1
|
Miao J, Zhang Y, Su C, Zheng Q, Guo J. Insulin-Like Growth Factor Signaling in Alzheimer's Disease: Pathophysiology and Therapeutic Strategies. Mol Neurobiol 2025; 62:3195-3225. [PMID: 39240280 DOI: 10.1007/s12035-024-04457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia among the elderly population, posing a significant public health challenge due to limited therapeutic options that merely delay cognitive decline. AD is associated with impaired energy metabolism and reduced neurotrophic signaling. The insulin-like growth factor (IGF) signaling pathway, crucial for central nervous system (CNS) development, metabolism, repair, cognition, and emotion regulation, includes IGF-1, IGF-2, IGF-1R, IGF-2R, insulin receptor (IR), and six insulin-like growth factor binding proteins (IGFBPs). Research has identified abnormalities in IGF signaling in individuals with AD and AD models. Dysregulated expression of IGFs, receptors, IGFBPs, and disruptions in downstream phosphoinositide 3-kinase-protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK) pathways collectively increase AD susceptibility. Studies suggest modulating the IGF pathway may ameliorate AD pathology and cognitive decline. This review explores the CNS pathophysiology of IGF signaling in AD progression and assesses the potential of targeting the IGF system as a novel therapeutic strategy. Further research is essential to elucidate how aberrant IGF signaling contributes to AD development, understand underlying molecular mechanisms, and evaluate the safety and efficacy of IGF-based treatments.
Collapse
Affiliation(s)
- Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanli Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Department of Neurology, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, 030001, Shanxi, China
| | - Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qiandan Zheng
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
2
|
Fahim SA, Ragheb M, Fayed IH, Osama A, Karam A, Magdeldin S, Metwale R, Elsayed MDAA, Abdellatif A, Sadek HA, El Sobky SA, El-Ekiaby N, Fawzy IO, Abdelaziz AI. Interaction Between Malat1 and miR-499-5p Regulates Meis1 Expression and Function with a Net Impact on Cell Proliferation. Cells 2025; 14:125. [PMID: 39851553 PMCID: PMC11764005 DOI: 10.3390/cells14020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/26/2025] Open
Abstract
Meis1 is a transcription factor involved in numerous functions including development and proliferation and has been previously shown to harness cell cycle progression. In this study, we used in silico analysis to predict that miR-499-5p targets Meis1 and that Malat1 sponges miR-499-5p. For the first time, we demonstrated that the overexpression of miR-499-5p led to the downregulation of Meis1 mRNA and protein in C166 cells by directly binding to its 3'UTR. Moreover, knocking down Malat1 increased miR-499-5p expression, subsequently suppressing Meis1. Through BrdU incorporation assay, we showed that the knockdown of Malat1, Meis1, or mimicking with miR-499-5p promoted cell proliferation. Enrichment analyses on proteins identified via mass spectrometry after manipulating Malat1, miR-499-5p, or Meis1 revealed a multitude of differentially expressed proteins related to cell cycle, cell division, and key pathways like Wnt and mTOR, essential for cell proliferation. Collectively, our findings confirm that Malat1 sponges miR-499-5p, regulating Meis1, and that Malat1/miR-499-5p/Meis1 could potentially form an axis that has a pivotal influence on cellular proliferation.
Collapse
Affiliation(s)
- Salma A. Fahim
- School of Medicine, Newgiza University (NGU), Giza 12577, Egypt
- Biotechnology Program, American University in Cairo, Cairo 11835, Egypt
| | - Manon Ragheb
- School of Medicine, Newgiza University (NGU), Giza 12577, Egypt
- Biotechnology Program, American University in Cairo, Cairo 11835, Egypt
| | | | - Aya Osama
- Proteomics and Metabolomics Unit, Basic Research Department, Children’s Cancer Hospital 57357 Cairo, (CCHE-57357), Cairo 11562, Egypt
| | - Ahmed Karam
- Proteomics and Metabolomics Unit, Basic Research Department, Children’s Cancer Hospital 57357 Cairo, (CCHE-57357), Cairo 11562, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Unit, Basic Research Department, Children’s Cancer Hospital 57357 Cairo, (CCHE-57357), Cairo 11562, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Rana Metwale
- School of Medicine, Newgiza University (NGU), Giza 12577, Egypt
| | - Mohamed Dief Allah Abdalmoneam Elsayed
- School of Medicine, Newgiza University (NGU), Giza 12577, Egypt
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Ahmed Abdellatif
- Biotechnology Program, American University in Cairo, Cairo 11835, Egypt
| | - Hesham A. Sadek
- Division of Cardiology, University of Arizona College of Medicine, Tucson, AR 85721, USA
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 85004, USA
| | | | - Nada El-Ekiaby
- School of Medicine, Newgiza University (NGU), Giza 12577, Egypt
| | | | | |
Collapse
|
3
|
Malta LGF, Ribeiro BS, Viegas-Melo D, Pinho-Junior MS, Sant'Anna MRV, Pereira MH, Gontijo NF. Intestinal flow and digestive parameters of Lutzomyia longipalpis larvae. JOURNAL OF INSECT PHYSIOLOGY 2025; 161:104748. [PMID: 39814332 DOI: 10.1016/j.jinsphys.2025.104748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Lutzomyia longipalpis Lutz & Neiva, 1912 (Diptera, Psychodidae), is the primary vector of Leishmania infantum Nicole, 1908, the etiological agent of American visceral leishmaniasis. During their development, sandfly larvae pass through four instars, consuming soil particles enriched with microorganisms and decomposing organic material. In numerous insect species, the intestinal epithelium not only secretes digestive enzymes and absorbs digested nutrients but also carries out additional functions, such as regulating luminal pH and facilitating the absorption or secretion of ions and water. The transport of ions and water plays a crucial role in the establishment of a countercurrent flow responsible for recycling soluble digestive enzymes. This study aimed to explore specific aspects of digestion in L. longipalpis larvae that remain poorly understood. We measured the intestinal flow within the endoperitrophic space, which varied depending on the type of diet offered to the larvae, with an average total time of 191 min. Additionally, we demonstrated the countercurrent flow in L. longipalpis larvae. Finally, we showed that the production of digestive enzymes can be modulated by nutrient availability, particularly by the amino acids in the larval diet. The higher the amino acids concentration, the higher the trypsin activity. On the other hand, the aminopeptidase activity was poorly influenced by the amino acids concentration.
Collapse
Affiliation(s)
- Luccas Gabriel Ferreira Malta
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Bianca Stacanelli Ribeiro
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Davi Viegas-Melo
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Marques Serafim Pinho-Junior
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Maurício Roberto Viana Sant'Anna
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Marcos Horário Pereira
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Nelder Figueiredo Gontijo
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| |
Collapse
|
4
|
Hauptman JS, Antonios J, Mathern GW, Levine MS, Cepeda C. Chronic Rapamycin Prevents Electrophysiological and Morphological Alterations Produced by Conditional Pten Deletion in Mouse Cortex. Cells 2025; 14:79. [PMID: 39851507 PMCID: PMC11764219 DOI: 10.3390/cells14020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Abnormalities in the mammalian target of the rapamycin (mTOR) pathway have been implicated in numerous developmental brain disorders. While the molecular and histological abnormalities have been described, less is known about alterations in membrane and synaptic excitability with chronic changes in the mTOR pathway. In the present study, we used a conditional mouse model with a deletion of the phosphatase and tensin homologue (Pten-/-, a negative regulator of mTOR) from cortical pyramidal neurons (CPNs). Whole-cell patch clamp recordings in ex vivo slices examined the intrinsic and synaptic membrane properties of layer II/III CPNs in normal mice treated with rapamycin for four weeks, and Pten-/- mice with and without chronic treatment with rapamycin. Compared with control mice, CPNs from Pten-/- mice demonstrated increased membrane capacitance and time constant in association with increased neuronal somatic size, reduced neuronal firing, and decreased frequency of spontaneous and miniature inhibitory postsynaptic currents, consistent with decreased pre-synaptic GABA release. Rapamycin treatment for four weeks prevented these changes in Pten-/- mice. CPNs from normal mice chronically treated with rapamycin, compared with CPNs from naïve mice, showed reduced capacitance and time constant, increased input resistance, and changes in inhibitory synaptic inputs, consistent with increased pre-synaptic GABA release. These results support the concept that Pten deletion results in significant changes in inhibitory inputs onto CPNs, and these alterations can be prevented with chronic rapamycin treatment. In addition, normal mice treated with rapamycin also display altered membrane and synaptic properties. These findings have potential implications for the treatment of neurological disorders associated with mTOR pathway dysfunction, such as epilepsy and autism.
Collapse
Affiliation(s)
- Jason S. Hauptman
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.H.); (J.A.); (G.W.M.)
| | - Joseph Antonios
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.H.); (J.A.); (G.W.M.)
| | - Gary W. Mathern
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.H.); (J.A.); (G.W.M.)
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael S. Levine
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.H.); (J.A.); (G.W.M.)
| | - Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.H.); (J.A.); (G.W.M.)
| |
Collapse
|
5
|
Sahm A, Riege K, Groth M, Bens M, Kraus J, Fischer M, Kestler H, Englert C, Schaible R, Platzer M, Hoffmann S. Hydra has mammal-like mutation rates facilitating fast adaptation despite its nonaging phenotype. Genome Res 2024; 34:2217-2228. [PMID: 39632086 PMCID: PMC11694757 DOI: 10.1101/gr.279025.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/18/2024] [Indexed: 12/07/2024]
Abstract
Growing evidence suggests that somatic mutations may be a major cause of the aging process. However, it remains to be tested whether the predictions of the theory also apply to species with longer life spans than humans. Hydra is a genus of freshwater polyps with remarkable regeneration abilities and a potentially unlimited life span under laboratory conditions. By genome sequencing of single cells and whole animals, we found that the mutation rates in Hydra's stem cells are even slightly higher than in humans or mice. A potential explanation for this deviation from the prediction of the theory may lie in the adaptability offered by a higher mutation rate, as we were able to show that the genome of the widely studied Hydra magnipapillata strain 105 has undergone a process of strong positive selection since the strain's cultivation 50 years ago. This most likely represents a rapid adaptation to the drastically altered environmental conditions associated with the transition from the wild to laboratory conditions. Processes under positive selection in captive animals include pathways associated with Hydra's simple nervous system, its nucleic acid metabolic process, cell migration, and hydrolase activity.
Collapse
Affiliation(s)
- Arne Sahm
- Computational Phenomics group, IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany;
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
- Computational Phenomics group, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Konstantin Riege
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Marco Groth
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Martin Bens
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Johann Kraus
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Hans Kestler
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Christoph Englert
- Molecular Genetics Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
- Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07745 Jena, Germany
| | - Ralf Schaible
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Matthias Platzer
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| |
Collapse
|
6
|
Frunze O, Yun Y, Kim H, Garafutdinov RR, Na YE, Kwon HW. The effect of seasonal temperatures on the physiology of the overwintered honey bee. PLoS One 2024; 19:e0315062. [PMID: 39652534 PMCID: PMC11627422 DOI: 10.1371/journal.pone.0315062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Honey bee physiology follows an annual cycle, with winter bees living ten times longer than summer bees. Their transition can be disrupted by climate change. Several climate factors, mainly temperature, may contribute to the global losses of winter bees. We simulated global warming by maintaining constant temperatures of 25°C (Group 25) and 35°C (Group 35) in rooms around hives from June to October, while a Group control experienced natural conditions. Colony performance was assessed in August and September. In February, workers were examined for physiological traits (acinus size and lipid content in the fat body) and molecular markers (vg and JHAMT), along with potential markers (ilp1, ilp2, TOR1, and HSP70). Our findings suggest that temperature decreases around winter worker broods from Group 25 in the fall led to their different physiological states related to aging in winter compared to Group 35 workers. Changes in bees from Group 35 the end of diapause were detected with an upregulation of HSP70, ilp2, and TOR1 genes. These signs of winter bees in response to summer global warming could lead to the development of strategies to prevent bee losses and improve the identification of physiological states in insect models.
