1
|
Cardoso LHD, Cecatto C, Ozola M, Korzh S, Zvejniece L, Gukalova B, Doerrier C, Dambrova M, Makrecka-Kuka M, Gnaiger E, Liepinsh E. Fatty acid β-oxidation in brain mitochondria: Insights from high-resolution respirometry in mouse, rat and Drosophila brain, ischemia and aging models. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167544. [PMID: 39424161 DOI: 10.1016/j.bbadis.2024.167544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Glucose is the main energy source of the brain, yet recent studies demonstrate that fatty acid oxidation (FAO) plays a relevant role in the pathogenesis of central nervous system disorders. We evaluated FAO in brain mitochondria under physiological conditions, in the aging brain, and after stroke. Using high-resolution respirometry we compared medium-chain (MC, octanoylcarnitine) and long-chain (LC, palmitoylcarnitine) acylcarnitines as substrates of β-oxidation in the brain. The protocols developed avoid FAO overestimation by malate-linked anaplerotic activity in brain mitochondria. The capacity of FA oxidative phosphorylation (F-OXPHOS) with palmitoylcarnitine was up to 4 times higher than respiration with octanoylcarnitine. The optimal concentration of palmitoylcarnitine was 10 μM which corresponds to the total concentration of LC acylcarnitines in the brain. Maximal respiration with octanoylcarnitine was reached at 20 μM, however, this concentration exceeds MC acylcarnitine concentrations in the brain 15 times. F-OXPHOS capacity was highest in mouse cerebellum, intermediate in cortex, prefrontal cortex, and hypothalamus, and hardly detectable in hippocampus. F-OXPHOS capacity was 2-fold lower and concentrations of LC acylcarnitines were 2-fold higher in brain of aged rats. A similar trend was observed in the rat model of endothelin-1-induced stroke, but reduction of OXPHOS capacity was not limited to FAO. In conclusion, although FAO is not a dominant pathway in brain bioenergetics, it deserves specific attention in studies of brain metabolism.
Collapse
Affiliation(s)
| | | | - Melita Ozola
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Stanislava Korzh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Liga Zvejniece
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Baiba Gukalova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | | | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Marina Makrecka-Kuka
- Oroboros Instruments, Innsbruck, Austria; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| |
Collapse
|
2
|
Goodman LD, Moulton MJ, Lin G, Bellen HJ. Does glial lipid dysregulation alter sleep in Alzheimer's and Parkinson's disease? Trends Mol Med 2024; 30:913-923. [PMID: 38755043 PMCID: PMC11466711 DOI: 10.1016/j.molmed.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
In this opinion article, we discuss potential connections between sleep disturbances observed in Alzheimer's disease (AD) and Parkinson's disease (PD) and the dysregulation of lipids in the brain. Research using Drosophila has highlighted the role of glial-mediated lipid metabolism in sleep and diurnal rhythms. Relevant to AD, the formation of lipid droplets in glia, which occurs in response to elevated neuronal reactive oxygen species (ROS), is required for sleep. In disease models, this process is disrupted, arguing a connection to sleep dysregulation. Relevant to PD, the degradation of neuronally synthesized glucosylceramides by glia requires glucocerebrosidase (GBA, a PD-associated risk factor) and this regulates sleep. Loss of GBA in glia causes an accumulation of glucosylceramides and neurodegeneration. Overall, research primarily using Drosophila has highlighted how dysregulation of glial lipid metabolism may underlie sleep disturbances in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lindsey D Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Matthew J Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Guang Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Goodman LD, Ralhan I, Li X, Lu S, Moulton MJ, Park YJ, Zhao P, Kanca O, Ghaderpour Taleghani ZS, Jacquemyn J, Shulman JM, Ando K, Sun K, Ioannou MS, Bellen HJ. Tau is required for glial lipid droplet formation and resistance to neuronal oxidative stress. Nat Neurosci 2024; 27:1918-1933. [PMID: 39187706 DOI: 10.1038/s41593-024-01740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
The accumulation of reactive oxygen species (ROS) is a common feature of tauopathies, defined by Tau accumulations in neurons and glia. High ROS in neurons causes lipid production and the export of toxic peroxidated lipids (LPOs). Glia uptake these LPOs and incorporate them into lipid droplets (LDs) for storage and catabolism. We found that overexpressing Tau in glia disrupts LDs in flies and rat neuron-astrocyte co-cultures, sensitizing the glia to toxic, neuronal LPOs. Using a new fly tau loss-of-function allele and RNA-mediated interference, we found that endogenous Tau is required for glial LD formation and protection against neuronal LPOs. Similarly, endogenous Tau is required in rat astrocytes and human oligodendrocyte-like cells for LD formation and the breakdown of LPOs. Behaviorally, flies lacking glial Tau have decreased lifespans and motor defects that are rescuable by administering the antioxidant N-acetylcysteine amide. Overall, this work provides insights into the important role that Tau has in glia to mitigate ROS in the brain.
Collapse
Affiliation(s)
- Lindsey D Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Isha Ralhan
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Xin Li
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Matthew J Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ye-Jin Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, Houston, TX, USA
| | - Pinghan Zhao
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ziyaneh S Ghaderpour Taleghani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Julie Jacquemyn
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Joshua M Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Kanae Ando
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Integrative Biology and Pharmacology, Graduate Program in Cell and Regulatory Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Maria S Ioannou
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Barros LF, Schirmeier S, Weber B. The Astrocyte: Metabolic Hub of the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041355. [PMID: 38438188 PMCID: PMC11368191 DOI: 10.1101/cshperspect.a041355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Astrocytic metabolism has taken center stage. Interposed between the neuron and the vasculature, astrocytes exert control over the fluxes of energy and building blocks required for neuronal activity and plasticity. They are also key to local detoxification and waste recycling. Whereas neurons are metabolically rigid, astrocytes can switch between different metabolic profiles according to local demand and the nutritional state of the organism. Their metabolic state even seems to be instructive for peripheral nutrient mobilization and has been implicated in information processing and behavior. Here, we summarize recent progress in our understanding of astrocytic metabolism and its effects on metabolic homeostasis and cognition.
Collapse
Affiliation(s)
- L Felipe Barros
- Centro de Estudios Científicos, Valdivia 5110465, Chile
- Universidad San Sebastián, Facultad de Medicina y Ciencia, Valdivia 5110693, Chile
| | - Stefanie Schirmeier
- Technische Universität Dresden, Department of Biology, 01217 Dresden, Germany
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
Uchiyama C, Yoshimura S, Yamamoto S, Ogawa M, Kawai K. Acaricide Flupentiofenox Inhibits the Mitochondrial β-Oxidation Pathway of Fatty Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18391-18400. [PMID: 39110101 PMCID: PMC11342930 DOI: 10.1021/acs.jafc.4c03076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
A newly developed pesticide, flupentiofenox, has a unique trifluoroethyl phenylsulfoxide structure, and it powerfully affects spider mites, including those with resistance to multiple commercial acaricides. To clarify the mode of action of flupentiofenox, we investigated its effect on mitochondrial energy generation. We observed that flupentiofenox decreased adenosine triphosphate (ATP) levels in two-spotted spider mites (Tetranychus urticae) at a practical dose. Flupentiofenox potently inhibited mitochondrial oxygen consumption under conditions of palmitoyl-carnitine or octanoic acid supply, but not under conditions of pyruvate supply. These results show that flupentiofenox inhibits the mitochondrial fatty acid metabolic pathway between the uptake of long-chain acylcarnitine or medium-chain fatty acid and the synthesis of acetyl-CoA by β-oxidation, resulting in suppressed mitochondrial energy generation. Our investigations have led us to conclude that flupentiofenox is a pesticide with a novel mode of action.
Collapse
Affiliation(s)
- Chihiro Uchiyama
- Life
& Environment Research Center, Life Science Research Institute,
Research & Development Division, Kumiai
Chemical Industry Co., Ltd., 276 Tamari, Kakegawa-shi, Shizuoka 436-0011, Japan
| | - Shingo Yoshimura
- Agrochemical
Research Center, Life Science Research Institute, Research & Development
Division, Kumiai Chemical Industry Co.,
Ltd., 3360 Kamo, Kikugawa-shi, Shizuoka 439-0031, Japan
| | - Shunsuke Yamamoto
- Life
& Environment Research Center, Life Science Research Institute,
Research & Development Division, Kumiai
Chemical Industry Co., Ltd., 276 Tamari, Kakegawa-shi, Shizuoka 436-0011, Japan
| | - Masahiro Ogawa
- Life
& Environment Research Center, Life Science Research Institute,
Research & Development Division, Kumiai
Chemical Industry Co., Ltd., 276 Tamari, Kakegawa-shi, Shizuoka 436-0011, Japan
| | - Kiyoshi Kawai
- Life
& Environment Research Center, Life Science Research Institute,
Research & Development Division, Kumiai
Chemical Industry Co., Ltd., 276 Tamari, Kakegawa-shi, Shizuoka 436-0011, Japan
| |
Collapse
|
6
|
Li YX, Yan Q, Liu TW, Wang JX, Zhao XF. Lipases are differentially regulated by hormones to maintain free fatty acid homeostasis for insect brain development. BMC Biol 2024; 22:171. [PMID: 39135168 PMCID: PMC11321213 DOI: 10.1186/s12915-024-01973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Free fatty acids (FFAs) play vital roles as energy sources and substrates in organisms; however, the molecular mechanism regulating the homeostasis of FFA levels in various circumstances, such as feeding and nonfeeding stages, is not fully clarified. Holometabolous insects digest dietary triglycerides (TAGs) during larval feeding stages and degrade stored TAGs in the fat body during metamorphosis after feeding cessation, which presents a suitable model for this study. RESULTS This study reported that two lipases are differentially regulated by hormones to maintain the homeostasis of FFA levels during the feeding and nonfeeding stages using the lepidopteran insect cotton bollworm Helicoverpa armigera as a model. Lipase member H-A-like (Lha-like), related to human pancreatic lipase (PTL), was abundantly expressed in the midgut during the feeding stage, while the monoacylglycerol lipase ABHD12-like (Abhd12-like), related to human monoacylglycerol lipase (MGL), was abundantly expressed in the fat body during the nonfeeding stage. Lha-like was upregulated by juvenile hormone (JH) via the JH intracellular receptor methoprene-tolerant 1 (MET1), and Abhd12-like was upregulated by 20-hydroxyecdysone (20E) via forkhead box O (FOXO) transcription factor. Knockdown of Lha-like decreased FFA levels in the hemolymph and reduced TAG levels in the fat body. Moreover, lipid droplets (LDs) were small, the brain morphology was abnormal, the size of the brain was small, and the larvae showed the phenotype of delayed pupation, small pupae, and delayed tissue remodeling. Knockdown of Abhd12-like decreased FFA levels in the hemolymph; however, TAG levels increased in the fat body, and LDs remained large. The development of the brain was arrested at the larval stage, and the larvae showed a delayed pupation phenotype and delayed tissue remodeling. CONCLUSIONS The differential regulation of lipases expression by different hormones determines FFAs homeostasis and different TAG levels in the fat body during the feeding larval growth and nonfeeding stages of metamorphosis in the insect. The homeostasis of FFAs supports insect growth, brain development, and metamorphosis.
