1
|
Benga L, Rehm A, Gougoula C, Westhoff P, Wachtmeister T, Benten WPM, Engelhardt E, Weber APM, Köhrer K, Sager M, Janssen S. The host genotype actively shapes its microbiome across generations in laboratory mice. MICROBIOME 2024; 12:256. [PMID: 39639355 PMCID: PMC11619136 DOI: 10.1186/s40168-024-01954-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/18/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND The microbiome greatly affects health and wellbeing. Evolutionarily, it is doubtful that a host would rely on chance alone to pass on microbial colonization to its offspring. However, the literature currently offers only limited evidence regarding two alternative hypotheses: active microbial shaping by host genetic factors or transmission of a microbial maternal legacy. RESULTS To further dissect the influence of host genetics and maternal inheritance, we collected two-cell stage embryos from two representative wild types, C57BL6/J and BALB/c, and transferred a mixture of both genotype embryos into hybrid recipient mice to be inoculated by an identical microbiome at birth. CONCLUSIONS Observing the offspring for six generations unequivocally emphasizes the impact of host genetic factors over maternal legacy in constant environments, akin to murine laboratory experiments. Interestingly, maternal legacy solely controlled the microbiome in the first offspring generation. However, current evidence supporting maternal legacy has not extended beyond this initial generation, resolving the aforementioned debate. Video Abstract.
Collapse
Affiliation(s)
- Laurentiu Benga
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Anna Rehm
- Algorithmic Bioinformatics, Justus Liebig University Giessen, Giessen, Germany
| | - Christina Gougoula
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Westhoff
- Cluster of Excellence on Plant Science, Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Center, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - W Peter M Benten
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Eva Engelhardt
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas P M Weber
- Cluster of Excellence on Plant Science, Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Center, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martin Sager
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Janssen
- Algorithmic Bioinformatics, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
2
|
Mao X, Larsen SB, Zachariassen LSF, Brunse A, Adamberg S, Mejia JLC, Larsen F, Adamberg K, Nielsen DS, Hansen AK, Hansen CHF, Rasmussen TS. Transfer of modified gut viromes improves symptoms associated with metabolic syndrome in obese male mice. Nat Commun 2024; 15:4704. [PMID: 38830845 PMCID: PMC11148109 DOI: 10.1038/s41467-024-49152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/24/2024] [Indexed: 06/05/2024] Open
Abstract
Metabolic syndrome encompasses amongst other conditions like obesity and type-2 diabetes and is associated with gut microbiome (GM) dysbiosis. Fecal microbiota transplantation (FMT) has been explored to treat metabolic syndrome by restoring the GM; however, concerns on accidentally transferring pathogenic microbes remain. As a safer alternative, fecal virome transplantation (FVT, sterile-filtrated feces) has the advantage over FMT in that mainly bacteriophages are transferred. FVT from lean male donors have shown promise in alleviating the metabolic effects of high-fat diet in a preclinical mouse study. However, FVT still carries the risk of eukaryotic viral infections. To address this, recently developed methods are applied for removing or inactivating eukaryotic viruses in the viral component of FVT. Modified FVTs are compared with unmodified FVT and saline in a diet-induced obesity model on male C57BL/6 N mice. Contrasted with obese control, mice administered a modified FVT (nearly depleted for eukaryotic viruses) exhibits enhanced blood glucose clearance but not weight loss. The unmodified FVT improves liver pathology and reduces the proportions of immune cells in the adipose tissue with a non-uniform response. GM analysis suggests that bacteriophage-mediated GM modulation influences outcomes. Optimizing these approaches could lead to the development of safe bacteriophage-based therapies targeting metabolic syndrome through GM restoration.
Collapse
Affiliation(s)
- Xiaotian Mao
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Sabina Birgitte Larsen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Line Sidsel Fisker Zachariassen
- Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Anders Brunse
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Signe Adamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Josue Leonardo Castro Mejia
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Frej Larsen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Kaarel Adamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Dennis Sandris Nielsen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Axel Kornerup Hansen
- Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Camilla Hartmann Friis Hansen
- Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Torben Sølbeck Rasmussen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
3
|
Knudsen LA, Zachariassen LS, Strube ML, Havelund JF, Pilecki B, Nexoe AB, Møller FT, Sørensen SB, Marcussen N, Faergeman NJ, Franke A, Bang C, Holmskov U, Hansen AK, Andersen V. Assessment of the Inflammatory Effects of Gut Microbiota from Human Twins Discordant for Ulcerative Colitis on Germ-free Mice. Comp Med 2024; 74:55-69. [PMID: 38508697 PMCID: PMC11078274 DOI: 10.30802/aalas-cm-23-000065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
Disturbances in gut microbiota are prevalent in inflammatory bowel disease (IBD), which includes ulcerative colitis (UC). However, whether these disturbances contribute to development of the disease or are a result of the disease is unclear. In pairs of human twins discordant for IBD, the healthy twin has a higher risk of developing IBD and a gut microbiota that is more similar to that of IBD patients as compared with healthy individuals. Furthermore, appropriate medical treatment may mitigate these disturbances. To study the correlation between microbiota and IBD, we transferred stool samples from a discordant human twin pair: one twin being healthy and the other receiving treatment for UC. The stool samples were transferred from the disease-discordant twins to germ-free pregnant dams. Colitis was induced in the offspring using dextran sodium sulfate. As compared with offspring born to mice dams inoculated with stool from the healthy cotwin, offspring born to dams inoculated with stool from the UC-afflicted twin had a lower disease activity index, less gut inflammation, and a microbiota characterized by higher α diversity and a more antiinflammatory profile that included the presence and higher abundance of antiinflammatory species such as Akkermansia spp., Bacteroides spp., and Parabacteroides spp. These findings suggest that the microbiota from the healthy twin may have had greater inflammatory properties than did that of the twin undergoing UC treatment.
Collapse
Affiliation(s)
- Lina A Knudsen
- Medical Department, Molecular Diagnostic and Clinical Research, University Hospital of Southern Denmark, Aabenraa, Denmark; IRS-Center Sonderjylland, University of South- ern Denmark, Odense, Denmark
| | - Line Sf Zachariassen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Mikael L Strube
- DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Jesper F Havelund
- VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Bartosz Pilecki
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anders B Nexoe
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Frederik T Møller
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Signe B Sørensen
- Medical Department, Molecular Diagnostic and Clinical Research, University Hospital of Southern Denmark, Aabenraa, Denmark; Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Niels Marcussen
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
| | - Nils J Faergeman
- VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Uffe Holmskov
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Axel K Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark;,
| | - Vibeke Andersen
- Medical Department, Molecular Diagnostic and Clinical Research, University Hospital of Southern Denmark, Aabenraa, Denmark; IRS-Center Sonderjylland, University of Southern Denmark, Odense, Denmark; Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
4
|
Grion BAR, Fonseca PLC, Kato RB, García GJY, Vaz ABM, Jiménez BN, Dambolenea AL, Garcia-Etxebarria K, Brenig B, Azevedo V, Bujanda L, Banales JM, Góes-Neto A. Identification of taxonomic changes in the fecal bacteriome associated with colorectal polyps and cancer: potential biomarkers for early diagnosis. Front Microbiol 2024; 14:1292490. [PMID: 38293554 PMCID: PMC10827328 DOI: 10.3389/fmicb.2023.1292490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Colorectal cancer (CRC) commonly arises in individuals with premalignant colon lesions known as polyps, with both conditions being influenced by gut microbiota. Host-related factors and inherent characteristics of polyps and tumors may contribute to microbiome variability, potentially acting as confounding factors in the discovery of taxonomic biomarkers for both conditions. In this study we employed shotgun metagenomics to analyze the taxonomic diversity of bacteria present in fecal samples of 90 clinical subjects (comprising 30 CRC patients, 30 with polyps and 30 controls). Our findings revealed a decrease in taxonomic richness among individuals with polyps and CRC, with significant dissimilarities observed among the study groups. We identified significant alterations in the abundance of specific taxa associated with polyps (Streptococcaceae, Lachnoclostridium, and Ralstonia) and CRC (Lactobacillales, Clostridiaceae, Desulfovibrio, SFB, Ruminococcus, and Faecalibacterium). Clostridiaceae exhibited significantly lower abundance in the early stages of CRC. Additionally, our study revealed a positive co-occurrence among underrepresented genera in CRC, while demonstrating a negative co-occurrence between Faecalibacterium and Desulfovibrio, suggesting potential antagonistic relationships. Moreover, we observed variations in taxonomic richness and/or abundance within the polyp and CRC bacteriome linked to polyp size, tumor stage, dyslipidemia, diabetes with metformin use, sex, age, and family history of CRC. These findings provide potential new biomarkers to enhance early CRC diagnosis while also demonstrating how intrinsic host factors contribute to establishing a heterogeneous microbiome in patients with CRC and polyps.
Collapse
Affiliation(s)
- Beatriz Alessandra Rudi Grion
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Paula Luize Camargos Fonseca
- Integrative Biology Laboratory, Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Aline Bruna Martins Vaz
- Oswaldo Cruz Foundation (Fiocruz-MG), Minas Gerais, Brazil
- Medical School, Universidade José do Rosário Vellano (UNIFENAS), Belo Horizonte, Brazil
| | - Beatriz Nafría Jiménez
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, Ikerbasque, San Sebastian, Spain
| | - Ainhoa Lapitz Dambolenea
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, Ikerbasque, San Sebastian, Spain
| | - Koldo Garcia-Etxebarria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, Ikerbasque, San Sebastian, Spain
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, Göttingen, Germany
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, Ikerbasque, San Sebastian, Spain
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, Ikerbasque, San Sebastian, Spain
- CIBERehd, Madrid, Spain
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - Aristóteles Góes-Neto
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Graduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
5
|
Muino AF, Compo NR, Everett BM, Abrahams DF, Baldwin MK, James TN, Wanner SE, Perkins MJ, Parr CE, Wiltshire ND, Miedel EL, Engelman RW. Equipment and Methods for Concurrently Housing Germfree and Gnotobiotic Mice in the Same Room. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:395-408. [PMID: 37640503 PMCID: PMC10597338 DOI: 10.30802/aalas-jaalas-23-000019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 05/05/2023] [Indexed: 08/31/2023]
Abstract
Here, we combined the use of 2 technologies that have not previously been used together-a positively pressurized isolator IVC (IsoIVC-P) and a modular isolator with integrated vaporized hydrogen peroxide (VHP) technology???to develop highly tractable and scalable methods to support long-term maintenance of germfree mouse colonies and the concurrent use of germfree and gnotobiotic mice in the same room. This space-efficient system increases the practicality of microbiome studies. Specifically, the exterior surfaces of microbially similar IsoIVC-P were sterilized by using VHP prior to opening the cages and handling the mice therein. This space-efficient system increases the feasibility of microbiome studies. After over 74 wk of experimentation and handling equivalent to more than 1,379,693 germfree mouse-days, we determined that the method and practices we developed have a weekly performance metric of 0.0001 sterility breaks per husbandry unit; this rate is comparable to the isolator 'gold standard.' These data were achieved without adverse incidents while maintaining an Altered Schaedler Flora colony and multiple gnotobiotic studies involving fecal microbial transplants in the same room. Our novel IsoIVC-P???VHP workstation housing system thus improves microbiome research efficiency, eliminates hazards, and reduces risks associated with traditional methods.