Collapse
Affiliation(s)
- Olga Frunze
- Department of Life Sciences & Convergence Research Center for Insect Vectors (CRCIV), Incheon National University R&D Complex, Yeonsu-gu, Incheon, Republic of Korea
| | - Yumi Yun
- Department of Life Sciences & Convergence Research Center for Insect Vectors (CRCIV), Incheon National University R&D Complex, Yeonsu-gu, Incheon, Republic of Korea
| | - Hyunjee Kim
- Department of Life Sciences & Convergence Research Center for Insect Vectors (CRCIV), Incheon National University R&D Complex, Yeonsu-gu, Incheon, Republic of Korea
| | - Ravil R. Garafutdinov
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Bashkortostan, Russian Federation
| | - Young-Eun Na
- Agro-materials Industry Division, Rural Development Administration (RDA), Wanju, Republic of Korea
| | - Hyung-Wook Kwon
- Department of Life Sciences & Convergence Research Center for Insect Vectors (CRCIV), Incheon National University R&D Complex, Yeonsu-gu, Incheon, Republic of Korea
| |
Collapse
|
7
|
Wang Z, Guo Y, Li K, Huo Y, Wang S, Dong S, Ma M. Targeting the PI3K/mTOR pathway in idiopathic pulmonary fibrosis: Advances and therapeutic potential. Bioorg Med Chem 2024; 115:117908. [PMID: 39471771 DOI: 10.1016/j.bmc.2024.117908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 11/01/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal lung disease characterized by irreversible tissue scarring, leading to severe respiratory dysfunction. Despite current treatments with the drugs Pirfenidone and Nintedanib, effective management of IPF remains inadequate due to limited therapeutic benefits and significant side effects. This review focuses on the phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway, a critical regulator of cellular processes linked to fibrosis, such as fibroblast proliferation, inflammation, and epithelial-mesenchymal transition (EMT). We discuss recent advances in understanding the role of the PI3K/mTOR pathway in IPF pathogenesis and highlight emerging therapies targeting this pathway. The review compiles evidence from both preclinical and clinical studies, suggesting that PI3K/mTOR inhibitors may offer new hope for IPF treatment by modulating fibrosis and improving patient outcomes. Moreover, it outlines the potential for these inhibitors to be developed into effective, personalized treatment options, underscoring the importance of further research to explore their efficacy and safety profiles comprehensively.
Collapse
Affiliation(s)
- Zhengyang Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yanzhi Guo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Kaiyin Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yan Huo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shuyan Wang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Suzhen Dong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Mingliang Ma
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
8
|
Ferdoush J, Kadir RA, Ogle M, Saha A. Regulation of eukaryotic transcription initiation in response to cellular stress. Gene 2024; 924:148616. [PMID: 38795856 DOI: 10.1016/j.gene.2024.148616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Transcription initiation is a vital step in the regulation of eukaryotic gene expression. It can be dysregulated in response to various cellular stressors which is associated with numerous human diseases including cancer. Transcription initiation is facilitated via many gene-specific trans-regulatory elements such as transcription factors, activators, and coactivators through their interactions with transcription pre-initiation complex (PIC). These trans-regulatory elements can uniquely facilitate PIC formation (hence, transcription initiation) in response to cellular nutrient stress. Cellular nutrient stress also regulates the activity of other pathways such as target of rapamycin (TOR) pathway. TOR pathway exhibits distinct regulatory mechanisms of transcriptional activation in response to stress. Like TOR pathway, the cell cycle regulatory pathway is also found to be linked to transcriptional regulation in response to cellular stress. Several transcription factors such as p53, C/EBP Homologous Protein (CHOP), activating transcription factor 6 (ATF6α), E2F, transforming growth factor (TGF)-β, Adenomatous polyposis coli (APC), SMAD, and MYC have been implicated in regulation of transcription of target genes involved in cell cycle progression, apoptosis, and DNA damage repair pathways. Additionally, cellular metabolic and oxidative stressors have been found to regulate the activity of long non-coding RNAs (lncRNA). LncRNA regulates transcription by upregulating or downregulating the transcription regulatory proteins involved in metabolic and cell signaling pathways. Numerous human diseases, triggered by chronic cellular stressors, are associated with abnormal regulation of transcription. Hence, understanding these mechanisms would help unravel the molecular regulatory insights with potential therapeutic interventions. Therefore, here we emphasize the recent advances of regulation of eukaryotic transcription initiation in response to cellular stress.
Collapse
Affiliation(s)
- Jannatul Ferdoush
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA.
| | - Rizwaan Abdul Kadir
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Matthew Ogle
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Ayan Saha
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chattogram, Bangladesh
| |
Collapse
|
9
|
Fang YX, Lu EQ, Xu E, Zhang YY, Zhu M. Arf1 promotes porcine intestinal epithelial cell proliferation via the mTORC1 signaling pathway. In Vitro Cell Dev Biol Anim 2024; 60:1009-1020. [PMID: 39093368 DOI: 10.1007/s11626-024-00942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/20/2024] [Indexed: 08/04/2024]
Abstract
The promotion of gut health, a pervasive problem in modern animal husbandry, positively affects organismal health, productivity, and economics. Porcine intestinal epithelial cells (IPEC-J2) continuously proliferate to maintain intestinal homeostasis, including barrier, immune, and absorptive functions. Gut homeostasis is fundamental to organismal health. ADP-ribosylation factor 1 (Arf1), a small GTPase, plays a crucial role in coordinating mTORC1 in response to nutrients, especially amino acid availability in the gut. mTORC1 is the central hub of proliferation. Thus, it seems likely that Arf1 promotes IPEC-J2 cell proliferation. However, the exact role of Arf1 in the porcine gut remains unclear. Therefore, we evaluated the functional role and possible mechanisms of Arf1 in the porcine intestine through Arf1 overexpression and knockdown in IPEC-J2 cells. Arf1 overexpression and knockdown significantly enhanced and inhibited, respectively, IPEC-J2 cell viability, and PCNA expression varied with Arf1 expression. Moreover, the proportion of Ki67-positive cells was significantly greater in the Arf1-overexpressing group than in the control group. These results suggest that Arf1 improves IPEC-J2 cell proliferation. The underlying mechanism was explored by Western blotting. Arf1 overexpression and knockdown significantly enhanced and suppressed, respectively, the levels of p-S6K1 and p-RPS6, which are key downstream targets of the mTORC1 signaling pathway. Collectively, our findings reveal the role of the Arf1-mTORC1 axis in IPEC-J2 cell proliferation and its potential function in regulating intestinal homeostasis and health.
Collapse
Affiliation(s)
- Yong-Xia Fang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, 550025, China
| | - En-Qing Lu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, 550025, China
| | - E Xu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, 550025, China
| | - Yi-Yu Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, 550025, China
| | - Min Zhu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
10
|
Nord C, Jones I, Garcia-Maestre M, Hägglund AC, Carlsson L. Reduced mTORC1-signaling in progenitor cells leads to retinal lamination deficits. Dev Dyn 2024; 253:922-939. [PMID: 38546215 DOI: 10.1002/dvdy.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND Neuronal lamination is a hallmark of the mammalian central nervous system (CNS) and underlies connectivity and function. Initial formation of this tissue architecture involves the integration of various signaling pathways that regulate the differentiation and migration of neural progenitor cells. RESULTS Here, we demonstrate that mTORC1 mediates critical roles during neuronal lamination using the mouse retina as a model system. Down-regulation of mTORC1-signaling in retinal progenitor cells by conditional deletion of Rptor led to decreases in proliferation and increased apoptosis during embryogenesis. These developmental deficits preceded aberrant lamination in adult animals which was best exemplified by the fusion of the outer and inner nuclear layer and the absence of an outer plexiform layer. Moreover, ganglion cell axons originating from each Rptor-ablated retina appeared to segregate to an equal degree at the optic chiasm with both contralateral and ipsilateral projections displaying overlapping termination topographies within several retinorecipient nuclei. In combination, these visual pathway defects led to visually mediated behavioral deficits. CONCLUSIONS This study establishes a critical role for mTORC1-signaling during retinal lamination and demonstrates that this pathway regulates diverse developmental mechanisms involved in driving the stratified arrangement of neurons during CNS development.
Collapse
Affiliation(s)
- Christoffer Nord
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | - Iwan Jones
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | | | | | - Leif Carlsson
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| |
Collapse
|
11
|
Toga K, Kimoto F, Fujii H, Bono H. Genome-Wide Search for Gene Mutations Likely Conferring Insecticide Resistance in the Common Bed Bug, Cimex lectularius. INSECTS 2024; 15:737. [PMID: 39452313 PMCID: PMC11508591 DOI: 10.3390/insects15100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Insecticide resistance in the bed bug Cimex lectularius is poorly understood due to the lack of genome sequences for resistant strains. In Japan, we identified a resistant strain of C. lectularius that exhibits a higher pyrethroid resistance ratio compared to many previously discovered strains. We sequenced the genomes of the pyrethroid-resistant and susceptible strains using long-read sequencing, resulting in the construction of highly contiguous genomes (N50 of the resistant strain: 2.1 Mb and N50 of the susceptible strain: 1.5 Mb). Gene prediction was performed by BRAKER3, and the functional annotation was performed by the Fanflow4insects workflow. Next, we compared their amino acid sequences to identify gene mutations, identifying 729 mutated transcripts that were specific to the resistant strain. Among them, those defined previously as resistance genes were included. Additionally, enrichment analysis implicated DNA damage response, cell cycle regulation, insulin metabolism, and lysosomes in the development of pyrethroid resistance. Genome editing of these genes can provide insights into the evolution and mechanisms of insecticide resistance. This study expanded the target genes to monitor allele distribution and frequency changes, which will likely contribute to the assessment of resistance levels. These findings highlight the potential of genome-wide approaches to understand insecticide resistance in bed bugs.
Collapse
Affiliation(s)
- Kouhei Toga
- Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-0046, Japan;
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-0046, Japan
| | - Fumiko Kimoto
- Research & Development Division, Fumakilla Limited, 1-11-13 Umehara, Hatsukaichi City, Hiroshima 739-0494, Japan
| | - Hiroki Fujii
- Research & Development Division, Fumakilla Limited, 1-11-13 Umehara, Hatsukaichi City, Hiroshima 739-0494, Japan
| | - Hidemasa Bono
- Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-0046, Japan;
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-0046, Japan
| |
Collapse
|
12
|
Yang Z, Zhao N, Li J, Wu Z, Ma J. Effect of traditional Chinese medicine on Graves' disease: a network meta-analysis. Front Pharmacol 2024; 15:1411459. [PMID: 39239642 PMCID: PMC11374712 DOI: 10.3389/fphar.2024.1411459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction: Graves' disease (GD) is the most common cause of hyperthyroidism and can affect multiple systems of the body. Currently, commonly-used treatment methods for GD have a series of shortcomings. In contrast, traditional Chinese medicine has been proven to be effective in inhibiting the progression of GD and is expected to become a key direction for the development of new drugs in the future. Therefore, a network meta-analysis was performed to compare the impacts of different traditional Chinese medicines on the curative effect, thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), free thyroxine (FT4), thyroglobulin antibody (TGAb), thyroid peroxidase antibody (TPOAb) and thyrotropin receptor antibody (TRAb) in patients with GD. Methods: PubMed, Embase, Cochrane Library, Web of Science, WanFang, Weipu, and CNKI were searched for the randomized controlled trials of traditional Chinese medicine on GD patients up to 19 December 2023. The quality of the included studies was evaluated regarding the risk of bias, and the data were analyzed by R software. Results: Thirty-five articles were included in the analysis, involving 2828 GD patients and traditional Chinese medicines including Bailing Capsule, Jinshuibao Capsule, Astragalus injection, Jiakangling Tablet, Jiakangling Capsule, Tripterygium Wilfordii, Sanjie Xiaoying Decoction, Prunella vulgaris (L.) Oral Liquid, P. vulgaris (L.) Granules, Xiehuo Xiaoying Recipe, Xiehuo Yangyin Powder, Yikang Pill and Yinjia Pellet. The results of network meta-analysis suggested that for GD patients, Bailing Capsule, Jiakangling Capsule, Tripterygium wilfordii, P. vulgaris (L.) Oral Liquid and Yinjia Pellet had better curative effect compared with Western medicine. Prunella vulgaris (L.) Granules and Yikang Pill could improve the TSH level. Prunella vulgaris (L.) Granules, P. vulgaris (L.) Oral Liquid and Yikang Pill could reduce FT3 level. Jiakangling Capsule, P. vulgaris (L.) Granules, P. vulgaris (L.) Oral Liquid and Yikang Pill could reduce the FT4 level. Prunella vulgaris (L.) Oral Liquid can reduce the level of TPOAb and TRAb. Besides, Yinjia Pellet was the most helpful in improving the curative effect. Yikang Pill could best improve TSH. Prunella vulgaris (L.) Granules had the best effect on reducing FT3. Prunella vulgaris (L.) Granules performed best in reducing FT4. Prunella vulgaris (L.) Oral Liquid had the most favorable effect on reducing TPOAb and TRAb. Conclusion: Based on the current research, it is safe to conclude that Chinese medicine can improve the curative effect and TSH level of patients with GD, and reduce the levels of FT3, FT4, TPOAb and TRAb. Besides, Yinjia Pellet is the most helpful in improving the curative effect. Yikang Pill can best improve TSH. Prunella vulgaris (L.) Granules have the best effect on reducing FT3. Prunella vulgaris (L.) Granules perform best in reducing FT4. Prunella vulgaris (L.) Oral Liquid has the most favorable effect on reducing TPOAb and TRAb. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier CRD42024521912.
