020] [Indexed: 02/08/2023]
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) channels are emerging therapeutic targets for metabolic disorders. Berberine, which is a modulator of TRPV1, has proven antiobesity and antidiabetic potentials. The present study was aimed to investigate the protective effects of berberine in olanzapine-induced alterations in hypothalamic appetite control, inflammation and metabolic aberrations in mice targeting TRPV1 channels. Female BALB/c mice (18-23 g) were treated with olanzapine (6 mg/kg, p.o.) for six weeks to induce metabolic alterations, while berberine (100 and 200 mg/kg, p.o.) and metformin (100 mg/kg, p.o) were used as test and standard interventions respectively. Weekly assessment of feed-water intake, body temperature and body weight was done, while locomotion was measured at the end of week 1 and 6. Serum glucose and lipid profile were assessed by biochemical methods, while other serum biomarkers were assessed by ELISA. qPCR was used to quantify the mRNA expression in the hypothalamus. Olanzapine treatment significantly increased the feed intake, weight gain, adiposity index, while reduced body temperature and locomotor activity which were reversed by berberine treatment. Berberine treatment reduced serum ghrelin and leptin levels as well decrease in hypothalamic mRNA expression of orexigenic neuropeptides, inflammatory markers and ghrelin receptor in olanzapine-treated mice. Olanzapine treatment increased expression of TRPV1/TRPV3 in the hypothalamus which was significantly decreased by berberine treatment. Our results suggest that berberine, by TRPV1/TRPV3 modulation, attenuated the olanzapine-induced metabolic alterations in mice. Hence berberine supplementation in psychiatric patients could be a preventive approach to reduce the metabolic adverse effects of antipsychotics.
Collapse
Affiliation(s)
- Raghunath Singh
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Yashika Bansal
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Rupinder Kaur Sodhi
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Dhirendra Pratap Singh
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India; Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India; ICMR-National Institute of Occupational Health (NIOH), Ahmedabad 380016, India
| | - Mahendra Bishnoi
- Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India
| | - Kanthi Kiran Kondepudi
- Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Anurag Kuhad
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India.
| |
Collapse
|
20
|
Beauchemin M, Geguchadze R, Guntur AR, Nevola K, Le PT, Barlow D, Rue M, Vary CPH, Lary CW, Motyl KJ, Houseknecht KL. Exploring mechanisms of increased cardiovascular disease risk with antipsychotic medications: Risperidone alters the cardiac proteomic signature in mice. Pharmacol Res 2019; 152:104589. [PMID: 31874253 DOI: 10.1016/j.phrs.2019.104589] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/29/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Atypical antipsychotic (AA) medications including risperidone (RIS) and olanzapine (OLAN) are FDA approved for the treatment of psychiatric disorders including schizophrenia, bipolar disorder and depression. Clinical side effects of AA medications include obesity, insulin resistance, dyslipidemia, hypertension and increased cardiovascular disease risk. Despite the known pharmacology of these AA medications, the mechanisms contributing to adverse metabolic side-effects are not well understood. To evaluate drug-associated effects on the heart, we assessed changes in the cardiac proteomic signature in mice administered for 4 weeks with clinically relevant exposure of RIS or OLAN. Using proteomic and gene enrichment analysis, we identified differentially expressed (DE) proteins in both RIS- and OLAN-treated mouse hearts (p < 0.05), including proteins comprising mitochondrial respiratory complex I and pathways involved in mitochondrial function and oxidative phosphorylation. A subset of DE proteins identified were further validated by both western blotting and quantitative real-time PCR. Histological evaluation of hearts indicated that AA-associated aberrant cardiac gene expression occurs prior to the onset of gross pathomorphological changes. Additionally, RIS treatment altered cardiac mitochondrial oxygen consumption and whole body energy expenditure. Our study provides insight into the mechanisms underlying increased patient risk for adverse cardiac outcomes with chronic treatment of AA medications.
Collapse
Affiliation(s)
- Megan Beauchemin
- College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Ramaz Geguchadze
- College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Anyonya R Guntur
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Kathleen Nevola
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States; Sackler School for Graduate Biomedical Research, Tufts University, Boston, MA, United States; Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME, United States
| | - Phuong T Le
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Deborah Barlow
- College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Megan Rue
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Calvin P H Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Christine W Lary
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME, United States
| | - Katherine J Motyl
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Karen L Houseknecht
- College of Osteopathic Medicine, University of New England, Biddeford, ME, United States.
| |
Collapse
|
21
|
Cunningham JI, Eyerman DJ, Todtenkopf MS, Dean RL, Deaver DR, Sanchez C, Namchuk M. Samidorphan mitigates olanzapine-induced weight gain and metabolic dysfunction in rats and non-human primates. J Psychopharmacol 2019; 33:1303-1316. [PMID: 31294646 PMCID: PMC6764014 DOI: 10.1177/0269881119856850] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Olanzapine, regarded as one of the most efficacious antipsychotic medications for the treatment of schizophrenia, is associated with a high risk of weight gain and metabolic dysfunction. ALKS 3831, a clinical candidate for treatment of schizophrenia, is a combination of olanzapine and samidorphan, an opioid receptor antagonist. The addition of samidorphan is intended to mitigate weight gain and the metabolic dysregulation associated with the use of olanzapine. METHODS Non-clinical studies were conducted to assess the metabolic effects of olanzapine and samidorphan alone and in combination at clinically relevant exposure levels. RESULTS Chronic olanzapine administration in male and female rats shifted body composition by increasing adipose mass, which was accompanied by an increase in the rate of weight gain in female rats. Co-administration of samidorphan normalized body composition in both sexes and attenuated weight gain in female rats. In hyperinsulinemic euglycemic clamp experiments conducted prior to measurable changes in weight and/or body composition, olanzapine decreased hepatic insulin sensitivity and glucose uptake in muscle while increasing uptake in adipose tissue. Samidorphan appeared to normalize glucose utilization in both tissues, but did not restore hepatic insulin sensitivity. In subsequent studies, samidorphan normalized olanzapine-induced decreases in whole-body glucose clearance following bolus insulin administration. Results from experiments in female monkeys paralleled the effects in rats. CONCLUSIONS Olanzapine administration increased weight gain and adiposity, both of which were attenuated by samidorphan. Furthermore, the combination of olanzapine and samidorphan prevented olanzapine-induced insulin insensitivity. Collectively, these data indicate that samidorphan mitigates several metabolic abnormalities associated with olanzapine in both the presence and the absence of weight gain.