Collapse
Affiliation(s)
- Yan-Xue Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qiao Yan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Tian-Wen Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
7
|
Antunes BC, Mateus T, Morais VA. In the Brain, It Is Not All about Sugar. NEUROSCI 2024; 5:209-221. [PMID: 39483499 PMCID: PMC11493208 DOI: 10.3390/neurosci5020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 11/03/2024] Open
Abstract
The maintenance of energetic homeostasis relies on a tight balance between glycolysis and mitochondrial oxidative phosphorylation. The case of the brain is a peculiar one, as although entailing a constant demand for energy, it is believed to rely mostly on glucose, particularly at the level of neurons. Nonetheless, this has been challenged by studies that show that alternatives such as lactate, ketone bodies, and glutamate can be used as fuels to sustain neuronal activity. The importance of fatty acid (FA) metabolism to this extent is still unclear, albeit sustaining a significant energetic output when compared to glucose. While several authors postulate a possible role of FA for the energetic homeostasis of the brain, several others point out the intrinsic features of this pathway that make its contribution difficult to explain in the context of neuronal bioenergetics. Moreover, fueling preference at the synapse level is yet to be uncovered. In this review, we discuss in detail the arguments for and against the brain usage of FA. Furthermore, we postulate that the importance of this fuel may be greater at the synapse, where local mitochondria possess a set of features that enable a more effective usage of this fuel source.
Collapse
Affiliation(s)
- Bernardo C Antunes
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (B.C.A.); (T.M.)
| | - Tomás Mateus
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (B.C.A.); (T.M.)
| | - Vanessa A Morais
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (B.C.A.); (T.M.)
| |
Collapse
|
8
|
Haynes PR, Pyfrom ES, Li Y, Stein C, Cuddapah VA, Jacobs JA, Yue Z, Sehgal A. A neuron-glia lipid metabolic cycle couples daily sleep to mitochondrial homeostasis. Nat Neurosci 2024; 27:666-678. [PMID: 38360946 PMCID: PMC11001586 DOI: 10.1038/s41593-023-01568-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/29/2023] [Indexed: 02/17/2024]
Abstract
Sleep is thought to be restorative to brain energy homeostasis, but it is not clear how this is achieved. We show here that Drosophila glia exhibit a daily cycle of glial mitochondrial oxidation and lipid accumulation that is dependent on prior wake and requires the Drosophila APOE orthologs NLaz and GLaz, which mediate neuron-glia lipid transfer. In turn, a full night of sleep is required for glial lipid clearance, mitochondrial oxidative recovery and maximal neuronal mitophagy. Knockdown of neuronal NLaz causes oxidative stress to accumulate in neurons, and the neuronal mitochondrial integrity protein, Drp1, is required for daily glial lipid accumulation. These data suggest that neurons avoid accumulation of oxidative mitochondrial damage during wake by using mitophagy and passing damage to glia in the form of lipids. We propose that a mitochondrial lipid metabolic cycle between neurons and glia reflects a fundamental function of sleep relevant for brain energy homeostasis.
Collapse
Affiliation(s)
- Paula R Haynes
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Elana S Pyfrom
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yongjun Li
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Carly Stein
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Vishnu Anand Cuddapah
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Jack A Jacobs
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Zhifeng Yue
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Amita Sehgal
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA.
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Goodman LD, Moulton MJ, Bellen HJ. Glial lipid droplets resolve ROS during sleep. Nat Neurosci 2024; 27:610-612. [PMID: 38360945 DOI: 10.1038/s41593-023-01546-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Affiliation(s)
- Lindsey D Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Matthew J Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
10
|
Keizer HG, Brands R, Oosting RS, Seinen W. The Carnitine Palmitoyl-Transferase 2 Cascade Hypothesis for Alzheimer's Disease. J Alzheimers Dis 2024; 97:553-558. [PMID: 38143363 DOI: 10.3233/jad-230991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Despite decades of intense research, the precise etiology of Alzheimer's disease (AD) remains unclear. In this hypothesis, we present a new perspective on this matter by identifying carnitine palmitoyl transferase-2 (CPT2) as a central target in AD. CPT2 is an enzyme situated within the inner mitochondrial membrane, playing a crucial role in beta-oxidation of fatty acids. It exhibits high sensitivity to hydrogen peroxide. This sensitivity holds relevance for the etiology of AD, as all major risk factors for the disease share a commonality in producing an excess of hydrogen peroxide right at this very mitochondrial membrane. We will explain the high sensitivity of CPT2 to hydrogen peroxide and elucidate how the resulting inhibition of CPT2 can lead to the characteristic phenotype of AD, thus clarifying its central role in the disease's etiology. This insight holds promise for the development of therapies for AD which can be implemented immediately.
Collapse
Affiliation(s)
- Hiskias G Keizer
- Alloksys Biotechnology, Wageningen, The Netherlands
- AMRIF Biotechnology, Wageningen, The Netherlands
| | - Ruud Brands
- Alloksys Biotechnology, Wageningen, The Netherlands
- AMRIF Biotechnology, Wageningen, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht, The Netherlands
| | - Ronald S Oosting
- Alloksys Biotechnology, Wageningen, The Netherlands
- AMRIF Biotechnology, Wageningen, The Netherlands
| | - Willem Seinen
- Alloksys Biotechnology, Wageningen, The Netherlands
- AMRIF Biotechnology, Wageningen, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht, The Netherlands
| |
Collapse
|
11
|
Rathore S, Stahl A, Benoit JB, Buschbeck EK. Exploring the molecular makeup of support cells in insect camera eyes. BMC Genomics 2023; 24:702. [PMID: 37993800 PMCID: PMC10664524 DOI: 10.1186/s12864-023-09804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
Animals typically have either compound eyes, or camera-type eyes, both of which have evolved repeatedly in the animal kingdom. Both eye types include two important kinds of cells: photoreceptor cells, which can be excited by light, and non-neuronal support cells (SupCs), which provide essential support to photoreceptors. At the molecular level deeply conserved genes that relate to the differentiation of photoreceptor cells have fueled a discussion on whether or not a shared evolutionary origin might be considered for this cell type. In contrast, only a handful of studies, primarily on the compound eyes of Drosophila melanogaster, have demonstrated molecular similarities in SupCs. D. melanogaster SupCs (Semper cells and primary pigment cells) are specialized eye glia that share several molecular similarities with certain vertebrate eye glia, including Müller glia. This led us to question if there could be conserved molecular signatures of SupCs, even in functionally different eyes such as the image-forming larval camera eyes of the sunburst diving beetle Thermonectus marmoratus. To investigate this possibility, we used an in-depth comparative whole-tissue transcriptomics approach. Specifically, we dissected the larval principal camera eyes into SupC- and retina-containing regions and generated the respective transcriptomes. Our analysis revealed several common features of SupCs including enrichment of genes that are important for glial function (e.g. gap junction proteins such as innexin 3), glycogen production (glycogenin), and energy metabolism (glutamine synthetase 1 and 2). To evaluate similarities, we compared our transcriptomes with those of fly (Semper cells) and vertebrate (Müller glia) eye glia as well as respective retinas. T. marmoratus SupCs were found to have distinct genetic overlap with both fly and vertebrate eye glia. These results suggest that T. marmoratus SupCs are a form of glia, and like photoreceptors, may be deeply conserved.
Collapse
Affiliation(s)
- Shubham Rathore
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA.
| | - Aaron Stahl
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Elke K Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Bertrand M, Szeremeta F, Hervouet-Coste N, Sarou-Kanian V, Landon C, Morisset-Lopez S, Decoville M. An adult Drosophila glioma model to highlight metabolic dysfunctions and evaluate the role of the serotonin 5-HT 7 receptor as a potential therapeutic target. FASEB J 2023; 37:e23230. [PMID: 37781977 DOI: 10.1096/fj.202300783rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Gliomas account for 50% of brain cancers and are therefore the most common brain tumors. Molecular alterations involved in adult gliomas have been identified and mainly affect tyrosine kinase receptors with amplification and/or mutation of the epidermal growth factor receptor (EGFR) and its associated signaling pathways. Several targeted therapies have been developed, but current treatments remain ineffective for glioblastomas, the most severe forms. Thus, it is a priority to identify new pharmacological targets. Drosophila glioma models established in larvae and adults are useful to identify new genes and signaling pathways involved in glioma progression. Here, we used a Drosophila glioma model in adults, to characterize metabolic disturbances associated with glioma and assess the consequences of 5-HT7 R expression on glioma development. First, by using in vivo magnetic resonance imaging, we have shown that expression of the constitutively active forms of EGFR and PI3K in adult glial cells induces brain enlargement. Then, we explored altered cellular metabolism by using high-resolution magic angle spinning NMR and 1 H-13 C heteronuclear single quantum coherence solution states. Discriminant metabolites identified highlight the rewiring of metabolic pathways in glioma and associated cachexia phenotypes. Finally, the expression of 5-HT7 R in this adult model attenuates phenotypes associated with glioma development. Collectively, this whole-animal approach in Drosophila allowed us to provide several rapid and robust phenotype readouts, such as enlarged brain volume and glioma-associated cachexia, as well as to determine the metabolic pathways involved in glioma genesis and finally to confirm the interest of the 5-HT7 R in the treatment of glioma.