Collapse
Affiliation(s)
- Zhuoshi Yang
- First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Na Zhao
- Endocrinology Department 1, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Jinchuang Li
- First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhouxin Wu
- First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jian Ma
- Endocrinology Department 1, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
13
|
von Roemeling C, Ferreri AJM, Soussain C, Tun HW, Grommes C. Targets and treatments in primary CNS lymphoma. Leuk Lymphoma 2024; 65:1055-1067. [PMID: 38659230 DOI: 10.1080/10428194.2024.2342560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare and highly aggressive lymphoma entirely localized in the central nervous system or vitreoretinal space. PCNSL generally initially responds to methotrexate-containing chemotherapy regimens, but progressive or relapsing disease is common, and the prognosis is poor for relapsed or refractory (R/R) patients. PCNSL is often characterized by activation of nuclear factor kappa B (NF-κB) due to mutations in the B-cell receptor (BCR) or toll-like receptor (TLR) pathways, as well as immune evasion. Targeted treatments that inhibit key PCNSL mechanisms and pathways are being evaluated; inhibition of Bruton's tyrosine kinase (BTK) downstream of BCR activation has demonstrated promising results in treating R/R disease. This review will summarize the evidence and potential for targeted therapeutic agents to improve treatment outcomes in PCNSL. This includes immunotherapeutic and immunomodulatory approaches and inhibitors of the key pathways driving PCNSL, such as aberrant BCR and TLR signaling.
Collapse
Affiliation(s)
- Christina von Roemeling
- Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Andrés J M Ferreri
- Department of Onco-Hematology, University Vita-Salute San Raffaele, Milano, Italy
- Department of Onco-Hematology, Lymphoma Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Carole Soussain
- Institut Curie, Service d'Hématologie, site de Saint-Cloud, France
- INSERM U932, Institut Curie, PSL Research University, Paris, France
| | - Han W Tun
- Department of Hematology, Mayo Clinic, Jacksonville, Florida, USA
| | - Christian Grommes
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
14
|
Sen MG, Sanislav O, Fisher PR, Annesley SJ. The Multifaceted Interactions of Dictyostelium Atg1 with Mitochondrial Function, Endocytosis, Growth, and Development. Cells 2024; 13:1191. [PMID: 39056773 PMCID: PMC11274416 DOI: 10.3390/cells13141191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Autophagy is a degradative recycling process central to the maintenance of homeostasis in all eukaryotes. By ensuring the degradation of damaged mitochondria, it plays a key role in maintaining mitochondrial health and function. Of the highly conserved autophagy proteins, autophagy-related protein 1 (Atg1) is essential to the process. The involvement of these proteins in intracellular signalling pathways, including those involving mitochondrial function, are still being elucidated. Here the role of Atg1 was investigated in the simple model organism Dictyostelium discoideum using an atg1 null mutant and mutants overexpressing or antisense-inhibiting atg1. When evaluated against the well-characterised outcomes of mitochondrial dysfunction in this model, altered atg1 expression resulted in an unconventional set of phenotypic outcomes in growth, endocytosis, multicellular development, and mitochondrial homeostasis. The findings here show that Atg1 is involved in a tightly regulated signal transduction pathway coordinating energy-consuming processes such as cell growth and multicellular development, along with nutrient status and energy production. Furthermore, Atg1's effects on energy homeostasis indicate a peripheral ancillary role in the mitochondrial signalling network, with effects on energy balance rather than direct effects on electron transport chain function. Further research is required to tease out these complex networks. Nevertheless, this study adds further evidence to the theory that autophagy and mitochondrial signalling are not opposing but rather linked, yet strictly controlled, homeostatic mechanisms.
Collapse
Affiliation(s)
| | | | | | - Sarah Jane Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Melbourne 3086, Australia; (M.G.S.); (O.S.); (P.R.F.)
| |
Collapse
|
15
|
Gao Y, Yang Z, Ji T, Zhou P, Geng L, Gao X. Anti-papillary thyroid carcinoma effects of dioscorea bulbifera L. through ferroptosis and the PI3K/AKT pathway based on network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117912. [PMID: 38387682 DOI: 10.1016/j.jep.2024.117912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Papillary thyroid carcinoma (PTC) is the predominant form of thyroid cancer with a rising global incidence. Despite favorable prognoses, a significant recurrence rate persists. Dioscorea bulbifera L. (DBL), a traditional Chinese medicine, has been historically used for thyroid-related disorders. However, its therapeutic effects and mechanisms of action on PTC remain unclear. AIM OF THE STUDY To explore the potential therapeutic effects, principal active components, and molecular mechanisms of DBL in the treatment of PTC through network pharmacology and molecular docking, with experimental validation conducted to corroborate these findings. MATERIALS AND METHODS The Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) was utilized as a systematic tool for collecting and screening the phytochemical components of DBL, and for establishing associations between these components and molecular targets. Based on this, network data was visually processed using Cytoscape software (version 3.8.0). Concurrently, precise molecular docking studies of the principal active components of DBL and their corresponding targets were conducted using Autodock software. Additionally, PTC-related genes were selected through the GeneCards and GEO databases. We further employed the DAVID bioinformatics resources to conduct comprehensive Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses on the intersecting genes between DBL and PTC. These analyses aid in predicting the potential therapeutic actions of DBL on PTC and its mechanisms of action. To validate these findings, corresponding in vitro experimental studies were also conducted. RESULTS In this investigation, 14 bioactive compounds of DBL and 195 corresponding molecular targets were identified, with 127 common targets shared between DBL and PTC. Molecular docking revealed strong binding affinities between major bioactive compounds and target proteins. GO enrichment analysis unveiled key processes involved in DBL's action. KEGG analysis highlighted DBL's modulation of the PI3K/AKT signaling pathway. Experimental outcomes demonstrated DBL's potential in inhibiting PTC cell proliferation and migration, suppressing PI3K/AKT pathway activation, and promoting ferroptosis. CONCLUSION In conclusion, DBL offers a multifaceted therapeutic approach for PTC, targeting multiple molecular entities and influencing diverse biological pathways. Network pharmacology and molecular docking shed light on DBL's potential utility in PTC treatment, substantiated by experimental validation. This study contributes valuable insights into using DBL as a promising therapeutic agent for PTC management.
Collapse
Affiliation(s)
- Yuzhi Gao
- Department of Central Laboratory, Clinical College of Lianyungang, Bengbu Medical University, Lianyungang, 222002, Jiangsu, China; Department of Central Laboratory, Lianyungang Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang 222002, Jiangsu, China; Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang 222002, Jiangsu, China
| | - Zhendong Yang
- Department of Ultrasonography, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang 222002, Jiangsu, China
| | - Tuo Ji
- Department of Central Laboratory, Clinical College of Lianyungang, Bengbu Medical University, Lianyungang, 222002, Jiangsu, China; Department of Central Laboratory, Lianyungang Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang 222002, Jiangsu, China; Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang 222002, Jiangsu, China
| | - Ping Zhou
- Endocrinology Department, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang 222002, Jiangsu, China
| | - Lei Geng
- Department of Radiology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang 222002, Jiangsu, China
| | - Xuzhu Gao
- Department of Central Laboratory, Clinical College of Lianyungang, Bengbu Medical University, Lianyungang, 222002, Jiangsu, China; Department of Central Laboratory, Lianyungang Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang 222002, Jiangsu, China; Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang 222002, Jiangsu, China.
| |
Collapse
|
16
|
Dheeraj A, Garcia Marques FJ, Tailor D, Bermudez A, Resendez A, Pandrala M, Grau B, Kumar P, Haley CB, Honkala A, Kujur P, Jeffrey SS, Pitteri S, Malhotra SV. Inhibition of protein translational machinery in triple-negative breast cancer as a promising therapeutic strategy. Cell Rep Med 2024; 5:101552. [PMID: 38729158 PMCID: PMC11148772 DOI: 10.1016/j.xcrm.2024.101552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 07/11/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024]
Abstract
Y-box binding protein-1 (YB-1) is a proto-oncogenic protein associated with protein translation regulation. It plays a crucial role in the development and progression of triple-negative breast cancer (TNBC). In this study, we describe a promising approach to inhibit YB-1 using SU056, a small-molecule inhibitor. SU056 physically interacts with YB-1 and reduces its expression, which helps to restrain the progression of TNBC. Proteome profiling analysis indicates that the inhibition of YB-1 by SU056 can alter the proteins that regulate protein translation, an essential process for cancer cell growth. Preclinical studies on human cells, mice, and patient-derived xenograft tumor models show the effectiveness of SU056. Moreover, toxicological studies have shown that SU056 treatment and dosing are well tolerated without any adverse effects. Overall, our study provides a strong foundation for the further development of SU056 as a potential treatment option for patients with TNBC by targeting YB-1.
Collapse
Affiliation(s)
- Arpit Dheeraj
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Fernando Jose Garcia Marques
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Dhanir Tailor
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Abel Bermudez
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Angel Resendez
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mallesh Pandrala
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Benedikt Grau
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Praveen Kumar
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Carrsyn B Haley
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Alexander Honkala
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Praveen Kujur
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Stefanie S Jeffrey
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sharon Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sanjay V Malhotra
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
17
|
Xu J, Zong S, Sheng T, Zheng J, Wu Q, Wang Q, Tang A, Song Y, Fei Y, Li Z. Rapamycin increases leukemia cell sensitivity to chemotherapy by regulating mTORC1 pathway-mediated apoptosis and autophagy. Int J Hematol 2024; 119:541-551. [PMID: 38530586 DOI: 10.1007/s12185-024-03732-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 03/28/2024]
Abstract
This study investigated the effect of rapamycin alone and in combination with chemotherapy (doxorubicin and cytarabine) on AML. Human acute monocytic leukemia cell line SHI-1 and NPG AML model mice created by intravenous injection of SHI-1 cell were treated with rapamycin, chemotherapy, or rapamycin plus chemotherapy. Analysis by cell counting kit-8, western blot, flow cytometry, and immunohistochemistry was performed, and results suggested that both rapamycin and chemotherapy inhibited proliferation of SHI-1 cells both in vitro and in vivo, suppressed neoplasm growth in vivo, and promoted survival of NPG AML mice. The antitumor effect of rapamycin plus chemotherapy was better than that of rapamycin alone and chemotherapy alone. In addition, western blot results demonstrated that rapamycin inhibited the phosphorylation of mTOR downstream targets 4EBP1 and S6K1 in SHI-1 cells, and increased the pro-apoptosis-related protein Bax and autophagy-associated proteins Beclin-1, LC3B-II, and ATG5 while reducing the anti-apoptosis-related protein Bcl-2. In conclusion, the results of this study indicate that rapamycin acts synergistically with doxorubicin and cytarabine in AML treatment, and its underlying mechanism might be associated with mTORC1 pathway-mediated apoptosis and autophagy.
