1
|
Low JJL, Tan BJW, Yi LX, Zhou ZD, Tan EK. Genetic susceptibility to caffeine intake and metabolism: a systematic review. J Transl Med 2024; 22:961. [PMID: 39438936 PMCID: PMC11515775 DOI: 10.1186/s12967-024-05737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Coffee and tea consumption account for most caffeine intake and 2-3 billion cups are taken daily around the world. Caffeine dependence is a widespread but under recognized problem. OBJECTIVES To conduct a systematic review on the genetic susceptibility factors affecting caffeine metabolism and caffeine reward and their association with caffeine intake. METHODOLOGY We conducted PubMed and Embase searches using the terms "caffeine", "reward", "gene", "polymorphism", "addiction", "dependence" and "habit" from inception till 2024. The demographics, genetic and clinical data from included studies were extracted and analyzed. Only case-control studies on habitual caffeine drinkers with at least 100 in each arm were included. RESULTS A total of 2552 studies were screened and 26 studies involving 1,851,428 individuals were included. Several genes that were involved with caffeine metabolism such as CYP1A2, ADORA2A, AHR, POR, ABCG2, CYP2A6, PDSS2 and HECTD4 rs2074356 (A allele specific to East Asians and monomorphic in Europeans, Africans and Americans) were associated with habitual caffeine consumption with effect size difference of 3% to 32% in number of cups of caffeinated drink per day per effect allele. In addition, ALDH2 was linked to the Japanese population. Genes associated with caffeine reward included BDNF, SLC6A4, GCKR, MLXIPL and dopaminergic genes such as DRD2 and DAT1 which had around 2-5% effect size difference in number of cups of caffeinated drink for each allele per day. CONCLUSION Several genes that were involved in caffeine metabolism and reward were associated with up to 30% effect size difference in number of cups of caffeinated drink per day, and some associations were specific to certain ethnicities. Identification of at-risk caffeine dependence individuals can lead to early diagnosis and stratification of at-risk vulnerable individuals such as pregnant women and children, and can potentially lead to development of drug targets for dependence to caffeine.
Collapse
Affiliation(s)
- Jazreel Ju-Li Low
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Brendan Jen-Wei Tan
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore, Singapore
| | - Ling-Xiao Yi
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Zhi-Dong Zhou
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Eng-King Tan
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore, Singapore.
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
2
|
Thorpe HHA, Fontanillas P, Pham BK, Meredith JJ, Jennings MV, Courchesne-Krak NS, Vilar-Ribó L, Bianchi SB, Mutz J, Elson SL, Khokhar JY, Abdellaoui A, Davis LK, Palmer AA, Sanchez-Roige S. Genome-wide association studies of coffee intake in UK/US participants of European ancestry uncover cohort-specific genetic associations. Neuropsychopharmacology 2024; 49:1609-1618. [PMID: 38858598 PMCID: PMC11319477 DOI: 10.1038/s41386-024-01870-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 06/12/2024]
Abstract
Coffee is one of the most widely consumed beverages. We performed a genome-wide association study (GWAS) of coffee intake in US-based 23andMe participants (N = 130,153) and identified 7 significant loci, with many replicating in three multi-ancestral cohorts. We examined genetic correlations and performed a phenome-wide association study across hundreds of biomarkers, health, and lifestyle traits, then compared our results to the largest available GWAS of coffee intake from the UK Biobank (UKB; N = 334,659). We observed consistent positive genetic correlations with substance use and obesity in both cohorts. Other genetic correlations were discrepant, including positive genetic correlations between coffee intake and psychiatric illnesses, pain, and gastrointestinal traits in 23andMe that were absent or negative in the UKB, and genetic correlations with cognition that were negative in 23andMe but positive in the UKB. Phenome-wide association study using polygenic scores of coffee intake derived from 23andMe or UKB summary statistics also revealed consistent associations with increased odds of obesity- and red blood cell-related traits, but all other associations were cohort-specific. Our study shows that the genetics of coffee intake associate with substance use and obesity across cohorts, but also that GWAS performed in different populations could capture cultural differences in the relationship between behavior and genetics.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Benjamin K Pham
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - John J Meredith
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sevim B Bianchi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Julian Mutz
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lea K Davis
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Thorpe HHA, Fontanillas P, Pham BK, Meredith JJ, Jennings MV, Courchesne-Krak NS, Vilar-Ribó L, Bianchi SB, Mutz J, Elson SL, Khokhar JY, Abdellaoui A, Davis LK, Palmer AA, Sanchez-Roige S. Genome-Wide Association Studies of Coffee Intake in UK/US Participants of European Ancestry Uncover Gene-Cohort Influences. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.09.23295284. [PMID: 37745582 PMCID: PMC10516045 DOI: 10.1101/2023.09.09.23295284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Coffee is one of the most widely consumed beverages. We performed a genome-wide association study (GWAS) of coffee intake in US-based 23andMe participants (N=130,153) and identified 7 significant loci, with many replicating in three multi-ancestral cohorts. We examined genetic correlations and performed a phenome-wide association study across thousands of biomarkers and health and lifestyle traits, then compared our results to the largest available GWAS of coffee intake from UK Biobank (UKB; N=334,659). The results of these two GWAS were highly discrepant. We observed positive genetic correlations between coffee intake and psychiatric illnesses, pain, and gastrointestinal traits in 23andMe that were absent or negative in UKB. Genetic correlations with cognition were negative in 23andMe but positive in UKB. The only consistent observations were positive genetic correlations with substance use and obesity. Our study shows that GWAS in different cohorts could capture cultural differences in the relationship between behavior and genetics.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Benjamin K Pham
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - John J Meredith
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sevim B Bianchi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Julian Mutz
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - 23andMe Research Team
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah L Elson
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lea K Davis
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Bobková A, Demianová A, Poláková K, Capcarová M, Lidiková J, Árvay J, Hegedűsová A, Bobko M, Jurčaga L, Belej Ľ. Variability of caffeine content in green and roasted Coffea arabica regarding the origin, post-harvest processing, and altitude, and overview of recommended daily allowance. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:989-998. [PMID: 36573489 DOI: 10.1080/03601234.2022.2159739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Caffeine content is a crucial attribute of coffee. Its concentration and thus maximum cups of Coffea arabica from Africa, Asia, Central America, and South America from different altitudes of growing areas, altitude, and process using different post-harvest processing (dry, wet, and pulped natural). Our results suggest that geographical origin might affect the alkaloid concentration in C. arabica. The caffeine concentration pattern in green samples was as follows: Central America > South America > Asia > Africa. Altitude affected the concentrations, lowlands > midlands > highlands, however, not significantly. Given caffeine is thermostable, the medium roasting process did not affect the concentration of caffeine directly, but a small increase was observed. Scientific opinion on the safety of habitual caffeine consumption of up to 400 mg per day does not raise safety concerns for non-pregnant adults. A cup (7 g coffee in 120 mL of water) was used for recalculation. Results suggest that mostly highlands and midlands coffee from Africa reached levels of caffeine that might be consumed in more than 5.5 cups a day.
