1
|
Yang J, Zhao H, Qiu S, Xiong F, Fu B, Zhang F, Li J, Sha L, Chen X, Guo D. Oxidative degradation of anionic dyes in wastewater by magnetic lignin micro-nano spheres catalyzed peroxymonosulfate. Int J Biol Macromol 2024; 282:137390. [PMID: 39521201 DOI: 10.1016/j.ijbiomac.2024.137390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/09/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Lignin has gained significant attention in wastewater treatment due to its abundant resources and good adsorbability. In this work, magnetic lignin micro-nano spheres (Fe3O4@SiO2-LNS) was prepared using alkali lignin as the raw material, and was used as the adsorbent and catalyst to activate peroxymonosulfate (PMS) to build an inhomogeneous catalytic oxidation system (Fe3O4@SiO2-LNS/PMS). The system was then used to remove the stubborn acid blue 9 (AB9) dye in wastewater, and the effects of pH, catalyst dosage, PMS dosage of the system on the removal percentage of AB9 dye and the corresponding degradation mechanism were explored. The results showed that Fe3O4@SiO2-LNS/PMS system had good removal efficiency for AB9 in wastewater, and AB9 dye was completely oxidized and finally degraded into CO2 and H2O. The maximum removal percentage of AB9 was observed when the pH and temperature of the system were 6.0 and 313 K, and the removal percentage of AB9 achieved 100 % when the optimal dosage of Fe3O4@SiO2-LNS and PMS were 3.44 g/L and 53.15 mM, respectively. In addition, Fe3O4@SiO2-LNS had good stability and reusability. This work provides a promising approach for abatement of dyeing wastewater pollution and a new direction for high-value utilization of alkali lignin.
Collapse
Affiliation(s)
- Jun Yang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China
| | - Huifang Zhao
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China.
| | - Supeng Qiu
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China
| | - Fangtao Xiong
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China
| | - Bingqing Fu
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China
| | - Feiyang Zhang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China
| | - Jing Li
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China
| | - Lizheng Sha
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China
| | - Xiaohong Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China
| | - Daliang Guo
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Zhou SH, Yang Y, Wang RD, Cui Y, Ji S, Du L, Jiang FZ. Iron-based nitrogen-rich metal-organic framework structure for activation of hydrogen peroxide and peroxymonosulfate for ultra-efficient tetracycline degradation. J Colloid Interface Sci 2024; 680:307-325. [PMID: 39509779 DOI: 10.1016/j.jcis.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
Fe-based metal-organic frameworks (Fe-MOFs) have been used to catalyze the degradation of organic pollutants; however, the underlying mechanism remains unclear. In this study, we prepared Fe-MOF catalysts featuring a three-dimensional ordered structure and active Fe-N4 coordination centers using self-designed polypyrazole compounds as ligands. Because the coordination centers are similar to the classical single-atom Fe-N4 active neutral structure, Fe-MOFs exhibit excellent performance in activating hydrogen peroxide (H2O2) and peroxymonosulfate (PMS) for the degradation of antibiotics. Moreover, the two adjacent nitrogen atoms in pyrazole strengthen the interaction with active neutral Fe, thereby enhancing the efficiency and selectivity of the catalytic sites. In the presence Fe-MOF/H2O2, a free radical process involving hydroxyl radicals (OH) is activated to achieve a degradation rate of 98.36 % for tetracycline (TC) within 10 min. In a Fe-MOF/PMS system, 97.01 % of TC can be degraded within 10 min through a non-free radical process with singlet oxygen (1O2) as the primary active species. The high degradation efficiency of Fe-MOF is primarily attributed to its highly catalytically active structure, which exerts a van der Waals force effect on the pollutants, thereby facilitating electron transfer between the pollutants and active centers. This shortens the distance between the pollutants and Fe catalytic center, enhances electron transfer, and promotes the chemical adsorption of H2O2 and PMS to form FeN4-H2O2 and FeN4-PMS, respectively. Additionally, the strong coordination within the Fe-N4 pyrazole structure significantly suppresses Fe leaching, facilitating a stable adsorption configuration.
Collapse
Affiliation(s)
- Si-Han Zhou
- International Institute of Rivers and Ecological Security, Yunnan University, Kunming 650091, Yunnan, China
| | - Yun Yang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China
| | - Rui-Dong Wang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China
| | - Yujie Cui
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China
| | - Siping Ji
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China
| | - Lin Du
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650091, Yunnan, China
| | - Feng-Zhi Jiang
- International Institute of Rivers and Ecological Security, Yunnan University, Kunming 650091, Yunnan, China; School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China.
| |
Collapse
|
3
|
Chen Z, Wang C, Allabakshi SM, Pignatello JJ. Hydrogen Peroxide-Assisted Alkaline Defluorination of the Fumigant and Potent Greenhouse Gas, Sulfuryl Fluoride: Hydrogen Peroxide as a Nucleophilic Reagent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19523-19532. [PMID: 39412816 DOI: 10.1021/acs.est.4c06595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Sulfuryl fluoride (SO2F2, SF) is an effective and increasingly popular fumigant for treating buildings and commodities in international trade but has come under scrutiny as a potent greenhouse gas. Passage of vent gases through an alkaline spray has been proposed for scrubbing SF, but base hydrolysis is insufficiently fast and generates equal yields of fluoride and fluorosulfate, the latter of unknown environmental hazard. We report here that alkaline hydrogen peroxide (H2O2) markedly accelerates SF removal and gives nearly quantitative yield of fluoride, with fluorosulfate produced in less than 3.5% yield. The other major products are sulfate, peroxymonosulfate, and oxygen. The oxidation state of S was unchanged. Hydroxyl and superoxide radical scavengers had no effect on the rate. The reaction proceeds by sequential nucleophilic displacement of fluoride by hydroperoxide ion (HO2-) to form a transient diperoxysulfate species that rapidly undergoes intramolecular redox rearrangement to give sulfate and singlet oxygen. Peroxymonosulfate, produced through side reactions, can fully defluorinate SF as well, although more slowly. Two new peaks were detected in the 19F-NMR spectrum corresponding to intermediates. Fluoride can be removed conventionally, and the other products are innocuous or short-lived. Thus, H2O2-assisted alkaline defluorination promises to be an effective method for scrubbing spent SF fumes and preventing SF from reaching the atmosphere. This study highlights the benefits of H2O2 and peroxymonosulfate as nucleophiles in remediation chemistry.
Collapse
Affiliation(s)
- Zhihao Chen
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Chengjin Wang
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | | | - Joseph J Pignatello
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| |
Collapse
|
4
|
Thomas MG, Blanc S, Le Bechec M, Pigot T, C. M. Fernandes S. Effect of Reactive Oxygen Species Photoproduced in Different Water Matrices on the Photostability of Gadusolate and Mycosporine-Serinol. Mar Drugs 2024; 22:473. [PMID: 39452881 PMCID: PMC11509266 DOI: 10.3390/md22100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
In the past few years, there has been an increasing interest in mycosporines-UV-absorbing molecules-bringing important insights into their intrinsic properties as natural sunscreens. Herein, mycosporine-serinol and gadusol (enolate form)/gadusolate were exposed to UV radiation via a solar simulator and the photostability was assessed in pure water and different natural matrices like river, estuary and ocean water. In general, this study revealed that the photodegradation of gadusolate and mycosporine-serinol was higher in natural matrices than in pure water due to the generation of singlet oxygen on UV irradiation. In pure water, in terms of photostability, both gadusolate and mycosporine-serinol were found to offer good protection and high performance in terms of photodegradation quantum yield ((0.8 ± 0.2) × 10-4 and (1.1 ± 0.6) × 10-4, respectively). Nonetheless, the photostability of mycosporine-serinol was found to be superior to that of gadusolate in natural water, namely, ocean, estuary and river. The present work highlights how mycosporine-serinol and gadusolate resist photodegradation, and supports their role as effective and stable UV-B sunscreens.
Collapse
Affiliation(s)
| | | | | | - Thierry Pigot
- IPREM—Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials, Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, 64000 Pau, France; (M.G.T.); (S.B.); (M.L.B.)
| | - Susana C. M. Fernandes
- IPREM—Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials, Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, 64000 Pau, France; (M.G.T.); (S.B.); (M.L.B.)
| |
Collapse
|
5
|
Ge L, Chen Y, Geng B, Chu X, Jiang R, Wang X, Qin X, Li W, Song S. Synthesis of Mo-Pt/CeO 2 Dual Single-Atom Nanozyme for Multifunctional Biochemical Detection Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404608. [PMID: 39177179 DOI: 10.1002/smll.202404608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Elaborated structural modulation of Pt-based artificial nanozymes can efficiently improve their catalytic activity and expand their applications in clinical diagnosis and biochemical sensing. Herein, a highly efficient dual-site peroxidase mimic composed of highly dispersed Pt and Mo atoms is reported. The obtained Mo-Pt/CeO2 exhibits exceptional peroxidase-like catalytic activity, with a Vmax as high as 34.16 × 10-8 m s-1, which is 37.5 times higher than that of the single-site counterpart. Mechanism studies suggest that the Mo atoms can not only serve as adsorption and activation sites for the H2O2 substrate but also regulate the charge density of Pt centers to promote the generation ability of •OH. As a result, the synergistic effect between the dual active sites significantly improves the catalytic efficiency. Significantly, the application of the Mo-Pt/CeO2 catalyst's excellent peroxidase-like activity is extended to various biochemical detection applications, including the trace detection of glucose and cysteine, as well as the assessment of antioxidants' antioxidant capacity. This work reveals the great potential of rational design dual-site active centers for constructing high-performance artificial nanozymes.
Collapse
Affiliation(s)
- Litao Ge
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yujia Chen
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Baokang Geng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiang Chu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ruize Jiang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xinxin Qin
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Wei Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
6
|
Zhou R, Zhang X. Effects of Tryptophan and Tyrosine on the Transformation of Monophenols in Chromophoric Dissolved Organic Matter Solutions: Enhance the Forward Transformation and Reduce the Reverse Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10108-10115. [PMID: 38813774 DOI: 10.1021/acs.est.4c02518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Tryptophan (Trp) and tyrosine (Tyr) are the primary precursors of protein-like components in dissolved organic matter. Phenolic compounds are ubiquitous in aquatic environments and are considered the main electron donor in chromophoric dissolved organic matter (CDOM). Our results showed that Trp and Tyr (50 μM) enhanced the transformation of six monophenols (20 μM) with varying numbers of -CH3 and -OCH3 substituent groups by a factor of 1.0-1.8. The enhancement factor increased with the ratio of Trp (Tyr) to monophenols. In four different CDOM solutions (5 mg C/L, pH 8.0), a maximum enhancement factor of 3.2-6.7 was observed at a Trp/monophenol concentration ratio of 50. Conversely, monophenols greatly inhibited the transformation of Trp or Tyr. The enhancement factor decreased as the initial pH increased from 3.0 to 10.0. Additionally, the enhancement factor was not directly proportional to the oxidation potential of monophenol. We propose that the promotion effects are generated through the direct oxidation of monophenols by Trp (Tyr) radicals as well as through the reaction between Trp (Tyr) radicals and the one-electron reductant of CDOM.