Collapse
Affiliation(s)
- Jing Xu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Siwen Zong
- Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Tianle Sheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jifu Zheng
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Qiong Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Qingming Wang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Aiping Tang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Yuan Song
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Yan Fei
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Zhenjiang Li
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
18
|
Barone S, Zahedi K, Brooks M, Soleimani M. Carbonic Anhydrase 2 Deletion Delays the Growth of Kidney Cysts Whereas Foxi1 Deletion Completely Abrogates Cystogenesis in TSC. Int J Mol Sci 2024; 25:4772. [PMID: 38731991 PMCID: PMC11084925 DOI: 10.3390/ijms25094772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Tuberous sclerosis complex (TSC) presents with renal cysts and benign tumors, which eventually lead to kidney failure. The factors promoting kidney cyst formation in TSC are poorly understood. Inactivation of carbonic anhydrase 2 (Car2) significantly reduced, whereas, deletion of Foxi1 completely abrogated the cyst burden in Tsc1 KO mice. In these studies, we contrasted the ontogeny of cyst burden in Tsc1/Car2 dKO mice vs. Tsc1/Foxi1 dKO mice. Compared to Tsc1 KO, the Tsc1/Car2 dKO mice showed few small cysts at 47 days of age. However, by 110 days, the kidneys showed frequent and large cysts with overwhelming numbers of A-intercalated cells in their linings. The magnitude of cyst burden in Tsc1/Car2 dKO mice correlated with the expression levels of Foxi1 and was proportional to mTORC1 activation. This is in stark contrast to Tsc1/Foxi1 dKO mice, which showed a remarkable absence of kidney cysts at both 47 and 110 days of age. RNA-seq data pointed to profound upregulation of Foxi1 and kidney-collecting duct-specific H+-ATPase subunits in 110-day-old Tsc1/Car2 dKO mice. We conclude that Car2 inactivation temporarily decreases the kidney cyst burden in Tsc1 KO mice but the cysts increase with advancing age, along with enhanced Foxi1 expression.
Collapse
Affiliation(s)
- Sharon Barone
- Research Services, New Mexico Veterans Health Care System, Albuquerque, NM 87108, USA; (S.B.); (K.Z.); (M.B.)
- Department of Medicine, Division of Nephrology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Kamyar Zahedi
- Research Services, New Mexico Veterans Health Care System, Albuquerque, NM 87108, USA; (S.B.); (K.Z.); (M.B.)
- Department of Medicine, Division of Nephrology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Marybeth Brooks
- Research Services, New Mexico Veterans Health Care System, Albuquerque, NM 87108, USA; (S.B.); (K.Z.); (M.B.)
- Department of Medicine, Division of Nephrology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Manoocher Soleimani
- Research Services, New Mexico Veterans Health Care System, Albuquerque, NM 87108, USA; (S.B.); (K.Z.); (M.B.)
- Department of Medicine, Division of Nephrology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
19
|
Rawat SS, Laxmi A. Sugar signals pedal the cell cycle! FRONTIERS IN PLANT SCIENCE 2024; 15:1354561. [PMID: 38562561 PMCID: PMC10982403 DOI: 10.3389/fpls.2024.1354561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
Cell cycle involves the sequential and reiterative progression of important events leading to cell division. Progression through a specific phase of the cell cycle is under the control of various factors. Since the cell cycle in multicellular eukaryotes responds to multiple extracellular mitogenic cues, its study in higher forms of life becomes all the more important. One such factor regulating cell cycle progression in plants is sugar signalling. Because the growth of organs depends on both cell growth and proliferation, sugars sensing and signalling are key control points linking sugar perception to regulation of downstream factors which facilitate these key developmental transitions. However, the basis of cell cycle control via sugars is intricate and demands exploration. This review deals with the information on sugar and TOR-SnRK1 signalling and how they manoeuvre various events of the cell cycle to ensure proper growth and development.
Collapse
Affiliation(s)
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
20
|
Zhang Y, Tang N, Zhou H, Zhu Y. The role of microbial metabolites in endocrine tumorigenesis: From the mechanistic insights to potential therapeutic biomarkers. Biomed Pharmacother 2024; 172:116218. [PMID: 38308969 DOI: 10.1016/j.biopha.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Microbial metabolites have been indicated to communicate with the host's endocrine system, regulating hormone production, immune-endocrine communications, and interactions along the gut-brain axis, eventually affecting the occurrence of endocrine cancer. Furthermore, microbiota metabolites such as short-chain fatty acids (SCFAs) have been found to affect the tumor microenvironment and boost immunity against tumors. SCFAs, including butyrate and acetate, have been demonstrated to exert anti-proliferative and anti-protective activity on pancreatic cancer cells. The employing of microbial metabolic products in conjunction with radiation and chemotherapy has shown promising outcomes in terms of reducing treatment side effects and boosting effectiveness. Certain metabolites, such as valerate and butyrate, have been made known to improve the efficiency of CAR T-cell treatment, whilst others, such as indole-derived tryptophan metabolites, have been shown to inhibit tumor immunity. This review explores the intricate interplay between microbial metabolites and endocrine tumorigenesis, spanning mechanistic insights to the discovery of potential therapeutic biomarkers.
Collapse
Affiliation(s)
- Yiyi Zhang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Nie Tang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Hui Zhou
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Ying Zhu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
21
|
Bierling TEH, Gumann A, Ottmann SR, Schulz SR, Weckwerth L, Thomas J, Gessner A, Wichert M, Kuwert F, Rost F, Hauke M, Freudenreich T, Mielenz D, Jäck HM, Pracht K. GLUT1-mediated glucose import in B cells is critical for anaplerotic balance and humoral immunity. Cell Rep 2024; 43:113739. [PMID: 38340319 DOI: 10.1016/j.celrep.2024.113739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Glucose uptake increases during B cell activation and antibody-secreting cell (ASC) differentiation, but conflicting findings prevent a clear metabolic profile at different stages of B cell activation. Deletion of the glucose transporter type 1 (GLUT1) gene in mature B cells (GLUT1-cKO) results in normal B cell development, but it reduces germinal center B cells and ASCs. GLUT1-cKO mice show decreased antigen-specific antibody titers after vaccination. In vitro, GLUT1-deficient B cells show impaired activation, whereas established plasmablasts abolish glycolysis, relying on mitochondrial activity and fatty acids. Transcriptomics and metabolomics reveal an altered anaplerotic balance in GLUT1-deficient ASCs. Despite attempts to compensate for glucose deprivation by increasing mitochondrial mass and gene expression associated with glycolysis, the tricarboxylic acid cycle, and hexosamine synthesis, GLUT1-deficient ASCs lack the metabolites for energy production and mitochondrial respiration, limiting protein synthesis. We identify GLUT1 as a critical metabolic player defining the germinal center response and humoral immunity.
Collapse
Affiliation(s)
- Theresa E H Bierling
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Amelie Gumann
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Shannon R Ottmann
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian R Schulz
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Leonie Weckwerth
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jana Thomas
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Magdalena Wichert
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Frederic Kuwert
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Rost
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Manuela Hauke
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Tatjana Freudenreich
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Pracht
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
22
|
Lee TJ, Sasaki Y, Ruzycki PA, Ban N, Lin JB, Wu HT, Santeford A, Apte RS. Catalytic isoforms of AMP-activated protein kinase differentially regulate IMPDH activity and photoreceptor neuron function. JCI Insight 2024; 9:e173707. [PMID: 38227383 PMCID: PMC11143937 DOI: 10.1172/jci.insight.173707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024] Open
Abstract
AMP-activated protein kinase (AMPK) plays a crucial role in maintaining ATP homeostasis in photoreceptor neurons. AMPK is a heterotrimeric protein consisting of α, β, and γ subunits. The independent functions of the 2 isoforms of the catalytic α subunit, PRKAA1 and PRKAA2, are uncharacterized in specialized neurons, such as photoreceptors. Here, we demonstrate in mice that rod photoreceptors lacking PRKAA2, but not PRKAA1, showed altered levels of cGMP, GTP, and ATP, suggesting isoform-specific regulation of photoreceptor metabolism. Furthermore, PRKAA2-deficient mice displayed visual functional deficits on electroretinography and photoreceptor outer segment structural abnormalities on transmission electron microscopy consistent with neuronal dysfunction, but not neurodegeneration. Phosphoproteomics identified inosine monophosphate dehydrogenase (IMPDH) as a molecular driver of PRKAA2-specific photoreceptor dysfunction, and inhibition of IMPDH improved visual function in Prkaa2 rod photoreceptor-knockout mice. These findings highlight a therapeutically targetable PRKAA2 isoform-specific function of AMPK in regulating photoreceptor metabolism and function through a potentially previously uncharacterized mechanism affecting IMPDH activity.
Collapse
Affiliation(s)
- Tae Jun Lee
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences
- Department of Developmental Biology; and
| | - Yo Sasaki
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Philip A. Ruzycki
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Norimitsu Ban
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Joseph B. Lin
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences
| | | | - Andrea Santeford
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences
| | - Rajendra S. Apte
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences
- Department of Developmental Biology; and
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
23
|
Ahuja A, Singh S, Murti Y. Chemical Probes Review: Choosing the Right Path Towards Pharmacological Targets in Drug Discovery, Challenges and Future Perspectives. Comb Chem High Throughput Screen 2024; 27:2544-2564. [PMID: 38083882 DOI: 10.2174/0113862073283304231118155730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 09/27/2024]
Abstract
Chemical probes are essential for academic research and target validation for disease identification. They facilitate drug discovery, target function investigation, and translation studies. A chemical probe provides starting material that can accelerate therapeutic values and safety measures for identifying any biological target in drug discovery. Essential read outs depend on their versatility in biochemical testing, proving the hypothesis, selectivity, specificity, affinity towards the target site, and valuable in new therapeutic approaches. Disease management will depend upon chemical probes as a primitive tool to ascertain the physicochemical stability for in vivo and in vitro studies useful for clinical trials and industrial application in the future. For cancer research, bacterial infection, and neurodegenerative disorders, chemical probes are integrated circuits which are on pipeline for the drug discovery process Furthermore, pharmacological modulators incorporate activators, crosslinkers, degraders, and inhibitors. Reports accessed depend on their structural, mechanical, biochemical, and pharmacological characterization in drug discovery research. The perspective for designing any chemical probes concludes with the utilization of drug discovery and identification of the potential target. It focuses mainly on evidence-based studies and produces promising results in successfully delivering novel therapeutics to treat cancers and other disorders at the target site. Moreover, natural product pharmacophores like rapamycin, cephalosporin, and α-lactamase are utilized for drug discovery. Chemical probes revolutionize computational-based study design depending on identifying novel targets within the database framework. Chemical probes are the clinical answers for drug development and goforward tools in solving other riddles for scientists and researchers working in this industries.
Collapse
Affiliation(s)
- Ashima Ahuja
- Institute of Pharmaceutical Research, GLA University, Mathura, India, UP, 281406
| | - Sonia Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, India, UP, 281406
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University, Mathura, India, UP, 281406
| |
Collapse
|
24
|
Chen Z, Li C, Huang H, Shi YL, Wang X. Research Progress of Aging-related MicroRNAs. Curr Stem Cell Res Ther 2024; 19:334-350. [PMID: 36892029 DOI: 10.2174/1574888x18666230308111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 03/10/2023]
Abstract
Senescence refers to the irreversible state in which cells enter cell cycle arrest due to internal or external stimuli. The accumulation of senescent cells can lead to many age-related diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancers. MicroRNAs are short non-coding RNAs that bind to target mRNA to regulate gene expression after transcription and play an important regulatory role in the aging process. From nematodes to humans, a variety of miRNAs have been confirmed to alter and affect the aging process. Studying the regulatory mechanisms of miRNAs in aging can further deepen our understanding of cell and body aging and provide a new perspective for the diagnosis and treatment of aging-related diseases. In this review, we illustrate the current research status of miRNAs in aging and discuss the possible prospects for clinical applications of targeting miRNAs in senile diseases.