Collapse
Affiliation(s)
- Alica Bobková
- Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, The Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Alžbeta Demianová
- Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, The Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Katarína Poláková
- Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, The Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Marcela Capcarová
- Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, The Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Judita Lidiková
- Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, The Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Július Árvay
- Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, The Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Alžbeta Hegedűsová
- Faculty of Agrobiology and Food Resources, Institute of Horticulture, The Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Marek Bobko
- Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, The Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Lukáš Jurčaga
- Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, The Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Ľubomír Belej
- Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, The Slovak University of Agriculture in Nitra, Nitra, Slovakia
| |
Collapse
|
5
|
Yin B, Wang X, Huang T, Jia J. Shared Genetics and Causality Between Decaffeinated Coffee Consumption and Neuropsychiatric Diseases: A Large-Scale Genome-Wide Cross-Trait Analysis and Mendelian Randomization Analysis. Front Psychiatry 2022; 13:910432. [PMID: 35898629 PMCID: PMC9309364 DOI: 10.3389/fpsyt.2022.910432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Coffee or caffeine consumption has been associated with neuropsychiatric disorders, implying a shared etiology. However, whether these associations reflect causality remains largely unknown. To understand the genetic structure of the association between decaffeinated coffee consumption (DCC) and neuropsychiatric traits, we examined the genetic correlation, causality, and shared genetic structure between DCC and neuropsychiatric traits using linkage disequilibrium score regression, bidirectional Mendelian randomization (MR), and genome-wide cross-trait meta-analysis in large GWAS Consortia for coffee consumption (N = 329,671) and 13 neuropsychiatric traits (sample size ranges from 36,052 to 500,199). We found strong positive genetic correlations between DCC and lifetime cannabis use (LCU; Rg = 0.48, P = 8.40 × 10-19), alcohol use disorder identification test (AUDIT) total score (AUDIT_T; Rg = 0.40, P = 4.63 × 10-13), AUDIT_C score (alcohol consumption component of the AUDIT; Rg = 0.40, P = 5.26 × 10-11), AUDIT_P score (dependence and hazardous-use component of the AUDIT; Rg = 0.28, P = 1.36 × 10-05), and strong negative genetic correlations between DCC and neuroticism (Rg = -0.15, P = 7.27 × 10-05), major depressed diseases (MDD; Rg = -0.15, P = 0.0010), and insomnia (Rg= -0.15, P = 0.0007). In the cross-trait meta-analysis, we identified 6, 5, 1, 1, 2, 31, and 27 shared loci between DCC and Insomnia, LCU, AUDIT_T, AUDIT_C, AUDIT_P, neuroticism, and MDD, respectively, which were mainly enriched in bone marrow, lymph node, cervix, uterine, lung, and thyroid gland tissues, T cell receptor signaling pathway, antigen receptor-mediated signaling pathway, and epigenetic pathways. A large of TWAS-significant associations were identified in tissues that are part of the nervous system, digestive system, and exo-/endocrine system. Our findings further indicated a causal influence of liability to DCC on LCU and low risk of MDD (odds ratio: 0.90, P = 9.06 × 10-5 and 1.27, P = 7.63 × 10-4 respectively). We also observed that AUDIT_T and AUDIT_C were causally related to DCC (odds ratio: 1.83 per 1-SD increase in AUDIT_T, P = 1.67 × 10-05, 1.80 per 1-SD increase in AUDIT_C, P = 5.09 × 10-04). Meanwhile, insomnia and MDD had a causal negative influence on DCC (OR: 0.91, 95% CI: 0.86-0.95, P = 1.51 × 10-04 for Insomnia; OR: 0.93, 95% CI: 0.89-0.99, P = 6.02 × 10-04 for MDD). These findings provided evidence for the shared genetic basis and causality between DCC and neuropsychiatric diseases, and advance our understanding of the shared genetic mechanisms underlying their associations, as well as assisting with making recommendations for clinical works or health education.
Collapse
Affiliation(s)
- Bian Yin
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xinpei Wang
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Tao Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China.,Center for Intelligent Public Health, Academy for Artificial Intelligence, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China
| | - Jinzhu Jia
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China.,Center for Statistical Science, Peking University, Beijing, China
| |
Collapse
|
6
|
Narayan VP, Yoon SY. Associations of Blood Caffeine and Genetically Predicted Coffee Consumption with Anthropometric Measures of Obesity: A Two Sample Mendelian Randomization Study. J Nutr Health Aging 2022; 26:190-196. [PMID: 35166314 DOI: 10.1007/s12603-022-1736-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES In observational studies, caffeine has been associated with a lower risk of obesity. However, whether the associations are causal and apply to coffee, which is a mixture of chemical compounds is unclear. DESIGN Two sample Mendelian randomization study. SETTING AND PARTICIPANTS Genetic instruments predicting caffeine were extracted from an existing GWAS of serum metabolites in 1960 individuals of European descent. For coffee consumption up to 91,462 individuals of European ancestry with top SNPs followed-up in ~30,062 coffee consumers and up to 375,833 individuals of European ancestry were taken from two separate studies. Genetic associations with obesity classes (n= 263,407), waist-to-hip ratio (WHR) (n=210,086), waist circumference (WC) (n= 231,355), and hip circumference (HC) (n=211,117) were obtained from summary statistics of individuals of European ancestry from the Genetic Investigation of Anthropocentric Traits (GIANT). METHODS The inverse-variance weighted method (IVW) was used as the main analysis. We also employed the weighted median approach (WM) and MR-Egger regression as sensitivity analyses. To gauge evidence of directional pleiotropy, we used Cochrane's Q test, and MR-PRESSO global test, as measures of heterogeneity between ratio estimates of variants. RESULTS There was little evidence to support an association between blood caffeine and any anthropometric measure of obesity in the primary and sensitivity analyses. However, genetically predicted coffee consumption was positively associated with higher class I obesity and WHR. Furthermore, this association was maintained after correction for multiple testing (P < 0.05/6 = 0.008). Results from the GWAS of coffee consumption were in tandem with results from the GWMA, but associations with class I obesity and waist to hip ratio (WHR) were not maintained after correction for multiple testing. CONCLUSION We found little evidence that caffeine or coffee consumption protects against obesity, adding to growing literature suggesting that previous observational studies may have been confounded. This study demonstrates the dangers of ignoring genetic testing for targeted interventions and basing dietary policy recommendations solely on observational studies restricted to specific populations.