Collapse
Affiliation(s)
- Ruiya Zhou
- Department of Environmental Science, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, P. R. China
| | - Xu Zhang
- Department of Environmental Science, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, P. R. China
| |
Collapse
|
7
|
Wasswa J, Perkins M, Matthews DA, Zeng T. Characterizing the Impact of Cyanobacterial Blooms on the Photoreactivity of Surface Waters from New York Lakes: A Combined Statewide Survey and Laboratory Investigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8020-8031. [PMID: 38629457 PMCID: PMC11080073 DOI: 10.1021/acs.est.3c09448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 05/08/2024]
Abstract
Cyanobacterial blooms introduce autochthonous dissolved organic matter (DOM) into aquatic environments, but their impact on surface water photoreactivity has not been investigated through collaborative field sampling with comparative laboratory assessments. In this work, we quantified the apparent quantum yields (Φapp,RI) of reactive intermediates (RIs), including excited triplet states of dissolved organic matter (3DOM*), singlet oxygen (1O2), and hydroxyl radicals (•OH), for whole water samples collected by citizen volunteers from more than 100 New York lakes. Multiple comparisons tests and orthogonal partial least-squares analysis identified the level of cyanobacterial chlorophyll a as a key factor in explaining the enhanced photoreactivity of whole water samples sourced from bloom-impacted lakes. Laboratory recultivation of bloom samples in bloom-free lake water demonstrated that apparent increases in Φapp,RI during cyanobacterial growth were likely driven by the production of photoreactive moieties through the heterotrophic transformation of freshly produced labile bloom exudates. Cyanobacterial proliferation also altered the energy distribution of 3DOM* and contributed to the accelerated transformation of protriptyline, a model organic micropollutant susceptible to photosensitized reactions, under simulated sunlight conditions. Overall, our study provides insights into the relationship between the photoreactivity of surface waters and the limnological characteristics and trophic state of lakes and highlights the relevance of cyanobacterial abundance in predicting the photoreactivity of bloom-impacted surface waters.
Collapse
Affiliation(s)
- Joseph Wasswa
- Department
of Civil and Environmental Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - MaryGail Perkins
- Upstate
Freshwater Institute, Syracuse, New York 13206, United States
| | - David A. Matthews
- Upstate
Freshwater Institute, Syracuse, New York 13206, United States
| | - Teng Zeng
- Department
of Civil and Environmental Engineering, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
8
|
Nandana E, Dwivedi AH, Nidheesh PV. Role of biochar in superoxide-dominated dye degradation in catalyst-activated peroxymonosulphate process. CHEMOSPHERE 2024; 356:141945. [PMID: 38599333 DOI: 10.1016/j.chemosphere.2024.141945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/05/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
In recent times, the application of biochar (BC) as an upcoming catalyst for the elimination of recalcitrant pollutants has been widely explored. Here, an iron loaded bamboo biochar activated peroxymonosulphate (PMS) process was tested for removing Congo red (CR) dye from water medium. The catalyst was synthesized using a green synthesis method using neem extracts and characterized using SEM, FTIR, and XRD. The effects of various operating parameters, including solution pH, catalyst dosage, and pollutant dosage, on dye degradation efficiency were examined. The results showed that at the optimized conditions of 300 mg L-1 PMS concentration, 200 mg L-1 catalyst dosage, and pH 6, about 89.7% of CR dye (initial concentration 10 ppm) was removed at 60 min of operation. Scavenging experiments revealed the significant contribution of O2•-, •OH, and 1O2 for dye degradation, with a major contribution of O2•-. The activation of PMS was mainly done by biochar rather than iron (loaded on biochar). The catalyst was highly active even after four cycles.
Collapse
Affiliation(s)
- E Nandana
- CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India; Sacred Heart College, Thevara, Kochi, 682013, India
| | - Anand Harsh Dwivedi
- CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - P V Nidheesh
- CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
| |
Collapse
|
9
|
Li Y, Zhang K, Apell J, Ruan Y, Huang X, Nah T. Photoproduction of reactive intermediates from dissolved organic matter in coastal seawater around an urban metropolis in South China: Characterization and predictive modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170998. [PMID: 38365044 DOI: 10.1016/j.scitotenv.2024.170998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Chromophoric dissolved organic matter (CDOM) is an important photochemical precursor to reactive intermediates (RIs) (e.g., excited triplet states of chromophoric dissolved organic matter (3CDOM⁎), hydroxyl radicals (·OH), and singlet oxygen (1O2)) in aquatic systems to drive the photodegradation of contaminants. There have been limited studies on the photoproduction of RIs in coastal seawater CDOM in Asia, which impedes our ability to model the lifetimes and fates of contaminants in these coastal seawater systems. Hong Kong is an urban metropolis in South China, whose coastal seawater is susceptible to anthropogenic activities from the surrounding areas and the nearby Pearl River. We investigated the photoproduction of RIs in seawater around Hong Kong during the wet vs. dry season. Higher intensities of fluorescent components, dissolved organic carbon concentration ([DOC]), apparent quantum yields of RIs (ΦRIs), and steady-state concentrations of photogenerated RIs ([RIs]ss) were observed for samples collected in the areas closest to the Pearl River during the wet season. Lower humification degrees and ΦRIs but higher intensities of fluorescent components and [RIs]ss were generally observed for the wet season samples compared to the dry season samples. Statistical analysis revealed strong significant correlations (Spearman |r| > 0.6, p < 0.05) between ΦRIs and the absorbance properties (including the absorbance ratio E2:E3, spectral slope coefficients S350-400, and spectral slope ratio SR) of CDOM, and between [RIs]ss and the quantity-reflected properties (including the fluorescence intensity of humic-like components) of CDOM. Our modeling analyses combining orthogonal partial least squares and stepwise multiple linear regression showed excellent prediction strengths for [1O2]ss and [3CDOM⁎]ss (R2adj > 0.7) when [DOC] and the chemical and optical properties of CDOM were used as predictor variables. These modeling results demonstrate the feasibility of predicting the concentrations and quantum yields of RIs in seawater around Hong Kong, and potentially other coastal cities in South China, from easily measurable chemical and optical properties.
Collapse
Affiliation(s)
- Yitao Li
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Kai Zhang
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao.
| | - Jennifer Apell
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York, USA.
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Xinming Huang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Theodora Nah
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| |
Collapse
|
10
|
Du P, Tang K, Yang B, Mo X, Wang J. Reassessing the Quantum Yield and Reactivity of Triplet-State Dissolved Organic Matter via Global Kinetic Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5856-5865. [PMID: 38516968 DOI: 10.1021/acs.est.4c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Measuring the quantum yield and reactivity of triplet-state dissolved organic matter (3DOM*) is essential for assessing the impact of DOM on aquatic photochemical processes. However, current 3DOM* quantification methods require multiple fitting steps and rely on steady-state approximations under stringent application criteria, which may introduce certain inaccuracies in the estimation of DOM photoreactivity parameters. Here, we developed a global kinetic model to simulate the reaction kinetics of the hv/DOM system using four DOM types and 2,4,6-trimethylphenol as the probe for 3DOM*. Analyses of residuals and the root-mean-square error validated the exceptional precision of the new model compared to conventional methods. 3DOM* in the global kinetic model consistently displayed a lower quantum yield and higher reactivity than those in local regression models, indicating that the generation and reactivity of 3DOM* have often been overestimated and underestimated, respectively. The global kinetic model derives parameters by simultaneously fitting probe degradation kinetics under different conditions and considers the temporally increasing concentrations of the involved reactive species. It minimizes error propagation and offers insights into the interactions of different species, thereby providing advantages in accuracy, robustness, and interpretability. This study significantly advances the understanding of 3DOM* behavior and provides a valuable kinetic model for aquatic photochemistry research.
Collapse
Affiliation(s)
- Penghui Du
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kexin Tang
- Center of Water Resources and Environment, School of Civil Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Biwei Yang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaohan Mo
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Peking University, Shenzhen, Guangdong 518055, China
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
11
|
Lee JM, Lee YJ, Jeong YJ, Cho IS, Jho EH, Park SJ, Lee CG. Graphitic-carbon-nitride-hydrophilicity-dependent photocatalytic degradation of antibiotics with different log K ow. CHEMOSPHERE 2024; 352:141511. [PMID: 38401862 DOI: 10.1016/j.chemosphere.2024.141511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
The surface hydrophilicity of a photocatalyst is an important factor that directly influences its interactions with organic pollutants and significantly impacts its degradation. In this study, we investigated the impact of increased hydrophilicity of g-C3N4 (CN) by alkaline solvothermal treatment on the degradations of three antibiotics (oxytetracycline (OTC), oxolinic acid (OA), and sulfamethoxazole (SMX)) with different log Kow values. Scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and Fourier-transform infrared (FT-IR) spectroscopy showed no significant differences in the morphology, crystalline structure, and surface functional groups of CN after alkaline solvothermal treatment (Nv-HPCN). However, contact angle analysis revealed that Nv-HPCN (31.8°) was more hydrophilic than CN (61.1°). To assess the hydrophilicity of the antibiotics, the log Kow values of SMX (0.77), OA (0.43), and OTC (-0.34) were measured. Nv-HPCN showed faster OTC degradation than CN, whereas the opposite pattern was observed for the degradation of OA. Scavenger tests showed that O2•- and h+ mainly contributed to the degradation of these antibiotics. Furthermore, the influences of NOM and coexisting anions on antibiotic degradation were investigated. This study thus offers perspectives on the impact of surface hydrophilicity of photocatalysts on the degradation of antibiotics.
