1
|
Li W, Ma L, Ye Y, Tang Q, Shen Y, Zou Z, Zhou H, Liang C, Wang G. Selenium absorption, translocation and biotransformation in pak choi (Brassica chinensis L.) after foliar application of selenium nanoparticles. Food Chem 2025; 463:141439. [PMID: 39357307 DOI: 10.1016/j.foodchem.2024.141439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Diets consisting of selenium-deficient crops are associated with immune disorders and cardiomyopathy. Compared to the extensively used but highly toxic selenite (SeO32-), low-toxicity selenium nanoparticles (SeNPs) have emerged as a promising nanoplatform for Se biofortification in agriculture; however, the mechanisms underlying their transportation and biotransformation within crops remain elusive. In this study, SeNPs were successfully prepared using liquid-phase laser irradiation. We conducted a comparative study on the effects of foliar application of SeO32- and SeNPs on the growth of pak choi (Brassica chinensis L.), and investigated the absorption, translocation, and biotransformation mechanisms of Se in pak choi. The recommended dietary intake can be effectively achieved by applying SeNPs using leaf-spraying techniques. Our findings suggested that foliar application of SeNPs might be an efficient way to produce Se fortified crops, especially leafy vegetables, which are favorable for human health.
Collapse
Affiliation(s)
- Wenchao Li
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Lan Ma
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, PR China
| | - Yixing Ye
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Qi Tang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, PR China
| | - Yue Shen
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, PR China
| | - Zidan Zou
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, PR China
| | - Hongjian Zhou
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, PR China
| | - Changhao Liang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, PR China
| | - Guozhong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
2
|
Hu G, Xu HD, Fang J. Sulfur-based fluorescent probes for biological analysis: A review. Talanta 2024; 279:126515. [PMID: 39024854 DOI: 10.1016/j.talanta.2024.126515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
The widespread adoption of small-molecule fluorescence detection methodologies in scientific research and industrial contexts can be ascribed to their inherent merits, including elevated sensitivity, exceptional selectivity, real-time detection capabilities, and non-destructive characteristics. In recent years, there has been a growing focus on small-molecule fluorescent probes engineered with sulfur elements, aiming to detect a diverse array of biologically active species. This review presents a comprehensive survey of sulfur-based fluorescent probes published from 2017 to 2023. The diverse repertoire of recognition sites, including but not limited to N, N-dimethylthiocarbamyl, disulfides, thioether, sulfonyls and sulfoxides, thiourea, thioester, thioacetal and thioketal, sulfhydryl, phenothiazine, thioamide, and others, inherent in these sulfur-based probes markedly amplifies their capacity for detecting a broad spectrum of analytes, such as metal ions, reactive oxygen species, reactive sulfur species, reactive nitrogen species, proteins, and beyond. Owing to the individual disparities in the molecular structures of the probes, analogous recognition units may be employed to discern diverse substrates. Subsequent to this classification, the review provides a concise summary and introduction to the design and biological applications of these probe molecules. Lastly, drawing upon a synthesis of published works, the review engages in a discussion regarding the merits and drawbacks of these fluorescent probes, offering guidance for future endeavors.
Collapse
Affiliation(s)
- Guodong Hu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China.
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, China.
| |
Collapse
|
3
|
Wu R, Tian H, Zhao T, Tian Y, Jin X, Zhu M. A Mendelian randomization analysis of inflammatory skin disease risk due to mineral deficiencies. Front Nutr 2024; 11:1404117. [PMID: 39469328 PMCID: PMC11513277 DOI: 10.3389/fnut.2024.1404117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Background Mineral deficiencies, such as iron (Fe), zinc (Zn), and selenium (Se), play crucial roles in inflammation and immune responses and are linked to chronic inflammatory skin diseases. This study used genome-wide association study (GWAS) data and Mendelian randomization (MR) to investigate the genetic causality among serum levels of five minerals (Fe, Cu, Zn, Se, Ca), three iron metabolism indicators (TSAT, TIBC, ferritin), and three chronic inflammatory skin diseases [psoriasis (PS), atopic dermatitis (AD), acne vulgaris (AV)]. Methods Two-sample MR analyses using the "TwoSample MR" package in R were conducted with aggregate outcome data from the FinnGen database. The inverse-variance-weighted (IVW) method was applied to assess causal relationships between mineral levels and disease outcomes. Robustness was examined via heterogeneity and pleiotropy tests. Results IVW analysis showed significant association between blood transferrin saturation (TSAT) and PS (p = 0.004, OR = 1.18). Serum Zn and Se levels showed inverse correlation with AD (p = 0.039, OR = 0.92). However, due to limited SNPs, robustness was reduced. Conclusion TSAT is genetically linked to PS, highlighting iron homeostasis in disease development. Zn and Se intake may reduce AD risk.
Collapse
Affiliation(s)
- Ronghui Wu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Dermatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hao Tian
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Tianqi Zhao
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yangyang Tian
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianhua Jin
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mingji Zhu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Yang X, Huang J, Wang J, Sun H, Li J, Wang Z, Song Q. The protective effect of glucose selenol on cadmium-induced testicular toxicity in male rat. Reprod Toxicol 2024; 129:108679. [PMID: 39121979 DOI: 10.1016/j.reprotox.2024.108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/13/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
This study aimed to investigate the protective effects of glucose selenol on cadmium (Cd)-induced testicular toxicity. Twenty-four male Sprague-Dawley (SD) rats were randomly divided into four groups. Cd was administered orally at a dose of 40 mg/L or in combination with orally administered glucose selenol at doses of 0.15 mg/L and 0.4 mg/L for 30 days. The results showed that sperm quality decreased and testicular tissue was damaged in the Cd group; Glucose selenol significantly attenuated the negative effects by improving sperm quality and reducing testicular damage. Transcriptome sequencing analysis showed that Cd stress affected spermatogenesis, sperm motility, oxidative stress, blood-testis barrier and protein metabolism. Four clusters were obtained using the R Mfuzz package, which clustered highly expressed genes under different administrations, and 36 items were enriched. Notably, protein phosphorylation was enriched in the Cd group and is considered to play a key role in the response to Cd stress. We identified fifty-six target selenium (Se) and Cd co-conversion differentially expressed genes (DEGs), including three genes relating to spermatogenesis (Dnah8, Spata31d1b, Spata31d1c). In addition, the obtained DEGs were used to construct a protein-protein interaction network, co-processed with Se and Cd, and 5 modules were constructed. Overall, the analyses of rat testicular physiology and gene expression levels offer new insights into the reproductive toxicity of Cd in rats, and provide potential application prospects for glucose selenol in alleviating the impact of Cd-induced testicular damage.
Collapse
Affiliation(s)
- Xinyi Yang
- College of Life Science, Hunan Normal University, Changsha, Hunan 410006, China
| | - Jinzhou Huang
- College of Life Science, Hunan Normal University, Changsha, Hunan 410006, China
| | - Juan Wang
- College of Life Science, Hunan Normal University, Changsha, Hunan 410006, China
| | - Huimin Sun
- College of Life Science, Hunan Normal University, Changsha, Hunan 410006, China
| | - JinJin Li
- College of Life Science, Hunan Normal University, Changsha, Hunan 410006, China
| | - Zhi Wang
- College of Life Science, Hunan Normal University, Changsha, Hunan 410006, China.
| | - Qisheng Song
- Division of Plant Sciences and Technology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
5
|
Wang T, Liu H, Wei X. Association between the Composite Dietary Antioxidant Index and Stroke: A cross-sectional Study. Biol Trace Elem Res 2024; 202:4335-4344. [PMID: 38153669 DOI: 10.1007/s12011-023-04011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
The composite dietary antioxidant index (CDAI) is indeed a valuable nutritional tool used to evaluate the overall antioxidant capacity of an individual's daily food consumption. The CDAI was calculated from the intake of six antioxidant components in the diet, including vitamin A, vitamin C and vitamin E, carotenoids, selenium, and zinc. This study aimed to determine the association between CDAI and stroke. Utilizing data from the 2003-2018 NHANES dataset, CDAI was computed by summarizing the intake of six dietary antioxidants based on 24-hour dietary recall interviews. The relationship between CDAI and stroke was examined using multivariate logistic regression and restricted cubic spline analysis. This study ultimately included 39,432 participants, of whom 1,527 (3.87%) had a stroke. The multivariate logistic regression model 3 that fully adjusted all confounding variables showed a negative association between CDAI and stroke (OR = 0.97; 95% CI:0.95, 0.99). The highest tertile of CDAI saw a 23% drop in the prevalence of stroke compared to the lowest tertile (OR = 0.77; 95%CI: 0.64,0.92). Restricted cubic spline suggested that this negative correlation was nonlinear with an inflection point of -2.99. Subgroup analyses and interaction tests showed that this negative correlation was more applicable in patients with prediabetes (P < 0.05). There was a non-linear negative correlation between CDAI level and stroke prevalence, and this correlation was more significant in people with pre-diabetes. Appropriate CDAI levels may contribute to the management of stroke risk.
Collapse
Affiliation(s)
- Ting Wang
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Haiyan Liu
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiue Wei
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
6
|
Sadler RA, Mallard BA, Shandilya UK, Hachemi MA, Karrow NA. The Immunomodulatory Effects of Selenium: A Journey from the Environment to the Human Immune System. Nutrients 2024; 16:3324. [PMID: 39408290 PMCID: PMC11479232 DOI: 10.3390/nu16193324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Selenium (Se) is an essential nutrient that has gained attention for its impact on the human immune system. The purpose of this review is to explore Se's immunomodulatory properties and to make up-to-date information available so novel therapeutic applications may emerge. People acquire Se through dietary ingestion, supplementation, or nanoparticle applications. These forms of Se can beneficially modulate the immune system by enhancing antioxidant activity, optimizing the innate immune response, improving the adaptive immune response, and promoting healthy gut microbiota. Because of these many actions, Se supplementation can help prevent and treat pathogenic diseases, autoimmune diseases, and cancers. This review will discuss Se as a key micronutrient with versatile applications that supports disease management due to its beneficial immunomodulatory effects. Further research is warranted to determine safe dosing guidelines to avoid toxicity and refine the application of Se in medical treatments.
Collapse
Affiliation(s)
- Rebecka A. Sadler
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (U.K.S.)
| | - Bonnie A. Mallard
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada;
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (U.K.S.)
| | - Mohammed A. Hachemi
- Adisseo France S.A.S., 10, Place du Général de Gaulle, 92160 Antony, France;
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (U.K.S.)
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada;
| |
Collapse
|
7
|
Barbosa Abrantes KK, Colombo Pimentel T, da Silva C, Santos Junior ODO, Barão CE, Cardozo-Filho L. Brazil Nut Semi-Defatted Flour Oil: Impact of Extraction Using Pressurized Solvents on Lipid Profile, Bioactive Compounds Composition, and Oxidative Stability. PLANTS (BASEL, SWITZERLAND) 2024; 13:2678. [PMID: 39409547 PMCID: PMC11478675 DOI: 10.3390/plants13192678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024]
Abstract
Brazilian nuts are native to the Amazon rainforest and are considered a non-timber forest-product of extreme economic importance to local populations. This study evaluated the lipid profile, bioactive compounds, and oxidative stability of semi-defatted Brazilian nut flour oil (BNSDFO) obtained using pressurized fluids (n-propane at 40 °C and 2, 4, and 8 MPa or a CO2/n-propane mixture at 40 °C and 12 MPa). A Brazilian nut kernel oil (BNKO) processed by conventional cold pressing was also obtained. The BNKO showed a higher concentration of total phenolic compounds and saturated fatty acids, higher antioxidant activity, and the presence of gallic acid derivatives. The oils extracted using pressurized fluids showed a higher concentration of linoleic acid, β-sitosterol, and polyunsaturated fatty acids. The utilization of pressurized n-propane resulted in higher yields (13.7 wt%), and at intermediate pressures (4 MPa), the product showed myricetin 3-O-rhamnoside and higher oxidative stability (OSI, 12 h) than at lower pressures (2 MPa). The CO2/n-propane mixture of pressurized solvents resulted in higher concentrations of squalene (4.5 times), the presence of different phenolic compounds, and a high OSI (12 h) but lower yield (2.2 wt%). In conclusion, oils with better fatty acid profiles (oleic e linoleic acids), phytosterol composition, and suitable radical scavenging activity may be obtained using pressurized fluids and Brazilian nut flour, a byproduct of oil extraction. The mixture of solvents may improve the concentration of squalene, whereas using only n-propane may increase oil yield.