Collapse
Affiliation(s)
- V P Narayan
- Mr. Vikram Narayan, School of Biological Sciences, The University of Queensland, St Lucia, 4072, Australia, E-mail:
| | | |
Collapse
|
7
|
Cornelis MC, van Dam RM. Genetic determinants of liking and intake of coffee and other bitter foods and beverages. Sci Rep 2021; 11:23845. [PMID: 34903748 PMCID: PMC8669025 DOI: 10.1038/s41598-021-03153-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Coffee is a widely consumed beverage that is naturally bitter and contains caffeine. Genome-wide association studies (GWAS) of coffee drinking have identified genetic variants involved in caffeine-related pathways but not in taste perception. The taste of coffee can be altered by addition of milk/sweetener, which has not been accounted for in GWAS. Using UK and US cohorts, we test the hypotheses that genetic variants related to taste are more strongly associated with consumption of black coffee than with consumption of coffee with milk or sweetener and that genetic variants related to caffeine pathways are not differentially associated with the type of coffee consumed independent of caffeine content. Contrary to our hypotheses, genetically inferred caffeine sensitivity was more strongly associated with coffee taste preferences than with genetically inferred bitter taste perception. These findings extended to tea and dark chocolate. Taste preferences and physiological caffeine effects intertwine in a way that is difficult to distinguish for individuals which may represent conditioned taste preferences.
Collapse
Affiliation(s)
- Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 North Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA.
| | - Rob M van Dam
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
8
|
Ellingjord-Dale M, Papadimitriou N, Katsoulis M, Yee C, Dimou N, Gill D, Aune D, Ong JS, MacGregor S, Elsworth B, Lewis SJ, Martin RM, Riboli E, Tsilidis KK. Coffee consumption and risk of breast cancer: A Mendelian randomization study. PLoS One 2021; 16:e0236904. [PMID: 33465101 PMCID: PMC7815134 DOI: 10.1371/journal.pone.0236904] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Observational studies have reported either null or weak protective associations for coffee consumption and risk of breast cancer. METHODS We conducted a two-sample Mendelian randomization (MR) analysis to evaluate the relationship between coffee consumption and breast cancer risk using 33 single-nucleotide polymorphisms (SNPs) associated with coffee consumption from a genome-wide association (GWA) study on 212,119 female UK Biobank participants of White British ancestry. Risk estimates for breast cancer were retrieved from publicly available GWA summary statistics from the Breast Cancer Association Consortium (BCAC) on 122,977 cases (of which 69,501 were estrogen receptor (ER)-positive, 21,468 ER-negative) and 105,974 controls of European ancestry. Random-effects inverse variance weighted (IVW) MR analyses were performed along with several sensitivity analyses to assess the impact of potential MR assumption violations. RESULTS One cup per day increase in genetically predicted coffee consumption in women was not associated with risk of total (IVW random-effects; odds ratio (OR): 0.91, 95% confidence intervals (CI): 0.80-1.02, P: 0.12, P for instrument heterogeneity: 7.17e-13), ER-positive (OR = 0.90, 95% CI: 0.79-1.02, P: 0.09) and ER-negative breast cancer (OR: 0.88, 95% CI: 0.75-1.03, P: 0.12). Null associations were also found in the sensitivity analyses using MR-Egger (total breast cancer; OR: 1.00, 95% CI: 0.80-1.25), weighted median (OR: 0.97, 95% CI: 0.89-1.05) and weighted mode (OR: 1.00, CI: 0.93-1.07). CONCLUSIONS The results of this large MR study do not support an association of genetically predicted coffee consumption on breast cancer risk, but we cannot rule out existence of a weak association.
Collapse
Affiliation(s)
- Merete Ellingjord-Dale
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Nikos Papadimitriou
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Michail Katsoulis
- Institute of Health Informatics Research, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Chew Yee
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Niki Dimou
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department of Nutrition, Bjørknes University College, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Jue-Sheng Ong
- Statistical Genetics, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Stuart MacGregor
- Statistical Genetics, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Benjamin Elsworth
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Sarah J. Lewis
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Richard M. Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, United Kingdom
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Konstantinos K. Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
9
|
Said MA, van de Vegte YJ, Verweij N, van der Harst P. Associations of Observational and Genetically Determined Caffeine Intake With Coronary Artery Disease and Diabetes Mellitus. J Am Heart Assoc 2020; 9:e016808. [PMID: 33287642 PMCID: PMC7955399 DOI: 10.1161/jaha.120.016808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Caffeine is the most widely consumed psychostimulant and is associated with lower risk of coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM). However, whether these associations are causal remains unknown. This study aimed to identify genetic variants associated with caffeine intake, and to investigate evidence for causal links with CAD or T2DM. In addition, we aimed to replicate previous observational findings. Methods and Results Observational associations were tested within UK Biobank using Cox regression analyses. Moderate observational caffeine intakes from coffee or tea were associated with lower risks of CAD or T2DM, with the lowest risks at intakes of 121 to 180 mg/day from coffee for CAD (hazard ratio [HR], 0.77 [95% CI, 0.73–0.82; P<1×10−16]), and 301 to 360 mg/day for T2DM (HR, 0.76 [95% CI, 0.67–0.86]; P=1.57×10−5). Next, genome‐wide association studies were performed on self‐reported caffeine intake from coffee, tea, or both in 407 072 UK Biobank participants. These analyses identified 51 novel genetic variants associated with caffeine intake at P<1.67×10−8. These loci were enriched for central nervous system genes. However, in contrast to the observational analyses, 2‐sample Mendelian randomization analyses using the identified loci in independent disease‐specific cohorts yielded no evidence for causal links between genetically determined caffeine intake and the development of CAD or T2DM. Conclusions Mendelian randomization analyses indicate genetically determined higher caffeine intake might not protect against CAD or T2DM, despite protective associations in observational analyses.