Collapse
Affiliation(s)
- Anastasia F Muino
- Comparative Medicine, Research, and Innovation, University of South Florida
| | - Nicole R Compo
- Comparative Medicine, Research, and Innovation, University of South Florida
| | - Bo M Everett
- Comparative Medicine, Research, and Innovation, University of South Florida
| | | | - Margi K Baldwin
- Comparative Medicine, Research, and Innovation, University of South Florida
| | - Tara N James
- Comparative Medicine, Research, and Innovation, University of South Florida
| | - Susan E Wanner
- Comparative Medicine, Research, and Innovation, University of South Florida
| | - M Jane Perkins
- Comparative Medicine, Research, and Innovation, University of South Florida
| | - Courtnee E Parr
- Comparative Medicine, Research, and Innovation, University of South Florida
| | - Norman D Wiltshire
- Comparative Medicine, Research, and Innovation, University of South Florida
| | - Emily L Miedel
- Comparative Medicine, Research, and Innovation, University of South Florida
| | - Robert W Engelman
- Comparative Medicine, Research, and Innovation, University of South Florida
- H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
6
|
Xia L, Noh Y, Whelton AJ, Boor BE, Cooper B, Lichti NI, Park JH, Shannahan JH. Pulmonary and neurological health effects associated with exposure to representative composite manufacturing emissions and corresponding alterations in circulating metabolite profiles. Toxicol Sci 2023; 193:62-79. [PMID: 36912746 PMCID: PMC10176243 DOI: 10.1093/toxsci/kfad029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Cured-in-place pipe (CIPP) technology is increasingly being utilized to repair aging and damaged pipes, however, there are concerns associated with the public health hazards of emissions. CIPP installation involves the manufacture of a new plastic composite pipe at the worksite and includes multiple variable components including resin material, curing methods, and operational conditions. We hypothesize styrene-based composite manufacturing emissions (CMEs) will induce greater pulmonary inflammatory responses and oxidative stress, as well as neurological toxicity compared with nonstyrene CMEs. Further, these CME-toxicological responses will be sex- and time-dependent. To test the hypothesis, representative CMEs were generated using a laboratory curing chamber and characterized using thermal desorption-gas chromatography-mass spectrometry and photoionization detector. Styrene was released during staying, isothermal curing, and cooling phases of the process and peaked during the cooling phase. Male and female C57BL6/J mice were utilized to examine alterations in pulmonary responses and neurotoxicity 1 day and 7 days following exposure to air (controls), nonstyrene-CMEs, or styrene-CMEs. Serum styrene metabolites were increased in mice exposed to styrene-CMEs. Metabolic and lipid profiling revealed alterations related to CIPP emissions that were resin-, time-, and sex-dependent. Exposure to styrene-CMEs resulted in an influx of lymphocytes in both sexes. Expression of inflammatory and oxidative stress markers, including Tnfα, Vcam1, Ccl2, Cxcl2, Il6, Cxcl1, Tgfβ1, Tgmt2, and Hmox1, displayed alterations following exposure to emissions. These changes in pulmonary and neurological markers of toxicity were dependent on resin type, sex, and time. Overall, this study demonstrates resin-specific differences in representative CMEs and alterations in toxicity endpoints, which can potentially inform safer utilization of composite manufacturing processes.
Collapse
Affiliation(s)
- Li Xia
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Yoorae Noh
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Andrew J Whelton
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Brandon E Boor
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Bruce Cooper
- Bindley Bioscience Center Metabolomic Profiling Facility, Purdue University, West Lafayette, Indiana, USA
| | - Nathanael I Lichti
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
| | - Jae Hong Park
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jonathan H Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
7
|
Liu M, Thijssen S, Hennink WE, Garssen J, van Nostrum CF, Willemsen LM. Oral pretreatment with β-lactoglobulin derived peptide and CpG co-encapsulated in PLGA nanoparticles prior to sensitizations attenuates cow's milk allergy development in mice. Front Immunol 2023; 13:1053107. [PMID: 36703973 PMCID: PMC9872660 DOI: 10.3389/fimmu.2022.1053107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Cow's milk allergy is a common food allergy among infants. Improved hygiene conditions and loss of microbial diversity are associated with increased risk of allergy development. The intestinal immune system is essential for oral tolerance induction. In this respect, bacterial CpG DNA is known to drive Th1 and regulatory T-cell (Treg) development via Toll-Like-Receptor 9 (TLR-9) signaling, skewing away from the allergic Th2 phenotype. We aimed to induce allergen specific tolerance via oral delivery of poly (lactic-co-glycolic acid) nanoparticles (NP) co-encapsulated with a selected β-lactoglobulin derived peptide (BLG-Pep) and TLR-9 ligand CpG oligodeoxynucleotide (CpG). In vivo, 3-4-week-old female C3H/HeOuJ mice housed in individually ventilated cages received 6-consecutive-daily gavages of either PBS, whey, BLG-Pep/NP, CpG/NP, a mixture of BLG-Pep/NP plus CpG/NP or co-encapsulated BLG-Pep+CpG/NP, before 5-weekly oral sensitizations with whey plus cholera toxin (CT) or only CT (sham) and were challenged with whey 5 days after the last sensitization. The co-encapsulated BLG-Pep+CpG/NP pretreatment, but not BLG-Pep/NP, CpG/NP or the mixture of BLG-Pep/NP plus CpG/NP, prevented the whey-induced allergic skin reactivity and prevented rise in serum BLG-specific IgE compared to whey-sensitized mice. Importantly, co-encapsulated BLG-Pep+CpG/NP pretreatment reduced dendritic cell (DC) activation and lowered the frequencies of PD-L1+ DC in the mesenteric lymph nodes compared to whey-sensitized mice. By contrast, co-encapsulated BLG-Pep+CpG/NP pretreatment increased the frequency of splenic PD-L1+ DC compared to the BLG-Pep/NP plus CpG/NP recipients, in association with lower Th2 development and increased Treg/Th2 and Th1/Th2 ratios in the spleen. Oral administration of PLGA NP co-encapsulated with BLG-Pep and CpG prevented rise in serum BLG-specific IgE and symptom development while lowering splenic Th2 cell frequency in these mice which were kept under strict hygienic conditions.
Collapse
Affiliation(s)
- Mengshan Liu
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Suzan Thijssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Wim E. Hennink
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands,Department of Immunology, Nutricia Research B.V., Utrecht, Netherlands
| | - Cornelus F. van Nostrum
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Linette E. M. Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands,*Correspondence: Linette E. M. Willemsen,
| |
Collapse
|
8
|
Cázares-Olivera M, Miroszewska D, Hu L, Kowalski J, Jaakkola UM, Salminen S, Li B, Yatkin E, Chen Z. Animal unit hygienic conditions influence mouse intestinal microbiota and contribute to T-cell-mediated colitis. Exp Biol Med (Maywood) 2022; 247:1752-1763. [PMID: 35946176 PMCID: PMC9638955 DOI: 10.1177/15353702221113826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders of the gastrointestinal tract with worldwide increasing incidence. Recent studies indicate that certain species of intestinal bacteria are strongly associated with IBD. Helper T lymphocytes are not only the key players in mediating host defense against a wide variety of pathogens but also contribute to pathogenesis of many immune-related diseases. Here, using the T cell transfer model of colitis, we observed that the mice maintained in a specific-pathogen free (SPF) unit after receiving naïve CD4+ T cells developed mild disease. The same mice developed different degrees of disease when they were maintained in a conventional animal facility (non-SPF), where some pathogens were detected during routine health monitoring. Consistently, increased circulating inflammatory cytokines as well as Th1 and Th17 cells were detected in mice housed in non-SPF units. 16S rRNA sequencing of feces samples enabled us to identify changes in the microbiota composition of mice kept in different facilities. Our data indicate that environmental factors influence gut microbiota composition of mice, leading to development of colitis in a T-cell-dependent manner. In conclusion, changes in environmental conditions and microbial status of experimental animals appear to contribute to progression of colitis.