Collapse
Affiliation(s)
- Karen Keli Barbosa Abrantes
- Programa de Pós-Graduação em Engenharia Química, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá 87020-900, PR, Brazil; (K.K.B.A.); (C.d.S.); (L.C.-F.)
| | - Tatiana Colombo Pimentel
- Instituto Federal do Paraná (IFPR), Rua José Felipe Tequinha, 1400, Paranavaí 87703-536, PR, Brazil;
| | - Camila da Silva
- Programa de Pós-Graduação em Engenharia Química, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá 87020-900, PR, Brazil; (K.K.B.A.); (C.d.S.); (L.C.-F.)
| | - Oscar de Oliveira Santos Junior
- Laboratório de Química de Alimentos, Programa de Pós-Graduação em Química, Universidade Estadual de Maringá (UEM), Av. Colombo, 5790, Maringá 87020-900, PR, Brazil;
| | - Carlos Eduardo Barão
- Instituto Federal do Paraná (IFPR), Rua José Felipe Tequinha, 1400, Paranavaí 87703-536, PR, Brazil;
| | - Lucio Cardozo-Filho
- Programa de Pós-Graduação em Engenharia Química, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá 87020-900, PR, Brazil; (K.K.B.A.); (C.d.S.); (L.C.-F.)
| |
Collapse
|
8
|
Wang L, Ju J, Xie H, Qiao F, Luo Q, Zhou L. Comparative Study on Growth and Metabolomic Profiles of Six Lactobacilli Strains by Sodium Selenite. Microorganisms 2024; 12:1937. [PMID: 39458247 PMCID: PMC11509132 DOI: 10.3390/microorganisms12101937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Selenium (Se) has garnered increasing attention in the field of nutrition, as it is essential for both humans and animals. Certain microorganisms can enrich inorganic selenium and convert it into organic selenium. The growth and metabolomic profiles of six lactobacilli strains exposed to 50 μg/mL of sodium selenite were performed using gas chromatography tandem time-off light mass spectrometry (GC-TOF-MS) analysis. The addition of selenium significantly increased both the population and weight of the Lacticaseibacillus rhamnosus PS5, Lbs. rhamnosus RT-B, Limosilactobacillus reuteri 3630, and Lmb. reuteri 1663 strains, while those of the other two strains decreased. A total of 271 metabolites were determined, with their concentrations ranked from highest to lowest as follows: organic acids and derivatives, oxygen compounds, lipids and lipid-like molecules, and benzenoids. In certain groups, the concentrations of serine, aspartic acid, trehalose, palmitic acid, methylthreonine, and melibiose increased significantly, whereas glucuronic acid, ribose, ornithine, and methionine were downregulated. The metabolic pathways were significantly associated with ABC transporters, glycine, serine, threonine metabolism, and aminobenzoate degradation and other pathways. Based on these findings, we concluded that the transport, absorption, assimilation, and stress response to selenium by lactobacilli in metabolomic changed. Furthermore, the metabolomic alterations among different types of lactobacilli varied primarily due to their distinct properties.
Collapse
Affiliation(s)
- Longrui Wang
- Key Laboratory of Medicinal Plant and Animal Resources of the Qinghai–Tibetan Plateau in Qinghai Province, Xining 810008, China; (L.W.); (H.X.); (F.Q.); (Q.L.)
- Academy of Plateau Science and Sustainability, Xining 810008, China
- School of Life Science, Qinghai Normal University, Xining 810008, China;
| | - Jiasheng Ju
- School of Life Science, Qinghai Normal University, Xining 810008, China;
- Food and Drug Testing Center, Xianyang 712000, China
| | - Huichun Xie
- Key Laboratory of Medicinal Plant and Animal Resources of the Qinghai–Tibetan Plateau in Qinghai Province, Xining 810008, China; (L.W.); (H.X.); (F.Q.); (Q.L.)
- Academy of Plateau Science and Sustainability, Xining 810008, China
- School of Life Science, Qinghai Normal University, Xining 810008, China;
| | - Feng Qiao
- Key Laboratory of Medicinal Plant and Animal Resources of the Qinghai–Tibetan Plateau in Qinghai Province, Xining 810008, China; (L.W.); (H.X.); (F.Q.); (Q.L.)
- Academy of Plateau Science and Sustainability, Xining 810008, China
- School of Life Science, Qinghai Normal University, Xining 810008, China;
| | - Qiaoyu Luo
- Key Laboratory of Medicinal Plant and Animal Resources of the Qinghai–Tibetan Plateau in Qinghai Province, Xining 810008, China; (L.W.); (H.X.); (F.Q.); (Q.L.)
- Academy of Plateau Science and Sustainability, Xining 810008, China
- School of Life Science, Qinghai Normal University, Xining 810008, China;
| | - Lianyu Zhou
- Key Laboratory of Medicinal Plant and Animal Resources of the Qinghai–Tibetan Plateau in Qinghai Province, Xining 810008, China; (L.W.); (H.X.); (F.Q.); (Q.L.)
- Academy of Plateau Science and Sustainability, Xining 810008, China
- School of Life Science, Qinghai Normal University, Xining 810008, China;
| |
Collapse
|
9
|
Golebiewska J, Sobkowski M, Stawinski J. Synthesis of Nucleoside Selenophosphoramidates via H-Phosphonate Intermediates. J Org Chem 2024; 89:12032-12043. [PMID: 39167188 DOI: 10.1021/acs.joc.4c00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Two synthetic routes for the preparation of nucleoside selenophosphoramidates have been developed by using H-phosphonate derivatives as key substrates. The first method is a one-pot synthesis, which involves the condensation of an amine with H-phosphonate monoesters, mediated by a coupling agent, followed by oxidation with elemental selenium (A). The second approach makes use of the oxidative condensation reaction of H-phosphonoselenoate monoesters with amines promoted by iodine as an oxidizing agent (B). Both methods are efficient and experimentally simple, but the second method (B) seems to be more suited for the synthesis of selenophosphoramidates with bulky or sterically hindered amine residues. It has been shown that both methods also provide a convenient way to produce sulfurized counterparts, i.e., the corresponding thiophosphoramidate derivatives.
Collapse
Affiliation(s)
- Justyna Golebiewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Michal Sobkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Jacek Stawinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
10
|
Wang J, Lu Y, Xing S, Yang J, Liu L, Huang K, Liang D, Xia H, Zhang X, Lv X, Lin L. Transcriptome analysis reveals the promoting effects of exogenous melatonin on the selenium uptake in grape under selenium stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1447451. [PMID: 39239199 PMCID: PMC11374602 DOI: 10.3389/fpls.2024.1447451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
Introduction Exogenous melatonin (MT) can promote horticultural crops growth under stress conditions. Methods In this study, the effects of exogenous MT on the accumulation of selenium (Se) in grape were studied under Se stress. Results and discussion Under Se stress, exogenous MT increased the biomass, content of photosynthetic pigments and antioxidant enzyme activity of grapevines. Compared with Se treatment, MT increased the root biomass, shoot biomass, chlorophyll a content, chlorophyll b content, carotenoids, superoxide dismutase activity, and peroxidase activity by 18.11%, 7.71%, 25.70%, 25.00%, 25.93%, 5.73%, and 9.41%, respectively. Additionally, MT increased the contents of gibberellin, auxin, and MT in grapevines under Se stress, while it decreased the content of abscisic acid. MT increased the contents of total Se, organic Se and inorganic Se in grapevines. Compared with Se treatment, MT increased the contents of total Se in the roots and shoots by 48.82% and 135.66%, respectively. A transcriptome sequencing analysis revealed that MT primarily regulated the cellular, metabolic, and bioregulatory processes of grapevine under Se stress, and the differentially expressed genes (DEGs) were primarily enriched in pathways, such as aminoacyl-tRNA biosynthesis, spliceosome, and flavonoid biosynthesis. These involved nine DEGs and nine metabolic pathways in total. Moreover, a field experiment showed that MT increased the content of Se in grapes and improved their quality. Therefore, MT can alleviate the stress of Se in grapevines and promote their growth and the accumulation of Se.
Collapse
Affiliation(s)
- Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuhang Lu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Shanshan Xing
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jinman Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lei Liu
- Institute of Horticulture Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Kewen Huang
- Institute of Horticulture Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoli Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Cristani M, Citarella A, Carnamucio F, Micale N. Nano-Formulations of Natural Antioxidants for the Treatment of Liver Cancer. Biomolecules 2024; 14:1031. [PMID: 39199418 PMCID: PMC11352298 DOI: 10.3390/biom14081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress is a key factor in the pathological processes that trigger various chronic liver diseases, and significantly contributes to the development of hepatocarcinogenesis. Natural antioxidants reduce oxidative stress by neutralizing free radicals and play a crucial role in the treatment of free-radical-induced liver diseases. However, their efficacy is often limited by poor bioavailability and metabolic stability. To address these limitations, recent advances have focused on developing nano-drug delivery systems that protect them from degradation and enhance their therapeutic potential. Among the several critical benefits, they showed to be able to improve bioavailability and targeted delivery, thereby reducing off-target effects by specifically directing the antioxidant to the liver tumor site. Moreover, these nanosystems led to sustained release, prolonging the therapeutic effect over time. Some of them also exhibited synergistic effects when combined with other therapeutic agents, allowing for improved overall efficacy. This review aims to discuss recent scientific advances in nano-formulations containing natural antioxidant molecules, highlighting their potential as promising therapeutic approaches for the treatment of liver cancer. The novelty of this review lies in its comprehensive focus on the latest developments in nano-formulations of natural antioxidants for the treatment of liver cancer.
Collapse
Affiliation(s)
- Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy;
| | - Andrea Citarella
- Department of Chemistry, University of Milan, Via Golgi 19, I-20133 Milano, Italy;
| | - Federica Carnamucio
- Center of Pharmaceutical Engineering and Sciences, Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy;
| |
Collapse
|
12
|
Zhang HQ, Shi J, Yue T, Weng JH, Wang XL, Wang H, Su XY, Zheng XY, Luo SH, Ding Y, Wang CF. Association between composite dietary antioxidant index and stroke among individuals with diabetes. World J Diabetes 2024; 15:1742-1752. [PMID: 39192859 PMCID: PMC11346086 DOI: 10.4239/wjd.v15.i8.1742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/23/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Recent research has underscored the potentially protective role of dietary antioxidants against chronic conditions, such as cardiovascular diseases and stroke. The composite dietary antioxidant index (CDAI), which reflects the overall intake of key dietary antioxidants, has been identified as a crucial metric for exploring this relationship. Although previous research has shown a negative correlation between CDAI levels and stroke risk in prediabetic individuals, there remains a substantial gap in understanding this association among individuals with dia-betes, who are at an inherently greater risk for cerebrovascular events. AIM To investigate the association between CDAI and stroke risk in individuals with diabetes. METHODS Using a cross-sectional study design, this investigation analyzed data from the National Health and Nutrition Examination Survey spanning from 2003 to 2018 that included 6735 participants aged over 20 years with diabetes. The CDAI was calculated from 24-h dietary recalls to assess intake of key antioxidants: Vitamins A, C, and E; carotenoids; selenium; and zinc. Multivariate logistic regression and restricted cubic spline analysis were used to rigorously examine the relationship between CDAI and stroke risk. RESULTS The participant cohort, with an average age of 59.5 years and a slight male majority, reflected the broader demographic characteristics of individuals with diabetes. The analysis revealed a strong inverse relationship between CDAI levels and stroke risk. Remarkably, those in the highest quintile of CDAI demonstrated a 43% lower prevalence of stroke compared to those in the lowest quintile, even after adjustments for various confounders. This finding not only highlights the negative association between CDAI and stroke risk but also underscores the significant potential of antioxidant-rich diets in reducing stroke prevalence among patients with diabetes. CONCLUSION Our findings suggested that CDAI was inversely associated with stroke prevalence among patients with diabetes. These results suggest incorporating antioxidant-rich foods into dietary regimens as a potential strategy for stroke prevention.
Collapse
Affiliation(s)
- Hong-Qiang Zhang
- Department of Cardiology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Jie Shi
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Tong Yue
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Jia-Hao Weng
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Xu-Lin Wang
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Hao Wang
- Graduate School, Bengbu Medical College, Bengbu 233030, Anhui Province, China
| | - Xiao-Yu Su
- Graduate School, Bengbu Medical College, Bengbu 233030, Anhui Province, China
| | - Xue-Ying Zheng
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Si-Hui Luo
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Yu Ding
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Chao-Fan Wang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
13
|
Yuan S, Zhang Y, Dong PY, Chen Yan YM, Liu J, Zhang BQ, Chen MM, Zhang SE, Zhang XF. A comprehensive review on potential role of selenium, selenoproteins and selenium nanoparticles in male fertility. Heliyon 2024; 10:e34975. [PMID: 39144956 PMCID: PMC11320318 DOI: 10.1016/j.heliyon.2024.e34975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Selenium (Se), a component of selenoproteins and selenocompounds in the human body, is crucial for the development of male reproductive organs, DNA synthesis, thyroid hormone, metabolism, and defence against infections and oxidative damage. In the testis, it must exceed a desirable level since either a shortage or an overabundance causes aberrant growth. The antioxidant properties of selenium are essential for preserving human reproductive health. Selenoproteins, which have important structural and enzymatic properties, control the biological activities of Se primarily. These proteins specifically have a role in metabolism and a variety of cellular processes, such as the control of selenium transport, thyroid hormone metabolism, immunity, and redox balance. Selenium nanoparticles (SeNPs) are less hazardous than selenium-based inorganic and organic materials. Upon being functionalized with active targeting ligands, they are both biocompatible and capable of efficiently delivering combinations of payloads to particular cells. In this review, we discuss briefly the chemistry, structure and functions of selenium and milestones of selenium and selenoproteins. Next we discuss the various factors influences male infertility, biological functions of selenium and selenoproteins, and role of selenium and selenoproteins in spermatogenesis and male fertility. Furthermore, we discuss the molecular mechanism of selenium transport and protective effects of selenium on oxidative stress, apoptosis and inflammation. We also highlight critical contribution of selenium nanoparticles on male fertility and spermatogenesis. Finally ends with conclusion and future perspectives.