Collapse
|
22
|
Singh R, Bansal Y, Sodhi RK, Saroj P, Medhi B, Kuhad A. Modeling of antipsychotic-induced metabolic alterations in mice: An experimental approach precluding psychosis as a predisposing factor. Toxicol Appl Pharmacol 2019; 378:114643. [DOI: 10.1016/j.taap.2019.114643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023]
|
23
|
Shah R, Subhan F, Sultan SM, Haq M, Ahmad H, Khan QR, Ali G, Ullah S, Ullah I. Metabolic dysregulation in early onset psychiatric disorder before and after exposure to antipsychotic drugs. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Rehmat Shah
- University of Peshawar, Pakistan; Health Department, Pakistan
| | | | | | - Matiul Haq
- , Institute of Radiotherapy and Nuclear Medicine, Pakistan
| | | | | | | | | | | |
Collapse
|
24
|
Perez-Gomez A, Carretero M, Weber N, Peterka V, To A, Titova V, Solis G, Osborn O, Petrascheck M. A phenotypic Caenorhabditis elegans screen identifies a selective suppressor of antipsychotic-induced hyperphagia. Nat Commun 2018; 9:5272. [PMID: 30532051 PMCID: PMC6288085 DOI: 10.1038/s41467-018-07684-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022] Open
Abstract
Antipsychotic (AP) drugs are used to treat psychiatric disorders but are associated with significant weight gain and metabolic disease. Increased food intake (hyperphagia) appears to be a driving force by which APs induce weight gain but the mechanisms are poorly understood. Here we report that administration of APs to C. elegans induces hyperphagia by a mechanism that is genetically distinct from basal food intake. We exploit this finding to screen for adjuvant drugs that suppress AP-induced hyperphagia in C. elegans and mice. In mice AP-induced hyperphagia is associated with a unique hypothalamic gene expression signature that is abrogated by adjuvant drug treatment. Genetic analysis of this signature using C. elegans identifies two transcription factors, nhr-25/Nr5a2 and nfyb-1/NFYB to be required for AP-induced hyperphagia. Our study reveals that AP-induced hyperphagia can be selectively suppressed without affecting basal food intake allowing for novel drug discovery strategies to combat AP-induced metabolic side effects.
Collapse
Affiliation(s)
- Anabel Perez-Gomez
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Maria Carretero
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Natalie Weber
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Veronika Peterka
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Alan To
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Viktoriya Titova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Gregory Solis
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Olivia Osborn
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Michael Petrascheck
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
25
|
Evans MC, Kumar NS, Inglis MA, Anderson GM. Leptin and insulin do not exert redundant control of metabolic or emotive function via dopamine neurons. Horm Behav 2018; 106:93-104. [PMID: 30292429 DOI: 10.1016/j.yhbeh.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 11/16/2022]
Abstract
Leptin and insulin's hunger-suppressing and activity-promoting actions on hypothalamic neurons are well characterized, yet the mechanisms by which they modulate the midbrain dopamine system to influence energy balance remain less clear. A subset of midbrain dopamine neurons express receptors for leptin (Lepr) and insulin (Insr). Leptin-dopamine signaling reduces running reward and homecage activity. However, dopamine-specific deletion of Lepr does not affect body weight or food intake in mice. We hypothesized insulin-dopamine signaling might compensate for disrupted leptin-dopamine signaling. To investigate the degree to which insulin and leptin exert overlapping (i.e. redundant) versus discrete control over dopamine neurons, we generated transgenic male and female mice exhibiting dopamine-specific deletion of either Lepr (Lepr KO), Insr (Insr KO) or both Lepr and Insr (Dbl KO) and assessed their feeding behavior, voluntary activity, and energy expenditure compared to control mice. No differences in body weight, daily food intake, energy expenditure or hyperphagic feeding of palatable chow were observed between Lepr, Insr or Dbl KO mice and control mice. However, consistent with previous findings, Lepr KO (but not Insr or Dbl KO) male mice exhibited significantly increased running wheel activity compared to controls. These data demonstrate that insulin and leptin do not exert redundant control of dopamine neuron-mediated modulation of energy balance. Furthermore, our results indicate neither leptin nor insulin plays a critical role in the modulation of dopamine neurons regarding hedonic feeding behavior or anxiety-related behavior.
Collapse
Affiliation(s)
- Maggie C Evans
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand.
| | - Nivesh S Kumar
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Megan A Inglis
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Greg M Anderson
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| |
Collapse
|
26
|
Joshi RS, Panicker MM. Identifying the In Vivo Cellular Correlates of Antipsychotic Drugs. eNeuro 2018; 5:ENEURO.0220-18.2018. [PMID: 30713996 PMCID: PMC6354787 DOI: 10.1523/eneuro.0220-18.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/26/2018] [Accepted: 09/01/2018] [Indexed: 11/21/2022] Open
Abstract
GPCRs such as 5-HT2A and D2 are implicated in the therapeutic and the side effects of antipsychotics. However, the pattern of brain activity that leads to the behavioral effects of antipsychotics is poorly understood. To address this question, we used the transgenic 'FosTRAP' mice (Mus musculus), where a fluorescent reporter marks the cells responsive to the stimulus of interest. Here, the stimulus was an administration of various antipsychotic drugs. In case of typical antipsychotics such as Haloperidol, the c-fos active cells were predominantly found in the striatum, whereas in case of the atypical antipsychotics (Clozapine and Olanzapine), c-fos-induced cells were more numerous in the cortical regions, e.g., orbital cortex, piriform cortex. Curiously, we also observed ependymal cells to be a novel cellular target of atypical antipsychotics. 5-HT2A is considered to be a major target for atypical antipsychotics. Therefore, we bred 'FosTRAP' mice with 5-HT2A knock-out (KO) mice and tested their response to the prototype of atypical antipsychotics, Clozapine. Interestingly, the absence of 5-HT2A did not significantly affect the number of c-fos-induced cells in the cortical regions. However, the ependymal cells showed a dramatically reduced response to Clozapine in the absence of 5-HT2A. In summary, the TRAP system has allowed us to identify various region-specific activity induced by antipsychotics and novel cellular targets of the antipsychotics. These results serve as a "proof of principle" study that can be extended to explore the biochemical and physiological changes brought about by antipsychotics and specifically identify antipsychotic-responsive cells in the live tissue.
Collapse
Affiliation(s)
- Radhika S. Joshi
- National Centre for Biological Sciences (Tata Institute of Fundamental Research), Bengaluru 560065, India
| | - Mitradas M. Panicker
- National Centre for Biological Sciences (Tata Institute of Fundamental Research), Bengaluru 560065, India
| |
Collapse
|
27
|
Rice BA, Eaton SE, Prendergast M, Akins CK. A glucocorticoid receptor antagonist reduces sign-tracking behavior in male Japanese quail. Exp Clin Psychopharmacol 2018; 26:329-334. [PMID: 29878800 PMCID: PMC6072577 DOI: 10.1037/pha0000195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Addiction is characterized as a chronic debilitating disease. One devastating feature of addiction is the susceptibility of relapse (40-60%) after stretches of abstinence. One theory that may account for relapse suggests that drug cues (e.g., paraphernalia) may increase stress hormones, and this may prompt relapse. Repeatedly pairing a neutral cue with a reward is commonly utilized to measure what subjects learn about a cue that is predictive of reward. Research has shown that animals that attend to a cue more than to the reward (sign trackers) may be more vulnerable to drug addiction. Additionally, research has shown that sign tracking is associated with an increase in corticosterone, a primary stress hormone. PT150 is a novel glucocorticoid receptor antagonist that moderates the release of corticosterone. In the current experiment, it was hypothesized that subjects given repeated administration of PT150 would reduce sign tracking compared to subjects given placebo. Time spent (in seconds) near a cue that predicts reward (conditional stimulus) served as a measure of sign tracking, and PT150 or placebo was administered following sign tracking. An independent-samples t test revealed that subjects that received PT150 had reduced time spent near the conditioned stimulus compared to controls. Given the devastating effects of drug addiction, identification of a potential pharmacological intervention in the reduction of relapse would be of great value. Therefore, future research is needed to validate the use of PT150 in reducing behaviors associated with drug addiction. (PsycINFO Database Record
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Obesity in the United States has been on a constant rise since the Center for Disease Control and Prevention (CDC) began tracking it over 50 years ago. Despite focused attention on this epidemic, pharmacological treatments aimed at obesity are lacking. Here, we briefly give perspective on the central and peripheral mechanisms underlying feeding behaviors and describe the existing pharmacological treatments for obesity. With this lens, I suggest future targets for the treatment of obesity. RECENT FINDINGS Given the development of genetic and molecular tools, understanding of how energy expenditure is modulated is becoming more nuanced. There is growing evidence for a link between obesity and addiction, which should be utilized in the development of new pharmacological treatments. SUMMARY More focus is needed on identifying targets for anti-obesity pharmacology. In doing so, research should include intensive investigation of the brain's reward circuitry.