Collapse
Affiliation(s)
| | - Dominika Miroszewska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, 80-307 Gdańsk, Poland
| | - Lili Hu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Jacek Kowalski
- Department of Pathomorphology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Ulla-Marjut Jaakkola
- Central Animal Laboratory, Faculty of Medicine, University of Turku (UTUCAL), 20520 Turku, Finland
| | - Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, 20520 Turku, Finland
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200085, China
| | - Emrah Yatkin
- Central Animal Laboratory, Faculty of Medicine, University of Turku (UTUCAL), 20520 Turku, Finland
| | - Zhi Chen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland,Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, 80-307 Gdańsk, Poland,Zhi Chen.
| |
Collapse
|
9
|
Daoust L, Choi BSY, Agrinier AL, Varin TV, Ouellette A, Mitchell PL, Samson N, Pilon G, Levy E, Desjardins Y, Laplante M, Anhê FF, Houde VP, Marette A. Gnotobiotic mice housing conditions critically influence the phenotype associated with transfer of faecal microbiota in a context of obesity. Gut 2022; 72:896-905. [PMID: 36881441 DOI: 10.1136/gutjnl-2021-326475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/20/2022] [Indexed: 03/08/2023]
Abstract
OBJECTIVE Faecal microbiota transplantation (FMT) in germ-free (GF) mice is a common approach to study the causal role of the gut microbiota in metabolic diseases. Lack of consideration of housing conditions post-FMT may contribute to study heterogeneity. We compared the impact of two housing strategies on the metabolic outcomes of GF mice colonised by gut microbiota from mice treated with a known gut modulator (cranberry proanthocyanidins (PAC)) or vehicle. DESIGN High-fat high-sucrose diet-fed GF mice underwent FMT-PAC colonisation in sterile individual positive flow ventilated cages under rigorous housing conditions and then maintained for 8 weeks either in the gnotobiotic-axenic sector or in the specific pathogen free (SPF) sector of the same animal facility. RESULTS Unexpectedly, 8 weeks after colonisation, we observed opposing liver phenotypes dependent on the housing environment of mice. Mice housed in the GF sector receiving the PAC gut microbiota showed a significant decrease in liver weight and hepatic triglyceride accumulation compared with control group. Conversely, exacerbated liver steatosis was observed in the FMT-PAC mice housed in the SPF sector. These phenotypic differences were associated with housing-specific profiles of colonising bacterial in the gut and of faecal metabolites. CONCLUSION These results suggest that the housing environment in which gnotobiotic mice are maintained post-FMT strongly influences gut microbiota composition and function and can lead to distinctive phenotypes in recipient mice. Better standardisation of FMT experiments is needed to ensure reproducible and translatable results.
Collapse
Affiliation(s)
- Laurence Daoust
- Quebec Heart and Lung Institute, Quebec, Québec, Canada.,Institute of Nutrition and Functional Foods, Quebec, Québec, Canada
| | - Béatrice S-Y Choi
- Quebec Heart and Lung Institute, Quebec, Québec, Canada.,Institute of Nutrition and Functional Foods, Quebec, Québec, Canada
| | - Anne-Laure Agrinier
- Quebec Heart and Lung Institute, Quebec, Québec, Canada.,Institute of Nutrition and Functional Foods, Quebec, Québec, Canada
| | - Thibault V Varin
- Institute of Nutrition and Functional Foods, Quebec, Québec, Canada
| | - Adia Ouellette
- Quebec Heart and Lung Institute, Quebec, Québec, Canada.,Institute of Nutrition and Functional Foods, Quebec, Québec, Canada
| | - Patricia L Mitchell
- Quebec Heart and Lung Institute, Quebec, Québec, Canada.,Institute of Nutrition and Functional Foods, Quebec, Québec, Canada
| | | | - Genevieve Pilon
- Quebec Heart and Lung Institute, Quebec, Québec, Canada.,Institute of Nutrition and Functional Foods, Quebec, Québec, Canada
| | - Emile Levy
- Institute of Nutrition and Functional Foods, Quebec, Québec, Canada.,CHU Ste-Justine Research Center, Université de Montréal, Montreal, Quebec, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Quebec, Québec, Canada
| | | | - Fernando F Anhê
- Department of Biochemistry and Biomedical Sciences; Farncombe Family Digestive Health Research Institute and Centre for Metabolsim, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Vanessa P Houde
- Quebec Heart and Lung Institute, Quebec, Québec, Canada.,Institute of Nutrition and Functional Foods, Quebec, Québec, Canada
| | - Andre Marette
- Quebec Heart and Lung Institute, Quebec, Québec, Canada .,Institute of Nutrition and Functional Foods, Quebec, Québec, Canada
| |
Collapse
|
10
|
Shimada K, Nohara M, Yasuoka A, Kamei A, Shinozaki F, Kondo K, Inoue R, Kondo T, Abe K. Mouse Model of Weak Depression Exhibiting Suppressed cAMP Signaling in the Amygdala, Lower Lipid Catabolism in Liver, and Correlated Gut Microbiota. Front Behav Neurosci 2022; 16:841450. [PMID: 35928791 PMCID: PMC9345170 DOI: 10.3389/fnbeh.2022.841450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
To establish a mouse model of weak depression, we raised 6-week-old C57BL/6N mice in single (SH) or group housing (GH) conditions for 2 weeks. The SH group showed less social interaction with stranger mice, learning disability in behavioral tests, and lower plasma corticosterone levels. The cecal microbiota of the SH group showed significant segregation from the GH group in the principal coordinate analysis (PCoA). Transcriptome analysis of the amygdala and liver detected multiple differentially expressed genes (DEGs). In the amygdala of SH mice, suppression of the cyclic adenine monophosphate (cAMP) signal was predicted and confirmed by the reduced immunoreactivity of phosphorylated cAMP-responsive element-binding protein. In the liver of SH mice, downregulation of beta-oxidation was predicted. Interestingly, the expression levels of over 100 DEGs showed a significant correlation with the occupancy of two bacterial genera, Lactobacillus (Lactobacillaceae) and Anaerostipes (Lachnospiraceae). These bacteria-correlated DEGs included JunB, the downstream component of cAMP signaling in the amygdala, and carnitine palmitoyltransferase 1A (Cpt1a), a key enzyme of beta-oxidation in the liver. This trans-omical analysis also suggested that nicotinamide adenine dinucleotide (NAD) synthesis in the liver may be linked to the occupancy of Lactobacillus through the regulation of nicotinamide phosphoribosyltransferase (NAMPT) and kynureninase (KYNU) genes. Our results suggested that SH condition along with the presence of correlated bacteria species causes weak depression phenotype in young mice and provides a suitable model to study food ingredient that is able to cure weak depression.
Collapse
Affiliation(s)
- Kousuke Shimada
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Masakatsu Nohara
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Akihito Yasuoka
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Akihito Yasuoka,
| | - Asuka Kamei
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Fumika Shinozaki
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Kaori Kondo
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Division of Disease Systems Biology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Kyoto Prefectural University, Kyoto, Japan
| | - Takashi Kondo
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Division of Disease Systems Biology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Takashi Kondo,
| | - Keiko Abe
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Gaines CH, Schoenrock SA, Farrington J, Lee DF, Aponte-Collazo LJ, Shaw GD, Miller DR, Ferris MT, Pardo-Manuel de Villena F, Tarantino LM. Cocaine-Induced Locomotor Activation Differs Across Inbred Mouse Substrains. Front Psychiatry 2022; 13:800245. [PMID: 35599758 PMCID: PMC9120424 DOI: 10.3389/fpsyt.2022.800245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cocaine use disorders (CUD) are devastating for affected individuals and impose a significant societal burden, but there are currently no FDA-approved therapies. The development of novel and effective treatments has been hindered by substantial gaps in our knowledge about the etiology of these disorders. The risk for developing a CUD is influenced by genetics, the environment and complex interactions between the two. Identifying specific genes and environmental risk factors that increase CUD risk would provide an avenue for the development of novel treatments. Rodent models of addiction-relevant behaviors have been a valuable tool for studying the genetics of behavioral responses to drugs of abuse. Traditional genetic mapping using genetically and phenotypically divergent inbred mice has been successful in identifying numerous chromosomal regions that influence addiction-relevant behaviors, but these strategies rarely result in identification of the causal gene or genetic variant. To overcome this challenge, reduced complexity crosses (RCC) between closely related inbred mouse strains have been proposed as a method for rapidly identifying and validating functional variants. The RCC approach is dependent on identifying phenotypic differences between substrains. To date, however, the study of addiction-relevant behaviors has been limited to very few sets of substrains, mostly comprising the C57BL/6 lineage. The present study expands upon the current literature to assess cocaine-induced locomotor activation in 20 inbred mouse substrains representing six inbred strain lineages (A/J, BALB/c, FVB/N, C3H/He, DBA/2 and NOD) that were either bred in-house or supplied directly by a commercial vendor. To our knowledge, we are the first to identify significant differences in cocaine-induced locomotor response in several of these inbred substrains. The identification of substrain differences allows for the initiation of RCC populations to more rapidly identify specific genetic variants associated with acute cocaine response. The observation of behavioral profiles that differ between mice generated in-house and those that are vendor-supplied also presents an opportunity to investigate the influence of environmental factors on cocaine-induced locomotor activity.
Collapse
Affiliation(s)
- Christiann H. Gaines
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah A. Schoenrock
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joseph Farrington
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David F. Lee
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Pharmacology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lucas J. Aponte-Collazo
- Pharmacology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ginger D. Shaw
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Darla R. Miller
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Martin T. Ferris
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lisa M. Tarantino
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
12
|
Hansen AK, Hansen CHF. The microbiome and rodent models of immune mediated diseases. Mamm Genome 2021; 32:251-262. [PMID: 33792799 PMCID: PMC8012743 DOI: 10.1007/s00335-021-09866-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
Over the last six decades production of laboratory rodents have been refined with the aim of eliminating all pathogens, which could influence research results. This has, however, also created rodents with little diversity in their microbiota. Until 10 years ago the impact of the microbiota on the outcome of rodent studies was ignored, but today it is clear that the phenotype of rodent models differs essentially in relation to the environment of origin, i.e. different breeders or different rooms. In this review, we outline the mechanisms behind gut bacterial impact on rodent models of immune mediated diseases, and how differences in environment of origin leads to phenotypic model differences within research areas such as infectious diseases and vaccine development, the metabolic syndrome, gut immunity and inflammation, autoimmunity and allergy. Finally, we sum up some tools to handle this impact to increase reproducibility and translatability of rodent models.