Collapse
Affiliation(s)
- Shuai Yuan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, 250014, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu-Mei Chen Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Liu
- Analytical & Testing Center of Qingdao Agricultural University, Qingdao, 266100, China
| | - Bing-Qiang Zhang
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Meng-Meng Chen
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Xi-Feng Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
14
|
Zhou W, Chen J, Liu P, Wang F, Chen H. Comparative effects of different metals on the Japanese medaka embryos and larvae. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:653-661. [PMID: 38851654 DOI: 10.1007/s10646-024-02762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/22/2024] [Indexed: 06/10/2024]
Abstract
Rapid evaluation of the toxicity of metals using fish embryo acute toxicity is facilitative to ecological risk assessment of aquatic organisms. However, this approach has seldom been utilized for the comparative study on the effects of different metals to fish. In this study, acute and sub-chronic tests were used to compare the toxicity of Se(IV) and Cd in the embryos and larvae of Japanese medaka (Oryzias latipes). The embryos with different levels of dechorionation and/or pre-exposure were also exposed to Se(IV) and Cd at various concentrations. The results showed that the LC50-144 h of Cd was 1.3-5.2 folds higher than that of Se(IV) for the embryos. In contrast, LC50-96 h of Se(IV) were 200-400 folds higher than that of Cd for the larvae. Meanwhile, dechorionated embryos were more sensitive to both Se and Cd than the intact embryos. At elevated concentrations, both Se and Cd caused mortality and deformity in the embryos and larvae. In addition, pre-exposure to Cd at the embryonic stages enhanced the resistance to Cd in the larvae. However, pre-exposure to Se(IV) at the embryonic stages did not affect the toxicity of Se(IV) to the larvae. This study has distinguished the nuance differences in effects between Se(IV) and Cd after acute and sub-chronic exposures with/without chorion. The approach might have a potential in the comparative toxicology of metals (or other pollutants) and in the assessment of their risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Wenji Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Jiating Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Ping Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Feifan Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Seko T, Uchida H, Sato Y, Imamura S, Ishihara K, Yamashita Y, Yamashita M. Selenoneine Is Methylated in the Bodies of Mice and then Excreted in Urine as Se-Methylselenoneine. Biol Trace Elem Res 2024; 202:3672-3685. [PMID: 37932617 DOI: 10.1007/s12011-023-03936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023]
Abstract
Oral intake of purified selenoneine and seafoods has been reported to result in selenoneine accumulation in erythrocytes in mice and human. In addition, Se-methylselenoneine was suggested to be produced as a metabolite of selenoneine in the urine and whole blood of humans. In order to confirm the molecular mechanism of production of Se-methylselenoneine, a stable isotope (Se-76) labeled selenoneine was biosynthesized using genetically modified fission yeast and administered to mice. The Se-76-labeled Se-methylselenoneine was detected in urine but Se-78 and Se-80-labeled Se-methylselenoneine arising from natural isotopes of Se was hardly detected. These results suggest that Se-methylselenoneine was a metabolite and the excreted form of selenoneine. The methylation of selenoneine in mice administered selenoneine continuously was evaluated by the analyses of organs using an online liquid chromatograph system with an inductively coupled plasma mass spectrometer (LC-ICP-MS). These experiments indicate that selenoneine is methylated in the liver and (or) kidneys.
Collapse
Affiliation(s)
- Takuya Seko
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, 236-8648, Japan.
| | - Hajime Uchida
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, 236-8648, Japan
| | - Yoko Sato
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, 236-8648, Japan
| | - Shintaro Imamura
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, 236-8648, Japan
| | - Kenji Ishihara
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, 236-8648, Japan
| | - Yumiko Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, 236-8648, Japan
| | - Michiaki Yamashita
- Department of Food Science and Technology, National Fisheries University, Japan Fisheries Research and Education Agency, Yamaguchi, 759-6595, Japan
| |
Collapse
|
16
|
Pyrzynska K, Sentkowska A. Selenium Species in Diabetes Mellitus Type 2. Biol Trace Elem Res 2024; 202:2993-3004. [PMID: 37880477 PMCID: PMC11074226 DOI: 10.1007/s12011-023-03900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023]
Abstract
Selenium is an important trace element for humans and animals as it plays a key role in several major metabolic pathways. Several studies were conducted to better understand the role of selenium against diabetes mellitus (DM), particularly type 2 (T2DM), but the obtained conclusions are contradictory. A simple linear relationship does not exist between the risk of T2DM and selenium levels but is best represented in a dose-dependent manner, getting often the U-graph. This relation also depends on selenium chemical forms that are present in a diet or supplements. Both too low and too high selenium intakes could increase the risk of diabetes. Moreover, the baseline status of Se should be taken into consideration to avoid over-supplementation. The focus of this brief overview is to report the recent updates concerning selenium participation in diabetes mellitus.
Collapse
Affiliation(s)
- Krystyna Pyrzynska
- Faculty of Chemistry, University of Warsaw, Pasteur Str. 1, 02-093, Warsaw, Poland.
| | | |
Collapse
|
17
|
Bao X, Chen F, Liu F, Qiu Y, Lin L, Wang J, He B. Preoperative Serum Selenium Concentrations and Disease-Specific Survival in Patients With Oral Cancer: A Long-Term Follow-Up Study. J Oral Maxillofac Surg 2024; 82:869-877.e1. [PMID: 38636547 DOI: 10.1016/j.joms.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Serum selenium (Se) concentration has been reported to be associated with the incidence of oral cancer. The association between serum Se and long-term survival in oral cancer patients is still unclear. PURPOSE The purpose of this study is to measure the association between serum Se and disease-specific survival (DSS). STUDY DESIGN, SETTING, AND SAMPLE This was a single-center, prospective cohort study conducted at the First Affiliated Hospital of Fujian Medical University (Fujian Province, China) from September 2011 to December 2018. The inclusion criteria were patients with newly diagnosed primary oral cancer confirmed by histology. The exclusion criteria were patients with recurrent oral cancer or metastatic cancer. PREDICTOR VARIABLE The predictor variable is the preoperative serum Se concentration measured using inductively coupled plasma-mass spectrometry. MAIN OUTCOME VARIABLE(S) The primary outcome variable is DSS calculated from the date of diagnosis to the date of death due to oral cancer or the end of follow-up, whichever occurred first. COVARIATES The covariates were age, sex, occupation, education level, body mass index, surgery therapy, adjuvant therapy, tumor node metastasis stage, and pathological grading. ANALYSES Kaplan-Meier survival analysis, Cox proportional hazards regression, and restricted cubic spline regression were utilized. P value < .05 was significant. RESULTS The sample was composed of 235 subjects with a median age of 59 years (ranged from 20 to 80 years) and 142 (60.43%) were male. The median follow-up was 54.90 months (interquartile range: 35.47). Se levels were associated with DSS (unadjusted hazard ratio [HR] = 0.70; 95% confidence interval [CI]: 0.54-0.91) suggesting that higher levels of Se are associated with longer or improved DSS. After adjustment of age, sex, occupation, education level, residence, tumor node metastasis stage, pathological grading, surgery therapy, radiotherapy, and chemotherapy, patients with higher serum Se had a better DSS (aHR = 0.67; 95% CI: 0.49-0.92). Of note, we found that the association between serum Se and DSS was observed only in patients with radiotherapy (aHR = 0.49; 95% CI: 0.33-0.73). And the protective effect of radiotherapy on survival was only observed in patients with higher Se concentrations (aHR = 0.36; 95% CI: 0.20-0.63). Additionally, there was a multiplicative interaction between Se and radiotherapy on the prognosis of oral cancer patients (Pinteraction<0.01). CONCLUSION AND RELEVANCE Our findings suggest that a high Se concentration might contribute to better DSS among oral cancer patients, and the effect may partly depend on radiotherapy treatment. Given these findings, additional research should focus on the role of Se in DSS among oral cancer patients and the interaction with radiotherapy.
Collapse
Affiliation(s)
- Xiaodan Bao
- Assistant Experimentalist, School of Health Management, Fujian Medical University, Fuzhou, Fujian, China
| | - Fa Chen
- Associate Professor, Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Fengqiong Liu
- Associate Professor, Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yu Qiu
- Physician, Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Lisong Lin
- Physician, Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jing Wang
- Senior Experimentalist, Laboratory Center, The Major Subject of Environment and Health of Fujian Key Universities, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Baochang He
- Professor, Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
18
|
Prasad S, Pandey VK, Singh K, Shams R, Singh R, Goksen G. A comprehensive review on nutritional interventions and nutritive elements: Strengthening immunity for effective defense mechanism during pandemic. Food Sci Nutr 2024; 12:4534-4545. [PMID: 39055200 PMCID: PMC11266904 DOI: 10.1002/fsn3.4138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/06/2024] [Accepted: 03/16/2024] [Indexed: 07/27/2024] Open
Abstract
The pandemic has brought attention to the importance of a healthy immune system in preventing infectious diseases. In this in-depth review, the process by which nutritional interventions and fundamental nutrients affect immune function has been discussed with the goal of enhancing the body's natural defenses against viral infections. We explored the complex interplay between diet and immunology, highlighting the essential nutrients, vitamins, minerals, and bioactive substances that are crucial for enhancing immune response. We also investigated the effect of dietary patterns and supplementation methods on immune function. We assessed the effectiveness and potential mechanisms of action of various nutritional therapies in modifying immune responses through a thorough examination of scientific literature. Additionally, we go through the significance of individualized nutrition and highlight possible factors to consider for vulnerable groups, such as the elderly and people with chronic conditions. This review attempts to provide a thorough understanding of the role of diet in boosting immunity by synthesizing available research. It also offers insights into practical methods for enhancing the immune function during the current epidemic and in the future.
Collapse
Affiliation(s)
| | - Vinay Kumar Pandey
- RDC, Biotechnology DepartmentManav Rachna International Institute of Research and Studies (Deemed to Be University)FaridabadIndia
| | - Kunal Singh
- Institute of Bio Science and TechnologyShri Ramswaroop Memorial UniversityLucknowIndia
| | - Rafeeya Shams
- Department of Food Technology and NutritionLovely Professional UniversityPhagwaraIndia
| | - Rahul Singh
- Department of BioengineeringIntegral UniversityLucknowIndia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial ZoneTarsus UniversityMersinTurkey
| |
Collapse
|
19
|
Lin X, Qiao L, Liu H, Bao M, Deng H, Jia L, Wen X, Deng F, Wan P, Lyu Y, Han J. An untargeted metabolomics study of cardiac pathology damage in rats caused by low selenium diet alone or in combination with T-2 toxin. Food Chem Toxicol 2024; 189:114759. [PMID: 38796086 DOI: 10.1016/j.fct.2024.114759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
T-2 toxin is a highly cardiotoxic environmental contaminant. Selenium can uphold the cardiovascular system's functionality. Selenium insufficiency is common. The aim of this study was to elucidate the effects of low selenium diet alone or in combination with T-2 toxin on myocardial tissue damage. Thirty-two Sprague-Dawley rats of 3 weeks of age were randomized into control, low selenium diet, low selenium diet combined with T-2 toxin groups (at doses of 10 ng/g and 100 ng/g body weight) for 12-weeks intervention. Pathohistology and ultrastructural changes in cardiac tissue were observed. Changes in cardiac metabolites were analyzed using untargeted metabolomics. The findings demonstrated that cardiac tissue abnormalities, interstitial bleeding, inflammatory cell infiltration, and mitochondrial damage can be brought on by low selenium diet alone or in combination with the T-2 toxin. A low selenium diet alone or in combination with the T-2 toxin affected cardiac metabolic profiles and resulted in aberrant modifications in many metabolic pathways, including the metabolism of amino acids, cholesterol, and thiamine. Accordingly, low selenium diet and T-2 toxin may have a synergistic effect. Our findings provide fresh insights into the processes of cardiac injury by revealing the effects of low selenium diet and T-2 toxin on cardiac metabolism.
Collapse
Affiliation(s)
- Xue Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Lichun Qiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Haobiao Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Miaoye Bao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Huan Deng
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Lianxu Jia
- Xi'an Gem Flower Chang Qing Hospital, Xi'an, Shaanxi, 710201, China.
| | - Xinyue Wen
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Feidan Deng
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Ping Wan
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Yizhen Lyu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
20
|
Zeng Z, Lv B, Tang YE, Sun H, Li S, He Y, Wang J, Wang Z. Effects of dietary selenized glucose on intestinal microbiota and tryptophan metabolism in rats: Assessing skatole reduction potential. ENVIRONMENTAL RESEARCH 2024; 252:118874. [PMID: 38579995 DOI: 10.1016/j.envres.2024.118874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/07/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
3-Methylindole (Skatole), a degradation product of tryptophan produced by intestinal microbial activity, significantly contributes to odor nuisance. Its adverse effects on animal welfare, human health, and environmental pollution have been noted. However, it is still unclear whether the intestinal microbiota mediates the impact of selenium (Se) on skatole production and what the underlying mechanisms remain elusive. A selenized glucose (SeGlu) derivative is a novel organic selenium compound. In this study, a diverse range of dietary SeGlu-treated levels, including SeGlu-deficient (CK), SeGlu-adequate (0.15 mg Se per L), and SeGlu-supranutritional (0.4 mg Se per L) conditions, were used to investigate the complex interaction of SeGlu on intestinal microbiome and serum metabolome changes in male Sprague-Dawley (SD) rats. The study showed that SeGlu supplementation enhanced the antioxidant ability in rats, significantly manifested in the increases of the activity of catalase (CAT) and glutathione peroxidase (GSH-Px), while no change in the level of malonaldehyde (MDA). Metagenomic sequencing analysis verified that the SeGlu treatment group significantly increased the abundance of beneficial microorganisms such as Clostridium, Ruminococcus, Faecalibacterium, Lactobacillus, and Alloprevotella while reducing the abundance of opportunistic pathogens such as Bacteroides and Alistipes significantly. Further metabolomic analysis revealed phenylalanine, tyrosine, and tryptophan biosynthesis changes in the SeGlu treatment group. Notably, the biosynthesis of indole, a critical pathway, was affected by SeGlu treatment, with several crucial enzymes implicated. Correlation analysis demonstrated strong associations between specific bacterial species - Treponema, Bacteroides, and Ruminococcus, and changes in indole and derivative concentrations. Moreover, the efficacy of SeGlu-treated fecal microbiota was confirmed through fecal microbiota transplantation, leading to a decrease in the concentration of skatole in rats. Collectively, the analysis of microbiota and metabolome response to diverse SeGlu levels suggests that SeGlu is a promising dietary additive in modulating intestinal microbiota and reducing odor nuisance in the livestock and poultry industry.