Collapse
Affiliation(s)
- Marylène Bertrand
- Centre de Biophysique Moléculaire-CBM, UPR 4301, CNRS, Orléans, France
| | | | | | - Vincent Sarou-Kanian
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation-CEMHTI-CNRS UPR 3079, Orléans, France
| | - Céline Landon
- Centre de Biophysique Moléculaire-CBM, UPR 4301, CNRS, Orléans, France
| | | | - Martine Decoville
- Centre de Biophysique Moléculaire-CBM, UPR 4301, CNRS, Orléans, France
- UFR Sciences et Techniques, Université d'Orléans, Orléans, France
| |
Collapse
|
13
|
Sneha NP, Dharshini SAP, Taguchi YH, Gromiha MM. Investigating Neuron Degeneration in Huntington's Disease Using RNA-Seq Based Transcriptome Study. Genes (Basel) 2023; 14:1801. [PMID: 37761940 PMCID: PMC10530489 DOI: 10.3390/genes14091801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused due to a CAG repeat expansion in the huntingtin (HTT) gene. The primary symptoms of HD include motor dysfunction such as chorea, dystonia, and involuntary movements. The primary motor cortex (BA4) is the key brain region responsible for executing motor/movement activities. Investigating patient and control samples from the BA4 region will provide a deeper understanding of the genes responsible for neuron degeneration and help to identify potential markers. Previous studies have focused on overall differential gene expression and associated biological functions. In this study, we illustrate the relationship between variants and differentially expressed genes/transcripts. We identified variants and their associated genes along with the quantification of genes and transcripts. We also predicted the effect of variants on various regulatory activities and found that many variants are regulating gene expression. Variants affecting miRNA and its targets are also highlighted in our study. Co-expression network studies revealed the role of novel genes. Function interaction network analysis unveiled the importance of genes involved in vesicle-mediated transport. From this unified approach, we propose that genes expressed in immune cells are crucial for reducing neuron death in HD.
Collapse
Affiliation(s)
- Nela Pragathi Sneha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (N.P.S.); (S.A.P.D.)
| | - S. Akila Parvathy Dharshini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (N.P.S.); (S.A.P.D.)
| | - Y.-h. Taguchi
- Department of Physics, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan;
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (N.P.S.); (S.A.P.D.)
| |
Collapse
|
14
|
López-Muguruza E, Matute C. Alterations of Oligodendrocyte and Myelin Energy Metabolism in Multiple Sclerosis. Int J Mol Sci 2023; 24:12912. [PMID: 37629092 PMCID: PMC10454078 DOI: 10.3390/ijms241612912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease of the central nervous system (CNS), characterized by demyelination and neurodegeneration. Oligodendrocytes play a vital role in maintaining the integrity of myelin, the protective sheath around nerve fibres essential for efficient signal transmission. However, in MS, oligodendrocytes become dysfunctional, leading to myelin damage and axonal degeneration. Emerging evidence suggests that metabolic changes, including mitochondrial dysfunction and alterations in glucose and lipid metabolism, contribute significantly to the pathogenesis of MS. Mitochondrial dysfunction is observed in both immune cells and oligodendrocytes within the CNS of MS patients. Impaired mitochondrial function leads to energy deficits, affecting crucial processes such as impulse transmission and axonal transport, ultimately contributing to neurodegeneration. Moreover, mitochondrial dysfunction is linked to the generation of reactive oxygen species (ROS), exacerbating myelin damage and inflammation. Altered glucose metabolism affects the energy supply required for oligodendrocyte function and myelin synthesis. Dysregulated lipid metabolism results in changes to the composition of myelin, affecting its stability and integrity. Importantly, low levels of polyunsaturated fatty acids in MS are associated with upregulated lipid metabolism and enhanced glucose catabolism. Understanding the intricate relationship between these mechanisms is crucial for developing targeted therapies to preserve myelin and promote neurological recovery in individuals with MS. Addressing these metabolic aspects may offer new insights into potential therapeutic strategies to halt disease progression and improve the quality of life for MS patients.
Collapse
Affiliation(s)
- Eneritz López-Muguruza
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain;
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain;
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
15
|
Morant-Ferrando B, Jimenez-Blasco D, Alonso-Batan P, Agulla J, Lapresa R, Garcia-Rodriguez D, Yunta-Sanchez S, Lopez-Fabuel I, Fernandez E, Carmeliet P, Almeida A, Garcia-Macia M, Bolaños JP. Fatty acid oxidation organizes mitochondrial supercomplexes to sustain astrocytic ROS and cognition. Nat Metab 2023; 5:1290-1302. [PMID: 37460843 PMCID: PMC10447235 DOI: 10.1038/s42255-023-00835-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/02/2023] [Indexed: 07/21/2023]
Abstract
Having direct access to brain vasculature, astrocytes can take up available blood nutrients and metabolize them to fulfil their own energy needs and deliver metabolic intermediates to local synapses1,2. These glial cells should be, therefore, metabolically adaptable to swap different substrates. However, in vitro and in vivo studies consistently show that astrocytes are primarily glycolytic3-7, suggesting glucose is their main metabolic precursor. Notably, transcriptomic data8,9 and in vitro10 studies reveal that mouse astrocytes are capable of mitochondrially oxidizing fatty acids and that they can detoxify excess neuronal-derived fatty acids in disease models11,12. Still, the factual metabolic advantage of fatty acid use by astrocytes and its physiological impact on higher-order cerebral functions remain unknown. Here, we show that knockout of carnitine-palmitoyl transferase-1A (CPT1A)-a key enzyme of mitochondrial fatty acid oxidation-in adult mouse astrocytes causes cognitive impairment. Mechanistically, decreased fatty acid oxidation rewired astrocytic pyruvate metabolism to facilitate electron flux through a super-assembled mitochondrial respiratory chain, resulting in attenuation of reactive oxygen species formation. Thus, astrocytes naturally metabolize fatty acids to preserve the mitochondrial respiratory chain in an energetically inefficient disassembled conformation that secures signalling reactive oxygen species and sustains cognitive performance.
Collapse
Affiliation(s)
- Brenda Morant-Ferrando
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain
| | - Daniel Jimenez-Blasco
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain
- Centre for Biomedical Investigations Network on Frailty and Ageing (CIBERFES), Madrid, Spain
| | - Paula Alonso-Batan
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain
| | - Jesús Agulla
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain
| | - Rebeca Lapresa
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain
| | - Dario Garcia-Rodriguez
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain
| | - Sara Yunta-Sanchez
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain
| | - Irene Lopez-Fabuel
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain
| | - Emilio Fernandez
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain
- Centre for Biomedical Investigations Network on Frailty and Ageing (CIBERFES), Madrid, Spain
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Leuven, Belgium
| | - Angeles Almeida
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.
| | - Marina Garcia-Macia
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.
- Centre for Biomedical Investigations Network on Frailty and Ageing (CIBERFES), Madrid, Spain.
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.
- Centre for Biomedical Investigations Network on Frailty and Ageing (CIBERFES), Madrid, Spain.
| |
Collapse
|
16
|
Rathore S, Stahl A, Benoit JB, Buschbeck EK. Exploring the molecular makeup of support cells in insect camera eyes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549729. [PMID: 37503285 PMCID: PMC10370194 DOI: 10.1101/2023.07.19.549729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Animals generally have either compound eyes, which have evolved repeatedly in different invertebrates, or camera eyes, which have evolved many times across the animal kingdom. Both eye types include two important kinds of cells: photoreceptor cells, which can be excited by light, and non-neuronal support cells (SupCs), which provide essential support to photoreceptors. Despite many examples of convergence in eye evolution, similarities in the gross developmental plan and molecular signatures have been discovered, even between phylogenetically distant and functionally different eye types. For this reason, a shared evolutionary origin has been considered for photoreceptors. In contrast, only a handful of studies, primarily on the compound eyes of Drosophila melanogaster , have demonstrated molecular similarities in SupCs. D. melanogaster SupCs (Semper cells and primary pigment cells) are specialized eye glia that share several molecular similarities with certain vertebrate eye glia, including Müller glia. This led us to speculate whether there are conserved molecular signatures of SupCs, even in functionally different eyes such as the image-forming larval camera eyes of the sunburst diving beetle Thermonectus marmoratus . To investigate this possibility, we used an in-depth comparative whole-tissue transcriptomics approach. Specifically, we dissected the larval principal camera eyes into SupC- and retina-containing regions and generated the respective transcriptomes. Our analysis revealed several conserved features of SupCs including enrichment of genes that are important for glial function (e.g. gap junction proteins such as innexin 3), glycogen production (glycogenin), and energy metabolism (glutamine synthetase 1 and 2). To evaluate the extent of conservation, we compared our transcriptomes with those of fly (Semper cells) and vertebrate (Müller glia) eye glia as well as respective retinas. T. marmoratus SupCs were found to have distinct genetic overlap with both fly and vertebrate eye glia. These results provide molecular evidence for the deep conservation of SupCs in addition to photoreceptor cells, raising essential questions about the evolutionary origin of eye-specific glia in animals.