Collapse
Affiliation(s)
- Jong-Min Lee
- Dept. of Environmental and Safety Engineering, Ajou University, Suwon, 16419, Republic of Korea
| | - Youn-Jun Lee
- Dept. of Energy Systems Research, Ajou University, Suwon, 16419, Republic of Korea
| | - Yoo Jae Jeong
- Dept. of Energy Systems Research, Ajou University, Suwon, 16419, Republic of Korea; Dept. of Materials Science & Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - In Sun Cho
- Dept. of Energy Systems Research, Ajou University, Suwon, 16419, Republic of Korea; Dept. of Materials Science & Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Eun Hea Jho
- Dept. of Agricultural and Biological Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seong-Jik Park
- Dept. of Bioresources and Rural System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Chang-Gu Lee
- Dept. of Environmental and Safety Engineering, Ajou University, Suwon, 16419, Republic of Korea; Dept. of Energy Systems Research, Ajou University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
12
|
Zhou Y, Lei Y, Kong Q, Cheng F, Fan M, Deng Y, Zhao Q, Qiu J, Wang P, Yang X. o-Semiquinone Radical and o-Benzoquinone Selectively Degrade Aniline Contaminants in the Periodate-Mediated Advanced Oxidation Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2123-2132. [PMID: 38237556 DOI: 10.1021/acs.est.3c08179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Advanced oxidation processes (AOPs) often employ strong oxidizing inorganic radicals (e.g., hydroxyl and sulfate radicals) to oxidize contaminants in water treatment. However, the water matrix could scavenge the strong oxidizing radicals, significantly deteriorating the treatment efficiency. Here, we report a periodate/catechol process in which reactive quinone species (RQS) including the o-semiquinone radical (o-SQ•-) and o-benzoquinone (o-Q) were dominant to effectively degrade anilines within 60 s. The second-order reaction rate constants of o-SQ•- and o-Q with aniline were determined to be 1.0 × 108 and 4.0 × 103 M-1 s-1, respectively, at pH 7.0, which accounted for 21% and 79% of the degradation of aniline with a periodate-to-catechol molar ratio of 1:1. The major byproducts were generated via addition or polymerization. The RQS-based process exhibited excellent anti-interference performance in the degradation of aniline-containing contaminants in real water samples in the presence of diverse inorganic ions and organics. Subsequently, we extended the RQS-based process by employing tea extract and dissolved organic matter as catechol replacements as well as metal ions [e.g., Fe(III) or Cu(II)] as periodate replacements, which also exhibited good performance in aniline degradation. This study provides a novel strategy to develop RQS-based AOPs for the highly selective degradation of aniline-containing emerging contaminants.
Collapse
Affiliation(s)
- Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Qingqing Kong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fangyuan Cheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Mengge Fan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanchun Deng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Qing Zhao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Junlang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Peng Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
13
|
Madhiyan M, Moor KJ. Singlet Oxygen Quantum Yields of Pyrogenic Dissolved Organic Matter from Lab-Prepared and Wildfire Chars. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1265-1273. [PMID: 38157474 DOI: 10.1021/acs.est.3c03976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Wildfires or prescribed fires release pyrogenic dissolved organic matter (pyDOM) into the environment, which can photochemically produce singlet oxygen (1O2) in sun-lit surface waters. 1O2 quantum yields (ΦΔ) are well-studied for non-pyrogenic DOM, but little is understood about the 1O2 generation from pyDOM, especially the ΦΔ values from real wildfire samples and their wavelength dependence. In this study, time-resolved 1O2 phosphorescence was used to determine the wavelength-dependent ΦΔ values for pyDOM generated from wildfire char and a series of lab-prepared chars produced by combusting oak and pine wood. Wildfire and most lab-prepared pyDOM generally had similar ΦΔ values (2.1-2.7%) at 365 nm compared to the reference Suwannee River Natural Organic Matter (SRNOM) isolate (2.4%). Interestingly, pyDOM from the highest combustion temperature char was found to possess extremely low ΦΔ values compared to SRNOM and other pyDOM at all excitation wavelengths. In addition, it was revealed that the predicted steady-state concentration of 1O2 from pyDOM was similar to that from SRNOM, indicating that the addition of pyDOM from wood chars may not strongly impact surface water photochemistry.
Collapse
Affiliation(s)
- Monika Madhiyan
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, Utah 84322, United States
| | - Kyle J Moor
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
14
|
Wang Y, Lin Y, He S, Wu S, Yang C. Singlet oxygen: Properties, generation, detection, and environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132538. [PMID: 37734310 DOI: 10.1016/j.jhazmat.2023.132538] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Singlet oxygen (1O2) is molecular oxygen in the excited state with high energy and electrophilic properties. It is widely found in nature, and its important role is gradually extending from chemical syntheses and medical techniques to environmental remediation. However, there exist ambiguities and controversies regarding detection methods, generation pathways, and reaction mechanisms which have hindered the understanding and applications of 1O2. For example, the inaccurate detection of 1O2 has led to an overestimation of its role in pollutant degradation. The difficulty in detecting multiple intermediate species obscures the mechanism of 1O2 production. The applications of 1O2 in environmental remediation have also not been comprehensively commented on. To fill these knowledge gaps, this paper systematically discussed the properties and generation of 1O2, reviewed the state-of-the-art detection methods for 1O2 and long-standing controversies in the catalytic systems. Future opportunities and challenges were also discussed regarding the applications of 1O2 in the degradation of pollutants dissolved in water and volatilized in the atmosphere, the disinfection of drinking water, the gas/solid sterilization, and the self-cleaning of filter membranes. This review is expected to provide a better understanding of 1O2-based advanced oxidation processes and practical applications in the environmental protection of 1O2.
Collapse
Affiliation(s)
- Yue Wang
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China.
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
15
|
Hananya N, Green O, Gutiérrez-Fernández I, Shabat D, Arellano JB. Singlet Oxygen Detection by Chemiluminescence Probes in Living Cells. Methods Mol Biol 2024; 2798:27-43. [PMID: 38587734 DOI: 10.1007/978-1-0716-3826-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Singlet oxygen is a reactive oxygen species that causes oxidative damage to plant cells, but intriguingly it can also act as a signalling molecule to reprogram gene expression required to induce plant physiological/cellular responses. Singlet oxygen photosensitization in plants mainly occurs in chloroplasts after the molecular collision of ground-state molecular oxygen with triplet-excited-state chlorophyll. Singlet oxygen direct detection through phosphorescence emission in chloroplasts is a herculean task due to its extremely low luminescence quantum yield. Because of this, indirect alternative methods have been developed for its detection in biological systems, for example, by measuring the changes in the EPR signal or fluorescence intensity of singlet oxygen reaction-based probes. The singlet oxygen chemiluminescence (SOCL) is a chemiluminescence probe with high sensitivity and selectivity towards singlet oxygen and promising use to detect it in living cells without the inconvenience of low stability of the EPR signal of spin probes in the presence of redox compounds, spurious light scattering coming from the light source required for the excitation of fluorescence probes or the light emission of endogenous fluorescent molecules like chlorophyll in chloroplasts. The protocol presented in this chapter describes the first steps to characterizing singlet oxygen production within the biological system under study; this is accomplished through monitoring molecular oxygen consumption by SOCL using a Clark-type oxygen electrode and measuring the chemiluminescence generated by SOCL 1,2-dioxetane using a spectrofluorometer. For singlet oxygen detection within living cells, a version of SOCL with increased membrane permeability (SOCL-CPP) is described.
Collapse
Affiliation(s)
- Nir Hananya
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa, Israel
| | - Ori Green
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa, Israel
| | - Ismael Gutiérrez-Fernández
- Departamento de Estrés Abiótico, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Doron Shabat
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Juan B Arellano
- Departamento de Estrés Abiótico, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Salamanca, Spain.
| |
Collapse
|
16
|
Liu S, Cui Z, Ding D, Bai Y, Chen J, Cui H, Su R, Qu K. Effect of the molecular weight of DOM on the indirect photodegradation of fluoroquinolone antibiotics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119192. [PMID: 37827075 DOI: 10.1016/j.jenvman.2023.119192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Dissolved organic matter (DOM) is ubiquitous and widespread in natural water and influences the transformation and removal of antibiotics. Nevertheless, the influence of DOM molecular weight (MW) on the indirect photodegradation of antibiotics has rarely been reported. This study attempted to explore the influence of the molecular weight of DOM on the indirect photodegradation of two fluoroquinolone antibiotics (FQs), ofloxacin (OFL) and norfloxacin (NOR), by using UV-vis absorption and fluorescence spectroscopy. The results showed that indirect photodegradation was considered the main photodegradation pathway of FQs in DOM fractions. Triplet-state excited organic matter (3DOM*) and singlet oxygen (1O2) were the main reactive intermediates (RIs) that affected the indirect photodegradation of FQs. The indirect photodegradation rate of FQs was significantly promoted in DOM fractions, especially in the low molecular weight DOM fractions (L-MW DOM, MW < 10 kDa). The results of excitation-emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC) showed that terrestrial humic-like substances had a higher humification degree and fluorophore content in L- MW DOM fractions, which could produce more 3DOM* and 1O2 to promote the indirect photodegradation of FQs. This study provided new insight into the effects of DOM at the molecular weight level on the indirect photodegradation of antibiotics in natural water.
Collapse
Affiliation(s)
- Shukai Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266071, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zhengguo Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266071, China
| | - Dongsheng Ding
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266071, China
| | - Ying Bai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266071, China.
| | - Jianlei Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266071, China
| | - Hongwu Cui
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Rongguo Su
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Keming Qu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266071, China
| |
Collapse
|
17
|
Cai L, Yao Q, Du X, Zhong J, Lu H, Tao X, Zhou J, Dang Z, Lu G. Validation of quenching effectiveness and pollutant degradation ability of singlet oxygen through model reaction system. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132488. [PMID: 37696208 DOI: 10.1016/j.jhazmat.2023.132488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Quenching method is widely used to assess the contribution of specified reactive species through the probe inhibition efficiency (IE) caused by adding excessive quencher. However, for reactive species with weak ability such as singlet oxygen (1O2), the quenching results are prone to ambiguity. In this study, an 1O2 system using furfuryl alcohol (FFA) as a probe was successfully constructed by methylene-blue-N vis-photosensitization, to discuss the quenching, interference elimination and pollutant degradation ability of 1O2. Inhibition of FFA transformation caused by both quenching and interrupting of 1O2 production was found. The quenching is affected by quencher dosage and ability, which depends on the second-order-rate constant (k). A high k means a strong ability, and less dosage is required to achieve the same IE. Comparison between the calculated ratio of reactive species consumed by quencher and experimental IE helps to judge the interruption of 1O2 production. None of the organic-solvents (methanol, ethanol, iso-propanol, n-butanol, iso-butanol, tert-butanol, tetrahydrofuran, acetonitrile, acetone and chloroform) scavenged 1O2, which would be used as screening-agent for other reactive species (e.g., hydroxyl radicals) that would interrupt 1O2 contribution assessment. Besides, 1O2 was powerless to degrade most selected pollutants. These results encourage proper use of quenchers and better experimental design.
Collapse
Affiliation(s)
- Limiao Cai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Qian Yao
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiayi Zhong
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Haijian Lu
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiangmin Zhou
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
18
|
Guo Z, Wang T, Chen G, Wang J, Fujii M, Yoshimura C. Apparent quantum yield for photo-production of singlet oxygen in reservoirs and its relation to the water matrix. WATER RESEARCH 2023; 244:120456. [PMID: 37579568 DOI: 10.1016/j.watres.2023.120456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/21/2023] [Accepted: 08/06/2023] [Indexed: 08/16/2023]
Abstract
Man-made reservoirs are important for human daily lives and offer different functions, however they are contaminated due to anthropogenic activities. Dissolved organic matter (DOM) from each reservoir is unique in composition, which further determines its photo-reactivity. Thus, this study aimed to investigate the photo-reactivity of reservoir DOM in terms of the quantum yield for photo-production of singlet oxygen (Ф1O2). We sampled surface water of 50 reservoirs in Japan and determined their Ф1O2 using simulated sunlight together with bulk water analysis. Their Ф1O2 ranged from 1.46 × 10-2 to 6.21 × 10-2 (mean, 2.55 × 10-2), which was identical to those of lakes and rivers reported in the literature, but lower than those of wetland water and wastewater. High-energy triplet-state of DOM accounted for 59.4% of the 1O2 production in the reservoir water on average. Among the bulk water properties, the spectral slope of wavelength from 350 to 400 nm (S350-400) was statistically detected as the most important predictor for Ф1O2. Furthermore, the multiple linear regression model employed S350-400 and the biological index as predictors with no intercorrelations and reasonable accuracy (r2 = 0.86), while the random forest model showed a better accuracy (r2 = 0.90). Overall, these major findings are beneficial for understanding the photo-reactivity of reservoir waters.
