1
|
Kikuchi O, Ikeuchi Y, Kobayashi M, Tabei Y, Yokota‐Hashimoto H, Kitamura T. Imeglimin enhances glucagon secretion through an indirect mechanism and improves fatty liver in high-fat, high-sucrose diet-fed mice. J Diabetes Investig 2024; 15:1177-1190. [PMID: 38874179 PMCID: PMC11363097 DOI: 10.1111/jdi.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/03/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
AIMS/INTRODUCTION Imeglimin is a recently approved oral antidiabetic agent that improves insulin resistance, and promotes insulin secretion from pancreatic β-cells. Here, we investigated the effects of imeglimin on glucagon secretion from pancreatic α-cells. MATERIALS AND METHODS Experiments were carried out in high-fat, high-sucrose diet-fed mice. The effects of imeglimin were examined using insulin and glucose tolerance tests, glucose clamp studies, and measurements of glucagon secretion from isolated islets. Glucagon was measured using both the standard and the sequential protocol of Mercodia sandwich enzyme-linked immunosorbent assay; the latter eliminates cross-reactivities with other proglucagon-derived peptides. RESULTS Plasma glucagon, insulin and glucagon-like peptide-1 levels were increased by imeglimin administration in high-fat, high-sucrose diet-fed mice. Glucose clamp experiments showed that the glucagon increase was not caused by reduced blood glucose levels. After both single and long-term administration of imeglimin, glucagon secretions were significantly enhanced during glucose tolerance tests. Milder enhancement was observed when using the sequential protocol. Long-term administration of imeglimin did not alter α-cell mass. Intraperitoneal imeglimin administration did not affect glucagon secretion, despite significantly decreased blood glucose levels. Imeglimin did not enhance glucagon secretion from isolated islets. Imeglimin administration improved fatty liver by suppressing de novo lipogenesis through decreasing sterol regulatory element binding protein-1c and carbohydrate response element binding protein and their target genes, while enhancing fatty acid oxidation through increasing carnitine palmitoyltransferase I. CONCLUSIONS Overall, the present results showed that imeglimin enhances glucagon secretion through an indirect mechanism. Our findings also showed that glucagon secretion promoted by imeglimin could contribute to improvement of fatty liver through suppressing de novo lipogenesis and enhancing fatty acid oxidation.
Collapse
Affiliation(s)
- Osamu Kikuchi
- Metabolic Signal Research CenterInstitute for Molecular and Cellular Regulation, Gunma UniversityGunmaJapan
| | - Yuichi Ikeuchi
- Metabolic Signal Research CenterInstitute for Molecular and Cellular Regulation, Gunma UniversityGunmaJapan
| | - Masaki Kobayashi
- Metabolic Signal Research CenterInstitute for Molecular and Cellular Regulation, Gunma UniversityGunmaJapan
| | - Yoko Tabei
- Metabolic Signal Research CenterInstitute for Molecular and Cellular Regulation, Gunma UniversityGunmaJapan
| | - Hiromi Yokota‐Hashimoto
- Metabolic Signal Research CenterInstitute for Molecular and Cellular Regulation, Gunma UniversityGunmaJapan
| | - Tadahiro Kitamura
- Metabolic Signal Research CenterInstitute for Molecular and Cellular Regulation, Gunma UniversityGunmaJapan
| |
Collapse
|
2
|
Kajani S, Laker RC, Ratkova E, Will S, Rhodes CJ. Hepatic glucagon action: beyond glucose mobilization. Physiol Rev 2024; 104:1021-1060. [PMID: 38300523 DOI: 10.1152/physrev.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Glucagon's ability to promote hepatic glucose production has been known for over a century, with initial observations touting this hormone as a diabetogenic agent. However, glucagon receptor agonism [when balanced with an incretin, including glucagon-like peptide 1 (GLP-1) to dampen glucose excursions] is now being developed as a promising therapeutic target in the treatment of metabolic diseases, like metabolic dysfunction-associated steatotic disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), and may also have benefit for obesity and chronic kidney disease. Conventionally regarded as the opposing tag-team partner of the anabolic mediator insulin, glucagon is gradually emerging as more than just a "catabolic hormone." Glucagon action on glucose homeostasis within the liver has been well characterized. However, growing evidence, in part thanks to new and sensitive "omics" technologies, has implicated glucagon as more than just a "glucose liberator." Elucidation of glucagon's capacity to increase fatty acid oxidation while attenuating endogenous lipid synthesis speaks to the dichotomous nature of the hormone. Furthermore, glucagon action is not limited to just glucose homeostasis and lipid metabolism, as traditionally reported. Glucagon plays key regulatory roles in hepatic amino acid and ketone body metabolism, as well as mitochondrial turnover and function, indicating broader glucagon signaling consequences for metabolic homeostasis mediated by the liver. Here we examine the broadening role of glucagon signaling within the hepatocyte and question the current dogma, to appreciate glucagon as more than just that "catabolic hormone."
Collapse
Affiliation(s)
- Sarina Kajani
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Rhianna C Laker
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Ekaterina Ratkova
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Sarah Will
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Christopher J Rhodes
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| |
Collapse
|
3
|
Gao N, Liu Y, Liu G, Liu B, Cheng Y. Sanghuangporus vaninii extract ameliorates hyperlipidemia in rats by mechanisms identified with transcriptome analysis. Food Sci Nutr 2024; 12:3360-3376. [PMID: 38726415 PMCID: PMC11077191 DOI: 10.1002/fsn3.4002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 05/12/2024] Open
Abstract
The increasing incidence of hyperlipidemia is a serious threat to public health. The development of effective and safe lipid-lowering drugs with few side effects is necessary. The purpose of this study was to assess the lipid-lowering activity of Sanghuangporus vaninii extract (SVE) in rat experiments and reveal the molecular mechanism by transcriptome analysis. Hyperlipidemia was induced in the animals using a high-fat diet for 4 weeks. At the end of the 4th week, hyperlipidemic rats were assigned into two control groups (model and positive simvastatin control) and three treatment groups that received SVE at 200, 400, or 800 mg kg-1 day-1 for another 4 weeks. A last control group comprised normal chow-fed rats. At the end of the 8th week, rats were sacrificed and lipid serum levels, histopathology, and liver transcriptome profiles were determined. SVE was demonstrated to relieve the lipid disorder and improve histopathological liver changes in a dose-dependent manner. The transcriptomic analysis identified changes in hepatocyte gene activity for major pathways including steroid biosynthesis, bile secretion, cholesterol metabolism, AMPK signaling, thyroid hormone signaling, and glucagon signaling. The changed expression of crucial genes in the different groups was confirmed by qPCR. Collectively, this study revealed that SVE could relieve hyperlipidemia in rats, the molecular mechanism might be to promote the metabolism of lipids and the excretion of cholesterol, inhibit the biosynthesis of cholesterol by activating the AMPK signaling pathway, the thyroid hormone signaling pathway, and the glucagon signaling pathway.
