1
|
Cobarrubias-Escamilla DL, Saldarriaga-Noreña HA, Vergara-Sánchez J, Murillo-Tovar MA, Moeller-Chávez GE. Removal of ibuprofen, naproxen and 17-β-estradiol in water using L. octovalvis constructed wetlands. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-10. [PMID: 39254325 DOI: 10.1080/15226514.2024.2400619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
This study was developed to evaluate the removal potential of ibuprofen, naproxen and 17-β-estradiol in artificial wetlands constructed on a laboratory scale, using eight experimental devices planted with L. octovalvis species, tested with gravel substrate and without gravel substrate, which were fortified with synthetic mixtures at concentrations of 1, 2 and 5 mg/L of the three compounds, during a batch exposure time of nine days. The removal efficiency for 17-β-estradiol was 94.5 ± 2.47%, followed by ibuprofen 94.03 ± 1.96% and naproxen 81.57 ± 8.74%, respectively. The treatment with the highest removal was the one performed without the presence of gravel substrate. The highest removal efficiency occurred from the third day of exposure for the three compounds, so it was established as the optimum residence time. The model that best explained the adsorption process of the three compounds studied, was the Langmuir isotherm. The observed results demonstrate that L. octovalvis can be used as a native species in artificial wetlands for the efficient removal of pharmaceutical compounds.
Collapse
|
2
|
Mosharaf MK, Gomes RL, Cook S, Alam MS, Rasmusssen A. Wastewater reuse and pharmaceutical pollution in agriculture: Uptake, transport, accumulation and metabolism of pharmaceutical pollutants within plants. CHEMOSPHERE 2024; 364:143055. [PMID: 39127189 DOI: 10.1016/j.chemosphere.2024.143055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The presence of pharmaceutical pollutants in water sources has become a growing concern due to its potential impacts on human health and other organisms. The physicochemical properties of pharmaceuticals based on their intended therapeutical application, which include antibiotics, hormones, analgesics, and antidepressants, is quite diverse. Their presence in wastewater, sewerage water, surface water, ground water and even in drinking water is reported by many researchers throughout the world. Human exposure to these pollutants through drinking water or consumption of aquatic and terrestrial organisms has raised concerns about potential adverse effects, such as endocrine disruption, antibiotic resistance, and developmental abnormalities. Once in the environment, they can persist, undergo transformation, or degrade, leading to a complex mixture of contaminants. Application of treated wastewater, compost, manures or biosolids in agricultural fields introduce pharmaceutical pollutants in the environment. As pharmaceuticals are diverse in nature, significant differences are observed during their uptake and accumulation in plants. While there have been extensive studies on aquatic ecosystems, the effect on agricultural land is more disparate. As of now, there are few reports available on the potential of plant uptake and transportation of pharmaceuticals within and between plant organs. This review summarizes the occurrence of pharmaceuticals in aquatic water bodies at a range of concentrations and their uptake, accumulation, and transport within plant tissues. Research gaps on pharmaceutical pollutants' specific effect on plant growth and future research scopes are highlighted. The factors affecting uptake of pharmaceuticals including hydrophobicity, ionization, physicochemical properties (pKa, logKow, pH, Henry's law constant) are discussed. Finally, metabolism of pharmaceuticals within plant cells through metabolism phase enzymes and plant responses to pharmaceuticals are reviewed.
Collapse
Affiliation(s)
- Md Khaled Mosharaf
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom; Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Rachel L Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, NG7 2RD, United Kingdom
| | - Sarah Cook
- Water and Environmental Engineering, School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Mohammed S Alam
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom
| | - Amanda Rasmusssen
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom
| |
Collapse
|
3
|
Bayode AA, Olisah C, Emmanuel SS, Adesina MO, Koko DT. Sequestration of steroidal estrogen in aqueous samples using an adsorption mechanism: a systemic scientometric review. RSC Adv 2023; 13:22675-22697. [PMID: 37502828 PMCID: PMC10369132 DOI: 10.1039/d3ra02296j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Steroidal estrogens (SEs) remain one of the notable endocrine disrupting chemicals (EDCs) that pose a significant threat to the aquatic environment in this era owing to their interference with the normal metabolic functions of the human body systems. They are currently identified as emerging contaminants of water sources. The sources of SEs are either natural or synthetic active ingredients in oral contraceptive and hormonal replacement therapy drugs and enter the environment primarily from excretes in the form of active free conjugate radicals, resulting in numerous effects on organisms in aquatic habitats and humans. The removal of SEs from water sources is of great importance because of their potential adverse effects on aquatic ecosystems and human health. Adsorption techniques have gained considerable attention as effective methods for the removal of these contaminants. A systemic review and bibliometric analysis of the application of adsorption for sequestration were carried out. Metadata for publications on SE removal utilizing adsorbents were obtained from the Web of Science (WoS) from January 1, 1990, to November 5, 2022 (107 documents) and Scopus databases from January 1, 1949, to November 5, 2022 (77 documents). In total, 137 documents (134 research and 4 review articles) were used to systematically map bibliometric indicators, such as the number of articles, most prolific countries, most productive scholars, and most cited articles, confirming this to be a growing research area. The use of different adsorbents, include activated carbon graphene-based materials, single and multi-walled carbon nanotubes, biochar, zeolite, and nanocomposites. The adsorption mechanism and factors affecting the removal efficiency, such as pH, temperature, initial concentration, contact time and adsorbent properties, were investigated in this review. This review discusses the advantages and limitations of different adsorbents, including their adsorption capacities, regenerative potential, and cost-effectiveness. Recent advances and innovations in adsorption technology, such as functionalized materials and hybrid systems, have also been highlighted. Overall, the bibliographic analysis provides a comprehensive overview of the adsorption technique for the removal of SEs from other sources, serving as a valuable resource for researchers and policymakers involved in the development of efficient and sustainable strategies to mitigate the effects of these emerging contaminants.
Collapse
Affiliation(s)
- Ajibola A Bayode
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University P.M.B. 230 232101 Ede Nigeria
| | - Chijioke Olisah
- Institute for Coastal and Marine Research, Nelson Mandela University P. O Box 77000 Gqeberha 6031 South Africa
| | - Stephen Sunday Emmanuel
- Department of Industrial Chemistry, Faculty of Physical Sciences, University of Ilorin P.M.B. 1515 Ilorin Nigeria
| | | | - Daniel Terlanga Koko
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University P.M.B. 230 232101 Ede Nigeria
| |
Collapse
|
4
|
Ma QG, Wan YP, Liu ZH, Dang Z. Simultaneous trace determination of three natural estrogens and their sulfate and glucuronide conjugates in municipal waste and river water samples with UPLC-MS/MS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27357-27371. [PMID: 36378384 DOI: 10.1007/s11356-022-24120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Analytical method for three natural estrogens (NEs) and their sulfate and glucuronide conjugates in waste and river waters using solid-phase extraction (SPE) coupled with ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) has been available, but problems including poor recovery exist. In order to solve these, some optimizations have been performed in this work. For sample preparation, both rinse and elution solutions were optimized, in which 6 mL of MeOH/water (1:9, v/v), MeOH/Ace/water (10:2:88, v/v/v), and MeOH/NH4OH/water (10:2:88, v/v/v) were determined as the rinse solution, while 6 mL of 2.0% NH4OH/MeOH was determined as the elution solution for conjugated NEs (C-NEs). For mobile phase, addition of NH4F could obviously enhance the signal response of the nine target compounds, and the optimized addition concentration was 0.5 mmol/L. The developed efficient method was validated and showed excellent linearity for each target compound (R2 > 0.998), low limit of quantifications (LOQs, 0.07-1.29 ng/L) in four different water matrices, and excellent recovery efficiencies of 81.0-116.1% in influent, effluent, ultra-pure, and river water samples with low relative standard deviations (RSDs, 0.6-13.6%). The optimized method was successfully applied to influent, effluent, and Pearl River water, among which three NEs were all detected, while five C-NEs were found in the influent, three C-NEs were detected in the effluent, and two C-NEs were found in the Pearl River water, indicating the wide distribution of NEs and C-NEs in different water environments. This work provided a reliable and efficient analytical method for simultaneous trace determination of NEs and C-NEs, which had satisfactory absolute recoveries with low RSDs, low LOQs, and time-saving for both analysis and nitrogen drying.
Collapse
Affiliation(s)
- Qing-Guang Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yi-Ping Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
5
|
Rajpal N, Ratan JK, Divya N, Hebbani AV. Bioremediation of greywater using a novel bacterial-fungal consortium: optimization and validation of the operating parameters in vitro. ENVIRONMENTAL TECHNOLOGY 2022; 43:2430-2442. [PMID: 33502283 DOI: 10.1080/09593330.2021.1882582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
In the present study, removal of pollutants in greywater was investigated using a novel bacterial-fungal consortium. Response surface methodology was used for the optimization of process variables like pH, temperature, inoculum size, and Carbon/Nitrogen (C/N ratio) for degradation of pollutants. Experiments were based on Box Behnken statistical design and the results show a good fit with the quadratic model, coefficient of determination (R2) value of 0.9499. The reliability of the model was established by various statistical parameters like lack of fit, pure error, and residual sum of squares. The optimized conditions for maximum reduction in chemical oxygen demand, oil & grease and sulphate were found to be 78.7%, 82.6% and 89.7%, respectively after 96 h of incubation of the reaction mixture at pH 7; temperature 35°C; inoculum size 150 µl and C/N ratio of 1:2. Our results clearly demonstrate that the developed novel bacterial-fungal consortium can be a cost-effective, safe, and environment-friendly alternative for remediation of greywater.
Collapse
Affiliation(s)
- Nikita Rajpal
- Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, India
| | - Jatinder K Ratan
- Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, India
| | - Neetu Divya
- Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, India
| | | |
Collapse
|
6
|
Narindri Rara Winayu B, Chang YL, Hsueh HT, Chu H. Simultaneous 17β-estradiol degradation, carbon dioxide fixation, and carotenoid accumulation by Thermosynechococcus sp. CL-1. BIORESOURCE TECHNOLOGY 2022; 354:127197. [PMID: 35460842 DOI: 10.1016/j.biortech.2022.127197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Thermosynechococcus sp. CL-1 (TCL-1) has a high potency to utilize CO2 under extreme conditions including high temperature, alkaline condition, and the occurrence of 17β-estradiol (E2). In this study, TCL-1 cultivation with E2 addition in the range of 0-20 mg/L was combined with various growth arrangements (light intensity and dissolved inorganic nitrogen/DIN level). After 120 h cultivation, the 1.0 mg/L E2, 200 µmol photons/m2/s light intensity, and 5.8 mM available nitrogen performed the best growth with 4.58 ± 0.18 mg/L/h biomass productivity, 94.9 ± 3.3% total estrogen removal, and 11.41 ± 0.11 mg/L/h CO2 fixation rate. Estrogen degradation was mainly carried out by biodegradation route which started from E2 conversion into estrone/E1 and with only 4-6% influence from the abiotic factors. Compared with the accumulated zeaxanthin, β-carotene was dominantly generated with a productivity of 0.043 ± 0.019 mg/L/h. Therefore, TCL-1 cultivation is an efficient strategy for simultaneous CO2 fixation, estrogen removal, and carotenoid accumulation as valuable byproducts.