Collapse
Affiliation(s)
- Zhongyu Chen
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Chenxu Li
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Haitao Huang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Yi-Ling Shi
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
- Key Laboratory of University Cell Biology, Dali, Yunnan, 671000, China
| |
Collapse
|
25
|
Fard SS, Holz MK. Regulation of mRNA translation by estrogen receptor in breast cancer. Steroids 2023; 200:109316. [PMID: 37806603 PMCID: PMC10841406 DOI: 10.1016/j.steroids.2023.109316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
Breast cancer is one of the leading causes of cancer-related fatalities and the most often diagnosed malignancy in women globally. Dysregulation of sex hormone signaling pathways mediated by the estrogen receptor (ER) in breast cancer is well characterized. Although ER is known to promote cell growth and survival by altering gene transcription, recent research suggests that its effects in cancers are also mediated through dysregulation of protein synthesis. This implies that ER can coordinately affect gene expression through both translational and transcriptional pathways, leading to the development of malignancy. In this review, we will cover the current understanding of how the ER controls mRNA translation in breast cancer and discuss any potential clinical implications of this phenomenon.
Collapse
Affiliation(s)
- Shahrzad S Fard
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, NY, USA
| | - Marina K Holz
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, NY, USA; Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
26
|
Frappaolo A, Giansanti MG. Using Drosophila melanogaster to Dissect the Roles of the mTOR Signaling Pathway in Cell Growth. Cells 2023; 12:2622. [PMID: 37998357 PMCID: PMC10670727 DOI: 10.3390/cells12222622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
The evolutionarily conserved target of rapamycin (TOR) serine/threonine kinase controls eukaryotic cell growth, metabolism and survival by integrating signals from the nutritional status and growth factors. TOR is the catalytic subunit of two distinct functional multiprotein complexes termed mTORC1 (mechanistic target of rapamycin complex 1) and mTORC2, which phosphorylate a different set of substrates and display different physiological functions. Dysregulation of TOR signaling has been involved in the development and progression of several disease states including cancer and diabetes. Here, we highlight how genetic and biochemical studies in the model system Drosophila melanogaster have been crucial to identify the mTORC1 and mTORC2 signaling components and to dissect their function in cellular growth, in strict coordination with insulin signaling. In addition, we review new findings that involve Drosophila Golgi phosphoprotein 3 in regulating organ growth via Rheb-mediated activation of mTORC1 in line with an emerging role for the Golgi as a major hub for mTORC1 signaling.
Collapse
Affiliation(s)
- Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| |
Collapse
|
27
|
Soleimani M. Not all kidney cysts are created equal: a distinct renal cystogenic mechanism in tuberous sclerosis complex (TSC). Front Physiol 2023; 14:1289388. [PMID: 38028758 PMCID: PMC10663234 DOI: 10.3389/fphys.2023.1289388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Tuberous Sclerosis Complex (TSC) is an autosomal dominant genetic disease caused by mutations in either TSC1 or TSC2 genes. Approximately, two million individuals suffer from this disorder worldwide. TSC1 and TSC2 code for the proteins harmartin and tuberin, respectively, which form a complex that regulates the mechanistic target of rapamycin complex 1 (mTORC1) and prevents uncontrollable cell growth. In the kidney, TSC presents with the enlargement of benign tumors (angiomyolipomas) and cysts whose presence eventually causes kidney failure. The factors promoting cyst formation and tumor growth in TSC are poorly understood. Recent studies on kidney cysts in various mouse models of TSC, including mice with principal cell- or pericyte-specific inactivation of TSC1 or TSC2, have identified a unique cystogenic mechanism. These studies demonstrate the development of numerous cortical cysts that are predominantly comprised of hyperproliferating A-intercalated (A-IC) cells that express both TSC1 and TSC2. An analogous cellular phenotype in cystic epithelium is observed in both humans with TSC and in TSC2+/- mice, confirming a similar kidney cystogenesis mechanism in TSC. This cellular phenotype profoundly contrasts with kidney cysts found in Autosomal Dominant Polycystic Kidney Disease (ADPKD), which do not show any notable evidence of A-IC cells participating in the cyst lining or expansion. RNA sequencing (RNA-Seq) and confirmatory expression studies demonstrate robust expression of Forkhead Box I1 (FOXI1) transcription factor and its downstream targets, including apical H+-ATPase and cytoplasmic carbonic anhydrase 2 (CAII), in the cyst epithelia of Tsc1 (or Tsc2) knockout (KO) mice, but not in Polycystic Kidney Disease (Pkd1) mutant mice. Deletion of FOXI1, which is vital to H+-ATPase expression and intercalated (IC) cell viability, completely inhibited mTORC1 activation and abrogated the cyst burden in the kidneys of Tsc1 KO mice. These results unequivocally demonstrate the critical role that FOXI1 and A-IC cells, along with H+-ATPase, play in TSC kidney cystogenesis. This review article will discuss the latest research into the causes of kidney cystogenesis in TSC with a focus on possible therapeutic options for this devastating disease.
Collapse
Affiliation(s)
- Manoocher Soleimani
- Department of Medicine, New Mexico Veterans Health Care Center, Albuquerque, NM, United States
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
28
|
Villa F, Crippa A, Pelizzoni D, Ardizzoia A, Scartabellati G, Corbetta C, Cipriani E, Lavitrano M, Ardizzoia A. Progression after First-Line Cyclin-Dependent Kinase 4/6 Inhibitor Treatment: Analysis of Molecular Mechanisms and Clinical Data. Int J Mol Sci 2023; 24:14427. [PMID: 37833875 PMCID: PMC10572355 DOI: 10.3390/ijms241914427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
Cyclin-dependent kinase 4/6 inhibitors (CDK4/6iss) are widely used in first-line metastatic breast cancer. For patients with progression under CDK4/6is, there is currently no standard treatment recommended at the category 1 level in international guidelines. The purpose of this article is to review the cellular mechanisms underlying the resistance to CDK4/6is, as well as treatment strategies and the clinical data about the efficacy of subsequent treatments after CDK4/6is-based therapy. In the first part, this review mainly discusses cell-cycle-specific and cell-cycle-non-specific resistance to CDK4/6is, with a focus on early and late progression. In the second part, this review analyzes potential therapeutic approaches and the available clinical data on them: switching to other CDK4/6is, to another single hormonal therapy, to other target therapies (PI3K, mTOR and AKT) and to chemotherapy.
Collapse
Affiliation(s)
- Federica Villa
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Alessandra Crippa
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Davide Pelizzoni
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Alessandra Ardizzoia
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy; (A.A.); (M.L.)
| | - Giulia Scartabellati
- Medical Oncology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
- Department of Medical and Surgical Specialties, Medical Oncology, University of Brescia, 25121 Brescia, Italy
| | - Cristina Corbetta
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Eleonora Cipriani
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy; (A.A.); (M.L.)
| | - Antonio Ardizzoia
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| |
Collapse
|
29
|
Kapur P, Brugarolas J, Trpkov K. Recent Advances in Renal Tumors with TSC/mTOR Pathway Abnormalities in Patients with Tuberous Sclerosis Complex and in the Sporadic Setting. Cancers (Basel) 2023; 15:4043. [PMID: 37627070 PMCID: PMC10452688 DOI: 10.3390/cancers15164043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
A spectrum of renal tumors associated with frequent TSC/mTOR (tuberous sclerosis complex/mechanistic target of rapamycin) pathway gene alterations (in both the germline and sporadic settings) have recently been described. These include renal cell carcinoma with fibromyomatous stroma (RCC FMS), eosinophilic solid and cystic renal cell carcinoma (ESC RCC), eosinophilic vacuolated tumor (EVT), and low-grade oncocytic tumor (LOT). Most of these entities have characteristic morphologic and immunohistochemical features that enable their recognition without the need for molecular studies. In this report, we summarize recent advances and discuss their evolving complexity.
Collapse
Affiliation(s)
- Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Kidney Cancer Program at Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James Brugarolas
- Kidney Cancer Program at Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hematology-Oncology Division of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2L 2K5, Canada
- Alberta Precision Labs, Rockyview General Hospital, 7007 14 St., Calgary, AB T2V 1P9, Canada
| |
Collapse
|
30
|
Sadeghi H, Lynch CF, Field WR, Snetselaar LG, Jones MP, Sinha R, Torner JC. Dietary omega-6/omega-3 fatty acids and risk of prostate cancer; Is there any potential interaction by organophosphate insecticides among the agricultural health study population. Cancer Epidemiol 2023; 85:102410. [PMID: 37413804 PMCID: PMC10528409 DOI: 10.1016/j.canep.2023.102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND In the United States (US), the average annual increase in the incidence of prostate cancer (PCa) has been 0.5% between 2013 and 2017. Although some modifiable factors have been identified as the risk factors for PCa, the effect of lower ratio of omega-6 to omega-3 fatty acids intake (N-6/N-3) remains unknown. Previous studies of the Agricultural Health Study (AHS) reported a significant positive association between PCa and selected organophosphate pesticides (OPs) including terbufos and fonofos. OBJECTIVE The aim of this study was to evaluate the association between N-6/N-3 and PCa and any interaction between N-6/N-3 and 2 selected OPs (i.e., terbufos and fonofos) exposure. DESIGN AND PARTICIPANTS This case-control study, nested within a prospective cohort study, was conducted on a subgroup of the AHS population (1193 PCa cases and 14,872 controls) who returned their dietary questionnaire between 1999 and 2003 MAIN OUTCOME MEASURES: PCa was coded based on the International Classification of Diseases of Oncology (ICD-O-3) definitions and obtained from the statewide cancer registries of Iowa (2003-2017) and North Carolina (2003-2014). STATISTICAL ANALYSIS Multivariate logistic regression analysis was applied to obtain the odds ratios adjusted (aORs) for age at dietary assessment (years), race/ethnicity (white, African American, other), physical activity (hours/week), smoking (yes/no), terbufos (yes/no), fonofos (yes/no), diabetes, lycopene intake (milligrams/day), family history of PCa, and the interaction of N-6/N-3 with age, terbufos and fonofos. Pesticide exposure was assessed by self-administrated questionnaires collecting data on ever/never use of mentioned pesticides during lifetime as a yes/no variable. Assessing the P value for the interaction between pesticides and N-6/N-3, we used the continuous variable of "intensity adjusted cumulative exposure" to terbufos and fonofos. This exposure score was based on duration, intensity and frequency of exposure. We also conducted a stratified regression analysis by quartiles of age. RESULTS Relative to the highest N-6/N-3 quartile, the lowest quartile was significantly associated with a decreased risk of PCa (aOR=0.61, 95% CI: 0.41-0.90), and quartile-specific aORs decreased toward the lowest quartile (Ptrend=<0.01). Based on the age-stratified analysis, the protective effect was only significant for the lowest quartile of N-6/N-3 among those aged between 48 and 55 years old (aORs=0.97, 95% CI, 0.45-0.55). Among those who were exposed to terbufos (ever exposure reported as yes in the self-report questionnaires), lower quartiles of N-6/N-3 were protective albeit nonsignificant (aORs: 0.86, 0.92, 0.91 in quartiles 1,2, and 3, respectively). No meaningful findings were observed for fonofos and N-6/N-3 interaction. CONCLUSION Findings showed that lower N-6/N-3 may decrease risk of PCa among farmers. However, no significant interaction was found between selected organophosphate pesticides and N-6/N-3.
Collapse
Affiliation(s)
- Homa Sadeghi
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA.
| | - Charles F Lynch
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - William R Field
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Linda G Snetselaar
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Michael P Jones
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Rashmi Sinha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James C Torner
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| |
Collapse
|
31
|
Wang P, Gong Y, Li D, Zhao X, Zhang Y, Zhang J, Geng X, Zhang X, Tian Y, Li W, Sun G, Han R, Kang X, Li Z, Jiang R. Effect of induced molting on ovarian function remodeling in laying hens. Poult Sci 2023; 102:102820. [PMID: 37329628 PMCID: PMC10404790 DOI: 10.1016/j.psj.2023.102820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/19/2023] Open
Abstract
Induced molting (IM) can restore the laying rate of aged laying hens to the peak level of laying and rejuvenate ovarian function for the second laying cycle. To explore the mechanism of ovarian function remodeling during IM in laying hens, in this study, ninety 71-wk-old laying lady hens with 60% laying rate and uniform weight were selected for molting induction by fasting. Samples (serum and fresh ovarian tissue) were collected on the day before fasting (F0), the 3rd and 16th days of fasting (F3, F16), and the 6th, 15th, 32nd days of refeeding (R6, R15, and R32), and the number of follicles in each period was counted. Then, the reproductive hormone levels in serum and antioxidant levels in ovarian tissues were detected at different stages, and the gene expression of the KIT-PI3K-PTEN-AKT pathway and GDF-9 in ovaries was measured by qRT-PCR. The results showed that the laying rate increased rapidly after refeeding and returned to the prefasting level by R32. At F16 and R6, the number of mature follicles significantly decreased; the number of primary and secondary follicles significantly increased; the contents of follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), and progesterone (P4) in serum decreased; the relative expression of KIT, PI3K, AKT, and GDF-9 significantly increased; and that of PTEN significantly decreased. At R15 and R32, except for GDF-9, which maintained a high expression state, other indicators showed opposing trends to those observed at F16 and R6. In conclusion, IM activated the KIT-PI3K-PTEN-AKT signaling pathway and promoted the activation of primordial follicles during the fasting period and early resumption of feeding; gonadotropin secretion increased gradually, which promoted the rapid development of primary and secondary follicles to mature follicles and ovulation. This study explained the mechanism of ovarian function remodeling in the process of IM and provided a theoretical basis for improving the ovarian function of laying hens and optimizing the IM program.