Collapse
Affiliation(s)
- Ning Gao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of EducationHarbinChina
- School of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| | - Yuanzhen Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of EducationHarbinChina
- School of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| | - Guangjie Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of EducationHarbinChina
- School of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| | - Bo Liu
- School of Pharmaceutical EngineeringHeilongjiang Agricultural Reclamation Vocational CollegeHarbinChina
| | - Yupeng Cheng
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of EducationHarbinChina
- School of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| |
Collapse
|
4
|
Huang CC, Yeh HY, Lin R, Liao TL, Shen HC, Yang YY, Lin HC. Inhibition of visceral adipose tissue-derived pathogenic signals by activation of adenosine A 2AR improves hepatic and cardiac dysfunction of NASH mice. Am J Physiol Gastrointest Liver Physiol 2024; 326:G385-G397. [PMID: 38252682 PMCID: PMC11213477 DOI: 10.1152/ajpgi.00104.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/28/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2024]
Abstract
A2AR-disrupted mice is characterized by severe systemic and visceral adipose tissue (VAT) inflammation. Increasing adenosine cyclase (AC), cAMP, and protein kinase A (PKA) formation through A2AR activation suppress systemic/VAT inflammation in obese mice. This study explores the effects of 4 wk A2AR agonist PSB0777 treatment on the VAT-driven pathogenic signals in hepatic and cardiac dysfunction of nonalcoholic steatohepatitis (NASH) obese mice. Among NASH mice with cardiac dysfunction, simultaneous decrease in the A2AR, AC, cAMP, and PKA levels were observed in VAT, liver, and heart. PSB0777 treatment significantly restores AC, cAMP, PKA, and hormone-sensitive lipase (HSL) levels, decreased SREBP-1/FASN, MCP-1, and CD68 levels, reduces infiltrated CD11b+ F4/80+ cells and adipogenesis in VAT of NASH + PSB0777 mice. The changes in VAT were accompanied by the suppression of hepatic and cardiac lipogenic/inflammatory/injury/apoptotic/fibrotic markers, the normalization of cardiac contractile [sarco/endoplasmic reticulum Ca2+ ATPase (SERCA2)] marker, and cardiac dysfunction. The in vitro approach revealed that conditioned media (CM) of VAT of NASH mice (CMnash) trigger palmitic acid (PA)-like lipotoxic (lipogenic/inflammatory/apoptotic/fibrotic) effects in AML-12 and H9c2 cell systems. Significantly, A2AR agonist pretreatment-related normalization of A2AR-AC-cAMP-PKA levels was associated with the attenuation of CMnash-related upregulation of lipotoxic markers and the normalization of lipolytic (AML-12 cells) or contractile (H9C2 cells) marker/contraction. The in vivo and in vitro experiments revealed that A2AR agonists are potential agent to inhibit the effects of VAT inflammation-driven pathogenic signals on the hepatic and cardiac lipogenesis, inflammation, injury, apoptosis, fibrosis, hypocontractility, and subsequently improve hepatic and cardiac dysfunction in NASH mice.NEW & NOTEWORTHY Protective role of adenosine A2AR receptor (A2AR) and AC-cAMP-PKA signaling against nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) possibly via its actions on adipocytes is well known in the past decade. Thus, this study evaluates pharmacological activities of A2AR agonist PSB0777, which has already demonstrated to treat NASH. In this study, the inhibition of visceral adipose tissue-derived pathogenic signals by activation of adenosine A2AR with A2AR agonist PSB0777 improves the hepatic and cardiac dysfunction of high-fat diet (HFD)-induced NASH mice.
Collapse
Grants
- MOST-110-2634-F-A49-005,NSTC 112-2314-B-A49 -043 -MY3 MOST | Hsinchu Science Park Bureau, Ministry of Science and Technology, Taiwan (HSP)
- MOST 111-2410-H-075-001 MOST | Hsinchu Science Park Bureau, Ministry of Science and Technology, Taiwan (HSP)
- V112C-018,V112C-030,VTA112-A-3-3& V112EA-009 Taipei Veterans General Hospital
- 112Q58504Y National Yang-Ming Chiao University
- MOST-110-2634-F-A49-005,NSTC 112-2314-B-A49 -043 -MY3 NSTC | Hsinchu Science Park Bureau, Ministry of Science and Technology, Taiwan (HSP)
- MOST 111-2410-H-075-001 NSTC | Hsinchu Science Park Bureau, Ministry of Science and Technology, Taiwan (HSP)
- National Yang-Ming Chiao Tung University
Collapse
Affiliation(s)
- Chia-Chang Huang
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Yun Yeh
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Roger Lin
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsiao-Chin Shen
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ying-Ying Yang
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Gastroenterology and Hepatology of Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Chieh Lin
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
5
|
McGlone ER, Siebert M, Dore M, Hope DCD, Davies I, Owen B, Khoo B, Goldin R, Carling D, Bloom S, Le Gall M, Tan TM. Sleeve gastrectomy causes weight-loss independent improvements in hepatic steatosis. Liver Int 2023; 43:1890-1900. [PMID: 37208943 PMCID: PMC10947097 DOI: 10.1111/liv.15614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/15/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Sleeve gastrectomy (VSG) leads to improvement in hepatic steatosis, associated with weight loss. The aims of this study were to investigate whether VSG leads to weight-loss independent improvements in liver steatosis in mice with diet-induced obesity (DIO); and to metabolically and transcriptomically profile hepatic changes in mice undergoing VSG. METHODS Mice with DIO were treated with VSG, sham surgery with subsequent food restriction to weight-match to the VSG group (Sham-WM), or sham surgery with return to unrestricted diet (Sham-Ad lib). Hepatic steatosis, glucose tolerance, insulin and glucagon resistance, and hepatic transcriptomics were investigated at the end of the study period and treatment groups were compared with mice undergoing sham surgery only (Sham-Ad lib). RESULTS VSG led to much greater improvement in liver steatosis than Sham-WM (liver triglyceride mg/mg 2.5 ± 0.1, 2.1 ± 0.2, 1.6 ± 0.1 for Sham-AL, Sham-WM and VSG respectively; p = 0.003). Homeostatic model assessment of insulin resistance was improved following VSG only (51.2 ± 8.8, 36.3 ± 5.3, 22.3 ± 6.1 for Sham-AL, Sham-WM and VSG respectively; p = 0.03). The glucagon-alanine index, a measure of glucagon resistance, fell with VSG but was significantly increased in Sham-WM (9.8 ± 1.7, 25.8 ± 4.6 and 5.2 ± 1.2 in Sham Ad-lib, Sham-WM and VSG respectively; p = 0.0003). Genes downstream of glucagon receptor signalling which govern fatty acid synthesis (Acaca, Acacb, Me1, Acly, Fasn and Elovl6) were downregulated following VSG but upregulated in Sham-WM. CONCLUSIONS Changes in glucagon sensitivity may contribute to weight-loss independent improvements in hepatic steatosis following VSG.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Surgery and CancerImperial College LondonLondonUK
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Matthieu Siebert
- Centre de Recherche sur l'Inflammation, UMRS1149, Inserm, Université Paris CitéParisFrance
| | - Marian Dore
- Genomics FacilityMRC London Institute of Medical Sciences (LMS), Imperial College LondonLondonUK
| | - David C. D. Hope
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Iona Davies
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Bryn Owen
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Bernard Khoo
- Division of MedicineUniversity College London, Royal Free HospitalLondonUK
| | - Rob Goldin
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Dave Carling
- Cellular Stress GroupMRC LMS, Imperial College LondonLondonUK
| | - Stephen Bloom
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Maude Le Gall
- Centre de Recherche sur l'Inflammation, UMRS1149, Inserm, Université Paris CitéParisFrance
| | - Tricia M‐M. Tan
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| |
Collapse
|
6
|
Shen Y, Li X, Xiong S, Hou S, Zhang L, Wang L, Dai X, Zhao Y. Untargeted metabonomic analysis of non-alcoholic fatty liver disease with iron overload in rats via UPLC/MS. Free Radic Res 2023:1-15. [PMID: 37326040 DOI: 10.1080/10715762.2023.2226315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND/AIMS In recent years, many metabolites specific to nonalcoholic fatty liver disease (NAFLD) have been identified thanks to the application of metabolomics techniques. This study aimed to investigate the candidate targets and potential molecular pathways involved in NAFLD in the presence of iron overload. METHODS Male Sprague Dawley rats were fed with control or high-fat diet with or without excess iron. After 8,16,20 weeks of treatment, urine samples of rats were collected for metabolomics analysis using ultra-performance liquid chromatography/mass spectrometry (UPLC-MS). Blood and liver samples were also collected. RESULTS High-fat, high-iron diet resulted in increased triglyceride accumulation and increased oxidative damage. A total of 13 metabolites and four potential pathways were identified. Compared to the control group, the intensities of adenine, cAMP, hippuric acid, kynurenic acid, xanthurenic acid, uric acid, and citric acid were significantly lower (P < 0.05) and the concentration of other metabolites was significantly higher in the high-fat diet group. In the high-fat, high-iron group, the differences in the intensities of the above metabolites were amplified. CONCLUSION Our findings suggest that NAFLD rats have impaired antioxidant system and liver function, lipid disorders, abnormal energy, and glucose metabolism, and that iron overload may further exacerbate these disorders.