Collapse
Affiliation(s)
- M Abdullah Said
- Department of Cardiology University Medical Center GroningenUniversity of Groningen Groningen the Netherlands
| | - Yordi J van de Vegte
- Department of Cardiology University Medical Center GroningenUniversity of Groningen Groningen the Netherlands
| | - Niek Verweij
- Department of Cardiology University Medical Center GroningenUniversity of Groningen Groningen the Netherlands
| | - Pim van der Harst
- Department of Cardiology University Medical Center GroningenUniversity of Groningen Groningen the Netherlands.,Division of Heart and Lungs Department of Cardiology University Medical Center Utrecht Utrecht the Netherlands
| |
Collapse
|
10
|
Suzuki H, Nakamura Y, Matsuo K, Imaeda N, Goto C, Narita A, Shimizu A, Takashima N, Matsui K, Miura K, Nakatochi M, Hishida A, Tamura T, Kadomatsu Y, Okada R, Nishida Y, Shimanoe C, Nishimoto D, Takezaki T, Oze I, Ito H, Ikezaki H, Murata M, Matsui D, Ozaki E, Mikami H, Nakamura Y, Suzuki S, Watanabe M, Arisawa K, Uemura H, Kuriki K, Momozawa Y, Kubo M, Kita Y, Takeuchi K, Wakai K. A genome-wide association study in Japanese identified one variant associated with a preference for a Japanese dietary pattern. Eur J Clin Nutr 2020; 75:937-945. [PMID: 33281188 DOI: 10.1038/s41430-020-00823-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND/OBJECTIVES Individual eating habits may be influenced by genetic factors, in addition to environmental factors. Previous studies suggested that adherence to Japanese food patterns was associated with a decreased risk of all-cause and cardiovascular disease mortality. We conducted a genome-wide association study (GWAS) in a Japanese population to find genetic variations that affect adherence to a Japanese food pattern. SUBJECTS/METHODS We analyzed GWAS data using 14,079 participants from the Japan Multi-Institutional Collaborative Cohort study. We made a Japanese food score based on six food groups. Association of the imputed variants with the Japanese food score was performed by linear regression analysis with adjustments for age, sex, total energy intake, alcohol intake (g/day), and principal components 1-10 omitting variants in the major histocompatibility region. RESULTS We found one SNP in the 14q11.2 locus that was significantly associated with the Japanese food score with P values <5 × 10-8. Functional annotation revealed that the expression levels of two genes (BCL2L2, SLC22A17) were significantly inversely associated with this SNP. These genes are known to be related to olfaction and obesity. CONCLUSION We found a new SNP that was associated with the Japanese food score in a Japanese population. This SNP is inversely associated with genes link to olfaction and obesity.
Collapse
Affiliation(s)
- Harumitsu Suzuki
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan.,Department of Hygiene, Wakayama Medical University, Wakayama, Japan
| | - Yasuyuki Nakamura
- Yamashina Racto Clinic and Medical Examination Center, Kyoto, Japan. .,Department of Public Health, Shiga University of Medical Science, Otsu, Japan.
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nahomi Imaeda
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu, Japan.,Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Chiho Goto
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Health and Nutrition, School of Health and Human Life, Nagoya Bunri University, Inazawa, Japan
| | - Akira Narita
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Institute for Biomedical Sciences, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Naoyuki Takashima
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan.,Department of Public Health, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kenji Matsui
- Division of Bioethics and Healthcare Law, the National Cancer Center, Tokyo, Japan
| | - Katsuyuki Miura
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan.,Department of Public Health, Shiga University of Medical Science, Otsu, Japan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Tamura
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Kadomatsu
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rieko Okada
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | | | - Daisaku Nishimoto
- School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Toshiro Takezaki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hidemi Ito
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Descriptive Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Ikezaki
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Masayuki Murata
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Daisuke Matsui
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Etsuko Ozaki
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Haruo Mikami
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yohko Nakamura
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Miki Watanabe
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kokichi Arisawa
- Department of Preventive Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hirokazu Uemura
- Department of Preventive Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.,Department of Health and Welfare System, College of Nursing Art and Science, University of Hyogo, Akashi, Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Yoshikuni Kita
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan.,Faculty of Nursing Science, Tsuruga Nursing University, Tsuruga, Japan
| | - Kenji Takeuchi
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
11
|
Furukawa K, Igarashi M, Jia H, Nogawa S, Kawafune K, Hachiya T, Takahashi S, Saito K, Kato H. A Genome-Wide Association Study Identifies the Association between the 12q24 Locus and Black Tea Consumption in Japanese Populations. Nutrients 2020; 12:nu12103182. [PMID: 33080986 PMCID: PMC7603176 DOI: 10.3390/nu12103182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 11/16/2022] Open
Abstract
Several genome-wide association studies (GWASs) have reported the association between genetic variants and the habitual consumption of foods and drinks; however, no association data are available regarding the consumption of black tea. The present study aimed to identify genetic variants associated with black tea consumption in 12,258 Japanese participants. Data on black tea consumption were collected by a self-administered questionnaire, and genotype data were obtained from a single nucleotide polymorphism array. In the discovery GWAS, two loci met suggestive significance (p < 1.0 × 10-6). Three genetic variants (rs2074356, rs144504271, and rs12231737) at 12q24 locus were also significantly associated with black tea consumption in the replication stage (p < 0.05) and during the meta-analysis (p < 5.0 × 10-8). The association of rs2074356 with black tea consumption was slightly attenuated by the additional adjustment for alcohol drinking frequency. In conclusion, genetic variants at the 12q24 locus were associated with black tea consumption in Japanese populations, and the association is at least partly mediated by alcohol drinking frequency.
Collapse
Affiliation(s)
- Kyohei Furukawa
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.I.); (K.S.)
| | - Maki Igarashi
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.I.); (K.S.)
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Huijuan Jia
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.I.); (K.S.)