Collapse
Affiliation(s)
| | - Yu-Ling Chang
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin-Ta Hsueh
- Sustainable Environment Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin Chu
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
7
|
Mesquita IS, Borges CP, Fonseca FVD. Membrane biorreactor, reverse osmosis and UV/H 2O 2 process integration for ethinylestradiol removal: A cost-benefit analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114760. [PMID: 35219206 DOI: 10.1016/j.jenvman.2022.114760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The presence of 17α-ethinylestradiol (EE2) in water bodies and its potential risks to human health and the environment have been frequently described in the literature, in addition to its limited removal in conventional wastewater treatment plants. Many studies have evaluated this removal by advanced processes, including photodegradation and membrane separation. A significant number of studies also assess the economic analysis of these technologies. However, few works articulate both perspectives: the specificity involved in estrogen removal and economic analysis. Given this gap, this work evaluates the synergies involved in the integration of reverse osmosis (RO) and advanced oxidative processes by UV/H2O2 (AOP) in the post-treatment of membrane bioreactor (MBR) effluents. To this end, the integrated plant possibilities were represented through a superstructure that integrated EE2 removal and cost models of each process. The use of a Hook and Jeeves optimizer considering these processes standard operating conditions made it possible to determine the percentage of stream division for each equipment and even the absence of any of these in an integrated plant with lower cost and EE2 concentration output below the recommended limit by the European Union (0.035 ng.L-1). For EE2 feed content up to 3 ng.L-1, the lowest cost configuration is to route 20% of the MBR effluent to the AOP, 30% to the RO, and the remainder to a final mixer. For concentrations above 15 ng.L-1, the sufficient and lowest cost configuration is the MBR-RO-AOP series. Intermediate values have a more advantageous integrated process configuration with the parallel and series configurations combined, with a stream distribution dependent on the feed concentration. Moreover, a parameter sensitivity analysis was performed, clarifying paths for design improvements and acting as a systematic guide for future work in this area. This analysis highlights that EE2 removal is more sensitive to temperature (1.04%), feed substrate concentration (-1.18%), solid retention time in the MBR (0.32%), and irradiance in AOP (-0.46%). Investment costs also proved to be decisive in the composition of the total cost, enhancing the relevance of the maturation process of these technologies in light of simple changes in operating parameters.
Collapse
Affiliation(s)
- Iago Santos Mesquita
- School of Chemistry, Chemical Engineering Department, Federal University of Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
8
|
AlDhafiri S, Chiang YR, El Nayal AM, Abed RMM, Abotalib N, Ismail W. Temporal compositional shifts in an activated sludge microbiome during estrone biodegradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32702-32716. [PMID: 35015225 DOI: 10.1007/s11356-021-18185-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Microbial biodegradation is a key process for the removal of estrogens during wastewater treatment. At least four degradation pathways for natural estrogens have been proposed. However, major estrogen degraders and the occurrence of different estrogen biodegradation pathways in wastewater treatment plants have been rarely investigated. This study was conducted to elucidate estrone biodegradation pathway and to identify key estrone-degrading bacteria in activated sludge from a major wastewater treatment plant in Bahrain. The biodegradation experiments were performed in activated sludge microcosms supplemented with estrone. Sludge samples were retrieved at time intervals to analyze the biodegradation metabolites and the temporal shifts in the bacterial community composition. Chemical analysis revealed the biodegradation of more than 90% of the added estrone within 6 days, and the compounds 4-hydroxyestrone and pyridinestrone acid, which are typical markers of the 4,5-seco pathway of aerobic estrone biodegradation, were detected. Temporal shifts in the relative abundance of bacteria were most prominent among members of Proteobacteria and Bacteroidetes. While the alphaproteobacterial genera Novosphingobium and Sphingoaurantiacus were significantly enriched (from ≤ 6% to an average of 31%) in the estrone-amended activated sludge after 2 days of incubation, the bacteroidete Pedobacter was uniquely detected in these microcosms at day 10. The relative abundance of Polyangia (Nannocyctis) increased to an average of 10 ± 0.4% in the estrone-amended activated sludge after 4 days of incubation. Enrichment cultivation of bacteria from the activated sludge on estrone resulted in a mixed culture that was capable of degrading estrone. An estrone-degrading strain was isolated from this mixed culture and was affiliated with the known estrogen-degrading Alphaproteobacteria Sphingobium estrogenivorans. We conclude that estrone degradation in the activated sludge from the studied wastewater treatment plant proceeds via the 4,5-seco pathway and is most likely mediated by alphaproteobacterial taxa.
Collapse
Affiliation(s)
- Sarah AlDhafiri
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Yin-Ru Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ashraf M El Nayal
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Nasser Abotalib
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Wael Ismail
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Kingdom of Bahrain.
| |
Collapse
|
9
|
Biological conversion of carbon monoxide and hydrogen by anaerobic culture: Prospect of anaerobic digestion and thermochemical processes combination. Biotechnol Adv 2021; 58:107886. [PMID: 34915147 DOI: 10.1016/j.biotechadv.2021.107886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 01/04/2023]
Abstract
Waste biomass is considered a promising renewable energy feedstock that can be converted by anaerobic digestion. However, anaerobic digestion application can be challenging due to the structural complexity of several waste biomass kinds. Therefore, coupling anaerobic digestion with thermochemical processes can offset the limitations and convert the hardly biodegradable waste biomass, including digestate residue, into value-added products: syngas and pyrogas (gaseous mixtures consisting mainly of H2, CO, CO2), bio-oil, and biochar for further valorisation. In this review, the utilisation boundaries and benefits of the aforementioned products by anaerobic culture are discussed. First, thermochemical process parameters for an enhanced yield of desired products are summarised. Particularly, the microbiology of CO and H2 mixture biomethanation and fermentation in anaerobic digestion is presented. Finally, the state-of-the-art biological conversion of syngas and pyrogas to CH4 mediated by anaerobic culture is adequately described. Extensive research shows the successful selective biological conversion of CO and H2 to CH4, acetic acid, and alcohols. The main bottleneck is the gas-liquid mass transfer which can be enhanced appropriately by bioreactors' configurations. A few research groups focus on bio-oil and biochar addition into anaerobic digesters. However, according to the literature review, there has been no research for utilising all value-added products at once in anaerobic digestion published so far. Although synergic effects of such can be expected. In summary, the combination of anaerobic digestion and thermochemical processes is a promising alternative for wide-scale waste biomass utilisation in practice.
Collapse
|
10
|
Marcal J, Bishop T, Hofman J, Shen J. From pollutant removal to resource recovery: A bibliometric analysis of municipal wastewater research in Europe. CHEMOSPHERE 2021; 284:131267. [PMID: 34217935 DOI: 10.1016/j.chemosphere.2021.131267] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/07/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Municipal wastewaters are abundant low-strength streams that require adequate treatment and disposal to ensure public and environmental health. This study aims to provide a comprehensive summary of municipal wastewater research in Europe in the 2010s in the form of bibliometric analysis. The work was based on the Science Citation Index Expanded (Web of Science) and carried out using the R-package bibliometrix for bibliometric data analysis and the software VOSviewer for science mapping. Analysing a dataset of 5645 publications, we identified the most influential journals, countries, authors, institutions, and publications, and mapped the co-authorship and keyword co-occurrence networks. Spain had produced the most publications while Switzerland had the highest average citations per publication. China was the most collaborative country from outside of Europe. Analysis of the most cited articles revealed the popularity of micropollutant removal in European municipal wastewater research. The keyword analysis visualized a paradigm shift from pollutant removal towards resource recovery and circular economy. We found that current challenges of resource recovery from municipal wastewater come from both technical and non-technical (e.g., environmental, economic, and social) aspects. We also discussed future research opportunities that can tackle these challenges.
Collapse
Affiliation(s)
- Juliana Marcal
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK; Water Innovation and Research Centre (WIRC), University of Bath, Bath, BA2 7AY, UK
| | - Toby Bishop
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Jan Hofman
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK; Water Innovation and Research Centre (WIRC), University of Bath, Bath, BA2 7AY, UK; KWR Water Research Institute, PO Box 1072, 3430 BB, Nieuwegein, the Netherlands
| | - Junjie Shen
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK; Water Innovation and Research Centre (WIRC), University of Bath, Bath, BA2 7AY, UK; Centre for Advanced Separations Engineering (CASE), University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
11
|
Chapman E, Meichanetzoglou A, Boa AN, Hetjens H, Faetsch S, Teuchies J, Höss S, Moore D, Bervoets L, Kay P, Heise S, Walker P, Rotchell JM. The Uptake of Sporopollenin Exine Capsules and Associated Bioavailability of Adsorbed Oestradiol in Selected Aquatic Invertebrates. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:876-882. [PMID: 34459949 PMCID: PMC8556174 DOI: 10.1007/s00128-021-03364-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Lycopodium clavatum sporopollenin exine capsules (SpECs) are known to both adsorb and absorb chemicals. The aim of the present work was to determine whether oestradiol (E2) is 'bioavailable' to bioindicator species, either pre-adsorbed to, or in the presence of, SpECs. SpEC uptake was confirmed for Daphnia magna and Dreissena bugensis. E2 levels varied among treatments for Caenorhabditis elegans though there was no relationship to SpEC load. E2 was not detected in D. bugensis tissues. Expression changes of general stress and E2-specific genes were measured. For C. elegans, NHR-14 expression suggested that SpECs modulate E2 impacts, but not general health responses. For D. magna, SpECs alone and with E2 changed Vtg1 and general stress responses. For D. bugensis, SpECS were taken up but no E2 or change in gene expression was detected after exposure to E2 and/or SpECs. The present study is the first to investigate SpECs and bound chemical dynamics.
Collapse
Affiliation(s)
- Emma Chapman
- Department of Biological and Marine Sciences, University of Hull, Cottingham Rd, Hull, HU6 7RX, UK
| | | | - Andrew N Boa
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Hanne Hetjens
- Department of Biology, SPHERE, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Sonja Faetsch
- Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Johnny Teuchies
- Department of Biology, SPHERE, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | | | - Dean Moore
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Lieven Bervoets
- Department of Biology, SPHERE, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Paul Kay
- School of Geography/water@leeds, University of Leeds, Leeds, LS2 9JT, UK
| | - Susanne Heise
- Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Paul Walker
- SOCOTEC UK Ltd, Etwall House, Bretby Business Pk, Ashby Road, Burton on Trent, DE15 0YZ, UK
| | - Jeanette M Rotchell
- Department of Biological and Marine Sciences, University of Hull, Cottingham Rd, Hull, HU6 7RX, UK.
| |
Collapse
|
12
|
Naqvi SR, Tariq R, Shahbaz M, Naqvi M, Aslam M, Khan Z, Mackey H, Mckay G, Al-Ansari T. Recent developments on sewage sludge pyrolysis and its kinetics: Resources recovery, thermogravimetric platforms, and innovative prospects. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2021.107325] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Fonseca MJDC, Silva JRPD, Borges CP, Fonseca FVD. Ethinylestradiol removal of membrane bioreactor effluent by reverse osmosis and UV/H 2O 2: A technical and economic assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 282:111948. [PMID: 33486235 DOI: 10.1016/j.jenvman.2021.111948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Synthetic hormone 17α-ethinylestradiol (EE2) is not completely removed by conventional wastewater treatment plants and therefore is often detected in surface and groundwater, sludge and sediments. Due to its persistence in the environment and its estrogenic potential, a high removal of EE2 from wastewaters before its disposal has become a concern from an environmental point of view, particularly when considering urban reuse applications. This work investigated the application of advanced processes to treat synthetic municipal wastewater containing EE2 after treatment in a membrane bioreactor (MBR). Two advanced processes were assessed: the first is advanced oxidation process (AOP), using hydrogen peroxide (H2O2) and ultraviolet (UV) light (route MBR-AOP) and the second, reverse osmosis (RO), in this case using UV/H2O2 to treat the retentate from RO (route MBR-RO). EE2 concentration in final effluent was one order of magnitude lower in route MBR-AOP than in route MBR-RO. Implications for disposal or water reuse were discussed considering the importance of other water quality parameters as well. Economic estimates for CAPEX, OPEX and total cost were made. The introduction of the oxidative step (UV/H2O2) after MBR caused an increase in the total cost of US$ 0.39/m3. In turn, route MBR-RO increased the total process cost by US$ 0.86/m3, showing that reduction of volume to be treated by UV/H2O2 in this route did not offset the cost associated with the acquisition and operation of RO. The total cost was estimated at US$ 2.47/m3 for MBR-AOP and US$ 2.94/m3 for MBR-RO for a design flow of 10 m³/h.