Collapse
Affiliation(s)
- Yang Shen
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Xianan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Shichao Xiong
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Shaoying Hou
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Lijia Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Li Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Xuezheng Dai
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Yan Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| |
Collapse
|
7
|
Farag MR, Abo-Al-Ela HG, Alagawany M, Azzam MM, El-Saadony MT, Rea S, Di Cerbo A, Nouh DS. Effect of Quercetin Nanoparticles on Hepatic and Intestinal Enzymes and Stress-Related Genes in Nile Tilapia Fish Exposed to Silver Nanoparticles. Biomedicines 2023; 11:663. [PMID: 36979642 PMCID: PMC10045288 DOI: 10.3390/biomedicines11030663] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Recently, nanotechnology has become an important research field involved in the improvement of animals' productivity, including aquaculture. In this field, silver nanoparticles (AgNPs) have gained interest as antibacterial, antiviral, and antifungal agents. On the other hand, their extensive use in other fields increased natural water pollution causing hazardous effects on aquatic organisms. Quercetin is a natural polyphenolic compound of many plants and vegetables, and it acts as a potent antioxidant and therapeutic agent in biological systems. The current study investigated the potential mitigative effect of quercetin nanoparticles (QNPs) against AgNPs-induced toxicity in Nile tilapia via investigating liver function markers, hepatic antioxidant status, apoptosis, and bioaccumulation of silver residues in hepatic tissue in addition to the whole-body chemical composition, hormonal assay, intestinal enzymes activity, and gut microbiota. Fish were grouped into: control fish, fish exposed to 1.98 mg L-1 AgNPs, fish that received 400 mg L-1 QNPs, and fish that received QNPs and AgNPs at the same concentrations. All groups were exposed for 60 days. The moisture and ash contents of the AgNP group were significantly higher than those of the other groups. In contrast, the crude lipid and protein decreased in the whole body. AgNPs significantly increased serum levels of ALT, AST, total cholesterol, and triglycerides and decreased glycogen and growth hormone (*** p < 0.001). The liver and intestinal enzymes' activities were significantly inhibited (*** p < 0.001), while the oxidative damage liver enzymes, intestinal bacterial and Aeromonas counts, and Ag residues in the liver were significantly increased (*** p < 0.001, and * p < 0.05). AgNPs also significantly upregulated the expression of hepatic Hsp70, caspase3, and p53 genes (* p < 0.05). These findings indicate the oxidative and hepatotoxic effects of AgNPs. QNPs enhanced and restored physiological parameters and health status under normal conditions and after exposure to AgNPs.
Collapse
Affiliation(s)
- Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt
| | - Haitham G. Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez 43518, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud M. Azzam
- Department of Animal Production College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Stefano Rea
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Doaa S. Nouh
- Anatomy and Embryology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
8
|
Galsgaard KD, Elmelund E, Johansen CD, Bomholt AB, Kizilkaya HS, Ceutz F, Hunt JE, Kissow H, Winther-Sørensen M, Sørensen CM, Kruse T, Lau JF, Rosenkilde MM, Ørskov C, Christoffersen C, Holst JJ, Wewer Albrechtsen NJ. Glucagon receptor antagonism impairs and glucagon receptor agonism enhances triglycerides metabolism in mice. Mol Metab 2022; 66:101639. [PMID: 36400402 PMCID: PMC9706156 DOI: 10.1016/j.molmet.2022.101639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Treatment with glucagon receptor antagonists (GRAs) reduces blood glucose but causes dyslipidemia and accumulation of fat in the liver. We investigated the acute and chronic effects of glucagon on lipid metabolism in mice. METHODS Chronic effects of glucagon receptor signaling on lipid metabolism were studied using oral lipid tolerance tests (OLTTs) in overnight fasted glucagon receptor knockout (Gcgr-/-) mice, and in C57Bl/6JRj mice treated with a glucagon receptor antibody (GCGR Ab) or a long-acting glucagon analogue (GCGA) for eight weeks. Following treatment, liver tissue was harvested for RNA-sequencing and triglyceride measurements. Acute effects were studied in C57Bl/6JRj mice treated with a GRA or GCGA 1 h or immediately before OLTTs, respectively. Direct effects of glucagon on hepatic lipolysis were studied using isolated perfused mouse liver preparations. To investigate potential effects of GCGA and GRA on gastric emptying, paracetamol was, in separate experiments, administered immediately before OLTTs. RESULTS Plasma triglyceride concentrations increased 2-fold in Gcgr-/- mice compared to their wild-type littermates during the OLTT (P = 0.001). Chronic treatment with GCGR Ab increased, whereas GCGA treatment decreased, plasma triglyceride concentrations during OLTTs (P < 0.05). Genes involved in lipid metabolism were upregulated upon GCGR Ab treatment while GCGA treatment had opposite effects. Acute GRA and GCGA treatment, respectively, increased (P = 0.02) and decreased (P = 0.003) plasma triglyceride concentrations during OLTTs. Glucagon stimulated hepatic lipolysis, evident by an increase in free fatty acid concentrations in the effluent from perfused mouse livers. In line with this, GCGR Ab treatment increased, while GCGA treatment decreased, liver triglyceride concentrations. The effects of glucagon appeared independent of changes in gastric emptying of paracetamol. CONCLUSIONS Glucagon receptor signaling regulates triglyceride metabolism, both chronically and acutely, in mice. These data expand glucagon´s biological role and implicate that intact glucagon signaling is important for lipid metabolism. Glucagon agonism may have beneficial effects on hepatic and peripheral triglyceride metabolism.
Collapse
Affiliation(s)
- Katrine D. Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Elmelund
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian D. Johansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna B. Bomholt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hüsün S. Kizilkaya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Ceutz
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna E. Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M. Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Kruse
- Novo Nordisk A/S, Research Chemistry, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - Jesper F. Lau
- Novo Nordisk A/S, Research Chemistry, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - Mette M. Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J. Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Biochemistry, Bispebjerg & Frederiksberg Hospitals, University of Copenhagen, 2400 Bispebjerg, Denmark,Corresponding author. Department of Biomedical Sciences and Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, and Department of Clinical Biochemistry, Bispebjerg & Frederiksberg Hospitals, University of Copenhagen, 2400 Bispebjerg, Denmark.
| |
Collapse
|
9
|
Kim JY, Wang LQ, Sladky VC, Oh TG, Liu J, Trinh K, Eichin F, Downes M, Hosseini M, Jacotot ED, Evans RM, Villunger A, Karin M. PIDDosome-SCAP crosstalk controls high-fructose-diet-dependent transition from simple steatosis to steatohepatitis. Cell Metab 2022; 34:1548-1560.e6. [PMID: 36041455 PMCID: PMC9547947 DOI: 10.1016/j.cmet.2022.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/17/2022] [Accepted: 08/07/2022] [Indexed: 02/06/2023]
Abstract
Sterol deficiency triggers SCAP-mediated SREBP activation, whereas hypernutrition together with ER stress activates SREBP1/2 via caspase-2. Whether these pathways interact and how they are selectively activated by different dietary cues are unknown. Here, we reveal regulatory crosstalk between the two pathways that controls the transition from hepatosteatosis to steatohepatitis. Hepatic ER stress elicited by NASH-inducing diets activates IRE1 and induces expression of the PIDDosome subunits caspase-2, RAIDD, and PIDD1, along with INSIG2, an inhibitor of SCAP-dependent SREBP activation. PIDDosome assembly activates caspase-2 and sustains IRE1 activation. PIDDosome ablation or IRE1 inhibition blunt steatohepatitis and diminish INSIG2 expression. Conversely, while inhibiting simple steatosis, SCAP ablation amplifies IRE1 and PIDDosome activation and liver damage in NASH-diet-fed animals, effects linked to ER disruption and preventable by IRE1 inhibition. Thus, the PIDDosome and SCAP pathways antagonistically modulate nutrient-induced hepatic ER stress to control non-linear transition from simple steatosis to hepatitis, a key step in NASH pathogenesis.