Collapse
Affiliation(s)
- Pengyu Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Yujie Gong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Xinlong Zhao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Yihui Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Jun Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Xiaoqing Geng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Xiaoran Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China.
| |
Collapse
|
32
|
Silva-García CG. Devo-Aging: Intersections Between Development and Aging. GeroScience 2023; 45:2145-2159. [PMID: 37160658 PMCID: PMC10651630 DOI: 10.1007/s11357-023-00809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
There are two fundamental questions in developmental biology. How does a single fertilized cell give rise to a whole body? and how does this body later produce progeny? Synchronization of these embryonic and postembryonic developments ensures continuity of life from one generation to the next. An enormous amount of work has been done to unravel the molecular mechanisms behind these processes, but more recently, modern developmental biology has been expanded to study development in wider contexts, including regeneration, environment, disease, and even aging. However, we have just started to understand how the mechanisms that govern development also regulate aging. This review discusses examples of signaling pathways involved in development to elucidate how their regulation influences healthspan and lifespan. Therefore, a better knowledge of developmental signaling pathways stresses the possibility of using them as innovative biomarkers and targets for aging and age-related diseases.
Collapse
Affiliation(s)
- Carlos Giovanni Silva-García
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
33
|
Marques-Ramos A, Cervantes R. Expression of mTOR in normal and pathological conditions. Mol Cancer 2023; 22:112. [PMID: 37454139 PMCID: PMC10349476 DOI: 10.1186/s12943-023-01820-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023] Open
Abstract
The mechanistic/mammalian target of rapamycin (mTOR), a protein discovered in 1991, integrates a complex pathway with a key role in maintaining cellular homeostasis. By comprising two functionally distinct complexes, mTOR complex 1 (mTORC1) and mTORC2, it is a central cellular hub that integrates intra- and extracellular signals of energy, nutrient, and hormone availability, modulating the molecular responses to acquire a homeostatic state through the regulation of anabolic and catabolic processes. Accordingly, dysregulation of mTOR pathway has been implicated in a variety of human diseases. While major advances have been made regarding the regulators and effectors of mTOR signaling pathway, insights into the regulation of mTOR gene expression are beginning to emerge. Here, we present the current available data regarding the mTOR expression regulation at the level of transcription, translation and mRNA stability and systematize the current knowledge about the fluctuations of mTOR expression observed in several diseases, both cancerous and non-cancerous. In addition, we discuss whether mTOR expression changes can be used as a biomarker for diagnosis, disease progression, prognosis and/or response to therapeutics. We believe that our study will contribute for the implementation of new disease biomarkers based on mTOR as it gives an exhaustive perspective about the regulation of mTOR gene expression in both normal and pathological conditions.
Collapse
Affiliation(s)
- A Marques-Ramos
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal.
| | - R Cervantes
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- Public Health Research Centre, NOVA National School of Public Health, Universidade Nova de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), Lisbon, Portugal
| |
Collapse
|
34
|
Zou B, Du J, Xuan Q, Wang Y, Wang Z, Zhang W, Wang L, Gu W. Scraping Therapy Improved Muscle Regeneration through Regulating GLUT4/Glycolytic and AMPK/mTOR/4EBP1 Pathways in Rats with Lumbar Multifidus Injury. Pain Res Manag 2023; 2023:8870256. [PMID: 37397163 PMCID: PMC10310458 DOI: 10.1155/2023/8870256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023]
Abstract
Background High morbidity of nonspecific low back pain (NLBP) and large consumption of medical resources caused by it have become a heavy social burden. There are many factors inducing NLBP, among which the damage and atrophy of multifidus (MF) are most closely related to NLBP. Scraping therapy can have significant treatment effects on NLBP with fewer adverse reactions and less medical fund input than other modalities or medications. However, the mechanism of scraping therapy treating NLBP remains unclarified. Here, we wanted to investigate the effects of scraping therapy on promoting MF regeneration and the underlying mechanisms. Methods A total of 54 male rats (SD, 6-7 weeks old) were randomly divided into nine groups, namely, K, M6h, M1d, M2d, M3d, G6h, G1d, G2d, and G3d, with six rats in each group. They were injected with bupivacaine (BPVC) to intentionally induce MF injury. We then performed scraping therapy on the rats that had been randomly chosen and compared treatment effects at different time points. In vitro data including skin temperature and tactile allodynia threshold were collected and histological sections were analyzed. mRNA sequencing was applied to distinguish the genes or signaling pathways that had been altered due to scraping therapy, and the results were further verified through reverse transcription polymerase chain reaction and Western blot analysis. Results Transitory petechiae and ecchymosis both on and beneath the rats' skin raised by scraping therapy gradually faded in about 3 d. Cross-sectional area (CSA) of MF was significantly smaller 30 h, 2 d, and 4 d after modeling (P=0.007, P=0.001, and P=0.015, respectively, vs. the blank group) and was significantly larger in the scraping group 1 d after treatment (P=0.002 vs. the model 1d group). Skin temperature significantly increased immediately after scraping (P < 0.001) and hindlimb pain threshold increased on the 2nd day after scraping (P=0.046 and P=0.028, respectively). 391 differentially expressed genes and 8 signaling pathways were characterized 6 h after scraping; only 3 differentially expressed genes and 3 signaling pathways were screened out 2 d after treatment. The amounts of mRNAs or proteins for GLUT4, HK2, PFKM, PKM, LDHA (which belong to the GLUT4/glycolytic pathway), p-mTOR, p-4EBP1 (which belong to the AMPK/mTOR/4EBP1 pathway), and BDH1 were enhanced, and p-AMPKα was decreased after scraping therapy. Conclusions Scraping therapy has therapeutic effects on rats with multifidus injury by promoting muscle regeneration via regulating GLUT4/glycolytic and AMPK/mTOR/4EBP1 signaling pathways.
Collapse
Affiliation(s)
- Bin Zou
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
- Dujiangyan Air Force Special Service Sanatorium, Chengdu 611838, China
| | - Juan Du
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Qiwen Xuan
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Yajing Wang
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Zixiao Wang
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Wen Zhang
- Dujiangyan Air Force Special Service Sanatorium, Chengdu 611838, China
| | - Lianghua Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| | - Wei Gu
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
35
|
Oliveira-Santos A, Dagda M, Wittmann J, Smalley R, Burkin DJ. Vemurafenib improves muscle histopathology in a mouse model of LAMA2-related congenital muscular dystrophy. Dis Model Mech 2023; 16:dmm049916. [PMID: 37021539 PMCID: PMC10184677 DOI: 10.1242/dmm.049916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Laminin-α2-related congenital muscular dystrophy (LAMA2-CMD) is a neuromuscular disease affecting around 1-9 in 1,000,000 children. LAMA2-CMD is caused by mutations in the LAMA2 gene resulting in the loss of laminin-211/221 heterotrimers in skeletal muscle. LAMA2-CMD patients exhibit severe hypotonia and progressive muscle weakness. Currently, there is no effective treatment for LAMA2-CMD and patients die prematurely. The loss of laminin-α2 results in muscle degeneration, defective muscle repair and dysregulation of multiple signaling pathways. Signaling pathways that regulate muscle metabolism, survival and fibrosis have been shown to be dysregulated in LAMA2-CMD. As vemurafenib is a US Food and Drug Administration (FDA)-approved serine/threonine kinase inhibitor, we investigated whether vemurafenib could restore some of the serine/threonine kinase-related signaling pathways and prevent disease progression in the dyW-/- mouse model of LAMA2-CMD. Our results show that vemurafenib reduced muscle fibrosis, increased myofiber size and reduced the percentage of fibers with centrally located nuclei in dyW-/- mouse hindlimbs. These studies show that treatment with vemurafenib restored the TGF-β/SMAD3 and mTORC1/p70S6K signaling pathways in skeletal muscle. Together, our results indicate that vemurafenib partially improves histopathology but does not improve muscle function in a mouse model of LAMA2-CMD.
Collapse
Affiliation(s)
- Ariany Oliveira-Santos
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno, NV 89557, USA
| | - Marisela Dagda
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno, NV 89557, USA
| | - Jennifer Wittmann
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno, NV 89557, USA
| | - Robert Smalley
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno, NV 89557, USA
| | - Dean J. Burkin
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno, NV 89557, USA
| |
Collapse
|
36
|
Yang Y, Xu W, Du X, Ye Y, Tian J, Li Y, Jiang Q, Zhao Y. Effects of dietary melatonin on growth performance, antioxidant capacity, and nonspecific immunity in crayfish, Cherax destructor. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108846. [PMID: 37230307 DOI: 10.1016/j.fsi.2023.108846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
Melatonin (MT) is an indole hormone widely found in plants and animals. Many studies have shown that MT promotes the growth and immunity of mammals, fish, and crabs. However, the effect on commercial crayfish has not been demonstrated. The purpose of this study was to evaluate the effects of dietary MT on growth performance and innate immunity of Cherax destructor from three aspects of individual level, biochemical level, and molecular level after 8 weeks of culture. In this study, we found that MT supplementation increased weight gain rate, specific growth rate, and digestive enzyme activity in C. destructor compared to the control group. Dietary MT not only promoted the activity of T-AOC, SOD, and GR, increased the content of GSH, and decreased the content of MDA in the hepatopancreas, but also increased the content of hemocyanin and copper ions and AKP activity in hemolymph. Gene expression results showed that MT supplementation at appropriate doses increased the expression of cell cycle-regulated genes (CDK, CKI, IGF, and HGF) and non-specific immune genes (TRXR, HSP60, and HSP70). In conclusion, our study showed that adding MT to the diet improved growth performance, enhanced the antioxidant capacity of hepatopancreas, and immune parameters of hemolymph in C. destructor. In addition, our results showed that the optimal dietary supplementation dose of MT in C. destructor is 75-81 mg/kg.