Collapse
Affiliation(s)
| | | | - Cristiano Piacsek Borges
- School of Chemistry, Inorganic Processes Department, Federal University of Rio de Janeiro (UFRJ), Brazil; COPPE/Chemical Engineering Program, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Fabiana Valéria da Fonseca
- School of Chemistry, Inorganic Processes Department, Federal University of Rio de Janeiro (UFRJ), Brazil
| |
Collapse
|
14
|
Duan S, Iwanowicz LR, Noguera-Oviedo K, Kaushal SS, Rosenfeldt EJ, Aga DS, Murthy S. Evidence that watershed nutrient management practices effectively reduce estrogens in environmental waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143904. [PMID: 33321363 DOI: 10.1016/j.scitotenv.2020.143904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 05/22/2023]
Abstract
We evaluate the impacts of different nutrient management strategies on the potential for co-managing estrogens and nutrients in environmental waters of the Potomac watershed of the Chesapeake Bay. These potential co-management approaches represent agricultural and urban runoff, wastewater treatment plant effluent, and combined sewer overflow replacements. Twelve estrogenic compounds and their metabolites were analysed by gas chromatography-mass spectrometry. Estrogenic activity (E2Eq) was measured by in vitro bioassay. We detected estrone E1 (0.05-6.97 ng L-1) and estriol E3 (below detection-8.13 ng L-1) and one conjugated estrogen (estrone-3-sulfate E1-3S; below detection-8.13 ng L-1). E1 was widely distributed and positively correlated with E2Eq, water temperature, and dissolved organic carbon (DOC). Among nonpoint sources, E2Eq, and concentrations of E1, soluble reactive phosphorus (SRP) and total dissolved nitrogen (TDN) decreased by 51-61%, 77-82%, 62-64%, 4-16% in restored urban and agricultural streams with best management practices (BMPs) relative to unrestored streams without BMPs. In a wastewater treatment plant (Blue Plains WWTP), >94% of E1, E1-3S, E3, E2Eq and TDN were removed while SRP increased by 305% during nitrification/denitrification as a part of advanced wastewater treatment. Consequently, E1 and TDN concentrations in WWTP effluents were comparable or even lower than those observed in the receiving stream or river waters, and the effects of wastewater discharges on downstream E1 and TDN concentrations were minor. Highest E2Eq value and concentrations of E1, E3, and TDN were detected in combined sewer overflow (CSO). This study suggests that WWTP upgrades with biological nutrient removal, CSO management, and certain agricultural and urban BMPs for nutrient controls have the potential to remove estrogens from point and nonpoint sources along with other contaminants in streams and rivers.
Collapse
Affiliation(s)
- Shuiwang Duan
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, USA.
| | - Luke R Iwanowicz
- US Geological Survey, Leetown Science Center, National Fish Health Research Laboratory, Kearneysville, WV, USA
| | - Katia Noguera-Oviedo
- Chemistry Department, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Sujay S Kaushal
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, USA
| | | | - Diana S Aga
- Chemistry Department, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Sudhir Murthy
- District of Columbia Water and Sewer Authority, Washington, DC, USA
| |
Collapse
|
15
|
Efficient Low-Cost Procedure for Microextraction of Estrogen from Environmental Water Using Magnetic Ionic Liquids. Molecules 2020; 26:molecules26010032. [PMID: 33374724 PMCID: PMC7793500 DOI: 10.3390/molecules26010032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/01/2022] Open
Abstract
In this study, three magnetic ionic liquids (MILs) were investigated for extraction of four estrogens, i.e., estrone (E1), estradiol (E2), estriol (E3), and ethinylestradiol (EE2), from environmental water. The cation trihexyl(tetradecyl)phosphonium ([P66614]+), selected to confer hydrophobicity to the resulting MIL, was combined with tetrachloroferrate(III), ferricyanide, and dysprosium thiocyanate to yield ([P66614][FeCl4]), ([P66614]3[Fe(CN)6]), and ([P66614]5[Dy(SCN)8]), respectively. After evaluation of various strategies to develop a liquid–liquid microextraction technique based on synthesized MILs, we placed the MILs onto a magnetic stir bar and used them as extracting solvents. After extraction, the MIL-enriched phase was dissolved in methanol and injected into an HPLC–UV for qualitative and quantitative analysis. An experimental design was used to simultaneously evaluate the effect of select variables and optimization of extraction conditions to maximize the recovery of the analytes. Under optimum conditions, limits of detection were in the range of 0.2 (for E3 and E2) and 0.5 μg L−1 (for E1), and calibration curves exhibited linearity in the range of 1–1000 μg L−1 with correlation coefficients higher than 0.998. The percent relative standard deviation (RSD) was below 5.0%. Finally, this method was used to determine concentration of estrogens in real lake and sewage water samples.
Collapse
|
16
|
Peiris C, Nawalage S, Wewalwela JJ, Gunatilake SR, Vithanage M. Biochar based sorptive remediation of steroidal estrogen contaminated aqueous systems: A critical review. ENVIRONMENTAL RESEARCH 2020; 191:110183. [PMID: 32919969 DOI: 10.1016/j.envres.2020.110183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/31/2020] [Accepted: 09/02/2020] [Indexed: 05/27/2023]
Abstract
Remediation of steroidal estrogens from aqueous ecosystems is of prevailing concern due to their potential impact on organisms even at trace concentrations. Biochar (BC) is capable of estrogen removal due to its rich porosity and surface functionality. The presented review emphasizes on the adsorption mechanisms, isotherms, kinetics, ionic strength and the effect of matrix components associated with the removal of steroidal estrogens. The dominant sorption mechanisms reported for estrogen were π-π electron donor-acceptor interactions and hydrogen bonding. Natural organic matter and ionic species were seen to influence the hydrophobicity of the estrogen in multiple ways. Zinc activation and magnetization of the BC increased the surface area and surface functionalities leading to high adsorption capacities. The contribution by persistent free radicals and the arene network of BC have promoted the catalytic degradation of adsorbates via electron transfer mechanisms. The presence of surface functional groups and the redox activity of BC facilitates the bacterial degradation of estrogens. The sorptive removal of estrogens from aqueous systems has been minimally reviewed as a part of a collective evaluation of micropollutants. However, to the best of our knowledge, a critique focusing specifically and comprehensively on BC-based removal of steroidal estrogens does not exist. The presented review is a critical assessment of the existing literature on BC based steroidal estrogen adsorption and attempts to converge the scattered knowledge regarding its mechanistic interpretations. Sorption studies using natural water matrices containing residue level concentrations, and dynamic sorption experiments can be identified as future research directions.
Collapse
Affiliation(s)
- Chathuri Peiris
- College of Chemical Sciences, Institute of Chemistry Ceylon, Rajagiriya, CO 10107, Sri Lanka
| | - Samadhi Nawalage
- College of Chemical Sciences, Institute of Chemistry Ceylon, Rajagiriya, CO 10107, Sri Lanka
| | - Jayani J Wewalwela
- Department of Agricultural Technology, Faculty of Technology, University of Colombo, CO 00300, Sri Lanka
| | - Sameera R Gunatilake
- College of Chemical Sciences, Institute of Chemistry Ceylon, Rajagiriya, CO 10107, Sri Lanka.
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka.
| |
Collapse
|
17
|
Lei K, Lin CY, Zhu Y, Chen W, Pan HY, Sun Z, Sweetman A, Zhang Q, He MC. Estrogens in municipal wastewater and receiving waters in the Beijing-Tianjin-Hebei region, China: Occurrence and risk assessment of mixtures. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121891. [PMID: 31882338 DOI: 10.1016/j.jhazmat.2019.121891] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
The potentially high release of estrogens to surface waters due to high population density and local livestock production in the Beijing-Tianjin-Hebei region may pose adverse effects on reproductive systems of aquatic organisms. This study found that total measured concentrations of estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethinylestradiol (EE2) and diethylstilbestrol (DES) were 468 ± 27 ng/L in treated wastewater and 219 ± 23 ng/L in river waters in this region. E2, E3 and EE2 were the predominant estrogens in river waters. The restriction of DES for human use should have been enforced, however concentrations of DES were relatively high compared to other studies. Haihe and Yongdingxin Rivers delivered approximately 1.8 tonnes of estrogens to the Bohai Bay annually. Concentrations of individual estrogens were significantly higher in river waters in the dry season, however, mass loadings were significantly higher in the wet season. The average E2-equivalent concentrations reached 1.2 ± 0.2 and 0.64 ± 0.08 μg-E2/L following long-term and short-term exposure estimates, respectively, in river waters with an EE2 contribution of over 90 %. This could give rise to high risks to fish. Estrogens in river waters largely derived from human excretion. Field studies on estrogenic effects on fish reproductive systems are required locally considering high estrogen contamination levels.
Collapse
Affiliation(s)
- Kai Lei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Chun-Ye Lin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ying Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom.
| | - Wei Chen
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom; School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Hui-Yun Pan
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo Henan 454000, People's Republic of China
| | - Zhe Sun
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, United Kingdom
| | - Andrew Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Meng-Chang He
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
18
|
Gusmaroli L, Mendoza E, Petrovic M, Buttiglieri G. How do WWTPs operational parameters affect the removal rates of EU Watch list compounds? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136773. [PMID: 32018966 DOI: 10.1016/j.scitotenv.2020.136773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
This work aims at achieving a better understanding of the mechanisms and the operative conditions regulating the removal of a set of relevant micropollutants in conventional activated sludge (CAS) systems to maximize their removal and, if possible, biodegradation. Eight compounds from the EU Watch list (clothianidin, thiacloprid, methiocarb, E1, E2, EE2, diclofenac and erythromycin) were spiked at 2 μg/L in CAS systems and their behaviour was studied in 6-h batch tests. The role of sorption was also investigated. Information on the removal of the pesticides clothianidin, thiacloprid and methiocarb is here presented for the first time to the best of the authors' knowledge. With the aim of enhancing the removal of the selected compounds in wastewater treatment, four parameters were explored: biomass concentration, temperature, pH and redox conditions. For each parameter, a low and a high value were chosen, based on the ranges usually applied in wastewater treatment plants (WWTPs). Results show that biomass concentration is the most relevant parameter among the ones investigated, followed by the redox conditions. The operational conditions that maximized removal rates were: 5 g/L of biomass, aerobic conditions, 25 °C and pH 7.5. High variability in removal rates was observed for compounds such as E1, erythromycin and methiocarb. The pesticides clothianidin and thiacloprid did not prove to be easily degradable. The highest removal rates were recorded for the hormones, particularly E2, with a transformation rate of at least 96% under all conditions. Sorption proved to be a relevant removal route for EE2, for which the highest sorption rates were recorded, and diclofenac, where the adsorption mechanisms was hypothesised for its prevalence at lower pH values.
Collapse
Affiliation(s)
- Lucia Gusmaroli
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - Esther Mendoza
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Gianluigi Buttiglieri
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain.
| |
Collapse
|
19
|
Kibambe MG, Momba MNB, Daso AP, Van Zijl MC, Coetzee MAA. Efficiency of selected wastewater treatment processes in removing estrogen compounds and reducing estrogenic activity using the T47D-KBLUC reporter gene assay. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 260:110135. [PMID: 32090831 DOI: 10.1016/j.jenvman.2020.110135] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/08/2020] [Accepted: 01/11/2020] [Indexed: 05/07/2023]
Abstract
The occurrence of endocrine-disrupting compounds (EDCs) consisting of natural and synthetic estrogens, namely estrone (E1), 17β-estradiol (E2), estriol (E3) and 17α-ethinylestradiol (EE2) was quantified in wastewater samples. The aim of this study was to assess the removal efficiency for the selected estrogens (E1, E2, E3 and EE2) and reduction of estrogenic activity in wastewater samples from wastewater treatment plants (WWTPs) using different processes. Solid-phase extraction (SPE) followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods were used to quantify the selected estrogens in wastewater samples. Estrogenic activity was assessed using the T47D-KBluc gene reporter assay. Results revealed a decrease in estrogen concentrations observed in the effluents of all the WWTPs, except for E2 at Daspoort where no removal was noted. In general, the highest removal for total estrogens was observed at Phola (84%) combining three processes (AP, BF and wetland). The AS at Daspoort had a highest removal of 75% for E3; while at Zeekoegat the highest removal reached 61% for EE2. The PST at Daspoort had no removal recorded for all the compounds, except for the EE2 (33%). The AP and BF systems at Phola contributed to a higher removal of selected compounds. Downstream of the wetland at Phola no removal was recorded for E3; while the highest removal reached 61% for E1. The best performance in terms of the overall influent-to-effluent removal efficiency was observed at Phola WWTP, where E1 removal of 85% was recorded. The highest estrogenic activity in the effluent was reported at Phola, with an average estradiol equivalent (EEQ) value of 6.3 ± 6.7 ng/L. However, no anti-estrogenic activity was detected in any of the samples. The daily mass load discharged from the effluent of the three WWTPs was higher for E1 recorded at Zeekoegat (8002.3 ± 6416.3 mg/d), followed by Daspoort (3509.8 ± 849.0 mg/d) and finally Phola (176.1 ± 34.9).