Collapse
Affiliation(s)
- Ju Youn Kim
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Lily Q Wang
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Valentina C Sladky
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Tae Gyu Oh
- Gene Expression Laboratory, Salk Institute of Biological Studies, La Jolla, CA 9037, USA
| | - Junlai Liu
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kaitlyn Trinh
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Felix Eichin
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute of Biological Studies, La Jolla, CA 9037, USA
| | - Mojgan Hosseini
- Department of Pathology, University of California San Diego, La Jolla, CA 92037, USA
| | - Etienne D Jacotot
- INSERM U1164 Sorbonne Université, Campus Pierre et Marie Curie, Paris 75005, France; Department of Pathology & Cell Biology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10033, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute of Biological Studies, La Jolla, CA 9037, USA
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Habegger KM. Cross Talk Between Insulin and Glucagon Receptor Signaling in the Hepatocyte. Diabetes 2022; 71:1842-1851. [PMID: 35657690 PMCID: PMC9450567 DOI: 10.2337/dbi22-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022]
Abstract
While the consumption of external energy (i.e., feeding) is essential to life, this action induces a temporary disturbance of homeostasis in an animal. A primary example of this effect is found in the regulation of glycemia. In the fasted state, stored energy is released to maintain physiological glycemic levels. Liver glycogen is liberated to glucose, glycerol and (glucogenic) amino acids are used to build new glucose molecules (i.e., gluconeogenesis), and fatty acids are oxidized to fuel long-term energetic demands. This regulation is driven primarily by the counterregulatory hormones epinephrine, growth hormone, cortisol, and glucagon. Conversely, feeding induces a rapid influx of diverse nutrients, including glucose, that disrupt homeostasis. Consistently, a host of hormonal and neural systems under the coordination of insulin are engaged in the transition from fasting to prandial states to reduce this disruption. The ultimate action of these systems is to appropriately store the newly acquired energy and to return to the homeostatic norm. Thus, at first glance it is tempting to assume that glucagon is solely antagonistic regarding the anabolic effects of insulin. We have been intrigued by the role of glucagon in the prandial transition and have attempted to delineate its role as beneficial or inhibitory to glycemic control. The following review highlights this long-known yet poorly understood hormone.
Collapse
Affiliation(s)
- Kirk M. Habegger
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
11
|
Wilkins BP, Finch AM, Wang Y, Smith NJ. Orphan GPR146: an alternative therapeutic pathway to achieve cholesterol homeostasis? Trends Endocrinol Metab 2022; 33:481-492. [PMID: 35550855 DOI: 10.1016/j.tem.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/27/2022]
Abstract
Atherosclerosis predisposes to myriad cardiovascular complications, including myocardial infarction and stroke. Statins have revolutionised cholesterol management but they do not work for all patients, particularly those with familial hypercholesterolaemia (FH). Genome-wide association studies have linked SNPs at orphan G protein-coupled receptor 146 (GPR146) to human atherosclerosis but how GPR146 influences serum cholesterol homeostasis was only recently described. Gpr146 deletion in mice reduces serum cholesterol and atherosclerotic plaque burden, confirming GPR146 as a potential therapeutic target for managing circulating cholesterol. Critically, this effect was independent of the low-density lipoprotein receptor. While still an orphan, the activation of GPR146 by serum suggests identification of its endogenous ligand is tantalisingly close. Herein, we discuss the evidence for GPR146 inhibition as a treatment for atherosclerosis.
Collapse
Affiliation(s)
- Brendan P Wilkins
- Orphan Receptor Pharmacology Laboratory, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia; Molecular Pharmacology Drug Design, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Angela M Finch
- Molecular Pharmacology Drug Design, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Nicola J Smith
- Orphan Receptor Pharmacology Laboratory, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia; Molecular Pharmacology Drug Design, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Stahel P, Xiao C, Nahmias A, Tian L, Lewis GF. Multi-organ Coordination of Lipoprotein Secretion by Hormones, Nutrients and Neural Networks. Endocr Rev 2021; 42:815-838. [PMID: 33743013 PMCID: PMC8599201 DOI: 10.1210/endrev/bnab008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Plasma triglyceride-rich lipoproteins (TRL), particularly atherogenic remnant lipoproteins, contribute to atherosclerotic cardiovascular disease. Hypertriglyceridemia may arise in part from hypersecretion of TRLs by the liver and intestine. Here we focus on the complex network of hormonal, nutritional, and neuronal interorgan communication that regulates secretion of TRLs and provide our perspective on the relative importance of these factors. Hormones and peptides originating from the pancreas (insulin, glucagon), gut [glucagon-like peptide 1 (GLP-1) and 2 (GLP-2), ghrelin, cholecystokinin (CCK), peptide YY], adipose tissue (leptin, adiponectin) and brain (GLP-1) modulate TRL secretion by receptor-mediated responses and indirectly via neural networks. In addition, the gut microbiome and bile acids influence lipoprotein secretion in humans and animal models. Several nutritional factors modulate hepatic lipoprotein secretion through effects on the central nervous system. Vagal afferent signaling from the gut to the brain and efferent signals from the brain to the liver and gut are modulated by hormonal and nutritional factors to influence TRL secretion. Some of these factors have been extensively studied and shown to have robust regulatory effects whereas others are "emerging" regulators, whose significance remains to be determined. The quantitative importance of these factors relative to one another and relative to the key regulatory role of lipid availability remains largely unknown. Our understanding of the complex interorgan regulation of TRL secretion is rapidly evolving to appreciate the extensive hormonal, nutritional, and neural signals emanating not only from gut and liver but also from the brain, pancreas, and adipose tissue.
Collapse
Affiliation(s)
- Priska Stahel
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Avital Nahmias
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lili Tian
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Gary Franklin Lewis
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
SREBP-1c and lipogenesis in the liver: an update1. Biochem J 2021; 478:3723-3739. [PMID: 34673919 DOI: 10.1042/bcj20210071] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
Sterol Regulatory Element Binding Protein-1c is a transcription factor that controls the synthesis of lipids from glucose in the liver, a process which is of utmost importance for the storage of energy. Discovered in the early nineties by B. Spiegelman and by M. Brown and J. Goldstein, it has generated more than 5000 studies in order to elucidate its mechanism of activation and its role in physiology and pathology. Synthetized as a precursor found in the membranes of the endoplasmic reticulum, it has to be exported to the Golgi and cleaved by a mechanism called regulated intramembrane proteolysis. We reviewed in 2002 its main characteristics, its activation process and its role in the regulation of hepatic glycolytic and lipogenic genes. We particularly emphasized that Sterol Regulatory Element Binding Protein-1c is the mediator of insulin effects on these genes. In the present review, we would like to update these informations and focus on the response to insulin and to another actor in Sterol Regulatory Element Binding Protein-1c activation, the endoplasmic reticulum stress.
Collapse
|
14
|
CREBH Systemically Regulates Lipid Metabolism by Modulating and Integrating Cellular Functions. Nutrients 2021; 13:nu13093204. [PMID: 34579081 PMCID: PMC8472586 DOI: 10.3390/nu13093204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Cyclic AMP-responsive element-binding protein H (CREBH, encoded by CREB3L3) is a membrane-bound transcriptional factor expressed in the liver and small intestine. The activity of CREBH is regulated not only at the transcriptional level but also at the posttranslational level. CREBH governs triglyceride metabolism in the liver by controlling gene expression, with effects including the oxidation of fatty acids, lipophagy, and the expression of apolipoproteins related to the lipoprotein lipase activation and suppression of lipogenesis. The activation and functions of CREBH are controlled in response to the circadian rhythm. On the other hand, intestinal CREBH downregulates the absorption of lipids from the diet. CREBH deficiency in mice leads to severe hypertriglyceridemia and fatty liver in the fasted state and while feeding a high-fat diet. Therefore, when crossing CREBH knockout (KO) mice with an atherosclerosis model, low-density lipoprotein receptor KO mice, these mice exhibit severe atherosclerosis. This phenotype is seen in both liver- and small intestine-specific CREBH KO mice, suggesting that CREBH controls lipid homeostasis in an enterohepatic interaction. This review highlights that CREBH has a crucial role in systemic lipid homeostasis to integrate cellular functions related to lipid metabolism.