Collapse
|
29
|
Overlapping Brain Circuits for Homeostatic and Hedonic Feeding. Cell Metab 2018; 27:42-56. [PMID: 29107504 PMCID: PMC5762260 DOI: 10.1016/j.cmet.2017.09.021] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/11/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
Abstract
Central regulation of food intake is a key mechanism contributing to energy homeostasis. Many neural circuits that are thought to orchestrate feeding behavior overlap with the brain's reward circuitry both anatomically and functionally. Manipulation of numerous neural pathways can simultaneously influence food intake and reward. Two key systems underlying these processes-those controlling homeostatic and hedonic feeding-are often treated as independent. Homeostatic feeding is necessary for basic metabolic processes and survival, while hedonic feeding is driven by sensory perception or pleasure. Despite this distinction, their functional and anatomical overlap implies considerable interaction that is often overlooked. Here, we argue that the neurocircuits controlling homeostatic feeding and hedonic feeding are not completely dissociable given the current data and urge researchers to assess behaviors extending beyond food intake in investigations of the neural control of feeding.
Collapse
|
30
|
Siafis S, Tzachanis D, Samara M, Papazisis G. Antipsychotic Drugs: From Receptor-binding Profiles to Metabolic Side Effects. Curr Neuropharmacol 2018; 16:1210-1223. [PMID: 28676017 PMCID: PMC6187748 DOI: 10.2174/1570159x15666170630163616] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/25/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Antipsychotic-induced metabolic side effects are major concerns in psychopharmacology and clinical psychiatry. Their pathogenetic mechanisms are still not elucidated. METHODS Herein, we review the impact of neurotransmitters on metabolic regulation, providing insights into antipsychotic-induced metabolic side effects. RESULTS Antipsychotic drugs seem to interfere with feeding behaviors and energy balance, processes that control metabolic regulation. Reward and energy balance centers in central nervous system constitute the central level of metabolic regulation. The peripheral level consists of skeletal muscles, the liver, the pancreas, the adipose tissue and neuroendocrine connections. Neurotransmitter receptors have crucial roles in metabolic regulation and they are also targets of antipsychotic drugs. Interaction of antipsychotics with neurotransmitters could have both protective and harmful effects on metabolism. CONCLUSION Emerging evidence suggests that antipsychotics have different liabilities to induce obesity, diabetes and dyslipidemia. However this diversity cannot be explained merely by drugs'pharmacodynamic profiles, highlighting the need for further research.
Collapse
Affiliation(s)
| | | | | | - Georgios Papazisis
- Address correspondence to this author at the Department of Clinical
Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece; Tel/Fax: +30 2310 999323; E-mail:
| |
Collapse
|
31
|
Lazzari P, Serra V, Marcello S, Pira M, Mastinu A. Metabolic side effects induced by olanzapine treatment are neutralized by CB1 receptor antagonist compounds co-administration in female rats. Eur Neuropsychopharmacol 2017; 27:667-678. [PMID: 28377074 DOI: 10.1016/j.euroneuro.2017.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 03/05/2017] [Accepted: 03/23/2017] [Indexed: 12/24/2022]
Abstract
Weight gain is an important side effect of most atypical antipsychotic drugs such as olanzapine. Moreover, although many animal models with metabolic side effects have been well defined, the interaction with other pathways has to be considered. The endocannabinoid system and the CB1 receptor (CB1R) are among the most promising central and peripheral targets involved in weight and energy balance. In this study we developed a rat model based 15-days treatment with olanzapine that shows weight gain and an alteration of the blood parameters involved in the regulation of energy balance and glucose metabolism. Consequently, we analysed whether, and by which mechanism, a co-treatment with the novel CB1R neutral antagonist NESS06SM, could attenuate the adverse metabolic effects of olanzapine compared to the reference CB1R inverse agonist rimonabant. Our results showed alterations of the cannabinoid markers in the nucleus accumbens and of orexigenic/anorexigenic markers in the hypothalamus of female rats treated with olanzapine. These molecular modifications could explain the excessive food intake and the resulting weight gain. Moreover, we confirmed that a co-treatment with CB1R antagonist/inverse agonist compounds decreased food intake and weight increment and restored all blood parameters, without altering the positive effects of olanzapine on behaviour. Furthermore, rimonabant and NESS06SM restored the metabolic enzymes in the liver and fat tissue altered by olanzapine. Therefore, CB1 receptor antagonist/inverse agonist compounds could be good candidate agents for the treatment of weight gain induced by olanzapine.
Collapse
Affiliation(s)
- P Lazzari
- Kemotech Srl, Edificio 3, Località Piscinamanna, 09010 Pula, CA, Italy
| | - V Serra
- Institute of Translational Pharmacology, UOS of Cagliari, National Research Council, Scientific and Technological Park of Sardinia - Polaris, Pula, CA, Italy
| | - S Marcello
- Institute of Translational Pharmacology, UOS of Cagliari, National Research Council, Scientific and Technological Park of Sardinia - Polaris, Pula, CA, Italy
| | - M Pira
- Kemotech Srl, Edificio 3, Località Piscinamanna, 09010 Pula, CA, Italy
| | - A Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; Institute of Translational Pharmacology, UOS of Cagliari, National Research Council, Scientific and Technological Park of Sardinia - Polaris, Pula, CA, Italy.
| |
Collapse
|
32
|
Palavicino-Maggio CB, Kuzhikandathil EV. Dietary Fructose and GLUT5 Transporter Activity Contribute to Antipsychotic-Induced Weight Gain. Schizophr Bull 2016; 42:1270-9. [PMID: 27056716 PMCID: PMC4988743 DOI: 10.1093/schbul/sbw037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Receptors for antipsychotics in the hypothalamus contribute to antipsychotics-induced weight gain; however, many of these receptors are also expressed in the intestine. The role of these intestinally-expressed receptors, and their potential modulation of nutrient absorption, have not been investigated in the context of antipsychotics-induced weight gain. Here we tested the effect of dietary fructose and intestinal fructose uptake on clozapine-induced weight gain in mice. Weight gain was determined in wild type mice and mice lacking the GLUT5 fructose transporter that were "orally-administered" 20mg/kg clozapine for 28 days. To assess the role of dietary fructose, clozapine-treated mice were fed controlled diets with different levels of fructose. Effect of clozapine treatment on intestinal fructose transport activity and expression levels of various receptors that bind clozapine, as well as several genes involved in gluconeogenesis and lipogenesis were measured using real-time RT-PCR and western blotting. Oral administration of clozapine significantly increased body weight in wild type C57BL/6 mice but not in GLUT5 null mice. The clozapine-induced weight gain was proportional to the percentage of fructose in the diet. Clozapine-treated mice increased intestinal fructose uptake without changing the intestinal expression level of GLUT5. Clozapine-treated mice expressed significantly higher levels of intestinal H1 histamine receptor in the wild type but not GLUT5 null mice. Clozapine also increased the intestinal expression of fructokinase and several genes involved in gluconeogenesis and lipogenesis. Our results suggest that increased intestinal absorption and metabolism of fructose contributes to clozapine-induced weight gain. Eliminating dietary fructose might prevent antipsychotics-induced weight gain.