Collapse
Affiliation(s)
- Zhi Zeng
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Bo Lv
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Yun-E Tang
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Huimin Sun
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Shunfeng Li
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Yuan He
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Juan Wang
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Zhi Wang
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China.
| |
Collapse
|
21
|
Pal A, Dhar A, Shamim MA, Rani I, Negi RR, Sharma A, Chatterjee N, Goyal A, Sadashiv, Kaur B, Tondolo V, Rongioletti M, Samantaray SR, Hoque M, Pawar A, Goswami K, Squitti R. Selenium levels in colorectal cancer: A systematic review and meta-analysis of serum, plasma, and colorectal specimens. J Trace Elem Med Biol 2024; 84:127429. [PMID: 38493666 DOI: 10.1016/j.jtemb.2024.127429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is a growing public health problem. Several clinical studies have shown a potentially protective effect of selenium (Se), but the reports are inconsistent. The objective of the study was to examine the evidence for relation between serum/tissue Se status and CRC. METHOD AND MATERIALS In this Systematic Review and Meta-Analysis, we searched Cochrane Library, EBSCOhost, EMBASE, ProQuest, PubMed/MEDLINE, Scopus, and Web of Science for studies reporting serum/plasma/whole blood/tissue Se concentrations in CRC patients and controls for articles published till August 2023. Meta-analysis was performed, and study quality, heterogeneity, and small study effects were assessed. Based on a random effects model, summary mean differences in serum levels of Se between CRC patients and healthy controls, and Se levels between malignant and matched non-malignant tissue specimens were assessed. RESULTS After initial screening, a total of 24 studies (18 serum and 6 tissue studies) with a pooled total of 2640 participants were included in the meta-analysis. CRC patients had significantly lower serum Se levels than healthy controls, being the difference between the two equal to 3.73 µg/dl (95% CI: 6.85-0.61). However, the heterogeneity was very high, I2= 99% (p < 0.01). Our meta-analysis showed higher Se levels in CRC cancerous specimens than in matched healthy colon tissue: the increase was equal to 0.07 µg/g wet tissue weight (95% CI: 0.06-0.09; p= 0.02). CONCLUSIONS CRC patients have lower serum and higher colon cancerous tissue Se levels. Some factors, such as Se levels in different tumor grades of CRC need to be further considered for a more conclusive association between Se levels and risk of CRC.
Collapse
Affiliation(s)
- Amit Pal
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, India.
| | - Aninda Dhar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, India
| | - Muhammad Aaqib Shamim
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur, Ambala 134007, India
| | - Ram Rattan Negi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal 462020, India
| | - Aaina Sharma
- MPH 2nd year student, Department of Community Medicine and School of Public Health, PGIMER, Chandigarh 160012, India
| | - Namrata Chatterjee
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, India
| | - Anmol Goyal
- Department of Community Medicine, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur, Ambala 134007, India
| | - Sadashiv
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raebareli, India
| | - Bandhan Kaur
- JRF, Department of Obstetrics and Gynaecology, PGIMER, Chandigarh 160012, India
| | - Vincenzo Tondolo
- Digestive and Colorectal Surgery, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome 00186, Italy; Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Mauro Rongioletti
- Department of Laboratory Science, Research and Development Division, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome 00186, Italy
| | - Subha Ranjan Samantaray
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, India
| | - Mehboob Hoque
- Applied Bio-Chemistry Laboratory, Department of Biological Sciences, Aliah University, Kolkata 700160, India
| | - Anil Pawar
- C-3, Starex University, Gurugram, Haryana 122413, India
| | - Kalyan Goswami
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, India
| | - Rosanna Squitti
- Department of Laboratory Science, Research and Development Division, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome 00186, Italy
| |
Collapse
|
22
|
Du C, Wang P, Li Y, Cong X, Huang D, Chen S, Zhu S. Investigation of selenium and selenium species in Cardamine violifolia using in vitro digestion coupled with a Caco-2 cell monolayer model. Food Chem 2024; 444:138675. [PMID: 38335688 DOI: 10.1016/j.foodchem.2024.138675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Inadequate Se intake can enhance vulnerability to certain health risks, with supplementation lessening these risks. This study investigated the bioavailability of Se and Se species in five Se compounds and in Se-rich Cardamine violifolia using in vitro digestion coupled with a Caco-2 cell monolayer model, which enabled the study of Se transport and uptake. Translocation results showed that SeCys2 and MeSeCys had high translocation rates in C. violifolia leaves (CVLs). The uptake rate of organic Se increased with time, and MeSeCys exhibited a higher uptake rate than that for SeCys2 and SeMet. The translocation mechanisms of SeMet, Se(IV), and Se(VI) were passive transport, whereas those of SeCys2 and MeSeCys were active transport. The bioavailability of organic Se was higher than that of inorganic Se, with a total Se bioavailability in CVLs of 49.11 %. This study would provide a theoretical basis for the application of C. violifolia in the functional food.
Collapse
Affiliation(s)
- Chaodong Du
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peiyu Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yue Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, Hubei 445000, China; National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore
| | - Shangwei Chen
- Analysis and Testing Center, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Song Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
23
|
Gandhi VV, Pal MK, Singh BG, Das RP, Wadawale AP, Dey S, Kunwar A. Deuterium labeling improves the therapeutic index of 3,3'-diselenodipropionic acid as an anticancer agent: insights from redox reactions. RSC Med Chem 2024; 15:2165-2178. [PMID: 38911162 PMCID: PMC11187547 DOI: 10.1039/d4md00105b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/02/2024] [Indexed: 06/25/2024] Open
Abstract
3,3'-Diselenodipropionic acid (DSePA), a selenocystine derivative, has been previously reported as an oral supplement for anticancer/radio-modulation activities. The present study is focused on devising a strategy to synthesize and characterize the deuterated derivative of DSePA and on understanding the effect of deuteration on its therapeutic index by comparing its cytotoxicity in cancerous versus non-cancerous cell types. In this context, the synthesis of 3,3'-diselenodipropionic acid-D8 (D-DSePA) was accomplished in ∼42% yield. Further, the results clearly established that the deuteration of DSePA significantly reduced its cytotoxicity in non-cancerous cell types while retaining its cytotoxicity in cancerous cell lines. Together, D-DSePA displayed a ∼5-fold higher therapeutic index than the non-deuterated derivative for anticancer activity. The biochemical and NMR studies confirmed that the better biocompatibility of D-DSePA than its non-deuterated derivative in non-cancerous cells was due to its ability to undergo slower redox reactions and to cause lesser inhibition of intracellular redox enzymes.
Collapse
Affiliation(s)
- V V Gandhi
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25505151 91 22 25592352/25595399
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400 094 India
| | - M K Pal
- Chemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25592589
| | - B G Singh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25505151 91 22 25592352/25595399
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400 094 India
| | - R P Das
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25505151 91 22 25592352/25595399
| | - A P Wadawale
- Chemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25592589
| | - S Dey
- Chemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25592589
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400 094 India
| | - A Kunwar
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25505151 91 22 25592352/25595399
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400 094 India
| |
Collapse
|
24
|
Karkoszka N, Gibula-Tarlowska E, Kotlinska J, Bielenica A, Gawel K, Kedzierska E. Selenium Intake and Postnatal Depression-A Short Review. Nutrients 2024; 16:1926. [PMID: 38931280 PMCID: PMC11206929 DOI: 10.3390/nu16121926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Postnatal depression is a common and severe complication of childbirth. It is an important public health problem with significant implications for both mothers and children. The exact mechanisms underlying and the factors influencing the occurrence of postnatal depression remain unclear. The literature suggests that certain dietary deficiencies during pregnancy and the postnatal period may contribute to a greater risk of maternal depression. This review focuses on the role of selenium in postnatal depression. It collects evidence from published interventional and observational studies investigating the relationship between selenium intake during the antenatal and postnatal periods and the mental status of postpartum women and summarises information about biological mechanisms that may underlie the association between selenium status and postnatal depression. The review includes studies identified through electronic searches of Medline (via PubMed) and Google Scholar databases until December 2023. Despite the small number of relevant studies and their potential methodological limitations, the findings suggest that optimizing selenium status may support the prevention and treatment of postnatal depression. Further longitudinal and interventional studies are necessary to confirm the clinical significance of these effects.
Collapse
Affiliation(s)
- Natalia Karkoszka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodźki Street, 20-400 Lublin, Poland; (E.G.-T.); (J.K.); (E.K.)
| | - Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodźki Street, 20-400 Lublin, Poland; (E.G.-T.); (J.K.); (E.K.)
| | - Jolanta Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodźki Street, 20-400 Lublin, Poland; (E.G.-T.); (J.K.); (E.K.)
| | - Anna Bielenica
- Department of Biochemistry, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland;
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 8b Jaczewskiego Street, 20-090 Lublin, Poland;
| | - Ewa Kedzierska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodźki Street, 20-400 Lublin, Poland; (E.G.-T.); (J.K.); (E.K.)
| |
Collapse
|
25
|
Hou Y, Chen X, Zhang M, Yang S, Liao A, Pan L, Wang Z, Shen X, Yuan X, Huang J. Selenium-Chelating Peptide Derived from Wheat Gluten: In Vitro Functional Properties. Foods 2024; 13:1819. [PMID: 38928761 PMCID: PMC11203129 DOI: 10.3390/foods13121819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The efficacy of selenium-chelating polypeptides derived from wheat protein hydrolysate (WPH-Se) includes enhancing antioxidant capacity, increasing bioavailability, promoting nutrient absorption, and improving overall health. This study aimed to enhance the bioavailability and functional benefits of exogenous selenium by chelating with wheat gluten protein peptides, thereby creating bioactive peptides with potentially higher antioxidant capabilities. In this study, WPH-Se was prepared with wheat peptide and selenium at a mass ratio of 2:1, under a reaction system at pH 8.0 and 80 °C. The in vitro antioxidant activity of WPH-Se was evaluated by determining the DPPH, OH, and ABTS radical scavenging rate and reducing capacity under different conditions, and the composition of free amino acids and bioavailability were also investigated at various digestion stages. The results showed that WPH-Se possessed significant antioxidant activities under different conditions, and DPPH, OH, and ABTS radical scavenging rates and reducing capacity remained high at different temperatures and pH values. During gastrointestinal digestion in vitro, both the individual digestate and the final digestate maintained high DPPH, OH, and ABTS radical scavenging rates and reducing capacity, indicating that WPH-Se was able to withstand gastrointestinal digestion and exert antioxidant effects. Post-digestion, there was a marked elevation in tryptophan, cysteine, and essential amino acids, along with the maintenance of high selenium content in the gastrointestinal tract. These findings indicate that WPH-Se, with its enhanced selenium and amino acid profile, serves as a promising ingredient for dietary selenium and antioxidant supplementation, potentially enhancing the nutritional value and functional benefits of wheat gluten peptides.
Collapse
Affiliation(s)
- Yinchen Hou
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| | - Xinyang Chen
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
| | - Mingyi Zhang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
| | - Shengru Yang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
| | - Aimei Liao
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| | - Long Pan
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| | - Zhen Wang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
| | - Xiaolin Shen
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
| | - Xiaoqing Yuan
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
| | - Jihong Huang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| |
Collapse
|
26
|
Jin X, Dong Y, Yang M, Zhou K, Dai Z, Zhang D, Wang X, Lin L, Wang J. Effects of different rootstocks grafting on selenium accumulation in Cyphomandra betacea Sendt. seedlings under selenium-contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1885-1892. [PMID: 38825962 DOI: 10.1080/15226514.2024.2359527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The effects of rootstocks tomato (Solanum lycopersicum L.), eggplant (Solanum melongena L.), and nightshade (Solanum nigrum L.) grafting on the growth and selenium (Se) accumulation of Cyphomandra betacea Sendt. seedlings were studied to identify the most suitable rootstock for increasing Se uptake of fruit trees grown in Se-contaminated soil. The rootstocks of tomato, eggplant, and nightshade grafting increased the scion biomass of C. betacea seedlings by 146.1%, 23.2%, and 94.5%, respectively, compared with the un-grafted seedlings. Moreover, tomato, eggplant, and nightshade rootstocks grafting increased the photosynthesis, superoxide dismutase activity, and peroxidase activity, while reducing the catalase activity and soluble protein content of C. betacea seedlings. Although all three rootstocks grafting decreased Se contents in rootstock roots and stems, only nightshade rootstock grafting increased Se content in the scions of C. betacea seedlings. Notably, root biomass, catalase activity, soluble protein content, rootstock root Se content, and rootstock stem Se content were closely related to the scion Se content. These findings suggest that only grafting onto nightshade rootstock significantly enhances Se uptake in C. betacea, whereas tomato and eggplant rootstocks grafting have no effect on Se uptake.