Collapse
|
17
|
Li Y, Chang P, Sankaran S, Jang H, Nie Y, Zeng A, Hussain S, Wu JY, Chen X, Shi L. Bioorthogonal Stimulated Raman Scattering Imaging Uncovers Lipid Metabolic Dynamics in Drosophila Brain During Aging. GEN BIOTECHNOLOGY 2023; 2:247-261. [PMID: 37363411 PMCID: PMC10286263 DOI: 10.1089/genbio.2023.0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Studies have shown that brain lipid metabolism is associated with biological aging and influenced by dietary and genetic manipulations; however, the underlying mechanisms are elusive. High-resolution imaging techniques propose a novel and potent approach to understanding lipid metabolic dynamics in situ. Applying deuterium water (D2O) probing with stimulated Raman scattering (DO-SRS) microscopy, we revealed that lipid metabolic activity in Drosophila brain decreased with aging in a sex-dependent manner. Female flies showed an earlier occurrence of lipid turnover decrease than males. Dietary restriction (DR) and downregulation of insulin/IGF-1 signaling (IIS) pathway, two scenarios for lifespan extension, led to significant enhancements of brain lipid turnover in old flies. Combining SRS imaging with deuterated bioorthogonal probes (deuterated glucose and deuterated acetate), we discovered that, under DR treatment and downregulation of IIS pathway, brain metabolism shifted to use acetate as a major carbon source for lipid synthesis. For the first time, our study directly visualizes and quantifies spatiotemporal alterations of lipid turnover in Drosophila brain at the single organelle (lipid droplet) level. Our study not only demonstrates a new approach for studying brain lipid metabolic activity in situ but also illuminates the interconnection of aging, dietary, and genetic manipulations on brain lipid metabolic regulation.
Collapse
Affiliation(s)
- Yajuan Li
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Phyllis Chang
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Shriya Sankaran
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Hongje Jang
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Yuhang Nie
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Audrey Zeng
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Sahran Hussain
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Jane Y. Wu
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xu Chen
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Lingyan Shi
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
18
|
McMullen E, Hertenstein H, Strassburger K, Deharde L, Brankatschk M, Schirmeier S. Glycolytically impaired Drosophila glial cells fuel neural metabolism via β-oxidation. Nat Commun 2023; 14:2996. [PMID: 37225684 DOI: 10.1038/s41467-023-38813-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
Neuronal function is highly energy demanding and thus requires efficient and constant metabolite delivery by glia. Drosophila glia are highly glycolytic and provide lactate to fuel neuronal metabolism. Flies are able to survive for several weeks in the absence of glial glycolysis. Here, we study how Drosophila glial cells maintain sufficient nutrient supply to neurons under conditions of impaired glycolysis. We show that glycolytically impaired glia rely on mitochondrial fatty acid breakdown and ketone body production to nourish neurons, suggesting that ketone bodies serve as an alternate neuronal fuel to prevent neurodegeneration. We show that in times of long-term starvation, glial degradation of absorbed fatty acids is essential to ensure survival of the fly. Further, we show that Drosophila glial cells act as a metabolic sensor and can induce mobilization of peripheral lipid stores to preserve brain metabolic homeostasis. Our study gives evidence of the importance of glial fatty acid degradation for brain function, and survival, under adverse conditions in Drosophila.
Collapse
Affiliation(s)
- Ellen McMullen
- Department of Molecular Biology and Genetics, University of South Bohemia, České Budějovice, Czech Republic
| | - Helen Hertenstein
- Zoology and Animal Physiology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Katrin Strassburger
- Zoology and Animal Physiology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Leon Deharde
- Zoology and Animal Physiology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Marko Brankatschk
- Biotechnologisches Zentrum, Technische Universität Dresden, Dresden, Germany.
| | - Stefanie Schirmeier
- Zoology and Animal Physiology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
19
|
A Perspective on the Link between Mitochondria-Associated Membranes (MAMs) and Lipid Droplets Metabolism in Neurodegenerative Diseases. BIOLOGY 2023; 12:biology12030414. [PMID: 36979106 PMCID: PMC10045954 DOI: 10.3390/biology12030414] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Mitochondria interact with the endoplasmic reticulum (ER) through contacts called mitochondria-associated membranes (MAMs), which control several processes, such as the ER stress response, mitochondrial and ER dynamics, inflammation, apoptosis, and autophagy. MAMs represent an important platform for transport of non-vesicular phospholipids and cholesterol. Therefore, this region is highly enriched in proteins involved in lipid metabolism, including the enzymes that catalyze esterification of cholesterol into cholesteryl esters (CE) and synthesis of triacylglycerols (TAG) from fatty acids (FAs), which are then stored in lipid droplets (LDs). LDs, through contact with other organelles, prevent the toxic consequences of accumulation of unesterified (free) lipids, including lipotoxicity and oxidative stress, and serve as lipid reservoirs that can be used under multiple metabolic and physiological conditions. The LDs break down by autophagy releases of stored lipids for energy production and synthesis of membrane components and other macromolecules. Pathological lipid deposition and autophagy disruption have both been reported to occur in several neurodegenerative diseases, supporting that lipid metabolism alterations are major players in neurodegeneration. In this review, we discuss the current understanding of MAMs structure and function, focusing on their roles in lipid metabolism and the importance of autophagy in LDs metabolism, as well as the changes that occur in neurogenerative diseases.
Collapse
|
20
|
Yin F. Lipid metabolism and Alzheimer's disease: clinical evidence, mechanistic link and therapeutic promise. FEBS J 2023; 290:1420-1453. [PMID: 34997690 PMCID: PMC9259766 DOI: 10.1111/febs.16344] [Citation(s) in RCA: 95] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disorder with multifactorial etiology, intersecting genetic and environmental risk factors, and a lack of disease-modifying therapeutics. While the abnormal accumulation of lipids was described in the very first report of AD neuropathology, it was not until recent decades that lipid dyshomeostasis became a focus of AD research. Clinically, lipidomic and metabolomic studies have consistently shown alterations in the levels of various lipid classes emerging in early stages of AD brains. Mechanistically, decades of discovery research have revealed multifaceted interactions between lipid metabolism and key AD pathogenic mechanisms including amyloidogenesis, bioenergetic deficit, oxidative stress, neuroinflammation, and myelin degeneration. In the present review, converging evidence defining lipid dyshomeostasis in AD is summarized, followed by discussions on mechanisms by which lipid metabolism contributes to pathogenesis and modifies disease risk. Furthermore, lipid-targeting therapeutic strategies, and the modification of their efficacy by disease stage, ApoE status, and metabolic and vascular profiles, are reviewed.
Collapse
Affiliation(s)
- Fei Yin
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
21
|
Diaz AV, Matheny T, Stephenson D, Nemkov T, D’Alessandro A, Reis T. Spenito-dependent metabolic sexual dimorphism intrinsic to fat storage cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528952. [PMID: 36824729 PMCID: PMC9949119 DOI: 10.1101/2023.02.17.528952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Metabolism in males and females is distinct. Differences are usually linked to sexual reproduction, with circulating signals (e.g. hormones) playing major roles. By contrast, sex differences prior to sexual maturity and intrinsic to individual metabolic tissues are less understood. We analyzed Drosophila melanogaster larvae and find that males store more fat than females, the opposite of the sexual dimorphism in adults. We show that metabolic differences are intrinsic to the major fat storage tissue, including many differences in the expression of metabolic genes. Our previous work identified fat storage roles for Spenito (Nito), a conserved RNA-binding protein and regulator of sex determination. Nito knockdown specifically in the fat storage tissue abolished fat differences between males and females. We further show that Nito is required for sex-specific expression of the master regulator of sex determination, Sex-lethal (Sxl). "Feminization" of fat storage cells via tissue-specific overexpression of a Sxl target gene made larvae lean, reduced the fat differences between males and females, and induced female-like metabolic gene expression. Altogether, this study supports a model in which Nito autonomously controls sexual dimorphisms and differential expression of metabolic genes in fat cells in part through its regulation of the sex determination pathway.
Collapse
Affiliation(s)
- Arely V. Diaz
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Tyler Matheny
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Tânia Reis
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
22
|
The Reversible Carnitine Palmitoyltransferase 1 Inhibitor (Teglicar) Ameliorates the Neurodegenerative Phenotype in a Drosophila Huntington’s Disease Model by Acting on the Expression of Carnitine-Related Genes. Molecules 2022; 27:molecules27103125. [PMID: 35630602 PMCID: PMC9146098 DOI: 10.3390/molecules27103125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022] Open
Abstract
Huntington’s disease (HD) is a dramatic neurodegenerative disorder caused by the abnormal expansion of a CAG triplet in the huntingtin gene, producing an abnormal protein. As it leads to the death of neurons in the cerebral cortex, the patients primarily present with neurological symptoms, but recently metabolic changes resulting from mitochondrial dysfunction have been identified as novel pathological features. The carnitine shuttle is a complex consisting of three enzymes whose function is to transport the long-chain fatty acids into the mitochondria. Here, its pharmacological modification was used to test the hypothesis that shifting metabolism to lipid oxidation exacerbates the HD symptoms. Behavioural and transcriptional analyses were carried out on HD Drosophila model, to evaluate the involvement of the carnitine cycle in this pathogenesis. Pharmacological inhibition of CPT1, the rate-limiting enzyme of the carnitine cycle, ameliorates the HD symptoms in Drosophila, likely acting on the expression of carnitine-related genes.
Collapse
|
23
|
Islimye E, Girard V, Gould AP. Functions of Stress-Induced Lipid Droplets in the Nervous System. Front Cell Dev Biol 2022; 10:863907. [PMID: 35493070 PMCID: PMC9047859 DOI: 10.3389/fcell.2022.863907] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Lipid droplets are highly dynamic intracellular organelles that store neutral lipids such as cholesteryl esters and triacylglycerols. They have recently emerged as key stress response components in many different cell types. Lipid droplets in the nervous system are mostly observed in vivo in glia, ependymal cells and microglia. They tend to become more numerous in these cell types and can also form in neurons as a consequence of ageing or stresses involving redox imbalance and lipotoxicity. Abundant lipid droplets are also a characteristic feature of several neurodegenerative diseases. In this minireview, we take a cell-type perspective on recent advances in our understanding of lipid droplet metabolism in glia, neurons and neural stem cells during health and disease. We highlight that a given lipid droplet subfunction, such as triacylglycerol lipolysis, can be physiologically beneficial or harmful to the functions of the nervous system depending upon cellular context. The mechanistic understanding of context-dependent lipid droplet functions in the nervous system is progressing apace, aided by new technologies for probing the lipid droplet proteome and lipidome with single-cell type precision.