- Correspondence: (H.J.); (H.K.); Tel./Fax: +81-3-5841-5116 (H.J.); +81-3-5841-1607 (H.K.)
| | - Shun Nogawa
- Research and Development Department, Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo 108-0014, Japan; (S.N.); (K.K.); (T.H.); (S.T.)
| | - Kaoru Kawafune
- Research and Development Department, Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo 108-0014, Japan; (S.N.); (K.K.); (T.H.); (S.T.)
| | - Tsuyoshi Hachiya
- Research and Development Department, Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo 108-0014, Japan; (S.N.); (K.K.); (T.H.); (S.T.)
- Department of Genomic Data Analysis Service, Genome Analytics Japan Inc., 15-1-3205 Toyoshima-cho, Shinjuku-ku, Tokyo 162-0067, Japan
| | - Shoko Takahashi
- Research and Development Department, Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo 108-0014, Japan; (S.N.); (K.K.); (T.H.); (S.T.)
| | - Kenji Saito
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.I.); (K.S.)
- Research and Development Department, Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo 108-0014, Japan; (S.N.); (K.K.); (T.H.); (S.T.)
| | - Hisanori Kato
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.I.); (K.S.)
- Correspondence: (H.J.); (H.K.); Tel./Fax: +81-3-5841-5116 (H.J.); +81-3-5841-1607 (H.K.)
| |
Collapse
|
12
|
Fotsing JR, Darmohusodo V, Patron AP, Ching BW, Brady T, Arellano M, Chen Q, Davis TJ, Liu H, Servant G, Zhang L, Williams M, Saganich M, Ditschun T, Tachdjian C, Karanewsky DS. Discovery and Development of S6821 and S7958 as Potent TAS2R8 Antagonists. J Med Chem 2020; 63:4957-4977. [PMID: 32330040 DOI: 10.1021/acs.jmedchem.0c00388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In humans, bitter taste is mediated by 25 TAS2Rs. Many compounds, including certain active pharmaceutical ingredients, excipients, and nutraceuticals, impart their bitter taste (or in part) through TAS2R8 activation. However, effective TAS2R8 blockers that can either suppress or reduce the bitterness of these compounds have not been described. We are hereby reporting a series of novel 3-(pyrazol-4-yl) imidazolidine-2,4-diones as potent and selective TAS2R8 antagonists. In human sensory tests, S6821 and S7958, two of the most potent analogues from the series, demonstrated efficacy in blocking TAS2R8-mediated bitterness and were selected for development. Following data evaluation by expert panels of a number of national and multinational regulatory bodies, including the US, the EU, and Japan, S6821 and S7958 were approved as safe under conditions of intended use as bitter taste blockers.
Collapse
Affiliation(s)
- Joseph R Fotsing
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Vincent Darmohusodo
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Andrew P Patron
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Brett W Ching
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Thomas Brady
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Melissa Arellano
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Qing Chen
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Timothy J Davis
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Hanghui Liu
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Guy Servant
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Lan Zhang
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Mark Williams
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Michael Saganich
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Tanya Ditschun
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Catherine Tachdjian
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Donald S Karanewsky
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| |
Collapse
|
13
|
Matoba N, Akiyama M, Ishigaki K, Kanai M, Takahashi A, Momozawa Y, Ikegawa S, Ikeda M, Iwata N, Hirata M, Matsuda K, Murakami Y, Kubo M, Kamatani Y, Okada Y. GWAS of 165,084 Japanese individuals identified nine loci associated with dietary habits. Nat Hum Behav 2020; 4:308-316. [PMID: 31959922 DOI: 10.1038/s41562-019-0805-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/03/2019] [Indexed: 01/02/2023]
Abstract
Dietary habits are important factors in our lifestyle, and confer both susceptibility to and protection from a variety of human diseases. We performed genome-wide association studies for 13 dietary habits including consumption of alcohol (ever versus never drinkers and drinks per week), beverages (coffee, green tea and milk) and foods (yoghurt, cheese, natto, tofu, fish, small whole fish, vegetables and meat) in Japanese individuals (n = 58,610-165,084) collected by BioBank Japan, the nationwide hospital-based genome cohort. Significant associations were found in nine genetic loci (MCL1-ENSA, GCKR, AGR3-AHR, ADH1B, ALDH1B1, ALDH1A1, ALDH2, CYP1A2-CSK and ADORA2A-AS1) for 13 dietary traits (P < 3.8 × 10-9). Of these, ten associations between five loci and eight traits were new findings. Furthermore, a phenome-wide association study revealed that five of the dietary trait-associated loci have pleiotropic effects on multiple human complex diseases and clinical measurements. Our findings provide new insight into the genetics of habitual consumption.
Collapse
Affiliation(s)
- Nana Matoba
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Genetics, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masahiro Kanai
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyotake, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyotake, Japan
| | - Makoto Hirata
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Matsuda
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, the Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. .,Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan. .,Laboratory of Statistical Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan. .,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
| |
Collapse
|
14
|
Onland W, Hutten J, Miedema M, Bos LD, Brinkman P, Maitland-van der Zee AH, van Kaam AH. Precision Medicine in Neonates: Future Perspectives for the Lung. Front Pediatr 2020; 8:586061. [PMID: 33251166 PMCID: PMC7673376 DOI: 10.3389/fped.2020.586061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common complication of pre-term birth with long lasting sequelae. Since its first description more than 50 years ago, many large randomized controlled trials have been conducted, aiming to improve evidence-based knowledge on the optimal strategies to prevent and treat BPD. However, most of these intervention studies have been performed on a population level without regard for the variation in clinical and biological diversity (e.g., gestational age, ethnicity, gender, or disease progression) between patients that is driven by the complex interaction of genetic pre-disposition and environmental exposures. Nevertheless, clinicians provide daily care such as lung protective interventions on an individual basis every day despite the fact that research supporting individualized or precision medicine for monitoring or treating pre-term lungs is immature. This narrative review summarizes four potential developments in pulmonary research that might facilitate the process of individualizing lung protective interventions to prevent development of BPD. Electrical impedance tomography and electromyography of the diaphragm are bedside monitoring tools to assess regional changes in lung volume and ventilation and spontaneous breathing effort, respectively. These non-invasive tools allow a more individualized optimization of invasive and non-invasive respiratory support. Investigation of the genomic variation in caffeine metabolism in pre-term infants can be used to optimize and individualize caffeine dosing regimens. Finally, volatile organic compound analysis in exhaled breath might accurately predict BPD at an early stage of the disease, enabling clinicians to initiate preventive strategies for BPD on an individual basis. Before these suggested diagnostic or monitoring tools can be implemented in daily practice and improve individualized patient care, future research should address and overcome their technical difficulties, perform extensive external validation and show their additional value in preventing BPD.