Collapse
Affiliation(s)
- Xin Jin
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yiping Dong
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Mingqi Yang
- College of Civil Engineering, Architecture and Environment, Yibin Campus of Xihua University, Yibin, Sichuan, China
| | - Kexuan Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhen Dai
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dilian Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xun Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Tang W, Zhu X, Chen Y, Yang S, Wu C, Chen D, Xue L, Guo Y, Dai Y, Wei S, Wu M, Wu M, Wang S. Towards prolonging ovarian reproductive life: Insights into trace elements homeostasis. Ageing Res Rev 2024; 97:102311. [PMID: 38636559 DOI: 10.1016/j.arr.2024.102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Ovarian aging is marked by a reduction in the quantity and quality of ovarian follicles, leading to a decline in female fertility and ovarian endocrine function. While the biological characteristics of ovarian aging are well-established, the exact mechanisms underlying this process remain elusive. Recent studies underscore the vital role of trace elements (TEs) in maintaining ovarian function. Imbalances in TEs can lead to ovarian aging, characterized by reduced enzyme activity, hormonal imbalances, ovulatory disorders, and decreased fertility. A comprehensive understanding of the relationship between systemic and cellular TEs balance and ovarian aging is critical for developing treatments to delay aging and manage age-related conditions. This review consolidates current insights into TEs homeostasis and its impact on ovarian aging, assesses how altered TEs metabolism affects ovarian aging, and suggests future research directions to prolong ovarian reproductive life. These studies are expected to offer novel approaches for mitigating ovarian aging.
Collapse
Affiliation(s)
- Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Xiaoran Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Shuhong Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Mingfu Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| |
Collapse
|
28
|
Wang J, Liu L, Zhang H, Zhang D, Dai Z, Luo X, Zhang X, Xia H, Liang D, Lv X, Lin L. Exogenous indole-3-acetic acid promotes the plant growth and accumulation of selenium in grapevine under selenium stress. BMC PLANT BIOLOGY 2024; 24:426. [PMID: 38769488 PMCID: PMC11103883 DOI: 10.1186/s12870-024-05105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
To alleviate the selenium (Se) stress in fruit trees and improve its accumulation, the effects of exogenous indole-3-acetic acid (IAA) on the growth and Se accumulation of grapevine under Se stress were studied. The application of exogenous IAA increased the biomass of grapevine, and the concentration of exogenous IAA had a regression relationship with the biomass. The root and shoot biomass were the maximum at 60 mg L- 1 IAA, increasing by 15.61% and 23.95%, respectively, compared with the control. Exogenous IAA also increased the photosynthetic pigments and the activities of superoxide dismutase and peroxidase in grapevine. Moreover, exogenous IAA increased the contents of total Se, organic Se, and inorganic Se, and the concentration of exogenous IAA had a regression relationship with the total Se content. The highest contents of root total Se and shoot total Se were accumulated at 90 mg L- 1 IAA, increasing by 29.94% and 55.77% respectively,. In addition, the correlation and path analyses revealed that the carotenoid content and root total Se content were closely associated with the shoot total Se content. Therefore, the application of exogenous IAA can alleviate the stress of Se to grape and promote its uptake and the most effective amount for the uptake of Se is 90 mg L- 1 IAA.
Collapse
Affiliation(s)
- Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lei Liu
- Institute of Horticulture Research, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Haiyan Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dilian Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhen Dai
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xian Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
29
|
Jiang H, Yang G, Chen J, Yuan S, Wu J, Zhang J, Zhang L, Yuan J, Lin J, Chen J, Yin Y. The correlation between selenium intake and lung function in asthmatic people: a cross-sectional study. Front Nutr 2024; 11:1362119. [PMID: 38826577 PMCID: PMC11141543 DOI: 10.3389/fnut.2024.1362119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/01/2024] [Indexed: 06/04/2024] Open
Abstract
Objective This study aimed to examine the correlation between selenium intake and lung function in asthmatic people. Methods A total of 4,541 individuals in the US National Health and Nutrition Examination Survey (NHANES) were included in this study. Multivariate linear regression, variance inflation factor, restricted cubic splines and quantile regression were used to analyze the relationship between Se intake and lung function. We divided selenium intake into four levels based on quartiles: Q1: Se ≤ 76.75 mcg/d; Q2: 76.75-105.1 mcg/d; Q3: 105.1-137.65 mcg/d; and Q4: Se ≥137.65 mcg/d. Results Asthma was negatively associated with the Ratio of Forced Expiratory Volume 1st Second to Forced Vital Capacity (FEV1/FVC) (β = -0.04, 95% CI: -0.06 to -0.02) and FEV1 (β = -215, 95% CI: -340 to -90). Se intake was positively associated with Forced Expiratory Volume 1st Second (FEV1) (β =3.30 95% CI: 2.60 to 4.00) and Forced Vital Capacity (FVC) (β =4.30, 95% CI: 3.50 to 5.10). In asthmatic individuals, the positive effects of Se intake on FVC were enhanced with increasing Se intake, while the positive effects of Se intake on FEV1 varied less dramatically. High Se intake (Q4 level, above 137.65 mcg/d) improved FVC (β = 353, 95% CI: 80 to 626) and FEV1 (β = 543, 95% CI: 118 to 969) in asthmatic patients compared to low Se intake (Q1 level, below 76.75 mcg/d). At the Q2 level (76.75-105.1 mcg/d) and Q4 level (Se ≥137.65 mcg/d) of Se intake, the correlation between FEV1 and asthma disappeared. Conclusion Our research has revealed a positive correlation between selenium intake and lung function in asthma patients and the strength of this positive correlation is related to the amount of selenium intake. We recommend that asthma patients consume 137.65 mcg to 200 mcg of selenium daily to improve pulmonary function while avoiding the adverse effects of selenium on the human body.
Collapse
Affiliation(s)
- Hejun Jiang
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guijun Yang
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Chen
- Department of Respiratory Medicine, Linyi Maternal and Child Healthcare Hospital, Linyi Branch of Shanghai Children’s Medical Center, Shanghai JiaoTong University School of Medicine, Linyi, Shandong, China
| | - Shuhua Yuan
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinhong Wu
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Zhang
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhang
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajun Yuan
- Medical Department of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pediatric AI Clinical Application and Research Center, Shanghai Children’s Medical Center, Shanghai, China
- Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP), Shanghai, China
| | - Jilei Lin
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Pediatric AI Clinical Application and Research Center, Shanghai Children’s Medical Center, Shanghai, China
- Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP), Shanghai, China
| | - Jiande Chen
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Yin
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Respiratory Medicine, Linyi Maternal and Child Healthcare Hospital, Linyi Branch of Shanghai Children’s Medical Center, Shanghai JiaoTong University School of Medicine, Linyi, Shandong, China
- Pediatric AI Clinical Application and Research Center, Shanghai Children’s Medical Center, Shanghai, China
- Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP), Shanghai, China
- Shanghai Children’s Medical Center Pediatric Medical Complex (Pudong), Shanghai, China
| |
Collapse
|
30
|
Białowąs W, Blicharska E, Drabik K. Biofortification of Plant- and Animal-Based Foods in Limiting the Problem of Microelement Deficiencies-A Narrative Review. Nutrients 2024; 16:1481. [PMID: 38794719 PMCID: PMC11124325 DOI: 10.3390/nu16101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
With a burgeoning global population, meeting the demand for increased food production presents challenges, particularly concerning mineral deficiencies in diets. Micronutrient shortages like iron, iodine, zinc, selenium, and magnesium carry severe health implications, especially in developing nations. Biofortification of plants and plant products emerges as a promising remedy to enhance micronutrient levels in food. Utilizing agronomic biofortification, conventional plant breeding, and genetic engineering yields raw materials with heightened micronutrient contents and improved bioavailability. A similar strategy extends to animal-derived foods by fortifying eggs, meat, and dairy products with micronutrients. Employing "dual" biofortification, utilizing previously enriched plant materials as a micronutrient source for livestock, proves an innovative solution. Amid biofortification research, conducting in vitro and in vivo experiments is essential to assess the bioactivity of micronutrients from enriched materials, emphasizing digestibility, bioavailability, and safety. Mineral deficiencies in human diets present a significant health challenge. Biofortification of plants and animal products emerges as a promising approach to alleviate micronutrient deficiencies, necessitating further research into the utilization of biofortified raw materials in the human diet, with a focus on bioavailability, digestibility, and safety.
Collapse
Affiliation(s)
- Wojciech Białowąs
- Faculty of Medicine, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Eliza Blicharska
- Department of Pathobiochemistry and Interdyscyplinary Applications of Ion Chromatography, Faculty of Biomedicine, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Kamil Drabik
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
31
|
Eydelkhani M, Kiabi S, Nowruzi B. In vitro assessment of the effect of magnetic fields on efficacy of biosynthesized selenium nanoparticles by Alborzia kermanshahica. BMC Biotechnol 2024; 24:27. [PMID: 38725019 PMCID: PMC11080146 DOI: 10.1186/s12896-024-00855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Cyanobacteria represent a rich resource of a wide array of unique bioactive compounds that are proving to be potent sources of anticancer drugs. Selenium nanoparticles (SeNPs) have shown an increasing potential as major therapeutic platforms and led to the production of higher levels of ROS that can present desirable anticancer properties. Chitosan-SeNPs have also presented antitumor properties against hepatic cancer cell lines, especially the Cht-NP (Chitosan-NPs), promoting ROS generation and mitochondria dysfunction. It is proposed that magnetic fields can add new dimensions to nanoparticle applications. Hence, in this study, the biosynthesis of SeNPs using Alborzia kermanshahica and chitosan (CS) as stabilizers has been developed. The SeNPs synthesis was performed at different cyanobacterial cultivation conditions, including control (without magnetic field) and magnetic fields of 30 mT and 60 mT. The SeNPs were characterized by uv-visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Dynamic light scattering (DLS), zeta potential, and TEM. In addition, the antibacterial activity, inhibition of bacterial growth, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC), as well as the antifungal activity and cytotoxicity of SeNPs, were performed. The results of uv-visible spectrometry, DLS, and zeta potential showed that 60 mT had the highest value regarding the adsorption, size, and stabilization in compared to the control. FTIR spectroscopy results showed consistent spectra, but the increased intensity of peaks indicates an increase in bond number after exposure to 30 mT and 60 mT. The results of the antibacterial activity and the inhibition zone diameter of synthesized nanoparticles showed that Staphylococcus aureus was more sensitive to nanoparticles produced under 60 mT. Se-NPs produced by Alborzia kermanshahica cultured under a 60 mT magnetic field exhibit potent antimicrobial and anticancer properties, making them a promising natural agent for use in the pharmaceutical and biomedical industries.
Collapse
Affiliation(s)
- Melika Eydelkhani
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shadi Kiabi
- Department of Biology, Tonekabon branch, Islamic Azad University, Tonekabon, Iran
| | - Bahareh Nowruzi
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
32
|
Hossain K, Atta S, Chakraborty AB, Karmakar S, Majumdar A. Nonheme binuclear transition metal complexes with hydrosulfide and polychalcogenides. Chem Commun (Camb) 2024; 60:4979-4998. [PMID: 38654604 DOI: 10.1039/d4cc00929k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The intriguing chemistry of chalcogen (S, Se)-containing ligands and their capability to bridge multiple metal centres have resulted in a plethora of reports on transition metal complexes featuring hydrosulfide (HS-) and polychalcogenides (En2-, E = S, Se). While a large number of such molecules are strictly organometallic complexes, examples of non-organometallic complexes featuring HS- and En2- with N-/O-donor ligands are relatively rare. The general synthetic procedure for the transition metal-hydrosulfido complexes involves the reaction of the corresponding metal salts with HS-/H2S and this is prone to generate sulfido bridged oligomers in the absence of sterically demanding ligands. On the other hand, the synthetic methods for the preparation of transition metal-polychalcogenido complexes include the reaction of the corresponding metal salts with En2- or the two electron oxidation of low-valent metals with elemental chalcogen, often at an elevated temperature and/or for a long time. Recently, we have developed new synthetic methods for the preparation of two new classes of binuclear transition metal complexes featuring either HS-, or Sn2- and Sen2- ligands. The new method for the synthesis of transition metal-hydrosulfido complexes involved transition metal-mediated hydrolysis of thiolates at room temperature (RT), while the method for the synthesis of transition metal-polychalcogenido complexes involved redox reaction of coordinated thiolates and exogenous elemental chalcogens at RT. An overview of the synthetic aspects, structural properties and intriguing reactivity of these two new classes of transition metal complexes is presented.
Collapse
Affiliation(s)
- Kamal Hossain
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Sayan Atta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Anuj Baran Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Soumik Karmakar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
33
|
Zhang S, Zhu H, Wang L, Zhang Y, Cen H, Xu T. Effects of Selenium on the Lignin Deposition Pattern and Stem Mechanical Properties of Alfalfa ( Medicago sativa L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9923-9936. [PMID: 38629800 DOI: 10.1021/acs.jafc.3c06684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Lignin provides structural support to plants; however, it reduces their utilization rate. According to our previous studies, selenium (Se) reduces lignin accumulation in alfalfa, but the specific mechanism involved remains unclear. Therefore, at the seedling stage, four root irrigation treatments using 2.5, 50, and 5 μmol/L sodium selenite (S-RI), selenomethionine (SS-RI), Se nanoparticles (SSS-RI), and deionized water (CK-RI) were performed. At the branching stage, four treatments of foliar spraying with the three Se fertilizers described above at a concentration of 0.5 mmol/L (S-FS, SS-FS, and SSS-FS) and deionized water (CK-FS) were administered. The results revealed that all Se treatments chiefly reduced the level of deposition of syringyl (S) lignin in the first internode of alfalfa stems. SS-FS and SSS-FS treatments mainly reduced the deposition of S and guaiacyl (G) lignins in the sixth internode of alfalfa stems, respectively, while S-FS treatment only slightly reduced the deposition of G lignin. S, SS, and SSS-RI treatments reduced the level of deposition of S and G lignins in the sixth internode of alfalfa stems. Se application increased plant height, stem diameter, epidermis (cortex) thickness, primary xylem vessel number (diameter), and pith diameter of alfalfa but decreased primary xylem area and pith parenchyma cell wall thickness of the first internode, and SS(SSS)-FS treatment reduced the mechanical strength of alfalfa stems. Therefore, Se application could decrease lignin accumulation by regulating the organizational structure parameters of alfalfa stems and the deposition pattern of the lignin monomers.