Collapse
|
24
|
Silva B, Mantha OL, Schor J, Pascual A, Plaçais PY, Pavlowsky A, Preat T. Glia fuel neurons with locally synthesized ketone bodies to sustain memory under starvation. Nat Metab 2022; 4:213-224. [PMID: 35177854 PMCID: PMC8885408 DOI: 10.1038/s42255-022-00528-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/07/2022] [Indexed: 11/15/2022]
Abstract
During starvation, mammalian brains can adapt their metabolism, switching from glucose to alternative peripheral fuel sources. In the Drosophila starved brain, memory formation is subject to adaptative plasticity, but whether this adaptive plasticity relies on metabolic adaptation remains unclear. Here we show that during starvation, neurons of the fly olfactory memory centre import and use ketone bodies (KBs) as an energy substrate to sustain aversive memory formation. We identify local providers within the brain, the cortex glia, that use their own lipid store to synthesize KBs before exporting them to neurons via monocarboxylate transporters. Finally, we show that the master energy sensor AMP-activated protein kinase regulates both lipid mobilization and KB export in cortex glia. Our data provide a general schema of the metabolic interactions within the brain to support memory when glucose is scarce.
Collapse
Affiliation(s)
- Bryon Silva
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Olivier L Mantha
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
- INSERM UMR1069 'Nutrition, Croissance et Cancer', Tours, France
| | - Johann Schor
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Alice Pavlowsky
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France.
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France.
| |
Collapse
|
25
|
Xu M, Ding L, Liang J, Yang X, Liu Y, Wang Y, Ding M, Huang X. NAD kinase sustains lipogenesis and mitochondrial metabolismthrough fatty acid synthesis. Cell Rep 2021; 37:110157. [PMID: 34965438 DOI: 10.1016/j.celrep.2021.110157] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/27/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022] Open
Abstract
Lipid storage in fat tissue is important for energy homeostasis and cellular functions. Through RNAi screening in Drosophila fat body, we found that knockdown of a Drosophila NAD kinase (NADK), which phosphorylates NAD to synthesize NADP de novo, causes lipid storage defects. NADK sustains lipogenesis by maintaining the pool of NADPH. Promoting NADPH production rescues the lipid storage defect in the fat body of NADK RNAi animals. Furthermore, NADK and fatty acid synthase 1 (FASN1) regulate mitochondrial mass and function by altering the levels of acetyl-CoA and fatty acids. Reducing the level of acetyl-CoA or increasing the synthesis of cardiolipin (CL), a mitochondrion-specific phospholipid, partially rescues the mitochondrial defects of NADK RNAi. Therefore, NADK- and FASN1-mediated fatty acid synthesis coordinates lipid storage and mitochondrial function.
Collapse
Affiliation(s)
- Mengyao Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingjing Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, TaiAn 271016, China
| | - Yuan Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
26
|
Smolič T, Zorec R, Vardjan N. Pathophysiology of Lipid Droplets in Neuroglia. Antioxidants (Basel) 2021; 11:22. [PMID: 35052526 PMCID: PMC8773017 DOI: 10.3390/antiox11010022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, increasing evidence regarding the functional importance of lipid droplets (LDs), cytoplasmic storage organelles in the central nervous system (CNS), has emerged. Although not abundantly present in the CNS under normal conditions in adulthood, LDs accumulate in the CNS during development and aging, as well as in some neurologic disorders. LDs are actively involved in cellular lipid turnover and stress response. By regulating the storage of excess fatty acids, cholesterol, and ceramides in addition to their subsequent release in response to cell needs and/or environmental stressors, LDs are involved in energy production, in the synthesis of membranes and signaling molecules, and in the protection of cells against lipotoxicity and free radicals. Accumulation of LDs in the CNS appears predominantly in neuroglia (astrocytes, microglia, oligodendrocytes, ependymal cells), which provide trophic, metabolic, and immune support to neuronal networks. Here we review the most recent findings on the characteristics and functions of LDs in neuroglia, focusing on astrocytes, the key homeostasis-providing cells in the CNS. We discuss the molecular mechanisms affecting LD turnover in neuroglia under stress and how this may protect neural cell function. We also highlight the role (and potential contribution) of neuroglial LDs in aging and in neurologic disorders.
Collapse
Affiliation(s)
- Tina Smolič
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.S.); (R.Z.)
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.S.); (R.Z.)
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.S.); (R.Z.)
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
| |
Collapse
|
27
|
Smolič T, Tavčar P, Horvat A, Černe U, Halužan Vasle A, Tratnjek L, Kreft ME, Scholz N, Matis M, Petan T, Zorec R, Vardjan N. Astrocytes in stress accumulate lipid droplets. Glia 2021; 69:1540-1562. [PMID: 33609060 PMCID: PMC8248329 DOI: 10.1002/glia.23978] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/14/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
When the brain is in a pathological state, the content of lipid droplets (LDs), the lipid storage organelles, is increased, particularly in glial cells, but rarely in neurons. The biology and mechanisms leading to LD accumulation in astrocytes, glial cells with key homeostatic functions, are poorly understood. We imaged fluorescently labeled LDs by microscopy in isolated and brain tissue rat astrocytes and in glia-like cells in Drosophila brain to determine the (sub)cellular localization, mobility, and content of LDs under various stress conditions characteristic for brain pathologies. LDs exhibited confined mobility proximal to mitochondria and endoplasmic reticulum that was attenuated by metabolic stress and by increased intracellular Ca2+ , likely to enhance the LD-organelle interaction imaged by electron microscopy. When de novo biogenesis of LDs was attenuated by inhibition of DGAT1 and DGAT2 enzymes, the astrocyte cell number was reduced by ~40%, suggesting that in astrocytes LD turnover is important for cell survival and/or proliferative cycle. Exposure to noradrenaline, a brain stress response system neuromodulator, and metabolic and hypoxic stress strongly facilitated LD accumulation in astrocytes. The observed response of stressed astrocytes may be viewed as a support for energy provision, but also to be neuroprotective against the stress-induced lipotoxicity.
Collapse
Affiliation(s)
- Tina Smolič
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Tavčar
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Anemari Horvat
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Urška Černe
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Halužan Vasle
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Larisa Tratnjek
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Nicole Scholz
- Division of General Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Maja Matis
- Medical Faculty, Institute of Cell Biology, University of Münster, Münster, Germany.,Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
28
|
ApoE4 Impairs Neuron-Astrocyte Coupling of Fatty Acid Metabolism. Cell Rep 2021; 34:108572. [PMID: 33406436 PMCID: PMC7837265 DOI: 10.1016/j.celrep.2020.108572] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/16/2020] [Accepted: 12/08/2020] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) risk gene ApoE4 perturbs brain lipid homeostasis and energy transduction. However, the cell-type-specific mechanism of ApoE4 in modulating brain lipid metabolism is unclear. Here, we describe a detrimental role of ApoE4 in regulating fatty acid (FA) metabolism across neuron and astrocyte in tandem with their distinctive mitochondrial phenotypes. ApoE4 disrupts neuronal function by decreasing FA sequestering in lipid droplets (LDs). FAs in neuronal LDs are exported and internalized by astrocytes, with ApoE4 diminishing the transport efficiency. Further, ApoE4 lowers FA oxidation and leads to lipid accumulation in both astrocyte and the hippocampus. Importantly, diminished capacity of ApoE4 astrocytes in eliminating neuronal lipids and degrading FAs accounts for their compromised metabolic and synaptic support to neurons. Collectively, our findings reveal a mechanism of ApoE4 disruption to brain FA and bioenergetic homeostasis that could underlie the accelerated lipid dysregulation and energy deficits and increased AD risk for ApoE4 carriers. Qi et al. reveal a role of Alzheimer’s disease risk gene ApoE4 in disrupting fatty acid metabolism coupled between neuron and astrocyte. A systematic impairment in neuronal sequestering, neuron-to-astrocyte transport, and astrocytic degradation of fatty acids could contribute to lipid dysregulation, bioenergetic deficits, and increased Alzheimer’s risk in ApoE4 carriers.
Collapse
|
29
|
L-Carnitine in Drosophila: A Review. Antioxidants (Basel) 2020; 9:antiox9121310. [PMID: 33371457 PMCID: PMC7767417 DOI: 10.3390/antiox9121310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
L-Carnitine is an amino acid derivative that plays a key role in the metabolism of fatty acids, including the shuttling of long-chain fatty acyl CoA to fuel mitochondrial β-oxidation. In addition, L-carnitine reduces oxidative damage and plays an essential role in the maintenance of cellular energy homeostasis. L-carnitine also plays an essential role in the control of cerebral functions, and the aberrant regulation of genes involved in carnitine biosynthesis and mitochondrial carnitine transport in Drosophila models has been linked to neurodegeneration. Drosophila models of neurodegenerative diseases provide a powerful platform to both unravel the molecular pathways that contribute to neurodegeneration and identify potential therapeutic targets. Drosophila can biosynthesize L-carnitine, and its carnitine transport system is similar to the human transport system; moreover, evidence from a defective Drosophila mutant for one of the carnitine shuttle genes supports the hypothesis of the occurrence of β-oxidation in glial cells. Hence, Drosophila models could advance the understanding of the links between L-carnitine and the development of neurodegenerative disorders. This review summarizes the current knowledge on L-carnitine in Drosophila and discusses the role of the L-carnitine pathway in fly models of neurodegeneration.
Collapse
|
30
|
Schäbler S, Amatobi KM, Horn M, Rieger D, Helfrich-Förster C, Mueller MJ, Wegener C, Fekete A. Loss of function in the Drosophila clock gene period results in altered intermediary lipid metabolism and increased susceptibility to starvation. Cell Mol Life Sci 2020; 77:4939-4956. [PMID: 31960114 PMCID: PMC7658074 DOI: 10.1007/s00018-019-03441-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 11/27/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022]
Abstract
The fruit fly Drosophila is a prime model in circadian research, but still little is known about its circadian regulation of metabolism. Daily rhythmicity in levels of several metabolites has been found, but knowledge about hydrophobic metabolites is limited. We here compared metabolite levels including lipids between period01 (per01) clock mutants and Canton-S wildtype (WTCS) flies in an isogenic and non-isogenic background using LC-MS. In the non-isogenic background, metabolites with differing levels comprised essential amino acids, kynurenines, pterinates, glycero(phospho)lipids, and fatty acid esters. Notably, detectable diacylglycerols (DAG) and acylcarnitines (AC), involved in lipid metabolism, showed lower levels in per01 mutants. Most of these differences disappeared in the isogenic background, yet the level differences for AC as well as DAG were consistent for fly bodies. AC levels were dependent on the time of day in WTCS in phase with food consumption under LD conditions, while DAGs showed weak daily oscillations. Two short-chain ACs continued to cycle even in constant darkness. per01 mutants in LD showed no or very weak diel AC oscillations out of phase with feeding activity. The low levels of DAGs and ACs in per01 did not correlate with lower total food consumption, body mass or weight. Clock mutant flies showed higher sensitivity to starvation independent of their background-dependent activity level. Our results suggest that neither feeding, energy storage nor mobilisation is significantly affected in per01 mutants, but point towards impaired mitochondrial activity, supported by upregulation of the mitochondrial stress marker 4EBP in the clock mutants.