Collapse
|
15
|
Enterohepatic Transcription Factor CREB3L3 Protects Atherosclerosis via SREBP Competitive Inhibition. Cell Mol Gastroenterol Hepatol 2020; 11:949-971. [PMID: 33246135 PMCID: PMC7900604 DOI: 10.1016/j.jcmgh.2020.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS cAMP responsive element-binding protein 3 like 3 (CREB3L3) is a membrane-bound transcription factor involved in the maintenance of lipid metabolism in the liver and small intestine. CREB3L3 controls hepatic triglyceride and glucose metabolism by activating plasma fibroblast growth factor 21 (FGF21) and lipoprotein lipase. In this study, we intended to clarify its effect on atherosclerosis. METHODS CREB3L3-deficifient, liver-specific CREB3L3 knockout, intestine-specific CREB3L3 knockout, both liver- and intestine-specific CREB3L3 knockout, and liver CREB3L3 transgenic mice were crossed with LDLR-/- mice. These mice were fed with a Western diet to develop atherosclerosis. RESULTS CREB3L3 ablation in LDLR-/- mice exacerbated hyperlipidemia with accumulation of remnant APOB-containing lipoprotein. This led to the development of enhanced aortic atheroma formation, the extent of which was additive between liver- and intestine-specific deletion. Conversely, hepatic nuclear CREB3L3 overexpression markedly suppressed atherosclerosis with amelioration of hyperlipidemia. CREB3L3 directly up-regulates anti-atherogenic FGF21 and APOA4. In contrast, it antagonizes hepatic sterol regulatory element-binding protein (SREBP)-mediated lipogenic and cholesterogenic genes and regulates intestinal liver X receptor-regulated genes involved in the transport of cholesterol. CREB3L3 deficiency results in the accumulation of nuclear SREBP proteins. Because both transcriptional factors share the cleavage system for nuclear transactivation, full-length CREB3L3 and SREBPs in the endoplasmic reticulum (ER) functionally inhibit each other. CREB3L3 promotes the formation of the SREBP-insulin induced gene 1 complex to suppress SREBPs for ER-Golgi transport, resulting in ER retention and inhibition of proteolytic activation at the Golgi and vice versa. CONCLUSIONS CREB3L3 has multi-potent protective effects against atherosclerosis owing to new mechanistic interaction between CREB3L3 and SREBPs under atherogenic conditions.
Collapse
|
16
|
Wade H, Pan K, Su Q. CREBH: A Complex Array of Regulatory Mechanisms in Nutritional Signaling, Metabolic Inflammation, and Metabolic Disease. Mol Nutr Food Res 2020; 65:e2000771. [DOI: 10.1002/mnfr.202000771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Henry Wade
- Institute for Global Food Security School of Biological Sciences Queen's University Belfast Belfast BT9 5DL UK
| | - Kaichao Pan
- Institute for Global Food Security School of Biological Sciences Queen's University Belfast Belfast BT9 5DL UK
| | - Qiaozhu Su
- Institute for Global Food Security School of Biological Sciences Queen's University Belfast Belfast BT9 5DL UK
| |
Collapse
|
17
|
Podszun MC, Alawad AS, Lingala S, Morris N, Huang WCA, Yang S, Schoenfeld M, Rolt A, Ouwerkerk R, Valdez K, Umarova R, Ma Y, Fatima SZ, Lin DD, Mahajan LS, Samala N, Violet PC, Levine M, Shamburek R, Gharib AM, Kleiner DE, Garraffo HM, Cai H, Walter PJ, Rotman Y. Vitamin E treatment in NAFLD patients demonstrates that oxidative stress drives steatosis through upregulation of de-novo lipogenesis. Redox Biol 2020; 37:101710. [PMID: 32920226 PMCID: PMC7494510 DOI: 10.1016/j.redox.2020.101710] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress (OS) in non-alcoholic fatty liver disease (NAFLD) promotes liver injury and inflammation. Treatment with vitamin E (α-tocopherol, αT), a lipid-soluble antioxidant, improves liver injury but also decreases steatosis, thought to be upstream of OS, through an unknown mechanism. To elucidate the mechanism, we combined a mechanistic human trial interrogating pathways of intrahepatic triglyceride (IHTG) accumulation and in vitro experiments. 50% of NAFLD patients (n = 20) treated with αT (200-800 IU/d) for 24 weeks had a ≥ 25% relative decrease in IHTG by magnetic resonance spectroscopy. Paired liver biopsies at baseline and week 4 of treatment revealed a decrease in markers of hepatic de novo lipogenesis (DNL) that strongly predicted week 24 response. In vitro, using HepG2 cells and primary human hepatocytes, αT inhibited glucose-induced DNL by decreasing SREBP-1 processing and lipogenic gene expression. This mechanism is dependent on the antioxidant capacity of αT, as redox-silenced methoxy-αT is unable to inhibit DNL in vitro. OS by itself was sufficient to increase S2P expression in vitro, and S2P is upregulated in NAFLD livers. In summary, we utilized αT to demonstrate a vicious cycle in which NAFLD generates OS, which feeds back to augment DNL and increases steatosis. Clinicaltrials.gov: NCT01792115.
Collapse
Affiliation(s)
- Maren C Podszun
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ahmad S Alawad
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shilpa Lingala
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nevitt Morris
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wen-Chun A Huang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shanna Yang
- Nutrition Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Megan Schoenfeld
- Nutrition Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Adam Rolt
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ronald Ouwerkerk
- Biomedical and Metabolic Imaging Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kristin Valdez
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Regina Umarova
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yanling Ma
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Syeda Zaheen Fatima
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dennis D Lin
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lakshmi S Mahajan
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Niharika Samala
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pierre-Christian Violet
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert Shamburek
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ahmed M Gharib
- Biomedical and Metabolic Imaging Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David E Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - H Martin Garraffo
- Clinical Mass Spectrometry Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hongyi Cai
- Clinical Mass Spectrometry Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter J Walter
- Clinical Mass Spectrometry Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yaron Rotman
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
Ralston JC, Mitchelson KAJ, Lynch GM, Tran TTT, Wang H, Strain CR, Lenighan YM, Kennedy EB, Stanton C, McGillicuddy FC, Su Q, O'Toole PW, Roche HM. Microbiome Transfer Partly Overrides Lack of IL-1RI Signaling to Alter Hepatic but not Adipose Tissue Phenotype and Lipid Handling following a High-Fat Diet Challenge. Mol Nutr Food Res 2020; 65:e2000202. [PMID: 32558187 DOI: 10.1002/mnfr.202000202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/27/2020] [Indexed: 01/05/2023]
Abstract
SCOPE IL-1RI-mediated inflammatory signaling alters metabolic tissue responses to dietary challenges (e.g., high-fat diet [HFD]). Recent work suggests that metabolic phenotype is transferrable between mice in a shared living environment (i.e., co-housing) due to gut microbiome exchange. The authors examine whether the metabolic phenotype of IL-1RI-/- mice fed HFD or low-fat diet (LFD) could be transferred to wild-type (WT) mice through gut microbiome exchange facilitated by co-housing. METHODS AND RESULTS Male WT (C57BL/J6) and IL-1RI-/- mice are fed HFD (45% kcal) or LFD (10% kcal) for 24 weeks and housed i) by genotype (single-housed) or ii) with members of the other genotype in a shared microbial environment (co-housed). The IL-1RI-/- gut microbiome is dominant to WT, meaning that co-housed WT mice adopted the IL-1RI-/- microbiota profile. This is concomitant with greater body weight, hepatic lipid accumulation, adipocyte hypertrophy, and hyperinsulinemia in co-housed WT mice, compared to single-housed counterparts. These effects are most evident following HFD. Primary features of microbiome differences are Lachnospiraceae and Ruminococcaceae (known producers of SCFA). CONCLUSION Transfer of SCFA-producing microbiota from IL-1RI-/- mice highlights a new connection between diet, inflammatory signaling, and the gut microbiome, an association that is dependent on the nature of the dietary fat challenge.