Collapse
Affiliation(s)
| | - Eldo V Kuzhikandathil
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ
| |
Collapse
|
33
|
Atypical antipsychotics and effects on feeding: from mice to men. Psychopharmacology (Berl) 2016; 233:2629-53. [PMID: 27251130 DOI: 10.1007/s00213-016-4324-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/15/2016] [Indexed: 12/22/2022]
Abstract
RATIONALE So-called atypical antipsychotics (AAPs) are associated with varying levels of weight gain and associated metabolic disturbances, which in patients with serious mental illness (SMI) have been linked to non-compliance and poor functional outcomes. Mechanisms underlying AAP-induced metabolic abnormalities are only partially understood. Antipsychotic-induced weight gain may occur as a result of increases in food intake and/or changes in feeding. OBJECTIVE In this review, we examine the available human and preclinical literature addressing AAP-related changes in feeding behavior, to determine whether changes in appetite and perturbations in regulation of food intake could be contributing factors to antipsychotic-induced weight gain. RESULTS In general, human studies point to disruption by AAPs of feeding behaviors and food consumption. In rodents, increases in cumulative food intake are mainly observed in females; however, changes in feeding microstructure or motivational aspects of food intake appear to occur independent of sex. CONCLUSIONS The findings from this review indicate that the varying levels of AAP-related weight gain reflect changes in both appetite and feeding behaviors, which differ by type of AAP. However, inconsistencies exist among the studies (both human and rodent) that may reflect considerable differences in study design and methodology. Future studies examining underlying mechanisms of antipsychotic-induced weight gain are recommended in order to develop strategies addressing the serious metabolic side effect of AAPs.
Collapse
|
34
|
Williamson K, Kilner K, Clibbens N. A comparison of the nutrient intake of a community-dwelling first-episode psychosis cohort, aged 19-64 years, with data from the UK population. J Nutr Sci 2015; 4:e28. [PMID: 26495120 PMCID: PMC4611081 DOI: 10.1017/jns.2015.18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/21/2014] [Accepted: 06/11/2015] [Indexed: 12/20/2022] Open
Abstract
Psychosis increases the risk of CVD, obesity and type 2 diabetes and reduces life expectancy. There are limited data comparing the dietary habits of community-dwelling first-episode psychosis sufferers - with autonomy over diet - and the general population. The data represent the retrospective evaluation of nutritional data collected between 2007 and 2013 from 143 individuals from the UK population receiving treatment for first-episode psychosis. Differences in mean nutrient intakes between the study cohort and the national sample were tested for statistical significance using independent t tests, incorporating Satterthwaite's correction where required. Mean total energy intake was lower for males (P = 0·049) and higher for females (P = 0·016) in the cohort than in the corresponding subgroups of the national sample. Females in the study cohort consumed 12·9 (95 % CI 4·3, 21·5) g more total fat per d, whilst males consumed 7·7 (95 % CI 0·5, 14·9) g less protein per d than the national sample. Males in the study also showed significantly lower mean intakes than nationally of folate, Fe, Se, vitamin D and Zn, but not vitamin C. The proportion of individuals not meeting the lower reference nutrient intakes, particularly for Se (males 54·0 % and females 57·1 %) and for Fe amongst females (29·6 %), is cause for concern regarding potentially severe deficiencies. Further exploration of dietary habits within first-episode psychosis is warranted to assess whether individuals make beneficial dietary changes for their physical and mental health and wellbeing following dietary change intervention. It would also be pertinent to assess any correlation between diet and mental health symptomology.
Collapse
Affiliation(s)
- Kevin Williamson
- Rotherham Early Intervention in Psychosis Service, Rotherham Doncaster and South Humber NHS Foundation Trust, 144A Aughton Road, Swallownest Court, Swallownest, Sheffield S26 4TH, UK
| | - Karen Kilner
- Sheffield Hallam University, P102 Montgomery House, 32 Collegiate Crescent, Sheffield S10 2BP, UK
| | - Nicola Clibbens
- Sheffield Hallam University, 36 Collegiate Crescent, Sheffield S10 2BP, UK
| |
Collapse
|
35
|
Shah R, Subhan F, Ali G, Ullah I, Ullah S, Shahid M, Ahmad N, Fawad K. Olanzapine induced biochemical and histopathological changes after its chronic administration in rats. Saudi Pharm J 2015; 24:698-704. [PMID: 27829813 PMCID: PMC5094436 DOI: 10.1016/j.jsps.2015.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/12/2015] [Indexed: 02/08/2023] Open
Abstract
Objective: Olanzapine is a second generation antipsychotic acting mainly as a dopamine D2 and serotonine 5-HT2 receptors antagonist prescribed in the treatment of schizophrenia and various other psychiatric illnesses. Even though olanzapine is widely used in psychiatry, its effects on the architecture of pancreas, liver and kidneys are little known. The histology of pancreas especially has never been studied. For these reasons, the current study was designed to elucidate the toxic effects of chronic administration of olanzapine on pancreas, liver and kidneys and the enzymes released by these tissues in an escalating dose manner. Methods: Fourteen male rats were divided into two groups equally, the olanzapine group and the controls. Olanzapine was administered in a dose of 5 mg/kg/d for the first eight weeks, 10 mg/kg/d for next four weeks and 15 mg/kg/d through the last two week period of 14 weeks experiment. The controls received acidified saline only. Both the groups received restricted diet (20 g/12 h). The body weight and level of random blood sugar (RBS) were measured on a weekly basis. The levels of lipase, amylase, alanine transaminase (ALT) and aspartate transaminase (AST) were determined terminally. At the end of the experiment, the tissues were dissected out for histopathological evaluation. Results: Significant loss in body weight, change in the level of random blood sugar (∗∗P < 0.05, ∗∗∗P < 0.001) and significant rise in amylase and lipase levels (∗P < 0.05, ∗∗∗P < 0.001) were observed. However, the same treatment has shown no significant change in the levels of alanine and aspartate transaminases (P > 0.05). The pancreas has shown derangement of beta cells and fibrotic growth. A mild to moderate focal increase in glomerular cellularity, cellular proliferation and glomerular capsules with negligible basement membranes were observed in the kidneys. No changes were observed in the architecture of the liver. Conclusion: The findings of this study indicated that the incidence of adverse effects associated with olanzapine could be prevented/alleviated/delayed by allowing restricted diet.