Collapse
Affiliation(s)
- Muyasu Grace Kibambe
- Department of Environmental, Water and Earth Science, Faculty of Science Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| | - Maggie N B Momba
- Department of Environmental, Water and Earth Science, Faculty of Science Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - A P Daso
- Department of Environmental, Water and Earth Science, Faculty of Science Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - M C Van Zijl
- Department of Urology, University of Pretoria, Private Bag X323, Arcadia, 007, Pretoria, South Africa
| | - Marthie A A Coetzee
- Department of Environmental, Water and Earth Science, Faculty of Science Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
20
|
Aziz M, Ojumu T. Exclusion of Estrogenic and Androgenic Steroid Hormones from Municipal Membrane Bioreactor Wastewater Using UF/NF/RO Membranes for Water Reuse Application. MEMBRANES 2020; 10:membranes10030037. [PMID: 32120927 PMCID: PMC7143240 DOI: 10.3390/membranes10030037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/19/2022]
Abstract
In the context of water scarcity, domestic secondary effluent reuse may be an option as a reliable source for alleviating acute water shortage. The increasing risks linked with the presence of natural steroid hormones and many emerging anthropogenic micropollutants (MPs) passing through municipal wastewater treatment works (MWWTWs) are of concern for their endocrine-disrupting activities. In this study, domestic wastewater treated by a full-scale membrane bioreactor (MBR) at an MWWTW in the Western Cape Province, South Africa, was used directly as the influent to a reverse osmosis (RO) pilot plant for the removal of selected natural steroid hormones 17β-estradiol (E2) and testosterone (T) as a potential indirect water recycling application. Estrogenicity and androgenicity were assessed using the enzyme-linked immunosorbent assays (ELISA) and the recombinant yeast estrogen receptor binding assays (YES). The influent pH and flux did not influence the rejection of E2 and T, which was most likely due to adsorption, size exclusion, and diffusion simultaneously. RO and nanofiltration (NF) exhibited excellent removal rates (>95%) for E2 and T. All the E2 effluent samples with MBR/ultrafiltration (UF), MBR/NF, and MBR/RO were lower than the US EPA and WHO trigger value of 0.7 ng/L, as well as the predicted no-effect concentration (PNEC) values for fish (1 ng E2/L).
Collapse
|
21
|
Biswas S, Chen Y, Xie Y, Sun X, Wang Y. Ultrasmall Au(0) Inserted Hollow PCN-222 MOF for The High-Sensitive Detection of Estradiol. Anal Chem 2020; 92:4566-4572. [DOI: 10.1021/acs.analchem.9b05841] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sudip Biswas
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yuling Chen
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yao Xie
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Xin Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yang Wang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
22
|
Pratush A, Ye X, Yang Q, Kan J, Peng T, Wang H, Huang T, Xiong G, Hu Z. Biotransformation strategies for steroid estrogen and androgen pollution. Appl Microbiol Biotechnol 2020; 104:2385-2409. [PMID: 31993703 DOI: 10.1007/s00253-020-10374-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/06/2020] [Accepted: 01/12/2020] [Indexed: 12/21/2022]
Abstract
The common steroid hormones are estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethinylestradiol (EE2), and testosterone (T). These steroids are reported to contaminate the environment through wastewater treatment plants. Steroid estrogens are widespread in the aquatic environment and therefore pose a potential risk, as exposure to these compounds has adverse impacts on vertebrates. Excessive exposure to steroid estrogens causes endocrine disruption in aquatic vertebrates, which affects the normal sexual life of these animals. Steroid pollutants also cause several health problems in humans and other animals. Microbial degradation is an efficient method for removing hormone pollutants from the environment by remediation. Over the last two decades, microbial metabolism of steroids has gained considerable attention due to its higher efficiency to reduce pollutants from the environment. The present review is focused on the major causes of steroid pollution, concentrations of these pollutants in surface water, groundwater, drinking water, and wastewater, their effect on humans and aquatic animals, as well as recent efforts by various research groups that seek better ways to degrade steroids by aerobic and anaerobic microbial systems. Detailed overview of aerobic and anaerobic microbial biotransformation of steroid estrogens and testosterone present in the environment along with the active enzyme systems involved in these biotransformation reactions is described in the review article, which helps readers to understand the biotransformation mechanism of steroids in depth. Other measures such as co-metabolic degradation, consortia degradation, algal, and fungal steroid biotransformation are also discussed in detail.
Collapse
Affiliation(s)
- Amit Pratush
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Xueying Ye
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Qi Yang
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Jie Kan
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Tao Peng
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Hui Wang
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Tongwang Huang
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Guangming Xiong
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School, Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Zhong Hu
- Biology Department, College of Science, Shantou University, Shantou, 515063, China.
| |
Collapse
|
23
|
Ahmad J, Naeem S, Ahmad M, Usman ARA, Al-Wabel MI. A critical review on organic micropollutants contamination in wastewater and removal through carbon nanotubes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:214-228. [PMID: 31176983 DOI: 10.1016/j.jenvman.2019.05.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
The prevalence of organic micropollutants (OMPs) in various environmental compartments is posing a serious health risks to all kinds of lives on the planet. The levels of OMPs such as polyaromatic hydrocarbons, antibiotics, pesticides, contraceptive medicines, and personal care products in water bodies are increasing with each passing day. It is an urgent need of time to limit the release of OMPs into the environment, and to remove the prevailing OMPs for sustainable environmental management. The majority of the conventional means of water decontamination are either inefficient or expensive. However, due to nanosize, high surface area, and hollow and layered structure, carbon nanotubes (CNTs) serve as excellent sorbents for the removal of a diverse range of OMPs. The occurrence of emerging OMPs and their detrimental effects on human and animal health are collected and discussed in this review. The characteristics and efficacy of various CNTs (pristine and modified) for the efficient removal of different OMPs, and the removal mechanisms have been reviewed and discussed. The literature demonstrated that adsorption of OMPs onto CNTs is very complicated and rely on multiple factors including the properties of adsorbent and the adsorbate as well as solution chemistry. It was found that H-bonding, electrostatic interactions, van der Waals forces, hydrophobic interactions, H-π bongs, and π-π interactions were the major mechanisms responsible for the adsorption of OMPs onto various kinds of CNTs. Despite of higher affinities for OMPs, hydrophobicity and higher costs restrain the practical application of CNTs for wastewater treatment on large scale. However, continuous production may lead to the development of cost-effective, efficient and eco-friendly CTNs technology for wastewater treatments in future.
Collapse
Affiliation(s)
- Jahangir Ahmad
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 61000, Pakistan; Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Shoaib Naeem
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Munir Ahmad
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Adel R A Usman
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia; Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Mohammad I Al-Wabel
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
24
|
Mashhadi N, Taylor KE, Jimenez N, Varghese ST, Levi Y, Lonergan C, Lebeau E, Lamé M, Lard E, Biswas N. Removal of Selected Pharmaceuticals and Personal Care Products from Wastewater using Soybean Peroxidase. ENVIRONMENTAL MANAGEMENT 2019; 63:408-415. [PMID: 30607547 DOI: 10.1007/s00267-018-01132-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Personal care products and pharmaceuticals have been reported in various concentrations in the effluent of municipal sewage treatment plants (STP). Although they are generally found in the nanogram to microgram per liter range, many of them might have adverse health effects on humans at these concentrations. Conventional treatments applied at the STP are unable to effectively remove most of these recalcitrant compounds, thus there is a necessity for development of alternative treatment techniques. In this article, the efficiency of enzymatic treatment using soybean peroxidase in treating some commonly found micropollutants is discussed. The target compounds were, two phenolic surfactant breakdown products, nonylphenol and octylphenol, two antimicrobial agents, Triclosan and sulfamethoxazole and three phenolic steroids. The effects of the most important parameters pH, enzyme concentration and peroxide concentration have been evaluated for each compound. The treatment of synthetic wastewater was shown to be effective (≥95% removal), except for sulfamethoxazole, in concentration ranges of 10 s of µM at neutral pH with 2-5 mU/L of catalytic activity and 2-3 molar equivalents of hydrogen peroxide. The effectiveness of the treatment has also been determined for lower concentrations (6-9 nM) which approximate those in real wastewater. A matrix effect was found in the treatment of Triclosan in spiked real wastewater indicating that re-optimization of important parameters for STP treatment would be required to achieve high removal efficiency. A reverse-phase, solid-phase extraction technique was used to concentrate target analytes in real wastewater, enabling chromatographic detection by UV absorbance.
Collapse
Affiliation(s)
- Neda Mashhadi
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Keith E Taylor
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada.
| | - Nathalie Jimenez
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Sherin T Varghese
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Yaniv Levi
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Corinne Lonergan
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Emilie Lebeau
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Mathilde Lamé
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Elodie Lard
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Nihar Biswas
- Department of Civil and Environmental Engineering, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
25
|
Kassotaki E, Pijuan M, Rodriguez-Roda I, Buttiglieri G. Comparative assessment of endocrine disrupting compounds removal in heterotrophic and enriched nitrifying biomass. CHEMOSPHERE 2019; 217:659-668. [PMID: 30447613 DOI: 10.1016/j.chemosphere.2018.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Despite the number of studies that have investigated the fate of endocrine disrupting compounds (EDCs), to date results are still contradictory and more research is required to evaluate the contribution of the microbial communities present in different engineered treatment systems. Thus, autotrophic and heterotrophic types of biomass were here compared in terms of efficiency in the removal of estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethynilestradiol (EE2) and bisphenol A (BPA). Experiments were performed with enriched nitrifying activated sludge (NAS) and enriched ammonia oxidizing bacteria (AOB) sludge cultivated at lab-scale, as well as with conventional activated sludge (CAS) from a full-scale wastewater treatment plant. Both enriched NAS and AOB demonstrated a negligible degrading capacity. In both cases, the studied EDCs exhibited low removals (<14%) and showed no correlation with the increasing nitrification rates contradicting some of the hypothesis present in literature. Contrariwise, the biodegradation capabilities of the heterotrophic fraction of CAS were highlighted. E2 and E3 were removed by up to 100% and 78%, respectively. E1 was found to be the main transformation product of E2 (almost quantitative oxidation) and it was also highly eliminated. Finally, EE2 and BPA were more persistent biologically with removals ranging from 10% to 39%. For these two compounds similar removals were obtained during experiments with heat-inactivated biomass suggesting that sorption could be a relevant route of elimination.