Collapse
Affiliation(s)
- Stefan Schäbler
- Pharmaceutical Biology, Julius-Von-Sachs-Institute, Biocenter, University of Würzburg, Julius-von-Sachs Platz 2, 97084, Würzburg, Germany
| | - Kelechi M Amatobi
- Pharmaceutical Biology, Julius-Von-Sachs-Institute, Biocenter, University of Würzburg, Julius-von-Sachs Platz 2, 97084, Würzburg, Germany
| | - Melanie Horn
- Neurobiology and Genetics, Würzburg Insect Research, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Dirk Rieger
- Neurobiology and Genetics, Würzburg Insect Research, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Würzburg Insect Research, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Martin J Mueller
- Pharmaceutical Biology, Julius-Von-Sachs-Institute, Biocenter, University of Würzburg, Julius-von-Sachs Platz 2, 97084, Würzburg, Germany
| | - Christian Wegener
- Neurobiology and Genetics, Würzburg Insect Research, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Agnes Fekete
- Pharmaceutical Biology, Julius-Von-Sachs-Institute, Biocenter, University of Würzburg, Julius-von-Sachs Platz 2, 97084, Würzburg, Germany.
| |
Collapse
|
31
|
Teixeira V, Maciel P, Costa V. Leading the way in the nervous system: Lipid Droplets as new players in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158820. [PMID: 33010453 DOI: 10.1016/j.bbalip.2020.158820] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022]
Abstract
Lipid droplets (LDs) are ubiquitous fat storage organelles composed of a neutral lipid core, comprising triacylglycerols (TAG) and sterol esters (SEs), surrounded by a phospholipid monolayer membrane with several decorating proteins. Recently, LD biology has come to the foreground of research due to their importance for energy homeostasis and cellular stress response. As aberrant LD accumulation and lipid depletion are hallmarks of numerous diseases, addressing LD biogenesis and turnover provides a new framework for understanding disease-related mechanisms. Here we discuss the potential role of LDs in neurodegeneration, while making some predictions on how LD imbalance can contribute to pathophysiology in the brain.
Collapse
Affiliation(s)
- Vitor Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade of Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vítor Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade of Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
32
|
Deme P, Rojas C, Slusher BS, Rais R, Afghah Z, Geiger JD, Haughey NJ. Bioenergetic adaptations to HIV infection. Could modulation of energy substrate utilization improve brain health in people living with HIV-1? Exp Neurol 2020; 327:113181. [PMID: 31930991 PMCID: PMC7233457 DOI: 10.1016/j.expneurol.2020.113181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 12/10/2019] [Accepted: 01/10/2020] [Indexed: 12/18/2022]
Abstract
The human brain consumes more energy than any other organ in the body and it relies on an uninterrupted supply of energy in the form of adenosine triphosphate (ATP) to maintain normal cognitive function. This constant supply of energy is made available through an interdependent system of metabolic pathways in neurons, glia and endothelial cells that each have specialized roles in the delivery and metabolism of multiple energetic substrates. Perturbations in brain energy metabolism is associated with a number of different neurodegenerative conditions including impairments in cognition associated with infection by the Human Immunodeficiency Type 1 Virus (HIV-1). Adaptive changes in brain energy metabolism are apparent early following infection, do not fully normalize with the initiation of antiretroviral therapy (ART), and often worsen with length of infection and duration of anti-retroviral therapeutic use. There is now a considerable amount of cumulative evidence that suggests mild forms of cognitive impairments in people living with HIV-1 (PLWH) may be reversible and are associated with specific modifications in brain energy metabolism. In this review we discuss brain energy metabolism with an emphasis on adaptations that occur in response to HIV-1 infection. The potential for interventions that target brain energy metabolism to preserve or restore cognition in PLWH are also discussed.
Collapse
Affiliation(s)
- Pragney Deme
- The Johns Hopkins University School of Medicine, Department of Neurology, United States
| | - Camilo Rojas
- The Johns Hopkins University School of Medicine, Department of Comparative Medicine and Pathobiology, United States
| | - Barbara S Slusher
- The Johns Hopkins University School of Medicine, Department of Neurology, United States; The Johns Hopkins University School of Medicine, Department of The Solomon H. Snyder Department of Neuroscience, United States; The Johns Hopkins University School of Medicine, Department of Comparative Medicine and Pathobiology, United States; The Johns Hopkins University School of Medicine, Department of Psychiatry, United States
| | - Raina Rais
- The Johns Hopkins University School of Medicine, Department of Neurology, United States; The Johns Hopkins University School of Medicine, Department of The Solomon H. Snyder Department of Neuroscience, United States; The Johns Hopkins University School of Medicine, Department of Comparative Medicine and Pathobiology, United States; The Johns Hopkins University School of Medicine, Department of Psychiatry, United States
| | - Zahra Afghah
- The University of North Dakota School of Medicine and Health Sciences, Department of Biomedical Sciences, United States
| | - Jonathan D Geiger
- The University of North Dakota School of Medicine and Health Sciences, Department of Biomedical Sciences, United States
| | - Norman J Haughey
- The Johns Hopkins University School of Medicine, Department of Neurology, United States; The Johns Hopkins University School of Medicine, Department of Psychiatry, United States.
| |
Collapse
|
33
|
White CJ, Lee J, Choi J, Chu T, Scafidi S, Wolfgang MJ. Determining the Bioenergetic Capacity for Fatty Acid Oxidation in the Mammalian Nervous System. Mol Cell Biol 2020; 40:e00037-20. [PMID: 32123009 PMCID: PMC7189099 DOI: 10.1128/mcb.00037-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/16/2020] [Indexed: 12/15/2022] Open
Abstract
The metabolic state of the brain can greatly impact neurologic function. Evidence of this includes the therapeutic benefit of a ketogenic diet in neurologic diseases, including epilepsy. However, brain lipid bioenergetics remain largely uncharacterized. The existence, capacity, and relevance of mitochondrial fatty acid β-oxidation (FAO) in the brain are highly controversial, with few genetic tools available to evaluate the question. We have provided evidence for the capacity of brain FAO using a pan-brain-specific conditional knockout (KO) mouse incapable of FAO due to the loss of carnitine palmitoyltransferase 2, the product of an obligate gene for FAO (CPT2B-/-). Loss of central nervous system (CNS) FAO did not result in gross neuroanatomical changes or systemic differences in metabolism. Loss of CPT2 in the brain did not result in robustly impaired behavior. We demonstrate by unbiased and targeted metabolomics that the mammalian brain oxidizes a substantial quantity of long-chain fatty acids in vitro and in vivo Loss of CNS FAO results in robust accumulation of long-chain acylcarnitines in the brain, suggesting that the mammalian brain mobilizes fatty acids for their oxidation, irrespective of diet or metabolic state. Together, these data demonstrate that the mammalian brain oxidizes fatty acids under normal circumstances with little influence from or on peripheral tissues.
Collapse
Affiliation(s)
- Cory J White
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jieun Lee
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Joseph Choi
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Tiffany Chu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Hardivillé S, Banerjee PS, Selen Alpergin ES, Smith DM, Han G, Ma J, Talbot CC, Hu P, Wolfgang MJ, Hart GW. TATA-Box Binding Protein O-GlcNAcylation at T114 Regulates Formation of the B-TFIID Complex and Is Critical for Metabolic Gene Regulation. Mol Cell 2019; 77:1143-1152.e7. [PMID: 31866147 DOI: 10.1016/j.molcel.2019.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/14/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022]
Abstract
In eukaryotes, gene expression is performed by three RNA polymerases that are targeted to promoters by molecular complexes. A unique common factor, the TATA-box binding protein (TBP), is thought to serve as a platform to assemble pre-initiation complexes competent for transcription. Here, we describe a novel molecular mechanism of nutrient regulation of gene transcription by dynamic O-GlcNAcylation of TBP. We show that O-GlcNAcylation at T114 of TBP blocks its interaction with BTAF1, hence the formation of the B-TFIID complex, and its dynamic cycling on and off of DNA. Transcriptomic and metabolomic analyses of TBPT114A CRISPR/Cas9-edited cells showed that loss of O-GlcNAcylation at T114 increases TBP binding to BTAF1 and directly impacts expression of 408 genes. Lack of O-GlcNAcylation at T114 is associated with a striking reprogramming of cellular metabolism induced by a profound modification of the transcriptome, leading to gross alterations in lipid storage.