Collapse
Affiliation(s)
- Rehmat Shah
- Department of Pharmacy, University of Peshawar, Peshawar, KP, Pakistan; Department of Pharmacy, Medical Teaching Institutions, Khyber Teaching Hospital, Peshawar, KP, Pakistan
| | - Fazal Subhan
- Department of Pharmacy, University of Peshawar, Peshawar, KP, Pakistan
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, KP, Pakistan
| | - Ihsan Ullah
- Department of Pharmacy, University of Swabi, Swabi, KP, Pakistan
| | - Sami Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, KP, Pakistan
| | - Muhammad Shahid
- Department of Pharmacy, University of Peshawar, Peshawar, KP, Pakistan; Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, KP, Pakistan
| | - Nisar Ahmad
- Department of Pharmacy, University of Peshawar, Peshawar, KP, Pakistan
| | - Khwaja Fawad
- Department of Pharmacy, University of Peshawar, Peshawar, KP, Pakistan
| |
Collapse
|
36
|
Kursungoz C, Ak M, Yanik T. Effects of risperidone treatment on the expression of hypothalamic neuropeptide in appetite regulation in Wistar rats. Brain Res 2015; 1596:146-55. [DOI: 10.1016/j.brainres.2014.10.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/06/2014] [Accepted: 10/30/2014] [Indexed: 12/30/2022]
|
37
|
Gonzales C, Zaleska M, Riddell D, Atchison K, Robshaw A, Zhou H, Sukoff Rizzo S. Alternative method of oral administration by peanut butter pellet formulation results in target engagement of BACE1 and attenuation of gavage-induced stress responses in mice. Pharmacol Biochem Behav 2014; 126:28-35. [DOI: 10.1016/j.pbb.2014.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/16/2014] [Accepted: 08/09/2014] [Indexed: 01/30/2023]
|
38
|
Ballon JS, Pajvani U, Freyberg Z, Leibel RL, Lieberman JA. Molecular pathophysiology of metabolic effects of antipsychotic medications. Trends Endocrinol Metab 2014; 25:593-600. [PMID: 25190097 DOI: 10.1016/j.tem.2014.07.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 11/23/2022]
Abstract
Antipsychotic medications are associated with major metabolic changes that contribute to medical morbidity and a significantly shortened life span. The mechanisms for these changes provide us with a broader understanding of central nervous and peripheral organ-mediated metabolic regulation. This paper reviews an extensive literature regarding putative mechanisms for effects of antipsychotic medications on weight regulation and glucose homeostasis as well as potential inherent metabolic risks of schizophrenia itself. We present a model suggesting that peripheral antipsychotic targets play a critical role in drug-induced weight gain and diabetes. We propose that a better understanding of these mechanisms will be crucial to developing improved treatments for serious mental illnesses as well as providing potentially novel therapeutic targets of metabolic disorders including diabetes.
Collapse
Affiliation(s)
- Jacob S Ballon
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Utpal Pajvani
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Institute, New York, NY 10032, USA
| | - Zachary Freyberg
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Rudolph L Leibel
- Naomi Berrie Diabetes Institute, New York, NY 10032, USA; Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jeffrey A Lieberman
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|
39
|
Phosphorylation of hypothalamic AMPK on serine(485/491) related to sustained weight loss by alpha-lipoic acid in mice treated with olanzapine. Psychopharmacology (Berl) 2014; 231:4059-69. [PMID: 24733236 DOI: 10.1007/s00213-014-3540-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/14/2014] [Indexed: 12/17/2022]
Abstract
RATIONALE Alpha-lipoic acid (ALA) was shown to suppress atypical antipsychotic drug (AAPD)-induced weight gain. However, its mode of action has remained unidentified. OBJECTIVE We aimed to identify mechanisms underlying anti-obesity effects of ALA in mice treated with olanzapine. METHODS We compared body weight and food intake among vehicle-, olanzapine-, and olanzapine plus ALA-treated mice, and measured hypothalamic AMP-activated protein kinase (AMPK) activity by detecting levels of Thr(172) and Ser(485/491) phosphorylation, which indicate activation and inhibition of AMPK, respectively. RESULTS Body weights were increased by olanzapine in parallel with increased levels of Thr(172) phosphorylation of hypothalamic AMPK. Initially increased rate of weight gain was diminished as Thr(172) phosphorylation levels were decreased to control levels after 10 days of olanzapine treatment. ALA successfully not only prevented olanzapine-induced weight gain but also induced additional weight loss even relative to control levels throughout the treatment period. During the initial stage, ALA's action was indicated by both suppression of olanzapine-induced Thr(172) phosphorylation and an increase in Ser(485/491) phosphorylation levels. However, in the later stage when no more increases in Thr(172) phosphorylation and weight gain by olanzapine were observed, ALA's action was only indicated by increased levels of Ser(485/491) phosphorylation. CONCLUSIONS Our data suggest that anti-obesity effects of ALA may be related to modulation of both Ser(485/491) phosphorylation and Thr(172) phosphorylation of hypothalamic AMPK, while olanzapine-induced weight gain may be only associated with increase in Thr(172) phosphorylation. This might be an important mechanistic clue for the future development of anti-obesity drugs beyond control of AAPD-induced weight gain.
Collapse
|
40
|
Treatment with the antipsychotic agent, risperidone, reduces disease severity in experimental autoimmune encephalomyelitis. PLoS One 2014; 9:e104430. [PMID: 25116424 PMCID: PMC4130540 DOI: 10.1371/journal.pone.0104430] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/09/2014] [Indexed: 01/11/2023] Open
Abstract
Recent studies have demonstrated that atypical antipsychotic agents, which are known to antagonize dopamine D2 and serotonin 5-HT2a receptors, have immunomodulatory properties. Given the potential of these drugs to modulate the immune system both peripherally and within the central nervous system, we investigated the ability of the atypical anti-psychotic agent, risperidone, to modify disease in the animal model of multiple sclerosis (MS)4, experimental autoimune encephalomyelitis (EAE). We found that chronic oral administration of risperidone dose-dependently reduced the severity of disease and decreased both the size and number of spinal cord lesions. Furthermore, risperidone treatment substantially reduced antigen-specific interleukin (IL)-17a, IL-2, and IL-4 but not interferon (IFN)-γ production by splenocytes at peak disease and using an in vitro model, we show that treatment of macrophages with risperidone alters their ability to bias naïve T cells. Another atypical antipsychotic agent, clozapine, showed a similar ability to modify macrophages in vitro and to reduce disease in the EAE model but this effect was not due to antagonism of the type 1 or type 2 dopamine receptors alone. Finally, we found that while risperidone treatment had little effect on the in vivo activation of splenic macrophages during EAE, it significantly reduced the activation of microglia and macrophages in the central nervous system. Together these studies indicate that atypical antipsychotic agents like risperidone are effective immunomodulatory agents with the potential to treat immune-mediated diseases such as MS.