Collapse
Affiliation(s)
- Elissavet Kassotaki
- ICRA, Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, 17003, Girona, Spain.
| | - Maite Pijuan
- ICRA, Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, 17003, Girona, Spain.
| | - Ignasi Rodriguez-Roda
- ICRA, Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, 17003, Girona, Spain; LEQUiA, Laboratory of Chemical and Environmental Engineering, University of Girona, Campus Montilivi, 17071, Girona, Spain.
| | - Gianluigi Buttiglieri
- ICRA, Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, 17003, Girona, Spain.
| |
Collapse
|
26
|
Studies on estrone biodegradation potential of cyanobacterial species. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Milstead RP, Nance KT, Tarnas KS, Egelhofer KE, Griffith DR. Photochemical degradation of halogenated estrogens under natural solar irradiance. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1350-1360. [PMID: 30211921 DOI: 10.1039/c8em00275d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Halogenated estrogens are thought to be moderately potent endocrine-disrupting compounds that are formed during chlorine-based wastewater disinfection processes and may represent a significant fraction of the total amount of estrogen delivered from wastewater treatment plants to receiving waters. Yet we lack key information about the photochemical degradation of halogenated estrogens, a process that has important implications for UV-based wastewater treatment and environmental fate modeling. To better understand halogenated estrogen degradation in aquatic environments, we studied the direct photolysis of 17β-estradiol (E2), 2-bromo-17β-estradiol (monoBrE2), 2,4-dibromo-17β-estradiol (diBrE2), and 2,4-dichloro-17β-estradiol (diClE2) as well as the indirect photolysis of diBrE2 under natural solar irradiance. We found that direct photolysis rate constants increased with halogenation as pKa values decreased and molar absorptivity spectra shifted toward higher wavelengths. Compared to E2, quantum yields were threefold larger for monoBrE2, but 15-32% smaller for the dihalogenated forms. The rate of diBrE2 (pKa ∼ 7.5) photolysis was strongly influenced by pH. At pH 7, diBrE2 degraded on minute time scales due to the large red-shifted molar absorptivity values and greater quantum yields of the phenolate form. Degradation rates were only slightly different in the presence of Suwannee River Humic Acid (5 mg L-1), and quenching experiments pointed to excited triplet state dissolved organic matter (3DOM*) as the dominant reactive intermediate responsible for the indirect photolysis of diBrE2. Overall, our data suggest that halogenated estrogens are particularly susceptible to photochemical degradation at environmentally relevant pH values.
Collapse
Affiliation(s)
- Reid P Milstead
- Department of Chemistry, Willamette University, Salem, OR, USA.
| | | | | | | | | |
Collapse
|
28
|
Liu G, Zhang Z, Yan C, Wang Y, Ma X, Gao P, Feng Y. Adsorption of estrone with few-layered boron nitride nanosheets: Kinetics, thermodynamics and mechanism. CHEMOSPHERE 2018; 207:534-542. [PMID: 29843030 DOI: 10.1016/j.chemosphere.2018.05.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 05/24/2023]
Abstract
Boron nitride Nanosheets (BNNSs) was fabricated with a method of heating the mixture of boric acid and urea in N2 atmosphere and used to remove estrone (E1) from water. The obtained BNNSs exhibited a higher surface area of 896 m2/g, a large pore volume of 0.76 cm3/g, and only few layers (0.398 nm) with the boric acid and urea ratio of 1:80. The layer number of BNNSs decreased from 15 to 4 with the mole ratio of boric acid and urea decreasing from 1:20 to 1:80, which was identified by SEM, TEM, AFM and BET measurements. More importantly, BNNSs presented an outstanding adsorption performance for estrone with the adsorption capacity of 249.15 mg E1/g BNNSs. The adsorption process could be best fitted by pseudo second-order kinetic model and the equilibrium data at different temperatures were well fitted by Langmuir isotherm model. The thermodynamics analysis revealed that E1 adsorption on BNNSs was spontaneous (ΔG = -29.33 kJ mol-1), enthalpy-retarded (ΔH = 29.75 kJ mol-1), entropy-driven (ΔS = 198.26 J mol-1 K-1), and mostly chemical adsorption. The adsorption rates of E1 in water were sharply enhanced with thinner BNNSs as absorbents and removal efficiency by BN-60 regenerated after 6 times was above 95%, it was shown that the surface areas, mesopores and remarkable structure played important roles in the adsorption process. The firmness of E1 onto BNNSs and the stability of adsorption efficiency made BNNSs as a potential absorbent for efficient removal of E1 from wastewater.
Collapse
Affiliation(s)
- Guohong Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China.
| | - Chen Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Yang Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Xuerui Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Peng Gao
- School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
29
|
Maurício R, Dias R, Ribeiro V, Fernandes S, Vicente AC, Pinto MI, Noronha JP, Amaral L, Coelho P, Mano AP. 17α-Ethinylestradiol and 17β-estradiol removal from a secondary urban wastewater using an RBC treatment system. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:320. [PMID: 29717352 DOI: 10.1007/s10661-018-6701-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
The presence of micropollutants that include endocrine-disrupting compounds (EDC) in aquatic environments is currently one of the most relevant aspects of water quality due to their adverse effects on aquatic organisms and human health. From the several categories of EDC, 17β-estradiol (E2) is a natural hormone, which is prevalent in vertebrates, associated with the female reproductive system and maintenance of the sexual characters. 17α-Ethinylestradiol (EE2) is a synthetic hormone produced from the natural hormone E2 and is an essential component of oral contraceptives. These compounds are susceptible to bioconcentration and have high potential to bioaccumulation. Wastewater treatment plants are the main point source of E2 and EE2 into aquatic environments, but conventional wastewater treatment systems are not specifically designed for steroid removal. To overcome this problem, biological tertiary treatment may be a solution for the removal of emergent pollutants such as E2 and EE2. The main purpose of the present study is to provide a solution based on the optimization of a rotating biological contactor system to remove estrogens, specifically E2 and EE2, and to quantify their removal efficiency on different matrices, namely real wastewater and different synthetic wastewaters. All assays presented viable removal efficiencies for compound E2 with values always above 50%; real wastewater yielded the highest removal efficiencies. EE2 removal had better removal efficiencies with synthetic wastewater as feed solution, with removals above 15%, whereas the removal efficiency with real wastewater was inexistent.
Collapse
Affiliation(s)
- R Maurício
- CENSE, Center for Environmental and Sustainability Research; Department of Environmental Sciences and Engineering; NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - R Dias
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - V Ribeiro
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - S Fernandes
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - A C Vicente
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - M I Pinto
- LAQV, REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - J P Noronha
- LAQV, REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - L Amaral
- CENSE, Center for Environmental and Sustainability Research; Department of Environmental Sciences and Engineering; NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - P Coelho
- MARE, Marine and Environmental Sciences Centre, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - A P Mano
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| |
Collapse
|
30
|
Vedad J, Mojica ERE, Desamero RZ. Raman Spectroscopic Discrimination of Estrogens. VIBRATIONAL SPECTROSCOPY 2018; 96:93-100. [PMID: 30369718 PMCID: PMC6201238 DOI: 10.1016/j.vibspec.2018.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Estrogens are a group of steroid compounds found in the human body that are eventually discharged and ultimately end up in sewer effluents. Since these compounds can potentially affect the endocrine system its detection and quantification in sewer water is important. In this study, estrogens such as estrone (E1), estradiol (E2), estriol (E3), and ethynylestradiol (EE2) were discriminated and quantitated using Raman spectroscopy. Simulated Raman spectra were correlated with experimental data to identify unique marker peaks, which proved to be useful in differentiating each estrogen molecules. Among these marker peaks are Raman modes arising from hydroxyl groups of the estrogen molecules in the spectral region 3200-3700 cm-1. Other Raman modes unique to each of the estrogen samples were also identified, including peaks at 1722 cm-1 for E1 and 2109 cm-1 for EE2, which corresponds to their distinctive structures each containing a different set of functional groups. To quantify the components of estrogen mixtures, the intensities of each identifying Raman bands, at 581 cm-1 for E1, 546 cm-1 for E2, 762 cm-1 for E3 and 597 cm-1 for EE2, were compared and normalized against the intensity of a common peak at 783 cm-1. Quantitative analysis yielded most results within an acceptable 20% error.
Collapse
Affiliation(s)
- Jayson Vedad
- Department of Chemistry, Institute for Macromolecular Assemblies, York College, Jamaica, New York, 11451 and PhD Programs in Chemistry and Biochemistry, The Graduate Center of The City University of New York, New York, New York, 10016
| | - Elmer-Rico E. Mojica
- Department of Chemistry and Physical Sciences, Pace University, One Pace Plaza, New York, New York, 10029
| | - Ruel Z.B. Desamero
- Department of Chemistry, Institute for Macromolecular Assemblies, York College, Jamaica, New York, 11451 and PhD Programs in Chemistry and Biochemistry, The Graduate Center of The City University of New York, New York, New York, 10016
| |
Collapse
|
31
|
Hettwer K, Jähne M, Frost K, Giersberg M, Kunze G, Trimborn M, Reif M, Türk J, Gehrmann L, Dardenne F, De Croock F, Abraham M, Schoop A, Waniek JJ, Bucher T, Simon E, Vermeirssen E, Werner A, Hellauer K, Wallentits U, Drewes JE, Dietzmann D, Routledge E, Beresford N, Zietek T, Siebler M, Simon A, Bielak H, Hollert H, Müller Y, Harff M, Schiwy S, Simon K, Uhlig S. Validation of Arxula Yeast Estrogen Screen assay for detection of estrogenic activity in water samples: Results of an international interlaboratory study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:612-625. [PMID: 29195208 DOI: 10.1016/j.scitotenv.2017.11.211] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 05/26/2023]
Abstract
Endocrine-active substances can adversely impact the aquatic ecosystems. A special emphasis is laid, among others, on the effects of estrogens and estrogen mimicking compounds. Effect-based screening methods like in vitro bioassays are suitable tools to detect and quantify endocrine activities of known and unknown mixtures. This study describes the validation of the Arxula-Yeast Estrogen Screen (A-YES®) assay, an effect-based method for the detection of the estrogenic potential of water and waste water. This reporter gene assay, provided in ready to use format, is based on the activation of the human estrogen receptor alpha. The user-friendly A-YES® enables inexperienced operators to rapidly become competent with the assay. Fourteen laboratories from four countries with different training levels analyzed 17β-estradiol equivalent concentrations (EEQ) in spiked and unspiked waste water effluent and surface water samples, in waste water influent and spiked salt water samples and in a mixture of three bisphenols. The limit of detection (LOD) for untreated samples was 1.8ng/L 17β-estradiol (E2). Relative repeatability and reproducibility standard deviation for samples with EEQ above the LOD (mean EEQ values between 6.3 and 20.4ng/L) ranged from 7.5 to 21.4% and 16.6 to 28.0%, respectively. Precision results are comparable to other frequently used analytical methods for estrogens. The A-YES® has been demonstrated to be an accurate, precise and robust bioassay. The results have been included in the ISO draft standard. The assay was shown to be applicable for testing of typical waste water influent, effluent and saline water. Other studies have shown that the assay can be used with enriched samples, which lower the LOD to the pg/L range. The validation of the A-YES® and the development of a corresponding international standard constitute a step further towards harmonized and reliable bioassays for the effect-based analysis of estrogens and estrogen-like compounds in water samples.