Collapse
Affiliation(s)
- Axel Kornerup Hansen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark.
| | - Camilla Hartmann Friis Hansen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
13
|
Mengoni F, Salari V, Kosenkova I, Tsenov G, Donadelli M, Malerba G, Bertini G, Del Gallo F, Fabene PF. Gut microbiota modulates seizure susceptibility. Epilepsia 2021; 62:e153-e157. [PMID: 34324703 PMCID: PMC8457192 DOI: 10.1111/epi.17009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/19/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
A bulk of data suggest that the gut microbiota plays a role in a broad range of diseases, including those affecting the central nervous system. Recently, significant differences in the intestinal microbiota of patients with epilepsy, compared to healthy volunteers, have been reported in an observational study. However, an active role of the intestinal microbiota in the pathogenesis of epilepsy, through the so‐called “gut–brain axis,” has yet to be demonstrated. In this study, we evaluated the direct impact of microbiota transplanted from epileptic animals to healthy recipient animals, to clarify whether the microbiota from animals with epilepsy can affect the excitability of the recipients’ brain by lowering seizure thresholds. Our results provide the first evidence that mice who received microbiota from epileptic animals are more prone to develop status epilepticus, compared to recipients of “healthy” microbiota, after a subclinical dose of pilocarpine, indicating a higher susceptibility to seizures. The lower thresholds for seizure activity found in this study support the hypothesis that the microbiota, through the gut–brain axis, is able to affect neuronal excitability in the brain.
Collapse
Affiliation(s)
- Francesca Mengoni
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, Verona, Italy
| | - Valentina Salari
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, Verona, Italy
| | - Inna Kosenkova
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, Verona, Italy
| | - Grygoriy Tsenov
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, Verona, Italy
| | - Giovanni Malerba
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, Verona, Italy
| | - Giuseppe Bertini
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, Verona, Italy
| | - Federico Del Gallo
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, Verona, Italy
| | - Paolo Francesco Fabene
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
14
|
Lindenberg FC, Lützhøft DO, Krych L, Fielden J, Kot W, Frøkiær H, van Galen G, Nielsen DS, Hansen AK. An Oligosaccharide Rich Diet Increases Akkermansia spp. Bacteria in the Equine Microbiota. Front Microbiol 2021; 12:666039. [PMID: 34093482 PMCID: PMC8176217 DOI: 10.3389/fmicb.2021.666039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
Some oligosaccharides induce growth of anti-inflammatory bacterial species and induce regulatory immunity in humans as well as animals. We have shown that the equine gut microbiota and the immune-microbial homeostasis largely stabilize within the first 50 days of life. Furthermore, we have previously established that certain bacterial species in the equine gut correlated with regulatory immunity. Accordingly, we hypothesized that an oligosaccharide rich diet fed to foals during the first 50 days would increase the abundance of bacterial species associated with regulatory immunity, and that this would influence immune responses in the foals. Eight pregnant mares and their foals were fed an oligosaccharide rich diet from 4 weeks before expected parturition until 49 days post-partum. Six mares and foals served as control. Fecal microbiota from mares and foals was characterized using 16S rRNA gene amplicon high throughput sequencing. On Day 49 the test foals had significantly higher abundances of Akkermansia spp. Blood sampled from the foals in the test group on Day 7, 28, and 49 showed non-significant increases in IgA, and decreases in IgG on Day 49. In BALB/cBomTac mice inoculated with gut microbiota from test and control foals we found increased species richness, increased relative abundance of several species identified as potentially anti-inflammatory in horses, which were unclassified Clostridiales, Ruminococcaceae, Ruminococcus, Oscilospira, and Coprococcus. We also found increased il10 expression in the ileum if inoculated with test foal microbiota. We conclude that an oligosaccharide diet fed to foals in the "window of opportunity," the first 50 days of life, increases the abundance of anti-inflammatory species in the microbiota with potentially anti-inflammatory effects on regulatory immunity.
Collapse
Affiliation(s)
- Frederikke Christine Lindenberg
- Brogaarden ApS, Lynge, Denmark.,Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ditte Olsen Lützhøft
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lukasz Krych
- Department of Food Sciences, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Witold Kot
- Department of Environmental Sciences, Aarhus University, Aarhus, Denmark
| | - Hanne Frøkiær
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gaby van Galen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dennis Sandris Nielsen
- Department of Food Sciences, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Basic M, Bolsega S, Smoczek A, Gläsner J, Hiergeist A, Eberl C, Stecher B, Gessner A, Bleich A. Monitoring and contamination incidence of gnotobiotic experiments performed in microisolator cages. Int J Med Microbiol 2021; 311:151482. [PMID: 33636479 DOI: 10.1016/j.ijmm.2021.151482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/14/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022] Open
Abstract
With the increased interest in the microbiome research, gnotobiotic animals and techniques emerged again as valuable tools to investigate functional effects of host-microbe and microbe-microbe interactions. The increased demand for gnotobiotic experiments has resulted in the greater need for housing systems for short-term maintenance of gnotobiotic animals. During the last six years, the gnotobiotic facility of the Hannover Medical School has worked intensively with different housing systems for gnotobiotic animals. Here, we report our experience in handling, contamination incidence, and monitoring strategies that we apply for controlling gnotobiotic experiments. From our experience, the risk of introducing contaminants to animals housed in microisolator cages is higher than in isolators. However, with strict operating protocols, the contamination rate in these systems can be minimized. In addition to spore-forming bacteria and fungi from the environment, spore-forming bacteria from defined bacterial communities used in experiments represent the major risk for contamination of gnotobiotic experiments performed in microisolator cages. The presence/absence of contaminants in germ-free animals can be easily monitored by preparation of wet mounts and Gram staining of fecal samples. Contaminants in animals colonized with specific microorganisms need to be tracked with methods such as next-generation sequencing. However, when using PCR-based methods it is important to consider that relatively small amounts of bacterial DNA detected likely originates from food, bedding, or reagents and is not to be interpreted as true contamination.
Collapse
Affiliation(s)
- Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Silvia Bolsega
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Anna Smoczek
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Joachim Gläsner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Claudia Eberl
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Germany; German Center of Infection Research (DZIF), Partner Site Munich, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
16
|
Bharti R, Grimm DG. Current challenges and best-practice protocols for microbiome analysis. Brief Bioinform 2021; 22:178-193. [PMID: 31848574 PMCID: PMC7820839 DOI: 10.1093/bib/bbz155] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/23/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
Analyzing the microbiome of diverse species and environments using next-generation sequencing techniques has significantly enhanced our understanding on metabolic, physiological and ecological roles of environmental microorganisms. However, the analysis of the microbiome is affected by experimental conditions (e.g. sequencing errors and genomic repeats) and computationally intensive and cumbersome downstream analysis (e.g. quality control, assembly, binning and statistical analyses). Moreover, the introduction of new sequencing technologies and protocols led to a flood of new methodologies, which also have an immediate effect on the results of the analyses. The aim of this work is to review the most important workflows for 16S rRNA sequencing and shotgun and long-read metagenomics, as well as to provide best-practice protocols on experimental design, sample processing, sequencing, assembly, binning, annotation and visualization. To simplify and standardize the computational analysis, we provide a set of best-practice workflows for 16S rRNA and metagenomic sequencing data (available at https://github.com/grimmlab/MicrobiomeBestPracticeReview).
Collapse
Affiliation(s)
- Richa Bharti
- Weihenstephan-Triesdorf University of Applied Sciences and Technical University of Munich, TUM Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
| | - Dominik G Grimm
- Weihenstephan-Triesdorf University of Applied Sciences and Technical University of Munich, TUM Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
| |
Collapse
|
17
|
Vendl C, Nelson T, Ferrari B, Thomas T, Rogers T. Highly abundant core taxa in the blow within and across captive bottlenose dolphins provide evidence for a temporally stable airway microbiota. BMC Microbiol 2021; 21:20. [PMID: 33421992 PMCID: PMC7796641 DOI: 10.1186/s12866-020-02076-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 12/20/2020] [Indexed: 12/15/2022] Open
Abstract
Background The analysis of blow microbiota has been proposed as a biomarker for respiratory health analysis in cetaceans. Yet, we lack crucial knowledge on the long-term stability of the blow microbiota and its potential changes during disease. Research in humans and mice have provided evidence that respiratory disease is accompanied by a shift in microbial communities of the airways. We investigate here the stability of the community composition of the blow microbiota for 13 captive bottlenose dolphins over eight months including both sick and healthy individuals. We used barcoded tag sequencing of the bacterial 16S rRNA gene. Four of the dolphins experienced distinct medical conditions and received systemic antimicrobial treatment during the study. Results We showed that each dolphin harboured a unique community of zero-radius operational taxonomic units (zOTUs) that was present throughout the entire sampling period (‘intra-core’). Although for most dolphins there was significant variation over time, overall the intra-core accounted for an average of 73% of relative abundance of the blow microbiota. In addition, the dolphins shared between 8 and 66 zOTUs on any of the sampling occasions (‘inter-core’), accounting for a relative abundance between 17 and 41% of any dolphin’s airway microbiota. The majority of the intra-core and all of the inter-core zOTUs in this study are commonly found in captive and free-ranging dolphins and have previously been reported from several different body sites. While we did not find a clear effect of microbial treatment on blow microbiota, age and sex of the dolphins did have such an effect. Conclusions The airways of dolphins were colonized by an individual intra-core ‘signature’ that varied in abundance relative to more temporary bacteria. We speculate that the intra-core bacteria interact with the immune response of the respiratory tract and support its function. This study provides the first evidence of individual-specific airway microbiota in cetaceans that is stable over eight months. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02076-z.