Collapse
Affiliation(s)
- Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo, 152-8552, Japan
| | - Tingting Wang
- Graduate School of Science, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8602, Japan
| | - Guo Chen
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo, 152-8552, Japan
| | - Jieqiong Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo, 152-8552, Japan
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo, 152-8552, Japan.
| |
Collapse
|
19
|
Zheng N, Tang X, Lian Y, Ou Z, Zhou Q, Wang R, Hu Z. Low-valent copper on molybdenum triggers molecular oxygen activation to selectively generate singlet oxygen for advanced oxidation processes. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131210. [PMID: 36958162 DOI: 10.1016/j.jhazmat.2023.131210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Singlet oxygen (1O2), which is difficult to generate, plays an important role in chemosynthesis, biomedicine and environment. Molecular oxygen (O2) is a green oxidant to produce 1O2 cost-effectively. However, O2 activation is difficult due to its spin-forbidden nature. Moreover, the main products of O2 activation are basically hydrogen peroxide (H2O2) and hydroxyl radical (•OH), but rarely 1O2. Herein, we innovatively realize the selective generation of 1O2 via O2 activation by a facile molybdenum (Mo)/Cu2+ system. In this system, Mo firstly reduces Cu2+ in solution to low-valence Cu0/Cu+ on its surface. Cu0/Cu+ activates O2 to generate superoxide radical (O2•-). Importantly, O2•- can be captured immediately and oxidized to 1O2 by surface-bound Mo6+ rather than reduced to H2O2. As a result, the Mo/Cu2+ system can selectively produce 1O2. Under air and O2 conditions, the degradation efficiency of ibuprofen by Mo/Cu2+ system is 67.2 % and 76.6 %, respectively. The degradation efficiencies of bisphenol A, rhodamine B and furfuryl alcohol are 77.1 %, 87.7 % and 91.1 %, respectively. The dosages of Mo and Cu2+ are 0.4 g/L and 3 mM, respectively, and the reaction time is 2 h. Interestingly, the activity of Mo decreased by only 4.2 % after 4 cycles. Therefore, this study provides a green pathway to selectively generate 1O2 for advanced oxidation processes.
Collapse
Affiliation(s)
- Ningchao Zheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xinhui Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yekai Lian
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zheshun Ou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Quan Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ruilin Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhuofeng Hu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
20
|
Cheng K, Zhang L, McKay G. Evaluating the Microheterogeneous Distribution of Photochemically Generated Singlet Oxygen Using Furfuryl Amine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7568-7577. [PMID: 37130219 PMCID: PMC10853930 DOI: 10.1021/acs.est.3c01726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023]
Abstract
Singlet oxygen (1O2) is an important reactive species in natural waters produced during photolysis of dissolved organic matter (DOM). Prior studies have demonstrated that 1O2 exhibits a microheterogeneous distribution, with [1O2] in the interior of DOM macromolecules ∼30 to 1000-fold greater than in bulk solution. The [1O2] profile for DOM-containing solutions has been determined mainly by the use of hydrophobic probes, which are not commercially available. In this study, we employed a dual-probe method combining the widely used hydrophilic 1O2 probe furfuryl alcohol (FFA) and its structural analogue furfuryl amine (FFAm). FFAm exists mainly as a cation at pH <9 and was therefore hypothesized to have an enhanced local concentration in the near-DOM phase, whereas FFA will be distributed homogeneously. The probe pair was used to quantify apparent [1O2] in DOM samples from different isolation procedures (humic acid, fulvic acid, reverse osmosis) and diverse origins (aquatic and terrestrial) as a function of pH and ionic strength, and all samples studied exhibited enhanced reactivity of FFAm relative to FFA, especially at pH 7 and 8. To quantify the spatial distribution of [1O2], we combined electrostatic models with Latch and McNeill's three-phase distribution model. Modeling results for Suwannee River humic acid (SRHA) yield a surface [1O2] of ∼60 pM, which is ∼96-fold higher than the aqueous-phase [1O2] measured with FFA. This value is in agreement with prior reports that determined 1-3 orders of magnitude higher [1O2] in the DOM phase compared to bulk solution. Overall, this work expands the knowledge base of DOM microheterogeneous photochemistry by showing that diverse DOM isolates exhibit this phenomenon. In addition, the dual-probe approach and electrostatic modeling offer a new way to gain mechanistic insight into the spatial distribution of 1O2 and potentially other photochemically produced reactive intermediates.
Collapse
Affiliation(s)
- Kai Cheng
- Zachry
Department of Civil & Environmental Engineering, Texas A&M University, 3131 TAMU, College Station, Texas 77845, United States
| | - Lizhong Zhang
- Department
of Physics, University of California, Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Garrett McKay
- Zachry
Department of Civil & Environmental Engineering, Texas A&M University, 3131 TAMU, College Station, Texas 77845, United States
| |
Collapse
|
21
|
Wang L, Xiao K, Zhao H. The debatable role of singlet oxygen in persulfate-based advanced oxidation processes. WATER RESEARCH 2023; 235:119925. [PMID: 37028213 DOI: 10.1016/j.watres.2023.119925] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/06/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Singlet oxygen (1O2) attracts much attention in persulfate-based advanced oxidation processes (PS-AOPs), because of its wide pH tolerance and high selectivity toward electron-rich organics. However, there are conflicts about the 1O2 role in PS-AOPs on several aspects, including the formation of different key reactive oxygen species (ROS) at similar active sites, pH dependence, broad-spectrum activity, and selectivity in the elimination of organic pollutants. To a large degree, these conflicts root in the drawbacks of the methods to identify and evaluate the role of 1O2. For example, the quenchers of 1O2 have high reactivity to other ROS and persulfate as well. In addition, electron transfer process (ETP) also selectively oxidizes organics, having a misleading effect on the identification of 1O2. Therefore, in this review, we summarized and discussed some basic properties of 1O2, the debatable role of 1O2 in PS-AOPs on multiple aspects, and the methods and their drawbacks to identify and evaluate the role of 1O2. On the whole, this review aims to better understand the role of 1O2 in PS-AOPs and further help with its reasonable utilization.
Collapse
Affiliation(s)
- Liangjie Wang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Ke Xiao
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
22
|
Berg SM, Wammer KH, Remucal CK. Dissolved Organic Matter Photoreactivity Is Determined by Its Optical Properties, Redox Activity, and Molecular Composition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6703-6711. [PMID: 37039298 PMCID: PMC11095828 DOI: 10.1021/acs.est.3c01157] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Predicting the formation of photochemically produced reactive intermediates (PPRI) during the irradiation of dissolved organic matter (DOM) has remained challenging given the complex nature of this material and differences in PPRI formation mechanisms. We investigate the role of DOM composition in photoreactivity using 48 samples that span the range of DOM in freshwater systems and wastewater. We relate quantum yields for excited triplet-state organic matter (fTMP), singlet oxygen (Φ1O2), and hydroxylating species (Φ•OH) to DOM composition determined using spectroscopy, Fourier-transform ion cyclotron resonance mass spectrometry, and electron-donating capacity (EDC). fTMP and Φ1O2 follow similar trends and are correlated with bulk properties derived from UV-vis spectra and EDC. In contrast, no individual bulk property can be used to predict Φ•OH. At the molecular level, the subset of DOM that is positively correlated to both Φ•OH and EDC is distinct from DOM formulas related to Φ1O2, demonstrating that •OH and 1O2 are formed from different DOM fractions. Multiple linear regressions are used to relate quantum yields of each PPRI to DOM composition parameters derived from multiple techniques, demonstrating that complementary methods are ideal for characterizing DOM because each technique only samples a subset of DOM.
Collapse
Affiliation(s)
- Stephanie M. Berg
- Environmental Chemistry and Technology Program, University of Wisconsin – Madison, Madison, Wisconsin 53706
| | - Kristine H. Wammer
- Department of Chemistry, University of St. Thomas, St. Paul, Minnesota 55105
| | - Christina K. Remucal
- Environmental Chemistry and Technology Program, University of Wisconsin – Madison, Madison, Wisconsin 53706
- Department of Civil and Environmental Engineering, University of Wisconsin – Madison, Madison, Wisconsin 53706
| |
Collapse
|
23
|
Ma L, Worland R, Tran T, Anastasio C. Evaluation of Probes to Measure Oxidizing Organic Triplet Excited States in Aerosol Liquid Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6052-6062. [PMID: 37011016 DOI: 10.1021/acs.est.2c09672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Oxidizing triplet excited states of organic matter (3C*) drive numerous reactions in fog/cloud drops and aerosol liquid water (ALW). Quantifying oxidizing triplet concentrations in ALW is difficult because 3C* probe loss can be inhibited by the high levels of dissolved organic matter (DOM) and copper in particle water, leading to an underestimate of triplet concentrations. In addition, illuminated ALW contains high concentrations of singlet molecular oxygen (1O2*), which can interfere with 3C* probes. Our overarching goal is to find a triplet probe that has low inhibition by DOM and Cu(II) and low sensitivity to 1O2*. To this end, we tested 12 potential probes from a variety of compound classes. Some probes are strongly inhibited by DOM, while others react rapidly with 1O2*. One of the probe candidates, (phenylthiol)acetic acid (PTA), seems well suited for ALW conditions, with mild inhibition and fast rate constants with triplets, but it also has weaknesses, including a pH-dependent reactivity. We evaluated the performance of both PTA and syringol (SYR) as triplet probes in aqueous extracts of particulate matter. While PTA is less sensitive to inhibition than SYR, it results in lower triplet concentrations, possibly because it is less reactive with weakly oxidizing triplets.