Collapse
Affiliation(s)
- Wes Onland
- Department of Neonatology, Amsterdam University Medical Centers, VU University Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen Hutten
- Department of Neonatology, Amsterdam University Medical Centers, VU University Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Martijn Miedema
- Department of Neonatology, Amsterdam University Medical Centers, VU University Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Lieuwe D Bos
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Paul Brinkman
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Anke H Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Anton H van Kaam
- Department of Neonatology, Amsterdam University Medical Centers, VU University Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Jia H, Nogawa S, Kawafune K, Hachiya T, Takahashi S, Igarashi M, Saito K, Kato H. GWAS of habitual coffee consumption reveals a sex difference in the genetic effect of the 12q24 locus in the Japanese population. BMC Genet 2019; 20:61. [PMID: 31345160 PMCID: PMC6659273 DOI: 10.1186/s12863-019-0763-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/08/2019] [Indexed: 01/04/2023] Open
Abstract
Background Studies on genetic effects of coffee consumption are scarce for Asian populations. We conducted a genome-wide association study (GWAS) of habitual coffee consumption in Japan using a self-reporting online survey. Results Candidate genetic loci associated with habitual coffee consumption were searched within a discovery cohort (N = 6,264) and confirmed in a replication cohort (N = 5,975). Two loci achieved genome-wide significance (P < 5 × 10− 8) in a meta-analysis of the discovery and replication cohorts: an Asian population-specific 12q24 (rs79105258; P = 9.5 × 10− 15), which harbors CUX2, and 7p21 (rs10252701; P = 1.0 × 10− 14), in the upstream region of the aryl hydrocarbon receptor (AHR) gene, involved in caffeine metabolism. Subgroup analysis revealed a stronger genetic effect of the 12q24 locus in males (P for interaction = 8.2 × 10− 5). Further, rs79105258 at the 12q24 locus exerted pleiotropic effects on body mass index (P = 3.5 × 10− 4) and serum triglyceride levels (P = 8.7 × 10− 3). Conclusions Our results consolidate the association of habitual coffee consumption with the 12q24 and 7p21 loci. The different effects of the 12q24 locus between males and females are a novel finding that improves our understanding of genetic influences on habitual coffee consumption. Electronic supplementary material The online version of this article (10.1186/s12863-019-0763-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huijuan Jia
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Shun Nogawa
- Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo, 108-0014, Japan
| | - Kaoru Kawafune
- Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo, 108-0014, Japan
| | - Tsuyoshi Hachiya
- Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo, 108-0014, Japan.,Genome Analytics Japan Inc., 15-1-3205, Tomihisa-cho, Shinjuku-ku, Tokyo, 162-0067, Japan
| | - Shoko Takahashi
- Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo, 108-0014, Japan
| | - Maki Igarashi
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Kenji Saito
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo, 108-0014, Japan
| | - Hisanori Kato
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
16
|
Cornelis MC. Genetic determinants of beverage consumption: Implications for nutrition and health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 89:1-52. [PMID: 31351524 PMCID: PMC7047661 DOI: 10.1016/bs.afnr.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Beverages make important contributions to nutritional intake and their role in health has received much attention. This review focuses on the genetic determinants of common beverage consumption and how research in this field is contributing insight to what and how much we consume and why this genetic knowledge matters from a research and public health perspective. The earliest efforts in gene-beverage behavior mapping involved genetic linkage and candidate gene analysis but these approaches have been largely replaced by genome-wide association studies (GWAS). GWAS have identified biologically plausible loci underlying alcohol and coffee drinking behavior. No GWAS has identified variants specifically associated with consumption of tea, juice, soda, wine, beer, milk or any other common beverage. Thus far, GWAS highlight an important behavior-reward component (as opposed to taste) to beverage consumption which may serve as a potential barrier to dietary interventions. Loci identified have been used in Mendelian randomization and gene×beverage interaction analysis of disease but results have been mixed. This research is necessary as it informs the clinical relevance of SNP-beverage associations and thus genotype-based personalized nutrition, which is gaining interest in the commercial and public health sectors.
Collapse
Affiliation(s)
- Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
17
|
Fulton JL, Dinas PC, Carrillo AE, Edsall JR, Ryan EJ, Ryan EJ. Impact of Genetic Variability on Physiological Responses to Caffeine in Humans: A Systematic Review. Nutrients 2018; 10:nu10101373. [PMID: 30257492 PMCID: PMC6212886 DOI: 10.3390/nu10101373] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 01/21/2023] Open
Abstract
Emerging research has demonstrated that genetic variation may impact physiological responses to caffeine consumption. The purpose of the present review was to systematically recognize how select single nucleotide polymorphisms (SNPs) impact habitual use of caffeine as well as the ergogenic and anxiogenic consequences of caffeine. Two databases (PubMed and EBSCO) were independently searched using the same algorithm. Selected studies involved human participants and met at least one of the following inclusion criteria: (a) genetic analysis of individuals who habitually consume caffeine; (b) genetic analysis of individuals who underwent measurements of physical performance with the consumption of caffeine; (c) genetic analysis of individuals who underwent measurements of mood with the consumption of caffeine. We included 26 studies (10 randomized controlled trials, five controlled trials, seven cross-sectional studies, three single-group interventional studies and one case-control study). Single nucleotide polymorphisms in or near the cytochrome P450 (CYP1A2) and aryl hydrocarbon receptor (AHR) genes were consistently associated with caffeine consumption. Several studies demonstrated that the anxiogenic consequences of caffeine differed across adenosine 2a receptor (ADORA2A) genotypes, and the studies that investigated the effects of genetic variation on the ergogenic benefit of caffeine reported equivocal findings (CYP1A2) or warrant replication (ADORA2A).
Collapse
Affiliation(s)
- Jacob L Fulton
- Department of Movement Science, Chatham University, Pittsburgh, PA 15232, USA.
| | - Petros C Dinas
- FAME Laboratory, Department of Exercise Science, University of Thessaly, GR42100 Trikala, Greece.
| | - Andres E Carrillo
- Department of Movement Science, Chatham University, Pittsburgh, PA 15232, USA.