Collapse
Affiliation(s)
- Catharina Vendl
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Tiffanie Nelson
- Queensland Facility for Advanced Bioinformatics, Griffith University, Gold Coast, Southport, QLD, 4215, Australia
| | - Belinda Ferrari
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tracey Rogers
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
18
|
Shi Y, Miao ZY, Su JP, Wasser SK. Shift of Maternal Gut Microbiota of Tibetan Antelope (Pantholops hodgsonii) During the Periparturition Period. Curr Microbiol 2021; 78:727-738. [PMID: 33410953 DOI: 10.1007/s00284-020-02339-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
The maternal gut microbiota can influence and be affected by the substantial physiological changes taking place during the periparturition period. However, little information is known about the changes in the maternal gut microbiota and hormonal variations during this period in nonmodel organisms. Tibetan antelope (Pantholops hodgsonii) provide a unique system to address this issue because their summer migration cycle is synchronized with the periparturition period. Here, we used fecal microbiota as a proxy of gut microbiota. We characterized fecal microbial community of female migratory Tibetan antelope in the late pregnancy and postpartum periods using 16S rRNA gene sequencing and quantified fecal glucocorticoids (GCs) and triiodothyronine (T3) metabolite concentrations through enzyme immunoassays to identify the associations between maternal gut microbiota and physiological changes related with reproduction. We found that the fecal microbiota of Tibetan antelope was dominated by Firmicutes and Bacteroidetes. The microbial composition was significantly altered during the transition from late pregnancy to the postpartum period. Fecal T3 concentration was significantly higher in the postpartum period compared to late pregnancy, whereas GC metabolite concentration did not significantly differ between two reproductive states. We identified six genera (Anaerofustis, Bacteroides, Coprococcus_2, Ruminiclostridium_5, Ruminococcaceae_UCG-007, and Tyzzerella) that were significantly associated with reproductive states. We also found two genera (Christensenellaceae_R-7_group and Rikenellaceae_RC9_gut_group) significantly associated with GC metabolite concentration and two genera (Agathobacter and Papillibacter) significantly associated with T3 metabolite concentration, though these correlations were weak with coefficient values ranging from - 0.007 to 0.03. Our results indicate that many members of the gut microbiota are associated with the physiological changes in the transition from late pregnancy to the postpartum period, likely reflecting the metabolic and immune system dynamics during the periparturition period. This study highlights the importance of integrating microbiota, hormones and migration pattern to study the reproductive health of wildlife. By establishing a baseline of the physiological changes during the migration/periparturition period, we can have a better understanding of the impacts of increasing human activities on the Tibetan Plateau on the reproductive health of Tibetan antelope.
Collapse
Affiliation(s)
- Yue Shi
- Department of Biology, University of Washington, Box 351800, Seattle, WA, 98195, USA. .,College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Point Lena Loop Road, Juneau, AK, 99801, USA.
| | - Zi-Yan Miao
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China.,Museum of Natural Resources of Qinghai Province, Xining, 810008, Qinghai, China
| | - Jian-Ping Su
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China
| | - Samuel K Wasser
- Department of Biology, University of Washington, Box 351800, Seattle, WA, 98195, USA
| |
Collapse
|
19
|
Ericsson AC, Franklin CL. The gut microbiome of laboratory mice: considerations and best practices for translational research. Mamm Genome 2021; 32:239-250. [PMID: 33689000 PMCID: PMC8295156 DOI: 10.1007/s00335-021-09863-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/18/2021] [Indexed: 12/14/2022]
Abstract
Just as the gut microbiota (GM) is now recognized as an integral mediator of environmental influences on human physiology, susceptibility to disease, and response to pharmacological intervention, so too does the GM of laboratory mice affect the phenotype of research using mouse models. Multiple experimental factors have been shown to affect the composition of the GM in research mice, as well as the model phenotype, suggesting that the GM represents a major component in experimental reproducibility. Moreover, several recent studies suggest that manipulation of the GM of laboratory mice can substantially improve the predictive power or translatability of data generated in mouse models to the human conditions under investigation. This review provides readers with information related to these various factors and practices, and recommendations regarding methods by which issues with poor reproducibility or translatability can be transformed into discoveries.
Collapse
Affiliation(s)
- Aaron C Ericsson
- University of Missouri Metagenomics Center (MUMC), MU Mutant Mouse Resource and Research Center (MU MMRRC), Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
| | - Craig L Franklin
- University of Missouri Metagenomics Center (MUMC), MU Mutant Mouse Resource and Research Center (MU MMRRC), Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
20
|
Franklin CL, Ericsson AC. Complex Microbiota in Laboratory Rodents: Management Considerations. ILAR J 2020; 60:289-297. [PMID: 32706377 DOI: 10.1093/ilar/ilaa011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 03/29/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Our bodies and those of our animal research subjects are colonized by bacterial communities that occupy virtually every organ system, including many previously considered sterile. These bacteria reside as complex communities that are collectively referred to as microbiota. Prior to the turn of the century, characterization of these communities was limited by a reliance on culture of organisms on a battery of selective media. It was recognized that the vast majority of microbes, especially those occupying unique niches of the body such as the anaerobic environment of the intestinal tract, were uncultivatable. However, with the onset and advancement of next-generation sequencing technology, we are now capable of characterizing these complex communities without the need to cultivate, and this has resulted in an explosion of information and new challenges in interpreting data generated about, and in the context of, these complex communities. We have long known that these microbial communities often exist in an intricate balance that, if disrupted (ie, dysbiosis), can lead to disease or increased susceptibility to disease. Because of many functional redundancies, the makeup of these colonies can vary dramatically within healthy individuals [1]. However, there is growing evidence that subtle differences can alter the phenotype of various animal models, which may translate to the varying susceptibility to disease seen in the human population. In this manuscript, we discuss how to include complex microbiota as a consideration in experimental design and model reproducibility and how to exploit the extensive variation that exists in contemporary rodent research colonies. Our focus will be the intestinal or gut microbiota (GM), but it should be recognized that microbial communities exist in many other body compartments and these too likely influence health and disease [2, 3]. Much like host genetics, can we one day harness the vast genetic capacity of the microbes we live with in ways that will benefit human and animal health?
Collapse
Affiliation(s)
- Craig L Franklin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri.,Mutant Mouse Resource and Research Center, University of Missouri, Columbia, Missouri.,MU Metagenomics Center, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri.,Mutant Mouse Resource and Research Center, University of Missouri, Columbia, Missouri.,MU Metagenomics Center, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
21
|
Lundberg R, Toft MF, Metzdorff SB, Hansen CHF, Licht TR, Bahl MI, Hansen AK. Human microbiota-transplanted C57BL/6 mice and offspring display reduced establishment of key bacteria and reduced immune stimulation compared to mouse microbiota-transplantation. Sci Rep 2020; 10:7805. [PMID: 32385373 PMCID: PMC7211022 DOI: 10.1038/s41598-020-64703-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Transplantation of germ-free (GF) mice with microbiota from mice or humans stimulates the intestinal immune system in disparate ways. We transplanted a human microbiota into GF C57BL/6 mice and a murine C57BL/6 microbiota into GF C57BL/6 mice and Swiss-Webster (SW) mice. Mice were bred to produce an offspring generation. 56% of the Operational Taxonomic Units (OTUs) present in the human donor microbiota established in the recipient mice, whereas 81% of the C57BL/6 OTUs established in the recipient C57BL/6 and SW mice. Anti-inflammatory bacteria such as Faecalibacterium and Bifidobacterium from humans were not transferred to mice. Expression of immune-related intestinal genes was lower in human microbiota-mice and not different between parent and offspring generation. Expression of intestinal barrier-related genes was slightly higher in human microbiota-mice. Cytokines and chemokines measured in plasma were differentially present in human and mouse microbiota-mice. Minor differences in microbiota and gene expression were found between transplanted mice of different genetics. It is concluded that important immune-regulating bacteria are lost when transplanting microbiota from humans to C57BL/6 mice, and that the established human microbiota is a weak stimulator of the murine immune system. The results are important for study design considerations in microbiota transplantation studies involving immunological parameters.
Collapse
Affiliation(s)
- Randi Lundberg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark.
- Internal Research and Development, Taconic Biosciences, 4623, Lille Skensved, Denmark.
- Chr. Hansen, 2970, Hoersholm, Denmark.
| | - Martin F Toft
- Internal Research and Development, Taconic Biosciences, 4623, Lille Skensved, Denmark
- QM Diagnostics, 6534, AT Nijmegen, The Netherlands
| | - Stine B Metzdorff
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Camilla H F Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Tine R Licht
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Martin I Bahl
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Axel K Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| |
Collapse
|
22
|
Debes KP, Evdina NA, Laigaard A, Larsen JM, Zachariassen LF, Hansen CHF, Hansen AK. Betamethasone Treatment for Atopic Dermatitis in Gut Microbiota Transplanted Mice. Comp Med 2019; 70:6-15. [PMID: 31744592 DOI: 10.30802/aalas-cm-18-000136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gut microbiota composition correlates strongly with essential disease parameters in the oxazolone-induced mouse model for atopic dermatitis. The phenotype of this model can be transferred to germ-free mice with a gut microbiota transplant to achieve high and low responding mice. Therefore, the production of high responding mice through gut microbiota transplantation may be seen as a tool to reduce group sizes or increase power in intervention studies by increasing effect size. We sought to determine whether high responding mice respond to a common treatment in the same way as low responding mice. We hypothesized that while high responding mice would exhibit a higher clinical score than low responding mice before treatment, the clinical parameters would be similar in both groups after betamethasone treatment. Dermatitis was induced with oxazolone in barrier bred Swiss Webster mice, and a high responding and a low responding donor was selected based upon clinical and pathologic scores, as confirmed by monitoring a range of ear tissue cytokines. Feces from these donors were transplanted to pregnant germ-free Swiss Webster dams, and subsequently to their offspring. Although the overall effect of betamethasone on the clinical dermatitis score and ear thickness was rather small, the high responding recipients had significantly higher clinical dermatitis score and ear thickness than the low responding recipients before treatment, and these differences vanished after betamethasone treatment. We conclude that high responding recipients can be treated to a clinical level comparable with the low responding recipients.
Collapse
Affiliation(s)
- Karina P Debes
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark;,
| | - Nathalie A Evdina
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ann Laigaard
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Julie M Larsen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Line F Zachariassen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Camilla H F Hansen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Axel K Hansen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
23
|
Leystra AA, Clapper ML. Gut Microbiota Influences Experimental Outcomes in Mouse Models of Colorectal Cancer. Genes (Basel) 2019; 10:genes10110900. [PMID: 31703321 PMCID: PMC6895921 DOI: 10.3390/genes10110900] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Mouse models are a valuable resource for use throughout the development and testing of new therapeutic strategies for CRC. Tumorigenesis and response to therapy in humans and mouse models alike are influenced by the microbial communities that colonize the gut. Differences in the composition of the gut microbiota can confound experimental findings and reduce the replicability and translatability of the resulting data. Despite this, the contribution of resident microbiota to preclinical tumor models is often underappreciated. This review does the following: (1) summarizes evidence that the gut microbiota influence CRC disease phenotypes; (2) outlines factors that can influence the composition of the gut microbiota; and (3) provides strategies that can be incorporated into the experimental design, to account for the influence of the microbiota on intestinal phenotypes in mouse models of CRC. Through careful experimental design and documentation, mouse models can continue to rapidly advance efforts to prevent and treat colon cancer.