Collapse
Affiliation(s)
| | - Martin Jähne
- QuoData GmbH, Prellerstr. 14, 01309 Dresden, Germany
| | - Kirstin Frost
- QuoData GmbH, Prellerstr. 14, 01309 Dresden, Germany
| | - Martin Giersberg
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Seestadt, OT Gatersleben, Germany
| | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Seestadt, OT Gatersleben, Germany
| | | | - Martin Reif
- Erftverband, Am Erftverband 6, 50126 Bergheim, Germany
| | - Jochen Türk
- Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany
| | - Linda Gehrmann
- Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany
| | - Freddy Dardenne
- University of Antwerp, Systemic Physiological and Ecotoxicological Research (SPHERE), Groenenborgerlaan 171/U7, 2020 Antwerp, Belgium
| | - Femke De Croock
- University of Antwerp, Systemic Physiological and Ecotoxicological Research (SPHERE), Groenenborgerlaan 171/U7, 2020 Antwerp, Belgium
| | - Marion Abraham
- Leibniz Institute for Baltic Sea Research Warnemünde, Department Marine Chemistry, Seestraße 15, 18119 Rostock, Germany
| | - Anne Schoop
- Leibniz Institute for Baltic Sea Research Warnemünde, Department Marine Chemistry, Seestraße 15, 18119 Rostock, Germany
| | - Joanna J Waniek
- Leibniz Institute for Baltic Sea Research Warnemünde, Department Marine Chemistry, Seestraße 15, 18119 Rostock, Germany
| | - Thomas Bucher
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstraße 133, 8600 Dübendorf, Switzerland
| | - Eszter Simon
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstraße 133, 8600 Dübendorf, Switzerland
| | - Etienne Vermeirssen
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstraße 133, 8600 Dübendorf, Switzerland
| | - Anett Werner
- Technical University Dresden, Institute of Natural Science, Bioprocess Engineering, Helmholtzstraße 10, 01062 Dresden, Germany
| | - Karin Hellauer
- Technical University of Munich, Department of Civil, Geo and Environmental Engineering, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748 Garching, Germany
| | - Ursula Wallentits
- Technical University of Munich, Department of Civil, Geo and Environmental Engineering, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748 Garching, Germany
| | - Jörg E Drewes
- Technical University of Munich, Department of Civil, Geo and Environmental Engineering, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748 Garching, Germany
| | - Detlef Dietzmann
- SYNLAB Umweltinstitut GmbH, Hauptstraße 105, 04416 Markkleeberg, Germany
| | - Edwin Routledge
- Brunel University London, Institute for Environment, Health and Societies, Halsbury Building, UB8 3PH Uxbridge, United Kingdom
| | - Nicola Beresford
- Brunel University London, Institute for Environment, Health and Societies, Halsbury Building, UB8 3PH Uxbridge, United Kingdom
| | - Tamara Zietek
- Technical University of Munich, Department of Nutritional Physiology, Gregor-Mendel-Straße 2, 85354 Freising, Germany
| | - Margot Siebler
- Technical University of Munich, Department of Nutritional Physiology, Gregor-Mendel-Straße 2, 85354 Freising, Germany
| | - Anne Simon
- IWW Rheinisch-Westfälisches Institut für Wasserforschung gemeinnützige GmbH, Moritzstr. 26, 45476 Mülheim an der Ruhr, Germany
| | - Helena Bielak
- IWW Rheinisch-Westfälisches Institut für Wasserforschung gemeinnützige GmbH, Moritzstr. 26, 45476 Mülheim an der Ruhr, Germany
| | - Henner Hollert
- RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany
| | - Yvonne Müller
- RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany
| | - Maike Harff
- RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany
| | - Sabrina Schiwy
- RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany
| | - Kirsten Simon
- New diagnostics GmbH, Pollinger Straße 11, 81377 München, Germany
| | - Steffen Uhlig
- QuoData GmbH, Prellerstr. 14, 01309 Dresden, Germany.
| |
Collapse
|
32
|
Ting YF, Praveena SM, Aris AZ, Ismail SNS, Rasdi I. Mathematical modeling for estrogenic activity prediction of 17β-estradiol and 17α-ethynylestradiol mixtures in wastewater treatment plants effluent. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:1327-1335. [PMID: 28975452 DOI: 10.1007/s10646-017-1857-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Steroid estrogens such as 17β-Estradiol (E2) and 17α-Ethynylestradiol (EE2) are highly potent estrogens that widely detected in environmental samples. Mathematical modelling such as concentration addition (CA) and estradiol equivalent concentration (EEQ) models are usually associated with measuring techniques to assess risk, predict the mixture response and evaluate the estrogenic activity of mixture. Wastewater has played a crucial role because wastewater treatment plant (WWTP) is the major sources of estrogenic activity in aquatic environment. The aims of this is to determine E2 and EE2 concentrations in six WWTPs effluent, to predict the estrogenic activity of the WWTPs effluent using CA and EEQ models where lastly the effectiveness of two models is evaluated. Results showed that all the six WWTPs effluent had relative high E2 concentration (35.1-85.2 ng/L) compared to EE2 (0.02-1.0 ng/L). The estrogenic activity predicted by CA model was similar among the six WWTPs (105.4 ng/L), due to the similarity of individual dose potency ratio calculated by respective WWTPs. The predicted total EEQ was ranged from 35.1 EEQ-ng/L to 85.3 EEQ-ng/L, explained by high E2 concentration in WWTPs effluent and E2 EEF value that standardized to 1.0 μg/L. The CA model is more effective than EEQ model in estrogenic activity prediction because EEQ model used less data and causes disassociation from the predicted behavior. Although both models predicted relative high estrogenic activity in WWTPs effluent, dilution effects in receiving river may lower the estrogenic response to aquatic inhabitants.
Collapse
Affiliation(s)
- Yien Fang Ting
- Department of Environmental and Occupational Health, Faculty Of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty Of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Ahmad Zaharin Aris
- Environmental Forensics Research Centre, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sharifah Norkhadijah Syed Ismail
- Department of Environmental and Occupational Health, Faculty Of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Irniza Rasdi
- Department of Environmental and Occupational Health, Faculty Of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
33
|
Van Zijl MC, Aneck-Hahn NH, Swart P, Hayward S, Genthe B, De Jager C. Estrogenic activity, chemical levels and health risk assessment of municipal distribution point water from Pretoria and Cape Town, South Africa. CHEMOSPHERE 2017; 186:305-313. [PMID: 28787686 DOI: 10.1016/j.chemosphere.2017.07.130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/27/2017] [Accepted: 07/25/2017] [Indexed: 05/20/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are ubiquitous in the environment and have been detected in drinking water from various countries. Although various water treatment processes can remove EDCs, chemicals can also migrate from pipes that transport water and contaminate drinking water. This study investigated the estrogenic activity in drinking water from various distribution points in Pretoria (City of Tshwane) (n = 40) and Cape Town (n = 40), South Africa, using the recombinant yeast estrogen screen (YES) and the T47D-KBluc reporter gene assay. The samples were collected seasonally over four sampling periods. The samples were also analysed for bisphenol A (BPA), nonylphenol (NP), di(2-ethylhexyl) adipate (DEHA), dibutyl phthalate (DBP), di(2-ethylhexyl) phthalate (DEHP), diisononylphthalate (DINP), 17β-estradiol (E2), estrone (E1) and ethynylestradiol (EE2) using ultra-performance liquid chromatography-tandem mass spectrophotometry (UPLC-MS/MS). This was followed by a scenario based health risk assessment to assess the carcinogenic and toxic human health risks associated with the consumption of distribution point water. None of the water extracts from the distribution points were above the detection limit in the YES bioassay, but the EEq values ranged from 0.002 to 0.114 ng/L using the T47D-KBluc bioassay. BPA, DEHA, DBP, DEHP, DINP E1, E2, and EE2 were detected in distribution point water samples. NP was below the detection limit for all the samples. The estrogenic activity and levels of target chemicals were comparable to the levels found in other countries. Overall the health risk assessment revealed acceptable health and carcinogenic risks associated with the consumption of distribution point water.
Collapse
Affiliation(s)
- Magdalena Catherina Van Zijl
- School of Health Systems and Public Health, University of Pretoria, Private Bag X323, Arcadia, 0007, Pretoria, South Africa; Department of Urology, Steve Biko Academic Hospital, Private Bag X323, Arcadia, 0007, Pretoria, South Africa.
| | - Natalie Hildegard Aneck-Hahn
- School of Health Systems and Public Health, University of Pretoria, Private Bag X323, Arcadia, 0007, Pretoria, South Africa; Department of Urology, Steve Biko Academic Hospital, Private Bag X323, Arcadia, 0007, Pretoria, South Africa.
| | - Pieter Swart
- Central Analytical Facility, Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.
| | - Stefan Hayward
- Central Analytical Facility, Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.
| | - Bettina Genthe
- Council for Scientific and Industrial Research, Natural Resources and the Environment, PO Box 320, Stellenbosch, 7599, South Africa.
| | - Christiaan De Jager
- School of Health Systems and Public Health, University of Pretoria, Private Bag X323, Arcadia, 0007, Pretoria, South Africa.
| |
Collapse
|
34
|
Reinling J, Houde M, Verreault J. Environmental exposure to a major urban wastewater effluent: Effects on the energy metabolism of northern pike. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:131-140. [PMID: 28837883 DOI: 10.1016/j.aquatox.2017.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Municipal wastewater effluents (MWWEs) consist of dynamic and complex mixtures of chemical and biological compounds that can alter the health of exposed aquatic organisms. Disturbance of energy metabolism has been reported in fish exposed to MWWEs. However, there is a scarcity of knowledge on the physiological events leading to perturbation of energy balance and thyroid regulation, and associated lipid metabolism. The objective of the present study was to use a set of biomarkers, from gene transcription to body condition, to investigate the effects of a chronic environmental exposure to a major primary MWWE on fatty acid metabolism and thyroid hormone levels in northern pike (Esox lucius) collected from the St. Lawrence River near Montreal (QC, Canada). The exposure of pike to MWWE was examined through determination of a suite of persistent and bioaccumulative halogenated flame retardants in liver as this effluent is a known regional source for these chemicals. Greater hepatic concentrations of polybrominated diphenyl ethers (PBDEs, range: 29.6-465ng/g w.w. and 88.8-823ng/g w.w. in females and males, respectively) and other halogenated flame retardants (e.g., dechlorane-related compounds) were determined in fish collected downstream of the MWWE's point of discharge relative to the upstream site. This exposure in male pike was associated with decreased acyl-coA oxidase (acox1) and fatty acid synthase (fasn) mRNA levels as well as a decreased acyl-coA oxidase (ACOX) activity in liver. In female pike, MWWE exposure was associated with lower circulating free and total triiodothyronine (T3) levels and a tendency for greater total lipid percentages in liver. Present findings provide evidence that chronic exposure of a top predator fish to MWWE can be related to gender-specific effects on fatty acid metabolism and thyroid hormone homeostasis, and highlight the need for further investigation.
Collapse
Affiliation(s)
- Julie Reinling
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| | - Magali Houde
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada.
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| |
Collapse
|
35
|
Křesinová Z, Linhartová L, Filipová A, Ezechiáš M, Mašín P, Cajthaml T. Biodegradation of endocrine disruptors in urban wastewater using Pleurotus ostreatus bioreactor. N Biotechnol 2017; 43:53-61. [PMID: 28502780 DOI: 10.1016/j.nbt.2017.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/21/2017] [Accepted: 05/09/2017] [Indexed: 11/19/2022]
Abstract
The white rot fungus Pleurotus ostreatus HK 35, which is also an edible industrial mushroom commonly cultivated in farms, was tested in the degradation of typical representatives of endocrine disrupters (EDCs; bisphenol A, estrone, 17β-estradiol, estriol, 17α-ethinylestradiol, triclosan and 4-n-nonylphenol); its degradation efficiency under model laboratory conditions was greater than 90% within 12 days and better than that of another published strain P. ostreatus 3004. A spent mushroom substrate from a local farm was tested for its applicability in various batch and trickle-bed reactors in degrading EDCs in model fortified and real communal wastewater. The reactors were tested under various regimes including a pilot-scale trickle-bed reactor, which was finally tested at a wastewater treatment plant. The result revealed that the spent substrate is an efficient biodegradation agent, where the fungus was usually able to remove about 95% of EDCs together with suppression of the estrogenic activity of the sample. The results showed the fungus was able to operate in the presence of bacterial microflora in wastewater without any substantial negative effects on the degradation abilities. Finally, a pilot-scale trickle-bed reactor was installed in a wastewater treatment plant and successfully operated for 10days, where the bioreactor was able to remove more than 76% of EDCs present in the wastewater.