Collapse
|
41
|
Dhurandhar EJ, Keith SW. The aetiology of obesity beyond eating more and exercising less. Best Pract Res Clin Gastroenterol 2014; 28:533-44. [PMID: 25194173 DOI: 10.1016/j.bpg.2014.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/06/2014] [Accepted: 07/05/2014] [Indexed: 01/31/2023]
Abstract
Although recent increases in availability of energy dense, processed foods and reductions in institutionally driven physical activity have created an environment that is permissible for obesity to occur, several other factors may contribute to the development of obesity in this context. We review evidence for eleven such factors: endocrine disruptors, intrauterine effects, epigenetics, maternal age, differential fecundity and assortative mating by body mass index, microorganisms, reduction in variability of ambient temperatures, smoking cessation, sleep debt, and pharmaceutical iatrogenesis. Evidence for the role of endocrine disruptors, microorganisms, ambient temperatures, sleep and reproductive factors is accumulating, but additional research is needed to confirm the causative role of these factors in human obesity. However, the role of certain pharmaceuticals and smoking cessation in development of human obesity is clear. Practice points for consideration and future research needed are highlighted for each factor.
Collapse
Affiliation(s)
- Emily J Dhurandhar
- Department of Health Behavior, Office of Energetics, Nutrition Obesity Research Center, University of Alabama at Birmingham, 1665 University Blvd, RPHB 227J, Birmingham, AL 35205, USA.
| | - Scott W Keith
- Department of Pharmacology and Experimental Therapeutics, Division of Biostatistics, Thomas Jefferson University, 1015 Chestnut St., Suite M100, Phildelphia, PA 19107, USA.
| |
Collapse
|
42
|
Singh KP, Tripathi N, Singh MK. Effect of Gestational Exposure to Novel Antipsychotics on Body Weight Gain in Rats. NATIONAL ACADEMY SCIENCE LETTERS-INDIA 2014. [DOI: 10.1007/s40009-014-0225-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Emmert D, Campos CR, Ward D, Lu P, Namanja HA, Bohn K, Miller DS, Sharom FJ, Chmielewski J, Hrycyna CA. Reversible dimers of the atypical antipsychotic quetiapine inhibit p-glycoprotein-mediated efflux in vitro with increased binding affinity and in situ at the blood-brain barrier. ACS Chem Neurosci 2014; 5:305-17. [PMID: 24483607 DOI: 10.1021/cn4002329] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The multidrug resistance transporter P-glycoprotein (P-gp) is highly expressed in the capillary endothelial cells of the blood-brain barrier (BBB) where it functions to limit the brain penetration of many drugs, including antipsychotic agents used to treat schizophrenia. Therefore, in an effort to inhibit the transporter, we designed dimers of the antipsychotic drug and P-gp substrate quetiapine (QT), linked by variable length tethers. In P-gp overexpressing cells and in human brain capillary endothelial hCMEC/D3 cells, the dimer with the shortest tether length (QT2C2) (1) was the most potent inhibitor showing >80-fold better inhibition of P-gp-mediated transport than monomeric QT. The dimers, which are linked via ester moieties, are designed to revert to the therapeutic monomer once inside the target cells. We demonstrated that the addition of two sterically blocking methyl groups to the linker (QT2C2Me2, 8) increased the half-life of the molecule in plasma 10-fold as compared to the dimer lacking methyl groups (QT2C2, 1), while retaining inhibitory potency for P-gp transport and sensitivity to cellular esterases. Experiments with purified P-gp demonstrated that QT2C2 (1) and QT2C2Me2 (8) interacted with both the H- and R-binding sites of the transporter with binding affinities 20- to 30-fold higher than that of monomeric QT. Using isolated rat brain capillaries, QT2C2Me2 (8) was a more potent inhibitor of P-gp transport than QT. Lastly, we showed that QT2C2Me2 (8) increased the accumulation of the P-gp substrate verapamil in rat brain in situ three times more than QT. Together, these results indicate that the QT dimer QT2C2Me2 (8) strongly inhibited P-gp transport activity in human brain capillary endothelial cells, in rat brain capillaries, and at the BBB in an animal model.
Collapse
Affiliation(s)
- Dana Emmert
- Department of Chemistry, Purdue University, 560
Oval Drive, West Lafayette, Indiana 47907, United States
| | - Christopher R. Campos
- Laboratory of Toxicology and Pharmacology, National Institute
of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, United States
| | - David Ward
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Peihua Lu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Hilda A. Namanja
- Department of Chemistry, Purdue University, 560
Oval Drive, West Lafayette, Indiana 47907, United States
| | - Kelsey Bohn
- Department of Chemistry, Purdue University, 560
Oval Drive, West Lafayette, Indiana 47907, United States
| | - David S. Miller
- Laboratory of Toxicology and Pharmacology, National Institute
of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, United States
| | - Frances J. Sharom
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, 560
Oval Drive, West Lafayette, Indiana 47907, United States
| | - Christine A. Hrycyna
- Department of Chemistry, Purdue University, 560
Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
44
|
Li X, Johnson MS, Smith DL, Li Y, Kesterson RA, Allison DB, Nagy TR. Effects of risperidone on energy balance in female C57BL/6J mice. Obesity (Silver Spring) 2013; 21:1850-7. [PMID: 23408466 PMCID: PMC3657586 DOI: 10.1002/oby.20350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 12/12/2012] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To investigate the effect of risperidone on energy expenditure and weight gain in female C57BL/6J mice. DESIGN AND METHODS Body weight and composition, food intake, energy expenditure, and activity were determined weekly. mRNA expression of uncoupling protein 1 in brown adipose tissue, orexin, and brain-derived neurotrophic factor in the hypothalamus were quantified using real-time PCR. RESULTS Risperidone tended to induce a greater body weight gain (P = 0.052) and significantly higher food intake (P = 0.038) relative to the placebo-treated group. Risperidone-treated mice had a higher resting energy expenditure (P = 0.001) and total energy expenditure (TEE) (P = 0.005) than the placebo group. There were no effects of treatment, time, and treatment by time on non-resting (or activity-related) energy expenditure between groups. Risperidone-treated mice showed a significantly lesser locomotor activity than placebo-treated mice over 3 weeks (P < 0.001). Risperidone induced a higher UCP1 mRNA (P = 0.003) and a lower orexin mRNA (P = 0.001) than placebo. CONCLUSION Risperidone-induced weight gain is associated with hyperphagia and a reduction in locomotor activity in C57BL/6J mice. Additionally, higher total and resting energy expenditure were accompanied by higher levels of UCP1 mRNA in BAT. The increased TEE could not offset the total intake of energy through risperidone-induced hyperphagia, therefore resulting in weight gain in female C57BL/6J mice.