Collapse
Affiliation(s)
- Shimin Zhang
- College of Grassland Science, Shanxi Agricultural University, Taigu, Shanxi 030801, People's Republic of China
| | - Huisen Zhu
- College of Grassland Science, Shanxi Agricultural University, Taigu, Shanxi 030801, People's Republic of China
| | - Lei Wang
- College of Grassland Science, Shanxi Agricultural University, Taigu, Shanxi 030801, People's Republic of China
| | - Yupeng Zhang
- College of Grassland Science, Shanxi Agricultural University, Taigu, Shanxi 030801, People's Republic of China
| | - Huifang Cen
- College of Grassland Science, Shanxi Agricultural University, Taigu, Shanxi 030801, People's Republic of China
| | - Tao Xu
- College of Grassland Science, Shanxi Agricultural University, Taigu, Shanxi 030801, People's Republic of China
| |
Collapse
|
34
|
Del Castillo Busto ME, Ward-Deitrich C, Evans SO, Rayman MP, Jameson MB, Goenaga-Infante H. Selenium speciation studies in cancer patients to evaluate the responses of biomarkers of selenium status to different selenium compounds. Anal Bioanal Chem 2024; 416:2835-2848. [PMID: 38286852 PMCID: PMC11009772 DOI: 10.1007/s00216-024-05141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/31/2024]
Abstract
This work presents the first systematic comparison of selenium (Se) speciation in plasma from cancer patients treated orally with three Se compounds (sodium selenite, SS; L-selenomethionine, SeMet; or Se-methylselenocysteine, MSC) at 400 µg/day for 28 days. The primary goal was to investigate how these chemical forms of Se affect the plasma Se distribution, aiming to identify the most effective Se compound for optimal selenoprotein expression. This was achieved using methodology based on HPLC-ICP-MS after sample preparation/fractionation approaches. Measurements of total Se in plasma samples collected before and after 4 weeks of treatment showed that median total Se levels increased significantly from 89.6 to 126.4 µg kg-1 Se (p < 0.001), particularly when SeMet was administered (190.4 µg kg-1 Se). Speciation studies showed that the most critical differences between treated and baseline samples were seen for selenoprotein P (SELENOP) and selenoalbumin after administration with MSC (p = 5.8 × 10-4) and SeMet (p = 6.8 × 10-5), respectively. Notably, selenosugar-1 was detected in all low-molecular-weight plasma fractions following treatment, particularly with MSC. Two different chromatographic approaches and spiking experiments demonstrated that about 45% of that increase in SELENOP levels (to ~ 8.8 mg L-1) with SeMet is likely due to the non-specific incorporation of SeMet into the SELENOP affinity fraction. To the authors' knowledge, this has not been reported to date. Therefore, SELENOP is probably part of both the regulated (55%) and non-regulated (45%) Se pools after SeMet administration, whereas SS and MSC mainly contribute to the regulated one.
Collapse
Affiliation(s)
- M Estela Del Castillo Busto
- LGC Limited, National Measurement Laboratory (NML), Queens Road, Teddington, Middlesex, TW11 0LY, UK.
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Universidade da Coruña (UDC), 15071, A Coruña, Spain.
| | - Christian Ward-Deitrich
- LGC Limited, National Measurement Laboratory (NML), Queens Road, Teddington, Middlesex, TW11 0LY, UK
| | - Stephen O Evans
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
- Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand
| | - Margaret P Rayman
- Department of Nutritional Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Michael B Jameson
- Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand
- Oncology Department, Waikato Hospital, Hamilton, New Zealand
| | - Heidi Goenaga-Infante
- LGC Limited, National Measurement Laboratory (NML), Queens Road, Teddington, Middlesex, TW11 0LY, UK.
| |
Collapse
|
35
|
Cui A, Xiao P, Wei X, Wen H, Liang S, Wang P, He J, Zhuang Y. Associations Between Serum Selenium and Bone Mineral Density in 8-19-year-old children and adolescents: NHANES 2013-2018. Biol Trace Elem Res 2024; 202:1928-1936. [PMID: 37606880 DOI: 10.1007/s12011-023-03808-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
The peak bone mass (PBM) in puberty has been proven to be a critical determinant of osteoporosis and brittle fractures in the elderly. Selenium is an essential trace element that could influence bone metabolism in our bodies. However, no study has investigated the impact of selenium status on bone mineral density (BMD) among children and adolescents. This was a cross-section study from National Health and Nutrition Examination Survey (NHANES) in the USA involving participants aged 8-19 years. We conducted multiple linear regression models to assess the relationship between selenium status and BMD among children and adolescents, and then stratified analyses were performed according to genders and races. Smooth curve fits and two-piecewise linear regression models were conducted to explore their nonlinear relationship. A total of 4570 participants (2338 boys and 2232 girls) were included in the present study, with a mean age of 13.57 ± 3.41 years. In the multivariable adjustment model, serum selenium was positively associated with lumbar spine BMD (β = 0.021 95% CI: 0.008, 0.034, P = 0.001). The dose-response analyses indicated a non-linear inverted U-shaped relationship between serum selenium and lumbar spine BMD. Lower and higher selenium concentrations were related to decreased BMD, and the inflection point of serum selenium was 2.60 umol/L. The inverted U-shaped association was also observed in females (inflection point: 2.49 umol/L), males (inflection point: 2.65 umol/L), Non-Hispanic White (inflection point: 2.50 umol/L), Non-Hispanic Black (inflection point: 2.50 umol/L), and other races (Including multi-racial) (inflection point: 2.81 umol/L). Our study first shows a non-linear inversed U-shaped association between selenium status and BMD among children and adolescents. The proper selenium status will benefit bone health in children and adolescents. More research is still required to verify our findings and their potential mechanisms.
Collapse
Affiliation(s)
- Aiyong Cui
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Peilun Xiao
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Xing Wei
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Hongquan Wen
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Shaobo Liang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Pengfei Wang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China.
| | - Jing He
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China.
| | - Yan Zhuang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China.
| |
Collapse
|
36
|
Atiga S, Saunders GC, Henderson W. Selenosalicylate; a little-studied heavy-element analogue of the versatile thiosalicylate ligand. RSC Adv 2024; 14:12323-12336. [PMID: 38633482 PMCID: PMC11019910 DOI: 10.1039/d4ra00926f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Selenosalicylic acid (ortho-HSeC6H4CO2H), the heavy element congener of the widely studied thiosalicylic acid, was prepared by reaction of 2-carboxybenzenediazonium chloride (HO2CC6H4N2+Cl-) with Na2Se2, followed by reduction of the resulting diselenide (SeC6H4CO2H)2 with zinc and acetic acid. The coordination chemistry of the selenosalicylate ligand towards a variety of platinum(ii), palladium(ii), nickel(ii), gold(iii), gold(i), rhodium(iii), iridium(iii) and ruthenium(ii) centres was explored. X-ray crystal structure determinations were carried out on the complexes [Pt(SeC6H4CO2)(PPh3)2], [{(p-cym)Ru(SeC6H4CO2)}2] (p-cym = η6-p-cymene, CH3C6H4CH(CH3)2), [{Cp*Rh(SeC6H4CO2)}2] (Cp* = η5-C5Me5) and [Cp*Ir(SeC6H4CO2)(PPh3)], and comparisons are made with corresponding thiosalicylate complexes. The complexes were characterised by NMR spectroscopy as well as ESI mass spectrometry, which indicated a greater propensity for fragmentation including by selenium loss, compared to the thiosalicylate analogues. Hirshfeld surface analysis to visualise and quantify intermolecular interactions revealed the dominance of H⋯H contacts in [{(p-cym)Ru(SeC6H4CO2)}2] and [Cp*Ir(SeC6H4CO2)(PPh3)].
Collapse
Affiliation(s)
- Simeon Atiga
- Chemistry, School of Science, University of Waikato Private Bag 3105 Hamilton 3240 New Zealand
- Department of Chemistry, Faculty of Natural Sciences, Kogi State University PMB 1008, Anyigba Kogi State Nigeria
| | - Graham C Saunders
- Chemistry, School of Science, University of Waikato Private Bag 3105 Hamilton 3240 New Zealand
| | - William Henderson
- Chemistry, School of Science, University of Waikato Private Bag 3105 Hamilton 3240 New Zealand
| |
Collapse
|
37
|
An L, Zhou C, Zhao L, Wei A, Wang Y, Cui H, Zheng S. Selenium-oxidizing Agrobacterium sp. T3F4 decreases arsenic uptake by Brassica rapa L. under a native polluted soil. J Environ Sci (China) 2024; 138:506-515. [PMID: 38135416 DOI: 10.1016/j.jes.2023.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 12/24/2023]
Abstract
Toxic arsenic (As) and trace element selenium (Se) are transformed by microorganisms but their complex interactions in soil-plant systems have not been fully understood. An As- and Se- oxidizing bacterium, Agrobacterium sp. T3F4, was applied to a native seleniferous As-polluted soil to investigate As/Se uptake by the vegetable Brassica rapa L. and As-Se interaction as mediated by strain T3F4. The Se content in the aboveground plants was significantly enhanced by 34.1%, but the As content was significantly decreased by 20.5% in the T3F4-inoculated pot culture compared to the control (P < 0.05). Similar result was shown in treatment with additional 5 mg/kg of Se(IV) in soil. In addition, the As contents in roots were significantly decreased by more than 35% under T3F4 or Se(IV) treatments (P<0.05). Analysis of As-Se-bacterium interaction in a soil simulation experiment showed that the bioavailability of Se significantly increased and As was immobilized with the addition of the T3F4 strain (P < 0.05). Furthermore, an As/Se co-exposure hydroponic experiment demonstrated that As uptake and accumulation in plants was reduced by increasing Se(IV) concentrations. The 50% growth inhibition concentration (IC50) values for As in plants were increased about one-fold and two-fold under co-exposure with 5 and 10 µmol/L Se(IV), respectively. In conclusion, strain T3F4 improves Se uptake but decreases As uptake by plants via oxidation of As and Se, resulting in decrease of soil As bioavailability and As/Se competitive absorption by plants. This provides a potential bioremediation strategy for Se biofortification and As immobilization in As-polluted soil.
Collapse
Affiliation(s)
- Lijin An
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunzhi Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lipeng Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ao Wei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiting Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huimin Cui
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
38
|
Dack K, Huang P, Taylor CM, Rai D, Lewis SJ. Environmental and genetic predictors of whole blood mercury and selenium concentrations in pregnant women in a UK birth cohort. ENVIRONMENTAL ADVANCES 2024; 15:100469. [PMID: 38562418 PMCID: PMC10951965 DOI: 10.1016/j.envadv.2023.100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 04/04/2024]
Abstract
There is evidence that tissue concentrations of mercury (Hg) and selenium (Se) are predicted by numerous dietary, sociodemographic, environmental, and genetic factors. This study aimed to estimate the relative importance of predictors of Hg and Se concentrations in blood samples taken from pregnant women. The Avon Longitudinal Study of Parents and Children (ALSPAC) in the UK measured whole blood Hg and Se concentrations in 3,972 pregnant women. We identified 30 potential predictors of Hg and 24 of Se, which were evaluated using cross-validated random forests to identify the optimal models for predictive power. The relative importance of individual variables was estimated by averaging the added-R2 per predictor. Linkage disequilibrium score regression was used to estimate the variance explained by genotype. A multivariable model of 14 predictors explained 22.4% of Hg variance (95% CI: 13.0 to 37.1), including 6.9% from blood Se and 3.2% from white fish consumption. There were 11 predictors which explained 15.3% of Se variance (CI: 8.9 to 25.9), including 6.4% from blood Hg, 1.3% from blood lead, and 1.3% from oily fish. Measured genetic variation explained 30% of Hg variance (CI: 8.4 to 51.5) and 37.5% of Se (CI: 10.4 to 64.5). A high proportion of Hg and Se variance could be explained from dietary, sociodemographic, metabolic, and genetic factors. Seafood consumption was less predictive of Hg than may be expected and other factors should be considered when determining risk of exposure. There was tentative evidence that genotype is a major contributor to Hg and Se variation, possibly by modifying the efficacy of internal metabolism.
Collapse
Affiliation(s)
- Kyle Dack
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Peiyuan Huang
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Caroline M Taylor
- Centre for Academic Child Health, Bristol Medical School, University of Bristol, Bristol, UK
| | - Dheeraj Rai
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Sarah J Lewis
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
39
|
Li T, Zhu K, Wang L, Dong Y, Huang J. Stabilization by Chaperone GroEL in Biogenic Selenium Nanoparticles Produced from Bifidobacterium animalis H15 for the Treatment of DSS-Induced Colitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13439-13452. [PMID: 38456847 DOI: 10.1021/acsami.3c16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Inflammatory bowel diseases have a high rate of mortality and pose a serious threat to global public health. Selenium is an essential trace element, which has been shown to play important roles in redox control and antioxidant defense. Microorganisms play important roles in the reduction of toxic inorganic selenium (selenite and selenate) to less-toxic biogenic selenium nanoparticles (Bio-SeNPs), which have higher biocompatibility. In the present study, novel Bio-SeNPs with high stability were synthesized using probiotic Bifidobacterium animalis subsp. lactis H15, which was isolated from breastfed infant feces. The Bio-SeNPs with a size of 122 nm showed stability at various ionic strengths, temperatures, and in simulated gastrointestinal fluid, while chemosynthetic SeNPs underwent aggregation. The main surface protein in the Bio-SeNPs was identified as chaperone GroEL by liquid chromatography-tandem mass spectrometry. The overexpression and purification of GroEL demonstrated that GroEL controlled the assembly of Bio-SeNPs both in vitro and in vivo. In vivo, oral administration of Bio-SeNPs could alleviate dextran sulfate sodium-induced colitis by decreasing cell apoptosis, increasing antioxidant capacity and the number of proliferating cells, and improving the function of the intestinal mucosal barrier. In vitro experiments verified that Bio-SeNPs inhibited lipopolysaccharide-induced toll-like receptor 4/NF-κB signaling pathway activation. These results suggest that the Bio-SeNPs with high stability could have potential as a nutritional supplement for the treatment of colitis in nanomedicine applications.