Collapse
Affiliation(s)
- Stéphan Hardivillé
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Partha S Banerjee
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ebru S Selen Alpergin
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Danielle M Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guanghui Han
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Junfeng Ma
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ping Hu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gerald W Hart
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
35
|
Sorochynska OM, Bayliak MM, Gospodaryov DV, Vasylyk YV, Kuzniak OV, Pankiv TM, Garaschuk O, Storey KB, Lushchak VI. Every-Other-Day Feeding Decreases Glycolytic and Mitochondrial Energy-Producing Potentials in the Brain and Liver of Young Mice. Front Physiol 2019; 10:1432. [PMID: 31824339 PMCID: PMC6883932 DOI: 10.3389/fphys.2019.01432] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/04/2019] [Indexed: 01/02/2023] Open
Abstract
Intermittent fasting is used to reduce body mass in obese adult humans and animals. However, information on the impact of one type of intermittent fasting (IF) called every-other-day feeding (EODF) on young animals is scarce. In this study, 1-month-old mice of both sexes were subjected to a 4-week regimen of EODF using age-matched counterparts fed ad libitum as controls. At the end of EODF exposure, experimental male and female mice weighed 14 and 13% less than the control counterparts. The EODF regimen resulted in lower liver levels of glycogen, glucose, and lactate, but did not affect lactate level in mouse cerebral cortex of both sexes. Activities of key glycolytic enzymes (hexokinase, phosphofructokinase, and pyruvate kinase) in liver of experimental mice were lower than those in controls. In the cerebral cortex, only hexokinase and pyruvate kinase activities were lower than in controls, but phosphofructokinase activity was not affected in IF females and was higher in IF males as compared with ad libitum fed males. Mitochondria isolated from liver of IF mice had lower respiratory control ratios, but those from the cortex had the same values as control animals. The concentration of β-hydroxybutyrate and the activity of β-hydroxybutyrate dehydrogenase were lower in the IF mouse liver, but not changed or enhanced in the IF cerebral cortex. Thus, animal responses to IF do not depend significantly on sex and are directed to decrease energy metabolism to save resources, and the effects are more pronounced in the liver than in the brain.
Collapse
Affiliation(s)
- Oksana M Sorochynska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Yulia V Vasylyk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Oksana V Kuzniak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Tetiana M Pankiv
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | | | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
36
|
Bowman CE, Selen Alpergin ES, Ellis JM, Wolfgang MJ. Loss of ACOT7 potentiates seizures and metabolic dysfunction. Am J Physiol Endocrinol Metab 2019; 317:E941-E951. [PMID: 31039008 PMCID: PMC6879868 DOI: 10.1152/ajpendo.00537.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 01/02/2023]
Abstract
Neurons uniquely antagonize fatty acid utilization by hydrolyzing the activated form of fatty acids, long chain acyl-CoAs, via the enzyme acyl-CoA thioesterase 7, Acot7. The loss of Acot7 results in increased fatty acid utilization in neurons and exaggerated stimulus-evoked behavior such as an increased startle response. To understand the contribution of Acot7 to seizure susceptibility, we generated Acot7 knockout (KO) mice and assayed their response to kainate-induced seizures. Acot7 KO mice exhibited potentiated behavioral and molecular indices of seizure severity following kainic acid administration, suggesting that fatty acid metabolism in neurons can be a critical regulator of neuronal activity. These data are consistent with the presentation of seizures in a human with genomic deletion of ACOT7 demonstrating the conservation of function across species. To further understand the metabolic complications arising from a deletion in Acot7, we subjected Acot7 KO mice to a high-fat diet. While the loss of Acot7 did not result in metabolic complications following a normal chow diet, a high-fat diet induced greater body weight gain, adiposity, and glucose intolerance in Acot7 KO mice. These data demonstrate that Acot7, a fatty acid metabolic enzyme highly enriched in neurons, regulates both brain-specific metabolic processes related to seizure susceptibility and the whole body response to dietary lipid.
Collapse
Affiliation(s)
- Caitlyn E Bowman
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ebru S Selen Alpergin
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica M Ellis
- Department of Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Michael J Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
37
|
O’Hara D, Davis GM, Adlesic NA, Hayes JM, Davey GP. Dichloroacetate Stabilizes Mitochondrial Fusion Dynamics in Models of Neurodegeneration. Front Mol Neurosci 2019; 12:219. [PMID: 31619961 PMCID: PMC6759677 DOI: 10.3389/fnmol.2019.00219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction is a recognized hallmark of neurodegenerative diseases and abnormal mitochondrial fusion-fission dynamics have been implicated in the pathogenesis of neurodegenerative disorders. This study characterizes the effects of metabolic flux inhibitors and activators on mitochondrial fusion dynamics in the neuronal cell culture model of differentiated PC12 cells. Using a real time confocal microscopy assay, it was found that the carnitine palmitoyltransferase I (CPTI) inhibitor, etomoxir, reduced mitochondrial fusion dynamics in a time-dependent manner. Etomoxir also decreased JO2, ΔΨm and reactive oxygen species (ROS) production rates. The mitochondrial pyruvate carrier (MPC) inhibitor, UK5099, reduced fusion dynamics and in combination with etomoxir these inhibitory effects were amplified. Use of the pyruvate dehydrogenase (PDH) kinase inhibitor dichloroacetate, which is known to increase metabolic flux through PDH, reversed the etomoxir-induced effects on fusion dynamics, JO2, ΔΨm but not ROS production rates. Dichloroacetate also partially reversed inhibition of mitochondrial fusion dynamics caused by the parkinsonian-inducing neurotoxin, MPP+. These results suggest that dichloroacetate-induced activation of metabolic flux in the mitochondrion may be a mechanism to restore normal mitochondrial fusion-fission dynamics in metabolically challenged cells.
Collapse
Affiliation(s)
| | | | | | | | - Gavin P. Davey
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
38
|
Triacylglycerol Metabolism in Drosophila melanogaster. Genetics 2019; 210:1163-1184. [PMID: 30523167 DOI: 10.1534/genetics.118.301583] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022] Open
Abstract
Triacylglycerol (TAG) is the most important caloric source with respect to energy homeostasis in animals. In addition to its evolutionarily conserved importance as an energy source, TAG turnover is crucial to the metabolism of structural and signaling lipids. These neutral lipids are also key players in development and disease. Here, we review the metabolism of TAG in the Drosophila model system. Recently, the fruit fly has attracted renewed attention in research due to the unique experimental approaches it affords in studying the tissue-autonomous and interorgan regulation of lipid metabolism in vivo Following an overview of the systemic control of fly body fat stores, we will cover lipid anabolic, enzymatic, and regulatory processes, which begin with the dietary lipid breakdown and de novo lipogenesis that results in lipid droplet storage. Next, we focus on lipolytic processes, which mobilize storage TAG to make it metabolically accessible as either an energy source or as a building block for biosynthesis of other lipid classes. Since the buildup and breakdown of fat involves various organs, we highlight avenues of lipid transport, which are at the heart of functional integration of organismic lipid metabolism. Finally, we draw attention to some "missing links" in basic neutral lipid metabolism and conclude with a perspective on how fly research can be exploited to study functional metabolic roles of diverse lipids.
Collapse
|
39
|
Zhou K, Yao P, He J, Zhao H. Lipophagy in nonliver tissues and some related diseases: Pathogenic and therapeutic implications. J Cell Physiol 2018; 234:7938-7947. [PMID: 30537019 DOI: 10.1002/jcp.27988] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022]
Abstract
Lipid autophagy (lipophagy) is defined as a selective autophagy process in which some intracellular lipid droplets are selectively degraded by autophagic lysosomes pathway. The occurrence of lipophagy was first discovered in liver tissues. Additionally, abundant evidence indicated that the occurrence of hepatic lipophagy has been implicated in many liver diseases including fatty liver diseases, nonalcoholic fatty liver diseases, liver fibrosis, and liver cirrhosis. However, recent studies suggested that hepatic lipophagy occurs not only in liver tissue but also in other nonliver tissues and cells. Furthermore, the occurrence of lipophagy plays a crucial role in nonliver tissues and some related diseases. For instance, lipophagy relieves insulin resistance in adipose tissue from obesity patient with type 2 diabetes. Additionally, lipophagy has the ability to remit neurodegenerative diseases by reducing activity-dependent neurodegeneration in nervous tissue. Lipophagy decreases muscle lipid accumulation and accordingly improves lipid storage myopathy in muscle tissue. Moreover, lipophagy alleviates the malignancy and metastasis of cancer in clear renal cell carcinoma tissue. Lipophagy is also involved in other processes, such as spermatogenesis, osteoblastogenesis, and mucosal ulceration. In conclusion, targeting lipophagy may be a critical regulator and a new therapeutic strategy for nonliver tissues and some related diseases.
Collapse
Affiliation(s)
- Kebing Zhou
- Department of Emergency Medicine, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Pingbo Yao
- Department of Emergency Medicine, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Jun He
- Department of Emergency Medicine, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Hong Zhao
- Department of Basic nursing, Nursing College, University of South China, Hengyang, China
| |
Collapse
|
40
|
Yildirim K, Petri J, Kottmeier R, Klämbt C. Drosophila glia: Few cell types and many conserved functions. Glia 2018; 67:5-26. [DOI: 10.1002/glia.23459] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Kerem Yildirim
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Johanna Petri
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Rita Kottmeier
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Christian Klämbt
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| |
Collapse
|
41
|
Alternative respiratory chain enzymes: Therapeutic potential and possible pitfalls. Biochim Biophys Acta Mol Basis Dis 2018; 1865:854-866. [PMID: 30342157 DOI: 10.1016/j.bbadis.2018.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/07/2023]
Abstract
The alternative respiratory chain (aRC), comprising the alternative NADH dehydrogenases (NDX) and quinone oxidases (AOX), is found in microbes, fungi and plants, where it buffers stresses arising from restrictions on electron flow in the oxidative phosphorylation system. The aRC enzymes are also found in species belonging to most metazoan phyla, including some chordates and arthropods species, although not in vertebrates or in Drosophila. We postulated that the aRC enzymes might be deployed to alleviate pathological stresses arising from mitochondrial dysfunction in a wide variety of disease states. However, before such therapies can be contemplated, it is essential to understand the effects of aRC enzymes on cell metabolism and organismal physiology. Here we report and discuss new findings that shed light on the functions of the aRC enzymes in animals, and the unexpected benefits and detriments that they confer on model organisms. In Ciona intestinalis, the aRC is induced by hypoxia and by sulfide, but is unresponsive to other environmental stressors. When expressed in Drosophila, AOX results in impaired survival under restricted nutrition, in addition to the previously reported male reproductive anomalies. In contrast, it confers cold resistance to developing and adult flies, and counteracts cell signaling defects that underlie developmental dysmorphologies. The aRC enzymes may also influence lifespan and stress resistance more generally, by eliciting or interfering with hormetic mechanisms. In sum, their judicious use may lead to major benefits in medicine, but this will require a thorough characterization of their properties and physiological effects.