Collapse
Affiliation(s)
- Lan Ma
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| | - Reed Worland
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| | - Theo Tran
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| | - Cort Anastasio
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| |
Collapse
|
24
|
Buckley S, Leresche F, Hanson B, Rosario-Ortiz FL. Decoupling Optical Response and Photochemical Formation of Singlet Oxygen in Size Isolated Fractions of Ozonated Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5603-5610. [PMID: 36977057 DOI: 10.1021/acs.est.2c08155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The complex effects of ozonation on the photophysical and size-based properties of dissolved organic matter (DOM) were investigated using two DOM isolates, Suwannee River Fulvic Acid (SRFA) and Pony Lake Fulvic Acid (PLFA). A size exclusion chromatography system paired with absorbance, fluorescence, and total organic carbon detection was used to determine the fluorescence quantum yield (Φf) as a function of the apparent molecular weight (AMW). Size-based fractions of each isolate were collected and irradiated to measure singlet oxygen (1O2) quantum yield (Φ1O2). Φf decreased with ozonation in low AMW fractions, while increasing in high AMW fractions. Φ1O2 increased with ozone dose in low AMW fractions from ∼2 to ∼7% and ∼3 to ∼11% for PLFA and SRFA, respectively, indicating that these are the most photoreactive fractions of DOM. Decreases in Φf and concomitant increases in Φ1O2 in low AMW fractions indicated that chemical transformations occurred, likely including the conversion of phenols to quinones, particularly in SRFA. Results further suggest that the photoactive and fluorescent fractions of DOM are likely independent pools of chromophores from different AMW fractions. In PLFA, a linear response in Φ1O2, specific UV absorbance at wavelength 254 nm (SUVA254), and Φf with ozonation indicated the equal distribution of ozone-reactive moieties.
Collapse
Affiliation(s)
- Shelby Buckley
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Frank Leresche
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Blair Hanson
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
25
|
Schroer HW, Londono E, Li X, Lehmler HJ, Arnold W, Just CL. Photolysis of 3-Nitro-1,2,4-triazol-5-one: Mechanisms and Products. ACS ES&T WATER 2023; 3:783-792. [PMID: 36936519 PMCID: PMC10012174 DOI: 10.1021/acsestwater.2c00567] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Insensitive munitions formulations that include 3-nitro-1,2,4-triazol-5-one (NTO) are replacing traditional explosive compounds. While these new formulations have superior safety characteristics, the compounds have greater environmental mobility, raising concern over potential contamination and cleanup of training and manufacturing facilities. Here, we examine the mechanisms and products of NTO photolysis in simulated sunlight to further inform NTO degradation in sunlit surface waters. We demonstrate that NTO produces singlet oxygen and that dissolved oxygen increases the NTO photolysis rate in deionized water. The rate of NTO photolysis is independent of concentration and decreases slightly in the presence of Suwannee River Natural Organic Matter. The apparent quantum yield of NTO generally decreases as pH increases, ranging from 2.0 × 10-5 at pH 12 to 1.3 × 10-3 at pH 2. Bimolecular reaction rate constants for NTO with singlet oxygen and hydroxyl radical were measured to be (1.95 ± 0.15) × 106 and (3.28 ± 0.23) × 1010 M-1 s-1, respectively. Major photolysis reaction products were ammonium, nitrite, and nitrate, with nitrite produced in nearly stoichiometric yield upon the reaction of NTO with singlet oxygen. Environmental half-lives are predicted to span from 1.1 to 5.7 days. Taken together, these data enhance our understanding of NTO photolysis under environmentally relevant conditions.
Collapse
Affiliation(s)
- Hunter W. Schroer
- Civil
& Environmental Engineering, The University
of Iowa, Iowa City, Iowa52242, United States
| | - Esteban Londono
- Civil
& Environmental Engineering, The University
of Iowa, Iowa City, Iowa52242, United States
| | - Xueshu Li
- Occupational
& Environmental Health, The University
of Iowa, Iowa City, Iowa52246, United States
| | - Hans-Joachim Lehmler
- Occupational
& Environmental Health, The University
of Iowa, Iowa City, Iowa52246, United States
| | - William Arnold
- Department
of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, Minnesota55455, United States
| | - Craig L. Just
- Civil
& Environmental Engineering, The University
of Iowa, Iowa City, Iowa52242, United States
| |
Collapse
|
26
|
Luo N, Gao Y, Wang M, Niu X, Li G, An T. Bidirectional role of synthetic musk tonalide as photosensitizer and activator on amino acids: Formation of sensitizer imine at aqueous chemistry interface of skin. ECO-ENVIRONMENT & HEALTH 2023; 2:32-39. [PMID: 38074450 PMCID: PMC10702883 DOI: 10.1016/j.eehl.2023.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 10/16/2024]
Abstract
Personal care products (PCPs) inevitably come into contact with the skin in people's daily life, potentially causing adverse effects on human health. The adverse effects can be exacerbated under UV irradiation but are rarely studied. In this study, to clearly understand the damage of representative PCPs to human skin and their photochemical transformation behaviors, fragrance tonalide (AHTN) was measured in the presence of amino acids as a basic building block of human tissue. The results showed that amino acids could decelerate the photochemical transformation rate of AHTN, increasing the likelihood of AHNT persisting on the skin surface and the health risk to the human being. Further, the interaction between amino acids and AHTN was investigated. AHTN could play bidirectional roles in damaging amino acids: the photosensitizer and reactive activator. As a photosensitizer, the 1O2 generated from the AHTN photosensitization was partly employed to oxidative damage amino acids. Furthermore, by combining experiments with quantum chemical computation, the carbonyl group of the activator AHTN was found to be the active site to activate the N-containing group of amino acids. The activation mechanism was the electron transfer between AHTN and amino acids. Imines formed during the photochemical transformation of AHTN with histidine/glycine were the molecular initiating event for potential skin sensitization. This study reported for the first time that skin photosensitizer formation threatens human health during the photochemical transformation of AHTN.
Collapse
Affiliation(s)
- Na Luo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Mei Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaolin Niu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
27
|
Kanamori T, Kaneko S, Hamamoto K, Yuasa H. Mapping the diffusion pattern of 1O 2 along DNA duplex by guanine photooxidation with an appended biphenyl photosensitizer. Sci Rep 2023; 13:288. [PMID: 36690669 PMCID: PMC9871026 DOI: 10.1038/s41598-023-27526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
To realize nucleic acid-targeting photodynamic therapy, a photosensitizer should be attached at the optimal position on a complementary oligonucleotide, where a guanine photooxidation is maximized. Here we show the photooxidation of 22 DNA duplexes with varied lengths between a 1O2-generating biphenyl photosensitizer attached at a midchain thymine in a strand and the single guanine reactant in the other strand. The best photooxidation efficiencies are achieved at 9, 10, and 21 base intervals, which coincides with the pitch of 10.5 base pairs per turn in a DNA duplex. The low efficiencies for near and far guanines are due to quenching of the biphenyl by guanine and dilution of 1O2 by diffusion, respectively. The 1O2-diffusion mapping along DNA duplex provides clues to the development of efficient and selective photosensitizer agents for nucleic acid-targeting photodynamic therapy, as well as an experimental demonstration of diffusion of a particle along cylindrical surface in molecular level.
Collapse
Affiliation(s)
- Takashi Kanamori
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10 4259, Nagatsuta, Midoriku, Yokohama, 226-8501, Japan.
| | - Shota Kaneko
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10 4259, Nagatsuta, Midoriku, Yokohama, 226-8501, Japan
| | - Koji Hamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10 4259, Nagatsuta, Midoriku, Yokohama, 226-8501, Japan
| | - Hideya Yuasa
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10 4259, Nagatsuta, Midoriku, Yokohama, 226-8501, Japan.
| |
Collapse
|
28
|
Bogler S, Daellenbach KR, Bell DM, Prévôt ASH, El Haddad I, Borduas-Dedekind N. Singlet Oxygen Seasonality in Aqueous PM 10 is Driven by Biomass Burning and Anthropogenic Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15389-15397. [PMID: 36306277 DOI: 10.1021/acs.est.2c04554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The first excited state of molecular oxygen is singlet-state oxygen (1O2), formed by indirect photochemistry of chromophoric organic matter. To determine whether 1O2 can be a competitive atmospheric oxidant, we must first quantify its production in organic aerosols (OA). Here, we report the spatiotemporal distribution of 1O2 over a 1-year dataset of PM10 extracts at two locations in Switzerland, representing a rural and suburban site. Using a chemical probe technique, we measured 1O2 steady-state concentrations with a seasonality over an order of magnitude peaking in wintertime at 4.59 ± 0.01 × 10-13 M and with a quantum yield of up to 2%. Next, we identified biomass burning and anthropogenic secondary OA (SOA) as the drivers for 1O2 formation in the PM10 aqueous extracts using source apportionment data. Importantly, the quantity, the amount of brown carbon present in PM10, and the quality, the chemical composition of the brown carbon present, influence the concentration of 1O2 sensitized in each extract. Anthropogenic SOA in the extracts were 4 times more efficient in sensitizing 1O2 than primary biomass burning aerosols. Last, we developed an empirical fit to estimate 1O2 concentrations based on PM10 components, unlocking the ability to estimate 1O2 from existing source apportionment data. Overall, 1O2 is likely a competitive photo-oxidant in PM10 since 1O2 is sensitized by ubiquitous biomass burning OA and anthropogenic SOA.
Collapse
Affiliation(s)
- Sophie Bogler
- Department of Environmental Science Systems, ETH Zurich, Zurich 8092, Switzerland
| | - Kaspar R Daellenbach
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - David M Bell
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - André S H Prévôt
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Imad El Haddad
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Nadine Borduas-Dedekind
- Department of Environmental Science Systems, ETH Zurich, Zurich 8092, Switzerland
- Department of Chemistry, University of British Columbia, Vancouver V6T 1Z1, Canada
| |
Collapse
|
29
|
Bacilieri F, Vähätalo AV, Carena L, Wang M, Gao P, Minella M, Vione D. Wavelength trends of photoproduction of reactive transient species by chromophoric dissolved organic matter (CDOM), under steady-state polychromatic irradiation. CHEMOSPHERE 2022; 306:135502. [PMID: 35803378 DOI: 10.1016/j.chemosphere.2022.135502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
The formation quantum yields of photochemically produced reactive intermediates (PPRIs) by irradiated CDOM (in this study, Suwannee River Natural Organic Matter and Upper Mississippi River Natural Organic Matter) decrease with increasing irradiation wavelength. In particular, the formation quantum yields of the excited triplet states of CDOM (3CDOM*) and of singlet oxygen (1O2) have an exponentially decreasing trend with wavelength. The •OH wavelength trend is different, because more effective •OH production occurs under UVB irradiation than foreseen by a purely exponential function. We show that the parameter-adjustable Weibull function (which adapts to both exponential and some non-exponential trends) is suitable to fit the mentioned quantum yield data, and it is very useful when CDOM irradiation is carried out under polychromatic lamps as done here. Model calculations suggest that, thanks to the ability of CDOM to also absorb visible radiation, and despite its decreasing quantum yield of •OH generation with increasing wavelength, CDOM would be able to trigger •OH photogeneration in deep waters, to a higher extent than UVB-absorbing nitrate or UVB + UVA-absorbing nitrite.