Collapse
|
24
|
Kers JG, Velkers FC, Fischer EAJ, Hermes GDA, Lamot DM, Stegeman JA, Smidt H. Take care of the environment: housing conditions affect the interplay of nutritional interventions and intestinal microbiota in broiler chickens. Anim Microbiome 2019; 1:10. [PMID: 33499936 PMCID: PMC7807522 DOI: 10.1186/s42523-019-0009-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Background The intestinal microbiota is shaped by many interactions between microorganisms, host, diet, and the environment. Exposure to microorganisms present in the environment, and exchange of microorganisms between hosts sharing the same environment, can influence intestinal microbiota of individuals, but how this affects microbiota studies is poorly understood. We investigated the effects of experimental housing circumstances on intestinal microbiota composition in broiler chickens, and how these effects may influence the capacity to determine diet related effects in a nutrition experiment. A cross-sectional experiment was conducted simultaneously in a feed research facility with mesh panels between pens (Housing condition 1, H1), in an extensively cleaned stable with floor pens with solid wooden panels (H2), and in isolators (H3). In H1 and H2 different distances between pens were created to assess gut microbiota exchange between pens. Feed with and without a blend of medium-chain fatty acids (MCFA) was used to create differences in cecal microbiota between pens or isolators within the same housing condition. Male one-day-old Ross broiler chickens (n = 370) were randomly distributed across H1, H2, and H3. After 35 days cecal microbiota composition was assessed by 16S ribosomal RNA gene amplicon sequencing. Metabolic functioning of cecal content was assessed based on high-performance liquid chromatography. Results Microbial alpha diversity was not affected in broilers fed +MCFA in H1 but was increased in H2 and H3. Based on weighted UniFrac distances, the nutritional intervention explained 10%, whereas housing condition explained 28% of cecal microbiota variation between all broilers. The effect size of the nutritional intervention varied within housing conditions between 11, 27, and 13% for H1, H2, and H3. Furthermore, performance and metabolic output were significantly different between housing conditions. The distance between pens within H1 and H2 did not influence the percentage of shared genera or operational taxonomic units (OTUs). Conclusions The cecal microbiota of broilers was modifiable by a nutritional intervention, but the housing condition affected microbiota composition and functionality stronger than the diet intervention. Consequently, for interpretation of intestinal microbiota studies in poultry it is essential to be aware of the potentially large impact of housing conditions on the obtained results. Electronic supplementary material The online version of this article (10.1186/s42523-019-0009-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jannigje G Kers
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, Utrecht, the Netherlands. .,Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands.
| | - Francisca C Velkers
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, Utrecht, the Netherlands
| | - Egil A J Fischer
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, Utrecht, the Netherlands
| | - Gerben D A Hermes
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - David M Lamot
- Cargill Animal Nutrition Innovation Center, Velddriel, the Netherlands
| | - J Arjan Stegeman
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, Utrecht, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
25
|
Iannone LF, Preda A, Blottière HM, Clarke G, Albani D, Belcastro V, Carotenuto M, Cattaneo A, Citraro R, Ferraris C, Ronchi F, Luongo G, Santocchi E, Guiducci L, Baldelli P, Iannetti P, Pedersen S, Petretto A, Provasi S, Selmer K, Spalice A, Tagliabue A, Verrotti A, Segata N, Zimmermann J, Minetti C, Mainardi P, Giordano C, Sisodiya S, Zara F, Russo E, Striano P. Microbiota-gut brain axis involvement in neuropsychiatric disorders. Expert Rev Neurother 2019; 19:1037-1050. [PMID: 31260640 DOI: 10.1080/14737175.2019.1638763] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: The microbiota-gut brain (MGB) axis is the bidirectional communication between the intestinal microbiota and the brain. An increasing body of preclinical and clinical evidence has revealed that the gut microbial ecosystem can affect neuropsychiatric health. However, there is still a need of further studies to elucidate the complex gene-environment interactions and the role of the MGB axis in neuropsychiatric diseases, with the aim of identifying biomarkers and new therapeutic targets, to allow early diagnosis and improving treatments. Areas covered: To review the role of MGB axis in neuropsychiatric disorders, prediction and prevention of disease through exploitation, integration, and combination of data from existing gut microbiome/microbiota projects and appropriate other International '-Omics' studies. The authors also evaluated the new technological advances to investigate and modulate, through nutritional and other interventions, the gut microbiota. Expert opinion: The clinical studies have documented an association between alterations in gut microbiota composition and/or function, whereas the preclinical studies support a role for the gut microbiota in impacting behaviors which are of relevance to psychiatry and other central nervous system (CNS) disorders. Targeting MGB axis could be an additional approach for treating CNS disorders and all conditions in which alterations of the gut microbiota are involved.
Collapse
Affiliation(s)
- Luigi Francesco Iannone
- Science of Health Department, School of Medicine, University of Catanzaro , Catanzaro , Italy
| | - Alberto Preda
- Paediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, "G. Gaslini" Institute , Genova , Italy
| | - Hervé M Blottière
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, JouyenJosas&MetaGenoPolis, INRA, Université Paris-Saclay , Jouyen Josas , France
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork , Cork , Ireland
| | - Diego Albani
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | | | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, Università degli Studi della Campania 'Luigi Vanvitelli' , Napoli , Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli , Brescia , Italy.,Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry , King's College , London
| | - Rita Citraro
- Science of Health Department, School of Medicine, University of Catanzaro , Catanzaro , Italy
| | - Cinzia Ferraris
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine University of Pavia , Pavia , Italy
| | - Francesca Ronchi
- Department forBiomedical Research, University of Bern , Bern , Switzerland
| | - Gaia Luongo
- Ordine dei Tecnologi Alimentari Campania e Lazio , Napoli , Italy
| | | | - Letizia Guiducci
- National Research Council, Institute of Clinical Physiology , Pisa , Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, Section of Physiology, University of Genova , Genova , Italy
| | - Paola Iannetti
- Department of Pediatrics`, "Sapienza" University of Rome , Rome , Italy
| | - Sigrid Pedersen
- Department of Refractory Epilepsy, Division of Clinical Neuroscience, Oslo University Hospital , Oslo , Norway
| | - Andrea Petretto
- Laboratory of Mass Spectrometry - Core Facilities, Istituto Giannina Gaslini , Genova , Italy
| | - Stefania Provasi
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli , Brescia , Italy
| | - Kaja Selmer
- Department of Research and Development, Division of Clinical Neuroscience, Oslo University Hospital, Osla, Norway and Department of Refractory Epilepsy, Division of Clinical Neuroscience, Oslo University Hospital , Osla , Norway
| | - Alberto Spalice
- Department of Experimental Medicine, Section of Physiology, University of Genova , Genova , Italy
| | - Anna Tagliabue
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry , King's College , London
| | - Alberto Verrotti
- Department of Pediatrics, University of L'Aquila , L'Aquila , Italy
| | - Nicola Segata
- Centre for Integrative Biology, University of Trento , Trento , Italy
| | - Jakob Zimmermann
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine University of Pavia , Pavia , Italy
| | - Carlo Minetti
- Paediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, "G. Gaslini" Institute , Genova , Italy
| | | | - Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano , Milano , Italy
| | - Sanjay Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology , Queen Square, London , UK
| | - Federico Zara
- Laboratory of Neurogenetics, Istituto Giannina Gaslini , Genova , Italy
| | - Emilio Russo
- Science of Health Department, School of Medicine, University of Catanzaro , Catanzaro , Italy
| | - Pasquale Striano
- Paediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, "G. Gaslini" Institute , Genova , Italy
| |
Collapse
|
26
|
Contribution of the Gut Microbiota in P28GST-Mediated Anti-Inflammatory Effects: Experimental and Clinical Insights. Cells 2019; 8:cells8060577. [PMID: 31212833 PMCID: PMC6627314 DOI: 10.3390/cells8060577] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022] Open
Abstract
An original immuno-regulatory strategy against inflammatory bowel diseases based on the use of 28 kDa glutathione S-transferase (P28GST), a unique schistosome protein, was recently proposed. Improvement of intestinal inflammation occurs through restoration of the immunological balance between pro-inflammatory T-helper 1 (Th1) responses and both T-helper 2 (Th2) and regulatory responses. However, detailed mechanisms explaining how P28GST prevents colitis and promotes gut homeostasis remain unknown. Considering the complex interplay between the adaptive and innate immune system and the intestinal microbiota, we raised the question of the possible role of the microbial ecosystem in the anti-inflammatory effects mediated by the helminth-derived P28GST protein. We first analyzed, by 16S rRNA sequencing, the bacterial profiles of mice fecal microbiota at several time points of the P28GST-immunomodulation period prior to trinitrobenzene sulfonic acid (TNBS)-colitis. The influence of gut microbiota in the P28GST-mediated anti-inflammatory effects was then assessed by fecal microbiota transplantation experiments from P28GST-immunized mice to either conventional or microbiota depleted naïve recipient mice. Finally, the experimental data were supplemented by the temporal fecal microbiota compositions of P28GST-treated Crohn’s disease patients from a pilot clinical study (NCT02281916). The P28GST administration slightly modulated the diversity and composition of mouse fecal microbiota while it significantly reduced experimental colitis in mice. Fecal microbiota transplantation experiments failed to restore the P28GST-induced anti-inflammatory effects. In Crohn’s disease patients, P28GST also induced slight changes in their overall fecal bacterial composition. Collectively, these results provide key elements in both the anti-inflammatory mechanisms and the safe therapeutic use of immunomodulation with such promising helminth-derived molecules.