Collapse
Affiliation(s)
- Ying Yang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Wenyue Xu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Jiangtao Tian
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
37
|
Balasundaram A, Kumar S U, D TK, Anil Dedge A, R G, K SS, R S, C GPD. The targeted next-generation sequence revealed SMAD4, AKT1, and TP53 mutations from circulating cell-free DNA of breast cancer and its effect on protein structure - A computational approach. J Biomol Struct Dyn 2023; 41:15584-15597. [PMID: 37011004 DOI: 10.1080/07391102.2023.2191122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/06/2023] [Indexed: 04/04/2023]
Abstract
Breast cancer biomarkers that detect marginally advanced stages are still challenging. The detection of specific abnormalities, targeted therapy selection, prognosis, and monitoring of treatment effectiveness over time are all made possible by circulating free DNA (cfDNA) analysis. The proposed study will detect specific genetic abnormalities from the plasma cfDNA of a female breast cancer patient by sequencing a cancer-related gene panel (MGM455 - Oncotrack Ultima), including 56 theranostic genes (SNVs and small INDELs). Initially, we determined the pathogenicity of the observed mutations using PredictSNP, iStable, Align-GVGD, and ConSurf servers. As a next step, molecular dynamics (MD) was implemented to determine the functional significance of SMAD4 mutation (V465M). Lastly, the mutant gene relationships were examined using the Cytoscape plug-in GeneMANIA. Using ClueGO, we determined the gene's functional enrichment and integrative analysis. The structural characteristics of SMAD4 V465M protein by MD simulation analysis further demonstrated that the mutation was deleterious. The simulation showed that the native structure was more significantly altered by the SMAD4 (V465M) mutation. Our findings suggest that SMAD4 V465M mutation might be significantly associated with breast cancer, and other patient-found mutations (AKT1-E17K and TP53-R175H) are synergistically involved in the process of SMAD4 translocate to nuclease, which affects the target gene translation. Therefore, this combination of gene mutations could alter the TGF-β signaling pathway in BC. We further proposed that the SMAD4 protein loss may contribute to an aggressive phenotype by inhibiting the TGF-β signaling pathway. Thus, breast cancer's SMAD4 (V465M) mutation might increase their invasive and metastatic capabilities.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ambritha Balasundaram
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Udhaya Kumar S
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Thirumal Kumar D
- Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India
| | - Aditi Anil Dedge
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gnanasambandan R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Satish Srinivas K
- Department of Radiation Oncology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - Siva R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
38
|
Wang Y, Wang S, Xu J, Wang Y, Xiang L, He X. Total steroidal saponins from black nightshade (Solanum nigrum L.) overcome tumor multidrug resistance by inducing autophagy-mediated cell death in vivo and in vitro. Phytother Res 2023. [PMID: 36877123 DOI: 10.1002/ptr.7796] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/18/2023] [Accepted: 02/11/2023] [Indexed: 03/07/2023]
Abstract
Multiple drug resistance (MDR) often occurs after prolonged chemotherapy, leading to refractory tumors and cancer recurrence. In this study, we demonstrated that the total steroidal saponins from Solanum nigrum L. (SN) had broad-spectrum cytotoxic activity against various human leukemia cancer cell lines, especially in adriamycin (ADR)-sensitive and resistant K562 cell lines. Moreover, SN could effectively inhibit the expression of ABC transporter in K562/ADR cells in vivo and in vitro. In vivo, by establishing K562/ADR xenograft tumor model, we demonstrated that SN might overcome drug resistance and inhibit the proliferation of tumors by regulating autophagy. In vitro, the increased LC3 puncta, the expression of LC3-II and Beclin-1, and the decreased expression of p62/SQSTM1 in SN-treated K562/ADR and K562 cells demonstrated autophagy induced by SN. Moreover, using the autophagy inhibitors or transfecting the ATG5 shRNA, we confirmed that autophagy induced by SN was a key factor in overcoming MDR thereby promoting cell death in K562/ADR cells. More importantly, SN-induced autophagy through the mTOR signaling pathway to overcome drug resistance and ultimately induced autophagy-mediated cell death in K562/ADR cells. Taken together, our findings suggest that SN has the potential to treat multidrug-resistant leukemia.
Collapse
Affiliation(s)
- Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| | - Siyu Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| | - Limin Xiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| |
Collapse
|
39
|
Stanciu IM, Parosanu AI, Orlov-Slavu C, Iaciu IC, Popa AM, Olaru CM, Pirlog CF, Vrabie RC, Nitipir C. Mechanisms of Resistance to CDK4/6 Inhibitors and Predictive Biomarkers of Response in HR+/HER2-Metastatic Breast Cancer-A Review of the Literature. Diagnostics (Basel) 2023; 13:diagnostics13050987. [PMID: 36900131 PMCID: PMC10000620 DOI: 10.3390/diagnostics13050987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The latest and newest discoveries for advanced and metastatic hormone receptor-positive (HR+) and human epidermal growth factor receptor 2-negative (HER2-) breast cancer are the three cyclin-dependent kinases 4 and 6 inhibitors (CDK4/6i) in association with endocrine therapy (ET). However, even if this treatment revolutionized the world and continued to be the first-line treatment choice for these patients, it also has its limitations, caused by de novo or acquired drug resistance which leads to inevitable progression after some time. Thus, an understanding of the overview of the targeted therapy which represents the gold therapy for this subtype of cancer is essential. The full potential of CDK4/6i is yet to be known, with many trials ongoing to expand their utility to other breast cancer subtypes, such as early breast cancer, and even to other cancers. Our research establishes the important idea that resistance to combined therapy (CDK4/6i + ET) can be due to resistance to endocrine therapy, to treatment with CDK4/6i, or to both. Individuals' responses to treatment are based mostly on genetic features and molecular markers, as well as the tumor's hallmarks; therefore, a future perspective is represented by personalized treatment based on the development of new biomarkers, and strategies to overcome drug resistance to combinations of ET and CDK4/6 inhibitors. The aim of our study was to centralize the mechanisms of resistance, and we believe that our work will have utility for everyone in the medical field who wants to deepen their knowledge about ET + CDK4/6 inhibitors resistance.
Collapse
Affiliation(s)
- Ioana-Miruna Stanciu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Andreea Ioana Parosanu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
- Correspondence: ; Tel.: +40-725-683-118
| | - Cristina Orlov-Slavu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Ion Cristian Iaciu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Ana Maria Popa
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Cristina Mihaela Olaru
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Cristina Florina Pirlog
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Radu Constantin Vrabie
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Cornelia Nitipir
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| |
Collapse
|
40
|
Frias MA, Hatipoglu A, Foster DA. Regulation of mTOR by phosphatidic acid. Trends Endocrinol Metab 2023; 34:170-180. [PMID: 36732094 PMCID: PMC9957947 DOI: 10.1016/j.tem.2023.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023]
Abstract
mTORC1, the mammalian target of rapamycin complex 1, is a key regulator of cellular physiology. The lipid metabolite phosphatidic acid (PA) binds to and activates mTORC1 in response to nutrients and growth factors. We review structural findings and propose a model for PA activation of mTORC1. PA binds to a highly conserved sequence in the α4 helix of the FK506 binding protein 12 (FKBP12)/rapamycin-binding (FRB) domain of mTOR. It is proposed that PA binding to two adjacent positively charged amino acids breaks and shortens the C-terminal region of helix α4. This has profound consequences for both substrate binding and the catalytic activity of mTORC1.
Collapse
Affiliation(s)
- Maria A Frias
- Department of Biology and Health Promotion, St. Francis College, Brooklyn, NY 11201, USA; Department of Biological Sciences, Hunter College of the City University of New York, New York, NY 10065, USA.
| | - Ahmet Hatipoglu
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY 10065, USA; Biochemistry Program, Graduate Center of the City University of New York, New York, NY 10016, USA
| | - David A Foster
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY 10065, USA; Biochemistry Program, Graduate Center of the City University of New York, New York, NY 10016, USA; Biology Program, Graduate Center of the City University of New York, New York, NY 10016, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
41
|
Lu G, Zhang X, Li X, Zhang S. Immunity and Growth Plasticity of Asian Short-Toed Lark Nestlings in Response to Changes in Food Conditions: Can It Buffer the Challenge of Climate Change-Induced Trophic Mismatch? Animals (Basel) 2023; 13:ani13050860. [PMID: 36899717 PMCID: PMC10000144 DOI: 10.3390/ani13050860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
Passerine nestlings frequently suffer from sub-optimal food conditions due to climate change-induced trophic mismatch between the nestlings and their optimal food resources. The ability of nestlings to buffer this challenge is less well understood. We hypothesized that poor food conditions might induce a higher immune response and lower growth rate of nestlings, and such physiological plasticity is conducive to nestling survival. To test this, we examined how food (grasshopper nymphs) abundance affects the expression of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin-1 β (IL-1β) genes, plasma IGF-1 levels, body mass, and fledging rates in wild Asian short-toed lark (Alaudala cheleensis) nestlings. Linear mixed models revealed that nymph biomass significantly influenced the expression of IFN-γ, TNF-α, and IL-1β genes, and the level of plasma IGF-1. The expressions of IFN-γ, TNF-α, and IL-1β genes were negatively correlated with nymph biomass and plasma IGF-1 level. Plasma IGF-1 level, nestling body mass growth rate, was positively correlated with nymph biomass. Despite a positive correlation between the nestling fledge rate and nymph biomass, more than 60% of nestlings fledged when nymph biomass was at the lowest level. These results suggest that immunity and growth plasticity of nestlings may be an adaptation for birds to buffer the negative effects of trophic mismatch.
Collapse
Affiliation(s)
- Guang Lu
- Key Laboratory of Ecology and Environment in Minority Areas (National Ethnic Affairs Commission), Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xinjie Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xinyu Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Shuping Zhang
- Key Laboratory of Ecology and Environment in Minority Areas (National Ethnic Affairs Commission), Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Correspondence:
| |
Collapse
|
42
|
Comparisons between Plant and Animal Stem Cells Regarding Regeneration Potential and Application. Int J Mol Sci 2023; 24:ijms24054392. [PMID: 36901821 PMCID: PMC10002278 DOI: 10.3390/ijms24054392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Regeneration refers to the process by which organisms repair and replace lost tissues and organs. Regeneration is widespread in plants and animals; however, the regeneration capabilities of different species vary greatly. Stem cells form the basis for animal and plant regeneration. The essential developmental processes of animals and plants involve totipotent stem cells (fertilized eggs), which develop into pluripotent stem cells and unipotent stem cells. Stem cells and their metabolites are widely used in agriculture, animal husbandry, environmental protection, and regenerative medicine. In this review, we discuss the similarities and differences in animal and plant tissue regeneration, as well as the signaling pathways and key genes involved in the regulation of regeneration, to provide ideas for practical applications in agriculture and human organ regeneration and to expand the application of regeneration technology in the future.
Collapse
|
43
|
Bushra, Maha IF, Xie X, Yin F. Integration of transcriptomic and metabolomic profiling of encystation in Cryptocaryon irritans regulated by rapamycin. Vet Parasitol 2023; 314:109868. [PMID: 36603452 DOI: 10.1016/j.vetpar.2022.109868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Encystation in Cryptocaryon irritans is a fundamental process for environmental resistance and development. Autophagy participates in the encystation of ciliates, and rapamycin can induce autophagy in the cells. A set of genes and metabolites related to autophagy and encystation are highly elaborative. The existence of these genes and metabolites and their role are well characterized. However, little is known about their role in protozoans such as ciliates. The newly produced C. irritans protomonts were exposed to an optimal concentration of rapamycin (1400 nM), and the survival, encystation, microstructure/ultrastructure, transcriptomic and metabolomic profile in treated and control protomonts were investigated. The results showed that exposure of protomonts to rapamycin at 4 h significantly lowered the survival and encystation rates to 91.62 % and 98.44 % compared to the control group (100 %, p ≤ 0.05). Morphological alterations observed in light microscopy and transmission electron microscopy (TEM) demonstrated that the drug significantly changed cell symmetry by causing the formation of various autophagic vacuoles/vesicles. The transcriptome sequencing of rapamycin-treated protomont revealed that 2249 (1837 up-regulated and 977 down-regulated) differentially expressed genes (DEGs) were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that 226 DEGs were successfully annotated in 21 pathways (p˂0.05), including most enriched pathways apoptosis and phagosome with 25 and 24 DEGs, respectively. Most unigenes were assigned to autophagy-related pathways; 24 DEGs were classified into phagosomes, and 15 DEGs were assigned to lysosome pathways. Cytoskeleton and cell progression-associated genes were down-regulated. Besides, cell death-inducing proteins were up-regulated. The metabolomic analysis revealed exposure to rapamycin treatment enhanced protomont metabolites, including L-Cysteine, which is related to autophagy. Rapamycin had influenced the gene and metabolites of protomont; activating autophagy with inhibition of mechanistic target of rapamycin, (mTOR). The process negatively influences protomont morphology, encystation, and survival. Further autophagy-related gene silencing can be investigated via genome sequencing of C. irritans to study encystation.