- FAME Laboratory, Department of Exercise Science, University of Thessaly, GR42100 Trikala, Greece.
| | - Jason R Edsall
- Department of Movement Science, Chatham University, Pittsburgh, PA 15232, USA.
| | - Emily J Ryan
- Department of Exercise Physiology, West Virginia University School of Medicine, West Virginia University, Morganton, WV 26506, USA.
| | - Edward J Ryan
- Department of Movement Science, Chatham University, Pittsburgh, PA 15232, USA.
| |
Collapse
|
18
|
Biases Inherent in Studies of Coffee Consumption in Early Pregnancy and the Risks of Subsequent Events. Nutrients 2018; 10:nu10091152. [PMID: 30142937 PMCID: PMC6163788 DOI: 10.3390/nu10091152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 12/23/2022] Open
Abstract
Consumption of coffee by women early in their pregnancy has been viewed as potentially increasing the risk of miscarriage, low birth weight, and childhood leukemias. Many of these reports of epidemiologic studies have not acknowledged the potential biases inherent in studying the relationship between early-pregnancy-coffee consumption and subsequent events. I discuss five of these biases, recall bias, misclassification, residual confounding, reverse causation, and publication bias. Each might account for claims that attribute adversities to early-pregnancy-coffee consumption. To what extent these biases can be avoided remains to be determined. As a minimum, these biases need to be acknowledged wherever they might account for what is reported.
Collapse
|
19
|
Nehlig A. Interindividual Differences in Caffeine Metabolism and Factors Driving Caffeine Consumption. Pharmacol Rev 2018. [PMID: 29514871 DOI: 10.1124/pr.117.014407] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most individuals adjust their caffeine intake according to the objective and subjective effects induced by the methylxanthine. However, to reach the desired effects, the quantity of caffeine consumed varies largely among individuals. It has been known for decades that the metabolism, clearance, and pharmacokinetics of caffeine is affected by many factors such as age, sex and hormones, liver disease, obesity, smoking, and diet. Caffeine also interacts with many medications. All these factors will be reviewed in the present document and discussed in light of the most recent data concerning the genetic variability affecting caffeine levels and effects at the pharmacokinetic and pharmacodynamic levels that both critically drive the level of caffeine consumption. The pharmacokinetics of caffeine are highly variable among individuals due to a polymorphism at the level of the CYP1A2 isoform of cytochrome P450, which metabolizes 95% of the caffeine ingested. Moreover there is a polymorphism at the level of another critical enzyme, N-acetyltransferase 2. At the pharmacodynamic level, there are several polymorphisms at the main brain target of caffeine, the adenosine A2A receptor or ADORA2. Genetic studies, including genome-wide association studies, identified several loci critically involved in caffeine consumption and its consequences on sleep, anxiety, and potentially in neurodegenerative and psychiatric diseases. We start reaching a better picture on how a multiplicity of biologic mechanisms seems to drive the levels of caffeine consumption, although much more knowledge is still required to understand caffeine consumption and effects on body functions.
Collapse
Affiliation(s)
- Astrid Nehlig
- INSERM U 1129, Pediatric Neurology, Necker-Enfants Malades Hospital, University of Paris Descartes, Inserm U1129, Paris, France
| |
Collapse
|
20
|
Nakagawa-Senda H, Hachiya T, Shimizu A, Hosono S, Oze I, Watanabe M, Matsuo K, Ito H, Hara M, Nishida Y, Endoh K, Kuriki K, Katsuura-Kamano S, Arisawa K, Nindita Y, Ibusuki R, Suzuki S, Hosono A, Mikami H, Nakamura Y, Takashima N, Nakamura Y, Kuriyama N, Ozaki E, Furusyo N, Ikezaki H, Nakatochi M, Sasakabe T, Kawai S, Okada R, Hishida A, Naito M, Wakai K, Momozawa Y, Kubo M, Tanaka H. A genome-wide association study in the Japanese population identifies the 12q24 locus for habitual coffee consumption: The J-MICC Study. Sci Rep 2018; 8:1493. [PMID: 29367735 PMCID: PMC5784172 DOI: 10.1038/s41598-018-19914-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 01/08/2018] [Indexed: 12/01/2022] Open
Abstract
Coffee is one of the most widely consumed beverages worldwide, and its role in human health has received much attention. Although genome-wide association studies (GWASs) have investigated genetic variants associated with coffee consumption in European populations, no such study has yet been conducted in an Asian population. Here, we conducted a GWAS to identify common genetic variations that affected coffee consumption in a Japanese population of 11,261 participants recruited as a part of the Japan Multi-Institutional Collaborative Cohort (J-MICC) study. Coffee consumption was collected using a self-administered questionnaire, and converted from categories to cups/day. In the discovery stage (n = 6,312), we found 2 independent loci (12q24.12–13 and 5q33.3) that met suggestive significance (P < 1 × 10−6). In the replication stage (n = 4,949), the lead variant for the 12q24.12–13 locus (rs2074356) was significantly associated with habitual coffee consumption (P = 2.2 × 10−6), whereas the lead variant for the 5q33.3 locus (rs1957553) was not (P = 0.53). A meta-analysis of the discovery and replication populations, and the combined analysis using all subjects, revealed that rs2074356 achieved genome-wide significance (P = 2.2 × 10−16 for a meta-analysis). These findings indicate that the 12q24.12-13 locus is associated with coffee consumption among a Japanese population.