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW The goal of the present paper is to review current literature supporting the occurrence of fundamental changes in brain energy metabolism during the transition from wakefulness to sleep. RECENT FINDINGS Latest research in the field indicates that glucose utilization and the concentrations of several brain metabolites consistently change across the sleep-wake cycle. Lactate, a product of glycolysis that is involved in synaptic plasticity, has emerged as a good biomarker of brain state. Sleep-induced changes in cerebral metabolite levels result from a shift in oxidative metabolism, which alters the reliance of brain metabolism upon carbohydrates. We found wide support for the notion that brain energetics is state dependent. In particular, fatty acids and ketone bodies partly replace glucose as cerebral energy source during sleep. This mechanism plausibly accounts for increases in biosynthetic pathways and functional alterations in neuronal activity associated with sleep. A better account of brain energy metabolism during sleep might help elucidate the long mysterious restorative effects of sleep for the whole organism.
Collapse
Affiliation(s)
- Nadia Nielsen Aalling
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark.,Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY, 14640, USA
| | - Mauro DiNuzzo
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark.
| |
Collapse
|
43
|
Monnier V, Llorens JV, Navarro JA. Impact of Drosophila Models in the Study and Treatment of Friedreich's Ataxia. Int J Mol Sci 2018; 19:E1989. [PMID: 29986523 PMCID: PMC6073496 DOI: 10.3390/ijms19071989] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
Drosophila melanogaster has been for over a century the model of choice of several neurobiologists to decipher the formation and development of the nervous system as well as to mirror the pathophysiological conditions of many human neurodegenerative diseases. The rare disease Friedreich’s ataxia (FRDA) is not an exception. Since the isolation of the responsible gene more than two decades ago, the analysis of the fly orthologue has proven to be an excellent avenue to understand the development and progression of the disease, to unravel pivotal mechanisms underpinning the pathology and to identify genes and molecules that might well be either disease biomarkers or promising targets for therapeutic interventions. In this review, we aim to summarize the collection of findings provided by the Drosophila models but also to go one step beyond and propose the implications of these discoveries for the study and cure of this disorder. We will present the physiological, cellular and molecular phenotypes described in the fly, highlighting those that have given insight into the pathology and we will show how the ability of Drosophila to perform genetic and pharmacological screens has provided valuable information that is not easily within reach of other cellular or mammalian models.
Collapse
Affiliation(s)
- Véronique Monnier
- Unité de Biologie Fonctionnelle et Adaptative (BFA), Sorbonne Paris Cité, Université Paris Diderot, UMR8251 CNRS, 75013 Paris, France.
| | - Jose Vicente Llorens
- Department of Genetics, University of Valencia, Campus of Burjassot, 96100 Valencia, Spain.
| | - Juan Antonio Navarro
- Lehrstuhl für Entwicklungsbiologie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
44
|
Abstract
Lipid droplets (LDs) are ubiquitous fat storage organelles and play key roles in lipid metabolism and energy homeostasis; in addition, they contribute to protein storage, folding, and degradation. However, a role for LDs in the nervous system remains largely unexplored. We discuss evidence supporting an intimate functional connection between LDs and motor neuron disease (MND) pathophysiology, examining how LD functions in systemic energy homeostasis, in neuron-glia metabolic coupling, and in protein folding and clearance may affect or contribute to disease pathology. An integrated understanding of LD biology and neurodegeneration may open the way for new therapeutic interventions.
Collapse
Affiliation(s)
- Giuseppa Pennetta
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK; Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK.
| | - Michael A Welte
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
45
|
Garaschuk O, Semchyshyn HM, Lushchak VI. Healthy brain aging: Interplay between reactive species, inflammation and energy supply. Ageing Res Rev 2018; 43:26-45. [PMID: 29452266 DOI: 10.1016/j.arr.2018.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/13/2017] [Accepted: 02/08/2018] [Indexed: 02/07/2023]
Abstract
Brains' high energy expenditure with preferable utilization of glucose and ketone bodies, defines the specific features of its energy homeostasis. The extensive oxidative metabolism is accompanied by a concomitant generation of high amounts of reactive oxygen, nitrogen, and carbonyl species, which will be here collectively referred to as RONCS. Such metabolism in combination with high content of polyunsaturated fatty acids creates specific problems in maintaining brains' redox homeostasis. While the levels of products of interaction between RONCS and cellular components increase slowly during the first two trimesters of individuals' life, their increase is substantially accelerated towards the end of life. Here we review the main mechanisms controlling the redox homeostasis of the mammalian brain, their age-dependencies as well as their adaptive potential, which might turn out to be much higher than initially assumed. According to recent data, the organism seems to respond to the enhancement of aging-related toxicity by forming a new homeostatic set point. Therefore, further research will focus on understanding the properties of the new set point(s), the general nature of this phenomenon and will explore the limits of brains' adaptivity.
Collapse
Affiliation(s)
- O Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, 72074 Tübingen, Germany.
| | - H M Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk, 76018, Ukraine.
| | - V I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
46
|
Long DM, Giebultowicz JM. Age-Related Changes in the Expression of the Circadian Clock Protein PERIOD in Drosophila Glial Cells. Front Physiol 2018; 8:1131. [PMID: 29375400 PMCID: PMC5767304 DOI: 10.3389/fphys.2017.01131] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/21/2017] [Indexed: 01/11/2023] Open
Abstract
Circadian clocks consist of molecular negative feedback loops that coordinate physiological, neurological, and behavioral variables into “circa” 24-h rhythms. Rhythms in behavioral and other circadian outputs tend to weaken during aging, as evident in progressive disruptions of sleep-wake cycles in aging organisms. However, less is known about the molecular changes in the expression of clock genes and proteins that may lead to the weakening of circadian outputs. Western blot studies have demonstrated that the expression of the core clock protein PERIOD (PER) declines in the heads of aged Drosophila melanogaster flies. This age-related decline in PER does not occur in the central pacemaker neurons but has been demonstrated so far in retinal photoreceptors. Besides photoreceptors, clock proteins are also expressed in fly glia, which play important roles in neuronal homeostasis and are further categorized into subtypes based on morphology and function. While previous studies of mammalian glial cells have demonstrated the presence of functional clocks in astrocytes and microglia, it is not known which glial cell types in Drosophila express clock proteins and how their expression may change in aged individuals. Here, we conducted immunocytochemistry experiments to identify which glial subtypes express PER protein suggestive of functional circadian clocks. Glial cell subtypes that showed night-time accumulation and day-time absence in PER consistent with oscillations reported in the pacemaker neurons were selected to compare the level of PER protein between young and old flies. Our data demonstrate that some glial subtypes show rhythmic PER expression and the relative PER levels become dampened with advanced age. Identification of glial cell types that display age-related dampening of PER levels may help to understand the cellular changes that contribute to the loss of homeostasis in the aging brain.
Collapse
Affiliation(s)
- Dani M Long
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Jadwiga M Giebultowicz
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
47
|
Cabirol-Pol MJ, Khalil B, Rival T, Faivre-Sarrailh C, Besson MT. Glial lipid droplets and neurodegeneration in a Drosophila model of complex I deficiency. Glia 2017; 66:874-888. [PMID: 29285794 DOI: 10.1002/glia.23290] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 01/09/2023]
Abstract
Mitochondrial defects associated with respiratory chain complex I deficiency lead to heterogeneous fatal syndromes. While the role of NDUFS8, an essential subunit of the core assembly of the complex I, is established in mitochondrial diseases, the mechanisms underlying neuropathology are poorly understood. We developed a Drosophila model of NDUFS8 deficiency by knocking down the expression of its fly homologue in neurons or in glial cells. Downregulating ND23 in neurons resulted in shortened lifespan, and decreased locomotion. Although total brain ATP levels were decreased, histological analysis did not reveal any signs of neurodegeneration except for photoreceptors of the retina. Interestingly, ND23 deficiency-associated phenotypes were rescued by overexpressing the glucose transporter hGluT3 demonstrating that boosting glucose metabolism in neurons was sufficient to bypass altered mitochondrial functions and to confer neuroprotection. We then analyzed the consequences of ND23 knockdown in glial cells. In contrast to neuronal knockdown, loss of ND23 in glia did not lead to significant behavioral defects nor to reduced lifespan, but induced brain degeneration, as visualized by numerous vacuoles found all over the nervous tissue. This phenotype was accompanied by the massive accumulation of lipid droplets at the cortex-neuropile boundaries, suggesting an alteration of lipid metabolism in glia. These results demonstrate that complex I deficiency triggers metabolic alterations both in neurons and glial cells which may contribute to the neuropathology.
Collapse
Affiliation(s)
| | - Bilal Khalil
- Aix Marseille Université, CNRS, CRN2M-UMR7286, 13344 Marseille cedex 15, Marseille, France.,Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida
| | - Thomas Rival
- Aix Marseille Université, CNRS, IBDM UMR 7288, Marseille, France
| | | | - Marie Thérèse Besson
- Aix Marseille Université, CNRS, CRN2M-UMR7286, 13344 Marseille cedex 15, Marseille, France
| |
Collapse
|
48
|
AMP-activated protein kinase protects against anoxia in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 2017; 214:30-39. [DOI: 10.1016/j.cbpa.2017.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 01/18/2023]
|
49
|
Abstract
In Drosophila, neuronal mitochondria that lack OXPHOS generate ROS-protective fatty acids and lipid droplets in associated glia. In this issue, Liu et al. (2017) demonstrate that neuronal lipid synthesis is driven by the glial lactate shuttle. This lipoprotein-dependent deposition of lipids may be at the origin of glial specializations evolving in vertebrates.
Collapse
|
50
|
Rittschof CC, Schirmeier S. Insect models of central nervous system energy metabolism and its links to behavior. Glia 2017; 66:1160-1175. [DOI: 10.1002/glia.23235] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/30/2017] [Accepted: 09/08/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Clare C. Rittschof
- Department of Entomology; College of Agriculture, Food, and the Environment, University of Kentucky; Lexington Kentucky
| | - Stefanie Schirmeier
- Institut für Neuro-und Verhaltensbiologie, University of Münster; Münster Germany
| |
Collapse
|