Collapse
Affiliation(s)
- Federico Bacilieri
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Anssi V Vähätalo
- Department of Biological and Environmental Science, University of Jyväskylä, P.O.Box 35, FI-40014, Jyväskylä, Finland
| | - Luca Carena
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Mingjie Wang
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Marco Minella
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Davide Vione
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125, Torino, Italy.
| |
Collapse
|
30
|
Lu X, Zhou X, Qiu W, Wang Z, Wang Y, Zhang H, Yu J, Wang D, Gu J, Ma J. Kinetics and mechanism of the reaction of hydrogen peroxide with hypochlorous acid: Implication on electrochemical water treatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129420. [PMID: 35816805 DOI: 10.1016/j.jhazmat.2022.129420] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Reduction of HOCl to Cl- by in-situ electrochemical synthesis or ex-situ addition of H2O2 is a feasible method to minimize Cl-DBPs and ClOx- (x = 2, 3, and 4) formation in electrochemical oxidative water treatment systems. This work has investigated the kinetics and mechanism of the reaction between H2O2 and HOCl. The kinetics study showed the species-specific second order rate constants for HOCl with H2O2 (k1), HOCl with HO2- (k2) and OCl- with H2O2 (k3) are 195.5 ± 3.3 M-1s-1, 4.0 × 107 M-1s-1 and 3.5 × 103 M-1s-1, respectively. The density functional theory calculation showed k2 is the most advantageous thermodynamically pathway because it does not need to overcome a high energy barrier. The yields of 1O2 generation from the reaction of H2O2 with HOCl were reinvestigated by using furfuryl alcohol (FFA) as a probe, and an average of 92.3% of 1O2 yields was obtained at pH 7-12. The second order rate constants of the reaction of 1O2 with 13 phenolates were determined by using the H2O2/HOCl system as a quantitative 1O2 production source. To establish a quantitative structure activity relationship, quantum chemical descriptors were more satisfactory than empirical Hammett constants. The potential implications in electrochemical oxidative water treatment were discussed at the end.
Collapse
Affiliation(s)
- Xiaohui Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaoqun Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China.
| | - Ziyue Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Yishi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Haochen Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Jiaxin Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Da Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jia Gu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
31
|
Determination of Singlet Oxygen Generated in Vegetable Oil Using Furfuryl Alcohol as Trapping Agent. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02386-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
A Review of Moisturizing Additives for Atopic Dermatitis. COSMETICS 2022. [DOI: 10.3390/cosmetics9040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Atopic dermatitis, the most common form of eczema, is a chronic, relapsing inflammatory skin condition that occurs with dry skin, persistent itching, and scaly lesions. This debilitating condition significantly compromises the patient’s quality of life due to the intractable itching and other associated factors such as disfigurement, sleeping disturbances, and social stigmatization from the visible lesions. The treatment mainstay of atopic dermatitis involves applying topical glucocorticosteroids and calcineurin inhibitors, combined with regular use of moisturizers. However, conventional treatments possess a certain degree of adverse effects, which raised concerns among the patients resulting in non-adherence to treatment. Hence, the modern use of moisturizers to improve barrier repair and function is of great value. One of the approaches includes incorporating bioactive ingredients with clinically proven therapeutic benefits into dermocosmetics emollient. The current evidence suggests that these dermocosmetics emollients aid in the improvement of the skin barrier and alleviate inflammation, pruritus and xerosis. We carried out a critical and comprehensive narrative review of the literature. Studies and trials focusing on moisturizers that include phytochemicals, natural moisturizing factors, essential fatty acids, endocannabinoids, and antioxidants were identified by searching electronic databases (PubMed and MEDLINE). We introduce the current knowledge on the roles of moisturizers in alleviating symptoms of atopic dermatitis. We then further summarize the science and rationale of the active ingredients in dermocosmetics and medical device emollients for treating atopic dermatitis. Finally, we highlight the limitations of the current evidence and future perspectives of cosmeceutical research on atopic dermatitis.
Collapse
|
33
|
Zhao Y, Zhao Y, Yu X, Kong D, Fan X, Wang R, Luo S, Lu D, Nan J, Ma J. Peracetic acid integrated catalytic ceramic membrane filtration for enhanced membrane fouling control: Performance evaluation and mechanism analysis. WATER RESEARCH 2022; 220:118710. [PMID: 35687976 DOI: 10.1016/j.watres.2022.118710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 05/09/2023]
Abstract
Endowing ceramic membrane (CM) catalytic reactivity can enhance membrane fouling control in the aid of in situ oxidation process. Peracetic acid (PAA) oxidant holds great prospect to integrate with CM for membrane fouling control, owing to the prominent advantages of high oxidation efficacy and easy activation. Herein, this study, for the first time, presented a PAA/CM catalytic filtration system achieving highly-efficient protein fouling alleviation. A FeOCl functionalized CM (FeOCl-CM) was synthesized, possessing high hydrophilicity, low surface roughness, and highly-efficient activation towards PAA oxidation. Using bovine serum albumin (BSA) as the model protein foulant, the PAA/FeOCl-CM catalytic filtration notably alleviated fouling occurring in both membrane pores and surface, and halved the flux reduction degree as compared with the conventional CM filtration. The PAA/FeOCl-CM catalytic oxidation allows quick and complete disintegration of BSA particles, via the breakage of the amide I and II bands and the ring opening of the aromatic amino acids (e.g., Tryptophan, Tyrosine). In-depth investigation revealed that the in situ generated •OH and 1O2 were the key reactive species towards BSA degradation during catalytic filtration, while the organic radical oxidation and the direct electron transfer pathway from BSA to PAA via FeOCl-CM played minor roles. Overall, our findings highlight a new PAA/CM catalytic filtration strategy for achieving highly-efficient membrane fouling control and provide an understanding of the integrated PAA catalytic oxidation - membrane filtration behaviors.
Collapse
Affiliation(s)
- Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanxin Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Yu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dezhen Kong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinru Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Runzhi Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shuangjiang Luo
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
34
|
Wan D, Wang J, Chen T, Xiang W, Selvinsimpson S, Chen Y. Effect of disinfection on the photoreactivity of effluent organic matter and photodegradation of organic contaminants. WATER RESEARCH 2022; 219:118552. [PMID: 35550969 DOI: 10.1016/j.watres.2022.118552] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Chlorine, UV254, and ozone are three typical processes commonly used for wastewater disinfection, which could change the photoreactivity of dissolved organic matter (DOM) in effluents of wastewater treatment plants (WWTPs). The photoinduced reactive species (RS) from DOM, primarily including the excited triplet state of DOM (3DOM*), singlet oxygen (1O2), and hydroxyl radical (•OH), play important roles in the attenuation of contaminants. However, the effect of disinfection processes on the photosensitized degradation of contaminants is poorly understood. This paper presents the first evidence that 3DOM*, 1O2, and •OH interaction with three typical contaminants (diphenhydramine, cimetidine, and N,N-diethyl-m-toluamide (DEET)) was largely impacted by DOM after disinfection. The results of electron spin resonance (ESR) spectrometry and laser flash photolysis (LFP) experiments demonstrated that the chlorination increased the formation rate of 3DOM* and 1O2, while UV254 irradiation and ozonation decreased the formation rate of these RS. All these three disinfection processes promoted the photoproduction of •OH and increased the photodegradation rate constants (kobs) of DEET by 26-361%. The kobs of diphenhydramine, cimetidine, and DEET correlated positively with the formation rate of 3DOM*, 1O2, and •OH, respectively. The bimolecular reaction rate constant of 3DOM* with diphenhydramine increased by ∼41% after chlorination. These findings suggest that disinfection processes altered the photogeneration of RS from DOM, which significantly impacts the fate of trace pollutants in aquatic environments.
Collapse
Affiliation(s)
- Dong Wan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jie Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Tong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Weiming Xiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | | | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
35
|
Kim E, Cardosa GB, Stanley KE, Williams TJ, McCurry DL. Out of Thin Air? Catalytic Oxidation of Trace Aqueous Aldehydes with Ambient Dissolved Oxygen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8756-8764. [PMID: 35671187 DOI: 10.1021/acs.est.2c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Water reuse is expanding due to increased water scarcity. Water reuse facilities treat wastewater effluent to a very high purity level, typically resulting in a product water that is essentially deionized water, often containing less than 100 μg/L organic carbon. However, recent research has found that low-molecular-weight aldehydes, which are toxic electrophiles, comprise a significant fraction of the final organic carbon pool in recycled wastewater in certain treatment configurations. In this manuscript, we demonstrate oxidation of trace aqueous aldehydes to their corresponding acids using a heterogeneous catalyst (5% Pt on C), with ambient dissolved oxygen serving as the terminal electron acceptor. Mass balances are essentially quantitative across a range of aldehydes, and pseudo-first-order reaction kinetics are observed in batch reactors, with kobs varying from 0.6 h-1 for acetaldehyde to 4.6 h-1 for hexanal, while they are low for unsaturated aldehydes. Through kinetic and isotopic labeling experiments, we demonstrate that while oxygen is essential for the reaction to proceed, it is not involved in the rate-limiting step, and the reaction appears to proceed primarily through a base-promoted β-hydride elimination mechanism from the hydrated gem-diol form of the corresponding aldehyde. This is the first report we are aware of that demonstrates useful abiotic oxidation of a trace organic contaminant using dissolved oxygen.
Collapse
Affiliation(s)
- Euna Kim
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Georgia B Cardosa
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Katarina E Stanley
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Travis J Williams
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Daniel L McCurry
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
36
|
Replacing liquid chromatography with tailored ion chromatography: A green method for detecting furfuryl alcohol and understanding its properties. J Chromatogr A 2022; 1673:463090. [DOI: 10.1016/j.chroma.2022.463090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/20/2022]
|
37
|
Kamat M, Moor K, Langlois G, Chen M, Parker KM, McNeill K, Snow SD. The Overlooked Photochemistry of Iodine in Aqueous Suspensions of Fullerene Derivatives. ACS NANO 2022; 16:8309-8317. [PMID: 35533084 PMCID: PMC9134498 DOI: 10.1021/acsnano.2c02281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Fullerene's low water solubility was a serious challenge to researchers aiming to harness their excellent photochemical properties for aqueous applications. Cationic functionalization of the fullerene cage provided the most effective approach to increase water solubility, but common synthesis practices inadvertently complicated the photochemistry of these systems by introducing iodide as a counterion. This problem was overlooked until recent work noted a potentiation effect which occurred when photosensitizers were used to inactivate microorganisms with added potassium iodide. In this work, several photochemical pathways were explored to determine the extent and underlying mechanisms of iodide's interference in the photosensitization of singlet oxygen by cationic fulleropyrrolidinium ions and rose bengal. Triplet excited state sensitizer lifetimes were measured via laser flash photolysis to probe the role of I- in triplet sensitizer quenching. Singlet oxygen production rates were compared across sensitizers in the presence or absence of I-, SO42-, and other anions. 3,5-Dimethyl-1H-pyrazole was employed as a chemical probe for iodine radical species, such as I·, but none were observed in the photochemical systems. Molecular iodine and triiodide, however, were found in significant quantities when photosensitizers were irradiated in the presence of I- and O2. The formation of I2 in these photochemical systems calls into question the interpretations of prior studies that used I- as a counterion for photosensitizer materials. As an example, MS2 bacteriophages were inactivated here by cationic fullerenes with and without I- present, showing that I- moderately accelerated the MS2 deactivation, likely by producing I2. Production of I2 did not appear to be directly correlated with estimates of 1O2 concentration, suggesting that the relevant photochemical pathways are more complex than direct reactions between 1O2 and I- in the bulk solution. On the basis of the results here, iodine photochemistry may be underappreciated and misunderstood in other environmental systems.