Collapse
Affiliation(s)
- Zdena Křesinová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague 2, Czech Republic
| | - Lucie Linhartová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Alena Filipová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague 2, Czech Republic
| | - Martin Ezechiáš
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague 2, Czech Republic
| | - Pavel Mašín
- DEKONTA a.s., Dřetovice 109, CZ-273 42 Stehelčeves, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague 2, Czech Republic.
| |
Collapse
|
36
|
Ting YF, Praveena SM. Sources, mechanisms, and fate of steroid estrogens in wastewater treatment plants: a mini review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:178. [PMID: 28342046 DOI: 10.1007/s10661-017-5890-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/10/2017] [Indexed: 06/06/2023]
Abstract
Steroid estrogens, such as estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-ethinylestradiol (EE2), are natural and synthetic hormones released into the environment through incomplete sewage discharge. This review focuses on the sources of steroid estrogens in wastewater treatment plants (WWTPs). The mechanisms and fate of steroid estrogens throughout the entire wastewater treatment system are also discussed, and relevant information on regulatory aspects is given. Municipal, pharmaceutical industry, and hospitals are the main sources of steroid estrogens that enter WWTPs. A typical WWTP comprises primary, secondary, and tertiary treatment units. Sorption and biodegradation are the main mechanisms for removal of steroid estrogens from WWTPs. The fate of steroid estrogens in WWTPs depends on the types of wastewater treatment systems. Steroid estrogens in the primary treatment unit are removed by sorption onto primary sludge, followed by sorption onto micro-flocs and biodegradation by microbes in the secondary treatment unit. Tertiary treatment employs nitrification, chlorination, or UV disinfection to improve the quality of the secondary effluent. Activated sludge treatment systems for steroid estrogens exhibit a removal efficiency of up to 100%, which is higher than that of the trickling filter treatment system (up to 75%). Moreover, the removal efficiency of advance treatment systems exceeds 90%. Regulatory aspects related to steroid estrogens are established, especially in the European Union. Japan is the only Asian country that implements a screening program and is actively involved in endocrine disruptor testing and assessment. This review improves our understanding of steroid estrogens in WWTPs, proposes main areas to be improved, and provides current knowledge on steroid estrogens in WWTPs for sustainable development.
Collapse
Affiliation(s)
- Yien Fang Ting
- Department of Environmental and Occupational Health, Faculty Of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty Of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
37
|
Jones SM, Chowdhury ZK, Watts MJ. A taxonomy of chemicals of emerging concern based on observed fate at water resource recovery facilities. CHEMOSPHERE 2017; 170:153-160. [PMID: 27987463 DOI: 10.1016/j.chemosphere.2016.11.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
As reuse of municipal water resource recovery facility (WRRF) effluent becomes vital to augment diminishing fresh drinking water resources, concern exists that conventional barriers may prove deficient, and the upcycling of chemicals of emerging concern (CECs) could prove harmful to human health and aquatic species if more effective and robust treatment barriers are not in place. A multiple month survey, of both primary and secondary effluents, from three (3) WRRFs, for 95 CECs was conducted in 2014 to classify CECs by their persistence through conventional water reclamation processes. By sampling the participating WRRF process trains at their peak performance (as determined by measured bulk organics and particulates removal), a short-list of recalcitrant CECs that warrant monitoring to assess treatment performance at advanced water reclamation and production facilities. The list of identified CECs for potable water reclamation (indirect or direct potable reuse) include a herbicide and its degradants, prescription pharmaceuticals and antibiotics, a female hormone, an artificial sweetener, and chlorinated flame retardants.
Collapse
Affiliation(s)
- Steven M Jones
- Garver, 2049 E. Joyce Blvd., Suite 400, Fayetteville, AR 72703, USA.
| | | | - Michael J Watts
- Garver, 3010 Gaylord Pkwy., Suite 190, Frisco, TX 75034, USA.
| |
Collapse
|
38
|
Svobodová M, Skouridou V, Botero ML, Jauset-Rubio M, Schubert T, Bashammakh AS, El-Shahawi MS, Alyoubi AO, O'Sullivan CK. The characterization and validation of 17β-estradiol binding aptamers. J Steroid Biochem Mol Biol 2017; 167:14-22. [PMID: 27669644 DOI: 10.1016/j.jsbmb.2016.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/12/2016] [Accepted: 09/22/2016] [Indexed: 01/26/2023]
Abstract
The rapid and sensitive detection of small molecules is garnering increasing importance, and aptamers show great promise in replacing expensive, elaborate detection platforms exploiting chromatographic separation or antibody-based assays. The characterization of aptamer interaction with small molecule targets is not facile, and there is a mature need for a rapid, high-throughput technique for the analysis of aptamer-small molecule kinetics and affinity. In this work we present methodologies for the evaluation of aptamer-small molecule interactions, using the aptamers reported against the steroid 17β-estradiol as a model system. Microscale thermophoresis, apta-PCR affinity assay and surface plasmon resonance were explored to evaluate the reported aptamers' binding properties in terms of affinity and specificity, and were demonstrated to be successfully applied to the analysis of aptamer-small molecule interactions.
Collapse
Affiliation(s)
- Markéta Svobodová
- Interfibio, Nanobiotechnology & Bioanalysis Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, Tarragona 43007, Spain
| | - Vasso Skouridou
- Interfibio, Nanobiotechnology & Bioanalysis Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, Tarragona 43007, Spain.
| | - Mary Luz Botero
- Interfibio, Nanobiotechnology & Bioanalysis Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, Tarragona 43007, Spain
| | - Miriam Jauset-Rubio
- Interfibio, Nanobiotechnology & Bioanalysis Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, Tarragona 43007, Spain
| | - Thomas Schubert
- 2bind GmbH, Josef Engert Strasse 13, Regensburg 93053, Germany
| | - Abdulaziz S Bashammakh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohammad S El-Shahawi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Abdulrahman O Alyoubi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Ciara K O'Sullivan
- Interfibio, Nanobiotechnology & Bioanalysis Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, Tarragona 43007, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
39
|
Degradation characteristics and metabolic pathway of 17β-estradiol (E2) by Rhodococcus sp. DS201. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0283-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Nazari E, Suja F. Effects of 17β-estradiol (E2) on aqueous organisms and its treatment problem: a review. REVIEWS ON ENVIRONMENTAL HEALTH 2016; 31:465-491. [PMID: 27883330 DOI: 10.1515/reveh-2016-0040] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/13/2016] [Indexed: 05/18/2023]
Abstract
Natural estrogens, estrone (E1), 17β-estradiol (E2) and estriol (E3) are endocrine disrupting chemicals (EDCs) that are discharged consistently and directly into surface waters with wastewater treatment plants (WWPTs) effluents, disposal sludges and in storm-water runoff. The most common and highest potential natural estrogen that causes estrogen activity in wastewater influent is E2. This review describes and attempts to summarize the main problems involved in the removal of E2 from WWTP by traditional processes, which fundamentally rely on activated sludge and provide an insufficient treatment for E2, as well as advanced oxidation processes (AOPs) that are applied in tertiary section treatment works. Biological processes affect and play an important role in the degradation of E2. However, some investigations have reported that operations that rely on high retention times have low efficiencies. Although advanced treatment technologies are available, their cost and operational considerations do not make them sustainable solutions. Therefore, E2 is still being released into aqueous areas, as shown in this study that investigates results from different countries. E2 is present on the watch list of substances in the Water Framework Directive (WFD) of the European Union since 2013 and the minimum acceptable concentration of it is 0.4 ng/L.
Collapse
|
41
|
Huang P, Mukherji ST, Wu S, Muller J, Goel R. Fate of 17β-Estradiol as a model estrogen in source separated urine during integrated chemical P recovery and treatment using partial nitritation-anammox process. WATER RESEARCH 2016; 103:500-509. [PMID: 27566951 DOI: 10.1016/j.watres.2016.07.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
Recently, research on source separation followed by the treatment of urine and/or resource recovery from human urine has shown promise as an emerging management strategy. Despite contributing only 1% of the total volume of wastewater, human urine contributes about 80% of the nitrogen, 70% of the potassium, and up to 50% of the total phosphorus in wastewater. It is also a known fact that many of the micropollutants, especially selected estrogens, get into municipal wastewater through urine excretion. In this research, we investigated the fate of 17β-estradiol (E2) as a model estrogen during struvite precipitation from synthetic urine followed by the treatment of urine using a partial nitritation-anammox (PN/A) system. Single-stage and two-stage suspended growth PN/A configurations were used to remove the nitrogen in urine after struvite precipitation. The results showed an almost 95% phosphorous and 5% nitrogen recovery/removal from the synthetic urine due to struvite precipitation. The single and two stage PN/A processes were able to remove around 50% and 75% of ammonia and nitrogen present in the post struvite urine solution, respectively. After struvite precipitation, more than 95% of the E2 remained in solution and the transformation of E2 to E1 happened during urine storage. Most of the E2 removal that occurred during the PN/A process was due to sorption on the biomass and biodegradation (transformation of E2 to E1, and slow degradation of E1 to other metabolites). These results demonstrate that a combination of chemical and biological unit processes will be needed to recover and manage nutrients in source separated urine.
Collapse
Affiliation(s)
- Pei Huang
- Department of Civil and Environmental Engineering, University of Utah, 110 South Campus Drive, MCE 2000, Salt Lake City, UT 84112, USA
| | - Sachiyo T Mukherji
- Department of Civil and Environmental Engineering, University of Utah, 110 South Campus Drive, MCE 2000, Salt Lake City, UT 84112, USA
| | - Sha Wu
- Department of Civil and Environmental Engineering, University of Utah, 110 South Campus Drive, MCE 2000, Salt Lake City, UT 84112, USA
| | - James Muller
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, 110 South Campus Drive, MCE 2000, Salt Lake City, UT 84112, USA.
| |
Collapse
|
42
|
Cédat B, de Brauer C, Métivier H, Dumont N, Tutundjan R. Are UV photolysis and UV/H2O2 process efficient to treat estrogens in waters? Chemical and biological assessment at pilot scale. WATER RESEARCH 2016; 100:357-366. [PMID: 27214348 DOI: 10.1016/j.watres.2016.05.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 06/05/2023]
Abstract
In this study, UV based treatments were implemented at pilot scale to assess their ability to remove hormones from treated wastewater, especially with the view to equip small and medium size Wastewater Treatment Plants (WTPs). To this end, the degradation of a mixture of estrogenic hormones (Estrone (E1), β-Estradiol (E2), and 17α-Ethinyl Estradiol (EE2)) in waters by UV photolysis and UV/H2O2 process was investigated in real conditions. A particular attention was paid at designing a well validated laboratory scale pilot in order to optimise oxidant concentrations and UV fluence. A Low pressure lamp (254 nm) was used in a flow through commercial reactor. The effects of water matrices (drinking water and treated wastewater) and H2O2 concentrations (10, 40, and 90 mg/L) on the pilot efficiency were first determined. Only E1 could be partially degraded by UV photolysis whereas hormones were all well removed by UV/H2O2 process in both matrices. The second part of the study focused on a chemical and biological assessment of UV photolysis and UV/H2O2 process (30 and 50 mg/L). Degradation rate constants of hormones as well as changes in estrogenic activity (YES bioassay) and toxicity (Vibrio fischeri) were followed at the same time. UV photolysis could not remove neither estrogens nor estrogenic activity at relevant UV fluence in waters. However 80% of initial estrogenic compounds and estrogenic activity could be removed from treated wastewater by combining UV fluence of 423 and 520 mJ/cm(2) with 50 and 30 mg/L of H2O2, respectively. No high estrogenic or toxic by-products were detected by the two bioassays following UV photolysis or UV/H2O2 process. Operating costs were estimated for a full scale pilot. H2O2 was the major cost. By combining the appropriate concentration of H2O2 and UV fluence, it could be possible to design a cost effective treatment for treating estrogens in small and medium size WTPs.