Collapse
|
27
|
Gut microbiome of pre-adolescent children of two ethnicities residing in three distant cities. Sci Rep 2019; 9:7831. [PMID: 31127186 PMCID: PMC6534553 DOI: 10.1038/s41598-019-44369-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/16/2019] [Indexed: 02/08/2023] Open
Abstract
Recent studies have realized the link between gut microbiota and human health and diseases. The question of diet, environment or gene is the determining factor for dominant microbiota and microbiota profile has not been fully resolved, for these comparative studies have been performed on populations of different ethnicities and in short-term intervention studies. Here, the Southern Chinese populations are compared, specifically the children of Guangzhou City (China), Penang City (west coast Malaysia) and Kelantan City (east coast Malaysia). These Chinese people have similar ancestry thus it would allow us to delineate the effect of diet and ethnicity on gut microbiota composition. For comparison, the Penang and Kelantan Malay children were also included. The results revealed that differences in microbiota genera within an ethnicity in different cities was due to differences in food type. Sharing the similar diet but different ethnicity in a city or different cities and living environment showed similar gut microbiota. The major gut microbiota (more than 1% total Operational Taxonomy Units, OTUs) of the children population are largely determined by diet but not ethnicity, environment, and lifestyle. Elucidating the link between diet and microbiota would facilitate the development of strategies to improve human health at a younger age.
Collapse
|
28
|
Rasmussen TS, de Vries L, Kot W, Hansen LH, Castro-Mejía JL, Vogensen FK, Hansen AK, Nielsen DS. Mouse Vendor Influence on the Bacterial and Viral Gut Composition Exceeds the Effect of Diet. Viruses 2019; 11:E435. [PMID: 31086117 PMCID: PMC6563299 DOI: 10.3390/v11050435] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/01/2019] [Accepted: 05/11/2019] [Indexed: 12/12/2022] Open
Abstract
Often physiological studies using mice from one vendor show different outcome when being reproduced using mice from another vendor. These divergent phenotypes between similar mouse strains from different vendors have been assigned to differences in the gut microbiome. During recent years, evidence has mounted that the gut viral community plays a key role in shaping the gut microbiome and may thus also influence mouse phenotype. However, to date inter-vendor variation in the murine gut virome has not been studied. Using a metavirome approach, combined with 16S rRNA gene sequencing, we here compare the composition of the viral and bacterial gut community of C57BL/6N mice from three different vendors exposed to either a chow-based low-fat diet or high-fat diet. Interestingly, both the bacterial and the viral component of the gut community differed significantly between vendors. The different diets also strongly influenced both the viral and bacterial gut community, but surprisingly the effect of vendor exceeded the effect of diet. In conclusion, the vendor effect is substantial not only on the gut bacterial community but also strongly influences viral community composition. Given the effect of GM on mice phenotype, this is essential to consider for increasing reproducibility of mouse studies.
Collapse
Affiliation(s)
- Torben Sølbeck Rasmussen
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark.
| | - Liv de Vries
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark.
| | - Witold Kot
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark.
| | | | - Josué L Castro-Mejía
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark.
| | - Finn Kvist Vogensen
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark.
| | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| | - Dennis Sandris Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark.
| |
Collapse
|
29
|
Fessler J, Matson V, Gajewski TF. Exploring the emerging role of the microbiome in cancer immunotherapy. J Immunother Cancer 2019; 7:108. [PMID: 30995949 PMCID: PMC6471869 DOI: 10.1186/s40425-019-0574-4] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 03/22/2019] [Indexed: 12/24/2022] Open
Abstract
The activity of the commensal microbiota significantly impacts human health and has been linked to the development of many diseases, including cancer. Gnotobiotic animal models have shown that the microbiota has many effects on host physiology, including on the development and regulation of immune responses. More recently, evidence has indicated that the microbiota can more specifically influence the outcome of cancer immunotherapy. Therapeutic interventions to optimize microbiota composition to improve immunotherapy outcomes have shown promise in mouse studies. Ongoing endeavors are translating these pre-clinical findings to early stage clinical testing. In this review we summarize 1) basic methodologies and considerations for studies of host-microbiota interactions; 2) experimental evidence towards a causal link between gut microbiota composition and immunotherapeutic efficacy; 3) possible mechanisms governing the microbiota-mediated impact on immunotherapy efficacy. Moving forward, there is need for a deeper understanding of the underlying biological mechanisms that link specific bacterial strains to host immunity. Integrating microbiome effects with other tumor and host factors regulating immunotherapy responsiveness versus resistance could facilitate optimization of therapeutic outcomes.
Collapse
Affiliation(s)
- Jessica Fessler
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Vyara Matson
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Thomas F Gajewski
- Department of Pathology, The University of Chicago, Chicago, IL, USA.
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, 5841 S. Maryland Ave., MC2115, Chicago, IL, 60637, USA.
| |
Collapse
|
30
|
Ragland NH, Miedel EL, Engelman RW. PCR Prevalence of Murine Opportunistic Microbes and their Mitigation by Using Vaporized Hydrogen Peroxide. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2019; 58:208-215. [PMID: 30795821 DOI: 10.30802/aalas-jaalas-18-000112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exposing immunodeficient mice to opportunistic microbes introduces risks of data variability, morbidity, mortality, and the invalidation of studies involving unique human reagents, including the loss of primary human hematopoietic cells, patient-derived xenografts, and experimental therapeutics. The prevalence of 15 opportunistic microbes in a murine research facility was determined by yearlong PCR-based murine and IVC equipment surveillance comprising 1738 specimens. Of the 8 microbes detected, 3 organisms- Staphylococcus xylosus, Proteus mirabilis, and Pasteurella pneumotropica biotype Heyl-were most prevalent in both murine and IVC exhaust plenum specimens. Overall, the 8 detectable microbes were more readily PCR-detectable in IVC exhaust airways than in murine specimens, supporting the utility of PCR testing of IVC exhaust airways as a component of immunodeficient murine health surveillance. Vaporized hydrogen peroxide (VHP) exposure of IVC equipment left unassembled (that is, in a 'static-open' configuration) did not eliminate PCR detectable evidence of microbes. In contrast, VHP exposure of IVC equipment assembled 'active-closed' eliminated PCR-detectable evidence of all microbes. Ensuring data integrity and maintaining a topographically complex immunodeficient murine research environment is facilitated by knowing the prevalent opportunistic microbes to be monitored and by implementing a PCR-validated method of facility decontamination that mitigates opportunistic microbes and the risk of invalidation of studies involving immunodeficient mice.
Collapse
Affiliation(s)
- Natalie H Ragland
- Department of Comparative Medicine, H Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida, USA.
| | - Emily L Miedel
- Department of Comparative Medicine, H Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida, USA
| | - Robert W Engelman
- Department of Comparative Medicine, H Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
31
|
Lange ME, Uwiera RRE, Inglis GD. Housing Gnotobiotic Mice in Conventional Animal Facilities. ACTA ACUST UNITED AC 2019; 9:e59. [DOI: 10.1002/cpmo.59] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Máximo E. Lange
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre; Lethbridge Alberta Canada
- Department of Agricultural, Food, and Nutritional Science, University of Alberta; Edmonton Alberta Canada
| | - Richard R. E. Uwiera
- Department of Agricultural, Food, and Nutritional Science, University of Alberta; Edmonton Alberta Canada
| | - G. Douglas Inglis
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre; Lethbridge Alberta Canada
| |
Collapse
|
32
|
Naili I, Vinot J, Baudner BC, Bernalier-Donadille A, Pizza M, Desvaux M, Jubelin G, D'Oro U, Buonsanti C. Mixed mucosal-parenteral immunizations with the broadly conserved pathogenic Escherichia coli antigen SslE induce a robust mucosal and systemic immunity without affecting the murine intestinal microbiota. Vaccine 2018; 37:314-324. [PMID: 30503655 DOI: 10.1016/j.vaccine.2018.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023]
Abstract
Emergence and dissemination of multidrug resistance among pathogenic Escherichia coli have posed a serious threat to public health across developing and developed countries. In combination with a flexible repertoire of virulence mechanisms, E. coli can cause a vast range of intestinal (InPEC) and extraintestinal (ExPEC) diseases but only a very limited number of antibiotics still remains effective against this pathogen. Hence, a broad spectrum E. coli vaccine could be a promising alternative to prevent the burden of such diseases, while offering the potential for covering against several InPEC and ExPEC at once. SslE, the Secreted and Surface-associated Lipoprotein of E. coli, is a widely distributed protein among InPEC and ExPEC. SslE functions ex vivo as a mucinase capable of degrading mucins and reaching the surface of mucus-producing epithelial cells. SslE was identified by reverse vaccinology as a protective vaccine candidate against an ExPEC murine model of sepsis, and further shown to be cross-effective against other ExPEC and InPEC models of infection. In this study, we aimed to gain insight into the immune response to antigen SslE and identify an immunization strategy suited to generate robust mucosal and systemic immune responses. We showed, by analyzing T cell and antibody responses, that mice immunized with SslE via an intranasal prime followed by two intramuscular boosts developed an enhanced overall immune response compared to either intranasal-only or intramuscular-only protocols. Importantly, we also report that this regimen of immunization did not impact the richness of the murine gut microbiota, and mice had a comparable cecal microbial composition, whether immunized with SslE or PBS. Collectively, our findings further support the use of SslE in future vaccination strategies to effectively target both InPEC and ExPEC while not perturbing the resident gut microbiota.