Collapse
Affiliation(s)
- Jessica C Ralston
- Nutrigenomics Research Group and Institute of Food and Health, University College Dublin, Dublin, D04 V1W8, Republic of Ireland
| | - Kathleen A J Mitchelson
- Nutrigenomics Research Group and Institute of Food and Health, University College Dublin, Dublin, D04 V1W8, Republic of Ireland
| | - Gina M Lynch
- Nutrigenomics Research Group and Institute of Food and Health, University College Dublin, Dublin, D04 V1W8, Republic of Ireland
| | - Tam T T Tran
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Republic of Ireland.,School of Microbiology, University College Cork, Cork, T12 T656, Republic of Ireland
| | - Hao Wang
- The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, United Kingdom
| | - Conall R Strain
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Republic of Ireland.,Teagasc Food Research Centre, Moorepark, Cork, P61 C996, Republic of Ireland
| | - Yvonne M Lenighan
- Nutrigenomics Research Group and Institute of Food and Health, University College Dublin, Dublin, D04 V1W8, Republic of Ireland
| | - Elaine B Kennedy
- Nutrigenomics Research Group and Institute of Food and Health, University College Dublin, Dublin, D04 V1W8, Republic of Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Republic of Ireland.,Teagasc Food Research Centre, Moorepark, Cork, P61 C996, Republic of Ireland
| | - Fiona C McGillicuddy
- Nutrigenomics Research Group and Institute of Food and Health, University College Dublin, Dublin, D04 V1W8, Republic of Ireland.,Diabetes Complications Research Centre, University College Dublin, Dublin, D04 V1W8, Republic of Ireland
| | - Qiaozhu Su
- The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, United Kingdom
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Republic of Ireland.,School of Microbiology, University College Cork, Cork, T12 T656, Republic of Ireland
| | - Helen M Roche
- Nutrigenomics Research Group and Institute of Food and Health, University College Dublin, Dublin, D04 V1W8, Republic of Ireland.,Diabetes Complications Research Centre, University College Dublin, Dublin, D04 V1W8, Republic of Ireland.,The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, United Kingdom
| |
Collapse
|
19
|
Ye J. Transcription factors activated through RIP (regulated intramembrane proteolysis) and RAT (regulated alternative translocation). J Biol Chem 2020; 295:10271-10280. [PMID: 32487748 DOI: 10.1074/jbc.rev120.012669] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
Transmembrane proteins are membrane-anchored proteins whose topologies are important for their functions. These properties enable regulation of certain transmembrane proteins by regulated intramembrane proteolysis (RIP) and regulated alternative translocation (RAT). RIP enables a protein fragment of a transmembrane precursor to function at a new location, and RAT leads to an inverted topology of a transmembrane protein by altering the direction of its translocation across membranes during translation. RIP mediated by site-1 protease (S1P) and site-2 protease (S2P) is involved in proteolytic activation of membrane-bound transcription factors. In resting cells, these transcription factors remain in the endoplasmic reticulum (ER) as inactive transmembrane precursors. Upon stimulation by signals within the ER, they are translocated from the ER to the Golgi. There, they are cleaved first by S1P and then by S2P, liberating their N-terminal domains from membranes and enabling them to activate genes in the nucleus. This signaling pathway regulates lipid metabolism, unfolded protein responses, secretion of extracellular matrix proteins, and cell proliferation. Remarkably, ceramide-induced RIP of cAMP response element-binding protein 3-like 1 (CREB3L1) also involves RAT. In resting cells, RIP of CREB3L1 is blocked by transmembrane 4 L6 family member 20 (TM4SF20). Ceramide inverts the orientation of newly synthesized TM4SF20 in membranes through RAT, converting TM4SF20 from an inhibitor to an activator of RIP of CREB3L1. Here, I review recent insights into RIP of membrane-bound transcription factors, focusing on CREB3L1 activation through both RIP and RAT, and discuss current open questions about these two signaling pathways.
Collapse
Affiliation(s)
- Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
20
|
Dimitriadis GK, Nasiri-Ansari N, Agrogiannis G, Kostakis ID, Randeva MS, Nikiteas N, Patel VH, Kaltsas G, Papavassiliou AG, Randeva HS, Kassi E. Empagliflozin improves primary haemodynamic parameters and attenuates the development of atherosclerosis in high fat diet fed APOE knockout mice. Mol Cell Endocrinol 2019; 494:110487. [PMID: 31195080 DOI: 10.1016/j.mce.2019.110487] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/31/2019] [Accepted: 06/09/2019] [Indexed: 02/08/2023]
Abstract
The effects of long-term treatment with empagliflozin on biochemical and immunohistochemical markers related to atherosclerosis and atherosclerosis development in the aorta of apolipoprotein E knockout [Apo-E (-/-)] mice were evaluated in this study. Empagliflozin-treated mice had lower total cholesterol (P < 0.05), fasting glucose (P < 0.01), heart rate (P < 0.01) and diastolic blood pressure (DBP) (P < 0.05) compared to controls. Histomorphometry revealed reduced atherosclerotic lesion progress approaching statistical significance (P = 0.06) and approximately 50% wider lumen area for the Empagliflozin treated mice group. Although empagliflozin significantly reduced Vcam-1 and Mcp-1 (P < 0.05, P < 0.01, respectively) and marginally induced Timp-1 and Timp-2 mRNA expression (P < 0.08, P = 0.1 respectively), immunohistochemistry revealed a marginal reduction in VCAM-1 and MMP-9 (P = 0.1) without affecting the expression of TIMP-2 and MCP-1 in atherosclerotic lesions. Empagliflozin improves primary haemodynamic parameters and attenuates the progression of atherosclerosis by reducing hyperlipidemia and hyperglycemia, while direct actions in aorta vessel mediated via SGLT-1 are strongly hypothesized.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Atherosclerosis/blood
- Atherosclerosis/drug therapy
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- Benzhydryl Compounds/administration & dosage
- Benzhydryl Compounds/pharmacology
- Benzhydryl Compounds/therapeutic use
- Blood Glucose/metabolism
- Blood Pressure/drug effects
- Diastole/drug effects
- Diet, High-Fat
- Fasting/blood
- Glucosides/administration & dosage
- Glucosides/pharmacology
- Glucosides/therapeutic use
- Heart Rate/drug effects
- Hemodynamics/drug effects
- Lipids/blood
- Metalloproteases/metabolism
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Plaque, Atherosclerotic/blood
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/physiopathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Georgios K Dimitriadis
- Division of Translational and Experimental Medicine-Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK; Division of Endocrinology and Experimental Medicine, Imperial College London, Hammersmith Campus, London, W12 0NN, UK; Human Metabolism Research Unit, WISDEM Centre, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK; Centre of Applied Biological & Exercise Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry, CV1 5FB, UK
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, National and Kapodistrian Univer-sity of Athens Medical School, Athens, Greece
| | - Georgios Agrogiannis
- Laboratory of Pathological Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis D Kostakis
- Department of Transplantation, Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Manpal S Randeva
- Human Metabolism Research Unit, WISDEM Centre, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
| | - Nikolaos Nikiteas
- Laboratory for Experimental Surgery and Surgical Research "N.S. Christeas", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vanlata H Patel
- Division of Translational and Experimental Medicine-Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Gregory Kaltsas
- 1(st) Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, National and Kapodistrian Univer-sity of Athens Medical School, Athens, Greece
| | - Harpal S Randeva
- Division of Translational and Experimental Medicine-Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK; Human Metabolism Research Unit, WISDEM Centre, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK; Centre of Applied Biological & Exercise Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry, CV1 5FB, UK; Division of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK.