Collapse
Affiliation(s)
- Tong Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Kongdi Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Lianshun Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
40
|
Amirkhizi F, Taghizadeh M, Khalese-Ranjbar B, Hamedi-Shahraki S, Asghari S. Association of Serum Selenium and Selenoprotein P with Oxidative Stress Biomarkers in Patients with Polycystic Ovary Syndrome. Biol Trace Elem Res 2024; 202:947-954. [PMID: 37391553 DOI: 10.1007/s12011-023-03747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age which is characterized by various reproductive and metabolic disorders. Oxidative stress (OS) is now recognized to be involved in the pathogenesis of PCOS which could be targeted in the management of PCOS-related complications. Selenium (Se), as an antioxidant trace element, has been shown to decrease in PCOS patients. This study aimed to investigate the relationship between the Se and selenoprotein P (SELENOP) levels with OS markers in women with PCOS. In this cross-sectional study, 125 females aged 18-45 years diagnosed with PCOS were included. Demographic, clinical, and lifestyle information of participants were obtained using the relevant questionnaires. Fasting blood samples were collected to measure biochemical parameters. Serum levels of thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC), erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase activities as well as anthropometric measurements were assessed across tertiles of serum concentrations of Se and SELENOP. Higher serum levels of Se were associated with higher serum TAC levels (β=0.42, P<0.001) and erythrocytes GPx activity (β=0.28, P=0.002) as well as with lower serum TBARS levels (β= -0.26, P=0.003). Similarly, higher serum levels of SELENOP were associated with higher TAC (β=0.32, P<0.001) and erythrocyte GPx activity (β=0.30, P=0.001). SELENOP also showed an inverse association with serum levels of TBARS (β= -0.40, P<0.001). Nevertheless, erythrocytes SOD and CAT activities showed no significant relationships with serum Se and SELENOP concentrations (all P>0.05). The present study found that serum Se and SELENOP levels were inversely associated with TBARS levels and positively associated with TAC levels and erythrocytes GPx activity.
Collapse
Affiliation(s)
- Farshad Amirkhizi
- Department of Nutrition, Faculty of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Mahdiyeh Taghizadeh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Banafshe Khalese-Ranjbar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Hamedi-Shahraki
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Somayyeh Asghari
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Angulo-Elizari E, Raza A, Encío I, Sharma AK, Sanmartín C, Plano D. Seleno-Warfare against Cancer: Decoding Antitumor Activity of Novel Acylselenoureas and Se-Acylisoselenoureas. Pharmaceutics 2024; 16:272. [PMID: 38399326 PMCID: PMC10891803 DOI: 10.3390/pharmaceutics16020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Currently, cancer remains a global health problem. Despite the existence of several treatments, including chemotherapy, immunotherapy, and radiation therapy, the survival rate for most cancer patients, particularly those with metastasis, remains unsatisfactory. Thus, there is a continuous need to develop novel, effective therapies. In this work, 22 novel molecules containing selenium are reported, including seven Se-acylisoselenoureas synthesized from aliphatic carbodiimides as well as acylselenoureas with the same carbo- and heterocycles and aliphatic amines. After an initial screening at two doses (50 and 10 µM) in MDA-MB-231 (breast), HTB-54 (lung), DU-145 (prostate), and HCT-116 (colon) tumor cell lines, the ten most active compounds were identified. Additionally, these ten hits were also submitted to the DTP program of the NCI to study their cytotoxicity in a panel of 60 cancer cell lines. Compound 4 was identified as the most potent antiproliferative compound. The results obtained showed that compound 4 presented IC50 values lower than 10 µM in the cancer cell lines, although it was not the most selective one. Furthermore, compound 4 was found to inhibit cell growth and cause cell death by inducing apoptosis partially via ROS production. Overall, our results suggest that compound 4 could be a potential chemotherapeutic drug for different types of cancer.
Collapse
Affiliation(s)
- Eduardo Angulo-Elizari
- Departamento de Ciencias Farmacéuticas, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
| | - Asif Raza
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (A.R.); (A.K.S.)
| | - Ignacio Encío
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
- Departamento de Ciencias de la Salud, Universidad Pública de Navarra, Avda. Barañain s/n, 31008 Pamplona, Spain
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (A.R.); (A.K.S.)
| | - Carmen Sanmartín
- Departamento de Ciencias Farmacéuticas, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
| | - Daniel Plano
- Departamento de Ciencias Farmacéuticas, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
| |
Collapse
|
42
|
Himoto T, Masaki T. Current Trends on the Involvement of Zinc, Copper, and Selenium in the Process of Hepatocarcinogenesis. Nutrients 2024; 16:472. [PMID: 38398797 PMCID: PMC10892613 DOI: 10.3390/nu16040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Numerous nutritional factors increase the risk of hepatocellular carcinoma (HCC) development. The dysregulation of zinc, copper, and selenium homeostasis is associated with the occurrence of HCC. The impairment of the homeostasis of these essential trace elements results in oxidative stress, DNA damage, cell cycle progression, and angiogenesis, finally leading to hepatocarcinogenesis. These essential trace elements can affect the microenvironment in HCC. The carrier proteins for zinc and copper and selenium-containing enzymes play important roles in the prevention or progression of HCC. These trace elements enhance or alleviate the chemosensitivity of anticancer agents in patients with HCC. The zinc, copper, or selenium may affect the homeostasis of other trace elements with each other. Novel types of cell death including ferropotosis and cupropotosis are also associated with hepatocarcinogenesis. Therapeutic strategies for HCC that target these carrier proteins for zinc and copper or selenium-containing enzymes have been developed in in vitro and in vivo studies. The use of zinc-, copper- or selenium-nanoparticles has been considered as novel therapeutic agents for HCC. These results indicate that zinc, copper, and selenium may become promising therapeutic targets in patients with HCC. The clinical application of these agents is an urgent unmet requirement. This review article highlights the correlation between the dysregulation of the homeostasis of these essential trace elements and the development of HCC and summarizes the current trends on the roles of these essential trace elements in the pathogenesis of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1, Hara, Mure-cho, Takamatsu 761-0123, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho 761-0793, Kagawa, Japan
| |
Collapse
|
43
|
Jia J, Liu Q, Liu H, Yang C, Zhao Q, Xu Y, Wu W. Structure characterization and antioxidant activity of abalone visceral peptides-selenium in vitro. Food Chem 2024; 433:137398. [PMID: 37683490 DOI: 10.1016/j.foodchem.2023.137398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Peptide-selenium chelate is widely regarded as one of the best selenium supplements for relieving selenium deficiency. In this study, abalone visceral peptides (AVP) was used to prepare a new type of peptides-selenium chelate to develop an organic selenium supplement with antioxidant activity. AVP prepared by alcalase exhibited the highest selenium-chelating ability. UV-visible spectroscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy and other structural analysis showed that selenium was mainly bound to the functional groups of -NH, -OH, -CH, CC, CO, and CN bonds on AVP. The formation of AVP-selenium chelate enhanced thermal stability and generated a new crystal structure. The ABTS•+ and •OH scavenging activities of AVP-selenium chelate were increased after in vitro digestion than that of AVP. Conclusively, this study analyzed the chelating mechanism of AVP and selenium from a structural perspective, which would provide a theoretical basis for the development of new selenium supplements.
Collapse
Affiliation(s)
- Jiao Jia
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Qing Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Huimin Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chunyu Yang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Qi Zhao
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Xu
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wenfei Wu
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
44
|
Raina R, Suchan A, Sethi SK, Soundararajan A, Vitale VS, Keller GL, Brown AM, Davenport A, Shih WV, Nada A, Irving SY, Mannemuddhu SS, Crugnale AS, Myneni A, Berry KG, Zieg J, Alhasan K, Guzzo I, Lussier NH, Yap HK, Bunchman TE. Nutrition in Critically Ill Children with AKI on Continuous RRT: Consensus Recommendations. KIDNEY360 2024; 5:285-309. [PMID: 38112754 PMCID: PMC10914214 DOI: 10.34067/kid.0000000000000339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Nutrition plays a vital role in the outcome of critically ill children, particularly those with AKI. Currently, there are no established guidelines for children with AKI treated with continuous RRT (CRRT). A thorough understanding of the metabolic changes and nutritional challenges in AKI and CRRT is required. Our objective was to create clinical practice points for nutritional assessment and management in critically ill children with AKI receiving CRRT. METHODS PubMed, MEDLINE, Cochrane, and Embase databases were searched for articles related to the topic. Expertise of the authors and a consensus of the workgroup were additional sources of data in the article. Available articles on nutrition therapy in pediatric patients receiving CRRT through January 2023. RESULTS On the basis of the literature review, the current evidence base was examined by a panel of experts in pediatric nephrology and nutrition. The panel used the literature review as well as their expertise to formulate clinical practice points. The modified Delphi method was used to identify and refine clinical practice points. CONCLUSIONS Forty-four clinical practice points are provided on nutrition assessment, determining energy needs, and nutrient intake in children with AKI and on CRRT on the basis of the existing literature and expert opinions of a multidisciplinary panel.
Collapse
Affiliation(s)
- Rupesh Raina
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, Ohio
- Akron Children's Hospital, Akron, Ohio
| | - Andrew Suchan
- Johns Hopkins Bayview Medical Center, Baltimore, Maryland
| | - Sidharth K. Sethi
- Department of Pediatric Nephrology, Kidney Institute, Medanta, The Medicity, Gurgaon, India
| | - Anvitha Soundararajan
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, Ohio
| | | | | | - Ann-Marie Brown
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia
- Children's Healthcare of Atlanta, Atlanta, Georgia
- ECU Health, Greenville, North Carolina
| | - Andrew Davenport
- UCL Department of Renal Medicine, Royal Free Hospital, University College London, London, United Kingdom
| | - Weiwen V. Shih
- Section of Pediatric Nephrology, Children's Hospital Colorado, University of Colorado, Aurora, Colorado
| | - Arwa Nada
- Department of Pediatrics, Division of Pediatric Nephrology, Le Bonheur Children's & St. Jude Children's Research Hospitals, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Sharon Y. Irving
- Children's Hospital of Philadelphia, University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania
| | - Sai Sudha Mannemuddhu
- Division of Pediatric Nephrology, East Tennessee Children's Hospital, Knoxville, Tennessee
- Department of Medicine, University of Tennessee at Knoxville, Knoxville, Tennessee
| | - Aylin S. Crugnale
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, Ohio
| | - Archana Myneni
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, Ohio
| | - Katarina G. Berry
- Children's Hospital of Philadelphia, University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania
| | - Jakub Zieg
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Khalid Alhasan
- Pediatrics Department, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Isabella Guzzo
- Division of Nephrology and Dialysis, Department of Pediatrics, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | | | - Hui Kim Yap
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Timothy E. Bunchman
- Department of Pediatrics, Childrens Hospital of Richmond, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
45
|
Gillespie B, Houghton MJ, Ganio K, McDevitt CA, Bennett D, Dunn A, Raju S, Schroeder A, Hill RA, Cardoso BR. Maternal selenium dietary supplementation alters sociability and reinforcement learning deficits induced by in utero exposure to maternal immune activation in mice. Brain Behav Immun 2024; 116:349-361. [PMID: 38142918 DOI: 10.1016/j.bbi.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/24/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Maternal immune activation (MIA) during pregnancy increases the risk for the unborn foetus to develop neurodevelopmental conditions such as autism spectrum disorder and schizophrenia later in life. MIA mouse models recapitulate behavioural and biological phenotypes relevant to both conditions, and are valuable models to test novel treatment approaches. Selenium (Se) has potent anti-inflammatory properties suggesting it may be an effective prophylactic treatment against MIA. The aim of this study was to determine if Se supplementation during pregnancy can prevent adverse effects of MIA on offspring brain and behaviour in a mouse model. Selenium was administered via drinking water (1.5 ppm) to pregnant dams from gestational day (GD) 9 to birth, and MIA was induced at GD17 using polyinosinic:polycytidylic acid (poly-I:C, 20 mg/kg via intraperitoneal injection). Foetal placenta and brain cytokine levels were assessed using a Luminex assay and brain elemental nutrients assessed using inductively coupled plasma- mass spectrometry. Adult offspring were behaviourally assessed using a reinforcement learning paradigm, the three-chamber sociability test and the open field test. MIA elevated placental IL-1β and IL-17, and Se supplementation successfully prevented this elevation. MIA caused an increase in foetal brain calcium, which was prevented by Se supplement. MIA caused in offspring a female-specific reduction in sociability, which was recovered by Se, and a male-specific reduction in social memory, which was not recovered by Se. Exposure to poly-I:C or selenium, but not both, reduced performance in the reinforcement learning task. Computational modelling indicated that this was predominantly due to increased exploratory behaviour, rather than reduced rate of learning the location of the food reward. This study demonstrates that while Se may be beneficial in ameliorating sociability deficits caused by MIA, it may have negative effects in other behavioural domains. Caution in the use of Se supplementation during pregnancy is therefore warranted.