Collapse
Affiliation(s)
- Bruno Cédat
- COMAP WT, Z.A les petis champs, 26120 Montélier, France; INSA Lyon, DEEP, 34 Avenue des Arts, 69621 Villeurbanne Cedex, France.
| | | | - Hélène Métivier
- INSA Lyon, DEEP, 34 Avenue des Arts, 69621 Villeurbanne Cedex, France
| | - Nathalie Dumont
- INSA Lyon, DEEP, 34 Avenue des Arts, 69621 Villeurbanne Cedex, France
| | - Renaud Tutundjan
- IRSTEA Lyon-Villeurbanne, UR MAEP, Laboratoire écotoxicologie, 5 rue de la Doua CS 70077, 69626 Villeurbanne Cedex, France
| |
Collapse
|
43
|
Kopperi M, Parshintsev J, Ruiz-Jiménez J, Riekkola ML. Nontargeted evaluation of the fate of steroids during wastewater treatment by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:17008-17017. [PMID: 27206750 DOI: 10.1007/s11356-016-6800-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Abstract
Emerging organic contaminants in wastewater are usually analyzed by targeted approaches, and especially estrogens have been the focus of environmental research due to their high hormonal activity. The selection of specific target compounds means, however, that most of the sample components, including transformation products and potential new contaminants, are neglected. In this study, the fate of steroidal compounds in wastewater treatment processes was evaluated by a nontargeted approach based on comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. The potential of the nontargeted approach to generate comprehensive information about sample constituents was demonstrated with use of statistical tools. Transformation pathways of the tentatively identified compounds with steroidal four-ring structure were proposed. The purification efficiency of the wastewater treatment plants was studied, and the distribution of the compounds of interest in the suspended solids, effluent water, and sludge was measured. The results showed that, owing to strong adsorption of hydrophobic compounds onto the solid matter, the steroids were mostly bound to the suspended solids of the effluent water and the sewage sludge at the end of the treatment process. The most abundant steroid class was androstanes in the aqueous phase and cholestanes in the solid phase. 17β-estradiol was the most abundant estrogen in the aqueous phase, but it was only detected in the influent samples indicating efficient removal during the treatment process. In the sludge samples, however, high concentrations of an oxidation product of 17β-estradiol, estrone, were measured.
Collapse
Affiliation(s)
- Matias Kopperi
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki, FI-00014, Finland
| | - Jevgeni Parshintsev
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki, FI-00014, Finland
| | - José Ruiz-Jiménez
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki, FI-00014, Finland
| | - Marja-Liisa Riekkola
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki, FI-00014, Finland.
| |
Collapse
|
44
|
Guedes-Alonso R, Santana-Viera S, Montesdeoca-Esponda S, Afonso-Olivares C, Sosa-Ferrera Z, Santana-Rodríguez JJ. Application of microwave-assisted extraction and ultra-high performance liquid chromatography–tandem mass spectrometry for the analysis of sex hormones and corticosteroids in sewage sludge samples. Anal Bioanal Chem 2016; 408:6833-44. [DOI: 10.1007/s00216-016-9810-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/06/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
|
45
|
Schröder P, Helmreich B, Škrbić B, Carballa M, Papa M, Pastore C, Emre Z, Oehmen A, Langenhoff A, Molinos M, Dvarioniene J, Huber C, Tsagarakis KP, Martinez-Lopez E, Pagano SM, Vogelsang C, Mascolo G. Status of hormones and painkillers in wastewater effluents across several European states-considerations for the EU watch list concerning estradiols and diclofenac. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:12835-66. [PMID: 27023823 PMCID: PMC4912981 DOI: 10.1007/s11356-016-6503-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 02/28/2016] [Indexed: 05/05/2023]
Abstract
Present technologies for wastewater treatment do not sufficiently address the increasing pollution situation of receiving water bodies, especially with the growing use of personal care products and pharmaceuticals (PPCP) in the private household and health sector. The relevance of addressing this problem of organic pollutants was taken into account by the Directive 2013/39/EU that introduced (i) the quality evaluation of aquatic compartments, (ii) the polluter pays principle, (iii) the need for innovative and affordable wastewater treatment technologies, and (iv) the identification of pollution causes including a list of principal compounds to be monitored. In addition, a watch list of 10 other substances was recently defined by Decision 2015/495 on March 20, 2015. This list contains, among several recalcitrant chemicals, the painkiller diclofenac and the hormones 17β-estradiol and 17α-ethinylestradiol. Although some modern approaches for their removal exist, such as advanced oxidation processes (AOPs), retrofitting most wastewater treatment plants with AOPs will not be acceptable as consistent investment at reasonable operational cost. Additionally, by-product and transformation product formation has to be considered. The same is true for membrane-based technologies (nanofiltration, reversed osmosis) despite of the incredible progress that has been made during recent years, because these systems lead to higher operation costs (mainly due to higher energy consumption) so that the majority of communities will not easily accept them. Advanced technologies in wastewater treatment like membrane bioreactors (MBR) that integrate biological degradation of organic matter with membrane filtration have proven a more complete elimination of emerging pollutants in a rather cost- and labor-intensive technology. Still, most of the presently applied methods are incapable of removing critical compounds completely. In this opinion paper, the state of the art of European WWTPs is reflected, and capacities of single methods are described. Furthermore, the need for analytical standards, risk assessment, and economic planning is stressed. The survey results in the conclusion that combinations of different conventional and advanced technologies including biological and plant-based strategies seem to be most promising to solve the burning problem of polluting our environment with hazardous emerging xenobiotics.
Collapse
Affiliation(s)
- P Schröder
- Research Unit Microbe-Plant Interactions (EGEN), German Research Center for Health and Environment GmbH, Helmholtz Zentrum Muenchen, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| | - B Helmreich
- Chair of Urban Water Systems Engineering, Technische Universität München, Munich, Germany
| | - B Škrbić
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - M Carballa
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - M Papa
- Department of Civil Environmental Architectural Engineering & Mathematics, University of Brescia, Brescia, Italy
| | - C Pastore
- CNR-Istituto di Ricerca Sulle Acque, Bari, Italy
| | - Z Emre
- Turkish Atomic Energy Authority, Ankara, Turkey
| | - A Oehmen
- Departamento de Química, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), Caparica, Portugal
| | - A Langenhoff
- Sub-department of Environmental Technology, Wageningen University of Agrotechnology & Food Sciences, Wageningen, The Netherlands
| | - M Molinos
- University of Valencia, Valencia, Spain
| | | | - C Huber
- Research Unit Microbe-Plant Interactions (EGEN), German Research Center for Health and Environment GmbH, Helmholtz Zentrum Muenchen, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - K P Tsagarakis
- Business and Environmental Economics Technology Lab (BETECO), Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece
| | | | | | - C Vogelsang
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - G Mascolo
- CNR-Istituto di Ricerca Sulle Acque, Bari, Italy
| |
Collapse
|
46
|
Shah A, Shahzad S, Munir A, Nadagouda MN, Khan GS, Shams DF, Dionysiou DD, Rana UA. Micelles as Soil and Water Decontamination Agents. Chem Rev 2016; 116:6042-74. [PMID: 27136750 DOI: 10.1021/acs.chemrev.6b00132] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Contaminated soil and water pose a serious threat to human health and ecosystem. For the treatment of industrial effluents or minimizing their detrimental effects, preventive and remedial approaches must be adopted prior to the occurrence of any severe environmental, health, or safety hazard. Conventional treatment methods of wastewater are insufficient, complicated, and expensive. Therefore, a method that could use environmentally friendly surfactants for the simultaneous removal of both organic and inorganic contaminants from wastewater is deemed a smart approach. Surfactants containing potential donor ligands can coordinate with metal ions, and thus such compounds can be used for the removal of toxic metals and organometallic compounds from aqueous systems. Surfactants form host-guest complexes with the hydrophobic contaminants of water and soil by a mechanism involving the encapsulation of hydrophobes into the self-assembled aggregates (micelles) of surfactants. However, because undefined amounts of surfactants may be released into the aqueous systems, attention must be paid to their own environmental risks as well. Moreover, surfactant remediation methods must be carefully analyzed in the laboratory before field implementation. The use of biosurfactants is the best choice for the removal of water toxins as such surfactants are associated with the characteristics of biodegradability, versatility, recovery, and reuse. This Review is focused on the currently employed surfactant-based soil and wastewater treatment technologies owing to their critical role in the implementation of certain solutions for controlling pollution level, which is necessary to protect human health and ensure the quality standard of the aquatic environment.
Collapse
Affiliation(s)
- Afzal Shah
- Department of Chemistry, Quaid-i-Azam University , Islamabad 45320, Pakistan
| | - Suniya Shahzad
- Department of Chemistry, Quaid-i-Azam University , Islamabad 45320, Pakistan
| | - Azeema Munir
- Department of Chemistry, Quaid-i-Azam University , Islamabad 45320, Pakistan
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University , Dayton, Ohio 45324, United States
| | - Gul Shahzada Khan
- Department of Chemistry, Shaheed Benazir Bhutto University , Sheringal, Dir (Upper), 18000 Khyber Pakhtunkhwa, Pakistan
| | - Dilawar Farhan Shams
- Department of Environmental Sciences, Abdul Wali Khan University Mardan , 23200 Khyber Pakhtunkhwa, Pakistan
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati , Cincinnati, Ohio 45221-0012, United States
| | - Usman Ali Rana
- Sustainable Energy Technologies Center, College of Engineering, King Saud University , PO Box 800, Riyadh 11421, Saudi Arabia
| |
Collapse
|
47
|
Silva CP, Lima DLD, Otero M, Esteves VI. Photosensitized Degradation of 17β-estradiol and 17α-ethinylestradiol: Role of Humic Substances Fractions. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:693-700. [PMID: 27065417 DOI: 10.2134/jeq2015.07.0396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photodegradation of 17α-ethinylestradiol (EE2) and 17β-estradiol (E2) was investigated under simulated solar radiation. Photodegradation kinetics in the absence and presence of humic substances (HSs) fractions (humic acids [HAs], fulvic acids [FAs], and XAD-4), were compared. Although all three fractions were responsible for a noticeable increase on photodegradation rates, the effects were greater for FA and XAD-4. Half-life time decreased from 46 and 94 h (direct photodegradation) for EE2 and E2, respectively, to 6.4, 2.1, and 2.7 h (for EE2) and 5.7, 2.9, and 3.1 h (for E2) in the presence of HAs, FAs, and XAD-4, respectively. The XAD-4 fraction results were similar to those of FAs, which is considered the most photochemically active fraction of HSs. Studies were also conducted in organic matter-rich environmental water matrices. After 5 h, photodegradation ranged from 44 to 94% for EE2 and from 27 to 95% for E2, compared with 16% for EE2 and 6% for E2 in ultrapure water. The maximum photodegradation was obtained in an estuarine water sample, known to be rich in FAs and XAD-4 fractions and poor in HAs, showing that not only is the presence of organic matter an important factor for the photodegradation increase, as also the type of organic matter is determinant.
Collapse
|
48
|
|
49
|
He K, Lou T, Wang X, Zhao W. Preparation of lignosulfonate–acrylamide–chitosan ternary graft copolymer and its flocculation performance. Int J Biol Macromol 2015; 81:1053-8. [DOI: 10.1016/j.ijbiomac.2015.09.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/09/2015] [Accepted: 09/27/2015] [Indexed: 10/23/2022]
|
50
|
Luigi V, Giuseppe M, Claudio R. Emerging and priority contaminants with endocrine active potentials in sediments and fish from the River Po (Italy). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:14050-14066. [PMID: 25956513 DOI: 10.1007/s11356-015-4388-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
There is a substantial lack of information on most priority pollutants, related contamination trends, and (eco)toxicological risks for the major Italian watercourse, the River Po. Targeting substances of various uses and origins, this study provides the first systematic data for the River Po on a wide set of priority and emerging chemicals, all characterized by endocrine-active potentials. Flame retardants, natural and synthetic hormones, surfactants, personal care products, legacy pollutants, and other chemicals have been investigated in sediments from the River Po and its tributary, the River Lambro, as well as in four fish species from the final section of the main river. With few exceptions, all chemicals investigated could be tracked in the sediments of the main Italian river for tens or hundreds of kilometres downstream from the Lambro tributary. Nevertheless, the results indicate that most of these contaminants, i.e., TBBPA, TCBPA, TBBPA-bis, DBDPE, HBCD, BPA, OP, TCS, TCC, AHTN, HHCB, and DDT, individually pose a negligible risk to the River Po. In contrast, PBDE, PCB, natural and synthetic estrogens, and to a much lower extent NP, were found at levels of concern either to aquatic life or human health. Adverse biological effects and prohibition of fish consumption deserve research attention and management initiatives, also considering the transport of contaminated sediments to transitional and coastal environments of the Italian river.
Collapse
Affiliation(s)
- Viganò Luigi
- National Research Council (CNR), Istituto di Ricerca Sulle Acque (Water Research Institute), Sezione di Brugherio, Via del Mulino, 19, 20861, Brugherio, MB, Italy,
| | | | | |
Collapse
|