Collapse
Affiliation(s)
- Hiroko Nakagawa-Senda
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan. .,Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan. .,Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Tsuyoshi Hachiya
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Morioka, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Morioka, Japan
| | - Satoyo Hosono
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Isao Oze
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Miki Watanabe
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Keitaro Matsuo
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidemi Ito
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Kaori Endoh
- Laboratory of Public Health, Division of Nutritional Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health, Division of Nutritional Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Sakurako Katsuura-Kamano
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kokichi Arisawa
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yora Nindita
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Rie Ibusuki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akihiro Hosono
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Haruo Mikami
- Division of Cancer Prevention and Epidemiology, Chiba Cancer Center, Chiba, Japan
| | - Yohko Nakamura
- Division of Cancer Prevention and Epidemiology, Chiba Cancer Center, Chiba, Japan
| | - Naoyuki Takashima
- Department of Public Health, Shiga University of Medical Science, Shiga, Japan
| | - Yasuyuki Nakamura
- Department of Food Science and Human Nutrition, Faculty of Agriculture, Ryukoku University, Kyoto, Japan
| | - Nagato Kuriyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Etsuko Ozaki
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Norihiro Furusyo
- Department of Environmental Medicine and Infectious Disease, Kyushu University, Fukuoka, Japan
| | - Hiroaki Ikezaki
- Department of Environmental Medicine and Infectious Disease, Kyushu University, Fukuoka, Japan
| | - Masahiro Nakatochi
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Tae Sasakabe
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sayo Kawai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rieko Okada
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan
| | - Hideo Tanaka
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| |
Collapse
|
21
|
Gonçalves LDS, Painelli VDS, Yamaguchi G, Oliveira LFD, Saunders B, da Silva RP, Maciel E, Artioli GG, Roschel H, Gualano B. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J Appl Physiol (1985) 2017; 123:213-220. [DOI: 10.1152/japplphysiol.00260.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/27/2017] [Accepted: 05/04/2017] [Indexed: 11/22/2022] Open
Abstract
This study investigates the influence of habitual caffeine intake on aerobic exercise-performance responses to acute caffeine supplementation. A double-blind, crossover, counterbalanced study was performed. Forty male endurance-trained cyclists were allocated into tertiles, according to their daily caffeine intake: low (58 ± 29 mg/d), moderate (143 ± 25 mg/d), and high (351 ± 139 mg/d) consumers. Participants completed three trials in which they performed simulated cycling time trials (TTs) in the fastest time possible following ingestion of the following: caffeine (CAF: 6 mg/kg body mass), placebo (PLA), and no supplement (CON). A mixed-model analysis revealed that TT performance was significantly improved in CAF compared with PLA and CON (29.92 ± 2.18 vs. 30.81 ± 2.67 and 31.14 ± 2.71 min, respectively; P = 0.0002). Analysis of covariance revealed no influence of habitual caffeine intake as a covariate on exercise performance ( P = 0.47). TT performance was not significantly different among tertiles ( P = 0.75). No correlation was observed between habitual caffeine intake and absolute changes (CAF − CON) in TT performance with caffeine ( P = 0.524). Individual analysis showed that eight, seven, and five individuals improved above the variation of the test in CAF in the low, moderate, and high tertiles, respectively. A Fisher’s exact test did not show any significant differences in the number of individuals who improved in CAF among the tertiles ( P > 0.05). Blood lactate and ratings of perceived exertion were not different between trials and tertiles ( P > 0.05). Performance effects of acute caffeine supplementation during an ~30-min cycling TT performance were not influenced by the level of habitual caffeine consumption. NEW & NOTEWORTHY There has been a long-standing paradigm that habitual caffeine intake may influence the ergogenicity of caffeine supplementation. Low, moderate, and high caffeine consumers showed similar absolute and relative improvements in cycling time-trial performance following acute supplementation of 6 mg/kg body mass caffeine. Performance effects of acute caffeine were not influenced by the level of habitual caffeine consumption, suggesting that high habitual caffeine intake does not negate the benefits of acute caffeine supplementation.
Collapse
Affiliation(s)
- Lívia de Souza Gonçalves
- Applied Physiology and Nutrition Research Group, University of São Paulo, Brazil
- Rheumatology Division, School of Medicine, University of São Paulo, Brazil; and
| | | | - Guilherme Yamaguchi
- Applied Physiology and Nutrition Research Group, University of São Paulo, Brazil
| | | | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, University of São Paulo, Brazil
| | | | - Erika Maciel
- Rheumatology Division, School of Medicine, University of São Paulo, Brazil; and
| | - Guilherme Giannini Artioli
- Department of Science, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Hamilton Roschel
- Applied Physiology and Nutrition Research Group, University of São Paulo, Brazil
- Rheumatology Division, School of Medicine, University of São Paulo, Brazil; and
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, University of São Paulo, Brazil
- Rheumatology Division, School of Medicine, University of São Paulo, Brazil; and
| |
Collapse
|
22
|
Selected Literature Watch. JOURNAL OF CAFFEINE RESEARCH 2017. [DOI: 10.1089/jcr.2016.29003.slw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Shi X, Xue W, Liang S, Zhao J, Zhang X. Acute caffeine ingestion reduces insulin sensitivity in healthy subjects: a systematic review and meta-analysis. Nutr J 2016; 15:103. [PMID: 28031026 PMCID: PMC5192567 DOI: 10.1186/s12937-016-0220-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 11/25/2016] [Indexed: 12/03/2022] Open
Abstract
Background According to previous meta-analyses, coffee consumption reduces the risk of type 2 diabetes mellitus. However, the underlying mechanism remains unknown. Whether caffeine, the key ingredient in coffee, has a beneficial effect on the glycemic homeostasis and the anti-diabetic effect is particularly controversial. The aim of this study was to summarize the effect of acute caffeine ingestion on insulin sensitivity in healthy men. Methods A comprehensive literature search for papers published before April 2016 was conducted in EMBASE, PubMed, and Cochrane Library databases. Randomized controlled trials (RCTs) that investigated the effect of caffeine on insulin sensitivity in healthy humans without diabetes were included. A random effects meta-analysis was conducted using Review Manager 5.3. Results The search yielded 7 RCTs in which caffeine intake was the single variant. Compared with placebo, caffeine intake significantly decreased the insulin sensitivity index, with a standardized mean difference of −2.06 (95% confidence interval −2.67 to −1.44, I2 = 49%, P for heterogeneity = 0.06). Conclusion Acute caffeine ingestion reduces insulin sensitivity in healthy subjects. Thus, in the short term, caffeine might shift glycemic homeostasis toward hyperglycemia. Long-term trials investigating the role of caffeine in the anti-diabetic effect of coffee are needed.
Collapse
Affiliation(s)
- Xiuqin Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 43 Daxue Road, 450052, Zhengzhou, People's Republic of China
| | - Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 43 Daxue Road, 450052, Zhengzhou, People's Republic of China
| | - Shuhong Liang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 43 Daxue Road, 450052, Zhengzhou, People's Republic of China
| | - Jie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 43 Daxue Road, 450052, Zhengzhou, People's Republic of China.
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 43 Daxue Road, 450052, Zhengzhou, People's Republic of China.
| |
Collapse
|