Collapse
Affiliation(s)
- Brendan Gillespie
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Michael J Houghton
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Clayton, VIC 3168, Australia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Daniel Bennett
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Ariel Dunn
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Sharvada Raju
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Anna Schroeder
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia.
| | - Rachel A Hill
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia.
| | - Barbara R Cardoso
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3168, Australia.
| |
Collapse
|
46
|
Castel T, Léon K, Gandubert C, Gueguen B, Amérand A, Guernec A, Théron M, Pichavant-Rafini K. Comparison of Sodium Selenite and Selenium-Enriched Spirulina Supplementation Effects After Selenium Deficiency on Growth, Tissue Selenium Concentrations, Antioxidant Activities, and Selenoprotein Expression in Rats. Biol Trace Elem Res 2024; 202:685-700. [PMID: 37202582 DOI: 10.1007/s12011-023-03705-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
Selenium contributes to physiological functions through its incorporation into selenoproteins. It is involved in oxidative stress defense. A selenium deficiency results in the onset or aggravation of pathologies. Following a deficiency, the repletion of selenium leads to a selenoprotein expression hierarchy misunderstood. Moreover, spirulina, a microalga, exhibits antioxidant properties and can be enriched in selenium.. Our objective was to determine the effects of a sodium selenite or selenium-enriched spirulina supplementation. Thirty-two female Wistar rats were fed for 12 weeks with a selenium-deficient diet. After 8 weeks, rats were divided into 4 groups and were fed with water, sodium selenite (20 μg Se/kg body weight), spirulina (3 g/kg bw), or selenium-enriched spirulina (20 μg Se/kg bw + 3 g spirulina/kg bw). Another group of 8 rats was fed with normal diet during 12 weeks. Selenium concentration and antioxidant enzyme activities were measured in plasma, urine, liver, brain, kidney, heart, and soleus. Expression of GPx (1, 3), Sel (P, S, T, W), SEPHS2, TrxR1, ApoER2, and megalin were quantified in liver, kidney, brain, and heart. We showed that a selenium deficiency leads to a growth delay, reversed by selenium supplementation despite a minor loss of weight in week 12 for SS rats. All tissues displayed a decrease in selenium concentration following deficiency. The brain seemed protected. We demonstrated a hierarchy in selenium distribution and selenoprotein expression. A supplementation of sodium selenite improved GPx activities and selenoprotein expression while a selenium-enriched spirulina was more effective to restore selenium concentration especially in the liver, kidney, and soleus.
Collapse
Affiliation(s)
- T Castel
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200, Brest, France.
| | - K Léon
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200, Brest, France
| | - C Gandubert
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200, Brest, France
| | - B Gueguen
- CNRS, Univ Brest, UMS 3113, F-29280, Plouzané, France
- CNRS, Univ Brest, UMR 6538 Laboratoire Géosciences Océan, F-29280, Plouzané, France
| | - A Amérand
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200, Brest, France
| | - A Guernec
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200, Brest, France
| | - M Théron
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200, Brest, France
| | - K Pichavant-Rafini
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200, Brest, France
| |
Collapse
|
47
|
Antia M, Ezejiofor AN, Orish CN, Cirovic A, Cirovic A, Orisakwe OE. Selenium and zinc supplementation mitigates metals-(loids) mixture- mediated cardiopulmonary toxicity via attenuation of antioxidant, anti-inflammatory and antiapoptotic mechanisms in female Sprague Dawley rats. Toxicol Res (Camb) 2024; 13:tfad119. [PMID: 38179003 PMCID: PMC10762678 DOI: 10.1093/toxres/tfad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
This study evaluated the cardiopulmonary protective effects of essential elements (Zn and Se) against heavy metals mixture (HMM) exposure. Twenty five female Sprague Dawley albino rats, divided in to five groups: controls were orally treated only with distilled water; next, group 2 was exposed to HMM with the following concentrations: 20 mg/kg of Pb body weight, 0.40 mg/kg of Hg, 0.56 mg/kg of Mn, and 35 mg/kg of Al. Groups 3, 4 and 5 were exposed to HMM and co-treated with zinc chloride (ZnCl2; 0.80 mg/kg), sodium selenite (Na2SeO3;1.50 mg/kg) and both zinc chloride and sodium selenite, respectively. The experiment lasted for 60 days. Afterwards animals were sacrificed, and we conduced biochemical and histopathological examination of the heart and lungs. HMM only exposed animals had an increased levels of malondialdehyde (MDA) and nitric oxide (NO), increased IL-6 and TNF-α, attenuated SOD, GPx, CAT and GSH and caspase 3 in the heart and lungs. HMM affected NF-kB and Nrf2 in the heart muscle with histomorphological alterations. Zn and Se attenuated adverse effects of HMM exposure. Essential element supplementation ameliorated heavy metal cardiopulmonary intoxication in rats.
Collapse
Affiliation(s)
- Mfoniso Antia
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, East West Road, Choba, Port Harcourt, Rivers State, Choba 5323, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, East West Road, Choba, Port Harcourt, Rivers State, Choba 5323, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, East West Road, Choba, Port Harcourt, Rivers State, Choba 5323, Nigeria
| | - Ana Cirovic
- Faculty of Medicine, The Institute of Anatomy, University of Belgrade, East West Road, Choba, Port Harcourt, Rivers State Belgrade, Serbia
| | - Aleksandar Cirovic
- Faculty of Medicine, The Institute of Anatomy, University of Belgrade, East West Road, Choba, Port Harcourt, Rivers State Belgrade, Serbia
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, East West Road, Choba, Port Harcourt, Rivers State, Choba 5323, Nigeria
| |
Collapse
|
48
|
Zhang Z, Zhang Y, Hua Y, Chen G, Fu P, Liu J. Heterotrophic Selenium Incorporation into Chlorella vulgaris K-01: Selenium Tolerance, Assimilation, and Removal through Microalgal Cells. Foods 2024; 13:405. [PMID: 38338539 PMCID: PMC10855183 DOI: 10.3390/foods13030405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Chlorella has been applied in the production of selenium (Se) enriched organic biomass. However, limited information exists regarding heterotrophic selenium tolerance and its incorporation into Chlorella. This study aimed to investigate the potential of using Chlorella vulgaris K-01 for selenium biotransformation. To assess the dose-response effect of Se stress on the strain, time-series growth curves were recorded, growth productivity parameters were calculated, and Gaussian process (GP) regression analysis was performed. The strain's carbon and energy metabolism were evaluated by measuring residual glucose in the medium. Characterization of different forms of intracellular Se and residual Se in the medium was conducted using inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometer (ICP-OES). The EC50 value for the strain in response to Se stress was 38.08 mg/L. The maximum biomass productivity was 0.26 g/L/d. GP regression analysis revealed that low-level Se treatment could increase the biomass accumulation and the carrying capacity of Chlorella vulgaris K-01 in a heterotrophic culture. The maximum organic Se in biomass was 154.00 μg/g DW. These findings lay the groundwork for understanding heterotrophic microalgal production of Se-containing nutraceuticals, offering valuable insights into Se tolerance, growth dynamics, and metabolic responses in Chlorella vulgaris K-01.
Collapse
Affiliation(s)
- Zhenyu Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yan Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yanying Hua
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Guancheng Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jing Liu
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
49
|
Ferreira RR, Carvalho RV, Coelho LL, Gonzaga BMDS, Bonecini-Almeida MDG, Garzoni LR, Araujo-Jorge TC. Current Understanding of Human Polymorphism in Selenoprotein Genes: A Review of Its Significance as a Risk Biomarker. Int J Mol Sci 2024; 25:1402. [PMID: 38338681 PMCID: PMC10855570 DOI: 10.3390/ijms25031402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 02/12/2024] Open
Abstract
Selenium has been proven to influence several biological functions, showing to be an essential micronutrient. The functional studies demonstrated the benefits of a balanced selenium diet and how its deficiency is associated with diverse diseases, especially cancer and viral diseases. Selenium is an antioxidant, protecting the cells from damage, enhancing the immune system response, preventing cardiovascular diseases, and decreasing inflammation. Selenium can be found in its inorganic and organic forms, and its main form in the cells is the selenocysteine incorporated into selenoproteins. Twenty-five selenoproteins are currently known in the human genome: glutathione peroxidases, iodothyronine deiodinases, thioredoxin reductases, selenophosphate synthetase, and other selenoproteins. These proteins lead to the transport of selenium in the tissues, protect against oxidative damage, contribute to the stress of the endoplasmic reticulum, and control inflammation. Due to these functions, there has been growing interest in the influence of polymorphisms in selenoproteins in the last two decades. Selenoproteins' gene polymorphisms may influence protein structure and selenium concentration in plasma and its absorption and even impact the development and progression of certain diseases. This review aims to elucidate the role of selenoproteins and understand how their gene polymorphisms can influence the balance of physiological conditions. In this polymorphism review, we focused on the PubMed database, with only articles published in English between 2003 and 2023. The keywords used were "selenoprotein" and "polymorphism". Articles that did not approach the theme subject were excluded. Selenium and selenoproteins still have a long way to go in molecular studies, and several works demonstrated the importance of their polymorphisms as a risk biomarker for some diseases, especially cardiovascular and thyroid diseases, diabetes, and cancer.
Collapse
Affiliation(s)
- Roberto Rodrigues Ferreira
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Regina Vieira Carvalho
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Laura Lacerda Coelho
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Beatriz Matheus de Souza Gonzaga
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Maria da Gloria Bonecini-Almeida
- Laboratory of Immunology and Immunogenetics, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro 21040-360, Brazil;
| | - Luciana Ribeiro Garzoni
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Tania C. Araujo-Jorge
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| |
Collapse
|
50
|
Zhang H, Zhao L, Zhang P, Xie Y, Yao X, Pan X, Fu Y, Wei J, Bai H, Shao X, Ye J, Wu C. Effects of selenoprotein extracts from Cardamine hupingshanensis on growth, selenium metabolism, antioxidant capacity, immunity and intestinal health in largemouth bass Micropterus salmoides. Front Immunol 2024; 15:1342210. [PMID: 38318186 PMCID: PMC10839570 DOI: 10.3389/fimmu.2024.1342210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
This study aimed to assess the impact of dietary selenoprotein extracts from Cardamine hupingshanensis (SePCH) on the growth, hematological parameters, selenium metabolism, immune responses, antioxidant capacities, inflammatory reactions and intestinal barrier functions in juvenile largemouth bass (Micropterus salmoides). The base diet was supplemented with four different concentrations of SePCH: 0.00, 0.30, 0.60 and 1.20 g/Kg (actual selenium contents: 0.37, 0.59, 0.84 and 1.30 mg/kg). These concentrations were used to formulate four isonitrogenous and isoenergetic diets for juvenile largemouth bass during a 60-day culture period. Adequate dietary SePCH (0.60 and 1.20 g/Kg) significantly increased weight gain and daily growth rate compared to the control groups (0.00 g/Kg). Furthermore, 0.60 and 1.20 g/Kg SePCH significantly enhanced amounts of white blood cells, red blood cells, platelets, lymphocytes and monocytes, and levels of hemoglobin, mean corpuscular volume and mean corpuscular hemoglobin in the hemocytes. In addition, 0.60 and 1.20 g/Kg SePCH increased the mRNA expression levels of selenocysteine lyase, selenophosphate synthase 1, 15 kDa selenoprotein, selenoprotein T2, selenoprotein H, selenoprotein P and selenoprotein K in the fish liver and intestine compared to the controls. Adequate SePCH not only significantly elevated the activities of antioxidant enzymes (Total superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase), the levels of total antioxidant capacity and glutathione, while increased mRNA transcription levels of NF-E2-related factor 2, Cu/Zn-superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase. However, adequate SePCH significantly decreased levels of malondialdehyde and H2O2 and the mRNA expression levels of kelch-like ECH-associated protein 1a and kelch-like ECH-associated protein 1b in the fish liver and intestine compared to the controls. Meanwhile, adequate SePCH markedly enhanced the levels of immune factors (alkaline phosphatase, acid phosphatase, lysozyme, complement component 3, complement component 4 and immunoglobulin M) and innate immune-related genes (lysozyme, hepcidin, liver-expressed antimicrobial peptide 2, complement component 3 and complement component 4) in the fish liver and intestine compared to the controls. Adequate SePCH reduced the levels of pro-inflammatory cytokines (tumour necrosis factor-α, interleukin 8, interleukin 1β and interferon γ), while increasing transforming growth factor β1 levels at both transcriptional and protein levels in the liver and intestine. The mRNA expression levels of mitogen-activated protein kinase 13 (MAPK 13), MAPK14 and nuclear factor kappa B p65 were significantly reduced in the liver and intestine of fish fed with 0.60 and 1.20 g/Kg SePCH compared to the controls. Histological sections also demonstrated that 0.60 and 1.20 g/Kg SePCH significantly increased intestinal villus height and villus width compared to the controls. Furthermore, the mRNA expression levels of tight junction proteins (zonula occludens-1, zonula occludens-3, Claudin-1, Claudin-3, Claudin-5, Claudin-11, Claudin-23 and Claudin-34) and Mucin-17 were significantly upregulated in the intestinal epithelial cells of 0.60 and 1.20 g/Kg SePCH groups compared to the controls. In conclusion, these results found that 0.60 and 1.20 g/Kg dietary SePCH can not only improve growth, hematological parameters, selenium metabolism, antioxidant capacities, enhance immune responses and intestinal functions, but also alleviate inflammatory responses. This information can serve as a useful reference for formulating feeds for largemouth bass.
Collapse
Affiliation(s)
- Hao Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Long Zhao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Penghui Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Yuanyuan Xie
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Xinfeng Yao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Xuewen Pan
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Yifan Fu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Jiao Wei
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Hongfeng Bai
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Xianping Shao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Jinyun Ye
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Chenglong Wu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| |
Collapse
|