| | - Eva Kassi
- Department of Biological Chemistry, National and Kapodistrian Univer-sity of Athens Medical School, Athens, Greece; 1(st) Department of Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
21
|
Zhang Y, Chen P, Liang XF, Han J, Wu XF, Yang YH, Xue M. Metabolic disorder induces fatty liver in Japanese seabass, Lateolabrax japonicas fed a full plant protein diet and regulated by cAMP-JNK/NF-kB-caspase signal pathway. FISH & SHELLFISH IMMUNOLOGY 2019; 90:223-234. [PMID: 31029777 DOI: 10.1016/j.fsi.2019.04.060] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
A 10-week growth trial was conducted to investigate the effects of replacing dietary fishmeal with plant proteins on nutrition metabolism, immunity, inflammation and apoptosis responses in liver tissues of Japanese seabass, Lateolabrax japonicas (initial body weight = 10.42 ± 0.01 g). Two isonitrogenous and isoenergetic diets were formulated. A basal diet containing 54% fishmeal (FM), whereas another diet was prepared by totally replacing FM with a plant protein blend (PP) composed with soybean protein concentrate and cottonseed protein concentrate. Although essential amino acids, fatty acids, and available phosphorus had been balanced according to the FM diet profile, the significantly lower growth performance, metabolic disorder, and fatty liver symptom were observed in the PP group. Compared with the FM group, fish in the PP group showed significantly lower plasma free EAA level and PPV. Glucose metabolism disorder was expressed as the uncontrollable fasting glycolysis and pyruvate aerobic oxidation at postprandial 24 h with significantly up-regulated GK, PK and PDH genes expression, which potentially over-produced acetyl-CoA as the substrate for protein and lipid synthesis. Significantly reduced plasma GLU, but increased GC level, along with very significantly reduced liver GLY storage could be observed in the PP group. Plasma TG and hepatic NEFA contents were significantly decreased, but the hepatic TC content was very significantly increased in the PP group, in addition, hepatocyte vacuolation appeared. The significantly up-regulated cholesterol synthesis gene (HMGCR) expression but down-regulated bile acid synthesis gene (CYP7A1) expression could be the main reason for the fatty liver induced by cholesterol accumulation. The reduced plasma IgM content accompanied by the up-regulated mRNA levels of pro-inflammatory cytokines (TNFα and IL1β) and activated apoptosis signals of liver tissues were found in the PP group. The hyperthyroidism (higher plasma T3 and T4) and the accelerated energy metabolism rate decreased the growth performance in the PP group. The activated p65NF-kB may promote the hepatocytes apoptosis via the extrinsic pathway (caspase8/caspase3). Simultaneously, a "self-saving" response could be observed that activated cAMP promoted the lipolysis/β-oxidation process and up-regulated gene expression of anti-inflammatory cytokine IL10 via promoting CREB expression, further inhibited the over-phosphorylation of JNK protein, which might impede the intrinsic apoptosis pathway (caspase9/caspase3). In conclusion, the nutrient and energy metabolic disorder induced fatty liver related to the cholesterol accumulation in Japanese seabass fed full PP diet, which was under the regulation by cAMP-JNK/NF-kB-caspase signaling pathway. The hemostasis phosphorylation of JNK protein protected the liver tissues from more serious damage.
Collapse
Affiliation(s)
- Y Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - P Chen
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - X F Liang
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - J Han
- Institute of Food and Nutrition Development, Ministry of Agriculture, Beijing, 100081, China
| | - X F Wu
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Y H Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - M Xue
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
22
|
Li C, Wang M, Zhang T, He Q, Shi H, Luo J, Loor JJ. Insulin-induced gene 1 and 2 isoforms synergistically regulate triacylglycerol accumulation, lipid droplet formation, and lipogenic gene expression in goat mammary epithelial cells. J Dairy Sci 2019; 102:1736-1746. [DOI: 10.3168/jds.2018-15492] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022]
|
23
|
Wahlang B, McClain C, Barve S, Gobejishvili L. Role of cAMP and phosphodiesterase signaling in liver health and disease. Cell Signal 2018; 49:105-115. [PMID: 29902522 PMCID: PMC6445381 DOI: 10.1016/j.cellsig.2018.06.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 02/06/2023]
Abstract
Liver disease is a significant health problem worldwide with mortality reaching around 2 million deaths a year. Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are the major causes of chronic liver disease. Pathologically, NAFLD and ALD share similar patterns of hepatic disorders ranging from simple steatosis to steatohepatitis, fibrosis and cirrhosis. It is becoming increasingly important to identify new pharmacological targets, given that there is no FDA-approved therapy yet for either NAFLD or ALD. Since the evolution of liver diseases is a multifactorial process, several mechanisms involving parenchymal and non-parenchymal hepatic cells contribute to the initiation and progression of liver pathologies. Moreover, certain protective molecular pathways become repressed during liver injury including signaling pathways such as the cyclic adenosine monophosphate (cAMP) pathway. cAMP, a key second messenger molecule, regulates various cellular functions including lipid metabolism, inflammation, cell differentiation and injury by affecting gene/protein expression and function. This review addresses the current understanding of the role of cAMP metabolism and consequent cAMP signaling pathway(s) in the context of liver health and disease. The cAMP pathway is extremely sophisticated and complex with specific cellular functions dictated by numerous factors such abundance, localization and degradation by phosphodiesterases (PDEs). Furthermore, because of the distinct yet divergent roles of both of its effector molecules, the cAMP pathway is extensively targeted in liver injury to modify its role from physiological to therapeutic, depending on the hepatic condition. This review also examines the behavior of the cAMP-dependent pathway in NAFLD, ALD and in other liver diseases and focuses on PDE inhibition as an excellent therapeutic target in these conditions.
Collapse
Affiliation(s)
- Banrida Wahlang
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA
| | - Craig McClain
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA; Robley Rex Louisville VAMC, Louisville, KY, USA
| | - Shirish Barve
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA
| | - Leila Gobejishvili
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA.
| |
Collapse
|
24
|
CREBH Regulates Systemic Glucose and Lipid Metabolism. Int J Mol Sci 2018; 19:ijms19051396. [PMID: 29738435 PMCID: PMC5983805 DOI: 10.3390/ijms19051396] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/30/2018] [Accepted: 05/06/2018] [Indexed: 12/23/2022] Open
Abstract
The cyclic adenosine monophosphate (cAMP)-responsive element-binding protein H (CREBH, encoded by CREB3L3) is a membrane-bound transcriptional factor that primarily localizes in the liver and small intestine. CREBH governs triglyceride metabolism in the liver, which mediates the changes in gene expression governing fatty acid oxidation, ketogenesis, and apolipoproteins related to lipoprotein lipase (LPL) activation. CREBH in the small intestine reduces cholesterol transporter gene Npc1l1 and suppresses cholesterol absorption from diet. A deficiency of CREBH in mice leads to severe hypertriglyceridemia, fatty liver, and atherosclerosis. CREBH, in synergy with peroxisome proliferator-activated receptor α (PPARα), has a crucial role in upregulating Fgf21 expression, which is implicated in metabolic homeostasis including glucose and lipid metabolism. CREBH binds to and functions as a co-activator for both PPARα and liver X receptor alpha (LXRα) in regulating gene expression of lipid metabolism. Therefore, CREBH has a crucial role in glucose and lipid metabolism in the liver and small intestine.