Collapse
Affiliation(s)
- Bushra
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China
| | - Ivon F Maha
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China
| | - Xiao Xie
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China.
| | - Fei Yin
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China.
| |
Collapse
|
44
|
Zheng L, Liu Y, Zhang Y, Xu B, Sagada G, Wang Z, Chen C, Lang X, Zhang J, Shao Q. Comparative study on the effects of crystalline L-methionine and methionine hydroxy analogue calcium supplementations in the diet of juvenile Pacific white shrimp ( Litopenaeus vannamei). Front Physiol 2023; 14:1067354. [PMID: 36793420 PMCID: PMC9923173 DOI: 10.3389/fphys.2023.1067354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
An 8-week feeding trial was conducted to evaluate the effects of L-methionine and methionine hydroxy analogue calcium (MHA-Ca) supplements in low-fishmeal diet on growth performance, hepatopancreas morphology, protein metabolism, anti-oxidative capacity, and immunity of Pacific white shrimp (Litopena eus vannamei). Four isonitrogenous and isoenergetic diets were designed: PC (203.3 g/kg fishmeal), NC (100 g/kg fishmeal), MET (100 g/kg fishmeal +3 g/kg L-methionine) and MHA-Ca (100 g/kg fishmeal +3 g/kg MHA-Ca). White shrimp (initial body weight 0.23 ± 0.00 g, 50 shrimp per tank) were allocated to 12 tanks and divided among 4 treatments in triplicates. In response to L-methionine and MHA-Ca supplementations, the shrimp exhibited higher weight gain rate (WGR), specific growth rate (SGR), condition factor (CF), and lower hepatosomatic index (HSI) compared to those fed the NC diet (p < 0.05). The WGR and SGR of shrimp fed L-methionine and MHA-Ca showed no difference with those in the PC diet (p > 0.05). Both of L-methionine and MHA-Ca supplementary diets significantly decreased the malondialdehyde (MDA) levels of shrimp when compared with the NC diet (p < 0.05). L-methionine supplementation improved the lysozyme (LZM) activity and total antioxidant capacity (T-AOC) of shrimp, while the MHA-Ca addition elevated the reduced glutathione (GSH) levels in comparison with those fed the NC diet (p < 0.05). Hypertrophied blister cells in hepatocytes were observed in shrimp fed the NC diet, and alleviated with L-methionine and MHA-Ca supplementations. Shrimp fed the MET and MHA-Ca diets had higher mRNA expression levels of target of rapamycin (tor) than those fed the NC diet (p < 0.05). Compared to the NC group, dietary MHA-Ca supplementation upregulated the expression level of cysteine dioxygenase (cdo) (p < 0.05), while L-methionine supplementation had no significant impact (p > 0.05). The expression levels of superoxide dismutase (sod) and glutathione peroxidase (gpx) were significantly upregulated by L-methionine supplemented diet in comparison with those in the NC group (p < 0.05). Overall, the addition of both L-methionine and MHA-Ca elevated the growth performance, facilitated protein synthesis, and ameliorated hepatopancreatic damage induced by plant-protein enriched diet in L. vannamei. L-methionine and MHA-Ca supplements enhanced anti-oxidants differently.
Collapse
Affiliation(s)
- Lu Zheng
- Aqua-feed and Nutrition Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuechong Liu
- Aqua-feed and Nutrition Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yanmei Zhang
- Aqua-feed and Nutrition Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Bingying Xu
- Aqua-feed and Nutrition Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Gladstone Sagada
- Aqua-feed and Nutrition Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhixuan Wang
- Shandong NHU Amino Acid Co., Ltd, Weifang, China
| | - Cong Chen
- Shandong NHU Amino Acid Co., Ltd, Weifang, China
| | | | - Jiaonan Zhang
- Fujian Province Key Laboratory of Special Aquatic Formula Feed, Fujian Tianma Science and Technology Co., Ltd, Fuqing, China
| | - Qingjun Shao
- Aqua-feed and Nutrition Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou, China,*Correspondence: Qingjun Shao,
| |
Collapse
|
45
|
Bao L, Fu L, Su Y, Chen Z, Peng Z, Sun L, Gonzalez FJ, Wu C, Zhang H, Shi B, Shi YB. Amino acid transporter SLC7A5 regulates Paneth cell function to affect the intestinal inflammatory response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.524966. [PMID: 36789439 PMCID: PMC9928054 DOI: 10.1101/2023.01.24.524966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The intestine is critical for not only processing and resorbing nutrients but also protecting the organism from the environment. These functions are mainly carried out by the epithelium, which is constantly being self-renewed. Many genes and pathways can influence intestinal epithelial cell proliferation. Among them is mTORC1, whose activation increases cell proliferation. Here, we report the first intestinal epithelial cell-specific knockout ( ΔIEC ) of an amino acid transporter capable of activating mTORC1. We show that the transporter, SLC7A5, is highly expressed in mouse intestinal crypt and Slc7a5 ΔIEC reduces mTORC1 signaling. Surprisingly, Slc7a5 ΔIEC mice have increased cell proliferation but reduced secretory cells, particularly mature Paneth cells. scRNA-seq and electron microscopic analyses revealed dedifferentiation of Paneth cells in Slc7a5 ΔIEC mice, leading to markedly reduced secretory granules with little effect on Paneth cell number. We further show that Slc7a5 ΔIEC mice are prone to experimental colitis. Thus, SLC7A5 regulates secretory cell differentiation to affect stem cell niche and/or inflammatory response to regulate cell proliferation.
Collapse
|
46
|
Sanaye MM, Kavishwar SA. Diabetic Neuropathy: Review on Molecular Mechanisms. Curr Mol Med 2023; 23:97-110. [PMID: 34397329 DOI: 10.2174/1566524021666210816093111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022]
Abstract
Diabetic mellitus is a worldwide endocrine and metabolic disorder with insulin insensitivity or deficiency or both whose prevalence could rise up to 592 million by 2035. Consistent hyperglycemia leads to one of the most common comorbidities like Diabetic Peripheral Neuropathy (DPN). DPN is underlined with unpleasant sensory experience, such as tingling and burning sensation, hyperalgesia, numbness, etc. Globally, 50-60% of the diabetic population is suffering from such symptoms as microvascular complications. Consistent hyperglycemia during DM causes activation/inhibition of various pathways playing important role in the homeostasis of neurons and other cells. Disruption of these pathways results into apoptosis and mitochondrial dysfunctions, causing neuropathy. Among these, pathways like Polyol and PARP are some of the most intensively studied ones whereas those like Wnt pathway, Mitogen activated protein kinase (MAPK), mTOR pathway are comparatively newly discovered. Understanding of these pathways and their role in pathophysiology of DN underlines a few molecules of immense therapeutic value. The inhibitors or activators of these molecules can be of therapeutic importance in the management of DPN. This review, hence, focuses on these underlying molecular mechanisms intending to provide therapeutically effective molecular targets for the treatment of DPN.
Collapse
Affiliation(s)
- Mrinal M Sanaye
- Department of Pharmacology, Prin. K.M. Kundnani College of Pharmacy, Mumbai-400005, India
| | - Samruddhi A Kavishwar
- Department of Pharmacology, Prin. K.M. Kundnani College of Pharmacy, Mumbai-400005, India
| |
Collapse
|
47
|
An L, Jia G, Tan J, Yang L, Wang Y, Li L. Analysis of the synergistic antifungal activity of everolimus and antifungal drugs against dematiaceous fungi. Front Cell Infect Microbiol 2023; 13:1131416. [PMID: 36909734 PMCID: PMC9996166 DOI: 10.3389/fcimb.2023.1131416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Chromoblastomycosis (CBM) is a form of chronic mycosis that affects the skin and mucous membranes and is caused by species of dematiaceous fungi including Exophiala spp., Phialophora spp., and Fonsecaea spp. The persistence of this disease and limitations associated with single-drug treatment have complicated efforts to adequately manage this condition. Methods In this study, a microdilution assay was used to explore the synergistic antifungal activity of everolimus (EVL) in combination with itraconazole (ITC), voriconazole (VRC), posaconazole (POS), and amphotericin B (AMB) against a range of clinical dematiaceous fungal isolates. Results These analyses revealed that the EVL+POS and EVL+ITC exhibited superior in vitro synergistic efficacy, respectively inhibiting the growth of 64% (14/22) and 59% (13/22) of tested strains. In contrast, the growth of just 9% (2/22) of tested strains was inhibited by a combination of EVL+AMB, and no synergistic efficacy was observed for the combination of EVL+VRC. Discussion Overall, these findings indicate that EVL holds promise as a novel drug that can be synergistically combined with extant antifungal drugs to improve their efficacy, thereby aiding in the treatment of CBM.
Collapse
Affiliation(s)
- Lulu An
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gengpei Jia
- Department of General Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Jingwen Tan
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lianjuan Yang
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuemei Wang
- Department of Clinical Laboratory, Shibei Hospital, Shanghai, China
| | - Lei Li
- Department of Clinical Laboratory, Shibei Hospital, Shanghai, China
- *Correspondence: Lei Li,
| |
Collapse
|
48
|
Burek M, Kaupp V, Blecharz-Lang K, Dilling C, Meybohm P. Protocadherin gamma C3: a new player in regulating vascular barrier function. Neural Regen Res 2023. [PMID: 35799511 PMCID: PMC9241426 DOI: 10.4103/1673-5374.343896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Defects in the endothelial cell barrier accompany diverse malfunctions of the central nervous system such as neurodegenerative diseases, stroke, traumatic brain injury, and systemic diseases such as sepsis, viral and bacterial infections, and cancer. Compromised endothelial sealing leads to leaking blood vessels, followed by vasogenic edema. Brain edema as the most common complication caused by stroke and traumatic brain injury is the leading cause of death. Brain microvascular endothelial cells, together with astrocytes, pericytes, microglia, and neurons form a selective barrier, the so-called blood-brain barrier, which regulates the movement of molecules inside and outside of the brain. Mechanisms that regulate blood-brain barrier permeability in health and disease are complex and not fully understood. Several newly discovered molecules that are involved in the regulation of cellular processes in brain microvascular endothelial cells have been described in the literature in recent years. One of these molecules that are highly expressed in brain microvascular endothelial cells is protocadherin gamma C3. In this review, we discuss recent evidence that protocadherin gamma C3 is a newly identified key player involved in the regulation of vascular barrier function.
Collapse
|
49
|
Weiss JG, Gallob F, Rieder P, Villunger A. Apoptosis as a Barrier against CIN and Aneuploidy. Cancers (Basel) 2022; 15:cancers15010030. [PMID: 36612027 PMCID: PMC9817872 DOI: 10.3390/cancers15010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Aneuploidy is the gain or loss of entire chromosomes, chromosome arms or fragments. Over 100 years ago, aneuploidy was described to be a feature of cancer and is now known to be present in 68-90% of malignancies. Aneuploidy promotes cancer growth, reduces therapy response and frequently worsens prognosis. Chromosomal instability (CIN) is recognized as the main cause of aneuploidy. CIN itself is a dynamic but stochastic process consisting of different DNA content-altering events. These can include impaired replication fidelity and insufficient clearance of DNA damage as well as chromosomal mis-segregation, micronuclei formation, chromothripsis or cytokinesis failure. All these events can disembogue in segmental, structural and numerical chromosome alterations. While low levels of CIN can foster malignant disease, high levels frequently trigger cell death, which supports the "aneuploidy paradox" that refers to the intrinsically negative impact of a highly aberrant karyotype on cellular fitness. Here, we review how the cellular response to CIN and aneuploidy can drive the clearance of karyotypically unstable cells through the induction of apoptosis. Furthermore, we discuss the different modes of p53 activation triggered in response to mitotic perturbations that can potentially trigger CIN and/or aneuploidy.
Collapse
Affiliation(s)
- Johannes G. Weiss
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Paediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Filip Gallob
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Patricia Rieder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43–512-9003-70380; Fax: +43–512-9003-73960
| |
Collapse
|
50
|
Hoxha M, Zappacosta B. A review on the role of fatty acids in colorectal cancer progression. Front Pharmacol 2022; 13:1032806. [PMID: 36578540 PMCID: PMC9791100 DOI: 10.3389/fphar.2022.1032806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of mortality in cancer patients. The role of fatty acids (FA) and their metabolism in cancer, particularly in CRC raises a growing interest. In particular, dysregulation of synthesis, desaturation, elongation, and mitochondrial oxidation of fatty acids are involved. Here we review the current evidence on the link between cancer, in particular CRC, and fatty acids metabolism, not only to provide insight on its pathogenesis, but also on the development of novel biomarkers and innovative pharmacological therapies that are based on FAs dependency of cancer cells.
Collapse
|