Collapse
Affiliation(s)
- Xingsheng Li
- Department of Nutrition Sciences, University of Alabama at Birmingham
| | - Maria S. Johnson
- Department of Nutrition Sciences, University of Alabama at Birmingham
| | - Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham
| | - Yan Li
- Department of Nutrition Sciences, University of Alabama at Birmingham
| | | | - David B. Allison
- Department of Nutrition Sciences, University of Alabama at Birmingham
- Department of Biostatistics, University of Alabama at Birmingham
| | - Tim R. Nagy
- Department of Nutrition Sciences, University of Alabama at Birmingham
| |
Collapse
|
45
|
Schmidt RH, Jokinen JD, Massey VL, Falkner KC, Shi X, Yin X, Zhang X, Beier JI, Arteel GE. Olanzapine activates hepatic mammalian target of rapamycin: new mechanistic insight into metabolic dysregulation with atypical antipsychotic drugs. J Pharmacol Exp Ther 2013; 347:126-35. [PMID: 23926289 DOI: 10.1124/jpet.113.207621] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Olanzapine (OLZ), an effective treatment of schizophrenia and other disorders, causes weight gain and metabolic syndrome. Most studies to date have focused on the potential effects of OLZ on the central nervous system's mediation of weight; however, peripheral changes in liver or other key metabolic organs may also play a role in the systemic effects of OLZ. Thus, the purpose of this study was to investigate the effects of OLZ on hepatic metabolism in a mouse model of OLZ exposure. Female C57Bl/6J mice were administered OLZ (8 mg/kg per day) or vehicle subcutaneously by osmotic minipumps for 28 days. Liver and plasma were taken at sacrifice for biochemical analyses and for comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry metabolomics analysis. OLZ increased body weight, fat pad mass, and liver-to-body weight ratio without commensurate increase in food consumption, indicating that OLZ altered energy expenditure. Expression and biochemical analyses indicated that OLZ induced anaerobic glycolysis and caused a pseudo-fasted state, which depleted hepatic glycogen reserves. OLZ caused similar effects in cultured HepG2 cells, as determined by Seahorse analysis. Metabolomic analysis indicated that OLZ increased hepatic concentrations of amino acids that can alter metabolism via the mTOR pathway; indeed, hepatic mTOR signaling was robustly increased by OLZ. Interestingly, OLZ concomitantly activated AMP-activated protein kinase (AMPK) signaling. Taken together, these data suggest that disturbances in glucose and lipid metabolism caused by OLZ in liver may be mediated, at least in part, via simultaneous activation of both catabolic (AMPK) and anabolic (mammalian target of rapamycin) pathways, which yields new insight into the metabolic side effects of this drug.
Collapse
Affiliation(s)
- Robin H Schmidt
- Department of Pharmacology and Toxicology (R.H.S., J.D.J., V.L.M., J.I.B., G.E.A.), and Department of Medicine (K.C.F.), Health Sciences Center, and Department of Chemistry (X.S., X.Y., X.Z.), University of Louisville, Louisville, Kentucky
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Silverman JL, Oliver CF, Karras MN, Gastrell PT, Crawley JN. AMPAKINE enhancement of social interaction in the BTBR mouse model of autism. Neuropharmacology 2013; 64:268-82. [PMID: 22801296 PMCID: PMC3445667 DOI: 10.1016/j.neuropharm.2012.07.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/05/2012] [Accepted: 07/06/2012] [Indexed: 12/16/2022]
Abstract
Autism is a neurodevelopmental disorder in which the first diagnostic symptom is unusual reciprocal social interactions. Approximately half of the children diagnosed with an autism spectrum disorder also have intellectual impairments. General cognitive abilities may be fundamental to many aspects of social cognition. Cognitive enhancers could conceivably be of significant benefit to children and adults with autism. AMPAKINE compounds are a novel class of pharmacological agents that act as positive modulators of AMPA receptors to enhance excitatory glutamatergic neurotransmission. This class of compounds was reported to improve learning and memory in several rodent and non-human primate tasks, and to normalize respiratory abnormalities in a mouse model of Rett syndrome. Here we evaluate the actions of AMPA compounds in adult male and female BTBR mice, a well characterized mouse model of autism. Acute treatment with CX1837 and CX1739 reversed the deficit in sociability in BTBR mice on the most sensitive parameter, time spent sniffing a novel mouse as compared to time spent sniffing a novel object. The less sensitive parameter, time in the chamber containing the novel mouse versus time in the chamber containing the novel object, was not rescued by CX1837 or CX1739 treatment. Preliminary data with CX546, in which β-cyclodextrin was the vehicle, revealed behavioral effects of the acute intraperitoneal and oral administration of vehicle alone. To circumvent the artifacts introduced by the vehicle administration, we employed a novel treatment regimen using pellets of peanut butter for drug delivery. Absence of vehicle treatment effects when CX1837 and CX1739 were given in the peanut butter pellets, to multiple cohorts of BTBR and B6 control mice, confirmed that the pharmacologically-induced improvements in sociability in BTBR were not confounded by the administration procedures. The highest dose of CX1837 improved the cognitive deficit in novel object recognition in BTBR. No drug effects were detected on the high levels of repetitive self-grooming in BTBR. In open field tests, CX1837 and CX1739 did not induce hyperactivity or sedation in either strain. It is interesting to speculate that the ability of CX1837 and CX1739 to restore aspects of sociability in BTBR mice could utilize synaptic mechanisms regulating social cognition, suggesting a potential pharmacological target for interventions to treat symptoms of autism. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
MESH Headings
- Animals
- Autistic Disorder/drug therapy
- Autistic Disorder/physiopathology
- Behavior, Animal/drug effects
- Cognition Disorders/etiology
- Cognition Disorders/prevention & control
- Dioxoles/administration & dosage
- Dioxoles/adverse effects
- Dioxoles/therapeutic use
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drugs, Investigational/administration & dosage
- Drugs, Investigational/adverse effects
- Drugs, Investigational/therapeutic use
- Excitatory Amino Acid Agonists/administration & dosage
- Excitatory Amino Acid Agonists/adverse effects
- Excitatory Amino Acid Agonists/therapeutic use
- Female
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Molecular Targeted Therapy
- Nootropic Agents/administration & dosage
- Nootropic Agents/adverse effects
- Nootropic Agents/therapeutic use
- Piperidines/administration & dosage
- Piperidines/adverse effects
- Piperidines/therapeutic use
- Random Allocation
- Receptors, AMPA/agonists
- Recognition, Psychology/drug effects
- Social Behavior
- Social Behavior Disorders/etiology
- Social Behavior Disorders/prevention & control
Collapse
Affiliation(s)
- J L Silverman
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD 20892-3730, USA.
| | | | | | | | | |
Collapse
|
47
|
Esposito D, Kizelsztein P, Komarnytsky S, Raskin I. Hypoglycemic effects of brassinosteroid in diet-induced obese mice. Am J Physiol Endocrinol Metab 2012; 303:E652-8. [PMID: 22785239 PMCID: PMC3774328 DOI: 10.1152/ajpendo.00024.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prevalence of obesity is increasing globally, and obesity is a major risk factor for metabolic diseases such as type 2 diabetes. Previously, we reported that oral administration of homobrassinolide (HB) to healthy rats triggered a selective anabolic response that was associated with lower blood glucose. Therefore, the aim of this study was to evaluate the effects of HB administration on glucose metabolism, insulin sensitivity, body composition, and gluconeogenic gene expression profiles in liver of C57BL/6J high-fat diet-induced obese mice. Acute oral administration of 50-300 mg/kg HB to obese mice resulted in a dose-dependent decrease in fasting blood glucose within 3 h of treatment. Daily chronic administration of HB (50 mg/kg for 8 wk) ameliorated hyperglycemia and improved oral glucose tolerance associated with obesity without significantly affecting body weight or body composition. These changes were accompanied by lower expression of two key gluconeogenic enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G-6-Pase), and increased phosphorylation of AMP-activated protein kinase in the liver and muscle tissue. In vitro, HB treatment (1-15 μM) inhibited cyclic AMP-stimulated but not dexamethasone-stimulated upregulation of PEPCK and G-6-Pase mRNA levels in H4IIE rat hepatoma cells. Among a series of brassinosteroid analogs related to HB, only homocastasterone decreased glucose production in cell culture significantly. These results indicate the antidiabetic effects of brassinosteroids and begin to elucidate their putative cellular targets both in vitro and in vivo.