Collapse
|
25
|
Khound R, Shen J, Song Y, Santra D, Su Q. Phytoceuticals in Fenugreek Ameliorate VLDL Overproduction and Insulin Resistance via the Insig Signaling Pathway. Mol Nutr Food Res 2018; 62. [DOI: 10.1002/mnfr.201700541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/26/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Rituraj Khound
- The Department of Nutrition and Health Sciences; University of Nebraska-Lincoln; Lincoln NE USA
| | - Jing Shen
- The Department of Nutrition and Health Sciences; University of Nebraska-Lincoln; Lincoln NE USA
| | - Yongyan Song
- The Department of Nutrition and Health Sciences; University of Nebraska-Lincoln; Lincoln NE USA
| | - Dipak Santra
- Panhandle Research and Extension Center; University of Nebraska-Lincoln; Scottsbluff NE USA
| | - Qiaozhu Su
- The Department of Nutrition and Health Sciences; University of Nebraska-Lincoln; Lincoln NE USA
| |
Collapse
|
26
|
Auclair N, Melbouci L, St-Pierre D, Levy E. Gastrointestinal factors regulating lipid droplet formation in the intestine. Exp Cell Res 2018; 363:1-14. [PMID: 29305172 DOI: 10.1016/j.yexcr.2017.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022]
Abstract
Cytoplasmic lipid droplets (CLD) are considered as neutral lipid reservoirs, which protect cells from lipotoxicity. It became clear that these fascinating dynamic organelles play a role not only in energy storage and metabolism, but also in cellular lipid and protein handling, inter-organelle communication, and signaling among diverse functions. Their dysregulation is associated with multiple disorders, including obesity, liver steatosis and cardiovascular diseases. The central aim of this review is to highlight the link between intra-enterocyte CLD dynamics and the formation of chylomicrons, the main intestinal dietary lipid vehicle, after overviewing the morphology, molecular composition, biogenesis and functions of CLD.
Collapse
Affiliation(s)
- N Auclair
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5
| | - L Melbouci
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - D St-Pierre
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - E Levy
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada G1V 0A6.
| |
Collapse
|
27
|
Inhibition of exendin-4-induced steatosis by protein kinase A in cultured HepG2 human hepatoma cells. In Vitro Cell Dev Biol Anim 2017; 53:721-727. [PMID: 28707223 DOI: 10.1007/s11626-017-0181-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
Nonalcoholic fatty liver is characterized by the abnormal accumulation of triglycerides within hepatocytes, resulting in a steatotic liver. Glucagon-like peptide 1 and its analog exendin-4 can ameliorate certain aspects of this syndrome by inducing weight loss and reducing hepatic triglyceride accumulation, but it is unclear whether these effects result from the effects of glucagon-like peptide 1 on the pancreas, or from direct action on the liver. This study investigated the direct action and putative cellular mechanism of exendin-4 on steatotic hepatocytes in culture. Steatosis was induced in cultured HepG2 human hepatoma cells by incubation in media supplemented with 2 mM each of linoleic acid and oleic acid. Steatotic hepatocytes were then pre-incubated in the protein kinase A inhibitor H89 for 30 min, then treated with exendin-4 over a period of 24 h. Cell viability and triglyceride content were characterized by a TUNEL assay and AdipoRed staining, respectively. Our results showed that steatotic cells maintained high levels of intracellular triglycerides (80%) compared to lean controls (25%). Exendin-4 treatment caused a significant reduction in intracellular triglyceride content after 12 h that persisted through 24 h, while protein kinase A inhibitors abolished the effects of exendin-4. The results demonstrate the exendin-4 induces a partial reduction in triglycerides in steatotic hepatocytes within 12 h via the GLP-1 receptor-mediated activation of protein kinase A. Thus, the reduction in hepatocyte triglyceride accumulation is likely driven primarily by downregulation of lipogenesis and upregulation of β-oxidation of free fatty acids.
Collapse
|
28
|
Geisler CE, Renquist BJ. Hepatic lipid accumulation: cause and consequence of dysregulated glucoregulatory hormones. J Endocrinol 2017; 234:R1-R21. [PMID: 28428362 DOI: 10.1530/joe-16-0513] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022]
Abstract
Fatty liver can be diet, endocrine, drug, virus or genetically induced. Independent of cause, hepatic lipid accumulation promotes systemic metabolic dysfunction. By acting as peroxisome proliferator-activated receptor (PPAR) ligands, hepatic non-esterified fatty acids upregulate expression of gluconeogenic, beta-oxidative, lipogenic and ketogenic genes, promoting hyperglycemia, hyperlipidemia and ketosis. The typical hormonal environment in fatty liver disease consists of hyperinsulinemia, hyperglucagonemia, hypercortisolemia, growth hormone deficiency and elevated sympathetic tone. These endocrine and metabolic changes further encourage hepatic steatosis by regulating adipose tissue lipolysis, liver lipid uptake, de novo lipogenesis (DNL), beta-oxidation, ketogenesis and lipid export. Hepatic lipid accumulation may be induced by 4 separate mechanisms: (1) increased hepatic uptake of circulating fatty acids, (2) increased hepatic de novo fatty acid synthesis, (3) decreased hepatic beta-oxidation and (4) decreased hepatic lipid export. This review will discuss the hormonal regulation of each mechanism comparing multiple physiological models of hepatic lipid accumulation. Nonalcoholic fatty liver disease (NAFLD) is typified by increased hepatic lipid uptake, synthesis, oxidation and export. Chronic hepatic lipid signaling through PPARgamma results in gene expression changes that allow concurrent activity of DNL and beta-oxidation. The importance of hepatic steatosis in driving systemic metabolic dysfunction is highlighted by the common endocrine and metabolic disturbances across many conditions that result in fatty liver. Understanding the mechanisms underlying the metabolic dysfunction that develops as a consequence of hepatic lipid accumulation is critical to identifying points of intervention in this increasingly prevalent disease state.
Collapse
Affiliation(s)
- Caroline E Geisler
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| | - Benjamin J Renquist
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| |
Collapse
|
29
|
Song Y, Zhao M, Cheng X, Shen J, Khound R, Zhang K, Su Q. CREBH mediates metabolic inflammation to hepatic VLDL overproduction and hyperlipoproteinemia. J Mol Med (Berl) 2017; 95:839-849. [PMID: 28455595 DOI: 10.1007/s00109-017-1534-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/13/2017] [Accepted: 04/11/2017] [Indexed: 12/19/2022]
Abstract
Metabolic inflammation is closely associated with hyperlipidemia and cardiovascular disease. However, the underlying mechanisms are not fully understood. The current study established that cAMP-responsive-element-binding protein H (CREBH), an acute-phase transcription factor, enhances very-low-density lipoprotein (VLDL) assembly and secretion by upregulating apolipoprotein B (apoB) expression and contributes to metabolic inflammation-associated hyperlipoproteinemia induced by TNFα, lipopolysaccharides (LPS), and high-fat diet (HFD) in mice. Specifically, overexpression of CREBH significantly induced mRNA and protein expression of apoB in McA-7777 cells. Luciferase assay further revealed that the presence of CREBH could significantly increase the activity of the apoB gene promoter. In contrast, genetic depletion of CREBH in mice resulted in significant reduction in expression of hepatic apoB mRNA. Challenging mice with an acute fat load led to upregulation of triglyceride (TG)-rich lipoprotein secretion in wild type mice, but not in CREBH-null mice. TNFα treatment activated hepatic CREBH expression, which in turn enhanced hepatic apoB biosynthesis and VLDL secretion. Metabolic inflammation induced by LPS or HFD also resulted in overproduction of apoB and hyperlipoproteinemia in wild type mice, but not in CREBH-null mice. This study demonstrates that CREBH could be a mediator between metabolic inflammation and hepatic VLDL overproduction in chronic metabolic disorders. This novel finding establishes CREBH as the first transcription factor that regulates apoB expression on the transcriptional level and the subsequent VLDL biosynthesis in response to metabolic inflammation. The study also provides novel insight into the pathogenesis of hyperlipidemia in metabolic syndrome. KEY MESSAGES CREBH mediates inflammatory signaling to VLDL overproduction in metabolic stress. Activation of CREBH in inflammation enhances mRNA and protein expression of apoB. CREBH presents a potential novel therapeutic target for hyperlipoproteinemia.
Collapse
Affiliation(s)
- Yongyan Song
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA
| | - Miaoyun Zhao
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA
| | - Xiao Cheng
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA
| | - Jing Shen
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA
| | - Rituraj Khound
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, MI, 48201, USA
| | - Qiaozhu Su
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA.
| |
Collapse
|