Collapse
Affiliation(s)
- Ilham Naili
- GSK, Siena, Italy; Université Clermont Auvergne, INRA, UMR454 MEDiS, 63000 Clermont-Ferrand, France.
| | | | | | | | | | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, 63000 Clermont-Ferrand, France
| | - Grégory Jubelin
- Université Clermont Auvergne, INRA, UMR454 MEDiS, 63000 Clermont-Ferrand, France
| | | | | |
Collapse
|
33
|
Barnett JA, Gibson DL. H 2Oh No! The importance of reporting your water source in your in vivo microbiome studies. Gut Microbes 2018; 10:261-269. [PMID: 30442070 PMCID: PMC6546325 DOI: 10.1080/19490976.2018.1539599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/19/2018] [Indexed: 02/03/2023] Open
Abstract
Water is a fundamental part of any in vivo microbiome experiment however, it is also one of the most overlooked and underreported variables within the literature. Currently there is no established standard for drinking water quality set by the Canadian Council on Animal Care. Most water treatment methods focus on inhibiting bacterial growth within the water while prolonging the shelf-life of bottles once poured. When reviewing the literature, it is clear that some water treatment methods, such as water acidification, alter the gut microbiome of experimental animals resulting in dramatic differences in disease phenotype progression. Furthermore, The Jackson Lab, one of the world's leading animal vendors, provides acidified water to their in-house animals and is often cited in the literature as having a dramatically different gut microbiome than animals acquired from either Charles River or Taconic. While we recognize that it is impossible to standardize water across all animal facilities currently conducting microbiome research, we hope that by drawing attention to the issue in this commentary, researchers will consider water source as an experimental variable and report their own water sources to facilitate experimental reproducibility. Moreover, researchers should be cognisant of potential phenotypic differences observed between commercial animal vendors due to changes in the gut microbiome as a result of various sources of water used.
Collapse
Affiliation(s)
| | - Deanna L. Gibson
- Department of Biology, Okanagan campus, Kelowna, BC, Canada
- Department of Medicine, Faculty of Medicine, University of British Columbia Kelowna, BC, Canada
| |
Collapse
|
34
|
Innate Immune Influences on the Gut Microbiome: Lessons from Mouse Models. Trends Immunol 2018; 39:992-1004. [PMID: 30377046 DOI: 10.1016/j.it.2018.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
Abstract
The gut microbiota is important in health and disease. Whereas the intestinal immune system has evolved to protect the mucosal barrier against pathogens, there is much interest in understanding how it influences the composition and functions of resident microbial communities. Overall, host innate immunity exerts little influence on the microbiota at homeostasis, but increases upon immune activation and the onset of inflammation, as well as in the presence of certain members of the microbiota. However, many experiments have not adequately incorporated study design to detect such immune influences, including using proper control groups, precise sampling and timing, and measures beyond broad-scale descriptions of dysbiosis for microbial analysis. We discuss these and other challenges in the context of current understanding of chronic inflammatory disease.
Collapse
|
35
|
Mueller FS, Polesel M, Richetto J, Meyer U, Weber-Stadlbauer U. Mouse models of maternal immune activation: Mind your caging system! Brain Behav Immun 2018; 73:643-660. [PMID: 30026057 DOI: 10.1016/j.bbi.2018.07.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/27/2018] [Accepted: 07/14/2018] [Indexed: 12/19/2022] Open
Abstract
Rodent models of maternal immune activation (MIA) are increasingly used as experimental tools to study neuronal and behavioral dysfunctions in relation to infection-mediated neurodevelopmental disorders. One of the most widely used MIA models is based on gestational administration of poly(I:C) (= polyriboinosinic-polyribocytdilic acid), a synthetic analog of double-stranded RNA that induces a cytokine-associated viral-like acute phase response. The effects of poly(I:C)-induced MIA on phenotypic changes in the offspring are known to be influenced by various factors, including the precise prenatal timing, genetic background, and immune stimulus intensity. Thus far, however, it has been largely ignored whether differences in the basic type of laboratory housing can similarly affect the outcomes of MIA models. Here, we examined this possibility by comparing the poly(I:C)-based MIA model in two housing systems that are commonly used in preclinical mouse research, namely the open cage (OC) and individually ventilated cage (IVC) systems. Pregnant C57BL6/N mice were kept in OCs or IVCs and treated with a low (1 mg/kg, i.v.) or high (5 mg/kg, i.v.) dose of poly(I:C), or with control vehicle solution. MIA or control treatment was induced on gestation day (GD) 9 or 12, and the resulting offspring were raised and maintained in OCs or IVCs until adulthood for behavioral testing. An additional cohort of dams was used to assess the influence of the different caging systems on poly(I:C)-induced cytokine and stress responses in the maternal plasma. Maternal poly(I:C) administration on GD9 caused a dose-dependent increase in spontaneous abortion in IVCs but not in OCs, whereas MIA in IVC systems during a later gestational time-point (GD12) did not affect pregnancy outcomes. Moreover, the precise type of caging system markedly affected maternal cytokines and chemokines at basal states and in response to poly(I:C) and further influenced the maternal levels of the stress hormone, corticosterone. The efficacy of MIA to induce deficits in working memory, social interaction, and sensorimotor gating in the adult offspring was influenced by the different housing conditions, the dosing of poly(I:C), and the precise prenatal timing. Taken together, the present study identifies the basic type of caging system as a novel factor that can confound the outcomes of MIA in mice. Our findings thus urge the need to consider and report the kind of laboratory housing systems used to implement MIA models. Providing this information seems pivotal to yield reproducible results in these models.
Collapse
Affiliation(s)
- Flavia S Mueller
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland
| | | | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland.
| |
Collapse
|
36
|
Rodriguez-Palacios A, Aladyshkina N, Ezeji JC, Erkkila HL, Conger M, Ward J, Webster J, Cominelli F. 'Cyclical Bias' in Microbiome Research Revealed by A Portable Germ-Free Housing System Using Nested Isolation. Sci Rep 2018; 8:3801. [PMID: 29491439 PMCID: PMC5830500 DOI: 10.1038/s41598-018-20742-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/12/2018] [Indexed: 12/24/2022] Open
Abstract
Germ-Free (GF) research has required highly technical pressurized HEPA-ventilation anchored systems for decades. Herein, we validated a GF system that can be easily implemented and portable using Nested Isolation (NesTiso). GF-standards can be achieved housing mice in non-HEPA-static cages, which only need to be nested 'one-cage-inside-another' resembling 'Russian dolls'. After 2 years of monitoring ~100,000 GF-mouse-days, NesTiso showed mice can be maintained GF for life (>1.3 years), with low animal daily-contamination-probability risk (1 every 867 days), allowing the expansion of GF research with unprecedented freedom and mobility. At the cage level, with 23,360 GF cage-days, the probability of having a cage contamination in NesTiso cages opened in biosafety hoods was statistically identical to that of opening cages inside (the 'gold standard') multi-cage pressurized GF isolators. When validating the benefits of using NesTiso in mouse microbiome research, our experiments unexpectedly revealed that the mouse fecal microbiota composition within the 'bedding material' of conventional SPF-cages suffers cyclical selection bias as moist/feces/diet/organic content ('soiledness') increases over time (e.g., favoring microbiome abundances of Bacillales, Burkholderiales, Pseudomonadales; and cultivable Enterococcus faecalis over Lactobacillus murinus and Escherichia coli), which in turn cyclically influences the gut microbiome dynamics of caged mice. Culture 'co-streaking' assays showed that cohoused mice exhibiting different fecal microbiota/hemolytic profiles in clean bedding (high-within-cage individual diversity) 'cyclically and transiently appear identical' (less diverse) as bedding soiledness increases, and recurs. Strategies are proposed to minimize this novel functional form of cyclical bedding-dependent microbiome selection bias.
Collapse
Affiliation(s)
- Alexander Rodriguez-Palacios
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Natalia Aladyshkina
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jessica C Ezeji
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Hailey L Erkkila
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Mathew Conger
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - John Ward
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Joshua Webster
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| |
Collapse
|
37
|
Kramer CD, Simas AM, He X, Ingalls RR, Weinberg EO, Genco CA. Distinct roles for dietary lipids and Porphyromonas gingivalis infection on atherosclerosis progression and the gut microbiota. Anaerobe 2017; 45:19-30. [PMID: 28442421 DOI: 10.1016/j.anaerobe.2017.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 02/08/2023]
Abstract
Mounting evidence in humans supports an etiological role for the microbiota in inflammatory atherosclerosis. Atherosclerosis is a progressive disease characterized by accumulation of inflammatory cells and lipids in vascular tissue. While retention of lipoprotein into the sub-endothelial vascular layer is believed to be the initiating stimulus leading to the development of atherosclerosis, activation of multiple pathways related to vascular inflammation and endothelial dysfunction sustain the process by stimulating recruitment of leukocytes and immune cells into the sub-endothelial layer. The Gram-negative oral pathogen Porphyromonas gingivalis has been associated with the development and acceleration of atherosclerosis in humans and these observations have been validated in animal models. It has been proposed that common mechanisms of immune signaling link stimulation by lipids and pathogens to vascular inflammation. Despite the common outcome of P. gingivalis and lipid feeding on atherosclerosis progression, we established that these pro-atherogenic stimuli induced distinct gene signatures in the ApoE-/- mouse model of atherosclerosis. In this study, we further defined the distinct roles of dietary lipids and P. gingivalis infection on atherosclerosis progression and the gut microbiota. We demonstrate that diet-induced lipid lowering resulted in less atherosclerotic plaque in ApoE-/- mice compared to ApoE-/- mice continuously fed a Western diet. However, the effect of diet-induced lipid lowering on plaque accumulation was blunted by P. gingivalis infection. Using principal component analysis and hierarchical clustering, we demonstrate that dietary intervention as well as P. gingivalis infection result in distinct bacterial communities in fecal and cecal samples of ApoE-/- mice as compared to ApoE-/- mice continuously fed either a Western diet or a normal chow diet. Collectively, we identified distinct microbiota changes accompanying atherosclerotic plaque, suggesting a future avenue for investigation on the impact of the gut microbiota, diet, and P. gingivalis infection on atherosclerosis.
Collapse
Affiliation(s)
- Carolyn D Kramer
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA; Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA 02111, USA.
| | - Alexandra M Simas
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA 02111, USA; Graduate Program in Biochemical and Molecular Nutrition, Gerald J. and Dorothy R. Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA 02111, USA.
| | - Xianbao He
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA; Boston Medical Center, Evans Biomedical Research Center, 650 Albany Street, Boston, MA 02118, USA.
| | - Robin R Ingalls
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA; Boston Medical Center, Evans Biomedical Research Center, 650 Albany Street, Boston, MA 02118, USA.
| | - Ellen O Weinberg
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA; Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA 02111, USA.
| | - Caroline Attardo Genco
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA; Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA 02111, USA; Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA 02111, USA; Graduate Program in Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA 02111, USA.
| |
Collapse
|