Collapse
Affiliation(s)
- Debora Esposito
- Biotech Center, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | | | | | | |
Collapse
|
48
|
Kurbanov DB, Currie PJ, Simonson DC, Borsook D, Elman I. Effects of naltrexone on food intake and body weight gain in olanzapine-treated rats. J Psychopharmacol 2012; 26:1244-51. [PMID: 22723540 DOI: 10.1177/0269881112450783] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Blockade of opioidergic neurotransmission contributes to reduction in body weight. However, how such blockade affects body weight gain (BWG) attributed to second generation antipsychotic agents (SGAs) has not yet been established. Here we examined the effects of an opioid receptor antagonist, naltrexone (NTX), on food intake and BWG associated with an SGA, olanzapine (OL). Four groups of Wistar Han IGS rats were treated for 28 days with either OL (2 mg/kg twice daily, intraperitoneal (IP)), a combination of OL (2 mg/kg twice daily, IP) + extended-release NTX (50 mg/kg, one-time, intramuscular (IM)), extended-release NTX (50 mg/kg, one-time, IM) or vehicle and their food intake and body weight were measured daily for the first nine days and every other day thereafter. Food intake and BWG that were increased by OL were decreased by the added NTX while NTX alone had no significant effects on food intake or on BWG. Plasma leptin concentrations were significantly elevated in the three groups receiving pharmacological agents, but did not differ among each other, suggesting that changes in leptin secretion and/or clearance alone would not explain the food intake and the body weight findings. Our results extend prior reports on anorexigenic effects of opioid antagonists by demonstrating that such effects may generalize to food intake increases and BWG arising in the context of OL pharmacotherapy.
Collapse
|
49
|
A novel insulin sensitizer drug candidate-BGP-15-can prevent metabolic side effects of atypical antipsychotics. Pathol Oncol Res 2012; 18:1071-6. [PMID: 22743983 DOI: 10.1007/s12253-012-9546-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
Abstract
Atypical antipsychotic drugs (AAPD) are widely used to treat severe psychiatric disorders, have well documented metabolic side effects such as disturbances in glucose metabolism, insulin resistance and weight gain. It has been shown that BGP-15, a hydroxylamine derivative with insulin sensitizing activity can prevent AAPD provoked fat accumulation in adipocyte cultures, and insulin resistance in animal experiments and in healthy volunteers. The aim of this study was to compare the preventive effect of BGP-15 with conventional oral antidiabetics on metabolic side effects of AAPDs. We found that BGP-15 that does not belong to either conventional insulin sensitizers or oral antidiabetics, is able to counteract insulin resistance and weight gain provoked by antipsychotic agents in rats while rosiglitazone and metformin were not effective in the applied doses. Our results confirm that BGP-15 is a promising new drug candidate to control the metabolic side effects of atypical antipsychotics. Data indicate that this rat model is suitable to analyze the metabolic side effects of AAPDs and the protective mechanism of BGP-15.
Collapse
|
50
|
Stip E, Lungu OV, Anselmo K, Letourneau G, Mendrek A, Stip B, Lipp O, Lalonde P, Bentaleb LA. Neural changes associated with appetite information processing in schizophrenic patients after 16 weeks of olanzapine treatment. Transl Psychiatry 2012; 2:e128. [PMID: 22714121 PMCID: PMC3384221 DOI: 10.1038/tp.2012.53] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
There is evidence that some atypical antipsychotics, including olanzapine, can produce unwanted metabolic side effects, weight gain and diabetes. However, neuronal correlates of change related to food information processing have not been investigated with these medications. We studied the effect of a pharmacological manipulation with an antipsychotic known to cause weight gain on metabolites, cognitive tasks and neural correlates related to food regulation. We used functional magnetic resonance imaging in conjunction with a task requiring visual processing of appetitive stimuli in schizophrenic patients and healthy controls before and after 16 weeks of antipsychotic medication with olanzapine. In patients, the psychological and neuronal changes associated following the treatment correlated with appetite control measures and metabolite levels in fasting blood samples. After 16 weeks of olanzapine treatment, the patients gained weight, increased their waist circumference, had fewer positive schizophrenia symptoms, a reduced ghrelin plasma concentration and an increased concentration of triglycerides, insulin and leptin. In premotor area, somatosensory cortices as well as bilaterally in the fusiform gyri, the olanzapine treatment increased the neural activity related to appetitive information in schizophrenic patients to similar levels relative to healthy individuals. However, a higher increase in sensitivity to appetitive stimuli after the treatment was observed in insular cortices, amygdala and cerebellum in schizophrenic patients as compared with healthy controls. Furthermore, these changes in neuronal activity correlated with changes in some metabolites and cognitive measurements related to appetite regulation.
Collapse
Affiliation(s)
- E Stip
- Department of Psychiatry, Université de Montréal, Montréal, QC, Canada.
| | - O V Lungu
- Department of Psychiatry, Université de Montréal, Montréal, QC, Canada,Centre de Recherche de l′Institut Universitaire de gériatrie de Montréal, Université de Montréal, Montréal, QC, Canada,Department of Research, Donald Berman Maimonides Geriatric Center, Montréal, QC, Canada
| | - K Anselmo
- Department of Psychiatry, Université de Montréal, Montréal, QC, Canada,CHUM, Centre de Recherche Fernand Seguin, Université de Montréal, Notre Dame Hospital, Montréal, QC, Canada
| | - G Letourneau
- Department of Psychiatry, Université de Montréal, Montréal, QC, Canada,CHUM, Centre de Recherche Fernand Seguin, Université de Montréal, Notre Dame Hospital, Montréal, QC, Canada
| | - A Mendrek
- Department of Psychiatry, Université de Montréal, Montréal, QC, Canada,CHUM, Centre de Recherche Fernand Seguin, Université de Montréal, Notre Dame Hospital, Montréal, QC, Canada
| | - B Stip
- École Polytechnique de Montréal, Montréal, QC, Canada
| | - O Lipp
- Department of Psychiatry, Université de Montréal, Montréal, QC, Canada,Centre de Recherche de l′Institut Universitaire de gériatrie de Montréal, Université de Montréal, Montréal, QC, Canada
| | - P Lalonde
- Department of Psychiatry, Université de Montréal, Montréal, QC, Canada,CHUM, Centre de Recherche Fernand Seguin, Université de Montréal, Notre Dame Hospital, Montréal, QC, Canada
| | - L A Bentaleb
- Department of Psychiatry, Université de Montréal, Montréal, QC, Canada,CHUM, Centre de Recherche Fernand Seguin, Université de Montréal, Notre Dame Hospital, Montréal, QC, Canada
| |
Collapse
|