Collapse
Affiliation(s)
- Madhusudan Kamat
- Department
of Civil and Environmental Engineering, Louisiana State University, 3255 Patrick Taylor Hall, Baton Rouge, Louisiana 70803, United States
| | - Kyle Moor
- Utah
Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, 4110 Old Main Hill, Logan Utah 84322-4110, United States
- Department
of Environmental Systems Science, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Gabrielle Langlois
- Department
of Civil and Environmental Engineering, Louisiana State University, 3255 Patrick Taylor Hall, Baton Rouge, Louisiana 70803, United States
| | - Moshan Chen
- Department
of Energy, Environmental, & Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Kimberly M. Parker
- Department
of Energy, Environmental, & Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Kristopher McNeill
- Department
of Environmental Systems Science, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Samuel D. Snow
- Department
of Civil and Environmental Engineering, Louisiana State University, 3255 Patrick Taylor Hall, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
38
|
Tu Z, Qi Y, Qu R, Tang X, Wang Z, Huo Z. Photochemical transformation of hexachlorobenzene (HCB) in solid-water system: Kinetics, mechanism and toxicity evaluation. CHEMOSPHERE 2022; 295:133907. [PMID: 35151701 DOI: 10.1016/j.chemosphere.2022.133907] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/19/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
As one of the first batch of persistent organic pollutants (POPs) included in Stockholm Convention, hexachlorobenzene (HCB) has attracted great attention because of its wide occurrence and great environmental risks. Considering the easy adsorption of HCB on solids and the complexity of natural particles, we systematically investigated the photodegradation of HCB on the surface of silica gel (SG) in aqueous solution in this work to reveal its fate in natural waters. Under mercury lamp irradiation, more than 90% of HCB loaded on SG could be removed after 240 min. Moreover, the effects of solution pH and water constituents were examined, and results showed that the presence of NO2-, NO3-, Fe3+ and humic acid (HA) significantly inhibited the reaction due to the scavenging of ROS and/or competitive absorption of light. According to radical quenching experiments and electron paramagnetic resonance (EPR) spectra, hydroxyl radicals and singlet oxygen generated on the surface of SG could participate in the transformation of HCB, but •OH played a dominant role. Based on products identified by high performance liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS), two main pathways were proposed for the removal of HCB, including dechlorination and hydroxylation which represent direct and indirect photodegradation, respectively, and the occurrence of these two reactions was further supported by density functional theory (DFT) calculations. From the quantitative analysis of penta-chlorobenzene, it was estimated that dechlorination and hydroxylation contributed to approximately 44.4% and 55.6% of initial HCB degradation, respectively. Furthermore, toxicity predictions by the ecological structure-activity relationship model (ECOSAR) suggested that the toxicity of HCB was decreased in the photodegradation process. This study would provide important information for understanding the photochemical transformation mechanism of HCB at the solid/water interface.
Collapse
Affiliation(s)
- Zhengnan Tu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China.
| | - Xiaosheng Tang
- Jiangsu Yangtze River Delta Environmental Science and Technology Research Institute Co., Ltd., Jiangsu, Changzhou, 213100, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, No.172 Jiangsu Road, Jiangsu, Nanjing, 210009, PR China
| |
Collapse
|
39
|
Liu Y, Zhang Y, Zhang J, Li W, Zhou P, Pan Z, Lai B. Nonradical induced degradation of bisphenol AF by NaBiO3 coupled peroxymonosulfate process: Performance and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Wasswa J, Driscoll CT, Zeng T. Contrasting Impacts of Photochemical and Microbial Processing on the Photoreactivity of Dissolved Organic Matter in an Adirondack Lake Watershed. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1688-1701. [PMID: 35041388 PMCID: PMC8812123 DOI: 10.1021/acs.est.1c06047] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Photochemical and microbial processing are the prevailing mechanisms that shape the composition and reactivity of dissolved organic matter (DOM); however, prior research has not comparatively evaluated the impacts of these processes on the photoproduction of reactive intermediates (RIs) from freshly sourced terrestrial DOM. We performed controlled irradiation and incubation experiments with leaf and soil samples collected from an acid-impacted lake watershed in the Adirondack Mountain region of New York to examine the effects of DOM processing on the apparent quantum yields of RIs (Φapp,RI), including excited triplet states of DOM (3DOM*), singlet oxygen (1O2), and hydroxyl radicals (•OH). Photodegradation led to net reductions in Φapp,1O2, Φapp,3DOM*, and Φapp,•OH, whereas (photo-)biodegradation resulted in increases in Φapp,1O2 and Φapp,3DOM*. Photodegradation and (photo-)biodegradation also shifted the energy distribution of 3DOM* in different directions. Multivariate statistical analyses revealed the potential relevance of photo-biodegradation in driving changes in Φapp,1O2 and Φapp,3DOM* and prioritized five bulk DOM optical and redox properties that best explained the variations in Φapp,1O2 and Φapp,3DOM* along the watershed terrestrial-aquatic continuum. Our findings highlight the contrasting impacts of photochemical and microbial processes on the photoreactivity of freshly sourced terrestrial DOM and invite further studies to develop a more holistic understanding of their implications for aquatic photochemistry.
Collapse
|
41
|
Nie J, Zou J, Yan S, Song W. Photosensitized Transformation of Peroxymonosulfate in Dissolved Organic Matter Solutions under Simulated Solar Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1963-1972. [PMID: 35050612 DOI: 10.1021/acs.est.1c07411] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sulfate radical (SO4•-)-mediated advanced oxidation processes via peroxymonosulfate (PMS) activation have been extensively investigated. However, the phototransformation of PMS in sunlit dissolved organic matter (DOM) solution has not been previously examined. For the first time, the photosensitized transformation of PMS in DOM-enriched solutions under simulated solar irradiation was observed. The generation of reactive species, including 1O2, SO4•-, and •OH, was confirmed by electron paramagnetic resonance and quantified by chemical probes. SO4•- was the primary reactive species generated via the reaction of excited triplet DOM (3DOM*) with PMS. 3DOM* acted as a reactive reductant and was quickly oxidized by PMS, with an estimated reaction rate constant of (4.09 ± 0.21) × 108 M-1 s-1. Compared to 3DOM*, one-electron-reducing DOM (DOM•-) was a minor contributor to the photosensitized transformation of PMS, and the contribution of DOM•- relied on the phenolic constituents. In addition, a series of different types of DOM, including terrestrial DOM, autochthonous DOM, and effluent organic matter and its fractions, were employed to examine the photosensitized transformation kinetics of PMS. Overall, the photosensitized transformation of PMS by irradiated DOM could be a useful and economical approach to generate SO4•- under environmentally relevant conditions.
Collapse
Affiliation(s)
- Jianxin Nie
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Jianmin Zou
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Weihua Song
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
42
|
Koppenol WH. A resurrection of the Haber-Weiss reaction. Nat Commun 2022; 13:396. [PMID: 35046395 PMCID: PMC8770562 DOI: 10.1038/s41467-021-27823-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/18/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Willem H Koppenol
- Emeritus, Swiss Federal Institute of Technology, Zürich, Switzerland. .,, Schwändibergstrasse 25, 8784, Braunwald, Switzerland.
| |
Collapse
|
43
|
Isikawa M, Guidelli E. Microfluidic Synthesis of Theranostic Nanoparticles with Near-Infrared Scintillation: Toward Next-Generation Dosimetry in X-ray-Induced Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:324-336. [PMID: 34963048 DOI: 10.1021/acsami.1c20689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We developed a microfluidic synthesis to grow GdF3:Eu theranostic scintillating nanoparticles to simultaneously monitor the X-ray dose delivered to tumors during treatments with X-ray activated photodynamic therapy (X-PDT). The flow reaction was optimized to enhance scintillation emission from the Eu3+ ions. The as-prepared ∼15 nm rhombohedral-shaped nanoparticles self-assembled into ∼100 nm mesoporous flower-like nanostructures, but the rhombohedral units remained intact and the scintillation spectra unaltered. The conjugation of the ScNPs with multilayers of methylene blue (MB) in a core-shell structure (GdF@MB) resulted in enhanced singlet oxygen (1O2) generation under X-ray irradiation, with maximum 1O2 production for nanoparticles with 4 MB layers (GdF@4MB). High 1O2 yield was further evidenced in cytotoxicity assays, demonstrating complete cell death only for the association of ScNPs with MB and X-rays. Because the scintillating Eu3+ emission at 694 nm is within the therapeutic window and was only partially absorbed by the MB molecules, it was explored for getting in vivo dosimetric information. Using porcine skin and fat to simulate the optical and radiological properties of the human tissues, we showed that the scintillation light can be detected for a tissue layer of ∼16 mm, thick enough to be employed in radiotherapy treatments of breast cancers, for instance. Therefore, the GdF3:Eu ScNPs and the GdF@4MB nanoconjugates are strong candidates for treating cancer with X-PDT while monitoring the treatment and the radiation dose delivered, opening new avenues to develop a next-generation modality of real-time in vivo dosimetry.
Collapse
Affiliation(s)
- Mileni Isikawa
- Departamento de Física. FFCLRP- Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Eder Guidelli
- Departamento de Física. FFCLRP- Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| |
Collapse
|
44
|
Shanmugam ST, Trashin S, De Wael K. Singlet oxygen-based photoelectrochemical detection of DNA. Biosens Bioelectron 2022; 195:113652. [PMID: 34583105 DOI: 10.1016/j.bios.2021.113652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023]
Abstract
The current work, designed for the photoelectrochemical detection of DNA, evaluates light-responsive DNA probes carrying molecular photosensitizers generating singlet oxygen (1O2). We take advantage of their chromophore's ability to produce 1O2 upon photoexcitation and subsequent photocurrent response. Type I, fluorescent and type II photosensitizers were studied using diode lasers at 406 nm blue, 532 nm green and 659 nm red lasers in the presensce and absence of a redox reporter, hydroquinone (HQ). Only type II photosensitizers (producing 1O2) resulted in a noticeable photocurrent in 1-4 nA range upon illumination, in particular, dissolved DNA probes labeled with chlorin e6 and erythrosine were found to give a well-detectable photocurrent response in the presence of HQ. Whereas, Type I photosensitizers and fluorescent chromophores generate negligible photocurrents (<0.15 nA). The analytical performance of the sensing system was evaluated using a magnetic beads-based DNA assay on disposable electrode platforms, with a focus to enhance the sensitivity and robustness of the technique in detecting complementary DNA targets. Amplified photocurrent responses in the range of 70-100 nA were obtained and detection limits of 17 pM and 10 pM were achieved using magnetic beads-captured chlorin e6 and erythrosine labeled DNA probes respectively. The presented novel photoelectrochemical detection can further be optimized and employed in applications for which enzymatic amplification such as polymerase chain reaction (PCR) is not applicable owing to their limitations and as an effective alternative to colorimetric detection when rapid detection of specific nucleic acid targets is required.
Collapse
Affiliation(s)
- Saranya Thiruvottriyur Shanmugam
- A-Sense Lab, Department of Bioengineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Stanislav Trashin
- A-Sense Lab, Department of Bioengineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Karolien De Wael
- A-Sense Lab, Department of Bioengineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
45
|
Zhang L, Li C, Wan S, Zhang X. Nanocatalyst-Mediated Chemodynamic Tumor Therapy. Adv Healthc Mater 2022; 11:e2101971. [PMID: 34751505 DOI: 10.1002/adhm.202101971] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/01/2021] [Indexed: 02/06/2023]
Abstract
Traditional tumor treatments, including chemotherapy, radiotherapy, photodynamic therapy, and photothermal therapy, are developed and used to treat different types of cancer. Recently, chemodynamic therapy (CDT) has been emerged as a novel cancer therapeutic strategy. CDT utilizes Fenton or Fenton-like reaction to generate highly cytotoxic hydroxyl radicals (•OH) from endogenous hydrogen peroxide (H2 O2 ) to kill cancer cells, which displays promising therapeutic potentials for tumor treatment. However, the low catalytic efficiency and off-target side effects of Fenton reaction limit the biomedical application of CDT. In this regard, various strategies are implemented to potentiate CDT against tumor, including retrofitting the tumor microenvironment (e.g., increasing H2 O2 level, decreasing reductive substances, and reducing pH), enhancing the catalytic efficiency of nanocatalysts, and other strategies. This review aims to summarize the development of CDT and summarize these recent progresses of nanocatalyst-mediated CDT for antitumor application. The future development trend and challenges of CDT are also discussed.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 P. R. China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an 710004 P. R. China
| | - Chu‐Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Shuang‐Shuang Wan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Xian‐Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| |
Collapse
|
46
|
Wu B, Liu T, Wang Y, Zhao G, Chen B, Chu C. High Sample Throughput LED Reactor for Facile Characterization of the Quantum Yield Spectrum of Photochemically Produced Reactive Intermediates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16204-16214. [PMID: 34553927 DOI: 10.1021/acs.est.1c04608] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photochemically produced reactive intermediates (PPRIs) by natural photosensitizers such as chromophoric dissolved organic matter (CDOM) play numerous key roles in aquatic biogeochemical processes. PPRI productions rely on both the intensity and the spectrum of incident sunlight. While the impacts of sunlight intensity on PPRI productions are well-studied, there remains insufficient understanding of the spectrum-dependence of PPRI productions. Here we designed a high sample throughput reactor equipped with monochromatic LED lights for systematic assessments of wavelength-dependent productions of four important PPRI species, i.e., triplet-state excited CDOM (3CDOM*), singlet oxygen (1O2), hydrogen peroxide (H2O2), and hydroxyl radical (•OH), in CDOM solutions. The quantum yields of PPRIs followed the order: 3CDOM* > 1O2 ≫ H2O2 > •OH. Moreover, PPRI quantum yields decreased with the light wavelength increasing from 375 to 490 nm and sharply decreased to zero above 490 nm, while the shapes of quantum yield spectra differed among PPRI species. Simulations on PPRI productions under varying season, latitude, altitude, and cloud cover conditions show that the sunlight spectrum plays a role as equally important as intensity in determining PPRI productions and PPRI-mediated transformations of aquatic nutrients and micropollutants. Therefore, incorporating the spectrum dependence of PPRI productions will advance our understandings of PPRI-driven biogeochemical processes and pollutant dynamics under varying spatial-temporal and climatic conditions. Regarding this, the high sample throughput LED reactor sheds light on a new approach for the facile characterization of PPRI quantum yield spectrum.
Collapse
Affiliation(s)
- Binbin Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Tian Liu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yanling Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Guoqiang Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
47
|
Wang S, Xu L, Wang J. Iron-Based Dual Active Site-Mediated Peroxymonosulfate Activation for the Degradation of Emerging Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15412-15422. [PMID: 34697942 DOI: 10.1021/acs.est.1c06205] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is still a challenge to synthesize highly efficient and stable catalysts for the Fenton-like reaction. In this study, we constructed an integrated catalyst with highly dispersed iron-based dual active sites, in which Fe2N and single-atom Fe (SA-Fe) were embedded into nitrogen- and oxygen-co-doped graphitic carbon (Fe-N-O-GC-350). Extended X-ray absorption fine structure (EXAFS) confirmed the coordination structure of iron, and line combination fitting (LCF) demonstrated the coexistence of Fe2N and SA-Fe with percentages of 75 and 25%, respectively. Iron-based dual active sites endowed Fe-N-O-GC-350 with superior catalytic activity to activate peroxymonosulfate (PMS) as evidenced by the fast degradation rate of sulfamethoxazole (SMX) (0.24 min-1) in the presence of 0.4 mM PMS and 0.1 g/L Fe-N-O-GC-350. Unlike the reported singlet oxygen and high-valent iron oxo-mediated degradation induced by the SA-Fe catalyst, both surface-bound reactive species and singlet oxygen contributed to SMX degradation, while surface-bound reactive species dominated. Density functional theory (DFT) simulation indicated that Fe2N and SA-Fe enhanced the adsorption of PMS, which played a key role in PMS activation. The Fe-N-O-GC-350/PMS system had resistance to the interference of common inorganic anions and high oxidation capacity to recalcitrant organic contaminants. This study elucidated the important role of Fe2N in PMS activation and provide a clue to design rationally catalysts with iron-based dual active sites to activate PMS for the degradation of emerging organic pollutants.
Collapse
Affiliation(s)
- Shizong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, P. R. China
- Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, P. R. China
| | - Lejin Xu
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, P. R. China
- Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
48
|
Wang X, Bittner T, Milanov M, Kaul L, Mundinger S, Koch HG, Jessen-Trefzer C, Jessen HJ. Pyridinium Modified Anthracenes and Their Endoperoxides Provide a Tunable Scaffold with Activity against Gram-Positive and Gram-Negative Bacteria. ACS Infect Dis 2021; 7:2073-2080. [PMID: 34291902 DOI: 10.1021/acsinfecdis.1c00263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Due to the emergence of multidrug resistant bacteria, the development of new antibiotics is required. We introduce here asymmetrically modified positively charged bis(methylpyridinium) anthracenes as a novel tunable scaffold, in which the two positive charges can be placed at a defined distance and angle. Our structure-activity relationship reveals that coupling the methylpyridiniums with alkynyl linkers to the central anthracene unit yields antibacterial compounds against a wide range of bacteria, including Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. Also, different mycobacteria, such as Mycobacterium smegmatis and Mycobacterium tuberculosis, are efficiently targeted by these compounds. The antibacterial activity depends on the number of alkynyl linkers and consequently also on the distance of the positive charges in the rigid anthracene scaffold. Additionally, the formation of an anthracene endoperoxide further increases the antibacterial activity, likely due to the release of toxic singlet oxygen that converts the endoperoxide back to the antibacterial anthracene scaffold with half-lives of several hours.
Collapse
Affiliation(s)
- Xuan Wang
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Tamara Bittner
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Martin Milanov
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Laurine Kaul
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, 79104 Freiburg, Germany
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, Australia
| | - Stephan Mundinger
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Claudia Jessen-Trefzer
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
49
|
Partanen SB, Apell JN, Lin J, McNeill K. Factors affecting the mixed-layer concentrations of singlet oxygen in sunlit lakes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1130-1145. [PMID: 34231605 PMCID: PMC8372756 DOI: 10.1039/d1em00062d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/16/2021] [Indexed: 06/01/2023]
Abstract
The steady-state concentration of singlet oxygen within a lake ([1O2]SS) is an important parameter that can affect the environmental half-life of pollutants and environmental fate modelling. However, values of [1O2]SS are often determined for the near-surface of a lake, and these values typically do not represent the average over the epilimnia of lakes. In this work, the environmental and physical factors that have the largest impact on [1O2]SS within lake epilimnia were identified. It was found that the depth of the epilimnion has the largest impact on depth-averaged [1O2]SS, with a factor of 8.8 decrease in [1O2]SS when epilimnion depth increases from 2 m to 20 m. The next most important factors are the wavelength-dependent singlet oxygen quantum yield relationship and the latitude of the lake, causing variations in [1O2]SS by factors of 3.2 and 2.5 respectively, over ranges of representative values. For a set of representative parameters, the depth-averaged value of [1O2]SS within an average epilimnion depth of 9.0 m was found to be 5.8 × 10-16 M and the near-surface value of [1O2]SS was found to be 1.9 × 10-14 M. We recommend a range of 6 × 10-17 to 5 × 10-15 M as being more representative of [1O2]SS values within the epilimnia of lakes globally and potentially more useful for estimating pollutant lifetimes than those calculated using [1O2]SS values that correspond to near-surface, summer midday values. This work advances our understanding of [1O2]SS inter-lake variability in the environment, and provides estimates of [1O2]SS for practitioners and researchers to assess environmental half-lives of pollutants due to reaction with singlet oxygen.
Collapse
Affiliation(s)
- Sarah B. Partanen
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich8092 ZurichSwitzerland
| | - Jennifer N. Apell
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich8092 ZurichSwitzerland
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering6 MetroTech CenterBrooklynNY 11201USA
| | - Jianming Lin
- Firmenich IncorporatedP.O. Box 5880PrincetonNew Jersey 08543USA
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich8092 ZurichSwitzerland
| |
Collapse
|
50
|
Chen M, Chen Z, Wu P, Chen JP. Simultaneous oxidation and removal of arsenite by Fe(III)/CaO 2 Fenton-like technology. WATER RESEARCH 2021; 201:117312. [PMID: 34146764 DOI: 10.1016/j.watres.2021.117312] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/26/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Arsenite contaminated water is one of severe global environmental problems. It is challenging to treat As(III) pollution by a one-step technology. In this study, we developed a Fe(III)/CaO2 Fenton-like technology for the treatment of As(III). The simultaneous oxidation of arsenite and removal of arsenic were achieved with efficiencies of nearly 100% and 95.8% respectively, which outperforms conventional technologies. It worked well in pH 3 to 9, and in the presence of cationic heavy metals, anions and humic acid. Moreover, the PO43- inhibited the removal of As(III). •OH and 1O2 played the important roles in the oxidation of As(III). The Ca(II) derived from CaO2 made a significant contribution to the oxidation and removal of As(III). The SEM and XPS studies confirmed that the formation of Ca-Fe nascent colloid caused the effective removal of arsenic. Our study demonstrates that the one-step Fe(III)/CaO2 technology has a great potential for purification of the As(III)-contaminated water.
Collapse
Affiliation(s)
- Meiqing Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Kent Ridge Crescent, Singapore 119260, Singapore; NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411, Singapore; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhihao Chen
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411, Singapore
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - J Paul Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Kent Ridge Crescent, Singapore 119260, Singapore; NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411, Singapore.
| |
Collapse
|